WO2006118286A1 - Space information detecting device, and space information detecting system using the device - Google Patents

Space information detecting device, and space information detecting system using the device Download PDF

Info

Publication number
WO2006118286A1
WO2006118286A1 PCT/JP2006/309071 JP2006309071W WO2006118286A1 WO 2006118286 A1 WO2006118286 A1 WO 2006118286A1 JP 2006309071 W JP2006309071 W JP 2006309071W WO 2006118286 A1 WO2006118286 A1 WO 2006118286A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
spatial information
frequency
target space
period
Prior art date
Application number
PCT/JP2006/309071
Other languages
French (fr)
Japanese (ja)
Inventor
Fumi Tsunesada
Yusuke Hashimoto
Fumikazu Kurihara
Yuji Takada
Atsushi Hironaka
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to US11/919,746 priority Critical patent/US7643131B2/en
Priority to EP06745922.2A priority patent/EP1879049B1/en
Publication of WO2006118286A1 publication Critical patent/WO2006118286A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Definitions

  • the present invention relates to a spatial information detection device that receives light from a target space irradiated with intensity-modulated light and detects information about the target space.
  • the target space by receiving the light from the target space where the intensity-modulated light is projected and obtaining the phase difference of the modulation component between the projected light and the received light.
  • a technique for obtaining spatial information such as the distance to an object is known.
  • the spatial information detection device based on this technology, for example, introduces light whose intensity has been modulated at a predetermined modulation period into the target space, as introduced in the pamphlet of International Publication No. W096 / 15626 and the pamphlet of International Publication No. WO 2004Z008175.
  • a light emitting source that emits light
  • a light detecting element that receives light from the target space and generates a charge corresponding to the amount of light received, light emitted from the light emitting source, and light received by the light detecting element
  • the basic configuration is an evaluation unit that detects the spatial information of the target space from the change between the two.
  • this type of detection device projects intensity-modulated light into the target space, and therefore when detecting spatial information from a common target space by a plurality of detection devices, each detection device force target space When light is projected onto the light source, it becomes impossible to distinguish which light source of the detection device projects the light into the target space.
  • each detection device cannot detect the light emitted by its own light source into the target space separately from other light (referred to as ambient light) present in the target space, so the detection accuracy of spatial information This causes the problem of lowering.
  • the present invention has been made in view of the above-described problems, and its main purpose is to detect spatial information from a common target space by a plurality of spatial information detection devices, or to provide strength.
  • a spatial information detection device capable of accurately detecting desired spatial information from a target space even when fluctuating environmental light is present in the target space.
  • the spatial information detection device of the present invention receives a light source that projects light, which is intensity-modulated with a modulation signal having a predetermined modulation frequency, into the target space, light from the target space,
  • a photodetecting element including a photosensitive portion that generates a charge corresponding to the light intensity, and a charge generated in the photosensitive portion in a period synchronized with a phase interval defined in the modulation signal among the charges generated in the photosensitive portion.
  • An evaluation unit that detects spatial information, and a phase interval defined in the modulation signal of the amount of charge generated by the photosensitive unit by receiving the ambient light under a condition where ambient light with varying intensity exists in the target space.
  • Smoothing means for smoothing the fluctuation component by accumulating the fluctuation component in a predetermined integration period.
  • the target space It is possible to easily identify the fluctuation component in the phase interval of the intensity-modulated light received from the light and the fluctuation component in the phase interval of the ambient light.
  • the smoothing means integrates and smoothes the fluctuation component of the ambient light over a predetermined integration period for each of the two types of phase sections defined in the modulation signal of the light emission source
  • the evaluation unit obtains the difference between the charge amounts of the two types of phase sections out of the amount of charge received by the light detection element from the target space so as to cancel out the fluctuation component of the ambient light in the two types of phase sections. It is preferable to detect spatial information using. In this case, if the smoothing means integrates and smoothes the fluctuation component of the ambient light in a sufficient integration period for each of the two types of phase sections, these differences are substantially zero or can be ignored. Get smaller.
  • obtaining the difference between the charge amounts of the two types of phase intervals among the charge amounts received by the light detection element from the target space is the same as the charge amounts of the charge amount received by the light detection element from the target space.
  • This is essentially equivalent to finding the difference in charge between the two phase sections. Therefore, according to the present invention, it is possible to reduce or eliminate the influence of ambient light existing in the target space, and accurately detect desired spatial information based on the amount of received intensity-modulated light from the target space. It is.
  • the smoothing means is based on the frequency difference between the modulation frequency of the light source's modulation signal and the frequency of the ambient light. It is preferable to integrate the fluctuation component of the ambient light over the integration period specified in the above. For example, when there is an ambient light component whose fluctuating frequency is known in the target space, such as when there is another spatial information detection device that shares at least part of the target space. However, since the modulation frequency of the modulation signal is different, the fluctuation component of the ambient light can be removed according to the principle described above.
  • an integral multiple period of the beat component determined by the frequency difference between the modulation frequency of the light emitting source and the frequency of the ambient light is an integration period in the smoothing means.
  • the time when the integer multiples of each beat component determined by the frequency difference between the modulation frequency of the light source and each of the multiple frequencies of ambient light coincides. It is preferable to set the integration period in the smoothing means. In this case, ambient light components can be removed even when three or more spatial information detectors with known modulation frequencies are operated simultaneously.
  • the spatial information detecting device preferably includes a frequency selection unit that selects a modulation frequency of the light source from a plurality of preset modulation frequencies.
  • a frequency selection unit that selects a modulation frequency of the light source from a plurality of preset modulation frequencies.
  • the spatial information detection device preferably includes a frequency switching unit that changes the modulation frequency of the light source with time.
  • a frequency switching unit that changes the modulation frequency of the light source with time.
  • different modulation frequencies can be set for each of the plurality of spatial information detection devices. Therefore, even when a plurality of spatial information detection devices are operated simultaneously, The boundary light component can be effectively removed.
  • the frequency switching unit preferably changes the modulation frequency irregularly. In this case, even when the timing for changing the modulation frequency is not shifted, the probability that the modulation frequencies are equal in a plurality of detection devices can be reduced.
  • interference that determines whether the presence of the environmental light affects the detection accuracy of the spatial information using the fluctuation component of the environmental light smoothed by the smoothing unit It is preferable to include a determination unit.
  • the interference determination unit determines that the presence of the ambient light affects the detection accuracy of the spatial information the modulation frequency of the light source modulation signal is changed until the influence of the ambient light falls within an allowable range. It is further preferable to provide a frequency switching unit to be operated.
  • the spatial information detection device includes a light projection period in which light is projected from a light source to a target space, and light between the light source and the target space. It is preferable to include a light emission control unit that controls the light emission source so as to have a pause period during which light is not projected.
  • the smoothing unit integrates the fluctuation components of the two types of phase sections defined in the modulation signal of the light source among the charges generated by the ambient light received by the photosensitive unit during the pause period during the integration period. Can be smoothed.
  • the interference determination unit compares the difference of the fluctuation component smoothed by the smoothing unit with respect to the charge generated by the ambient light received during the pause period, and compares the difference with the threshold value. It can be determined that the fluctuation component is greater than or equal to a preset allowable range.
  • a light projection period in which light is projected from a light source to a target space and a pause period in which light is not projected are provided intermittently, and a pause period in which intensity-modulated light is not projected. It is possible to evaluate and determine the influence of the fluctuation component of the ambient light using the ambient light component received at. According to this, for example, it is possible to easily determine whether other spatial information detection devices share the target space.
  • a frequency switching unit that changes the modulation frequency of the modulation signal of the light emission source until the difference becomes smaller than a threshold value. It is preferable to have. According to this configuration, when using a plurality of spatial information detection devices, it is possible to easily use the modulation frequency without having to individually set the modulation frequency, and it is also possible to provide a modulation frequency that can avoid mutual interference. Since it is set automatically, it becomes possible to detect spatial information with high accuracy under conditions where the influence of ambient light components is small.
  • the ambient light has a known frequency different from the modulation frequency of the modulation signal of the light source.
  • the smoothing means detects the fluctuation component of the light source of the two types of phase sections defined in the modulation signal of the light source out of the amount of charge generated by the light received by the light detection element during the pause period.
  • An integrated value is obtained in a predetermined integration period defined by the frequency difference between the frequency of the modulation signal and the frequency of the ambient light, and the evaluation unit calculates a light projection period when the difference between the integration values is less than or equal to a threshold value.
  • the spatial information is detected using the amount of charge obtained in the integration period.
  • the influence of the fluctuation component in the ambient light is determined using the difference between the integrated values obtained in the appropriate integration time during the pause period, and the obtained integration time in the projection period is obtained based on the determination result. It is determined whether to detect spatial information using the amount of charge that can be detected, so even if there is another spatial information detection device that shares the target space, highly reliable spatial information can be detected. It can be carried out.
  • the evaluation unit has a conversion table in which an intermediate value corresponding to a phase difference between light projected from the light source to the target space and light received by the light detection element is associated with the difference, Conversion table force It is preferable to determine the distance to the object existing in the target space by correcting the calculated intermediate value with a correction value determined according to the modulation frequency of the light projected from the light source to the target space. According to this configuration, the same conversion table can be used even if the modulation frequencies are different, and the manufacture of the spatial information detection device is facilitated by sharing the data.
  • a further object of the present invention is based on the same principle as described above, and when detecting spatial information from a target space at least partially shared by a plurality of spatial information detection devices, each detection is performed. It is an object of the present invention to provide a spatial information detection system capable of detecting spatial information with high accuracy.
  • this spatial information detection system receives a light source that projects light that has been intensity-modulated with a first modulation signal into a target space, light from the target space, and charges according to the received light amount.
  • a photodetecting element having a photosensitive portion to be generated, and a first modulation signal out of charges generated by the photosensitive portion.
  • the first detection device having an evaluation unit that detects the spatial information of the target space using the charge generated in the period synchronized with the phase interval specified in the signal, and the intensity of the second modulation signal different from the first modulation signal
  • a light emitting source that projects the modulated light onto the target space, a light detection element that receives light from the target space and generates a charge corresponding to the amount of received light, and a charge detector
  • a second detection device having an evaluation unit that detects the spatial information of the target space using charges generated in a period synchronized with the phase interval defined in the second modulation signal,
  • the first detector receives the light from the target space and receives the light from the target space under the condition in which the light intensity-modulated by the first modulation signal and the light intensity-modulated by the second modulation signal simultaneously exist in the target space.
  • the fluctuation component in the phase interval specified in the first modulation signal of the amount of charge generated by receiving the light whose intensity is modulated by the second modulation signal is predetermined.
  • smoothing means for smoothing by integrating during the integration period is predetermined.
  • the fluctuation component of the intensity-modulated light provided by the second detector force in the phase interval specified in the first modulated signal of the intensity-modulated light provided by the first detector is integrated over a predetermined integration time.
  • the fluctuation component can be smoothed, so that the fluctuation component in the phase interval of the intensity-modulated light of the first detection device received from the target space and the phase interval of the intensity-modulation light of the second detection device in the phase interval. Fluctuating components can be easily identified.
  • the smoothing means integrates and smoothes the fluctuation component of the intensity-modulated light of the second detector over a predetermined integration period for each of the two types of phase sections defined in the first modulation signal of the first detector.
  • the evaluation unit cancels out the fluctuation component of the intensity-modulated light of the second detector in the two types of phase sections, and the 2 of the electric charges received from the target space by the photodetecting element of the first detector It is preferable to obtain the difference in the amount of charge in the types of phase sections and detect the spatial information using the difference.
  • the influence of the intensity-modulated light of the second detection device is reduced or eliminated, and the desired amount of light is received based on the amount of received light in the phase section of the intensity-modulated light of the first detection device from the target space. It is possible to accurately detect the spatial information. Accordingly, each of the desired spaces from the target space that is at least partially shared by a plurality of spatial information detection devices of the same type. Even when detecting inter-space information, each detection device that is not affected by the intensity modulation light projected into the target space from another detection device itself has intensity modulation light that is projected into the target space. Therefore, the target spatial information can be accurately detected based on the above.
  • FIG. 1 is a schematic block diagram of a spatial information detection device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an operation principle of the detection device.
  • FIG. 3 is a diagram showing a waveform profile in which different intensity-modulated lights are superimposed.
  • FIG. 4 is a diagram showing an example of light projection timing of the detection device.
  • FIG. 5 is a schematic block diagram showing a characteristic part of a spatial information detecting device according to a third embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of interference determination in the third embodiment.
  • a distance measuring device that measures the distance to an object existing in the target space is exemplified as a spatial information detection device (hereinafter abbreviated as “detection device”).
  • Spatial information is not limited to “distance”.
  • the spatial information includes information obtained by removing environmental light components such as the reflectance of an object existing in the target space, and luminance information of the object. It is also possible to generate luminance images that are not affected by ambient light intensity using luminance information.
  • the distance measuring device described below generates a distance image in which a distance for each location in the target space is associated with each pixel by capturing an image of the target space.
  • the distance measuring device of the present embodiment includes a light source 2 that projects light into a target space, and a light detection element that receives light from the target space and provides an output that reflects the amount of received light 1 and are provided.
  • the distance to the object Ob existing in the target space is the time from when light is projected from the light source 2 to the target space until the reflected light from the object Ob enters the light detection element 1 (“flight time”) Call).
  • flight time is very short.
  • the intensity of light projected from the light source 2 to the target space is modulated and projected to the target space, and the phase difference between the light and received light is modulated with respect to the modulation component of the light intensity.
  • a technique for converting this phase difference into time of flight is used. That is, the light emission control unit 3 controls the light emission source 2 so that the intensity of light projected to the target space changes at a constant period.
  • the intensity of light emitted from the light source 2 into the space is modulated so as to have a sine waveform as shown by a curve X, and the amount of light received by the light detection element 1 is If the curve changes as shown in curve Y, the phase difference corresponds to the time of flight, so the distance to the object Ob can be obtained by calculating the phase difference.
  • the unit of phase difference is [rad
  • Phase difference (M) can be calculated using the received light quantity of curve Y obtained at multiple timings of curve X. For example, phase force in curve X ⁇ ⁇ 90 degrees, 90 ⁇ : 180 degrees, 180-2 The received light intensity of curve Y obtained at the timing of 70 degrees and 270 to 360 degrees is A0, Al, A
  • the received light intensity A0, Al, A2, and A3 are indicated by hatching).
  • the amount of received light A0, Al, A2, and A3 in each phase is an integral value of the period Tw of 90 degrees.
  • the phase difference does not change (that is, the distance to the object ⁇ b does not change), and the reflectance of the object ⁇ b also changes. There shall be no.
  • the intensity of the light emitted from the light source 2 is modulated with a sine wave, and the intensity of the light received by the light detection element 1 at time t is expressed as A 'sin (co t + ⁇ ) + ⁇ .
  • is the amplitude
  • B is the DC component (average value of the ambient light component and the reflected light component)
  • is the initial phase is there.
  • the average value ⁇ can be assumed to be constant during the period in which the received light amounts ⁇ 0, Al, ⁇ 2, and A3 in the four phase sections are obtained. From these conditions, the phase difference ⁇ can be expressed by the following equation, for example.
  • the above formula changes the sign or the phase is 90 degrees different depending on how to take the interval to be integrated (for example, in the above example, the force may be 180 degrees, where the phase width of one section is 90 degrees)
  • the phase difference ⁇ can be obtained by using the received light quantity A0, Al, A2, A3 in 4 sections.
  • a light source with a fast response speed is used as the light emission source 2.
  • a light emitting source 2 can be formed by arranging a large number of light emitting diodes on one plane or a combination of a semiconductor laser and a diverging lens.
  • the modulation signal for driving the light source 2 is output from the light emission control unit 3, and the intensity of light emitted from the light source 2 is modulated by the modulation signal.
  • the light emission control unit 3 outputs, for example, a 10 MHz sine wave as a modulation signal.
  • the waveform of the modulation signal may be a triangular wave, a sawtooth wave or the like in addition to the sine wave.
  • the photodetecting element 1 includes a plurality of photosensitive portions 11 that are regularly arranged.
  • a light receiving optical system 5 is disposed in the light incident path to the photosensitive portion 11. Therefore, light from the target space enters the photosensitive portion 11 via the light receiving optical system 5, and an amount of electric charge corresponding to the amount of received light is generated.
  • the photosensitive portions 11 are arranged on the lattice points of the planar lattice, and are arranged in a matrix, for example, in the vertical direction (that is, the vertical direction) and in the horizontal direction (that is, the horizontal direction) at equal intervals. Is done.
  • the light receiving optical system 5 associates the line-of-sight direction when viewing the target space from the light detection element 1 with each photosensitive portion 11. That is, the range in which light enters each photosensitive portion 11 through the light receiving optical system 5 can be regarded as a conical field of view with a small apex angle set for each photosensitive portion 11 with the center of the light receiving optical system 5 as the apex. . Therefore, if the reflected light irradiated from the light source 2 and reflected by the object Ob existing in the target space is incident on the photosensitive part 11, the light of the light receiving optical system 5 depends on the position of the photosensitive part 11 that has received the reflected light. It is possible to know the direction in which the object Ob exists with the axis as the reference direction.
