WO2006118266A1 - Optical recording medium, spattering target, and azo-metal chelate dye - Google Patents

Optical recording medium, spattering target, and azo-metal chelate dye Download PDF

Info

Publication number
WO2006118266A1
WO2006118266A1 PCT/JP2006/309023 JP2006309023W WO2006118266A1 WO 2006118266 A1 WO2006118266 A1 WO 2006118266A1 JP 2006309023 W JP2006309023 W JP 2006309023W WO 2006118266 A1 WO2006118266 A1 WO 2006118266A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
recording
alkyl group
dye
recording medium
Prior art date
Application number
PCT/JP2006/309023
Other languages
French (fr)
Japanese (ja)
Inventor
Naoyuki Uchida
Hiroyuki Hoshino
Atsushi Komura
Naoki Koda
Akihiko Imagawa
Original Assignee
Mitsubishi Kagaku Media Co., Ltd.
Furuya Metal Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kagaku Media Co., Ltd., Furuya Metal Co., Ltd. filed Critical Mitsubishi Kagaku Media Co., Ltd.
Publication of WO2006118266A1 publication Critical patent/WO2006118266A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00455Recording involving reflectivity, absorption or colour changes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/2467Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes azo-dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
    • G11B7/2472Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes cyanine

Definitions

  • Optical recording media Optical recording media, sputtering targets, and azo metal chelate dyes
  • the present invention relates to an optical recording medium that can be recorded and reproduced by a laser beam, and to a sputtering target and an azo metal chelate dye used in the optical recording medium. More specifically, the present invention has good recording characteristics at a wide recording linear velocity.
  • the present invention also relates to an optical recording medium for high-density recording or high-speed recording that has excellent light resistance, and a sputtering target and an azo metal chelate dye used for the optical recording medium.
  • optical recording media having a recording layer containing an organic dye such as CD-R and DVD-R
  • optical recording media having a recording layer containing an organic dye are relatively inexpensive and compatible with optical recording media dedicated to reproduction. In particular, it is widely used.
  • current optical recording media have a recording layer made of an alloy thin film layer, an organic dye-containing thin film layer, or the like on a transparent disk substrate, and a reflective layer on the opposite side of the substrate through the recording layer. It has a laminated structure having a protective layer covering these recording layers and reflective layers, and performs recording / reproduction with a laser beam through a substrate.
  • a metal or alloy thin film is generally used (see Patent Document 1), and gold, silver, a silver alloy or the like is often used among them.
  • Silver, which is the center of these alloys, has been put to practical use because it is relatively inexpensive and provides high reflectivity.
  • Patent Document 2 describes a reflective layer containing a silver-copper alloy or a silver-paradium mu copper alloy.
  • Patent Document 3 describes that a reflective layer is provided with an alloy thin film containing less than 40% silver on copper.
  • Patent Document 4 describes a copper alloy reflective layer and target containing Ag and Ti. While doing so, they Each of these is an optical recording medium having a low linear velocity recording speed of less than 2. OmZs. Further, the present invention relates to an optical recording medium having a low recording density.
  • Patent Document 1 Japanese Patent Publication No. 7-105065
  • Patent Document 2 JP-A-4-49539
  • Patent Document 3 Japanese Patent Laid-Open No. 4-364240
  • Patent Document 4 International Publication No. WO2002Z021524 Pamphlet
  • an object of the present invention is an optical recording medium for high-density recording or high-speed recording, has good recording characteristics at a wide recording linear velocity, and is excellent in “practical” light resistance.
  • An optical recording medium is provided.
  • Another object of the present invention is to provide an optical recording medium suitable for high-speed recording. Another object of the present invention is to provide a sputtering target for producing a reflection layer of an optical recording medium excellent in light resistance and recording characteristics.
  • Another object of the present invention is to provide a predetermined organic dye used in a recording layer of an optical recording medium suitable for high-speed recording.
  • the present inventors have found the following items and completed the present invention.
  • the dye retention before and after the light resistance test when the organic dye forming the recording layer is formed as a single layer is 80% or more, more preferably 90% or more in the recording layer used in the low-speed recording medium.
  • the composition of the dye is adjusted so that it is 70% or less, which is not good enough for practical use.
  • a reflective layer having a composition that is a differential value of reflectivity R with respect to the wavelength of the reflective layer in air dRZd (% / nm) force is 3 or less in the wavelength range of 300 nm to 500 nm. It has been found that by these combinations, an excellent optical recording medium can be obtained not only at high speed recording but also at a wide recording linear velocity, and excellent in “practical” light resistance.
  • the gist of the present invention is to have a recording layer made of an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves, and the shortest mark length is less than 0. Or 35.
  • the track pitch of the guide groove on the substrate is 0. or less
  • the groove width is 0. or less
  • the thickness of the recording layer in the groove Is less than 70 nm
  • the organic dye single layer forming the recording layer has a dye retention power defined by the following definition of the light irradiation condition shown in ISO-105-B02.
  • the present invention resides in an optical recording medium.
  • Another gist of the present invention is that a recording layer containing at least an organic dye and a reflective layer containing a metal are provided on a substrate having concentric or spiral grooves, and the shortest mark length is In an optical recording medium on which recording is performed at a recording linear velocity of 35.
  • the recording layer contains an azo compound represented by the following general formula (1) and Zn as an organic dye.
  • the optical recording medium comprises at least an azo metal chelate dye composed of the above metal ions.
  • R 1 is a hydrogen atom or an ester group represented by CO R 3 (where R 3 is
  • a linear or branched alkyl group or a cycloalkyl group is represented. ).
  • R 2 represents a linear or branched alkyl group.
  • At least one of X 1 and X 2 is an NHSO Y group (where Y is a straight chain substituted with at least two fluorine atoms or
  • R 4 and R 5 each independently represents a hydrogen atom, a linear or branched alkyl group, or a linear or branched alkoxy group.
  • R 6 , R 7 , R 8 and R 9 each independently represent a hydrogen atom or an alkyl group having 1 or 2 carbon atoms.
  • the NHSO Y basic force H + is removed.
  • Another aspect of the present invention is that the reflection of the optical recording medium having a recording layer containing at least an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves.
  • a sputtering target for use in the production of a layer characterized in that it has at least a material force represented by the following composition B.
  • X represents at least one element selected from the group consisting of Zn, Al, Pd, In, Sn, Cr, and Ni, provided that the total amount of Cu, Ag, and X is 100 at% or less.
  • Another aspect of the present invention is to provide a substrate having concentric or spiral grooves, An organic recording medium having a recording layer containing at least an organic dye and a reflective layer containing a metal, wherein the shortest mark length is less than 0, or 35.
  • An azo metal chelate dye used as a dye comprising an azo compound represented by the above general formula (1) and a metal ion of Zn.
  • the present invention has excellent recording characteristics at a wide recording linear velocity, and has excellent "practical" light resistance.
  • An optical recording medium is provided.
  • an optical recording medium suitable for high-speed recording is provided.
  • a sputtering target for producing a reflective layer of an optical recording medium having excellent light resistance and recording characteristics.
  • the present invention also provides an azo metal chelate dye used for a recording layer of an optical recording medium suitable for high-speed recording.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an optical recording medium according to an embodiment of the present invention.
  • FIGS. 2 (a) and 2 (b) are cross-sectional views schematically showing a configuration of an optical recording medium according to an embodiment of the present invention.
  • Fig. 3 is a graph showing the wavelength distribution of the refractive index (n) of the main metal material, and Fig. 3 (b) is the wavelength of the extinction coefficient (k) of the main metal material.
  • (C) is a graph showing the wavelength distribution of reflectance in air calculated for a reflective layer (thickness 120 nm) formed using main metal materials.
  • FIGS. 4 (a) to 4 (d) are diagrams showing the measurement results of recording characteristics and “practical” light resistance of the optical recording media of Example 2 and Comparative Example 1.
  • Fig. 4 (a) is a graph showing the measurement result of the recording power margin
  • Fig. 4 (b) is a graph showing the measurement result of the asymmetry margin
  • Fig. 4 (c) is a measurement result of the bottom jitter before and after the light resistance test.
  • Fig. 4 (d) is a graph showing the measurement results before and after the PImax light resistance test.
  • FIGS. 5 FIGS.
  • FIGS. 5 (a) to (d) are diagrams showing measurement results of recording characteristics and “practical” light resistance of the optical recording media of Example 3 and Comparative Example 2
  • Fig. 5 (a) is a graph showing the measurement result of the recording power margin
  • Fig. 5 (b) is a graph showing the measurement result of the asymmetry margin
  • Fig. 5 (c) shows the measurement result of the bottom jitter before and after the light resistance test
  • Fig. 5 (d) is a graph showing the measurement results before and after the PImax light resistance test.
  • FIGS. 6 (a) and 6 (b) are diagrams showing measurement results of the recording characteristics of the optical recording media of Example 4 and Comparative Example 3, and FIG. 6 (a) shows the recording power.
  • Figure 6 (b) is a graph showing the measurement result of the asymmetry margin.
  • FIGS. 7 (a) to 7 (d) are diagrams showing the recording characteristics and “practical” light resistance measurement results of the optical recording medium of Comparative Example 4, and FIG. Fig. 7 (b) is a graph showing the measurement result of the recording power margin, Fig. 7 (b) is a graph showing the measurement result of the asymmetry margin, Fig. 7 (c) is a graph showing the measurement result of the bottom jitter before and after the light resistance test, and Fig. 7 (d) ) Is a graph showing the measurement results before and after the PImax light resistance test.
  • FIG. 8 is a graph showing the wavelength distribution of the reflectance of a single metallic reflective layer used in each example and comparative example.
  • FIGS. 9A to 9D are graphs showing the d RZ values of the single metallic reflective layer used in each example and comparative example.
  • Fig. 9 (a) shows a single Cu reflective layer (Example 1)
  • Fig. 9 (b) shows a single Au reflective layer (Example 2)
  • Fig. 9 (c) shows a single Ag reflective layer (Comparative Example 1).
  • FIG. 9 (d) shows the values of the single A1 reflective layer (Example 5), respectively.
  • FIG. 10 shows the reflectivity of CuAg and CuAg Pd obtained in Example 6.
  • 12. 8 is a graph showing the measurement results of 12. 9 0.7 together with the measurement results of Ag, Au, and Cu obtained in Example 5.
  • Fig.11 [Fig.11] Fig.11 (a) and Fig.11 (b) show the dRZd values of CuAg and CuAg Pd, respectively.
  • FIG. 12 is a graph showing the relationship between the Ag content obtained in Example 6 and the maximum value of dRZd ⁇ in the wavelength region of 300 to 500 nm.
  • Figure 13 shows the relationship between the X value (Ag content) and the bottom jitter value in Cu Ag when light resistance is assumed to have a nearly linear correlation with the Ag content. It is a graph.
  • FIGS. 14 (a) and 14 (b) are graphs showing the results of the light resistance test in Examples 6 to 8, and FIG. 14 (a) shows the xenon irradiation time, the jitter value, and the like.
  • Fig. 14 (b) is a graph showing the relationship between xenon irradiation time and PI error.
  • Fig. 15 Fig. 15 (a) and Fig. 15 (b) are both graphs showing the results of storage stability tests at high temperatures and high humidity in Examples 6 to 8, and Fig. 15 (a) shows jitter values.
  • Figure 15 (b) is a graph showing the PI error over time.
  • the present invention first, on a substrate having concentric or spiral grooves, at least a recording layer made of an organic dye and a reflective layer containing a metal, and the shortest mark length is less than 0.4 ⁇ m. Or 35.
  • the track pitch of the guide groove on the substrate is 0.8 m or less
  • the groove width is 0.4 ⁇ m or less
  • first optical recording medium of the present invention It is 70% or less in scale 5 (light resistance test), and the differential value dRZd (% Znm) of reflectance R with respect to wavelength ⁇ in the air of the reflective layer is in the wavelength range of 300 nm to 500 nm.
  • optical recording medium characterized by 3 or less (hereinafter sometimes referred to as “first optical recording medium of the present invention”).
  • the present inventors have intensively studied to provide an optical recording medium for high-density recording or high-speed recording and having good recording characteristics at a wide recording linear velocity.
  • “high density recording” in the present invention is premised on recording with a minimum mark length of less than 0.4 m. This is because the problem to be solved by the present invention is a particularly remarkable force in an optical recording medium that is densified by shortening the recording mark and narrowing the track pitch. In “high density recording”, it is important to reduce the formation of excessive recording areas.
  • high-speed recording means recording at a recording linear velocity of 35.
  • OmZs or more for example, DV D, the DVD speed is 1 ⁇ , that is, the linear velocity of 3.5mZs is 10 times or more. (Recording at rotational speed).
  • the recording of the first optical recording medium of the present invention corresponds to "high-speed recording”
  • the above-mentioned “high-density recording” that is, the minimum mark length of less than 0.4 m is always required. It does not have to be a record of. However, even in this case, the shortest mark length is usually less than 0.5 m, preferably 0.44 / zm. In the following, it is desirable to perform recording at a density in the range of 0.4 m or less.
  • dye layer there are suitable dyes or combinations of dyes as dyes used in the recording layer (dye layer). That is, using a dye having a dye retention of 70% or less after the light resistance test of a single recording layer, or mixing a "dye having poor light resistance” and a “dye having good light resistance” Mixing so that the dye retention before and after the light resistance test of the recording layer is 70% or less.
  • the present inventors further investigated the new problem.
  • the differential value dRZd (% Znm) of the reflectance R with respect to the wavelength of the reflective layer in the air is set to 3 or less in the wavelength range of 300 nm to 500 nm.
  • I was able to solve this problem. That is, “practical” light resistance can be improved.
  • the “practical” light resistance in the present invention means that the light resistance of a single recording layer is not good enough, but it is
  • a recording layer made of at least an organic dye and a reflective layer containing a metal are provided, and the shortest mark length is 0. Or 35.
  • the groove width on the substrate is 0. or less, and the recording layer thickness in the groove is 70 nm or less.
  • dRZd % Znm
  • % Znm the differential value of reflectance R with respect to the wavelength of the reflective layer in the air is in the wavelength range of 300 nm to 500 nm. It is characterized by being 3 or less.
  • “dye retention” means the ratio of absorbance before and after the light resistance test at the maximum absorption wavelength of the coating film of the organic dye single layer forming the recording layer in the wavelength region of 300 to 800 nm, that is, ⁇ (Absorbance after test) / (Absorbance before test) ⁇ X 100 (%).
  • the track pitch can be increased to 0.8 ⁇ m or less, and a sufficient push-pull signal amplitude can be secured. Therefore, as described above, when recording is performed by rotating the disk at high speed, it is possible to stably track the groove.
  • the groove width is usually not less than 0, more preferably not less than 0, in order to ensure a sufficient push-pull signal amplitude.
  • the track pitch is usually 0.2 ⁇ m or more, preferably 0.4 ⁇ m or more.
  • the recording layer thickness in the groove is 70 nm or less, formation of an excessive recording portion is suppressed, and good “high density recording” and “high speed recording” with less crosstalk are possible. It becomes.
  • the film thickness of the recording layer in the groove is usually 5 nm or more, more preferably lOnm or more, and further preferably 20 nm or more.
  • the recording laser light irradiation time for recording the shortest mark length 3T mark in the example of the present embodiment
  • the bottom jitter minimum jitter value
  • This “recording the shortest mark length with a shortened pulse so that the irradiation time is less than 8 ns” means, for example, that the rise time of the semiconductor laser in the DVD wavelength region is around 4 ns. How severe the recording conditions are.
  • the irradiation pulse width of the laser for 3T mark length recording used in each of the examples and comparative examples described later is 7.9 ns for 10 ⁇ speed recording (35 mZs) and 16 ⁇ speed recording (56. OmZs), respectively. And 6.5ns.
  • “good recording is possible at a wide recording linear velocity” means 3.5. From mZs to approximately 70mZs (for DVD, for example, 1x speed recording of DVD (3.5mZs) to about 20x speed recording (70mZs)) can be recorded without bottom jitter exceeding 9%, or commercially available This means that the reproduction apparatus has an error rate that is good enough to cause no reproduction problems.
  • the jitter value is a good index for evaluating the recording quality. For example, in the currently known range, it is usually 8.0% or less, more preferably 7% or less, more preferably 6 in 3.5mZs to 28mZs (for example, 1x speed recording to 8x speed recording in DVD). In general, it is determined to be particularly good when recording capable of obtaining a bottom jitter of less than% is possible.
  • optical mode recording is known to have a high reaction rate, and in principle, the reaction can be terminated in the order of fsec to psec. If the reaction is completed in this time order, it is highly possible that interference between adjacent marks does not occur in consideration of the rotational speed force of the disc.
  • the above "dye having poor light resistance” corresponds to a state force excited by light, a probable force of causing a so-called “non-radiative transition", and a dye compound.
  • (1) not only has a strong absorption band that is considered to involve ⁇ - ⁇ * transitions or charge transfer transitions in the vicinity of the recording / reproducing wavelength, but also has a lot of spatial configurations and good flatness.