  • the light receiving optical system 5 is generally arranged so that the optical axis is orthogonal to the plane on which the photosensitive portion 11 is arranged, the center of the light receiving optical system 5 is the origin, and the vertical of the plane on which the photosensitive portions 11 are arranged If an orthogonal coordinate system is set in which the direction, the horizontal direction, and the optical axis of the light receiving optical system 5 are in three directions, the angle (the so-called azimuth) when the position of the object 0b existing in the target space is expressed in spherical coordinates. (Angle and elevation angle) correspond to each photosensitive area 11.
  • the light receiving optical system 5 may be arranged so that the optical axis intersects with a plane other than 90 degrees with respect to the plane on which the photosensitive portions 11 are arranged.
  • the received light amounts A0 of four phase sections synchronized with the intensity change of the light projected from the light source 2 to the target space Seeking A1, A2, A3. Therefore, it is necessary to control the timing to obtain the desired received light intensity A0, Al, A2, A3.
  • the amount of charge generated in the photosensitive portion 11 is small in one cycle of intensity change of light projected from the light source 2 to the target space, it is desirable to accumulate the charge over a plurality of cycles. Therefore, as shown in FIG.
  • a sensitivity control unit 12 is provided to control this.
  • the light detection element 1 used in the present embodiment has a plurality of (for example, 100 X 100) photosensitive portions.
  • a transfer gate is provided between the photosensitive unit 11 and the vertical transfer unit.
  • the photodetecting element 1 has the same configuration as an interline transfer (IT) type CCD image sensor, and the charge extraction unit 14 shown in FIG. 1 includes a vertical transfer unit and a horizontal transfer unit. Function.
  • the charge accumulating unit 13 represents a function of accumulating charges in a period until transfer is started in the vertical transfer unit.
  • the sensitivity control unit 12 is controlled by the light emission control unit 3 so as to increase the sensitivity in the four phase sections respectively corresponding to the received light amounts A0, Al, A2, and A3, and the received light amounts A0, Al , Charges corresponding to A 2 and A 3 are accumulated in the charge accumulating unit 13.
  • the amount of charge accumulated from the photosensitive portion 11 to the vertical transfer portion is adjusted by controlling the transfer gate, and
  • the function of the sensitivity control unit 12 is provided by using at least one of the configurations for adjusting the amount of charge to be discarded by providing a disposal electrode that can discard charges.
  • the transfer gate is controlled so that charges pass from the photosensitive unit 11 to the vertical transfer unit in the phase interval corresponding to the desired received light amount A0, Al, A2, A3, or other than the desired phase interval.
  • the voltage applied to the discard electrode so as to discard the charge, the charge only in a desired phase period is accumulated in the vertical transfer unit, and the accumulated charge is transferred.
  • the light detecting element is projected from the light source 2 into the target space and reflected by the object 0b.
  • the photodetecting element is passed through the charge extraction unit 14. Taken from 1.
  • the light emission control unit 3 controls the timing of extracting the charge through the charge extraction unit 14.
  • a period in which charges are accumulated in the charge accumulating unit 13 (that is, a period in which charges in the target section are generated in the photosensitive unit 11) is referred to as a light receiving period, and is accumulated in the charge accumulating unit 13.
  • a period in which the extracted charges are taken out by the charge extraction unit 14 is called a readout period.
  • the charge in each of the four sections described above in the four photosensitive portions 11 included in the set is stored in the charge integration portion. 13 can be accumulated.
  • the sensitivity control unit 12 corresponding to the four photosensitive units 11 in a set is controlled in association with the periods corresponding to the received light amounts A0, Al, A2, and A3, four charge integrations are performed.
  • the unit 13 can accumulate charges corresponding to the received light amounts A0, Al, A2, and A3, respectively. With this kind of operation, it is possible to extract the received light intensity A0, Al, A2, A3 in four sections with only one light receiving period and one readout period, and use information within a relatively short time.
  • the distance of the object 0b can be obtained.
  • the resolution is reduced to a quarter compared to the case where one photosensitive portion 11 corresponds to one direction of the target space.
  • each photosensitive portion 11 is more likely to receive reflected light from a different object Ob, and erroneous measurement with respect to distance is likely to occur. .
  • the two photosensitive portions 11 are used as a set, and the light receiving period and the reading period are used twice, corresponding to the received light amounts A0, Al, A2, A3 in four sections.
  • a method of taking out electric charge is adopted. In other words, the first time out of the two light receiving periods takes out the charges corresponding to the received light amounts A0 and A2, and the second time takes out the charges corresponding to the received light amounts Al and A3.
  • the light reception output output from the above-described light detection element 1 is sent to the distance calculation unit 4 as an evaluation unit, and the distance calculation unit 4 receives the received light amounts A0, Al, A2, A3 in the above four phase sections. Is obtained as a light-receiving output, and the phase difference is obtained by applying the force applied to the above formula for obtaining the phase difference ⁇ , or by applying it to the table corresponding to the formula, and the phase difference ⁇ force to the object Ob Find the distance. Since the distance calculation unit 4 obtains distances in a plurality of directions of the target space, it can obtain three-dimensional information about the target space, and can generate a distance image in which distance values are associated with pixel values. It is. In the conversion table, the distance may be obtained instead of the phase difference.
  • the above equation for calculating the phase difference ⁇ from the received light amounts A0, Al, A2, A3 in the four phase sections is the average value during the period in which the received light quantities ⁇ 0, Al, ⁇ 2, A3 in the four phase sections are obtained.
  • is constant, that is, the ambient light component does not change within the time required to obtain the received light amounts ⁇ 0, Al, ⁇ 2, and A3 in the four phase sections. Therefore, the phase difference ⁇ cannot be obtained under conditions where the ambient light component fluctuates within each phase interval.
  • the embodiment described below makes it possible to obtain the phase difference ⁇ even when the ambient light component includes a fluctuation component that fluctuates within each phase interval.
  • Each distance measuring device includes a light emission source 2, a light emission control unit 3, a light detection element 1, and a distance calculation unit 4.
  • the light emission control unit 3 in the present embodiment is configured such that a plurality of types of modulation frequencies can be selected, and the light emission control unit 3 is provided with a frequency selection unit 6 for selecting the modulation frequency.
  • the frequency selection unit 6 is configured using, for example, a DIP switch or a rotary switch. Alternatively, the frequency of the frequency selector 6 can be selected with a memory switch, A configuration in which the contents of the memory switch can be changed using a support device such as a data recorder may be adopted.
  • the modulation frequencies of the distance measuring devices are fixedly set to be different from each other.
  • the modulation frequency can be set to 10 MHz, 12 MHz, and 15 MHz, respectively.
  • the received light amount corresponding to the received light amount A0, Al, A2, A3 in the specific phase interval synchronized with the modulation signal is taken out from the light detection element 1 and given to the distance calculation unit 4. Therefore, the light receiving output corresponding to the received light amount A0, A2 is taken out in one readout period in the light detecting element 1, and the received light amount corresponding to the received light amount Al, A3 in the other readout period. Receive light output.
  • each distance measuring device takes out the electric charge accumulated over many cycles of the modulation signal during the light receiving period
  • the light receiving output of the light detecting element 1 is modulated by the light projected from the other distance measuring device into the target space.
  • Variation components of light having different frequencies are also included. For the sake of simplicity, considering that two ranging devices with modulation frequencies of 10 MHz and 12 MHz are operating in common, both ranging devices are shown in FIG. Thus, 12MHz light Z1 and 10MHz light Z2 are received simultaneously. In Fig. 3, the intensity S of the received light is depicted as being almost equal, in fact the light intensity is different in most cases.
  • a distance measuring device with a modulation frequency of 10 MHz receives light of two types of modulation frequencies at the same time, it corresponds to the curve Zl corresponding to the received light amount AO, Al, A2, A3 in each phase section corresponding to the curve Z2. Since the components in each phase interval are added, the received light amount in each phase interval corresponding to the curve Z2 from the received light amount obtained in each phase interval is about several times the modulation signal period AO, Al, A2, A3 Cannot be extracted.
  • the distance calculation unit 4 obtains the distance after performing such integration for smoothing.
  • the integrated value for each phase interval is obtained, the integrated value is also large because the ambient light component is also integrated in addition to the reflected light component. For example, if digital signal processing is performed, the number of bits corresponding to the integrated value increases, and a memory or the like for storing the integrated value requires a large capacity.
  • the distances A0 ⁇ A2 and A1 ⁇ A3 are used for calculating the distance. In such a difference, components that do not vary among the ambient light components are removed. Therefore, if this difference is integrated, the integrated value can be greatly reduced.
  • the present embodiment utilizes such characteristics.
  • the frequency difference between the modulation frequencies of the detection devices that is, the fluctuation period in the ambient light component is known.
  • the integrated time defined by the periodic difference at a certain time
  • the integrated value of the difference in received light quantity (AO-A2) and (Al-A3) is obtained, and the distance is obtained using this integrated value.
  • the integrated value is calculated with this beat component period, it means that the beat component has been removed.Therefore, if one period of the beat component determined by the frequency difference of the modulation frequency is set as the integration time, the influence of the mutual modulation frequency is affected. Ambient light components can be removed by canceling.
  • the frequency difference is 2MHz and 5MHz, respectively.
  • the ambient light component can be removed if the integration time is defined as the time at which the integral multiples of the beat components coincide. Since in the above-described frequency is one period of the beat component becomes a 5 X 10_ 7 s and 2 X 10 _ 7 s respectively, minimum time integral multiple cycle of two match becomes 1 beta s. Therefore, if the integration time is set to 1 ⁇ s or an integral multiple of this, it is possible to accurately obtain the distance by offsetting the influence of the light emitted by the other detectors and the power without using three detectors. It will be possible.
  • each received light amount A0, Al at an appropriate time interval according to the modulation frequency of each detection device. If the phase interval for obtaining A2, A3 is set, simply calculating the difference (AO—A2), (A1—A3) of the amount of received light will cancel out the components of the ambient light component that vary within the phase interval. It is possible.
  • Lm c / 2f, where f is the modulation frequency and c [m / s] is the luminous flux.
  • the distance traveled in one cycle of the modulation signal is the maximum measurable distance Lm, and when the phase difference ⁇ is 2 ⁇ , it is considered to correspond to the maximum distance Lm.
  • the conversion table becomes the modulation frequency. It is only necessary to prepare one type without depending on it, reducing the labor of registering data, and reducing the capacity of the semiconductor memory used for the conversion table.
  • the modulation frequency of each of the plurality of detection devices is fixedly set by the frequency selection unit 6, but in this embodiment, the modulation frequency of each detection device is automatically set as time elapses.
  • a configuration that changes is adopted. Therefore, the present embodiment is different from the first embodiment in that a frequency switching unit (not shown) that automatically changes the modulation frequency with the passage of time is provided instead of the frequency selection unit 6. Since the configuration and operation of are substantially the same as those of the first embodiment, redundant description will be omitted.
  • the frequency switching unit automates the selection of the modulation frequency in the frequency selection unit 6, and automatically selects the modulation frequency as time elapses, and the selection operation is linked to the timer function. .
  • the modulation frequency is automatically changed over time. Therefore, it does not take time to set the modulation frequency.
  • the time for changing the modulation frequency is longer than the integration time described in the first embodiment. This is because if the modulation frequency changes during the integration time, it cannot be guaranteed that the influence of the light projected from other detection devices will be almost cancelled. In addition, it is desirable that the timing for changing the modulation frequency varies among the detection devices.
  • the probability that the modulation frequencies are equal in a plurality of detection devices sharing the target space can be reduced. Furthermore, if the modulation frequency is changed irregularly in the frequency switching section, the probability that the modulation frequencies are equal in a plurality of detection devices can be reduced by more / J even when the timing for changing the modulation frequency is not shifted. That power S.
  • the light detection element 1 reads the charge corresponding to the received light amount (A0, A2) or (A1, A3) in the two phase sections in one readout period. It is sticking out. Therefore, in order to read out the charges in the four phase intervals, two light receiving periods and two readout periods are required. In other words, the distance can be measured by alternately repeating the light receiving period and the reading period and providing the light receiving period and the reading period twice. In addition, since light emission from the light source 2 is unnecessary during the readout period, the readout period is set to coincide with a pause period during which light emission from the light source 2 is not performed, and the light reception period is projected from the light source 2 into the target space.
  • the light receiving period and the readout period defined for the operation of the light detection element 1 are made to coincide with the light projecting period and the rest period defined for the operation of the light emitting source 2, respectively.
  • the operation of the light emission source 2 for determining the light projection period and the rest period is controlled by the light emission control unit 3.
  • the light receiving period T02 that generates charges corresponding to the received light amounts A0 and A2 coincides with the light projecting period of the light source 2, and the charges corresponding to the received light amounts Al and A3.
  • the generated light reception period T13 coincides with the next light emission period of the light source 2.
  • the readout period Td corresponding to each light receiving period T02, T13 coincides with the rest period of the light emitting source 2.
  • the light receiving periods T02 and T13 and the reading period Td are normally repeated alternately.
  • the light receiving period that does not coincide with the light projecting period is used.
  • period Te is provided at an appropriate timing.
  • the light detection element 1 is provided with a readout period Td for reading out charges generated during the light reception period Te as in the light reception periods T02 and T13, but the light reception period Te is set as a pause period during which light is not emitted from the light source 2. Is different from the light receiving periods T02 and T13.
  • the period corresponding to the light receiving period Te in addition to the period corresponding to the readout period Td is also a pause period.
  • the light source 2 of the detection device does not project light, so that the light detecting element 1 receives only the ambient light component in the light receiving period Te.
  • the difference between the received light amounts of the two different phase sections in the pause period is ideally zero.
  • the integrated value in the integrated time is obtained to smooth out the fluctuation and cancel it out. can do. Therefore, it is possible to determine whether or not the ambient light component affects the distance measurement accuracy by comparing the received light amounts of the two phase sections in a predetermined integration time.
  • the distance calculation unit 4 is provided with an interference determination unit 42 for performing the above-described determination.
  • the interference determination unit 42 calculates a difference (AO-A2) between two phase sections that differ by 180 degrees in the light reception period Te of only the ambient light component (integrated value obtained by the integration time), and uses this difference as a predetermined threshold value. To determine whether the ambient light component affects the ranging accuracy. Then, the interference determination unit 42 obtains the distance by the calculation unit 43 only when the difference between the integrated values is equal to or less than the threshold value. Such an operation ensures the accuracy of distance measurement.
  • the difference between the integrated values is larger than the threshold value, it means that the ambient light component affects the distance measurement accuracy, so the distance is not calculated by the calculation unit 43, and the interference determination unit In 42, the modulation frequency determined not to be affected by the ambient light component is automatically searched, or until the difference becomes smaller than the threshold, that is, the influence of the ambient light component is within the allowable range. It is preferable to change the modulation frequency until it is determined that there is.
  • a frequency switching unit 7 that changes the modulation frequency according to the determination result of the interference determination unit 42 is provided.
  • the frequency switching unit 7 is configured to change the modulation frequency so as to change the modulation frequency when the interference determining unit 42 determines that the ambient light component is affected. To instruct. In this way, since the frequency switching unit 7 automatically changes the modulation frequency so that it is not affected by the ambient light component, setting of the modulation frequency does not take time and the influence of the ambient light component is within the allowable range. As a result, the spatial information can be detected with high accuracy.
  • Other configurations and operations are the same as those in the first embodiment.
  • the difference between the integrated values in the two phase sections that are 180 degrees different from each other is compared with the threshold value to influence the influence of the ambient light component.
  • the judgment method of ambient light is not limited to the use of the amount of received light during the rest period.
  • the object to be compared with the threshold is not necessarily limited to the difference between the integrated values.
  • the integrated value may be obtained in two different phase intervals other than 180 degrees.
  • the interference determination unit is the fluctuation component of the ambient light smoothed by the smoothing means, out of the received charge in at least one phase interval, regardless of whether it is a light projection period or a light emission pause period. It is only necessary to determine whether the presence of the ambient light affects the detection accuracy of spatial information (interference). For example, the value smoothed by the smoothing means in a certain phase section is compared with a predetermined threshold value, and if the value is larger than the threshold value, the fluctuation component of ambient light is outside the preset allowable range, that is, It is possible to determine that there is ambient light interference.
  • the frequency switching unit changes the modulation frequency of the modulation signal of the light source until the environmental light fluctuation component falls within the allowable range. It is preferable to provide the same as described above.
  • the interference determination unit will be further described.
  • the phase section AO (which may be any of A1, A2, and A3) in FIG. 2, as shown in FIG.
  • the amount of light received includes the received light string corresponding to the fluctuation component smoothed in environment light projection period 1. Yes.
  • the phase interval AO in FIG. 2 when the total amount of light received in the next light projection period 2 is Q2, if there is an influence of ambient light, the amount of light received is smoothed in the light projection period 2 of ambient light.
  • the received light intensity corresponding to the converted fluctuation component is included.
  • the specified threshold value / 3 is set and the absolute value of this difference is greater than the threshold value, it is determined that there is an influence (interference) of ambient light. If the absolute value of the difference is less than or equal to the threshold value ⁇ , there is no influence of environmental light. It can be determined.
  • the influence of ambient light by using the variation of the distance calculation value. For example, the difference between the first distance calculation value XI and the second distance calculation value ⁇ 2 is obtained, and if the absolute value of the difference is larger than a predetermined threshold 0, it is determined that there is an influence (interference) of ambient light. If the absolute value of the difference is less than or equal to the threshold value ⁇ , it can be determined that there is no influence of ambient light. Furthermore, fluctuations in the difference between two types of phase intervals (for example, phase interval AO— ⁇ 2) and variations in the sum of the four phase intervals (for example, AO + A1 + A2 + A3) can be used for interference determination. ,.
  • the same configuration as the IT type CCD image sensor is adopted.
  • the same configuration as the frame 'transfer (FT) method and the frame' interline 'transfer (FIT) method is used. It is also possible to do.
  • the charge control unit 12 controls the gate unit that delivers charges from the photosensitive unit 11 to the charge extraction unit (vertical transfer unit), as well as the sensitivity control unit 12. It is also possible to adopt a configuration such as this.
  • the light whose intensity is modulated at the predetermined modulation frequency projected from the spatial information detection device to the target space is transmitted from the illumination lamp or the like to the target space. Even if it is irradiated or light that has been intensity-modulated at a different modulation frequency from another detector is projected into the same target space, the influence of these ambient light components can be reduced or eliminated.
  • Target spatial information can be detected with high accuracy. Therefore, it is expected to be used in a wide range of fields, including crime prevention systems and factory automation (FA) systems, as highly reliable spatial information detection devices regardless of the usage environment.
  • FA factory automation

Abstract

Provided is a space information detecting device which can project, even under circumstances where an environment light having a varying intensity exists in an object space, a light having an intensity modulated with a predetermined modulation signal, from a light source into the object space, and can receive the light from the object space with a light detecting element, thereby to detect the space information of the object space from the change between the light projected from the light source and the light received by the light detecting element. The device comprises smoothing means for integrating, for a predetermined integration period, the fluctuating component of such a quantity of the electric charge generated in the light detecting element by receiving the light from the object space as is generated by receiving the environment light, for the phase period specified in the modulating signal, thereby to smoothen that fluctuating component.

Description

明 細 書  Specification
空間情報検出装置および同装置を用いた空間情報検出システム 技術分野  Spatial information detection device and spatial information detection system using the same
[0001] 本発明は、強度変調した光が照射されている対象空間からの光を受光して対象空 間に関する情報を検出する空間情報検出装置に関するものである。  The present invention relates to a spatial information detection device that receives light from a target space irradiated with intensity-modulated light and detects information about the target space.
背景技術  Background art
[0002] 従来から、強度変調した光が投光されている対象空間からの光を受光し、投光した 光と受光した光との変調成分の位相差を求めることによって、対象空間に存在する物 体までの距離等の空間情報を求める技術が知られている。この技術基づく空間情報 の検出装置は、例えば、国際公開 W096/15626号パンフレットや、国際公開 WO 2004Z008175号パンフレットに紹介されているように、所定の変調周期で強度変 調された光を対象空間に投光する発光源と、対象空間からの光を受光して受光光量 に応じた電荷を生成する光電変換部を有する光検出素子と、発光源から投光した光 と光検出素子で受光した光の間の変化から対象空間の空間情報を検出する評価部 とを基本構成とする。  [0002] Conventionally, it exists in the target space by receiving the light from the target space where the intensity-modulated light is projected and obtaining the phase difference of the modulation component between the projected light and the received light. A technique for obtaining spatial information such as the distance to an object is known. The spatial information detection device based on this technology, for example, introduces light whose intensity has been modulated at a predetermined modulation period into the target space, as introduced in the pamphlet of International Publication No. W096 / 15626 and the pamphlet of International Publication No. WO 2004Z008175. A light emitting source that emits light, a light detecting element that receives light from the target space and generates a charge corresponding to the amount of light received, light emitted from the light emitting source, and light received by the light detecting element The basic configuration is an evaluation unit that detects the spatial information of the target space from the change between the two.
[0003] ところで、この種の検出装置は対象空間に強度変調した光を投光するため、複数 台の検出装置により共通の対象空間から空間情報を検出する場合において、各検 出装置力 対象空間に光が投光されると、どの検出装置の発光源から対象空間に投 光された光であるかを区別することができなくなる。つまり、各検出装置はそれ自身の 発光源が対象空間に投光した光を対象空間に存在する他の光 (環境光と呼ぶ)から 分離して検出することができないので、空間情報の検出精度が低下するという問題を 生じる。  [0003] By the way, this type of detection device projects intensity-modulated light into the target space, and therefore when detecting spatial information from a common target space by a plurality of detection devices, each detection device force target space When light is projected onto the light source, it becomes impossible to distinguish which light source of the detection device projects the light into the target space. In other words, each detection device cannot detect the light emitted by its own light source into the target space separately from other light (referred to as ambient light) present in the target space, so the detection accuracy of spatial information This causes the problem of lowering.
発明の開示  Disclosure of the invention
[0004] そこで、本発明は上記問題点に鑑みて為されたものであり、その主たる目的は、複 数台の空間情報検出装置により共通の対象空間から空間情報を検出する場合や、 強度が変動する環境光が対象空間に存在する場合であっても、対象空間から所望 の空間情報を精度よく検出することのできる空間情報検出装置を提供することにある [0005] すなわち、本発明の空間情報検出装置は、所定の変調周波数を有する変調信号 で強度変調された光を対象空間に投光する発光源と、対象空間からの光を受光し、 受光光量に応じた電荷を生成する感光部を備えた光検出素子と、感光部で生成さ れる電荷のうち前記変調信号において規定した位相区間に同期する期間に生成さ れた電荷を用いて対象空間の空間情報を検出する評価部と、強度が変動する環境 光が対象空間に存在する条件下において、前記環境光を受光して感光部で生成さ れる電荷量の前記変調信号において規定した位相区間における変動成分を所定の 積算期間で積算して平滑化する平滑化手段とを具備してなることを特徴とする。 [0004] Therefore, the present invention has been made in view of the above-described problems, and its main purpose is to detect spatial information from a common target space by a plurality of spatial information detection devices, or to provide strength. To provide a spatial information detection device capable of accurately detecting desired spatial information from a target space even when fluctuating environmental light is present in the target space. That is, the spatial information detection device of the present invention receives a light source that projects light, which is intensity-modulated with a modulation signal having a predetermined modulation frequency, into the target space, light from the target space, A photodetecting element including a photosensitive portion that generates a charge corresponding to the light intensity, and a charge generated in the photosensitive portion in a period synchronized with a phase interval defined in the modulation signal among the charges generated in the photosensitive portion. An evaluation unit that detects spatial information, and a phase interval defined in the modulation signal of the amount of charge generated by the photosensitive unit by receiving the ambient light under a condition where ambient light with varying intensity exists in the target space. Smoothing means for smoothing the fluctuation component by accumulating the fluctuation component in a predetermined integration period.
[0006] 上記した本発明の空間情報検出装置によれば、発光源から提供される強度変調光 の変調信号において規定した位相区間における環境光の変動成分を積算して平滑 化するので、対象空間から受光した強度変調光の前記位相区間における変動成分 と前記環境光の前記位相区間における変動成分とを容易に識別することができる。  [0006] According to the above-described spatial information detection device of the present invention, since the fluctuation component of the environmental light in the phase section defined in the modulation signal of the intensity-modulated light provided from the light source is integrated and smoothed, the target space It is possible to easily identify the fluctuation component in the phase interval of the intensity-modulated light received from the light and the fluctuation component in the phase interval of the ambient light.
[0007] 上記した空間情報検出装置において、平滑化手段は、発光源の変調信号におい て規定した 2種類の位相区間の各々に関して環境光の変動成分を所定の積算期間 で積算して平滑化し、評価部は前記 2種類の位相区間における環境光の変動成分 を相殺するように、光検出素子が対象空間から受光した電荷量のうち前記 2種類の 位相区間の電荷量の差分を求め、当該差分を用いて空間情報を検出することが好ま しい。この場合は、平滑化手段が、前記 2種類の位相区間の各々に関して環境光の 変動成分を十分な積算期間で積算して平滑化すれば、これらの差分は実質的に零 もしくは無視できるほどに小さくなる。したがって、光検出素子が対象空間から受光し た電荷量のうち前記 2種類の位相区間の電荷量の差分を求めることは、光検出素子 が対象空間から強度変調光を受光した電荷量のうち前記 2種類の位相区間の電荷 量の差分を求めることと実質的に等価である。故に、本発明によれば、対象空間に存 在する環境光の影響を低減もしくは除去して、対象空間からの強度変調光の受光量 に基づいて所望の空間情報を精度よく検出することができるのである。  [0007] In the spatial information detection device described above, the smoothing means integrates and smoothes the fluctuation component of the ambient light over a predetermined integration period for each of the two types of phase sections defined in the modulation signal of the light emission source, The evaluation unit obtains the difference between the charge amounts of the two types of phase sections out of the amount of charge received by the light detection element from the target space so as to cancel out the fluctuation component of the ambient light in the two types of phase sections. It is preferable to detect spatial information using. In this case, if the smoothing means integrates and smoothes the fluctuation component of the ambient light in a sufficient integration period for each of the two types of phase sections, these differences are substantially zero or can be ignored. Get smaller. Therefore, obtaining the difference between the charge amounts of the two types of phase intervals among the charge amounts received by the light detection element from the target space is the same as the charge amounts of the charge amount received by the light detection element from the target space. This is essentially equivalent to finding the difference in charge between the two phase sections. Therefore, according to the present invention, it is possible to reduce or eliminate the influence of ambient light existing in the target space, and accurately detect desired spatial information based on the amount of received intensity-modulated light from the target space. It is.
[0008] 環境光が発光源の変調周波数とは異なる既知の周波数を有する場合、平滑化手 段は、発光源の変調信号の変調周波数と環境光の周波数との間の周波数差によつ て規定される積算期間にわたって環境光の変動成分を積算することが好ましい。例 えば、対象空間の少なくとも一部を共通にしている他の空間情報検出装置が存在す る場合のように、対象空間に変動周波数が既知である環境光成分が含まれている場 合であっても、変調信号の変調周波数が異なるから、上記した原理により環境光の 変動成分を除去することができる。ここに、環境光の既知の周波数力 ^種類である時[0008] When the ambient light has a known frequency that is different from the modulation frequency of the light source, the smoothing means is based on the frequency difference between the modulation frequency of the light source's modulation signal and the frequency of the ambient light. It is preferable to integrate the fluctuation component of the ambient light over the integration period specified in the above. For example, when there is an ambient light component whose fluctuating frequency is known in the target space, such as when there is another spatial information detection device that shares at least part of the target space. However, since the modulation frequency of the modulation signal is different, the fluctuation component of the ambient light can be removed according to the principle described above. Here is the known frequency power of the ambient light ^
、発光源の変調周波数と環境光の周波数との間の周波数差によって決まるビート成 分の整数倍周期を平滑化手段における積算期間とすることが好ましい。また、環境 光の既知の周波数が複数種類である時、発光源の変調周波数と環境光の複数の周 波数の各々との間の周波数差によって決まる各ビート成分の整数倍周期が一致する 時間を平滑化手段における積算期間とすることが好ましい。この場合は、変調周波 数が既知の 3台以上の空間情報検出装置を同時に動作させる場合でも環境光成分 を除去することが可能になる。 It is preferable that an integral multiple period of the beat component determined by the frequency difference between the modulation frequency of the light emitting source and the frequency of the ambient light is an integration period in the smoothing means. In addition, when there are multiple types of known frequencies of ambient light, the time when the integer multiples of each beat component determined by the frequency difference between the modulation frequency of the light source and each of the multiple frequencies of ambient light coincides. It is preferable to set the integration period in the smoothing means. In this case, ambient light components can be removed even when three or more spatial information detectors with known modulation frequencies are operated simultaneously.
[0009] 上記空間情報検出装置は、予め設定された複数の変調周波数から発光源の変調 周波数を選択する周波数選択部を含むことが好ましい。この場合は、複数の空間情 報検出装置を使用して少なくとも一部を共通にする対象空間から空間情報を検出す る場合に、複数の空間情報検出装置にそれぞれ異なる変調周波数を設定することが できるので、複数台の空間情報検出装置を同時に動作させる場合でも環境光成分を 効果的に除去することができる。  [0009] The spatial information detecting device preferably includes a frequency selection unit that selects a modulation frequency of the light source from a plurality of preset modulation frequencies. In this case, when detecting spatial information from a target space that is shared at least in part by using a plurality of spatial information detection devices, different modulation frequencies may be set for the plurality of spatial information detection devices. Therefore, the ambient light component can be effectively removed even when a plurality of spatial information detection devices are operated simultaneously.
[0010] また、上記空間情報検出装置は、発光源の変調周波数を時間経過に伴って変化さ せる周波数切換部を備えることが好ましい。この場合は、上記した周波数選択部を設 けた場合と同様に、複数の空間情報検出装置にそれぞれ異なる変調周波数を設定 することができるので、複数台の空間情報検出装置を同時に動作させる場合でも環 境光成分を効果的に除去することができる。また、複数台の空間情報検出装置を用 レ、るにあたって変調周波数を個々に設定する必要がな 簡便に使用することができ る。さらに、周波数切換部は、変調周波数を不規則に変化させることが好ましい。この 場合は、変調周波数を変化させるタイミングがずれていない場合でも複数台の検出 装置において変調周波数が等しくなる確率を低減でき、変調周波数が規則的に変 化する場合に比較すると環境光成分の影響をより少なくすることが可能になる。 [0011] また、上記空間情報検出装置において、平滑化手段により平滑化された環境光の 変動成分を用いて、当該環境光の存在が空間情報の検出精度に影響を及ぼすかど うかを判定する干渉判定部を含むことが好ましい。また、干渉判定部によって当該環 境光の存在が空間情報の検出精度に影響を及ぼすと判定された場合、当該環境光 の影響が許容範囲内になるまで発光源の変調信号の変調周波数を変化させる周波 数切換部を設けることがさらに好ましい。 [0010] Further, the spatial information detection device preferably includes a frequency switching unit that changes the modulation frequency of the light source with time. In this case, as in the case where the frequency selection unit described above is provided, different modulation frequencies can be set for each of the plurality of spatial information detection devices. Therefore, even when a plurality of spatial information detection devices are operated simultaneously, The boundary light component can be effectively removed. In addition, when using a plurality of spatial information detection devices, it is possible to easily use the modulation frequency that needs to be individually set. Further, the frequency switching unit preferably changes the modulation frequency irregularly. In this case, even when the timing for changing the modulation frequency is not shifted, the probability that the modulation frequencies are equal in a plurality of detection devices can be reduced. Compared with the case where the modulation frequency changes regularly, the influence of environmental light components Can be reduced. [0011] Further, in the spatial information detection apparatus, interference that determines whether the presence of the environmental light affects the detection accuracy of the spatial information using the fluctuation component of the environmental light smoothed by the smoothing unit. It is preferable to include a determination unit. In addition, when the interference determination unit determines that the presence of the ambient light affects the detection accuracy of the spatial information, the modulation frequency of the light source modulation signal is changed until the influence of the ambient light falls within an allowable range. It is further preferable to provide a frequency switching unit to be operated.
[0012] 上記した干渉判定部の具体的構成の一例として、例えば、上記空間情報検出装置 は、発光源から対象空間に光を投光する投光期間、および前記発光源から対象空 間に光を投光しない休止期間を有するように発光源を制御する発光制御部を含むこ とが好ましい。この場合、平滑化手段は、休止期間に感光部で受光した環境光により 生成される電荷のうち、発光源の変調信号において規定した 2種類の位相区間の変 動成分を上記積算期間で積算して平滑化することができる。そして、干渉判定部は、 休止期間に受光した環境光により生成される電荷に関して平滑化手段により平滑化 された変動成分の差分を閾値と比較し、当該差分が閾値より大きい時、前記環境光 の変動成分が予め設定された許容範囲以上であると判定することができる。この構成 によれば、発光源から対象空間に光を投光する投光期間と光を投光しない休止期間 とを設けて間欠的に投光しており、強度変調光を投光しない休止期間において受光 する環境光成分を用いて環境光の変動成分の影響を評価判定することができる。こ れによれば、例えば、他の空間情報検出装置が対象空間を共通にしているか否かを 容易に判定することができる。  As an example of a specific configuration of the above-described interference determination unit, for example, the spatial information detection device includes a light projection period in which light is projected from a light source to a target space, and light between the light source and the target space. It is preferable to include a light emission control unit that controls the light emission source so as to have a pause period during which light is not projected. In this case, the smoothing unit integrates the fluctuation components of the two types of phase sections defined in the modulation signal of the light source among the charges generated by the ambient light received by the photosensitive unit during the pause period during the integration period. Can be smoothed. Then, the interference determination unit compares the difference of the fluctuation component smoothed by the smoothing unit with respect to the charge generated by the ambient light received during the pause period, and compares the difference with the threshold value. It can be determined that the fluctuation component is greater than or equal to a preset allowable range. According to this configuration, a light projection period in which light is projected from a light source to a target space and a pause period in which light is not projected are provided intermittently, and a pause period in which intensity-modulated light is not projected. It is possible to evaluate and determine the influence of the fluctuation component of the ambient light using the ambient light component received at. According to this, for example, it is possible to easily determine whether other spatial information detection devices share the target space.
[0013] また、干渉判定部によって環境光の変動成分が許容範囲以上であると判定された 場合、前記差分が閾値より小さくなるまで発光源の変調信号の変調周波数を変化さ せる周波数切換部を有することが好ましい。この構成によれば、複数台の空間情報 検出装置を用いる場合に変調周波数を個々に設定する必要がなぐ簡便に使用す ることができる上に、互いの干渉を回避することができる変調周波数を自動的に設定 するから、環境光成分の影響が少ない条件下で精度よく空間情報を検出することが 可能になる。  [0013] In addition, when the interference determination unit determines that the fluctuation component of the ambient light is greater than or equal to the allowable range, a frequency switching unit that changes the modulation frequency of the modulation signal of the light emission source until the difference becomes smaller than a threshold value. It is preferable to have. According to this configuration, when using a plurality of spatial information detection devices, it is possible to easily use the modulation frequency without having to individually set the modulation frequency, and it is also possible to provide a modulation frequency that can avoid mutual interference. Since it is set automatically, it becomes possible to detect spatial information with high accuracy under conditions where the influence of ambient light components is small.