  • structural dyes Examples of this are ⁇ - ⁇ * transitions that are likely to occur, many of which emit fluorescent light, and include a number of organic dyes.
  • suitable optical disks include the following specific cyanine dyes. It is done.
  • metal chelate dyes have been said to have good light resistance.
  • metal chelate dyes (2) metal chelate dyes whose central metal tends to be desorbed by light due to their light binding properties are “light resistance”. Is considered to fall under "inferior pigment”. (2) is the case where the central metal ion, like zinc, does not have an empty d orbital in the outermost d orbital that should be involved in the coordination bond, or there are few empty d orbitals (this In the invention, for example, Zn 2+ has a 3d lc> electron configuration because 2 electrons can be taken from the electron configuration 3d 1G 4s 2 of Zn (by ionic ion).) Covalent metal-ligand bonding Power is reduced.
  • the central metal of such a metal chelate dye having a poor light resistance is a metal having few or no vacant d orbitals due to ions.
  • the ligand has a molecular orbital in which MLCT (metaH: o-ligand charge transfer) is likely to occur (for example, the ligand has an empty anti-bonding orbital). It is also preferable.
  • the magnitude of the contribution of the optical mode in the decomposition of these dyes can also be estimated based on whether or not fluorescence is emitted. That is, it is considered that dyes that emit fluorescence tend to have a large contribution of optical modes in decomposition.
  • the covalent bond (strong coordination) between the ligand and the central metal ion is small because the central metal ion has d 9 or d lc> electron configuration, but the structure selection energy force is close to SO. It can also be thought to be related to something.
  • the “structure selection energy” described above was in accordance with KF Puncell et al, Inorganic Chemistry, 1977, p.550.
  • a dye compound having a high probability of non-radiative transition occurs in the "dye having good light resistance" in the "dye having good light resistance".
  • a dye compound having a high probability of non-radiative transition occurs in such a dye compound.
  • the absorbed light is mainly converted into thermal energy.
  • a metal chelate dye is, for example, an azo metal chelate dye which is a first transition element (3d transition element) having an empty d orbital in the d orbital of the central metal ion or capable of forming an empty d orbital.
  • hybrid orbitals are formed through the overlap of empty d orbitals of metal ions and orbitals of ligands, and the covalent bondability of metal ligands makes it possible to form a chelate structure that is stable even in the excited state. There is a high possibility of being formed. That is, it is considered that the ligand does not release the coordination bond force even by photoexcitation.
  • Examples of the "dye having inferior light resistance" include a azo complex having Zn as a central metal, or a cyanine dye containing no quencher.
  • an azo complex having Cu or Ni as a central metal may be used, but an azo complex having Zn as a central metal is particularly preferable.
  • Examples of such dyes include metal chelate dyes that coordinate two azo compounds described below with respect to one Zn element.
  • the "dye having poor light resistance” in the present invention is preferably a single composition of the dye and having a dye retention of 70% or less as defined in the present invention.
  • Dye retention power small within this range Since it is a “dye having inferior light resistance”, it is preferable because it may be excellent in characteristics at high-speed recording or high-density recording for the reasons described above.
  • the “dye having good light resistance” in the present invention is preferably a single composition of the dye and having a dye retention rate of more than 70% as defined in the present invention. More preferably, it is 80% or more, and still more preferably 85% or more.
  • examples of azo complexes include azo metal chelate dyes comprising an azo compound represented by the following general formula (1) and a metal ion of Zn ( Hereinafter, “Dye (1)” is suitably used.
  • R 1 is a hydrogen atom or an ester group represented by CO R 3 (where R 3 is
  • a linear or branched alkyl group or a cycloalkyl group is represented. ).
  • R 2 represents a linear or branched alkyl group.
  • At least one of X 1 and X 2 is NHSO Y group (where Y is at least 2
  • R 4 and R 5 each independently represents a hydrogen atom, a linear or branched alkyl group, or a linear or branched alkoxy group.
  • R 6 , R 7 , R 8 and R 9 each independently represent a hydrogen atom or an alkyl group having 1 or 2 carbon atoms.
  • R 3 is preferably a straight chain or branched chain having 1 to 8 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, or a sec-butyl group.
  • a cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • a straight chain alkyl group having 1 or 2 carbon atoms such as a methyl group or an ethyl group; a cyclohexane having 3 or more and 6 or less carbon atoms such as a cyclopentyl group or a cyclohexyl group, because steric hindrance is small.
  • R 2 is preferably a linear alkyl group having 1 to 8 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group; an isopropyl group, a sec-butyl group, and an isobutyl group.
  • Y represents a linear or branched alkyl group substituted with at least two fluorine atoms.
  • the linear or branched alkyl group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, and more preferably a linear alkyl group having 1 to 3 carbon atoms.
  • R 4 and R 5 are preferably a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms.
  • R 4 and R 5 are more preferably a hydrogen atom, an alkyl group having 1 or 2 carbon atoms, or an alkoxy group having 1 or 2 carbon atoms.
  • the alkyl group and alkoxy group are preferably unsubstituted.
  • R 4 and R 5 are particularly preferably a hydrogen atom, a methyl group, an ethyl group, or a methoxy group.
  • R 6 , R 7 , R 8 and R 9 each independently represents a hydrogen atom or an alkyl group having 1 or 2 carbon atoms. It is preferable to use a hydrogen atom or an alkyl group having 1 or 2 carbon atoms because the absorbance and refractive index can be easily adjusted to predetermined values.
  • the hydrogen atom bonded to the carbon atom may be substituted with another substituent (for example, a halogen atom), but is preferably an unsubstituted alkyl group.
  • the alkyl group having 1 or 2 carbon atoms include a methyl group and an ethyl group. From the viewpoint of ease of synthesis and three-dimensional structure, R 6 , R 8 , and R 9 are most preferably a hydrogen atom.
  • azo compound (ligand) of the general formula (1) constituting the dye (1) include
  • examples of cyanine dyes preferable as the “dye having poor light resistance” include cyanine dyes represented by the following general formula (2) (hereinafter, referred to as “dye (2)” as appropriate).
  • ring A and ring B may each independently have a substituent, and represent a benzene ring or a naphthalene ring.
  • R 1C) and R 11 each independently represents an alkyl group having 1 to 5 carbon atoms which may have a substituent.
  • R 12 , R 13 , R 14 and R 15 each independently represents an alkyl group having 1 to 5 carbon atoms which may have a substituent.
  • R 16 represents a hydrogen atom, a halogen atom, a cyano group or an alkyl group having 1 to 5 carbon atoms which may have a substituent.
  • Q— stands for anti-on. Counter-on includes BF-, PF-, metal complexes, etc.
  • R 1C) and R 11 have 1 to 5 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, sec-butyl, etc. It is a straight chain or branched alkyl group. Particularly preferred is a straight-chain alkyl group having 1 or 2 carbon atoms such as a methyl group or an ethyl group because of its small steric hindrance.
  • the hydrogen atom of the alkyl chain may be substituted with fluorine or a substituent described later.
  • R 12 , R 13 , R 14 , and R 15 are preferably straight-chain alkyl groups having 1 to 5 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group; an isopropyl group, Examples thereof include branched alkyl groups having 3 to 5 carbon atoms such as sec-butyl group, isobutyl group and t-butyl group.
  • the hydrogen atom of the alkyl chain may be substituted with fluorine or a substituent described later.
  • R 16 is preferably a hydrogen atom; a halogen atom such as CI and Br; a cyano group; a methyl group; It is a straight chain or branched alkyl group having 1 to 5 carbon atoms, such as a ru group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, and a sec-butyl group. When an alkyl group is used, the hydrogen atom of the alkyl chain may be substituted with a substituent described later.
  • Aromatic or heterocyclic aryl groups having 1 to 12 carbon atoms (carbocyclic or heterocyclic aryl groups having 1 to 12 carbon atoms),
  • a dialkylamino group having 1 to 6 carbon atoms having 1 to 6 carbon atoms
  • a thioalkyl group having 1 to 6 carbon atoms having 1 to 6 carbon atoms
  • a trialkylsilyl group having 1 to 6 carbon atoms having 1 to 6 carbon atoms
  • R 1G and R 16 are preferably substituted on the alkyl group.
  • Aromatic or heterocyclic aryl groups having 1 to 12 carbon atoms (carbocyclic or heterocyclic aryl groups having 1 to 12 carbon atoms),
  • a dialkylamino group having 1 to 6 carbon atoms having 1 to 6 carbon atoms
  • Nitro group A thioalkyl group having 1 to 6 carbon atoms
  • a trialkylsilyl group having 1 to 6 carbon atoms having 1 to 6 carbon atoms
  • the substituent is preferably a carbocyclic or heterocyclic aryl group having 1 to 12 carbon atoms. More preferred is a carbocyclic aryl group having 6 to 12 carbon atoms. From the viewpoint of recording characteristics, a benzene ring is more preferable.
  • the surface power of recording characteristics is also most preferable. It is preferable to substitute the hydrogen of the alkyl chain with a benzene ring in a part of the alkyl group used for R 12 to R 16 .
  • examples of the method of using a benzene ring as a substituent include the following combinations (1) to ( ⁇ ). Considering steric hindrance and the like, it is preferable to use a combination of (iii) and (
  • R 12 and R 13 are alkyl groups, hydrogen in one or both alkyl chains of R 12 and R 13 is substituted with a benzene ring.
  • R ′′ and R 15 are alkyl groups, hydrogen in one or both of R 14 and R 15 is substituted with a benzene ring.
  • R 16 is an alkyl group
  • the hydrogen of the alkyl chain of R 16 is substituted with a benzene ring.
  • Specific examples of the dye (2) include compounds having the structure shown below.
  • any one of the above “dyes having poor light resistance” in the recording layer may be used alone, or two or more may be used in any combination.
  • only one or two or more of the above-described dye (1) may be used, or only one or two or more of the above-described dye (2) may be used.
  • Any one or more of 1) and the above-described dye (2) may be used in combination as appropriate.
  • another "dye having poor light resistance" may be used in combination.
  • a transition metal other than Zn for example, V, Cr, Mn, Fe, Co, Ni, Cu
  • a metal-containing azo complex is preferred, and the central metal ion forming a coordination bond is preferably a divalent ion.
  • At least one azo compound selected from the group consisting of compound forces represented by the following general formulas (3), (4), (5), and (6), and a 3d transition element excluding Zn Azo metal chelate dyes (hereinafter referred to as azo metal chelate dyes having azo compounds corresponding to the respective general formulas, “Dye (3)”, “Dye (4)”, “Dye ( 5) ”and“ dye (6) ”.
  • R 17 represents an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • R 21 to R 27 in general formulas (3) and (4) and R 18 and R 19 in general formulas (5) and (6) each independently have a hydrogen atom or a substituent. It represents a straight, branched or cyclic alkyl group having 1 to 6 carbon atoms. R 18 and R 19 may combine with each other to form a ring.
  • X 1 and X 2 are an NHS OY group (where Y is substituted with at least two fluorine atoms) Linear or branched
  • the azo compounds represented by), (4), (5) and (6) form a coordinate bond with a metal ion.
  • R 17 is preferably a straight chain or branched chain having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, sec-butyl, etc. It is an alkyl group.
  • R 18 and R 19 are preferably a methyl group, an ethyl group, an isopropyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a hexyl group, and the like. And a linear or branched alkyl group. R 18 and R 19 may combine with each other to form a cyclic alkyl group such as a cyclic cyclohexyl group.
  • R 2 is preferably a hydrogen atom; a straight or straight chain having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, and a hexyl group.
  • R 2 is particularly preferably a hydrogen atom.
  • R 21 and R 27 are preferably hydrogen atoms; carbon numbers such as methyl group, ethyl group, isopropyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, and hexyl group. 1 or more and 6 or less linear or branched alkyl group;
  • X 1 , X 2 , and Y may be the same as those of the azo compound represented by the general formula (1)
  • Aromatic or heterocyclic aryl groups having 1 to 12 carbon atoms (carbocyclic or heterocyclic aryl groups having 1 to 12 carbon atoms),
  • a dialkylamino group having 1 to 6 carbon atoms having 1 to 6 carbon atoms
  • Nitro group A thioalkyl group having 1 to 6 carbon atoms
  • a trialkylsilyl group having 1 to 6 carbon atoms having 1 to 6 carbon atoms
  • any of the above “dyes having good light resistance” may be used alone, or two or more thereof may be used in any combination.
  • only one or two or more of the dyes (3), (4), (5) and (6) described above may be used.
  • (4), (5) and (6) a plurality of them may be used alone or in combination of two or more.
  • another "light-resistant dye” may be used in combination.
  • the light resistance index of a dye whose effect is clear on the recording characteristics is as follows. That is, when using together the “dye having poor light resistance” and the “dye having good light resistance” constituting the recording layer, the mixing ratio of these dyes is controlled as follows.
  • the dye retention rate of the recording layer single layer is the light irradiation condition shown in ISO 105-B02, that is, Wool
  • the light resistance is better than this value, the sufficient optical mode is not exhibited in the decomposition, so that the contribution of the heat mode (pyrolysis reaction) in the decomposition of the dye is large. It may not be possible to improve the characteristics.
  • the dye retention of the single recording layer is determined by the method described in the following example even when the bonded disc is peeled off at the bonded portion and the disc slice having the substrate and the dye that appears. It is possible to evaluate.
  • the combination of the above-described dyes suitable for high-speed recording may deteriorate the light resistance of the disk.
  • a transition metal chelate compound eg, acetyl acetyltonate chelate
  • a metal compound and the like may contain a recording sensitivity improver.
  • the metal compound means a compound in which a metal such as a transition metal is contained in the compound in the form of atoms, ions, clusters, etc., for example, an ethylenediamine complex, an azomethine complex, a phenol hydroxylamine complex.
  • Organometallics such as phenantorphine complex, dihydroxyazobenzene complex, dioxime complex, nitrosaminophenol complex, pyridyltriazine complex, acetylylacetonate complex, metaorthocene complex, and volphiline complex Compounds are listed. Although it does not specifically limit as a metal atom, It is preferable that it is a transition metal.
  • the present inventors have studied to improve "practical" light resistance without using aggressive additives.
  • a reflective layer is used in which the differential value (dR / d ⁇ ) of the reflectance R with respect to the wavelength in the air at a wavelength of 300 nm ⁇ ⁇ ⁇ 500 nm is (dRZd ⁇ ) ⁇ 3.
  • the inventors have obtained the knowledge that the light resistance of the recording layer can be improved.
  • Examples of the reflective layer that satisfy the conditions to be applied include at least one element selected from Cu, Au, and A1 forces (hereinafter, sometimes referred to as "specific element"), and in the reflective layer.
  • Specific element examples include a reflective layer in which the total ratio of these specific elements is 50 at% or more. If this ratio is less than 50 at%, there is a possibility that (dRZc) ⁇ 3 in the above wavelength range may not be satisfied, and therefore sufficient light resistance may not be obtained.
  • elements other than the above-mentioned specific elements in the powerful reflective layer preferably Ag, Cr, Ni, Pt, Ta, Pd, Mg, Se, Hf, V, Nb, Ru, W, Mn, Re, Fe And at least one element selected from the group consisting of Co, Rh, Ir, Cd, Ga, In, Si, Ge, Te, Pb, Po, Sn, Bi, Ti, Zn, Zr, and rare earth metals.
  • the ratio of these elements in the reflective layer is preferably 100 at% together with the ratio of the specific elements. It is preferable to adjust the type of elements other than the specific element and the amount of the elements to satisfy (dRZd X) ⁇ 3.
  • a reflective layer having a reflectance in air of 20% to 70% at 300 nm to 500 nm is preferable.
  • the reflective layer satisfying the strong requirements improves the light resistance of the recording layer is considered as follows.
  • the light resistance test (ISO-105-B02) for optical disks, which is generally performed, is a test method that assumes exposure to sunlight. It is known that the intensity of sunlight reaches saturation at 300 nm to 500 nm, particularly 400 nm to 500 nm. Also, since the energy of light particles is proportional to the frequency of light, the energy of light particles is also Higher than the energy of long wavelength light particles. Since light particles with high energy have a higher probability of exceeding the threshold for breaking the binding of the dye, it is desirable that the light of this wavelength is not excessively absorbed by the dye in order to improve the light resistance of the disk.
  • a reflective layer having a low reflectance in this wavelength range it is preferable to use a reflective layer having a low reflectance in this wavelength range. Therefore, if a reflective layer having a low reflectance in the above wavelength range is used, the amount of multiple reflected light between the dye recording layer and one reflective layer is reduced, so that deterioration of the recording layer having a dye having poor light resistance is suppressed. It is thought that In this way, the “practical” light resistance can be further improved.
  • Fig. 3 (a) is a graph showing the wavelength distribution of the refractive index (n) of the main metal material
  • Fig. 3 (b) is the wavelength distribution of the extinction coefficient (k) of the main metal material
  • FIG. 3 (c) is a graph showing the wavelength distribution of reflectance in air calculated for a reflective layer (thickness 120 nm) formed using main metal materials.