[0014] また、環境光が発光源の変調信号の変調周波数とは異なる既知の周波数を有する 場合、平滑化手段は、前記光検出素子で休止期間に受光した光により生成される電 荷量のうち、発光源の変調信号において規定した 2種類の位相区間の変動成分に ついて、発光源の変調信号の周波数と環境光の周波数との間の周波数差により規 定される所定の積算期間で積算値を求め、評価部は、前記積算値の差分が閾値以 下である時、投光期間において前記積算期間で得られる電荷量を用いて空間情報 を検出することが好ましい。この構成によれば、休止期間において適切な積算時間 で求めた積算値の差分を用いて環境光における変動成分の影響を判定し、その判 定結果に基づいて投光期間における当該積算時間で得られる電荷量を用いて空間 情報を検出するかどうかを決定するので、対象空間を共通にする他の空間情報検出 装置が存在している場合であっても、信頼性の高い空間情報の検出を行うことができ る。 [0014] The ambient light has a known frequency different from the modulation frequency of the modulation signal of the light source. In this case, the smoothing means detects the fluctuation component of the light source of the two types of phase sections defined in the modulation signal of the light source out of the amount of charge generated by the light received by the light detection element during the pause period. An integrated value is obtained in a predetermined integration period defined by the frequency difference between the frequency of the modulation signal and the frequency of the ambient light, and the evaluation unit calculates a light projection period when the difference between the integration values is less than or equal to a threshold value. Preferably, the spatial information is detected using the amount of charge obtained in the integration period. According to this configuration, the influence of the fluctuation component in the ambient light is determined using the difference between the integrated values obtained in the appropriate integration time during the pause period, and the obtained integration time in the projection period is obtained based on the determination result. It is determined whether to detect spatial information using the amount of charge that can be detected, so even if there is another spatial information detection device that shares the target space, highly reliable spatial information can be detected. It can be carried out.
[0015] また、評価部は、発光源から対象空間に投光した光と光検出素子で受光した光と の位相差に相当する中間値を前記差分に対応付けた換算テーブルを有し、この換 算テーブル力 求めた中間値を発光源から対象空間に投光した光の変調周波数に 応じて決定される補正値で補正することにより対象空間に存在する物体までの距離 を求めることが好ましい。この構成によれば、変調周波数が異なっていても同じ換算 テーブルを用いることができ、データの共通化により空間情報検出装置の製造が容 易になる。また、理論式を用いて計算すると装置特性による誤差が発生する恐れが あるのに対して、換算テーブルを用いることにより装置特性による誤差を折り込んだ データを設定することができ、物体までの距離を安定した精度で求めることが可能に なる。  [0015] The evaluation unit has a conversion table in which an intermediate value corresponding to a phase difference between light projected from the light source to the target space and light received by the light detection element is associated with the difference, Conversion table force It is preferable to determine the distance to the object existing in the target space by correcting the calculated intermediate value with a correction value determined according to the modulation frequency of the light projected from the light source to the target space. According to this configuration, the same conversion table can be used even if the modulation frequencies are different, and the manufacture of the spatial information detection device is facilitated by sharing the data. In addition, there is a risk that errors due to device characteristics may occur if calculations are performed using theoretical formulas, but by using a conversion table, data incorporating errors due to device characteristics can be set, and the distance to the object can be set. It can be obtained with stable accuracy.
[0016] また、本発明の更なる目的は、上記と同じ原理に基づいて、複数台の空間情報検 出装置により少なくとも一部が共通する対象空間から空間情報を検出する場合に、 それぞれの検出装置によって空間情報を精度よく検出することのできる空間情報検 出システムを提供することにある。  A further object of the present invention is based on the same principle as described above, and when detecting spatial information from a target space at least partially shared by a plurality of spatial information detection devices, each detection is performed. It is an object of the present invention to provide a spatial information detection system capable of detecting spatial information with high accuracy.
[0017] すなわち、この空間情報検出システムは、第 1変調信号で強度変調された光を対 象空間に投光する発光源と、対象空間からの光を受光し、受光光量に応じた電荷を 生成する感光部を備えた光検出素子と、感光部で生成される電荷のうち第 1変調信 号において規定した位相区間に同期する期間に生成された電荷を用いて対象空間 の空間情報を検出する評価部とを有する第 1検出装置と、第 1変調信号とは異なる第 2変調信号で強度変調された光を対象空間に投光する発光源と、対象空間からの光 を受光して受光光量に応じた電荷を生成する感光部を有する光検出素子と、感光部 で生成される電荷のうち第 2変調信号において規定した位相区間に同期する期間に 生成された電荷を用いて対象空間の空間情報を検出する評価部とを有する第 2検出 装置とを含み、 [0017] That is, this spatial information detection system receives a light source that projects light that has been intensity-modulated with a first modulation signal into a target space, light from the target space, and charges according to the received light amount. A photodetecting element having a photosensitive portion to be generated, and a first modulation signal out of charges generated by the photosensitive portion. The first detection device having an evaluation unit that detects the spatial information of the target space using the charge generated in the period synchronized with the phase interval specified in the signal, and the intensity of the second modulation signal different from the first modulation signal A light emitting source that projects the modulated light onto the target space, a light detection element that receives light from the target space and generates a charge corresponding to the amount of received light, and a charge detector A second detection device having an evaluation unit that detects the spatial information of the target space using charges generated in a period synchronized with the phase interval defined in the second modulation signal,
第 1検出装置は、第 1変調信号で強度変調された光と第 2変調信号で強度変調さ れた光が対象空間に同時に存在する条件下において、対象空間からの光を受光し て第 1検出装置の感光部で生成される電荷量のうち、第 2変調信号で強度変調され た光を受光して生成される電荷量の第 1変調信号において規定した位相区間におけ る変動成分を所定の積算期間で積算して平滑化する平滑化手段を具備することを 特徴とする。  The first detector receives the light from the target space and receives the light from the target space under the condition in which the light intensity-modulated by the first modulation signal and the light intensity-modulated by the second modulation signal simultaneously exist in the target space. Of the amount of charge generated by the photosensitive part of the detector, the fluctuation component in the phase interval specified in the first modulation signal of the amount of charge generated by receiving the light whose intensity is modulated by the second modulation signal is predetermined. And smoothing means for smoothing by integrating during the integration period.
この場合は、第 1検出装置力 提供される強度変調光の第 1変調信号において規 定した位相区間における第 2検出装置力 提供される強度変調光の変動成分を所 定の積算時間で積算することにより、この変動成分を平滑化することができるので、 対象空間から受光した第 1検出装置の強度変調光の前記位相区間における変動成 分と第 2検出装置の強度変調光の前記位相区間における変動成分とを容易に識別 することができる。特に、平滑化手段が、第 1検出装置の第 1変調信号において規定 した 2種類の位相区間の各々に関して、第 2検出装置の強度変調光の変動成分を所 定の積算期間で積算して平滑化し、評価部が、前記 2種類の位相区間における第 2 検出装置の強度変調光の変動成分を相殺するように、第 1検出装置の光検出素子 が対象空間から受光した電荷量のうち前記 2種類の位相区間の電荷量の差分を求 め、当該差分を用いて空間情報を検出することが好ましい。この場合は、上記と同じ 理由から、第 2検出装置の強度変調光の影響を低減もしくは除去して、対象空間から の第 1検出装置の強度変調光の前記位相区間における受光量に基づいて所望の空 間情報を精度よく検出することができるのである。したがって、同じタイプの複数の空 間情報検出装置によって少なくとも一部が共通する対象空間からそれぞれ所望の空 間情報を検出する場合であっても、他の検出装置から対象空間に投光された強度変 調光の影響を受けることなぐ各検出装置はそれ自体が対象空間に投光した強度変 調光に基づいて目的とする空間情報を正確に検出することができるのである。 In this case, the fluctuation component of the intensity-modulated light provided by the second detector force in the phase interval specified in the first modulated signal of the intensity-modulated light provided by the first detector is integrated over a predetermined integration time. Thus, the fluctuation component can be smoothed, so that the fluctuation component in the phase interval of the intensity-modulated light of the first detection device received from the target space and the phase interval of the intensity-modulation light of the second detection device in the phase interval. Fluctuating components can be easily identified. In particular, the smoothing means integrates and smoothes the fluctuation component of the intensity-modulated light of the second detector over a predetermined integration period for each of the two types of phase sections defined in the first modulation signal of the first detector. And the evaluation unit cancels out the fluctuation component of the intensity-modulated light of the second detector in the two types of phase sections, and the 2 of the electric charges received from the target space by the photodetecting element of the first detector It is preferable to obtain the difference in the amount of charge in the types of phase sections and detect the spatial information using the difference. In this case, for the same reason as described above, the influence of the intensity-modulated light of the second detection device is reduced or eliminated, and the desired amount of light is received based on the amount of received light in the phase section of the intensity-modulated light of the first detection device from the target space. It is possible to accurately detect the spatial information. Accordingly, each of the desired spaces from the target space that is at least partially shared by a plurality of spatial information detection devices of the same type. Even when detecting inter-space information, each detection device that is not affected by the intensity modulation light projected into the target space from another detection device itself has intensity modulation light that is projected into the target space. Therefore, the target spatial information can be accurately detected based on the above.
[0019] 本発明のさらなる特徴およびその効果は、以下の発明を実施するための最良の形 態からより明確に理解されるだろう。  [0019] Further features of the present invention and its effects will be more clearly understood from the following best mode for carrying out the invention.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明の第 1実施形態にかかる空間情報検出装置の概略ブロック図である。  FIG. 1 is a schematic block diagram of a spatial information detection device according to a first embodiment of the present invention.
[図 2]同検出装置の動作原理を示す図である。  FIG. 2 is a diagram showing an operation principle of the detection device.
[図 3]異なる強度変調光が重畳した波形プロファイルを示す図である。  FIG. 3 is a diagram showing a waveform profile in which different intensity-modulated lights are superimposed.
[図 4]同検出装置の投光タイミングの一例を示す図である。  FIG. 4 is a diagram showing an example of light projection timing of the detection device.
[図 5]本発明の第 3実施形態にかかる空間情報検出装置の特徴部を示す概略ブロッ ク図である。  FIG. 5 is a schematic block diagram showing a characteristic part of a spatial information detecting device according to a third embodiment of the present invention.
[図 6]第 3実施形態における干渉判定の一例を示す図である。  FIG. 6 is a diagram showing an example of interference determination in the third embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下に説明する実施形態では、空間情報検出装置 (以下、「検出装置」と略称する )として対象空間に存在する物体までの距離を計測する測距装置を例示するが、本 発明における空間情報は「距離」に限定されない。例えば、空間情報には対象空間 に存在する物体の反射率のように環境光成分を除去することにより得られる情報や、 物体の輝度情報が含まれる。輝度情報を利用して周囲光強度に影響されない輝度 画像を生成することも可能である。また、以下に説明する測距装置は、対象空間の画 像を撮像することにより対象空間の場所ごとの距離を各画素に対応付けた距離画像 を生成する。 In the embodiment described below, a distance measuring device that measures the distance to an object existing in the target space is exemplified as a spatial information detection device (hereinafter abbreviated as “detection device”). Spatial information is not limited to “distance”. For example, the spatial information includes information obtained by removing environmental light components such as the reflectance of an object existing in the target space, and luminance information of the object. It is also possible to generate luminance images that are not affected by ambient light intensity using luminance information. In addition, the distance measuring device described below generates a distance image in which a distance for each location in the target space is associated with each pixel by capturing an image of the target space.
(検出装置の基本構成)  (Basic configuration of detection device)
本実施形態の測距装置は、図 1に示すように、対象空間に光を投光する発光源 2と 、対象空間からの光を受光して受光光量を反映した出力を提供する光検出素子 1と を備える。対象空間に存在する物体 Obまでの距離は、発光源 2から対象空間に光が 投光されてから物体 Obでの反射光が光検出素子 1に入射するまでの時間(「飛行時 間」と呼ぶ)によって求める。ただし、飛行時間は非常に短いので、発光源 2に所定の 変調周波数の変調信号を発光制御部 3から与えることにより発光源 2から対象空間に 投光する光の強度を変調して対象空間に投光し、光の強度の変調成分について投 受光の位相差を求め、この位相差を飛行時間に換算する技術が用いられる。つまり、 発光制御部 3は対象空間に投光する光の強度が一定周期で変化するように発光源 2 を制御する。 As shown in FIG. 1, the distance measuring device of the present embodiment includes a light source 2 that projects light into a target space, and a light detection element that receives light from the target space and provides an output that reflects the amount of received light 1 and are provided. The distance to the object Ob existing in the target space is the time from when light is projected from the light source 2 to the target space until the reflected light from the object Ob enters the light detection element 1 (“flight time”) Call). However, because the flight time is very short, By providing a modulation signal of the modulation frequency from the light emission control unit 3, the intensity of light projected from the light source 2 to the target space is modulated and projected to the target space, and the phase difference between the light and received light is modulated with respect to the modulation component of the light intensity. And a technique for converting this phase difference into time of flight is used. That is, the light emission control unit 3 controls the light emission source 2 so that the intensity of light projected to the target space changes at a constant period.
[0022] すなわち、図 2に示すように、発光源 2から空間に放射する光の強度が曲線 Xのよう に正弦波形になるように変調されており、光検出素子 1で受光した受光光量が曲線 Y のように変化するとすれば、位相差ゆは飛行時間に相当するから、位相差ゆを求め ることにより物体〇bまでの距離を求めることができる。つまり、位相差ゆの単位を [rad That is, as shown in FIG. 2, the intensity of light emitted from the light source 2 into the space is modulated so as to have a sine waveform as shown by a curve X, and the amount of light received by the light detection element 1 is If the curve changes as shown in curve Y, the phase difference corresponds to the time of flight, so the distance to the object Ob can be obtained by calculating the phase difference. In other words, the unit of phase difference is [rad
1、物体 Obまでの距離を L[m]、光速を c [m/s]、強度変調光の角周波数を ω [rad /s]とすれば、 L= φ ' c/2 coになる。 1. If the distance to the object Ob is L [m], the speed of light is c [m / s], and the angular frequency of intensity-modulated light is ω [rad / s], then L = φ 'c / 2 co.
[0023] 位相差 (Mま、曲線 Xの複数のタイミングで求めた曲線 Yの受光光量を用いて計算 することができる。たとえば、曲線 Xにおける位相力^〜 90度、 90〜: 180度、 180-2 70度、 270〜360度のタイミングで求めた曲線 Yの受光光量をそれぞれ A0、 Al、 A [0023] Phase difference (M, can be calculated using the received light quantity of curve Y obtained at multiple timings of curve X. For example, phase force in curve X ^ ~ 90 degrees, 90 ~: 180 degrees, 180-2 The received light intensity of curve Y obtained at the timing of 70 degrees and 270 to 360 degrees is A0, Al, A
2、 A3とする(図 2中、受光光量 A0、 Al、 A2、 A3を斜線部で示す)。つまり、各位相 における受光光量 A0、 Al、 A2、 A3は、それぞれ 90度ずつの期間 Twの積分値に なる。ここに、受光光量 A0、 Al、 A2、 A3を求める間に、位相差ゆが変化せず(つま り、物体〇bまでの距離が変化せず)、かつ物体〇bの反射率にも変化がないものとす る。また、発光源 2から放射する光の強度を正弦波で変調し、時刻 tにおいて光検出 素子 1で受光される光の強度が A' sin ( co t+ δ ) +Βで表されるものとする。ただし、 Αは振幅、 Bは直流成分 (環境光成分と反射光成分との平均値)、 ωは強度変調光 の角周波数(ω = 2 π ί ; fは変調周波数)、 δは初期位相である。ここでは、 4つの位 相区間の受光光量 Α0、 Al、 Α2、 A3が得られる期間において平均値 Βは一定とみ なすことができる場合を想定している。これらの条件から、位相差 φを、たとえば次式 で表すことができる。 2 and A3 (in Fig. 2, the received light intensity A0, Al, A2, and A3 are indicated by hatching). In other words, the amount of received light A0, Al, A2, and A3 in each phase is an integral value of the period Tw of 90 degrees. Here, while obtaining the received light quantity A0, Al, A2, A3, the phase difference does not change (that is, the distance to the object 〇b does not change), and the reflectance of the object 〇b also changes. There shall be no. In addition, the intensity of the light emitted from the light source 2 is modulated with a sine wave, and the intensity of the light received by the light detection element 1 at time t is expressed as A 'sin (co t + δ) + Β . Where Α is the amplitude, B is the DC component (average value of the ambient light component and the reflected light component), ω is the angular frequency of the intensity-modulated light (ω = 2π ί; f is the modulation frequency), and δ is the initial phase is there. Here, it is assumed that the average value Β can be assumed to be constant during the period in which the received light amounts Α0, Al, 、 2, and A3 in the four phase sections are obtained. From these conditions, the phase difference φ can be expressed by the following equation, for example.
φ =tan_ 1 (A2-A0) / (A1 -A3) φ = tan _ 1 (A2-A0) / (A1 -A3)
上式は積分する区間の取り方(たとえば、上述の例では 1区間の位相幅が 90度であ る力 180度などにしてもよい)によって符号が変化したり位相が 90度異なったりする 、いずれにしても、位相差 φは 4区間の受光光量 A0、 Al、 A2、 A3を用いて求め ること力 Sできる。 The above formula changes the sign or the phase is 90 degrees different depending on how to take the interval to be integrated (for example, in the above example, the force may be 180 degrees, where the phase width of one section is 90 degrees) In any case, the phase difference φ can be obtained by using the received light quantity A0, Al, A2, A3 in 4 sections.
[0024] 対象空間に投光する光の強度を比較的高い変調周波数の変調信号で変調する必 要があるため、発光源 2として、応答速度の速い光源が使用される。たとえば、多数 個の発光ダイオードを一平面上に配列したものや半導体レーザと発散レンズとを組 み合わせたものを発光源 2として使用できる。発光源 2を駆動する変調信号は発光制 御部 3から出力され、発光源 2から放射される光の強度が変調信号によって変調され る。発光制御部 3では、たとえば 10MHzの正弦波を変調信号として出力する。なお 、変調信号の波形は、正弦波のほかに、三角波、鋸歯状波などでもよい。  [0024] Since it is necessary to modulate the intensity of light projected to the target space with a modulation signal having a relatively high modulation frequency, a light source with a fast response speed is used as the light emission source 2. For example, a light emitting source 2 can be formed by arranging a large number of light emitting diodes on one plane or a combination of a semiconductor laser and a diverging lens. The modulation signal for driving the light source 2 is output from the light emission control unit 3, and the intensity of light emitted from the light source 2 is modulated by the modulation signal. The light emission control unit 3 outputs, for example, a 10 MHz sine wave as a modulation signal. The waveform of the modulation signal may be a triangular wave, a sawtooth wave or the like in addition to the sine wave.
[0025] 光検出素子 1は、規則的に配列された複数個の感光部 11を備える。また、感光部 1 1への光の入射経路には受光光学系 5が配置される。したがって、感光部 11には対 象空間からの光が受光光学系 5を介して入射し、受光光量に応じた量の電荷が生成 される。また、感光部 11は、平面格子の格子点上に配置され、たとえば垂直方向(つ まり、縦方向)と水平方向(つまり、横方向)とにそれぞれ等間隔で複数個ずつマトリク ス状に配列される。  The photodetecting element 1 includes a plurality of photosensitive portions 11 that are regularly arranged. In addition, a light receiving optical system 5 is disposed in the light incident path to the photosensitive portion 11. Therefore, light from the target space enters the photosensitive portion 11 via the light receiving optical system 5, and an amount of electric charge corresponding to the amount of received light is generated. Further, the photosensitive portions 11 are arranged on the lattice points of the planar lattice, and are arranged in a matrix, for example, in the vertical direction (that is, the vertical direction) and in the horizontal direction (that is, the horizontal direction) at equal intervals. Is done.
[0026] 受光光学系 5は、光検出素子 1から対象空間を見るときの視線方向と各感光部 11 とを対応付ける。すなわち、受光光学系 5を通して各感光部 11に光が入射する範囲 を、受光光学系 5の中心を頂点とし、感光部 11ごとに設定された頂角の小さい円錐 状の視野とみなすことができる。したがって、発光源 2から照射され、対象空間に存在 する物体 Obで反射された反射光が感光部 11に入射すれば、反射光を受光した感 光部 11の位置により、受光光学系 5の光軸を基準方向として物体 Obの存在する方 向を知ることができる。  The light receiving optical system 5 associates the line-of-sight direction when viewing the target space from the light detection element 1 with each photosensitive portion 11. That is, the range in which light enters each photosensitive portion 11 through the light receiving optical system 5 can be regarded as a conical field of view with a small apex angle set for each photosensitive portion 11 with the center of the light receiving optical system 5 as the apex. . Therefore, if the reflected light irradiated from the light source 2 and reflected by the object Ob existing in the target space is incident on the photosensitive part 11, the light of the light receiving optical system 5 depends on the position of the photosensitive part 11 that has received the reflected light. It is possible to know the direction in which the object Ob exists with the axis as the reference direction.
[0027] 受光光学系 5は、一般に感光部 11を配歹した平面に光軸を直交させるように配置 されるので、受光光学系 5の中心を原点とし、感光部 11を配列した平面の垂直方向 と水平方向と受光光学系 5の光軸とを 3軸の方向とする直交座標系を設定すれば、 対象空間に存在する物体〇bの位置を球座標で表したときの角度(いわゆる方位角と 仰角)が各感光部 11に対応する。尚、受光光学系 5は、感光部 11を配列した平面に 対して光軸が 90度以外の角度で交差するように配置してもよい。 [0028] 本実施形態では、上述のように、物体〇bまでの距離を求めるために、発光源 2から 対象空間に投光される光の強度変化に同期する 4つの位相区間の受光光量 A0、 A 1、 A2、 A3を求めている。したがって、 目的の受光光量 A0、 Al、 A2、 A3を得るた めのタイミングの制御が必要である。また、発光源 2から対象空間に投光される光の 強度変化の 1周期において感光部 11で発生する電荷の量は少ないから、複数周期 に亘つて電荷を集積することが望ましい。そこで、図 1に示すように、感光部 11で発 生した電荷をそれぞれ集積する複数の電荷集積部 13を設けるとともに、各感光部 11 で生成した電荷を対応する電荷集積部 13に集積するタイミングを制御する感度制御 部 12を設けている。 [0027] Since the light receiving optical system 5 is generally arranged so that the optical axis is orthogonal to the plane on which the photosensitive portion 11 is arranged, the center of the light receiving optical system 5 is the origin, and the vertical of the plane on which the photosensitive portions 11 are arranged If an orthogonal coordinate system is set in which the direction, the horizontal direction, and the optical axis of the light receiving optical system 5 are in three directions, the angle (the so-called azimuth) when the position of the object 0b existing in the target space is expressed in spherical coordinates. (Angle and elevation angle) correspond to each photosensitive area 11. The light receiving optical system 5 may be arranged so that the optical axis intersects with a plane other than 90 degrees with respect to the plane on which the photosensitive portions 11 are arranged. [0028] In the present embodiment, as described above, in order to obtain the distance to the object 0b, the received light amounts A0 of four phase sections synchronized with the intensity change of the light projected from the light source 2 to the target space Seeking A1, A2, A3. Therefore, it is necessary to control the timing to obtain the desired received light intensity A0, Al, A2, A3. In addition, since the amount of charge generated in the photosensitive portion 11 is small in one cycle of intensity change of light projected from the light source 2 to the target space, it is desirable to accumulate the charge over a plurality of cycles. Therefore, as shown in FIG. 1, there are provided a plurality of charge accumulating sections 13 for accumulating the charges generated in the photosensitive sections 11, and the timing for accumulating the charges generated in each photosensitive section 11 in the corresponding charge accumulating sections 13. A sensitivity control unit 12 is provided to control this.
[0029] 本実施形態で用いる光検出素子 1は、複数個(たとえば、 100 X 100個)の感光部  [0029] The light detection element 1 used in the present embodiment has a plurality of (for example, 100 X 100) photosensitive portions.
11をマトリクス状に配歹 IJしたものであって 1枚の半導体基板上に形成され、垂直方向 に電荷を転送するため、感光部 11のうち垂直方向の各列に沿って形成される CCD である垂直転送部と、垂直転送部の一端から電荷を受け取って水平方向に電荷を 転送する CCDである水平転送部とを有する。感光部 11と垂直転送部との間には転 送ゲートが設けられる。  11 is arranged in a matrix and is formed on a single semiconductor substrate. It is a CCD formed along each vertical column of the photosensitive area 11 to transfer charges in the vertical direction. A vertical transfer unit, and a horizontal transfer unit that is a CCD that receives charges from one end of the vertical transfer unit and transfers the charges in the horizontal direction. A transfer gate is provided between the photosensitive unit 11 and the vertical transfer unit.
[0030] この光検出素子 1は、インターライン'トランスファ(IT)方式の CCDイメージセンサと 同様の構成であり、図 1に示した電荷取出部 14は、垂直転送部と水平転送部とを含 む機能を表している。また、電荷集積部 13は垂直転送部において転送を開始するま での期間において電荷を集積する機能を表している。  The photodetecting element 1 has the same configuration as an interline transfer (IT) type CCD image sensor, and the charge extraction unit 14 shown in FIG. 1 includes a vertical transfer unit and a horizontal transfer unit. Function. The charge accumulating unit 13 represents a function of accumulating charges in a period until transfer is started in the vertical transfer unit.
[0031] ところで、感度制御部 12は、上述した受光光量 A0、 Al、 A2、 A3にそれぞれ対応 する 4つの位相区間において感度を高めるように発光制御部 3で制御され、受光光 量 A0、 Al、 A2、 A3に相当する電荷を電荷集積部 13に集積する。ここで、 IT方式 の CCDイメージセンサに類似した構成を採用しているから、転送ゲートを制御するこ とにより感光部 11から垂直転送部に集積させる電荷量を調節する構成と、感光部 11 ごとに電荷を廃棄することができる廃棄電極を設けて廃棄する電荷量を調節する構 成の少なくとも一方を用いることにより感度制御部 12の機能を持たせる。すなわち、 所望の受光光量 A0、 Al、 A2、 A3に対応する位相区間において感光部 11から垂 直転送部へ電荷が通過するように転送ゲートを制御したり、所望の位相区間以外の 電荷を廃棄するように廃棄電極への印加電圧を制御したりすることで、所望の位相区 間のみの電荷を垂直転送部に集積し、集積した電荷を転送する。 [0031] By the way, the sensitivity control unit 12 is controlled by the light emission control unit 3 so as to increase the sensitivity in the four phase sections respectively corresponding to the received light amounts A0, Al, A2, and A3, and the received light amounts A0, Al , Charges corresponding to A 2 and A 3 are accumulated in the charge accumulating unit 13. Here, since a configuration similar to that of an IT-type CCD image sensor is adopted, the amount of charge accumulated from the photosensitive portion 11 to the vertical transfer portion is adjusted by controlling the transfer gate, and The function of the sensitivity control unit 12 is provided by using at least one of the configurations for adjusting the amount of charge to be discarded by providing a disposal electrode that can discard charges. That is, the transfer gate is controlled so that charges pass from the photosensitive unit 11 to the vertical transfer unit in the phase interval corresponding to the desired received light amount A0, Al, A2, A3, or other than the desired phase interval. By controlling the voltage applied to the discard electrode so as to discard the charge, the charge only in a desired phase period is accumulated in the vertical transfer unit, and the accumulated charge is transferred.
[0032] ただし、発光源 2から対象空間に投光され、物体〇bで反射された後に光検出素子  [0032] However, the light detecting element is projected from the light source 2 into the target space and reflected by the object 0b.
1の感光部 11に入射する光の強度は小さレ、から、上述した各区間の受光光量 AO、 Al、 A2、 A3に相当する電荷を強度変調光の変調周期の 1周期内で電荷集積部 13 に集積したとしても各受光光量 AO、 Al、 A2、 A3に十分な大きさの差が得られず、 距離の測定精度が低くなる。したがって、実際には各区間に相当して生成される電 荷を強度変調光の複数周期 (たとえば、 3万周期)にわたつて電荷集積部 13に集積 した後に、電荷取出部 14を通して光検出素子 1から取り出している。電荷取出部 14 を通して電荷を取り出すタイミングは発光制御部 3が制御する。  Since the intensity of the light incident on the photosensitive section 11 is small, charges corresponding to the received light amounts AO, Al, A2 and A3 in each section described above are charged within one period of the modulation period of the intensity-modulated light. Even if they are integrated in 13, the difference in the received light amounts AO, Al, A2, and A3 cannot be sufficiently large, and the distance measurement accuracy is lowered. Therefore, in actuality, after the charge generated corresponding to each section is integrated in the charge integration unit 13 over a plurality of periods (for example, 30,000 periods) of intensity-modulated light, the photodetecting element is passed through the charge extraction unit 14. Taken from 1. The light emission control unit 3 controls the timing of extracting the charge through the charge extraction unit 14.
[0033] 以下では、電荷集積部 13に電荷を集積している期間(つまり、感光部 11において 目的の区間の電荷を生成している期間)を受光期間と呼び、電荷集積部 13に集積さ れた電荷を電荷取出部 14により取り出す期間を読出期間と呼ぶ。  Hereinafter, a period in which charges are accumulated in the charge accumulating unit 13 (that is, a period in which charges in the target section are generated in the photosensitive unit 11) is referred to as a light receiving period, and is accumulated in the charge accumulating unit 13. A period in which the extracted charges are taken out by the charge extraction unit 14 is called a readout period.
[0034] ところで、上記構成において、隣接する感光部 11を 4個ずつ一組にして用いると、 一組に含まれる 4個の感光部 11で上述した 4区間の区間別の電荷を電荷集積部 13 に集積することができる。つまり、一組にした 4個の感光部 11に対応する感度制御部 12を、それぞれ受光光量 A0、 Al、 A2、 A3に対応した各期間に対応付けて制御す れば、 4個の電荷集積部 13にはそれぞれ受光光量 A0、 Al、 A2、 A3に対応した電 荷を集積できる。このような動作とすれば、受光期間と読出期間とを 1回ずつ設けるだ けで 4区間の受光光量 A0、 Al、 A2、 A3を取り出すことができ、比較的短い時間内 の情報を用いて物体〇bの距離を求めることができる。ただし、 4個の感光部 11が対 象空間の一つの方向に対応するから、 1個の感光部 11を対象空間の一つの方向に 対応付ける場合に比較して分解能は 4分の 1に低下する。また、異なる位置の感光部 11を対象空間の一方向に対応付けているから、各感光部 11が異なる物体 Obからの 反射光を受光する可能性が高くなり、距離に関して誤測定を生じやすくなる。  By the way, in the above configuration, when four adjacent photosensitive portions 11 are used as a set, the charge in each of the four sections described above in the four photosensitive portions 11 included in the set is stored in the charge integration portion. 13 can be accumulated. In other words, if the sensitivity control unit 12 corresponding to the four photosensitive units 11 in a set is controlled in association with the periods corresponding to the received light amounts A0, Al, A2, and A3, four charge integrations are performed. The unit 13 can accumulate charges corresponding to the received light amounts A0, Al, A2, and A3, respectively. With this kind of operation, it is possible to extract the received light intensity A0, Al, A2, A3 in four sections with only one light receiving period and one readout period, and use information within a relatively short time. The distance of the object 0b can be obtained. However, since the four photosensitive portions 11 correspond to one direction of the target space, the resolution is reduced to a quarter compared to the case where one photosensitive portion 11 corresponds to one direction of the target space. . In addition, since the photosensitive portions 11 at different positions are associated with one direction of the target space, each photosensitive portion 11 is more likely to receive reflected light from a different object Ob, and erroneous measurement with respect to distance is likely to occur. .
[0035] 一方、 1つの感光部 11を対象空間の一方向に対応付けるようにすれば、分解能が 高くなるから静止している物体 Obに対する距離の誤測定を低減できるが、受光期間 と読出期間とが 4回ずつ必要になるので、相対的に移動する物体 Obについては距 離の誤測定が生じやすくなる。そこで、本実施形態では、 2個の感光部 11を一組に 用レ、、受光期間と読出期間とを 2回ずつ用レ、て 4区間の受光光量 A0、 Al、 A2、 A3 に相当する電荷を取り出す方法を採用している。つまり、 2回の受光期間のうちの 1回 目は受光光量 A0、 A2に相当する電荷を取り出し、 2回目は受光光量 Al、 A3に相 当する電荷を取り出す。 [0035] On the other hand, if one photosensitive portion 11 is associated with one direction of the target space, the resolution becomes high, and thus the erroneous measurement of the distance to the stationary object Ob can be reduced. Is required four times each, so the relative moving object Ob Mismeasurement of separation is likely to occur. Therefore, in the present embodiment, the two photosensitive portions 11 are used as a set, and the light receiving period and the reading period are used twice, corresponding to the received light amounts A0, Al, A2, A3 in four sections. A method of taking out electric charge is adopted. In other words, the first time out of the two light receiving periods takes out the charges corresponding to the received light amounts A0 and A2, and the second time takes out the charges corresponding to the received light amounts Al and A3.
[0036] 上述した光検出素子 1から出力される受光出力は、評価部としての距離演算部 4に 送られ、距離演算部 4では上述の 4つの位相区間の受光光量 A0、 Al、 A2、 A3に 相当する電荷を受光出力として受け取り、上述した位相差 φを求める数式に当ては める力、あるいは当該数式に相当するテーブルに当てはめることによって位相差ゆを 求め、さらに位相差 φ力 物体 Obまでの距離を求める。距離演算部 4は対象空間の 複数方向について距離を求めるから、対象空間についての三次元情報を得ることが できるのであって、画素値に距離値を対応付けた距離画像を生成することができるの である。換算テーブルでは位相差ゆではなく距離を求めるようにしてもよい。  The light reception output output from the above-described light detection element 1 is sent to the distance calculation unit 4 as an evaluation unit, and the distance calculation unit 4 receives the received light amounts A0, Al, A2, A3 in the above four phase sections. Is obtained as a light-receiving output, and the phase difference is obtained by applying the force applied to the above formula for obtaining the phase difference φ, or by applying it to the table corresponding to the formula, and the phase difference φ force to the object Ob Find the distance. Since the distance calculation unit 4 obtains distances in a plurality of directions of the target space, it can obtain three-dimensional information about the target space, and can generate a distance image in which distance values are associated with pixel values. It is. In the conversion table, the distance may be obtained instead of the phase difference.
[0037] ところで、 4つの位相区間の受光光量 A0、 Al、 A2、 A3から位相差 φを求める上 式は、 4つの位相区間の受光光量 Α0、 Al、 Α2、 A3が得られる期間において平均 値 Βが一定であるという仮定、つまり 4つの位相区間の受光光量 Α0、 Al、 Α2、 A3を 求める時間内では環境光成分が変化しないという仮定のもとで成立する。したがって 、環境光成分が各位相区間内で変動するような条件下では位相差 φを求めることが できないことになる。以下に説明する実施形態は、環境光成分が各位相区間内で変 動する変動成分を含むような場合でも位相差 φを求めることを可能としたものである。  [0037] By the way, the above equation for calculating the phase difference φ from the received light amounts A0, Al, A2, A3 in the four phase sections is the average value during the period in which the received light quantities Α0, Al, Α2, A3 in the four phase sections are obtained. This is based on the assumption that Β is constant, that is, the ambient light component does not change within the time required to obtain the received light amounts Α0, Al, Α2, and A3 in the four phase sections. Therefore, the phase difference φ cannot be obtained under conditions where the ambient light component fluctuates within each phase interval. The embodiment described below makes it possible to obtain the phase difference φ even when the ambient light component includes a fluctuation component that fluctuates within each phase interval.
[0038] (実施形態 1)  [0038] (Embodiment 1)