  • the film thickness of the reflective layer of 120 nm is a film thickness at which the reflectance is sufficiently saturated.
  • the reflectance “in the air” means the ratio of the return light intensity to the incident light intensity when the incident light is directly irradiated onto the film surface of the reflective layer through the air.
  • FIG. 3 (a) shows that the refractive index (n) of Au, Cu, and Al is larger in the region of 350 nm to 500 nm than Ag that is generally used as a reflective layer.
  • the refractive index (n) of Au and Cu is around 1 stably in this wavelength range.
  • the reflectivity of Au and Cu is 30% to 70%, which is quite small compared to Ag.
  • Examples of the reflective layer that satisfy the conditions to be applied include at least one element selected from Cu, Au, and A1 forces (hereinafter sometimes referred to as "specific element"), and in the reflective layer.
  • Specific element an element selected from Cu, Au, and A1 forces
  • Examples include a reflective layer in which the total ratio of these specific elements is 50 at% or more. If this ratio is less than 50 at%, the preferred reflectance range may not be satisfied.
  • the ratio of these elements in the reflective layer is preferably 100 at% in combination with the ratio of the specific elements.
  • the recording layer is made of organic pigment
  • the recording speed dependency such as recording sensitivity and jitter becomes very remarkable as compared with a recording film medium made of metal or semiconductor. Therefore, as a condition required for a reflection layer of a medium having an organic dye as a recording layer, a reflection layer having a high reflectance of a certain value or higher and higher heat conduction is desired.
  • the metal reflective film having a high reflectance means that the reflective layer is a reflective layer in which the real part n of the refractive index at the recording wavelength is not more than a certain value and the imaginary part k is large.
  • the refractive index of the reflective layer for obtaining a practical reflectance is 0.0 ⁇ ⁇ 1.0 and k> 2.0.
  • the thermal conductivity is high!
  • the above reflectivity is high!
  • the bottom line of the waveform tends to be inclined rather than horizontal (hereinafter sometimes referred to as waveform distortion).
  • waveform distortion may cause the bottom jitter to deteriorate.
  • bottom jitter at high speed recording may be bad or vice versa.
  • the present inventors have found that this waveform distortion is related to the temperature distribution in the film thickness direction of the recording layer, which optimizes the combination of the film thickness of the recording layer and the reflective layer, the optical constant, and the thermal conductivity of the reflective layer. As a result, it is considered that good recording is possible at a wide recording linear velocity of 3.5 mZs to 35. Om / s and eventually 3.5 mZs to approximately 70 mZs. RU
  • the recording mark waveform may be improved in a wide recording linear velocity range by having a reflection layer that can use the recording laser light without waste in a thermal optical manner.
  • the above-mentioned "reflective layer is mainly composed of copper, gold, and aluminum” means that the reflective layer is made of copper, gold, or aluminum alone, or any of copper, gold, and aluminum. This means that it contains 50 atomic% or more of the combination of two or more. In order to optimize weather resistance, film structure, and optical properties, it is preferable to contain elements other than copper and gold.
  • Examples of such elements include Al, Ag, Cr, Ni, Pt, Ta, Pd, Mg, Se, Hf, V, Nb, Ru, W, Mn, Re, Fe, Co, Rh, Ir, Examples include the group consisting of Cd, Ga, In, Si, Ge, Te, Pb, Po, Sn, Bi, Ti, Zn, Zr and rare earth metals.
  • the content of these elements is preferably 0.1 to 40 atomic%.
  • a material containing such an element for example, CuAg, CuZrAg and the like are preferable.
  • dRZd (% / m) of reflectance of 3 or less with respect to the wavelength in air at a wavelength of 300 nm to 500 nm.
  • the differential value of the reflectance of pure silver at ⁇ 500 nm exceeds 5 at the maximum, which is not preferable for practical light resistance, but for example, even if it is a metal reflective film containing silver, the composition ratio of silver is reduced.
  • the dRZd X value of the present invention can be 3 or less.
  • the wavelength is 300 ⁇ ! 35 m / s for the first time by combining a reflective layer with a reflectance dRZd (% Znm) of 3 or less and a recording layer containing a dye with poor light resistance at a wavelength in the air of ⁇ 500 nm.
  • a reflective layer with a reflectance dRZd (% Znm) of 3 or less and a recording layer containing a dye with poor light resistance at a wavelength in the air of ⁇ 500 nm.
  • the reflective layer contains at least one element selected from Cu, Au and A1 force, and the total ratio of the elements is 50 atomic% in the reflective layer (“atomic%” is described as “at%”) In some cases, it is preferable to set the above.
  • Cu, Au, and A1 Cu and A1 are preferred at least from the viewpoint of reflectivity.
  • the island-like structure of the sputtered film grows during the high-temperature and high-humidity test and the temperature rising process during recording, and the smoothness of the film may be reduced. result However, the fact that the jitter of the recorded portion is sometimes lowered is remarkable.
  • the reflective layer is preferably a thin film containing at least a Cu alloy represented by the following composition (A).
  • X represents at least one element selected from the group consisting of Zn, Al, Pd, In, Sn, Cr, and Ni.
  • third element species when X is referred to as “third element species”, (However, the total amount of Cu, Ag, and X is 100at% or less.)
  • the Cu content is usually 50 at% or more, preferably 65 at% or more, more preferably 80 at% or more, and usually 97 at% or less, preferably 95 at% or less. More preferably, it is in the range of 90 at% or less.
  • the content of! /, Ag is usually 3 at% or more, preferably 5 at% or more, and usually 50 at% or less, preferably 30 at% or less. .
  • the Ag content should be 50 at% or less. It is preferable that in addition, as supported by the examples described later, the organic dye layer that can withstand high-speed recording as described in the present invention is used as the recording layer, and the effect of improving sufficient light resistance by combining with the reflective layer is further improved. In order to ensure it, it is preferable that the Ag content is 30 at% or less.
  • the content of X is usually 0.05 at% or more, preferably 0.1 at% or more, and usually 10 at% or less, preferably 5 at% or less.
  • the total of them satisfies the above range.
  • the content of the third element species X is preferably 0.05 at% or more. In order to stabilize and easily obtain a sufficient effect, it is more preferably set to 0.3 lat% or more. In particular, Zn has a low melting point, and therefore the amount may not be sputtered when the target is sputtered. Therefore, it is considered preferable that the composition is more than 0.3 lat% as a more stable composition.
  • the content of the third element species X is preferably 10 at% or less. If it is 10 &% or less, it is easy to secure a high reflectance. In order to easily ensure a sufficiently high reflectance, the content of the third element species X is more preferably 5 at% or less.
  • the third element species X has little influence on (dRZd). In other words, the third element species X is preferable for ensuring fine adjustment of the reflectance and storage stability of the reflective layer, rather than being preferable for the light resistance improvement effect of the present invention. .
  • Zn, Al, Pd, In, and Sn are more preferable.
  • Zn, A1, and Pd are preferable because sufficient reflectance can be easily secured.
  • Zn was found to have a higher reflectivity even if the addition amount is small, as determined by the present inventors.
  • O In and Sn are also the same as Zn, Al and Pd described above. The power of ⁇ can be expected.
  • Zn, In, and Sn form an O component that attacks a Cu alloy and ZnO, In 2 O, and SnO that are conductive oxides.
  • These conductive oxides ZnO, InO, and SnO are n-type semiconductors, and generate a contact potential difference with Cu.
  • oxygen ions (0 2_ ) are more likely to be attracted to the Zn, In, and Sn sides than Cu, and it is considered that Cu oxides are delayed.
  • a thin film (reflective layer) containing at least a Cu alloy having high reflectivity and excellent storage stability as described above is used.
  • the third element species X when Zn (melting point: 419.6 ° C, boiling point: 907 ° C) is selected as the third element species X, it is about 0.01 to 2.5 at% higher than the above-mentioned composition (A). It is preferable to contain Zn in the sputtering target. This is because low melting point 'low boiling point elements are easy to volatilize. Although there is a method of suppressing volatilization by making the distance between the target and the substrate during sputtering closer than other places, in order to obtain a predetermined reflective layer more stably and without waste, the sputtering target must be It is particularly preferable that the composition (B) is satisfied. If the composition of the reflective layer and the composition of the target are made the same or close to each other so that the composition (B) can be seen, it becomes easy to produce a reflective layer having the composition (A).
  • X represents at least one element selected from the group consisting of Zn, Al, Pd, In, Sn, Cr, and Ni, provided that the total amount of Cu, Ag, and X is 100 at% or less.
  • the preferable content range of Cu, Ag, and the third element species X is the same as that of the composition (A) described as the composition of the reflective layer.
  • the melting point of X is 66.4 ° C for A1, Pd force 550 ° C, 2 31.97 ° C for Sn, and 156.6 ° C for In, in addition to Zn described above. Yes (See Iwanami Science Dictionary 5th Edition, Iwanami Shoten, 1998)
  • Patent Document WO 2002Z021524 the following processes are possible. That is, in a high frequency melting furnace, Cu and Ag are put into a crucible at a predetermined ratio, melted in a vacuum, and after the Cu and Ag are sufficiently dissolved, the third element species X is added. Alternatively, Cu, Ag, and third element species X may be put in a crucible at a predetermined ratio in a high-frequency melting furnace and vacuum-melted.
  • both Cu and Ag may be added at a predetermined ratio.
  • Zn it is preferable to add it after Cu and Ag are sufficiently dissolved. This is because the composition tends to become the specified value due to volatilization when initially charging with high vapor pressure V and Zn.
  • the melting temperature in the furnace is set to about 1100 ° C to 1200 ° C
  • the material of the crucible is C, Al 2 O, MgO or ZrO.
  • the melt is cooled in a vertical mold and solidified to produce an ingot.
  • the ingot is removed from the vertical mold and cooled to room temperature.
  • the uppermost feeder part of the ingot is cut and removed, and the ingot is rolled by a compressor to produce a plate-like alloy.
  • the plate-like alloy is cut into a product shape, the front surface of the product is polished, and finally the Cu alloy of the present invention is used. This sputtering target is produced.
  • the melting point of the main element (Cu in the above sputtering target) and the melting point of the additive element are usually separated by several hundred ° C! /, It is a case that is extremely high. If Ti with a melting point of 1668 ° C is added to a molten main element Cu (approximately 1000 ° C), alloying progresses due to solid diffusion, but the rate is slow and uniform yield is difficult to alloy well. It is. If the ratio of Cu and Ti is 1: 1, the melting point is 960 ° C due to the correlation. Therefore, it is possible to easily alloy the molten main element. However, there are some that do not require parent alloying even if their melting points differ greatly. It is Pd as X. Even if Pd (melting point: 1554 ° C) is added to Ag at a molten metal temperature of 1100 ° C without being mother alloyed, alloying proceeds easily due to the high diffusion rate.
  • the organic dye to be contained in the recording layer of the optical recording medium using the reflective layer is not particularly limited.
  • organic dyes include macrocyclic azanulene dyes (phthalocyanoine dyes, naphthalocyanine dyes, porphyrin dyes, etc.), polymethine dyes (cyanine dyes, merocyanine dyes, squalium dyes, etc.), anthraquinone dyes, azulene dyes.
  • azo metal chelate dyes and metal-containing indoor-phosphorus dyes are examples of such organic dyes.
  • azo metal chelate dyes or phthalocyanine dyes are preferable to use in consideration of various factors such as productivity, performance, and performance.
  • the azo metal chelate dyes include azo metal chelate dyes comprising the above-mentioned azo compound having a predetermined structure and Ni and Zn metal ions.
  • the reflection layer exhibits a predetermined effect when used in combination with a recording layer containing a “dye having poor light resistance”.
  • the refractive index (n) after recording generally decreases, so the refractive index (n) of the recording layer before recording is high, and the absorption is smaller than a certain amount. This is a necessary condition to ensure sufficient signal amplitude after recording. .
  • the reflective layer is thin, the transmitted light increases and the components that do not contribute to the signal increase. Therefore, the reflective layer needs to have a film thickness of a certain thickness or more.
  • the refractive index (n) at the recording / reproducing wavelength is 11 ⁇ 1.4, and the extinction coefficient (k W ⁇ 0.3 at the recording / reproducing wavelength) is set in the groove.
  • the film thickness (d) of the film satisfies 0.05 ⁇ (nd / ⁇ ) ⁇ 0.3, and if the reflective layer is not used as a translucent film, The thickness (d) preferably satisfies 50nm ⁇ d ⁇ 250nm
  • the upper limit of n is usually 4.0, and the lower limit of k is usually 0.01.
  • the recording layer and the reflective layer satisfy the optical constants and film thicknesses described above, the high reflectivity at the recording / reproducing light wavelength and sufficient signal amplitude after recording necessary for recording by the drive are obtained. be able to.
  • the first optical recording medium of the present invention is not particularly limited as long as it has the above-described recording layer and reflective layer on a substrate, but is preferably a preferred configuration.
  • a configuration in which a recording layer and a reflective layer are sandwiched between two substrates as represented by the configuration shown in FIGS. 1 (a) and (b), and a configuration shown in FIG. 1 (c).
  • the present invention can also be applied to a single-sided two-layer type configuration as shown in FIGS. 2 (a) and 2 (b).
  • FIGS. 1 (a) to 1 (c) and FIGS. 2 (a) and 2 (b) are schematic cross-sectional views showing the layer structure of the optical recording medium according to the embodiment of the present invention.
  • the optical recording medium 100 shown in Fig. 1 (a) includes a substrate (1) 101, a recording layer (1) 102, a reflective layer (1) 103, a protective coat layer (1) 104, and an adhesive layer. 105, a protective coat layer (2) 106, a reflective layer (2) 107, a recording layer (2) 108, and a substrate (2) 109 are laminated in this order.
  • Such an optical recording medium 100 includes a substrate (1) 101, a recording layer (1) 102, a reflective layer (1) 103, a protective coating layer (1) 104, a bonding disk 11 and a substrate ( 2) 109, recording layer (2) 108, reflective layer (2) 107, protective coating layer (2) 106, laminating disk 12 in this order, protective coating layer (1) 104 and protective coating layer (2)
  • Adhesive layer 105 with 106 facing each other It is configured by pasting together.
  • the substrate (2) 109 side force is also applied to the recording layer (1) 102 by irradiating the laser beam 110, and the recording layer (2) 108 by irradiating the laser beam 111 from the substrate (1) 101 side. In this case, information recording / reproduction is performed.
  • the optical recording medium 200 shown in FIG. 1 (b) includes a substrate (1) 201, a reflective layer (1) 202, a protective coat layer (1) 203, an adhesive layer 204, and a protective coat layer (2 ) 205, a reflective layer (2) 206, a recording layer 207, and a substrate (2) 208 are stacked in this order.
  • Such an optical recording medium 200 includes a dummy disk 21 in which a substrate (1) 201, a reflective layer (1) 202, and a protective coat layer (1) 203 are laminated in this order, a substrate (2) 208, a recording layer 207, a reflective layer
  • the bonding disk 22 having the layer (2) 206 and the protective coating layer (2) 205 laminated in this order is bonded to the protective coating layer (1) 203 and the protective coating layer (2) 205 with the adhesive layer 204 facing each other. It is configured by pasting together. Then, information on the recording layer 207 is recorded / reproduced by irradiating the laser beam 210 with the side force of the substrate (2) 208 as well.
  • the optical recording medium 300 shown in FIG. 1 (c) has a layer structure in which a substrate 301, a reflective layer 302, a recording layer 303, a barrier layer 304, and a transparent resin layer 305 are sequentially laminated. Have.
  • information is recorded and reproduced on the recording layer 303 by irradiating the laser beam 310 not only on the substrate 301 side but also on the transparent resin layer 305 side (film surface incidence type).
  • An optical recording medium 400 shown in FIG. 2A includes a substrate (1) 401, a recording layer (1) 402, a reflective layer (1) 403, an intermediate layer 404, and a recording layer (2) 405.
  • a reflective layer (2) 406, an adhesive layer 407, and a substrate (2) 408 are sequentially laminated.
  • the optical recording medium 500 shown in FIG. 2 (b) includes a substrate (1) 501, a recording layer (1) 502, a reflective layer (1) 503, an adhesive layer (intermediate layer) 504, and a barrier layer. 508, a recording layer (2) 505, a reflective layer (2) 506, and a substrate (2) 507 are stacked in this order.
  • the substrate (1) 401 and 501 side forces are also irradiated with laser light 410 and 510, whereby the recording layers (1) 402 and 502 and the recording layers (2) 405 and 505 are irradiated. ! /, Information is recorded and played back.
  • an ultraviolet curable resin layer, an inorganic thin film, or the like may be formed on the mirror surface side of the substrate to prevent adhesion of dust or the like.
  • a print receiving layer that can be written (printed) on various printers such as ink jet and thermal transfer or various writing tools may be provided on the surface that is not the incident surface of the recording / reproducing light.
  • the material of the substrate in the optical recording medium according to the embodiment of the present invention is basically transparent in the wavelength direction of the recording light and the reproducing light in the thickness direction up to the recording layer. That's fine.
  • Examples of the material having such a transparent thickness portion include acrylic resin, methacrylic resin, polycarbonate resin, polyolefin resin (especially amorphous polyolefin), polyester resin, polystyrene resin, and the like.
  • a resin layer made of resin such as fat or epoxy resin, glass glass, or a radiation curable resin such as photocurable resin on glass. Digits can be used.
  • Injection molded polycarbonate is preferred from the viewpoints of high productivity, cost, moisture absorption resistance, and the like.
  • Amorphous polyolefin is preferred from the standpoint of chemical resistance and moisture absorption resistance.
  • a glass substrate is preferable from the viewpoint of high-speed response.
  • a resin substrate or a resin layer may be provided in contact with the recording layer, and a guide groove or pit for recording / reproducing light may be provided on the resin substrate or the resin layer.
  • Such guide grooves and pits are preferably provided at the time of forming the substrate, but can also be provided on the substrate using an ultraviolet curable resin layer.
  • the groove pitch is preferably about 0.1 to 2.0 m.
  • the groove depth is measured by AFM (atomic force microscope) and is usually 50 nm or more.
  • Red semiconductor laser light such as DVD-R, normally has a power of lOOnm or more, especially in the range of low 1x speed (hereinafter sometimes referred to as “IX”) to high speed 8 X recording speed.
  • the groove depth is 120 nm or more.
  • the groove depth is usually 200 nm or less, preferably 180 nm or less. If the groove depth is larger than the above lower limit value, the degree of modulation is low, and if the groove depth is smaller than the upper limit value, it is easy to ensure a sufficient reflectivity.
  • the groove width is measured by AFM (Atomic Force Microscope) and is usually at least 0.10 m, preferably at least 0.20 m.
  • the groove width is preferably 0.40 m or less.
  • the groove width is more preferably 0.28 m or more and 0.34 m or less.
  • the groove width is made larger than the above lower limit, it becomes easy to suppress the influence of thermal interference and obtain good jitter when recording at a high speed of 8 X or more.
  • the recording power margin is widened and the tolerance for fluctuations in laser power is increased, so that the recording characteristics and recording conditions are improved.
  • the groove width is smaller than the above upper limit value, thermal interference in the recording mark can be suppressed in low-speed recording such as IX, and a good jitter value is easily obtained.
  • Information such as address information, medium type information, recording pulse conditions, and optimum recording power can be recorded on the optical recording medium according to the embodiment of the present invention.
  • These emotions for example, the LPP (Land Pre-Pit) or ADIP (Address in Pre-groove) format described in the DVD-R and DVD + R standards may be used.
  • the recording layer material, mixing ratio, and film thickness are as described above.
  • the film thickness of the part between the grooves is smaller than the film thickness in the grooves.
  • Examples of the method for forming the recording layer include generally used thin film forming methods such as a vacuum deposition method, a sputtering method, a doctor blade method, a cast method, a spin coating method, and an immersion method.
  • the spin coating method is preferable from the viewpoint of cost.
  • the vacuum deposition method is preferable to the coating method from the viewpoint of obtaining a recording layer having a uniform thickness.
  • a treatment such as heating or application to a solvent vapor may be performed.
  • the coating solvent for forming the recording layer by a coating method is not particularly limited as long as it does not attack the substrate.
  • ketone alcohol solvents such as diacetone alcohol and 3-hydroxyl-3-methyl-2-butanone
  • cellosolve solvents such as methylcetosolve and ethylcetosolve
  • chain hydrocarbons such as n-hexane and n-octane Solvents
  • Cyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, n-butylcyclohexane, tert-butylcyclohexane, cyclooctane; tetrafluoropropanol, ota
  • Non-fluoroalkyl alcohol solvents such as tafanolopent
  • an organic dye and recording layer components such as various additives as necessary are put in a crucible installed in a vacuum vessel, and the inside of the vacuum vessel is filled with an appropriate vacuum pump. After evacuating to about 0 — 2 to 10 — 5 Pa, the crucible is heated to evaporate the components of the recording layer, and vapor deposited on a substrate placed facing the crucible to form a recording layer.
  • the recording layer may be a near-infrared laser having a wavelength of about 770 to 830 nm, which is usually used for CD-R, or a DVD-R.
  • a recording medium with multiple wavelengths, such as a so-called blue laser of 5 nm, should be used in combination with a dye suitable for recording using each of the recording media to provide an optical recording medium that supports recording with laser light in multiple wavelength ranges. You can also.
  • dyes that can be used in combination include azo dyes or azo metal chelate dyes, cyanine dyes, squalium dyes of the same type as the azo metal chelate dyes having the specific characteristics or structures described above.
  • the thermal decomposition accelerator for the dye include metal compounds such as a metal anti-knock agent, a metamouth compound, and an acetylethylacetonate metal complex.
  • a noinder, a leveling agent, an antifoaming agent and the like can be used in combination with the recording layer of the present invention, if necessary.
  • Preferable binders include polybutyl alcohol, polyvinyl pyrrolidone, nitrocellulose, cellulose acetate, ketone series resin, acrylic series resin, polystyrene series resin, urethane series resin, polyvinyl butyral, polycarbonate, and polyolefin. Can be mentioned.
  • Examples of the method for forming the reflective layer include sputtering, ion plating, chemical vapor deposition, and vacuum vapor deposition.
  • the thickness of the reflective layer is set to the following range in consideration of recording characteristics and industrial production. That is, the thickness of the reflective layer is usually 50 nm or more, preferably 60 nm or more, while it is usually 300 nm or less, preferably 250 nm or less, more preferably 200 nm or less.
  • the roughness (particle size) of the reflective layer is preferably as small as that of a gold thin film or less from the viewpoint of weather resistance and reflectance.
  • the recording / reproducing light wavelength is short, and in the case of high-density recording, the roughness of aluminum is likely to increase. Therefore, it is necessary to improve the smoothness by alloying.
  • sputtering Another idea is to reduce the argon pressure at the time.
  • the material of the protective layer formed on the reflective layer is not particularly limited as long as it protects the reflective layer from external force.
  • the organic material include thermoplastic resin, thermosetting resin, electron beam curable resin, and UV curable resin.
  • inorganic substances include SiO, SiN, MgF, and SnO.
  • Thermoplastic resin, thermosetting resin, and the like can be formed by dissolving in an appropriate solvent, applying a coating solution, and drying.
  • the UV curable resin can be formed by preparing a coating solution as it is or by dissolving it in a suitable solvent, coating the coating solution, and curing it by irradiating with UV light.
  • an acrylate-based effect such as urethane phthalate, epoxy acrylate or polyester acrylate can be used. These materials may be used alone or in combination, or they may be used as a multilayer film instead of just one layer.
  • a coating method such as a spin coating method and a casting method, a sputtering method, a chemical vapor deposition method, and the like are used as in the recording layer.
  • a spin coating method is preferable. .
  • the thickness of the protective layer is usually 0.1 ⁇ m or more, preferably 3 m or more. On the other hand, the thickness of the protective layer is usually 100 / zm or less, preferably 30 / zm or less.
  • the laser used for recording and playback there are no particular restrictions on the laser used for recording and playback, but for example, a dye laser capable of wavelength selection over a wide range in the visible region, a helium-neon laser with a wavelength of 633 nm, and a recently developed wavelength of 680, 660, 650 High power semiconductor lasers around 635 nm, harmonic conversion YAG lasers with a wavelength of 532 nm, blue semiconductor lasers around 405 nm, and the like.
  • a semiconductor laser is preferable in terms of lightness, ease of handling, compactness, cost, and the like.
  • the optical recording medium according to the embodiment of the present invention enables high-density recording and reproduction at one wavelength or a plurality of wavelengths selected from these.
  • Recording on the optical recording medium according to the embodiment of the present invention is usually performed by irradiating a recording layer provided on both sides or one side of the substrate with laser light focused to about 1 ⁇ m.
  • the recording layer irradiated with laser light undergoes thermal changes in the recording layer, such as decomposition, heat generation, and melting. The optical characteristics change.
  • the recorded information is reproduced by irradiating a reproduction laser beam and reading the difference in reflectance between the part and the part where the optical characteristics change.
  • the azo compound represented by the above general formula (1), the metal ion of Zn, and the azo metal chelate dye which is powerful, are the optical recording media described in [I. Basic concept 1 of the present invention] (the present invention).
  • the first optical recording medium is not limited to this, and has a recording layer containing at least an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves, and the shortest mark length is 0.
  • an optical recording medium for recording at a recording linear velocity of 35.OmZs or more it can be widely used as an organic dye for the recording layer.
  • another optical recording medium of the present invention has a recording layer containing at least an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves.
  • an optical recording medium for recording at a recording linear velocity of 35 OmZs or more wherein the organic dye of the recording layer is an azo compound represented by the general formula (1)
  • a compound based on Zn and a metal ion of Zn and a powerful azo metal chelate dye this may be hereinafter referred to as “the second optical recording medium of the present invention”.
  • the second optical recording medium of the present invention According to the medium, it is possible to obtain an advantage of particularly excellent life characteristics (long-term storage stability and storage stability under high temperature and high humidity).
  • the reflective layer of the optical recording medium includes the material represented by the composition (A). According to the optical recording medium having such a configuration, it is possible to obtain the advantages that the decrease in reflectance can be suppressed to the minimum and the life characteristics are excellent.
  • composition (A) in the second optical recording medium of the present invention is also shown above. This is the same as that described in the section of [L Basic concept 1 of the present invention].
  • the sputtering target having at least the material represented by the above-mentioned composition B is also used for the reflective layer of the optical recording medium (first optical recording medium of the present invention) described in [I. Basic concept 1 of the present invention].
  • the reflective layer is formed in an optical recording medium having a recording layer containing at least an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves, the invention is not limited thereto. It can be used widely.
  • the sputtering target of the present invention is applied to an optical recording medium having a recording layer containing at least an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves.
  • a sputtering target used for forming the reflective layer which has at least the material represented by the composition B described above. According to the sputtering target of the present invention, it is possible to provide a high-quality medium that can suppress a decrease in reflectivity to a minimum and is excellent in life characteristics, and can be manufactured at a lower cost.
  • composition B in the sputtering target of the present invention is the same as those described in the above section [I. Basic concept 1 of the present invention].
  • the organic dye is a light that is an azo metal chelate dye that also has the power of the azo compound represented by the general formula (1) and the metal ions of Ni and Zn. It is particularly preferably used for forming a reflective layer of a recording medium.
  • the azo compound represented by the above general formula (1), the metal ion of Zn, and the azo metal chelate dye, which is powerful, are recorded on a substrate having concentric or spiral grooves.
  • a layer and a reflective layer containing a metal, and the shortest mark length is less than 0, or 35.
  • the azo compound represented by the above general formula (1) and the azo metal chelate dye which is composed of Zn metal ions are hereinafter referred to as “the dye of the present invention”.
  • the dye of the present invention in the above-mentioned optical recording medium for high-speed recording or high-density recording, there can be obtained an advantage that a low jitter, a low error rate, and a wide recording margin can be achieved as compared with the prior art.
  • a polycarbonate substrate having a mirror finish was prepared. Tetrafluoropropoxy O Lovro Bruno V- le concentration 1.4 wt 0/0 color containing mixture to be measured (hereinafter referred to as "TFP".) Dissolved solution with the dye layer in the following Examples and Comparative Examples Spin coating was carried out in the same manner as in the above. A small piece of the obtained dye monolayer was cut out and the wavelength dispersion of absorbance was measured using a spectrophotometer (UV-VIS). The maximum value of the obtained absorbance was used as the initial value.
  • TFP Tetrafluoropropoxy O Lovro Bruno V- le concentration 1.4 wt 0/0 color containing mixture to be measured
  • dye A an azo system represented by the following structural formula (a)
  • dye B two azo compounds represented by the following structural formula (b) and zinc (divalent ion: Zn 2+ )
  • a recording layer film thickness in the groove: 50 nm
  • the light-absorbing metal chelate pigment has an absorbance (Optical Density: Absorbance at a wavelength of 598 nm measured with air as a reference).
  • the coating solution was a TFP solution having a concentration of 1.3% by weight, and the spin coating rotation speed was 1000 rpm to 2500 rpm.
  • copper (Cu) was deposited thereon by sputtering to form a 120 nm thick Cu reflective layer.
  • the argon pressure was made lower than the well-known conditions for forming the reflective layer, and the input power was increased.
  • UV curable resin (KA YARAD manufactured by Nippon Kayaku Co., Ltd.)
  • EFM plus modulation random signal with a minimum mark length of 0.4 ⁇ m at a recording speed of 56.
  • the irradiation pulse width of the laser for recording the 3T mark length was 6.5 ns.
  • the recorded signal was reproduced using the same evaluator, and the margins (jitter recording power margin and jitter asymmetry margin) were measured.
  • the measurement result of the recording power margin is shown in the graph of Fig. 4 (a), and the measurement result of the asymmetry margin is shown in the graph of Fig. 4 (b).
  • the optical recording medium of this example using a Cu reflecting layer had an extremely good bottom jitter of 7%.
  • the asymmetry margin for which jitter is 9% or less is about 18%
  • the asymmetry margin for which jitter is 8% or less is 10% or more
  • jitter is around 8% even in the vicinity of 5% asymmetry. It was.
  • An optical recording medium was prepared in the same manner as in Example 1, except that the material of the reflective layer was changed to gold (Au) and the film thickness was changed to 90 nm. Recording and reproduction were performed on the obtained optical recording medium under the same conditions as in Example 1, and bottom jitter and PI max before and after the light resistance test were measured.
  • An optical recording medium was manufactured in the same manner as in Example 1, except that the material of the reflective layer was changed to silver (Ag) and the film thickness was changed to 120 nm. Recording and reproduction were performed on the obtained optical recording medium under the same conditions as in Example 1. Margin (recording power margin and asymmetric margin), bottom jitter before and after the light resistance test, and PI
  • the reflectance of OOnm was 4% to 96% (Fig. 8).
  • the value of dRZd ⁇ (max) in the same wavelength range was 5.6 (Fig. 9 (c)).
  • Example 1 the dye A was changed to Ni complex dye C (65 wt%) (Ni is a divalent ion: Ni 2+ ) in which two azo compounds represented by the following structural formula (c) are coordinated,
  • An optical recording medium was prepared by the same procedure except that the dye B was changed to the cyanine dye D (35% by weight) represented by the following structural formula (d).
  • the film thickness in the groove of the recording layer was 25 nm as confirmed by cross-sectional analysis using an electron microscope.
  • the film thickness of the Cu reflective layer was 120 nm as in Example 1. Recording and reproduction were performed on this optical recording medium under the same conditions as in Example 1, and margins (recording power margin and asymmetry margin), bottom jitter before and after the light resistance test, and PImax were measured.
  • the dye retention ratios of the dye single layer coating films of Dye C and Dye were 97.0% and 0%, respectively, and the dye retention ratio of the recording layer single layer was 68.2%. It was.
  • the measurement result of the recording power margin is shown in the graph of Fig. 5 (a), and the measurement result of the asymmetry margin is shown in the graph of Fig. 5 (b).
  • the power margin with a jitter of 9% or less is about lOmw and an extremely stable power margin. Is realized. Even if the asymmetry exceeds + 6.0%, it has a jitter of 9% or less, and the asymmetry margin of jitter of 9% or less shows a very wide margin of about 20%.
  • These extremely good margins mean that the thermal degradation (heat storage and thermal interference) of the recording mark is small even at extremely high speed recording of 56 mZs (16 ⁇ speed).
  • An optical recording medium was manufactured in the same manner as in Example 3 except that the material of the reflective layer was changed from copper to silver and an Ag reflective layer having a thickness of 120 nm was provided. This optical recording medium was recorded and reproduced under the same conditions as in Example 1, margin (recording power margin and asymmetry margin), bottom jitter before and after the light resistance test, and PI.
  • the recording speed was changed to 35.0 mZs (equivalent to 10 X), and the irradiation pulse width of the laser for recording the 3T mark length was changed to 7.9 ns. Recording and playback were performed under the same conditions, and margins (recording power margin and asymmetry margin) were measured.
  • the recording speed was changed to 35.
  • OmZs equivalent to 10 X
  • the irradiation pulse width of the laser for 3T mark length recording was changed to 7.9 ns. Recording and playback were performed under the same conditions, and margins (recording power margin and asymmetry margin) were measured.
  • Example 1 “Better light resistance” Ni complex dye E (Ni is 2) in which two “azo compounds” represented by the following structural formula (e) are coordinated with “Blow light resistance” Dye B valence ions: changed to Ni 2+), a dye a and dye E 50 wt%: except for using mixed at a ratio of 50 wt%, to prepare an optical recording medium by the same procedure as the actual Example 1 .
  • the film thickness in the groove of the obtained recording layer was 30 nm.
  • the film thickness of the Cu reflective layer was 120 nm.
  • the dye retention rate of the Dye E single layer coating film was 87.3%, and the dye retention rate of this recording layer single layer was 89.0%.