本実施形態では、図 1に示すように、上述した構成の測距装置が対象空間の少なく とも一部を共通にして複数台配置されている場合を想定する。各測距装置は、それ ぞれ発光源 2と発光制御部 3と光検出素子 1と距離演算部 4とを備える。また、本実施 形態における発光制御部 3は変調周波数を複数種類力 選択可能となるように構成 されており、発光制御部 3には変調周波数を選択するための周波数選択部 6が付設 される。周波数選択部 6は、例えば、 DIPスィッチやロータリスイッチを用いて構成さ れる。あるいは、周波数選択部 6の周波数をメモリスィッチで選択可能とし、コンビュ ータのような支援装置を用いてメモリスィッチの内容を変更可能にする構成を採用し てもよい。 In the present embodiment, as shown in FIG. 1, it is assumed that a plurality of ranging devices having the above-described configuration are arranged with at least a part of the target space in common. Each distance measuring device includes a light emission source 2, a light emission control unit 3, a light detection element 1, and a distance calculation unit 4. In addition, the light emission control unit 3 in the present embodiment is configured such that a plurality of types of modulation frequencies can be selected, and the light emission control unit 3 is provided with a frequency selection unit 6 for selecting the modulation frequency. The frequency selection unit 6 is configured using, for example, a DIP switch or a rotary switch. Alternatively, the frequency of the frequency selector 6 can be selected with a memory switch, A configuration in which the contents of the memory switch can be changed using a support device such as a data recorder may be adopted.
[0039] 尚、本実施形態では、各測距装置の変調周波数を互いに異なるように固定的に設 定してある。たとえば、 3台の測距装置を使用する場合、それぞれ変調周波数を 10 MHz, 12MHz, 15MHzに設定することができる。各測距装置では、変調信号に同 期する特定の位相区間の受光光量 A0、 Al、 A2、 A3に相当する電荷量の受光出 力を光検出素子 1から取り出して距離演算部 4に与えるのであって、光検出素子 1に おける 1回の読出期間において受光光量 A0、A2に相当する電荷量の受光出力を 取り出し、他の 1回の読出期間において受光光量 Al、 A3に相当する電荷量の受光 出力を取り出す。  In the present embodiment, the modulation frequencies of the distance measuring devices are fixedly set to be different from each other. For example, when using three distance measuring devices, the modulation frequency can be set to 10 MHz, 12 MHz, and 15 MHz, respectively. In each distance measuring device, the received light amount corresponding to the received light amount A0, Al, A2, A3 in the specific phase interval synchronized with the modulation signal is taken out from the light detection element 1 and given to the distance calculation unit 4. Therefore, the light receiving output corresponding to the received light amount A0, A2 is taken out in one readout period in the light detecting element 1, and the received light amount corresponding to the received light amount Al, A3 in the other readout period. Receive light output.
[0040] 各測距装置では、受光期間において変調信号の多数周期にわたって集積した電 荷を取り出すから、光検出素子 1の受光出力には、他の測距装置から対象空間に投 光された変調周波数の異なる光の変動成分も含まれることになる。いま、説明を簡単 にするために、変調周波数が 10MHzと 12MHzの 2台の測距装置が対象空間を共 有して動作している場合を考えると、両測距装置では、図 3に示すように 12MHzの 光 Z1と、 10MHzの光 Z2とを同時に受光することになる。図 3では受光する光の強度 がほぼ等しく描かれている力 S、実際にはほとんどの場合において光の強度は異なる。 変調周波数が 10MHzの測距装置において、 2種類の変調周波数の光を同時に受 光するとすれば、曲線 Z2に対応する各位相区間の受光光量 AO、 Al、 A2、 A3に、 曲線 Zlに対応する各位相区間の成分が加算されるから、変調信号周期の数倍程度 であれば、各位相区間で得られる受光光量から曲線 Z2に対応する各位相区間の受 光光量 AO、 Al、 A2、 A3を抽出することはできない。  [0040] Since each distance measuring device takes out the electric charge accumulated over many cycles of the modulation signal during the light receiving period, the light receiving output of the light detecting element 1 is modulated by the light projected from the other distance measuring device into the target space. Variation components of light having different frequencies are also included. For the sake of simplicity, considering that two ranging devices with modulation frequencies of 10 MHz and 12 MHz are operating in common, both ranging devices are shown in FIG. Thus, 12MHz light Z1 and 10MHz light Z2 are received simultaneously. In Fig. 3, the intensity S of the received light is depicted as being almost equal, in fact the light intensity is different in most cases. If a distance measuring device with a modulation frequency of 10 MHz receives light of two types of modulation frequencies at the same time, it corresponds to the curve Zl corresponding to the received light amount AO, Al, A2, A3 in each phase section corresponding to the curve Z2. Since the components in each phase interval are added, the received light amount in each phase interval corresponding to the curve Z2 from the received light amount obtained in each phase interval is about several times the modulation signal period AO, Al, A2, A3 Cannot be extracted.
[0041] 上述のような問題が生じるのは、曲線 Z2の各位相区間の受光光量 AO、 Al、 A2、 A3に、曲線 Zlの一部の位相区間の成分が加算されることに起因している。言い換 えると、曲線 Z2の各位相区間の受光光量 AO、 Al、 A2、 A3に相当する成分に、曲 線 Z1の全位相の成分が加算される程度に長い期間の積算値を求めれば、その積算 値では曲線 Z1の成分は曲線 Z2のどの位相区間に対してもほぼ一定値になるように 平滑化され、結果的に積算値力 曲線 Z2の成分を抽出できることになる。尚、本実 施形態において、この平滑化は、評価部としての距離演算部 4に設けた平滑化手段 41で行われる。 [0041] The above-described problem arises because the received light amount AO, Al, A2, A3 in each phase section of the curve Z2 is added to a part of the phase section of the curve Zl. Yes. In other words, if the integrated value for a period long enough to add the components of all phases of the curve Z1 to the components corresponding to the received light amount AO, Al, A2, A3 in each phase interval of the curve Z2, In the integrated value, the component of curve Z1 is smoothed so as to be almost constant for any phase interval of curve Z2, and as a result, the component of integrated value force curve Z2 can be extracted. Actually In the embodiment, the smoothing is performed by the smoothing means 41 provided in the distance calculation unit 4 as the evaluation unit.
[0042] 距離演算部 4は、このような平滑化のための積算を行った後に距離を求めている。  The distance calculation unit 4 obtains the distance after performing such integration for smoothing.
ただし、各位相区間ごとの積算値を求めると、反射光成分のほかに環境光成分も積 算することになるから、積算値が大きい値になる。たとえば、デジタル信号処理を行う とすれば、積算値に対応するビット数が大きくなり、積算値を記憶するメモリなどに容 量の大きいものが必要になる。一方、上述したように距離の演算には受光光量の差 分 A0—A2、 A1— A3の値を用いる。このような差分では、環境光成分のうちで変動 しない成分が除去されるから、この差分を積算すれば、積算値を大幅に小さくするこ とがでさる。  However, if the integrated value for each phase interval is obtained, the integrated value is also large because the ambient light component is also integrated in addition to the reflected light component. For example, if digital signal processing is performed, the number of bits corresponding to the integrated value increases, and a memory or the like for storing the integrated value requires a large capacity. On the other hand, as described above, the distances A0−A2 and A1−A3 are used for calculating the distance. In such a difference, components that do not vary among the ambient light components are removed. Therefore, if this difference is integrated, the integrated value can be greatly reduced.
[0043] 本実施形態は、このような特性を利用したものであり、評価部としての距離演算部 4 において、各検出装置の変調周波数の周波数差 (つまり、環境光成分における変動 周期が既知であるときの周期差)により規定される積算時間について、受光光量の差 分 (AO— A2)、(Al— A3)の積算値を求め、この積算値を用いて距離を求めるので ある。積算時間は、各検出装置の変調周波数の周波数差で決まるビート成分の 1周 期(または、整数倍周期)に設定するのが望ましい。すなわち、曲線 Z1の成分と曲線 Z2の成分とは周波数差が比較的小さいから両者の周波数差に相当するビート成分 が生じる。このビート成分の周期で積算値を求めれば、ビート成分を除去したことにな るので、変調周波数の周波数差で決まるビート成分の 1周期を積算時間とすれば互 レ、の変調周波数の影響を相殺して環境光成分を除去することができる。  [0043] The present embodiment utilizes such characteristics. In the distance calculation unit 4 as the evaluation unit, the frequency difference between the modulation frequencies of the detection devices (that is, the fluctuation period in the ambient light component is known). For the integrated time defined by the periodic difference at a certain time, the integrated value of the difference in received light quantity (AO-A2) and (Al-A3) is obtained, and the distance is obtained using this integrated value. It is desirable to set the integration time to one cycle (or integer multiple cycle) of the beat component determined by the frequency difference of the modulation frequency of each detector. That is, since the frequency difference between the curve Z1 component and the curve Z2 component is relatively small, a beat component corresponding to the frequency difference between the two occurs. If the integrated value is calculated with this beat component period, it means that the beat component has been removed.Therefore, if one period of the beat component determined by the frequency difference of the modulation frequency is set as the integration time, the influence of the mutual modulation frequency is affected. Ambient light components can be removed by canceling.
[0044] 上述したように 3台の検出装置の変調周波数力 それぞれ 10MHz、 12MHz, 15 MHzに設定されているものとし、 10MHzの検出装置において距離を求めるとすれ ば、周波数差がそれぞれ 2MHzと 5MHzのビート成分を生じることになる。そこで、 各ビート成分の整数倍周期が一致する時間を積分時間とすれば、環境光成分を除 去することができる。上述した周波数では各ビート成分の 1周期がそれぞれ 5 X 10_7 sと 2 X 10_ 7sとになるから、両者の整数倍周期が一致する最小時間は 1 β sになる。 したがって、積算時間を 1 μ sあるいはこの整数倍とすれば、 3台の検出装置を用いな 力 も他の検出装置カも投光された光の影響を相殺して距離を精度よく求めることが できることになる。 [0044] As described above, assuming that the modulation frequency forces of the three detectors are set to 10MHz, 12MHz, and 15MHz, respectively, and the distance is obtained in the 10MHz detector, the frequency difference is 2MHz and 5MHz, respectively. Will produce the beat component. Therefore, the ambient light component can be removed if the integration time is defined as the time at which the integral multiples of the beat components coincide. Since in the above-described frequency is one period of the beat component becomes a 5 X 10_ 7 s and 2 X 10 _ 7 s respectively, minimum time integral multiple cycle of two match becomes 1 beta s. Therefore, if the integration time is set to 1 μs or an integral multiple of this, it is possible to accurately obtain the distance by offsetting the influence of the light emitted by the other detectors and the power without using three detectors. It will be possible.
[0045] ところで、積分時間が十分に長ければビート成分の周期内での振動変化により表さ れる誤差分が積算値全体に及ぼす影響は小さくなるから、上記条件 (積分時間を各 ビート成分の整数倍周期に一致させるという条件)を完全に満たしていなくても積算 時間が十分に長ければ誤差の発生を無視することができる。たとえば、積算時間が 変調信号の 3万周期であれば各ビート成分の整数倍周期に一致しなくてもよいことが 確認できている。  [0045] By the way, if the integration time is sufficiently long, the influence of the error represented by the vibration change within the beat component period on the integrated value is small. Therefore, the above condition (integration time is an integer of each beat component) If the integration time is sufficiently long, the error can be ignored even if the condition of matching the double period is not fully satisfied. For example, it has been confirmed that if the integration time is 30,000 cycles of the modulation signal, it does not have to match the integral multiple cycle of each beat component.
[0046] なお、本実施形態においては、対象空間を共通にしている検出装置の変調周波数 は既知であるから、各検出装置の変調周波数に応じた適宜の時間間隔で、各受光 光量 A0、 Al、 A2、 A3を求める位相区間を設定すれば、受光光量の差分 (AO— A 2)、(A1— A3)を求めるだけでも環境光成分のうち前記位相区間内で変動する成 分を相殺することが可能である。  In the present embodiment, since the modulation frequency of the detection devices that share the target space is known, each received light amount A0, Al at an appropriate time interval according to the modulation frequency of each detection device. If the phase interval for obtaining A2, A3 is set, simply calculating the difference (AO—A2), (A1—A3) of the amount of received light will cancel out the components of the ambient light component that vary within the phase interval. It is possible.
[0047] 上述のようにして求めた差分 (AO— A2)、(Al— A3)の積算値を用いることにより、 発光源 2から対象空間に投光した光と、光検出素子 1の各感光部 11で受光した光の 反射光成分との位相差 Φを求めることができる。また、位相差ゆの単位をラジアンと すれば、物体 Obまでの距離 Lは、 L = Lm- φ /2 πと表すことができる。ただし、変 調周波数を f、光束を c[m/s]とするとき、 Lm = c/2fである。要するに、上述の原 理によれば変調信号の 1周期の時間で往復する距離が測定可能な最大距離 Lmに なり、位相差 φが 2 πであるときに最大距離 Lmに相当すると考えられるから、 2 πに 対する位相差 Φの比率を求めることにより、光を反射した物体 Obまでの距離 Lを求 めることができるのである。  [0047] By using the integrated values of the differences (AO—A2) and (Al—A3) obtained as described above, the light projected from the light source 2 to the target space and the light sensitive elements 1 The phase difference Φ with the reflected light component of the light received at section 11 can be found. If the unit of phase difference is radians, the distance L to the object Ob can be expressed as L = Lm-φ / 2π. However, Lm = c / 2f, where f is the modulation frequency and c [m / s] is the luminous flux. In short, according to the above principle, the distance traveled in one cycle of the modulation signal is the maximum measurable distance Lm, and when the phase difference φ is 2π, it is considered to correspond to the maximum distance Lm. By finding the ratio of the phase difference Φ to 2π, the distance L to the object Ob that reflects the light can be found.
[0048] 上述のようにして理論式によって距離 Lを求めることが可能ではある力 実際には各 部材の配置や特性によって理論式の値に対して誤差が生じる。また、その誤差は一 般に距離に応じて変化する。したがって、理論式で求めた距離には補正が必要にな る。このような補正値を距離に対応付けたデータテーブルを設けることが可能である 力 データテーブルを設けるのであれば、演算そのものをデータテーブルで行うほう が効率がよい。そこで、本実施形態では、データテーブルとして、差分 (A0_A2)、 ( Al—A3)の組から距離に相当する値を求める換算テーブルを用いている。ここで、 上述したように距離 Lは測定可能な最大距離 Lmにより変化するから、周波数選択部 6により変調周波数を切り換えると、換算テーブルも異なるものが必要になる。このよう に選択可能な変調周波数に応じて複数個の換算テーブルを設けておくことも可能で ある力 換算テーブルのデータを登録する作業に手間がかかる上に、換算テーブル を構成する半導体メモリに容量の大きなものが必要になる。 [0048] Force capable of obtaining the distance L by the theoretical formula as described above In reality, an error occurs with respect to the value of the theoretical formula depending on the arrangement and characteristics of each member. The error generally varies with distance. Therefore, the distance calculated by the theoretical formula needs to be corrected. It is possible to provide a data table in which such correction values are associated with distances. If a force data table is provided, it is more efficient to perform the operation itself with the data table. Therefore, in the present embodiment, a conversion table for obtaining a value corresponding to the distance from the set of differences (A0_A2) and (Al−A3) is used as the data table. here, As described above, since the distance L varies depending on the maximum measurable distance Lm, if the modulation frequency is switched by the frequency selector 6, a different conversion table is required. It is possible to provide a plurality of conversion tables according to the modulation frequencies that can be selected in this way. It takes time to register the data of the force conversion table, and the capacity of the semiconductor memory constituting the conversion table is increased. I need something big.
[0049] このような場合は、変調周波数に関係なく 1種類の換算テーブルを設け、差分 (AO  [0049] In such a case, one type of conversion table is provided regardless of the modulation frequency, and the difference (AO
_A2)、 (Al _ A3)の組力 位相差に相当する中間値を求め、この中間値を変調周 波数に応じた補正値で補正することにより距離を求める技術を採用することが好まし い。たとえば、中間値として(c 'ゆ /4 π )に相当する値を求め、補正値として(1/f) に相当する係数を用いれば、中間値に係数を乗じる演算によって物体 Obまでの距 離 Lを求めることができる。ここに、各部材の配置や特性による誤差は中間値に折り 込まれる。あるいは、中間値として位相差ゆに相当する値を求め、補正値として(c/ 4 π *f)を用いることもできる。中間値と補正値とは適宜に選択可能である。  _A2), (Al _ A3) It is preferable to use a technique to find the distance by finding the intermediate value corresponding to the combined phase difference of the (Al_A3) and correcting this intermediate value with the correction value according to the modulation frequency. . For example, if a value corresponding to (c ′ ^ / 4π) is obtained as an intermediate value and a coefficient corresponding to (1 / f) is used as a correction value, the distance to the object Ob is calculated by multiplying the intermediate value by the coefficient. L can be obtained. Here, errors due to the arrangement and characteristics of each member are folded into intermediate values. Alternatively, a value corresponding to the phase difference can be obtained as an intermediate value, and (c / 4π * f) can be used as a correction value. The intermediate value and the correction value can be selected as appropriate.
[0050] 上述したようにに、差分 (A0—A2)、(A1—A3)の組から中間値を求め、中間値に 対して変調周波数に応じた補正を施せば、換算テーブルは変調周波数に依存せず に 1種類だけ用意すればよいことになり、データを登録する作業の手間が軽減され、 換算テーブルに用いる半導体メモリの容量も低減できる。  [0050] As described above, if the intermediate value is obtained from the set of differences (A0-A2) and (A1-A3), and the intermediate value is corrected according to the modulation frequency, the conversion table becomes the modulation frequency. It is only necessary to prepare one type without depending on it, reducing the labor of registering data, and reducing the capacity of the semiconductor memory used for the conversion table.
(実施形態 2)  (Embodiment 2)
上記した実施形態 1では、複数台の検出装置のそれぞれの変調周波数を周波数 選択部 6によって固定的に設定したが、本実施形態では、各検出装置の変調周波数 を時間経過に伴って自動的に変化させる構成を採用している。したがって、本実施 形態は、周波数選択部 6に代えて変調周波数を時間経過に伴って自動的に変化さ せる周波数切換部(図示せず)を設けた点で実施形態 1と相違するが、その他の構成 および動作については実施形態 1と実質的に同様であるので、重複する説明を省略 する。  In Embodiment 1 described above, the modulation frequency of each of the plurality of detection devices is fixedly set by the frequency selection unit 6, but in this embodiment, the modulation frequency of each detection device is automatically set as time elapses. A configuration that changes is adopted. Therefore, the present embodiment is different from the first embodiment in that a frequency switching unit (not shown) that automatically changes the modulation frequency with the passage of time is provided instead of the frequency selection unit 6. Since the configuration and operation of are substantially the same as those of the first embodiment, redundant description will be omitted.