  • This optical recording medium was recorded and reproduced under the same conditions as in Example 1 to obtain a margin.
  • the measurement result of the recording power margin is shown in the graph of Fig. 7 (a), and the measurement result of the asymmetry margin is shown in the graph of Fig. 7 (b).
  • the bottom jitter is 9% or more, indicating that both the power margin and asymmetry margin are extremely narrow.
  • the asymmetry margin is bad – even at a recording power as low as 5%, thermal degradation has already been observed, and the jitter has deteriorated by more than 1% compared to the bottom jitter.
  • the asymmetry margin is preferably 9% or less of jitter at 5%.
  • Example 1 For the optical recording media of Example 1, Example 3, Comparative Example 1, Comparative Example 2, and Comparative Example 4 described above, recording and reproduction were performed under the same conditions as in Example 1 except that the recording speed was changed to 1 ⁇ speed. This was done and the bottom jitter was measured. The results are shown in Table 1 below.
  • bottom jitter is required to be 9% or less.
  • the optical recording media of Example 1, Example 3, Comparative Example 1, Comparative Example 2, and Comparative Example 4 are all good, with bottom jitter of 9% or less in 1x speed recording. Recording characteristics. Nevertheless, superiority and inferiority are seen in high-speed recording as described above.
  • optical recording media of the respective examples that satisfy the provisions of the present invention exhibit good recording characteristics at very wide recording speeds such as 1 ⁇ speed, 10 ⁇ speed, and 16 ⁇ speed.
  • Example 5 The reflectivity and dRZd ⁇ of the reflective layer (A1 reflective layer single layer) made of aluminum (A1) were measured by the method described above. The results are shown in the graphs of FIG. 8 and FIG. 9 (d), respectively. As is clear from Fig. 9 (d), the dRZd value of the single A1 reflective layer was always 0.1 or less in the range of 300nm to 500nm.
  • the reflectance was measured from the surface side.
  • the sputtering conditions were the same as in Example 1.
  • Fig. 10 shows the measurement results of the reflectance of CuAg and CuAg Pd in [Example 5] etc.
  • CuAg Pd has optical properties that are clearly different from those of Cu.
  • Fig. 11 (a), (b) The force that increases the noise so that the force is also increased.
  • the reflectance R (Cu Ag) at each wavelength of Ag Cu 1 -X) g was calculated by the following formula.
  • FIG. 13 shows Cu Ag under the above assumption.
  • FIG. 5 is a graph showing the relationship between the value of X (Ag content: at%) and the bottom jitter value in (100-X) X. From Fig. 13, it is considered that the upper limit of the Ag content at which good jitter characteristics are easily obtained is approximately 30 at%.
  • Example 1 the Cu reflective layer was changed to CuAg and CuAg Pd, respectively.
  • the optical recording medium (hereinafter referred to as “CuAg DVD-R” and “CuAg” respectively)
  • Storage stability test (sometimes referred to as life test) uses a constant temperature and humidity chamber (SH-641 manufactured by ESPEC) and keeps optical recording media at 80 ° C and relative humidity 85% for 875 hours. It was done by doing.
  • SH-641 manufactured by ESPEC
  • the CuAg reflective layer or CuAg Pd reflective layer of Example 6 is the CuAg reflective layer or CuAg Pd reflective layer of Example 6
  • a sputtering target was produced in accordance with the melting method in vacuum described below.
  • the melting temperature in the furnace was 1100 to 1200 ° C.
  • the crucible is C, Al 2 O, MgO or ZrO
  • Melting of the molten metal was performed by pouring into a Fe or C cage having alumina or magnesium talc applied on the inner surface.
  • the feeder was heated to about 300 ° C to 500 ° C with a heater in advance before pouring, and the lower force was solidified unidirectionally toward the upper part.
  • the melt is cooled and solidified in a vertical mold to produce an ingot, and the ingot is rolled by a rolling mill to obtain a plate shape of 90 (mm) X 90 (mm) X 8.1 (mm) An alloy was prepared.
  • the corrected board was wire-cut into a product shape.
  • the front surface of the product was polished with water-resistant abrasive paper to adjust the surface roughness, and finally a Cu alloy sputtering target was produced.
  • the degree of vacuum was maintained at 1. 3 X 10 _2 Pa (l X 10 _4 Torr) following a high vacuum. This is because Ag and Cu are easy to contain oxygen in the molten metal, and are intended for deoxidation when the molten metal is held under reduced pressure. However, since the volatilization of Ag progresses under reduced pressure, various atmosphere adjustments were made according to the situation.
  • Table 2 shows the measurement results of the reflectivity immediately after film formation, the measurement results of the reflectivity after being held for 24 hours under high temperature and high humidity, and the measurement results of the change in reflectivity.
  • timeO indicates “Reflectance measurement result immediately after deposition”.
  • After 80 ° C 80% RH2 4 hr” indicates “Reflectance measurement results after holding at high temperature and high humidity for 24 hours”.
  • “Reflectance change” is indicated as “Measurement result of reflectivity change”.
  • the effect of improving the storage stability by the addition of the third element species X clearly appears compared with the binary system of Cu and Ag. That is, for example, Cu Ag reduces the reflectivity.
  • the total sum may be set to 10 at% or less.
  • Example 9 a sputtering target having the composition described in Table 3 below was produced. Furthermore, the following experiments were conducted to investigate the acid resistance and corrosion resistance of the sputtering target and the sputtered film. That is, a sputtered film was provided on the glass substrate as in Example 9. Then, the reflectance of the sputtered film provided on the glass substrate was measured by the same method as in Example 9, and then the H 2 S gas atmosphere having a concentration of lOOppm.
  • Table 3 shows the change rate of reflectivity between the power indicated as “change rate” and “immediately after sputter film formation” and “after exposure”.
  • the present invention can be suitably used in applications such as an optical recording medium for red semiconductor lasers such as DVD player R, an optical recording medium for blue semiconductor lasers, and the like.

Abstract

There is provided an optical recording medium for high-density recording or high-speed recording having a preferable recording characteristic in a wide range of recording linear velocity and an excellent light resistance. The optical recording medium includes at least a recording layer formed by an organic dye and a reflection layer containing metal arranged on a substrate having a coaxial or a spiral groove. Recording is performed with the minimum mark length not greater than 0.4 μm or with a recording linear velocity not smaller than 35.0 m/s. The guide groove on the substrate has a track pitch not greater than 0.8 μm, a groove width not greater than 0.4 μm, and a recording layer film thickness in the groove not greater than 70 nm. The organic dye single layer forming the recording layer has a dye holding ratio not greater than 70% in Wool scale 5th grade (light resistance test) of the light irradiation condition shown in ISO-105-B02. The differentiation value dR/dλ (%/nm) of the reflection ratio R of the reflection layer for the wavelength λ in the air is not greater than 3 in the wavelength band from 300 nm to 500 nm.

Description

明 細 書  Specification
光記録媒体、スパッタリングターゲット及びァゾ金属キレート色素 技術分野  Optical recording media, sputtering targets, and azo metal chelate dyes
[0001] 本発明はレーザー光により記録再生できる光記録媒体、並びに、光記録媒体に用 いられるスパッタリングターゲット及びァゾ金属キレート色素に関し、より詳しくは、広 い記録線速度において良好な記録特性を有し、且つ、耐光性にも優れた、高密度記 録用又は高速記録用の光記録媒体、並びに、光記録媒体に用いられるスパッタリン グターゲット及びァゾ金属キレート色素に関する。  TECHNICAL FIELD [0001] The present invention relates to an optical recording medium that can be recorded and reproduced by a laser beam, and to a sputtering target and an azo metal chelate dye used in the optical recording medium. More specifically, the present invention has good recording characteristics at a wide recording linear velocity. The present invention also relates to an optical recording medium for high-density recording or high-speed recording that has excellent light resistance, and a sputtering target and an azo metal chelate dye used for the optical recording medium.
背景技術  Background art
[0002] 現在、 CD— R、 CD-RW, DVD-R, DVD— RWの各種光記録媒体は、大容量 の情報を記憶でき、ランダムアクセスが容易であるために、コンピュータのような情報 処理装置における外部記憶装置として広く認知され普及しつつある。更に取り扱う情 報量の増大により、記録密度を高めることが望まれている。  [0002] Currently, various optical recording media such as CD-R, CD-RW, DVD-R, and DVD-RW can store large amounts of information and are easily accessible at random. It is widely recognized as an external storage device in devices and is becoming popular. Furthermore, it is desired to increase the recording density by increasing the amount of information handled.
[0003] 種々の光記録媒体の中でも CD— Rや DVD— Rなど、有機色素を含む記録層を有 する光記録媒体は、比較的安価で、かつ、再生専用の光記録媒体との互換性を有 するため、特に広く用いられている。  Among various optical recording media, optical recording media having a recording layer containing an organic dye, such as CD-R and DVD-R, are relatively inexpensive and compatible with optical recording media dedicated to reproduction. In particular, it is widely used.
[0004] 一般に、現在の光記録媒体は、透明ディスク基板上に合金薄膜層や有機色素含 有薄膜層などからなる記録層を有し、該記録層を介して基板とは反対側に反射層を 有し、これらの記録層や反射層を覆う保護層を有する積層構造であり、基板を通して レーザー光にて記録 ·再生を行なうものである。  [0004] In general, current optical recording media have a recording layer made of an alloy thin film layer, an organic dye-containing thin film layer, or the like on a transparent disk substrate, and a reflective layer on the opposite side of the substrate through the recording layer. It has a laminated structure having a protective layer covering these recording layers and reflective layers, and performs recording / reproduction with a laser beam through a substrate.
[0005] この反射層としては金属又は合金薄膜が一般的であり(特許文献 1参照)、中でも 金や銀、銀合金などを使用する場合が多い。これら合金の中心である銀は、比較的 安価であり高反射率が得られるため、実用化されている。  [0005] As the reflective layer, a metal or alloy thin film is generally used (see Patent Document 1), and gold, silver, a silver alloy or the like is often used among them. Silver, which is the center of these alloys, has been put to practical use because it is relatively inexpensive and provides high reflectivity.
[0006] また、銅合金については、例えば、特許文献 2には、銀—銅合金又は銀—パラジゥ ムー銅合金を含む反射層が記載されている。特許文献 3には、銅に 40%未満の銀を 有する合金薄膜を反射層に設けたものが記載されている。特許文献 4には、 Agと Ti とを含有する銅合金反射層及びターゲットが記載されている。し力しながら、それらは いずれも、 2. OmZs未満の低線速記録速度を例とする光記録媒体である。また、記 録密度が低 、光記録媒体に関するものである。 [0006] For the copper alloy, for example, Patent Document 2 describes a reflective layer containing a silver-copper alloy or a silver-paradium mu copper alloy. Patent Document 3 describes that a reflective layer is provided with an alloy thin film containing less than 40% silver on copper. Patent Document 4 describes a copper alloy reflective layer and target containing Ag and Ti. While doing so, they Each of these is an optical recording medium having a low linear velocity recording speed of less than 2. OmZs. Further, the present invention relates to an optical recording medium having a low recording density.
[0007] 特許文献 1 :特公平 7— 105065号公報 [0007] Patent Document 1: Japanese Patent Publication No. 7-105065
特許文献 2 :特開平 4— 49539号公報  Patent Document 2: JP-A-4-49539
特許文献 3:特開平 4 - 364240号公報  Patent Document 3: Japanese Patent Laid-Open No. 4-364240
特許文献 4:国際公開第 WO2002Z021524号パンフレット  Patent Document 4: International Publication No. WO2002Z021524 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 近年、記録密度の高密度化と共に、ドライブの高速記録化が進み、 28mZsもの高 速記録が DVD— Rにおいて実用化され、更なる高速記録用の開発が加速されてい る。力かる高速記録においては、記録のマージンが得られないという課題がある。こ の課題は、例えば、良好な記録ジッター値が得られる記録パワーの範囲が狭い、或 いは、記録パワーを増カロさせて記録するにつれて、記録マークに波形のひずみが発 生するという現象として観測される。 [0008] In recent years, along with the increase in recording density, drive recording has been accelerated, and high-speed recording of 28 mZs has been put to practical use in DVD-R, and development for further high-speed recording has been accelerated. In high-speed recording that is powerful, there is a problem that a recording margin cannot be obtained. This problem is, for example, a phenomenon in which the waveform of the recording mark is distorted as the recording power range in which a good recording jitter value is obtained is narrow, or as the recording power is increased and recorded. Observed.
[0009] 本発明は、上記課題に鑑みてなされたものである。 [0009] The present invention has been made in view of the above problems.
即ち、本発明の目的は、高密度記録用又は高速記録用の光記録媒体であって、 広い記録線速度において良好な記録特性を有し、且つ、「実用上の」耐光性にも優 れた光記録媒体を提供することである。  That is, an object of the present invention is an optical recording medium for high-density recording or high-speed recording, has good recording characteristics at a wide recording linear velocity, and is excellent in “practical” light resistance. An optical recording medium is provided.
また、本発明の他の目的は、高速記録に適した光記録媒体を提供することである。 また、本発明の他の目的は、耐光性及び記録特性に優れた光記録媒体の反射層 を製造するためのスパッタリングターゲットを提供することである。  Another object of the present invention is to provide an optical recording medium suitable for high-speed recording. Another object of the present invention is to provide a sputtering target for producing a reflection layer of an optical recording medium excellent in light resistance and recording characteristics.
また、本発明の他の目的は、高速記録に適した光記録媒体の記録層に用いられる 、所定の有機色素を提供することである。  Another object of the present invention is to provide a predetermined organic dye used in a recording layer of an optical recording medium suitable for high-speed recording.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者らは、上記課題に鑑み鋭意検討した結果、以下の事項を見出して本発明 を完成した。つまり、記録層を形成する有機色素を単層で形成した場合の耐光性試 験前後の色素保持率を、低速用記録媒体で用いられる記録層では 80%以上、より 好ましくは 90%以上とするところを、高密度記録用又は高速記録用を目的とするた めに、敢えて実用上十分に良好でな 、70%以下となるように色素の組成を調整する 。カロえて、反射層の空気中での波長えに対する反射率 Rの微分値 dRZd (%/n m)力 300nm以上 500nm以下の波長域において 3以下となる組成を有する反射 層を用いる。これらの組み合わせによって、高速記録のみならず広い記録線速度に おいて良好な記録特性が実現され、且つ、「実用上の」耐光性にも優れた光記録媒 体が得られることを見出した。 [0010] As a result of intensive studies in view of the above problems, the present inventors have found the following items and completed the present invention. In other words, the dye retention before and after the light resistance test when the organic dye forming the recording layer is formed as a single layer is 80% or more, more preferably 90% or more in the recording layer used in the low-speed recording medium. However, for the purpose of high-density recording or high-speed recording Therefore, the composition of the dye is adjusted so that it is 70% or less, which is not good enough for practical use. Using a reflective layer having a composition that is a differential value of reflectivity R with respect to the wavelength of the reflective layer in air dRZd (% / nm) force is 3 or less in the wavelength range of 300 nm to 500 nm. It has been found that by these combinations, an excellent optical recording medium can be obtained not only at high speed recording but also at a wide recording linear velocity, and excellent in “practical” light resistance.
[0011] 即ち、本発明の趣旨は、同心円状又はスパイラル状の溝を有する基板上に、少なく とも有機色素からなる記録層及び金属を含有する反射層を有し、最短マーク長が 0. 未満である、或いは、 35. OmZs以上の記録線速度において記録を行なう光 記録媒体において、前記基板上の案内溝のトラックピッチが 0. 以下、溝幅が 0 . 以下、溝内の記録層膜厚が 70nm以下であり、前記記録層を形成する前記 有機色素単層の下記定義による色素保持率力 ISO— 105— B02に示される光照 射条件の Wool That is, the gist of the present invention is to have a recording layer made of an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves, and the shortest mark length is less than 0. Or 35. In an optical recording medium for recording at a recording linear velocity of OmZs or higher, the track pitch of the guide groove on the substrate is 0. or less, the groove width is 0. or less, and the thickness of the recording layer in the groove. Is less than 70 nm, and the organic dye single layer forming the recording layer has a dye retention power defined by the following definition of the light irradiation condition shown in ISO-105-B02.
scale 5級 (耐光性試験)において 70%以下であり、前記反射層の空気中での波長 λに対する反射率 Rの微分値 dRZd (%Znm)が、 300nm以上 500nm以下の 波長域において 3以下であることを特徴とする、光記録媒体に存する。  It is 70% or less in scale 5 (light resistance test), and the differential value dRZd (% Znm) of reflectance R with respect to wavelength λ in the air of the reflective layer is 3 or less in the wavelength region of 300 nm to 500 nm. The present invention resides in an optical recording medium.
[色素保持率]  [Dye retention]
300〜800nmの波長域における前記記録層を形成する有機色素単層の塗布膜の 最大吸収波長における、前記耐光性試験前後の吸光度の比率、すなわち { (試験後 吸光度) / (試験前吸光度) } X 100 (%)を、色素保持率とする。  The ratio of absorbance before and after the light resistance test at the maximum absorption wavelength of the coating film of the organic dye single layer forming the recording layer in the wavelength range of 300 to 800 nm, that is, {(absorbance after test) / (absorbance before test)} X 100 (%) is the dye retention.
[0012] また、本発明の別の要旨は、同心円状又はスパイラル状の溝を有する基板上に、 少なくとも有機色素を含有する記録層及び金属を含有する反射層を有し、最短マー ク長が 0. 未満である、或いは、 35. OmZs以上の記録線速度において記録を 行なう光記録媒体において、前記記録層が有機色素として、下記一般式(1)で表わ されるァゾ系化合物と Znの金属イオンとからなるァゾ金属キレート色素を少なくとも含 有することを特徴とする、光記録媒体に存する。 [0012] Another gist of the present invention is that a recording layer containing at least an organic dye and a reflective layer containing a metal are provided on a substrate having concentric or spiral grooves, and the shortest mark length is In an optical recording medium on which recording is performed at a recording linear velocity of 35. OmZs or more, the recording layer contains an azo compound represented by the following general formula (1) and Zn as an organic dye. The optical recording medium comprises at least an azo metal chelate dye composed of the above metal ions.
[化 1] [Chemical 1]
Figure imgf000005_0001
Figure imgf000005_0001
(一般式(1)中、 R1は、水素原子又は CO R3で示されるエステル基 (ここで、 R3は、 (In General Formula (1), R 1 is a hydrogen atom or an ester group represented by CO R 3 (where R 3 is
2  2
直鎖もしくは分岐のアルキル基、又は、シクロアルキル基を表わす。)を表わす。 R2は 、直鎖又は分岐のアルキル基を表わす。 X1及び X2のうち、少なくともいずれか一方 は NHSO Y基(ここで、 Yは、少なくとも 2つのフッ素原子で置換されている直鎖又は A linear or branched alkyl group or a cycloalkyl group is represented. ). R 2 represents a linear or branched alkyl group. At least one of X 1 and X 2 is an NHSO Y group (where Y is a straight chain substituted with at least two fluorine atoms or
2  2
分岐のアルキル基を表わす。)を表わすとともに、残りは水素原子を表わす。 R4及び R5はそれぞれ独立して、水素原子、直鎖若しくは分岐のアルキル基、又は直鎖若し くは分岐のアルコキシ基を表わす。 R6、 R7、 R8及び R9はそれぞれ独立して、水素原 子又は炭素数 1若しくは 2のアルキル基を表わす。尚、前記 NHSO Y基力 H+が脱 Represents a branched alkyl group. ) And the rest represent hydrogen atoms. R 4 and R 5 each independently represents a hydrogen atom, a linear or branched alkyl group, or a linear or branched alkoxy group. R 6 , R 7 , R 8 and R 9 each independently represent a hydrogen atom or an alkyl group having 1 or 2 carbon atoms. The NHSO Y basic force H + is removed.
2  2
離して NSO Y—(陰性)基となり、上記一般式(1)で表されるァゾ系化合物は金属ィ  NSO Y— (negative) group, and the azo compound represented by the general formula (1)
2  2
オンと配位結合を形成する。 )  Forms a coordination bond with ON. )
[0013] また、本発明の別の要旨は、同心円状又はスパイラル状の溝を有する基板上に、 少なくとも有機色素を含有する記録層及び金属を含有する反射層を有する光記録媒 体の前記反射層の製造に用いるスパッタリングターゲットであって、下記組成 Bで表さ れる材料力も少なくともなることを特徴とする、スパッタリングターゲットに存する。 [0013] Another aspect of the present invention is that the reflection of the optical recording medium having a recording layer containing at least an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves. A sputtering target for use in the production of a layer, characterized in that it has at least a material force represented by the following composition B.
[組成 (B) ]  [Composition (B)]
50at%≤Cu≤97at%  50at% ≤Cu≤97at%
3at%≤Ag≤50at%  3at% ≤Ag≤50at%
0. 05at%≤X≤10at%  0. 05at% ≤X≤10at%
(ここで、 Xは、 Zn、 Al、 Pd、 In、 Sn、 Cr、 Niから成る群より選択される少なくとも 1種 の元素を表わす。但し、 Cu、 Ag、及び Xの合計量は 100at%以下である。 )  (Where X represents at least one element selected from the group consisting of Zn, Al, Pd, In, Sn, Cr, and Ni, provided that the total amount of Cu, Ag, and X is 100 at% or less. )
[0014] また、本発明の別の要旨は、同心円状又はスパイラル状の溝を有する基板上に、 少なくとも有機色素を含有する記録層及び金属を含有する反射層を有し、最短マー ク長が 0. 未満である、或いは、 35. OmZs以上の記録線速度において記録を 行なう光記録媒体の前記有機色素として用いられるァゾ金属キレート色素であって、 上記一般式(1)で表わされるァゾ系化合物と Znの金属イオンとからなることを特徴と する、ァゾ金属キレート色素に存する。 [0014] Another aspect of the present invention is to provide a substrate having concentric or spiral grooves, An organic recording medium having a recording layer containing at least an organic dye and a reflective layer containing a metal, wherein the shortest mark length is less than 0, or 35. OmZs or higher An azo metal chelate dye used as a dye, comprising an azo compound represented by the above general formula (1) and a metal ion of Zn.
発明の効果  The invention's effect
[0015] 本発明によれば、広 、記録線速度にお!、て良好な記録特性を有し、かつ、「実用 上の」耐光性にも優れた、高密度記録用又は高速記録用の光記録媒体が提供され る。  [0015] According to the present invention, it has excellent recording characteristics at a wide recording linear velocity, and has excellent "practical" light resistance. An optical recording medium is provided.
また、本発明によれば、高速記録に適した光記録媒体が提供される。  According to the present invention, an optical recording medium suitable for high-speed recording is provided.
更に、本発明によれば、耐光性及び記録特性に優れた光記録媒体の反射層を製 造するためのスパッタリングターゲットが提供される。  Furthermore, according to the present invention, there is provided a sputtering target for producing a reflective layer of an optical recording medium having excellent light resistance and recording characteristics.
また、本発明によれば、高速記録に適した光記録媒体の記録層に用いられるァゾ 金属キレート色素が提供される。  The present invention also provides an azo metal chelate dye used for a recording layer of an optical recording medium suitable for high-speed recording.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]図 1 (a)〜 (c)は何れも、本発明の実施形態に係る光記録媒体の構成を模式的 に示す断面図である。  1 is a cross-sectional view schematically showing a configuration of an optical recording medium according to an embodiment of the present invention.
[図 2]図 2 (a) ,図 2 (b)は何れも、本発明の実施形態に係る光記録媒体の構成を模 式的に示す断面図である。  FIGS. 2 (a) and 2 (b) are cross-sectional views schematically showing a configuration of an optical recording medium according to an embodiment of the present invention.
[図 3]図 3 (a)は、主な金属材料の屈折率 (n)の波長分布を表わすグラフであり、図 3 ( b)は、主な金属材料の消衰係数 (k)の波長分布を表わすグラフであり、(c)は、主な 金属材料を用いて形成した反射層 (膜厚 120nm)について計算した空気中での反 射率の波長分布を表わすグラフである。  [Fig. 3] Fig. 3 (a) is a graph showing the wavelength distribution of the refractive index (n) of the main metal material, and Fig. 3 (b) is the wavelength of the extinction coefficient (k) of the main metal material. (C) is a graph showing the wavelength distribution of reflectance in air calculated for a reflective layer (thickness 120 nm) formed using main metal materials.
[図 4]図 4 (a)〜(d)はいずれも、実施例 実施例 2及び比較例 1の光記録媒体の記 録特性及び「実用上の」耐光性の測定結果を示す図であり、図 4 (a)は記録パワーマ 一ジンの測定結果を表わすグラフ、図 4 (b)はアシンメトリーマージンの測定結果を表 わすグラフ、図 4 (c)はボトムジッターの耐光性試験前後の測定結果を表わすグラフ、 図 4 (d)は PImaxの耐光性試験前後の測定結果を表わすグラフである。 [図 5]図 5 (a)〜(d)は 、ずれも、実施例 3及び比較例 2の光記録媒体の記録特性及 び「実用上の」耐光性の測定結果を示す図であり、図 5 (a)は記録パワーマージンの 測定結果を表わすグラフ、図 5 (b)はアシンメトリーマージンの測定結果を表わすダラ フ、図 5 (c)はボトムジッターの耐光性試験前後の測定結果を表わすグラフ、図 5 (d) は PImaxの耐光性試験前後の測定結果を表わすグラフである。 [FIG. 4] FIGS. 4 (a) to 4 (d) are diagrams showing the measurement results of recording characteristics and “practical” light resistance of the optical recording media of Example 2 and Comparative Example 1. Fig. 4 (a) is a graph showing the measurement result of the recording power margin, Fig. 4 (b) is a graph showing the measurement result of the asymmetry margin, and Fig. 4 (c) is a measurement result of the bottom jitter before and after the light resistance test. Fig. 4 (d) is a graph showing the measurement results before and after the PImax light resistance test. [FIG. 5] FIGS. 5 (a) to (d) are diagrams showing measurement results of recording characteristics and “practical” light resistance of the optical recording media of Example 3 and Comparative Example 2, Fig. 5 (a) is a graph showing the measurement result of the recording power margin, Fig. 5 (b) is a graph showing the measurement result of the asymmetry margin, and Fig. 5 (c) shows the measurement result of the bottom jitter before and after the light resistance test. Fig. 5 (d) is a graph showing the measurement results before and after the PImax light resistance test.
[図 6]図 6 (a) ,図 6 (b)はいずれも、実施例 4及び比較例 3の光記録媒体の記録特性 の測定結果を示す図であり、図 6 (a)は記録パワーマージンの測定結果を表わすダラ フ、図 6 (b)はアシンメトリーマージンの測定結果を表わすグラフである。 [FIG. 6] FIGS. 6 (a) and 6 (b) are diagrams showing measurement results of the recording characteristics of the optical recording media of Example 4 and Comparative Example 3, and FIG. 6 (a) shows the recording power. Figure 6 (b) is a graph showing the measurement result of the asymmetry margin.
[図 7]図 7 (a)〜(d)はいずれも、比較例 4の光記録媒体の記録特性及び「実用上の」 耐光性の測定結果を示す図であり、図 7 (a)は記録パワーマージンの測定結果を表 わすグラフ、図 7 (b)はアシンメトリーマージンの測定結果を表わすグラフ、図 7 (c)は ボトムジッターの耐光性試験前後の測定結果を表わすグラフ、図 7 (d)は PImaxの耐 光性試験前後の測定結果を表わすグラフである。 [FIG. 7] FIGS. 7 (a) to 7 (d) are diagrams showing the recording characteristics and “practical” light resistance measurement results of the optical recording medium of Comparative Example 4, and FIG. Fig. 7 (b) is a graph showing the measurement result of the recording power margin, Fig. 7 (b) is a graph showing the measurement result of the asymmetry margin, Fig. 7 (c) is a graph showing the measurement result of the bottom jitter before and after the light resistance test, and Fig. 7 (d) ) Is a graph showing the measurement results before and after the PImax light resistance test.
[図 8]図 8は、各実施例及び比較例で用いた金属反射層単層の反射率の波長分布 を表わすグラフである。  FIG. 8 is a graph showing the wavelength distribution of the reflectance of a single metallic reflective layer used in each example and comparative example.
[図 9]図 9 (a)〜(d)はいずれも、各実施例及び比較例で用いた金属反射層単層の d RZ の値を表わすグラフである。図 9 (a)は Cu反射層単層(実施例 1)、図 9 (b)は Au反射層単層(実施例 2)、図 9 (c)は Ag反射層単層(比較例 1)、図 9 (d)は A1反射 層単層(実施例 5)の値をそれぞれ示して 、る。  [FIG. 9] FIGS. 9A to 9D are graphs showing the d RZ values of the single metallic reflective layer used in each example and comparative example. Fig. 9 (a) shows a single Cu reflective layer (Example 1), Fig. 9 (b) shows a single Au reflective layer (Example 2), and Fig. 9 (c) shows a single Ag reflective layer (Comparative Example 1). FIG. 9 (d) shows the values of the single A1 reflective layer (Example 5), respectively.
[図 10]図 10は、実施例 6において得られた CuAg 及び CuAg Pd の反射率  FIG. 10 shows the reflectivity of CuAg and CuAg Pd obtained in Example 6.
12. 8 12. 9 0. 7 の測定結果を、実施例 5において得られた Ag、 Au、 Cuの測定結果とともに示すダラ フである。  12. 8 is a graph showing the measurement results of 12. 9 0.7 together with the measurement results of Ag, Au, and Cu obtained in Example 5.
[図 11]図 11 (a) ,図 11 (b)はそれぞれ、 CuAg 及び CuAg Pd の dRZdえの  [Fig.11] Fig.11 (a) and Fig.11 (b) show the dRZd values of CuAg and CuAg Pd, respectively.
12. 8 12. 9 0. 7  12. 8 12. 9 0. 7
計算結果を示すグラフである。 It is a graph which shows a calculation result.
[図 12]図 12は、実施例 6において得られた、 Agの含有量と、 300〜500nmの波長 域での dRZd λの最大値との関係を示すグラフである。  FIG. 12 is a graph showing the relationship between the Ag content obtained in Example 6 and the maximum value of dRZd λ in the wavelength region of 300 to 500 nm.
[図 13]図 13は、耐光性が Agの含有量とほぼ線形な相関を有すると仮定した場合に おける、 Cu Agにおける Xの値 (Agの含有量)とボトムジッター値との関係を示 すグラフである。 [Figure 13] Figure 13 shows the relationship between the X value (Ag content) and the bottom jitter value in Cu Ag when light resistance is assumed to have a nearly linear correlation with the Ag content. It is a graph.
[図 14]図 14 (a) ,図 14 (b)は何れも、実施例 6〜8における耐光性試験の結果を示 すグラフであり、図 14 (a)はキセノン照射時間とジッター値との関係を表わすグラフ、 図 14 (b)はキセノン照射時間と PIエラーとの関係を表わすグラフである。  [FIG. 14] FIGS. 14 (a) and 14 (b) are graphs showing the results of the light resistance test in Examples 6 to 8, and FIG. 14 (a) shows the xenon irradiation time, the jitter value, and the like. Fig. 14 (b) is a graph showing the relationship between xenon irradiation time and PI error.
[図 15]図 15 (a) ,図 15 (b)は何れも、実施例 6〜8における高温高湿での保存安定 性試験の結果を示すグラフであり、図 15 (a)はジッター値の時間変化を表わすグラフ であり、図 15 (b)は PIエラーの時間変化を表わすグラフである。  [Fig. 15] Fig. 15 (a) and Fig. 15 (b) are both graphs showing the results of storage stability tests at high temperatures and high humidity in Examples 6 to 8, and Fig. 15 (a) shows jitter values. Figure 15 (b) is a graph showing the PI error over time.
符号の説明  Explanation of symbols
[0017] 11, 12, 22 貼り合わせ用ディスク [0017] 11, 12, 22 Disc for bonding
21 ダミーディスク  21 Dummy disk
100, 200, 300, 400, 500 光記録媒体  100, 200, 300, 400, 500 Optical recording media
101, 201, 401, 501 基板(1)  101, 201, 401, 501 Substrate (1)
102, 402, 502 記録層(1)  102, 402, 502 Recording layer (1)
103, 202, 403, 503 反射層(1)  103, 202, 403, 503 Reflective layer (1)
104, 203 保護コート層(1)  104, 203 Protective coat layer (1)
105, 204, 407, 504 接着層  105, 204, 407, 504 Adhesive layer
106, 205 保護コート層(2)  106, 205 Protective coat layer (2)
107, 206, 406, 506 反射層(2)  107, 206, 406, 506 Reflective layer (2)
108, 405, 505 記録層 (2)  108, 405, 505 Recording layer (2)
109, 208, 408, 507 基板(2)  109, 208, 408, 507 Substrate (2)
110, 111, 210, 310, 410, 510 レーザー光  110, 111, 210, 310, 410, 510 Laser light
207, 303 記録層  207, 303 Recording layer
301 基板  301 substrate
302 反射層  302 Reflective layer
304, 508 ノ リア層  304, 508 NORIA
305, 404, 504 透明榭脂層(中間層),接着層(中間層)  305, 404, 504 Transparent resin layer (intermediate layer), adhesive layer (intermediate layer)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明を実施するための最良の形態(以下、発明の実施の形態という。 )に ついて詳細に説明する。本発明は、以下の実施の形態に限定されるものではなぐ その要旨の範囲内で種々変形して実施することができることはいうまでもない。 [0018] Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as an embodiment of the present invention) will be described. This will be described in detail. The present invention is not limited to the following embodiments, and it goes without saying that various modifications can be made within the scope of the gist of the present invention.