[0051] 周波数切換部は、周波数選択部 6における変調周波数の選択を自動化し、かつ時 間経過に伴って自動的に変調周波数を選択するものであり、選択操作をタイマ機能 と連動させている。このように、変調周波数を時間経過に伴って自動的に変化させる から、変調周波数を設定する手間がかからない。尚、変調周波数を変化させる時間 は実施形態 1において説明した積算時間よりも長いことが望ましい。これは、積算時 間の途中で変調周波数が変化すると、他の検出装置から投光された光の影響をほ ぼ相殺するという保証が得られなくなるからである。また、変調周波数を変化させるタ イミングは、検出装置ごとにばらつきを持たせることが望ましい。変調周波数を変化さ せるタイミングが異なっていれば、対象空間を共通にしている複数台の検出装置に おいて変調周波数が等しくなる確率を低減することができる。さらに、周波数切換部 において変調周波数を不規則に変化させるようにすれば、変調周波数を変化させる タイミングがずれていない場合でも複数台の検出装置において変調周波数が等しく なる確率をより/ J、さくすること力 Sできる。 [0051] The frequency switching unit automates the selection of the modulation frequency in the frequency selection unit 6, and automatically selects the modulation frequency as time elapses, and the selection operation is linked to the timer function. . In this way, the modulation frequency is automatically changed over time. Therefore, it does not take time to set the modulation frequency. It is desirable that the time for changing the modulation frequency is longer than the integration time described in the first embodiment. This is because if the modulation frequency changes during the integration time, it cannot be guaranteed that the influence of the light projected from other detection devices will be almost cancelled. In addition, it is desirable that the timing for changing the modulation frequency varies among the detection devices. If the timing at which the modulation frequency is changed is different, the probability that the modulation frequencies are equal in a plurality of detection devices sharing the target space can be reduced. Furthermore, if the modulation frequency is changed irregularly in the frequency switching section, the probability that the modulation frequencies are equal in a plurality of detection devices can be reduced by more / J even when the timing for changing the modulation frequency is not shifted. That power S.
(実施形態 3)  (Embodiment 3)
検出装置の基本構成として上述したように、光検出素子 1では 1回の読出期間にお レ、て 2つの位相区間の受光光量 (A0、 A2)あるいは (A1、 A3)に相当する電荷を読 み出している。したがって、 4つの位相区間の電荷を読み出すには、受光期間と読出 期間とが 2回ずつ必要である。言い換えると、受光期間と読出期間とを交互に繰り返 すとともに、受光期間と読出期間とを 2回ずつ設けることによって距離の測定が可能 になる。また、読出期間には発光源 2からの投光は不要であるから、読出期間は発光 源 2からの投光を行わない休止期間に一致させ、受光期間は発光源 2から対象空間 に投光する投光期間と一致させるのが望ましい。要するに、光検出素子 1の動作に ついて定義される受光期間と読出期間とを、発光源 2の動作について定義される投 光期間と休止期間とにそれぞれ一致させるのが望ましい。尚、投光期間と休止期間 を決定するための発光源 2の動作は、発光制御部 3によって制御される。  As described above as the basic configuration of the detection device, the light detection element 1 reads the charge corresponding to the received light amount (A0, A2) or (A1, A3) in the two phase sections in one readout period. It is sticking out. Therefore, in order to read out the charges in the four phase intervals, two light receiving periods and two readout periods are required. In other words, the distance can be measured by alternately repeating the light receiving period and the reading period and providing the light receiving period and the reading period twice. In addition, since light emission from the light source 2 is unnecessary during the readout period, the readout period is set to coincide with a pause period during which light emission from the light source 2 is not performed, and the light reception period is projected from the light source 2 into the target space. It is desirable to match with the floodlighting period. In short, it is desirable that the light receiving period and the readout period defined for the operation of the light detection element 1 are made to coincide with the light projecting period and the rest period defined for the operation of the light emitting source 2, respectively. The operation of the light emission source 2 for determining the light projection period and the rest period is controlled by the light emission control unit 3.
[0052] たとえば、図 4に示すように、受光光量 A0、 A2に相当する電荷を生成する受光期 間 T02は発光源 2の投光期間に一致し、受光光量 Al、 A3に相当する電荷を生成 する受光期間 T13は発光源 2の次の投光期間に一致する。また、各受光期間 T02、 T13に対応する読出期間 Tdは発光源 2の休止期間に一致する。  [0052] For example, as shown in FIG. 4, the light receiving period T02 that generates charges corresponding to the received light amounts A0 and A2 coincides with the light projecting period of the light source 2, and the charges corresponding to the received light amounts Al and A3. The generated light reception period T13 coincides with the next light emission period of the light source 2. Further, the readout period Td corresponding to each light receiving period T02, T13 coincides with the rest period of the light emitting source 2.
[0053] ところで、上述したように、通常は受光期間 T02、 T13と読出期間 Tdとを交互に繰 り返しているが、図 4に示すように、本実施形態では投光期間と一致しない受光期間 Teを適宜のタイミングで設けている。つまり、光検出素子 1では受光期間 T02、 T13 と同様に受光期間 Teに生成した電荷を読み出す読出期間 Tdを設けているが、受光 期間 Teには発光源 2から投光しない休止期間としている点が受光期間 T02、T13と は異なっている。要するに、発光源 2は、読出期間 Tdに対応する期間のほか受光期 間 Teに対応する期間も休止期間になる。 Incidentally, as described above, the light receiving periods T02 and T13 and the reading period Td are normally repeated alternately. However, as shown in FIG. 4, in this embodiment, the light receiving period that does not coincide with the light projecting period is used. period Te is provided at an appropriate timing. In other words, the light detection element 1 is provided with a readout period Td for reading out charges generated during the light reception period Te as in the light reception periods T02 and T13, but the light reception period Te is set as a pause period during which light is not emitted from the light source 2. Is different from the light receiving periods T02 and T13. In short, in the light emitting source 2, the period corresponding to the light receiving period Te in addition to the period corresponding to the readout period Td is also a pause period.
[0054] さて、受光期間 Teにおいては、当該検出装置の発光源 2は投光していないから、 受光期間 Teには光検出素子 1は環境光成分のみを受光することになる。ここで、環 境光の強度が実質的に変動していなければ、休止期間において異なる 2つの位相 区間の受光光量の差は理想的には 0になる。一方、環境光の強度が実質的に変動 している場合であっても、長い時間スケールで見れば、上記したように、積算時間に おける積算値を求めることでその変動分を平滑化して相殺することができる。したが つて、所定の積算時間における 2つの位相区間の受光光量を比較すれば、環境光 成分が測距精度に影響を及ぼすかどうかを判定することが可能になる。  [0054] In the light receiving period Te, the light source 2 of the detection device does not project light, so that the light detecting element 1 receives only the ambient light component in the light receiving period Te. Here, if the intensity of the ambient light has not changed substantially, the difference between the received light amounts of the two different phase sections in the pause period is ideally zero. On the other hand, even when the intensity of the ambient light varies substantially, on a long time scale, as described above, the integrated value in the integrated time is obtained to smooth out the fluctuation and cancel it out. can do. Therefore, it is possible to determine whether or not the ambient light component affects the distance measurement accuracy by comparing the received light amounts of the two phase sections in a predetermined integration time.
[0055] 上記観点から、本実施形態においては、図 5に示すように、距離演算部 4に上述し た判定を行うための干渉判定部 42が設けられている。干渉判定部 42では、環境光 成分のみの受光期間 Teにおいて 180度異なる 2つの位相区間の積算値 (積算時間 で得られる積算値)の差分 (AO— A2)を求め、この差分を所定の閾値と比較すること により、環境光成分が測距精度に影響を及ぼすかどうかを判定している。そして、干 渉判定部 42において、積算値の差分が閾値以下である場合にのみ演算部 43で距 離を求める。このような動作により測距精度が保証されることになる。  From the above viewpoint, in the present embodiment, as shown in FIG. 5, the distance calculation unit 4 is provided with an interference determination unit 42 for performing the above-described determination. The interference determination unit 42 calculates a difference (AO-A2) between two phase sections that differ by 180 degrees in the light reception period Te of only the ambient light component (integrated value obtained by the integration time), and uses this difference as a predetermined threshold value. To determine whether the ambient light component affects the ranging accuracy. Then, the interference determination unit 42 obtains the distance by the calculation unit 43 only when the difference between the integrated values is equal to or less than the threshold value. Such an operation ensures the accuracy of distance measurement.
[0056] 一方、積算値の差分が閾値より大きい場合は、環境光成分が測距精度に影響を及 ぼすことを意味するので、演算部 43での距離の算出を行わず、干渉判定部 42にお レ、て環境光成分の影響を受けていないと判定される変調周波数を自動的にサーチ したり、あるいは前記差分が閾値より小さくなるまで、すなわち環境光成分の影響が 許容範囲内であると判定されるまで変調周波数を変化させることが好ましい。例えば 、本実施形態においては、干渉判定部 42の判定結果に応じて変調周波数を変化さ せる周波数切換部 7を付設している。周波数切換部 7は、干渉判定部 42によって環 境光成分の影響があると判定された時、変調周波数を変更するように発光制御部 3 に指示する。このように、周波数切換部 7が環境光成分の影響を受けないように変調 周波数を自動的に変更するから、変調周波数の設定に手間がかからず、しかも環境 光成分の影響を許容範囲内として空間情報を精度よく検出することができる。他の構 成および動作は実施形態 1と同様である。 [0056] On the other hand, if the difference between the integrated values is larger than the threshold value, it means that the ambient light component affects the distance measurement accuracy, so the distance is not calculated by the calculation unit 43, and the interference determination unit In 42, the modulation frequency determined not to be affected by the ambient light component is automatically searched, or until the difference becomes smaller than the threshold, that is, the influence of the ambient light component is within the allowable range. It is preferable to change the modulation frequency until it is determined that there is. For example, in the present embodiment, a frequency switching unit 7 that changes the modulation frequency according to the determination result of the interference determination unit 42 is provided. The frequency switching unit 7 is configured to change the modulation frequency so as to change the modulation frequency when the interference determining unit 42 determines that the ambient light component is affected. To instruct. In this way, since the frequency switching unit 7 automatically changes the modulation frequency so that it is not affected by the ambient light component, setting of the modulation frequency does not take time and the influence of the ambient light component is within the allowable range. As a result, the spatial information can be detected with high accuracy. Other configurations and operations are the same as those in the first embodiment.
[0057] 尚、上記説明では、環境光成分のみの受光期間 Te、すなわち休止期間における 受光量に関して、 180度異なる 2つの位相区間における積算値の差分を閾値と比較 して環境光成分の影響を判定したが、環境光の判定方法は休止期間における受光 量の使用に限定されない。また、閾値と比較される対象は必ずしも積算値の差分に 限定されない。さらに、積算値は 180度以外の異なる 2つの位相区間において求め てもよい。要するに、干渉判定部は、投光期間であるか、投光の休止期間であるかを 問わず、少なくとも 1つの位相区間における受光電荷のうち、平滑化手段により平滑 化された環境光の変動成分を用い、当該環境光の存在が空間情報の検出精度に影 響 (干渉)を及ぼすかどうかを判定できればよい。例えば、ある一つの位相区間で平 滑化手段により平滑化した値を所定の閾値と比較し、その値が閾値より大きければ、 環境光の変動成分が予め設定された許容範囲外である、すなわち環境光の干渉が あると判定することが可能である。そして、干渉判定部によって環境光の変動成分が 許容範囲外であると判定された場合に、環境光の変動成分が許容範囲内になるまで 発光源の変調信号の変調周波数を変更する周波数切換部を設けることが好ましいこ とは上記と同様である。 In the above description, with respect to the light reception period Te of only the ambient light component, that is, the light reception amount in the pause period, the difference between the integrated values in the two phase sections that are 180 degrees different from each other is compared with the threshold value to influence the influence of the ambient light component. Although judged, the judgment method of ambient light is not limited to the use of the amount of received light during the rest period. Further, the object to be compared with the threshold is not necessarily limited to the difference between the integrated values. Furthermore, the integrated value may be obtained in two different phase intervals other than 180 degrees. In short, the interference determination unit is the fluctuation component of the ambient light smoothed by the smoothing means, out of the received charge in at least one phase interval, regardless of whether it is a light projection period or a light emission pause period. It is only necessary to determine whether the presence of the ambient light affects the detection accuracy of spatial information (interference). For example, the value smoothed by the smoothing means in a certain phase section is compared with a predetermined threshold value, and if the value is larger than the threshold value, the fluctuation component of ambient light is outside the preset allowable range, that is, It is possible to determine that there is ambient light interference. When the interference determining unit determines that the environmental light fluctuation component is outside the allowable range, the frequency switching unit changes the modulation frequency of the modulation signal of the light source until the environmental light fluctuation component falls within the allowable range. It is preferable to provide the same as described above.
[0058] このような干渉判定部についてさらに説明すると、例えば、図 2の位相区間 AO (A1 , A2、 A3のいずれかであってもよレ、)に関して、図 6に示すように、ある投光期間 1に おける総受光量が Q1である時、環境光の影響があると、その受光量には環境光の 投光期間 1で平滑化された変動成分に対応する受光量ひも含まれている。同様に、 図 2の位相区間 AOに関して、次の投光期間 2における総受光量が Q2である時、環 境光の影響があると、その受光量には環境光の投光期間 2で平滑化された変動成分 に対応する受光量ひ 'が含まれている。ここに、環境光の変動成分が一定であれば、 受光光量の差分は理想的に零である(Q1— Q2 = 0)。し力しながら、環境光の変動 成分が変動する場合(α≠ α ' )、当該差分は零にならない(Q1— Q2≠0)。そこで、 所定の閾値 /3を設定し、この差分の絶対値が閾値 より大きければ、環境光の影響 (干渉)が有ると判定し、差分の絶対値が閾値 β以下であれば、環境光の影響はなし と判定することができるのである。 [0058] The interference determination unit will be further described. For example, with respect to the phase section AO (which may be any of A1, A2, and A3) in FIG. 2, as shown in FIG. When the total amount of light received in light period 1 is Q1, if there is an influence of ambient light, the amount of light received includes the received light string corresponding to the fluctuation component smoothed in environment light projection period 1. Yes. Similarly, regarding the phase interval AO in FIG. 2, when the total amount of light received in the next light projection period 2 is Q2, if there is an influence of ambient light, the amount of light received is smoothed in the light projection period 2 of ambient light. The received light intensity corresponding to the converted fluctuation component is included. Here, if the fluctuation component of the ambient light is constant, the difference in the amount of received light is ideally zero (Q1-Q2 = 0). However, when the fluctuation component of the ambient light fluctuates (α ≠ α ′), the difference does not become zero (Q1−Q2 ≠ 0). Therefore, If the specified threshold value / 3 is set and the absolute value of this difference is greater than the threshold value, it is determined that there is an influence (interference) of ambient light. If the absolute value of the difference is less than or equal to the threshold value β, there is no influence of environmental light. It can be determined.
[0059] また、距離演算値の変動を用レ、て環境光の影響を判定することもできる。例えば、 1 回目の距離演算値 XIと 2回目の距離演算値 Χ2との差分を求め、当該差分の絶対 値が所定の閾値 0より大きければ、環境光の影響 (干渉)が有ると判定し、差分の絶 対値が閾値 γ以下であれば、環境光の影響はなしと判定することができる。さらに、 2 種類の位相区間の差分(例えば、位相区間 AO— Α2)の変動や、 4つの位相区間の 和(例えば、 AO + A1 +A2 + A3)の変動を干渉判定に用いてもょレ、。  [0059] In addition, it is possible to determine the influence of ambient light by using the variation of the distance calculation value. For example, the difference between the first distance calculation value XI and the second distance calculation value Χ2 is obtained, and if the absolute value of the difference is larger than a predetermined threshold 0, it is determined that there is an influence (interference) of ambient light. If the absolute value of the difference is less than or equal to the threshold value γ, it can be determined that there is no influence of ambient light. Furthermore, fluctuations in the difference between two types of phase intervals (for example, phase interval AO— Α2) and variations in the sum of the four phase intervals (for example, AO + A1 + A2 + A3) can be used for interference determination. ,.
[0060] 上述した各実施形態では、 IT方式の CCDイメージセンサと同様の構成を採用して いる力 フレーム 'トランスファ(FT)方式、フレーム 'インターライン'トランスファ(FIT) 方式と同様の構成を採用することも可能である。また、電荷の転送に IT方式の構成 を採用する場合には、感度制御部 12として電荷を廃棄する構成のほか、感光部 11 から電荷取出部(垂直転送部)に電荷を引き渡すゲート部を制御する構成なども採 用可能である。  [0060] In each of the above-described embodiments, the same configuration as the IT type CCD image sensor is adopted. The same configuration as the frame 'transfer (FT) method and the frame' interline 'transfer (FIT) method is used. It is also possible to do. In addition, when the IT system configuration is used for charge transfer, the charge control unit 12 controls the gate unit that delivers charges from the photosensitive unit 11 to the charge extraction unit (vertical transfer unit), as well as the sensitivity control unit 12. It is also possible to adopt a configuration such as this.
産業上の利用可能性  Industrial applicability
[0061] このように、本発明によれば、空間情報検出装置から対象空間に投光される所定の 変調周波数で強度変調された光以外に、強度変動する光が照明灯等から対象空間 に照射されている場合や、別の検出装置から異なる変調周波数で強度変調された光 が同じ対象空間に投光されているような場合でも、これら環境光成分の影響を低減も しくは除去して目的とする空間情報を精度よく検出することができる。したがって、使 用環境によらず、信頼性の高い空間情報検出装置として、防犯システムや工場自動 化(FA)システムをはじめとする広範な分野での利用が期待される。 As described above, according to the present invention, in addition to the light whose intensity is modulated at the predetermined modulation frequency projected from the spatial information detection device to the target space, the light whose intensity varies is transmitted from the illumination lamp or the like to the target space. Even if it is irradiated or light that has been intensity-modulated at a different modulation frequency from another detector is projected into the same target space, the influence of these ambient light components can be reduced or eliminated. Target spatial information can be detected with high accuracy. Therefore, it is expected to be used in a wide range of fields, including crime prevention systems and factory automation (FA) systems, as highly reliable spatial information detection devices regardless of the usage environment.