[0019] [I.本発明の基本概念 1]  [0019] [I. Basic concept of the present invention 1]
本発明では、まず、同心円状又はスパイラル状の溝を有する基板上に、少なくとも 有機色素からなる記録層及び金属を含有する反射層を有し、最短マーク長が 0. 4 μ m未満である、或いは、 35. OmZs以上の記録線速度において記録を行なう光記録 媒体において、前記基板上の案内溝のトラックピッチが 0. 8 m以下、溝幅が 0. 4 μ m以下、溝内の記録層膜厚が 70nm以下であり、前記記録層を形成する有機色素 単層の下記定義による色素保持率力 ISO— 105— B02に示される光照射条件の Wool  In the present invention, first, on a substrate having concentric or spiral grooves, at least a recording layer made of an organic dye and a reflective layer containing a metal, and the shortest mark length is less than 0.4 μm. Or 35. In an optical recording medium for recording at a recording linear velocity of OmZs or higher, the track pitch of the guide groove on the substrate is 0.8 m or less, the groove width is 0.4 μm or less, and the recording layer in the groove Dye retention power of the organic dye single layer forming the recording layer with a film thickness of 70 nm or less as defined below.
scale 5級 (耐光性試験)において 70%以下であり、前記反射層の空気中での波長 λに対する反射率 Rの微分値 dRZd (%Znm)が、 300nm以上 500nm以下の 波長域にお 、て 3以下であることを特徴とする光記録媒体が提供される(これを以下「 本発明の第 1の光記録媒体」という場合がある)。  It is 70% or less in scale 5 (light resistance test), and the differential value dRZd (% Znm) of reflectance R with respect to wavelength λ in the air of the reflective layer is in the wavelength range of 300 nm to 500 nm. There is provided an optical recording medium characterized by 3 or less (hereinafter sometimes referred to as “first optical recording medium of the present invention”).
[0020] 本発明者らは、高密度記録用又は高速記録用の光記録媒体であって、広い記録 線速度において良好な記録特性を有する光記録媒体を提供するべぐ鋭意検討を 行なった。 [0020] The present inventors have intensively studied to provide an optical recording medium for high-density recording or high-speed recording and having good recording characteristics at a wide recording linear velocity.
[0021] なお、本発明における"高密度記録"とは、最短マーク長 0. 4 m未満の密度の記 録を前提とする。何故ならば、本発明の解決しょうとする課題は、記録マークを短くし 、トラックピッチを狭くすることにより高密度化された光記録媒体において、特に顕著 である力らである。 "高密度記録"においては、過度の記録部形成を低減させることが 重要である。  It should be noted that “high density recording” in the present invention is premised on recording with a minimum mark length of less than 0.4 m. This is because the problem to be solved by the present invention is a particularly remarkable force in an optical recording medium that is densified by shortening the recording mark and narrowing the track pitch. In "high density recording", it is important to reduce the formation of excessive recording areas.
[0022] また、本発明における"高速記録"とは、記録線速度 35. OmZs以上での記録 (DV Dを例とすると、 DVDの 1倍速、即ち、線速 3. 5mZsの 10倍以上の回転数での記 録)を意味する。  [0022] In the present invention, "high-speed recording" means recording at a recording linear velocity of 35. OmZs or more (for example, DV D, the DVD speed is 1 ×, that is, the linear velocity of 3.5mZs is 10 times or more. (Recording at rotational speed).
[0023] なお、本発明の第 1の光記録媒体の記録が"高速記録"に該当する場合は、必ずし も上述の"高密度記録"、即ち、最短マーク長 0. 4 m未満の密度の記録でなくても よい。但し、この場合でも、最短マーク長が通常 0. 5 m未満、好ましくは 0. 44 /z m 以下、より好ましくは 0. 4 m以下の範囲の密度で記録を行なうものであることが望ま れる。 [0023] When the recording of the first optical recording medium of the present invention corresponds to "high-speed recording", the above-mentioned "high-density recording", that is, the minimum mark length of less than 0.4 m is always required. It does not have to be a record of. However, even in this case, the shortest mark length is usually less than 0.5 m, preferably 0.44 / zm. In the following, it is desirable to perform recording at a density in the range of 0.4 m or less.
[0024] 本発明者らの検討の結果、記録層(色素層)に使用する色素として好適な色素或 いは色素の組み合わせがあることがわ力つた。即ち、記録層単層の耐光性試験後の 色素保持率が 70%以下である色素を用いること、或いは、 "耐光性の劣る色素"と" 耐光性の良好な色素"とを混合して、記録層単層の耐光性試験前後の色素保持率 を 70%以下となるように混合することである。  As a result of the study by the present inventors, it has been found that there are suitable dyes or combinations of dyes as dyes used in the recording layer (dye layer). That is, using a dye having a dye retention of 70% or less after the light resistance test of a single recording layer, or mixing a "dye having poor light resistance" and a "dye having good light resistance" Mixing so that the dye retention before and after the light resistance test of the recording layer is 70% or less.
[0025] しかしながら、かかる高密度で高速記録に好適な色素或いは色素の組み合わせは 、ディスクの耐光性の劣化の原因になるという、新たな課題を引き起こすことがわかつ た。  However, it has been found that such a dye or a combination of dyes suitable for high-density recording at a high density causes a new problem of causing deterioration of light resistance of the disc.
[0026] この新たな課題に対して、本発明者らは更に検討を行なった。その結果、反射層の 空気中での波長えに対する反射率 Rの微分値 dRZd (%Znm)が、 300nm以上 500nm以下の波長域において 3以下であるようにすることによって、上記の新たな課 題が解決できることがわ力つた。即ち、「実用上の」耐光性を向上させることができる のである。尚、本発明における「実用上の」耐光性とは、記録層単層での耐光性は十 分に良好ではないにもかかわらず、ディスク構成にした時に、 Wool  [0026] The present inventors further investigated the new problem. As a result, the differential value dRZd (% Znm) of the reflectance R with respect to the wavelength of the reflective layer in the air is set to 3 or less in the wavelength range of 300 nm to 500 nm. I was able to solve this problem. That is, “practical” light resistance can be improved. Incidentally, the “practical” light resistance in the present invention means that the light resistance of a single recording layer is not good enough, but it is
scale 5級の光を照射しても、ディスクの記録部分のジッターやエラーが好ましい範囲 内に納まるかどうかという指標を意味する。従って、記録層そのものの色素保持率の 指標とは区別される。  scale An indicator of whether or not jitter and errors in the recorded part of the disc fall within the preferred range even when irradiated with grade 5 light. Therefore, it is distinguished from the index of dye retention of the recording layer itself.
[0027] 即ち、本発明の基本概念 1においては、同心円状又はスパイラル状の溝を有する 基板上に、少なくとも有機色素からなる記録層及び金属を含有する反射層を有し、 最短マーク長が 0. 未満である、或いは、 35. OmZs以上の記録線速度にお いて記録を行なう光記録媒体において、前記基板上の溝幅が 0. 以下、溝内 の記録層膜厚が 70nm以下であり、記録層を形成する有機色素単層の色素保持率 力 ISO— 105— B02に示される光照射条件の Wool  That is, in the basic concept 1 of the present invention, on a substrate having concentric or spiral grooves, a recording layer made of at least an organic dye and a reflective layer containing a metal are provided, and the shortest mark length is 0. Or 35. In an optical recording medium that performs recording at a recording linear velocity of OmZs or higher, the groove width on the substrate is 0. or less, and the recording layer thickness in the groove is 70 nm or less. Dye retention rate of organic dye monolayer forming the recording layer Force Wool of light irradiation conditions shown in ISO-105-B02
scale 5級 (耐光性試験)において 70%以下であり、反射層の空気中での波長えに 対する反射率 Rの微分値 dRZd (%Znm)が、 300nm以上 500nm以下の波長 域にぉ 、て 3以下であることを特徴とするものである。 [0028] ここで「色素保持率」とは、 300〜800nmの波長域における記録層を形成する有機 色素単層の塗布膜の最大吸収波長における、前記耐光性試験前後の吸光度の比 率、すなわち { (試験後吸光度) / (試験前吸光度) } X 100 (%)とする。 It is 70% or less in scale 5 (light resistance test), and the differential value dRZd (% Znm) of reflectance R with respect to the wavelength of the reflective layer in the air is in the wavelength range of 300 nm to 500 nm. It is characterized by being 3 or less. Here, “dye retention” means the ratio of absorbance before and after the light resistance test at the maximum absorption wavelength of the coating film of the organic dye single layer forming the recording layer in the wavelength region of 300 to 800 nm, that is, {(Absorbance after test) / (Absorbance before test)} X 100 (%).
[0029] 尚、基板の溝幅が 0. 4 μ m以下とすることにより、トラックピッチが 0. 8 μ m以下の 高密度化が可能となると共に、十分なプッシュプル信号振幅が確保されているので、 上述のように、高速でディスクを回転して記録する場合において、安定に溝上にトラッ キングを行なうことが可能となる。尚、溝幅は、十分なプッシュプル信号振幅を確保す る上で通常 0. 以上、より好ましくは 0. 以上である。なお、トラックピッチは 、通常 0. 2 μ m以上、好ましくは 0. 4 μ m以上とする。  [0029] By setting the substrate groove width to 0.4 μm or less, the track pitch can be increased to 0.8 μm or less, and a sufficient push-pull signal amplitude can be secured. Therefore, as described above, when recording is performed by rotating the disk at high speed, it is possible to stably track the groove. The groove width is usually not less than 0, more preferably not less than 0, in order to ensure a sufficient push-pull signal amplitude. The track pitch is usually 0.2 μm or more, preferably 0.4 μm or more.
[0030] また、溝内の記録層膜厚を 70nm以下とすることにより、過度の記録部の形成が抑 制され、クロストークの少ない、良好な"高密度記録"や"高速記録"が可能となる。尚 、溝内の記録層の膜厚は通常 5nm以上、より好ましくは lOnm以上、さらに好ましく は 20nm以上である。  [0030] In addition, when the recording layer thickness in the groove is 70 nm or less, formation of an excessive recording portion is suppressed, and good “high density recording” and “high speed recording” with less crosstalk are possible. It becomes. The film thickness of the recording layer in the groove is usually 5 nm or more, more preferably lOnm or more, and further preferably 20 nm or more.
[0031] 上記高速記録においては、通常、レーザー光の照射時間が非常に短小化したパ ルスで最短マークを形成しなければならない。即ち、力かる高速記録においては、最 短マーク長 (本実施の形態の例では 3Tマーク)を記録するための記録用のレーザー 光照射時間が 8nsを下回るようになる。このため、力かる高速記録において記録が可 能ということは、最短マーク長記録時のレーザー照射時間が 8nsを下回る記録条件 において、ボトムジッター(ジッター値の最小値)が 9%を超えないで記録ができる、或 いは、市販の再生装置で再生上問題がない程度に良好なエラーレートを有する、と いうことを意味する。この、「照射時間が 8nsを下回るような短小化したパルスで最短 マーク長の記録を行なう」ということは、例えば、 DVDの波長域の半導体レーザーの 立ち上がり時間が 4ns前後であることを考慮すると、いかに厳しい記録条件であるか がわカゝる。  [0031] In the above high-speed recording, it is usually necessary to form the shortest mark with a pulse whose irradiation time of the laser beam is very short. That is, in powerful high-speed recording, the recording laser light irradiation time for recording the shortest mark length (3T mark in the example of the present embodiment) is less than 8 ns. For this reason, recording at powerful high-speed recording is possible because the bottom jitter (minimum jitter value) does not exceed 9% under the recording conditions where the laser irradiation time during shortest mark length recording is less than 8 ns. This means that the error rate is good enough that there is no problem in reproduction with a commercially available reproduction device. This “recording the shortest mark length with a shortened pulse so that the irradiation time is less than 8 ns” means, for example, that the rise time of the semiconductor laser in the DVD wavelength region is around 4 ns. How severe the recording conditions are.
[0032] 尚、後述の各実施例及び比較例において用いた 3Tマーク長記録用のレーザーの 照射パルス幅は、 10倍速記録(35mZs)と 16倍速記録(56. OmZs)で、それぞれ 7. 9nsと 6. 5nsであった。  Note that the irradiation pulse width of the laser for 3T mark length recording used in each of the examples and comparative examples described later is 7.9 ns for 10 × speed recording (35 mZs) and 16 × speed recording (56. OmZs), respectively. And 6.5ns.
[0033] また、本発明において、「広い記録線速度において良好な記録が可能」とは、 3. 5 mZs〜およそ 70mZs (DVDを例とすると、 DVDの 1倍速記録(3. 5mZs)〜およ そ 20倍速記録(70mZs) )にわたり、ボトムジッターが 9%を超えないで記録ができる 、或いは、市販の再生装置で再生上問題がない程度に良好なエラーレートを有する 、ということを意味する。例えば DVD— Rにおいては、記録品質の評価にはジッター 値が良い指標である。例えば、現在知られている範囲では、 3. 5mZs〜28mZs ( 例えば DVDでは、 1倍速記録〜 8倍速記録)において、通常 8. 0%以下、より好まし くは 7%以下、更に好ましくは 6%以下のボトムジッターが得られる記録ができる場合 、一般的には特に良好と判定される。 In the present invention, “good recording is possible at a wide recording linear velocity” means 3.5. From mZs to approximately 70mZs (for DVD, for example, 1x speed recording of DVD (3.5mZs) to about 20x speed recording (70mZs)) can be recorded without bottom jitter exceeding 9%, or commercially available This means that the reproduction apparatus has an error rate that is good enough to cause no reproduction problems. For example, in DVD-R, the jitter value is a good index for evaluating the recording quality. For example, in the currently known range, it is usually 8.0% or less, more preferably 7% or less, more preferably 6 in 3.5mZs to 28mZs (for example, 1x speed recording to 8x speed recording in DVD). In general, it is determined to be particularly good when recording capable of obtaining a bottom jitter of less than% is possible.
[0034] 本発明者らは鋭意検討の結果、上記課題の中の記録マージンの問題は、有機色 素媒体の記録速度依存性を小さくすること、更に、短小化パルスに対する応答性を 大きくすることにより解決できると考えた。  [0034] As a result of intensive studies, the present inventors have found that the problem of the recording margin among the above problems is to reduce the recording speed dependency of the organic color medium and to further increase the response to the shortening pulse. I thought that it can be solved.
[0035] より具体的には、本発明者らの検討により、 "耐光性の劣る色素"を記録層に含むこ とにより、広い記録速度において良好な記録特性を確保することができること、即ち、 耐光性の悪さと高速記録特性、広 、記録速度範囲における記録特性とに相関がある ことがわ力つた。この効果は、 "耐光性の劣る色素"が記録用の光として入射された光 エネルギーを、色素の分解により有効に利用することができること(光学モード)に起 因するものと考えられる。即ち、力かる色素においては、光学モードが色素の結合の 開裂反応に関与し、効率よく光エネルギーが使用され、エッジが急峻な記録マーク が形成されて記録特性が向上する可能性があると考えられる。或いは、一般的に、光 学モード記録は、反応速度が速いことが知られており、 fsec〜psecのオーダーで反 応が終了させることが原理的に可能である。この時間オーダーで反応が終了すれば 、ディスクの回転速度力 考えて、隣接マーク間との干渉は起きない可能性が極めて 高い。  [0035] More specifically, according to the study by the present inventors, it is possible to ensure good recording characteristics at a wide recording speed by including a "dye having poor light resistance" in the recording layer, that is, It was clear that there was a correlation between poor light resistance and high-speed recording characteristics, recording characteristics in a wide and recording speed range. This effect is thought to be due to the fact that “light-resistant dyes” can effectively use light energy incident as recording light by decomposing dyes (optical mode). In other words, in a powerful dye, the optical mode is involved in the bond-cleavage reaction of the dye, and light energy is used efficiently, and a recording mark with a sharp edge may be formed, which may improve the recording characteristics. It is done. Alternatively, in general, optical mode recording is known to have a high reaction rate, and in principle, the reaction can be terminated in the order of fsec to psec. If the reaction is completed in this time order, it is highly possible that interference between adjacent marks does not occur in consideration of the rotational speed force of the disc.
一方、記録用の光として入射された光を、熱エネルギーとして色素の反応 (分解、 溶融を含む)に利用することは、ヒートモード記録と一般的には呼ばれている。  On the other hand, the use of incident light as recording light for the reaction of the dye (including decomposition and melting) as thermal energy is generally called heat mode recording.
[0036] このヒートモード記録には、熱伝導速度による反応速度の限界があり、例えば DVD —Rにおいては、通常 nsのオーダーで反応が終了すると考えられる。このオーダー で反応が終了すると、ディスク回転速度と反応速度のオーダーが同程度であることか ら、隣接マークに熱の影響が及ぶ可能性がある。隣接マークに熱の影響が及ぶと、 マーク間でいわゆる熱干渉が起こり、ジッターを悪ィ匕させる可能性が高くなる。しかし 、このヒートモードは耐光性とは関係しないため、 "耐光性の良好な色素"は主として このモードで分解が起こり、記録されると考えられる。 [0036] In this heat mode recording, there is a limit on the reaction speed due to the heat conduction speed. For example, in DVD-R, it is considered that the reaction usually ends in the order of ns. When the reaction is completed at this order, is the order of the disk rotation speed and the reaction speed comparable? Therefore, the adjacent mark may be affected by heat. When the adjacent marks are affected by heat, so-called thermal interference occurs between the marks, which increases the possibility of deteriorating jitter. However, since this heat mode is not related to light resistance, it is considered that “light-resistant dyes” are mainly decomposed and recorded in this mode.