Claims

請求の範囲 The scope of the claims
[1] 所定の変調周波数を有する変調信号で強度変調された光を対象空間に投光する発 光源と、  [1] a light source that projects light, which is intensity-modulated with a modulation signal having a predetermined modulation frequency, into a target space;
前記対象空間からの光を受光し、受光光量に応じた電荷を生成する感光部を備えた 光検出素子と、  A light detection element including a photosensitive portion that receives light from the target space and generates a charge according to the amount of light received;
前記感光部で生成される電荷のうち前記変調信号において規定した位相区間に同 期する期間に生成された電荷を用いて前記対象空間の空間情報を検出する評価部 と、  An evaluation unit that detects spatial information of the target space using a charge generated in a period synchronized with a phase interval defined in the modulation signal among charges generated in the photosensitive unit;
強度が変動する環境光が前記対象空間に存在する条件下において、前記環境光を 受光して感光部で生成される電荷量の前記変調信号にぉレ、て規定した位相区間に おける変動成分を所定の積算期間で積算して平滑化する平滑化手段とを具備する ことを特徴とする空間情報検出装置。  Under the condition that ambient light with varying intensity exists in the target space, the fluctuation component in the phase interval defined by the modulation signal of the amount of charge generated by the photosensitive portion upon receiving the ambient light is obtained. A spatial information detecting device comprising: smoothing means for performing integration and smoothing during a predetermined integration period.
[2] 上記平滑化手段は、上記発光源の変調信号において規定した 2種類の位相区間の 各々に関して上記環境光の変動成分を上記所定の積算期間で積算して平滑化し、 上記評価部は前記 2種類の位相区間における上記環境光の変動成分を相殺するよ うに、上記光検出素子が対象空間から受光した電荷量のうち前記 2種類の位相区間 の電荷量の差分を求め、当該差分を用いて空間情報を検出することを特徴とする請 求項 1に記載の空間情報検出装置。 [2] The smoothing means integrates and smoothes the fluctuation component of the ambient light over the predetermined integration period for each of the two types of phase sections defined in the modulation signal of the light source, and the evaluation unit In order to cancel out the fluctuation component of the ambient light in the two types of phase sections, a difference between the two types of phase sections among the amount of charges received by the light detection element from the target space is obtained, and the difference is used. 2. The spatial information detecting device according to claim 1, wherein the spatial information is detected.
[3] 上記環境光は発光源の変調周波数とは異なる既知の周波数を有し、上記平滑化手 段は、上記発光源の変調信号の変調周波数と前記環境光の周波数との間の周波数 差によって規定される積算期間にわたって上記変動成分を積算することを特徴とす る請求項 1に記載の空間情報検出装置。  [3] The ambient light has a known frequency different from the modulation frequency of the light source, and the smoothing means performs a frequency difference between the modulation frequency of the modulation signal of the light source and the frequency of the ambient light. 2. The spatial information detection device according to claim 1, wherein the fluctuation component is integrated over an integration period defined by
[4] 上記環境光の周波数が 1種類である時、上記発光源の変調周波数と上記環境光の 周波数との間の周波数差によって決まるビート成分の整数倍周期を上記積算期間と することを特徴とする請求項 3に記載の空間情報検出装置。  [4] When the frequency of the ambient light is one type, the integral period is an integral multiple of the beat component determined by the frequency difference between the modulation frequency of the light source and the frequency of the ambient light. The spatial information detection device according to claim 3.
[5] 上記環境光の周波数が複数種類である時、上記発光源の変調周波数と上記環境光 の複数の周波数の各々との間の周波数差によって決まる各ビート成分の整数倍周期 力 S—致する時間を上記積算期間とすることを特徴とする請求項 3に記載の空間情報 検出装置。 [5] When there are a plurality of types of ambient light frequencies, the integral multiple period force S of each beat component determined by the frequency difference between the modulation frequency of the light source and each of the plurality of ambient light frequencies S-match 4. Spatial information according to claim 3, characterized in that the accumulation time is the integration period Detection device.
[6] 予め設定された複数の変調周波数から上記発光源の変調周波数を選択する周波数 選択部を含むことを特徴とする請求項 1に記載の空間情報検出装置。  6. The spatial information detection device according to claim 1, further comprising a frequency selection unit that selects a modulation frequency of the light emitting source from a plurality of preset modulation frequencies.
[7] 上記発光源の変調周波数を時間経過に伴って変化させる周波数切換部を含むこと を特徴とする請求項 1に記載の空間情報検出装置。 7. The spatial information detecting apparatus according to claim 1, further comprising a frequency switching unit that changes the modulation frequency of the light emitting source with time.
[8] 上記周波数切換部は、変調周波数を不規則に変化させることを特徴とする請求項 7 に記載の空間情報検出装置。 8. The spatial information detecting apparatus according to claim 7, wherein the frequency switching unit changes the modulation frequency irregularly.
[9] 上記平滑化手段により平滑化された上記環境光の変動成分を用いて、上記環境光 の存在が空間情報の検出精度に影響を及ぼすかどうかを判定する干渉判定部を含 むことを特徴とする請求項 1に記載の空間情報検出装置。 [9] It includes an interference determination unit that determines whether the presence of the ambient light affects the detection accuracy of the spatial information using the fluctuation component of the ambient light smoothed by the smoothing means. The spatial information detection device according to claim 1, wherein
[10] 上記干渉判定部によって上記環境光の存在が空間情報の検出精度に影響を及ぼ すと判定された場合、上記環境光の影響が許容範囲内になるまで上記発光源の変 調信号の変調周波数を変化させる周波数切換部を含むことを特徴とする請求項 9に 記載の空間情報検出装置。 [10] If the interference determination unit determines that the presence of the ambient light affects the detection accuracy of the spatial information, the modulation signal of the light source is not changed until the influence of the environmental light is within an allowable range. The spatial information detection device according to claim 9, further comprising a frequency switching unit that changes the modulation frequency.
[11] 上記発光源から対象空間に光を投光する投光期間、および上記発光源から対象空 間に光を投光しない休止期間を有するように上記発光源を制御する発光制御部を含 むことを特徴とする請求項 1に記載の空間情報検出装置。 [11] A light emission control unit that controls the light emission source so as to have a light projection period in which light is projected from the light emission source to the target space and a pause period in which light is not projected from the light emission source to the target space. The spatial information detection device according to claim 1, wherein:
[12] 上記平滑化手段は、上記休止期間に感光部で受光した上記環境光により生成され る電荷のうち、上記発光源の変調信号において規定した 2種類の位相区間の変動成 分を上記積算期間で積算して平滑化することを特徴とする請求項 11に記載の空間 情報検出装置。 [12] The smoothing means integrates the fluctuation components of the two types of phase sections defined in the modulation signal of the light emitting source out of the charges generated by the ambient light received by the photosensitive unit during the pause period. 12. The spatial information detection device according to claim 11, wherein the spatial information is smoothed by integration over a period of time.
[13] 上記休止期間に受光した環境光により生成される電荷に関して平滑化された上記変 動成分の差分を閾値と比較し、当該差分が閾値より大きい時、上記環境光の変動成 分が予め設定された許容範囲以上であると判定する干渉判定部を含むことを特徴と する請求項 12に記載の空間情報検出装置。  [13] The difference of the fluctuation component smoothed with respect to the charge generated by the ambient light received during the pause period is compared with a threshold value. When the difference is larger than the threshold value, the fluctuation component of the ambient light is previously 13. The spatial information detection apparatus according to claim 12, further comprising an interference determination unit that determines that the set allowable range is exceeded.
[14] 上記干渉判定部によって上記環境光の変動成分が許容範囲以上であると判定され た場合、上記差分が閾値より小さくなるまで上記発光源の変調信号の変調周波数を 変化させる周波数切換部を含むことを特徴とする請求項 13に記載の空間情報検出 装置。 [14] When the interference determination unit determines that the fluctuation component of the ambient light is greater than or equal to an allowable range, a frequency switching unit that changes the modulation frequency of the modulation signal of the light source until the difference becomes smaller than a threshold value. 14. Spatial information detection according to claim 13, apparatus.
[15] 上記環境光は、上記発光源の変調信号の変調周波数とは異なる既知の周波数を有 し、上記平滑化手段は、光検出素子で休止期間に受光した光により生成される電荷 量のうち、上記発光源の変調信号において規定した 2種類の位相区間の変動成分 について、上記発光源の変調信号の周波数と上記環境光の周波数との間の周波数 差により規定される積算期間で積算値を求め、上記評価部は、前記積算値の差分が 閾値以下である時、投光期間において上記積算期間で得られる電荷量を用いて空 間情報を検出することを特徴とする請求項 11に記載の空間情報検出装置。  [15] The ambient light has a known frequency different from the modulation frequency of the modulation signal of the light emitting source, and the smoothing means has a charge amount generated by light received by the light detection element during a pause period. Among the fluctuation components of the two types of phase intervals specified in the modulation signal of the light source, the integrated value is obtained in the integration period specified by the frequency difference between the frequency of the modulation signal of the light source and the frequency of the ambient light. 12. The evaluation unit according to claim 11, wherein when the difference between the integrated values is equal to or less than a threshold value, the evaluation unit detects spatial information using a charge amount obtained in the integration period during a light projection period. The described spatial information detection device.
[16] 上記評価部は、上記発光源から対象空間に投光した光と光検出素子で受光した光 との位相差に相当する中間値を上記差分に対応付けた換算テーブルを有し、前記 換算テーブル力 求めた中間値を上記発光源から対象空間に投光した光の変調周 波数に応じて決定される補正値で補正することにより対象空間に存在する物体まで の距離を求めることを特徴とする請求項 2に記載の空間情報検出装置。  [16] The evaluation unit includes a conversion table in which an intermediate value corresponding to a phase difference between the light projected from the light source to the target space and the light received by the light detection element is associated with the difference, Conversion table force The distance to the object existing in the target space is obtained by correcting the calculated intermediate value with a correction value determined according to the modulation frequency of the light projected from the light source to the target space. The spatial information detection device according to claim 2.
[17] 第 1変調信号で強度変調された光を対象空間に投光する発光源と、対象空間からの 光を受光し、受光光量に応じた電荷を生成する感光部を備えた光検出素子と、前記 感光部で生成される電荷のうち第 1変調信号において規定した位相区間に同期する 期間に生成された電荷を用いて対象空間の空間情報を検出する評価部とを有する 第 1検出装置と、第 1変調信号とは異なる第 2変調信号で強度変調された光を前記 対象空間に投光する発光源と、対象空間からの光を受光して受光光量に応じた電荷 を生成する感光部を備えた光検出素子と、感光部で生成される電荷のうち第 2変調 信号において規定した位相区間に同期する期間に生成された電荷を用いて対象空 間の空間情報を検出する評価部とを有する第 2検出装置とを含み、 [17] A light detection element including a light emitting source that projects light, which is intensity-modulated by the first modulation signal, into a target space, and a photosensitive unit that receives light from the target space and generates a charge corresponding to the amount of received light And an evaluation unit that detects spatial information of the target space using the charge generated in a period synchronized with the phase interval defined in the first modulation signal among the charges generated in the photosensitive unit. A light source that projects light, which is intensity-modulated by a second modulation signal different from the first modulation signal, into the target space, and a photosensitive that receives the light from the target space and generates a charge corresponding to the amount of received light. And an evaluation unit that detects spatial information of the target space using the charge generated in the period synchronized with the phase interval defined in the second modulation signal among the charges generated in the photosensitive part. A second detection device having
第 1検出装置は、第 1変調信号で強度変調された光と第 2変調信号で強度変調さ れた光が対象空間に同時に存在する条件下において、対象空間からの光を受光し て第 1検出装置の感光部で生成される電荷量のうち、第 2変調信号で強度変調され た光を受光して生成される電荷量の第 1変調信号において規定した位相区間におけ る変動成分を所定の積算期間で積算して平滑化する平滑化手段を具備することを 特徴とする空間情報検出システム。  The first detector receives the light from the target space and receives the light from the target space under the condition in which the light intensity-modulated by the first modulation signal and the light intensity-modulated by the second modulation signal simultaneously exist in the target space. Of the amount of charge generated by the photosensitive part of the detector, the fluctuation component in the phase interval specified in the first modulation signal of the amount of charge generated by receiving the light whose intensity is modulated by the second modulation signal is predetermined. A spatial information detection system comprising smoothing means for smoothing by integrating during the integration period.
PCT/JP2006/309071 2005-05-02 2006-05-01 Space information detecting device, and space information detecting system using the device WO2006118286A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/919,746 US7643131B2 (en) 2005-05-02 2006-05-01 Spatial information detection device and spatial information detection system using the same
EP06745922.2A EP1879049B1 (en) 2005-05-02 2006-05-01 Space information detecting device, and space information detecting system using the device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-134393 2005-05-02
JP2005134393A JP4788187B2 (en) 2005-05-02 2005-05-02 Spatial information detector

Publications (1)

Publication Number Publication Date
WO2006118286A1 true WO2006118286A1 (en) 2006-11-09

Family

ID=37308080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309071 WO2006118286A1 (en) 2005-05-02 2006-05-01 Space information detecting device, and space information detecting system using the device

Country Status (5)

Country Link
US (1) US7643131B2 (en)
EP (1) EP1879049B1 (en)
JP (1) JP4788187B2 (en)
TW (1) TWI310653B (en)
WO (1) WO2006118286A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697119B2 (en) * 2007-11-14 2010-04-13 Stanley Electric Co., Ltd. Range image generating apparatus
US20110063437A1 (en) * 2008-08-20 2011-03-17 Tatsumi Watanabe Distance estimating device, distance estimating method, program, integrated circuit, and camera
WO2015190015A1 (en) * 2014-06-09 2015-12-17 パナソニックIpマネジメント株式会社 Distance measuring device
JP2021032794A (en) * 2019-08-28 2021-03-01 パイオニア株式会社 Measuring device, control method, program, and storage medium
WO2022201848A1 (en) * 2021-03-22 2022-09-29 ソニーグループ株式会社 Information processing device, information processing method, and program

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1860462A1 (en) * 2006-05-23 2007-11-28 Leica Geosystems AG Distance measuring method and distance meter for determining the spatial dimension of a target
JP5098331B2 (en) * 2006-12-28 2012-12-12 株式会社豊田中央研究所 Measuring device
CN101641571B (en) * 2007-04-19 2012-10-24 星电株式会社 Rotation input device and rotation detecting device using the same
JP5398204B2 (en) * 2008-09-17 2014-01-29 富士重工業株式会社 Ranging system
KR101675112B1 (en) * 2010-01-21 2016-11-22 삼성전자주식회사 Method of extractig depth information and optical apparatus employing the method
KR101666020B1 (en) * 2010-06-25 2016-10-25 삼성전자주식회사 Apparatus and Method for Generating Depth Image
KR20130009392A (en) 2011-07-15 2013-01-23 삼성전자주식회사 Operation method of controller and a memory system having the controller
JP2013076645A (en) * 2011-09-30 2013-04-25 Stanley Electric Co Ltd Distance image generation apparatus and distance image generation method
US20130083997A1 (en) * 2011-10-04 2013-04-04 Alcatel-Lucent Usa Inc. Temporally structured light
US10324033B2 (en) * 2012-07-20 2019-06-18 Samsung Electronics Co., Ltd. Image processing apparatus and method for correcting an error in depth
US20140101683A1 (en) * 2012-10-10 2014-04-10 Samsung Electronics Co., Ltd. Methods and apparatus for detecting a television channel change event
US9136888B2 (en) * 2013-06-28 2015-09-15 JVC Kenwood Corporation Radio receiver and reception frequency setting method used therein, and frequency setting device and frequency setting method
JP6673084B2 (en) 2016-08-01 2020-03-25 株式会社デンソー Light flight type distance measuring device
DE102016215177A1 (en) 2016-08-15 2018-02-15 Carl Zeiss Microscopy Gmbh Method and arrangement for capturing image data
WO2018181013A1 (en) * 2017-03-29 2018-10-04 株式会社デンソー Light detector
JP6665873B2 (en) * 2017-03-29 2020-03-13 株式会社デンソー Photo detector
DE102017128369A1 (en) * 2017-11-30 2019-06-06 Infineon Technologies Ag DEVICE AND METHOD FOR LOCATING A FIRST COMPONENT, LOCALIZATION DEVICE AND METHOD OF LOCATING
US11428786B2 (en) * 2017-12-03 2022-08-30 Munro Design & Technologies, Llc Dual waveforms for three-dimensional imaging systems and methods thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128216A (en) * 1984-11-28 1986-06-16 Canon Inc Noise removing device of focus adjusting device
JPH04307340A (en) * 1991-04-03 1992-10-29 Omron Corp Photosensor and operating method thereof
JPH06273662A (en) * 1993-03-24 1994-09-30 Olympus Optical Co Ltd Range-finding device
EP0760460A2 (en) 1995-08-28 1997-03-05 Matsushita Electric Works, Ltd. Optical displacement measuring system using a triangulation
JPH09152332A (en) * 1995-11-30 1997-06-10 Olympus Optical Co Ltd Distance-measuring device
JPH1041802A (en) * 1996-07-26 1998-02-13 Secom Co Ltd Object detecting equipment
JP2000145294A (en) * 1998-11-17 2000-05-26 Harness Syst Tech Res Ltd Nipping preventing device
JP2004032682A (en) * 2002-04-08 2004-01-29 Matsushita Electric Works Ltd Free space information detector using intensity modulated light
US20040195493A1 (en) 2003-04-07 2004-10-07 Matsushita Electric Works, Ltd. Light receiving device with controllable sensitivity and spatical information detecting apparatus using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479706A (en) * 1980-09-09 1984-10-30 Ricoh Company, Ltd. Distance measuring circuit
DE4440613C1 (en) 1994-11-14 1996-07-25 Leica Ag Device and method for the detection and demodulation of an intensity-modulated radiation field
US6229619B1 (en) * 1996-02-12 2001-05-08 Massachusetts Institute Of Technology Compensation for measurement uncertainty due to atmospheric effects
US5966678A (en) * 1998-05-18 1999-10-12 The United States Of America As Represented By The Secretary Of The Navy Method for filtering laser range data
CN1312489C (en) 2002-07-15 2007-04-25 松下电工株式会社 Light receiving device with controllable sensitivity and spatial information detecting apparatus using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128216A (en) * 1984-11-28 1986-06-16 Canon Inc Noise removing device of focus adjusting device
JPH04307340A (en) * 1991-04-03 1992-10-29 Omron Corp Photosensor and operating method thereof
JPH06273662A (en) * 1993-03-24 1994-09-30 Olympus Optical Co Ltd Range-finding device
EP0760460A2 (en) 1995-08-28 1997-03-05 Matsushita Electric Works, Ltd. Optical displacement measuring system using a triangulation
JPH09152332A (en) * 1995-11-30 1997-06-10 Olympus Optical Co Ltd Distance-measuring device
JPH1041802A (en) * 1996-07-26 1998-02-13 Secom Co Ltd Object detecting equipment
JP2000145294A (en) * 1998-11-17 2000-05-26 Harness Syst Tech Res Ltd Nipping preventing device
JP2004032682A (en) * 2002-04-08 2004-01-29 Matsushita Electric Works Ltd Free space information detector using intensity modulated light
US20040195493A1 (en) 2003-04-07 2004-10-07 Matsushita Electric Works, Ltd. Light receiving device with controllable sensitivity and spatical information detecting apparatus using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1879049A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697119B2 (en) * 2007-11-14 2010-04-13 Stanley Electric Co., Ltd. Range image generating apparatus
US20110063437A1 (en) * 2008-08-20 2011-03-17 Tatsumi Watanabe Distance estimating device, distance estimating method, program, integrated circuit, and camera
WO2015190015A1 (en) * 2014-06-09 2015-12-17 パナソニックIpマネジメント株式会社 Distance measuring device
CN106461763A (en) * 2014-06-09 2017-02-22 松下知识产权经营株式会社 Distance measuring device
JPWO2015190015A1 (en) * 2014-06-09 2017-04-20 パナソニックIpマネジメント株式会社 Ranging device and solid-state imaging device used therefor
CN106461763B (en) * 2014-06-09 2019-04-30 松下知识产权经营株式会社 Solid-state imager used in range unit and the range unit
JP2021032794A (en) * 2019-08-28 2021-03-01 パイオニア株式会社 Measuring device, control method, program, and storage medium
WO2022201848A1 (en) * 2021-03-22 2022-09-29 ソニーグループ株式会社 Information processing device, information processing method, and program

Also Published As

Publication number Publication date
EP1879049A1 (en) 2008-01-16
US20090079955A1 (en) 2009-03-26
US7643131B2 (en) 2010-01-05
JP2006308522A (en) 2006-11-09
EP1879049B1 (en) 2016-06-29
JP4788187B2 (en) 2011-10-05
TWI310653B (en) 2009-06-01
TW200644624A (en) 2006-12-16
EP1879049A4 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
WO2006118286A1 (en) Space information detecting device, and space information detecting system using the device
JP5261571B2 (en) Distance measuring device
US11709231B2 (en) Real time gating and signal routing in laser and detector arrays for LIDAR application
US7009690B2 (en) Three-dimensional measurement device and three-dimensional measurement method
US10444361B2 (en) Laser tracker having two measurement functionalities
US9332246B2 (en) Time of flight camera unit and optical surveillance system
US9435891B2 (en) Time of flight camera with stripe illumination
JP5655133B2 (en) Spatial information detector
US20120033045A1 (en) Multi-Path Compensation Using Multiple Modulation Frequencies in Time of Flight Sensor
US11693102B2 (en) Transmitter and receiver calibration in 1D scanning LIDAR
EP1411371A1 (en) Surveying and position measuring instrument with a fan-shapped light beam
WO2006112431A1 (en) Spatial information detection system
JP2015501927A (en) Improvements in or relating to processing of time-of-flight signals
US7869007B2 (en) Ranging apparatus and ranging method
US11525917B2 (en) Distance measuring apparatus which detects optical system abnormality
US11269065B2 (en) Muilti-detector with interleaved photodetector arrays and analog readout circuits for lidar receiver
JP4363296B2 (en) Distance image sensor
JP6696349B2 (en) Optical flight type distance measuring device and abnormality detection method of optical flight type distance measuring device
JP5161938B2 (en) Spatial information detector
CN112945221A (en) Phase angle correction value calculation device and method of calculating phase angle correction value
US11520045B2 (en) Method and device for detecting objects, and LIDAR system
JP3175317B2 (en) Distance measuring device
JP2008107205A (en) Detection device of spatial information
US20230078063A1 (en) Distance measurement device and distance measurement system
KR20220037938A (en) 3d imaging device with digital micromirror device and operating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006745922

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11919746

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006745922

Country of ref document: EP