[0037] 更に、かかる"耐光性の劣る色素"に、 "耐光性の良好な色素"を混合することにより 、記録部分の物理的変化と光学的変化のバランスを巧みにとることができ、よりいつそ うの高速記録特性の向上が可能となると考えられる。何故ならば、例えば、上記ヒート モード記録があまり起こらない傾向である"耐光性の劣る色素"で十分な記録変調度 が得られな 、分を、ヒートモード記録が起こる傾向が大き、、"耐光性の良好な色素"で 補うことが可能だと考えられるからである。  [0037] Furthermore, by mixing the "dye having poor light resistance" with the "dye having good light resistance", the balance between the physical change and the optical change in the recording portion can be skillfully achieved. It seems possible to improve such high-speed recording characteristics. This is because, for example, the above-mentioned heat mode recording is not likely to occur so much, and “dye with poor light resistance” does not provide a sufficient recording modulation degree. This is because it is thought that it can be supplemented with a dye having good properties.
[0038] 上記"耐光性の劣る色素"は、光で励起された状態力 の 、わゆる「無輻射遷移」の 起こる確率力 、さい色素化合物等が該当すると考えられる。例えば、(1)記録再生波 長近傍に π— π *遷移或いは電荷移動遷移等が関与すると考えられる強い吸収帯 を有するのみならず、空間配置 (configuration)を数多く有さな 、平面性が良 、構造の 色素が挙げられる。これに該当するものとしては、 π— π *遷移が起こりやすく多くが 蛍光を発する、数多くの有機色素が挙げられる力 光ディスクに好適なものとしては、 例えば、以下で挙げる特定のシァニン系色素が挙げられる。また、金属キレート色素 は耐光性が良好であるといわれてきた力 その金属キレート色素の中でも、(2)中心 金属が光によって配位結合力 脱離しやすい傾向にある金属キレート色素が、 "耐光 性の劣る色素"に該当すると考えられる。(2)は、亜鉛のように、中心金属イオンが、 本来配位結合に関与すべき最外殻の d軌道に空の d軌道を持たな 、場合、或いは空 の d軌道が少ない場合 (本発明において、例えば Zn2+は、 Znの電子配置 3d1G4s2か ら (イオンィ匕によって)電子 2個がとれるため、 3dlc>電子配置をとる。)、金属-配位子 の共有結合性力 、さくなる。そして、光励起により配位子に電子が励起され、中心金 属が脱離しやすい傾向となる。その結果、吸収帯が短波長側にシフトして、光学定数 が変化する場合がある。また、配位結合力もフリーになった配位子が、耐光性に劣る ものである場合には、その配位子が光学モードで反応する傾向が大きいため、力か る色素の分解反応は(1)のタイプの"耐光性の劣る色素"と同じ様に、光学モード記 録の傾向を有すると考えられる。従って、この様な"耐光性の劣る"金属キレート色素 の中心金属としては、イオンィ匕により空の d軌道が少ない、もしくは空の d軌道がない ような金属が該当する。また、配位子は、 MLCT(metaH:o- ligand charge transfer)等 がおこりやすい分子軌道を有する(例えば、配位子が空の反結合性の π軌道 (anti-b onding orbital)を有する)ことも好ましい。尚、これらの色素の分解における光学モード の寄与の大きさは、蛍光を発するかどうかによつても推測することができる。即ち、蛍 光を発する色素は、分解における光学モードの寄与が大きい傾向があると考えられ る。また、配位子と中心金属イオンとの共有結合性 (配位結合が強い)が小さいという 性質は、中心金属イオンが d9或いは dlc>電子配置をとるものの、構造選択エネルギー 力 SO近傍であることとも関連していると考えることもできる。なお、上記「構造選択エネ ノレギー」については、 K. F. Puncell et al, Inorganic Chemistry, 1977年, p.550に従つ た。 [0038] It is considered that the above "dye having poor light resistance" corresponds to a state force excited by light, a probable force of causing a so-called "non-radiative transition", and a dye compound. For example, (1) not only has a strong absorption band that is considered to involve π-π * transitions or charge transfer transitions in the vicinity of the recording / reproducing wavelength, but also has a lot of spatial configurations and good flatness. And structural dyes. Examples of this are π-π * transitions that are likely to occur, many of which emit fluorescent light, and include a number of organic dyes. Examples of suitable optical disks include the following specific cyanine dyes. It is done. In addition, metal chelate dyes have been said to have good light resistance. Among the metal chelate dyes, (2) metal chelate dyes whose central metal tends to be desorbed by light due to their light binding properties are “light resistance”. Is considered to fall under "inferior pigment". (2) is the case where the central metal ion, like zinc, does not have an empty d orbital in the outermost d orbital that should be involved in the coordination bond, or there are few empty d orbitals (this In the invention, for example, Zn 2+ has a 3d lc> electron configuration because 2 electrons can be taken from the electron configuration 3d 1G 4s 2 of Zn (by ionic ion).) Covalent metal-ligand bonding Power is reduced. Then, electrons are excited in the ligand by photoexcitation, and the central metal tends to be easily detached. As a result, the absorption band may shift to the short wavelength side and the optical constant may change. In addition, when a ligand with a free coordination bond is inferior in light resistance, the ligand tends to react in the optical mode. As in the case of 1) type “dye with poor light resistance”, the optical mode It is thought to have a tendency to record. Therefore, the central metal of such a metal chelate dye having a poor light resistance is a metal having few or no vacant d orbitals due to ions. In addition, the ligand has a molecular orbital in which MLCT (metaH: o-ligand charge transfer) is likely to occur (for example, the ligand has an empty anti-bonding orbital). It is also preferable. The magnitude of the contribution of the optical mode in the decomposition of these dyes can also be estimated based on whether or not fluorescence is emitted. That is, it is considered that dyes that emit fluorescence tend to have a large contribution of optical modes in decomposition. In addition, the covalent bond (strong coordination) between the ligand and the central metal ion is small because the central metal ion has d 9 or d lc> electron configuration, but the structure selection energy force is close to SO. It can also be thought to be related to something. The “structure selection energy” described above was in accordance with KF Puncell et al, Inorganic Chemistry, 1977, p.550.
[0039] 一方、 "耐光性の良好な色素"においては、例えば無輻射遷移の起こる確率が大き い色素化合物が挙げられる。かかる色素化合物においては、吸収された光が主とし て熱エネルギーに変換されるのである。かかる金属キレート色素は、例えばその中心 金属イオンの d軌道に、空の d軌道がある、或いは空の d軌道ができうる、第一遷位元 素(3d遷移元素)であるァゾ金属キレート色素が挙げられる。これらは、金属イオンの 空の d軌道と配位子の軌道との重なりを介して混成軌道が形成され、金属 配位子 の共有結合性が大きいことにより、励起状態においても安定なキレート構造が形成さ れる可能性が大きい。即ち、光励起によっても配位子が配位結合力もフリーになるこ とがないと考えられる。  [0039] On the other hand, in the "dye having good light resistance", for example, a dye compound having a high probability of non-radiative transition occurs. In such a dye compound, the absorbed light is mainly converted into thermal energy. Such a metal chelate dye is, for example, an azo metal chelate dye which is a first transition element (3d transition element) having an empty d orbital in the d orbital of the central metal ion or capable of forming an empty d orbital. Is mentioned. In these, hybrid orbitals are formed through the overlap of empty d orbitals of metal ions and orbitals of ligands, and the covalent bondability of metal ligands makes it possible to form a chelate structure that is stable even in the excited state. There is a high possibility of being formed. That is, it is considered that the ligand does not release the coordination bond force even by photoexcitation.
[0040] 上記"耐光性の劣る色素"の例としては、 Znを中心金属とするァゾ錯体、或 ヽはク ェンチヤ一を含有しないシァニン系色素などが挙げられる。その他には、配位子の種 類によっては Cuや Niなどを中心金属とするァゾ錯体も使用できる可能性があるが、 Znを中心金属とするァゾ錯体が特に好ましい。かかる色素の例としては、 Zn元素 1 個に対して下記のァゾ系化合物を 2個配位する金属キレート色素が挙げられる。  [0040] Examples of the "dye having inferior light resistance" include a azo complex having Zn as a central metal, or a cyanine dye containing no quencher. In addition, depending on the type of ligand, an azo complex having Cu or Ni as a central metal may be used, but an azo complex having Zn as a central metal is particularly preferable. Examples of such dyes include metal chelate dyes that coordinate two azo compounds described below with respect to one Zn element.
[0041] 尚、本発明における"耐光性の劣る色素"とは、その色素の単独組成で、本発明に 規定する色素保持率が 70%以下のものが好ましい。色素保持率力この範囲内で小 さいほど、 "耐光性の劣る色素"であるから、上述の理由により、高速記録又は高密度 記録での特性に優れる可能性があるので好ましい。 [0041] The "dye having poor light resistance" in the present invention is preferably a single composition of the dye and having a dye retention of 70% or less as defined in the present invention. Dye retention power small within this range Since it is a “dye having inferior light resistance”, it is preferable because it may be excellent in characteristics at high-speed recording or high-density recording for the reasons described above.
[0042] また、本発明における"耐光性の良好な色素"とは、その色素の単独組成で、本発 明に規定する色素保持率が 70%を超えるものが好ましい。より好ましくは 80%以上、 更に好ましくは 85%以上である。  The “dye having good light resistance” in the present invention is preferably a single composition of the dye and having a dye retention rate of more than 70% as defined in the present invention. More preferably, it is 80% or more, and still more preferably 85% or more.
[0043] 上記"耐光性の劣る色素"として好ま 、ァゾ錯体の例としては、下記一般式(1)で 表されるァゾ系化合物と Znの金属イオンとからなるァゾ金属キレート色素(以下、適 宜「色素(1)」という。)が挙げられる。 [0043] Preferred as the above "dye having poor light resistance", examples of azo complexes include azo metal chelate dyes comprising an azo compound represented by the following general formula (1) and a metal ion of Zn ( Hereinafter, “Dye (1)” is suitably used.
[0044] [化 2] [0044] [Chemical 2]
Figure imgf000015_0001
Figure imgf000015_0001
[0045] 一般式(1)中、 R1は、水素原子又は CO R3で示されるエステル基(ここで、 R3は、 In the general formula (1), R 1 is a hydrogen atom or an ester group represented by CO R 3 (where R 3 is
2  2
直鎖若しくは分岐のアルキル基、又は、シクロアルキル基を表わす。)を表わす。  A linear or branched alkyl group or a cycloalkyl group is represented. ).
R2は、直鎖又は分岐のアルキル基を表わす。 R 2 represents a linear or branched alkyl group.
X1及び X2のうち、少なくともいずれか一方は NHSO Y基(ここで、 Yは、少なくとも 2 At least one of X 1 and X 2 is NHSO Y group (where Y is at least 2
2  2
つのフッ素原子で置換されている直鎖又は分岐のアルキル基を表わす。 )を表わす とともに、残りは水素原子を表わす。  Represents a straight-chain or branched alkyl group substituted by two fluorine atoms. ) And the rest represent hydrogen atoms.
R4及び R5はそれぞれ独立して、水素原子、直鎖若しくは分岐のアルキル基、又は 直鎖若しくは分岐のアルコキシ基を表わす。 R 4 and R 5 each independently represents a hydrogen atom, a linear or branched alkyl group, or a linear or branched alkoxy group.
R6、 R7、 R8及び R9はそれぞれ独立して、水素原子又は炭素数 1若しくは 2のアルキ ル基を表わす。 R 6 , R 7 , R 8 and R 9 each independently represent a hydrogen atom or an alkyl group having 1 or 2 carbon atoms.
尚、前記 NHSO Y基力も H+が脱離して NSO Y—(陰性)基となり、上記一般式(1 )で表されるァゾ系化合物は金属イオンと配位結合を形成する。 Note that the NHSO Y basic force is also HSO desorbed to become an NSO Y— (negative) group, and the above general formula (1 The azo compound represented by) forms a coordinate bond with a metal ion.
[0046] R3として好ましくは、メチル基、ェチル基、プロピル基、イソプロピル基、ブチル基、 イソブチル基、 t?ブチル基、 sec?ブチル基等の炭素数が 1以上 8以下の直鎖もしくは 分岐のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへ キシル基、シクロへプチル基等の炭素数 3以上 8以下のシクロアルキル基;である。特 に好ましくは、立体障害が小さいという理由から、メチル基、ェチル基等の炭素数 1若 しくは 2の直鎖アルキル基;シクロペンチル基、シクロへキシル基等の炭素数 3以上 6 以下のシクロアルキル基;である。 [0046] R 3 is preferably a straight chain or branched chain having 1 to 8 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, or a sec-butyl group. A cycloalkyl group having 3 to 8 carbon atoms, such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. Particularly preferably, a straight chain alkyl group having 1 or 2 carbon atoms such as a methyl group or an ethyl group; a cyclohexane having 3 or more and 6 or less carbon atoms such as a cyclopentyl group or a cyclohexyl group, because steric hindrance is small. An alkyl group;
[0047] R2として好ましくは、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、へ キシル基等の炭素数 1以上 8以下の直鎖アルキル基;イソプロピル基、 sec?ブチル基 、イソブチル基、 t?ブチル基、 2?ェチルへキシル基、シクロプロピル基、シクロへキシ ルメチル基等の炭素数 3以上 8以下の分岐アルキル基等が挙げられる。 [0047] R 2 is preferably a linear alkyl group having 1 to 8 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group; an isopropyl group, a sec-butyl group, and an isobutyl group. Group, a branched alkyl group having 3 to 8 carbon atoms, such as t-butyl group, 2-ethylhexyl group, cyclopropyl group, and cyclohexylmethyl group.
[0048] Yは、少なくとも 2つのフッ素原子で置換されている直鎖又は分岐のアルキル基を 表わす。直鎖又は分岐のアルキル基として好ましくは、炭素数 1以上 6以下の直鎖又 は分岐のアルキル基であり、より好ましくは、炭素数 1以上 3以下の直鎖アルキル基で ある。  [0048] Y represents a linear or branched alkyl group substituted with at least two fluorine atoms. The linear or branched alkyl group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, and more preferably a linear alkyl group having 1 to 3 carbon atoms.
[0049] R4、 R5として好ましくは、水素原子、炭素数 1以上 6以下の直鎖アルキル基、炭素 数 1以上 8以下のアルコキシ基である。 R4、 R5としてより好ましくは、水素原子、炭素 数 1若しくは 2のアルキル基、又は、炭素数 1若しくは 2のアルコキシ基である。上記ァ ルキル基、アルコキシ基は無置換であることが好ましい。 R4、 R5として特に好ましくは 、水素原子、メチル基、ェチル基、又はメトキシ基である。 [0049] R 4 and R 5 are preferably a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms. R 4 and R 5 are more preferably a hydrogen atom, an alkyl group having 1 or 2 carbon atoms, or an alkoxy group having 1 or 2 carbon atoms. The alkyl group and alkoxy group are preferably unsubstituted. R 4 and R 5 are particularly preferably a hydrogen atom, a methyl group, an ethyl group, or a methoxy group.
[0050] R6、 R7、 R8、及び R9は、それぞれ独立して、水素原子又は炭素数 1若しくは 2のァ ルキル基を表わす。水素原子又は炭素数 1若しくは 2のアルキル基を用いることによ り、吸光度や屈折率を所定の値に調整しやすくなるため好ましい。炭素数 1若しくは 2 のアルキル基は、炭素原子に結合している水素原子が他の置換基 (例えばハロゲン 原子)で置換されていてもよいが、無置換のアルキル基であることが好ましい。炭素 数 1若しくは 2のアルキル基としては、メチル基、ェチル基が挙げられる。合成の容易 性や立体構造の点から、 R6、 R8、及び R9として最も好ましいのは、水素原子であ る。 [0050] R 6 , R 7 , R 8 and R 9 each independently represents a hydrogen atom or an alkyl group having 1 or 2 carbon atoms. It is preferable to use a hydrogen atom or an alkyl group having 1 or 2 carbon atoms because the absorbance and refractive index can be easily adjusted to predetermined values. In the alkyl group having 1 or 2 carbon atoms, the hydrogen atom bonded to the carbon atom may be substituted with another substituent (for example, a halogen atom), but is preferably an unsubstituted alkyl group. Examples of the alkyl group having 1 or 2 carbon atoms include a methyl group and an ethyl group. From the viewpoint of ease of synthesis and three-dimensional structure, R 6 , R 8 , and R 9 are most preferably a hydrogen atom. The
[0051] かかる色素(1)を構成する、一般式(1)のァゾ系化合物(配位子)の具体例としては [0051] Specific examples of the azo compound (ligand) of the general formula (1) constituting the dye (1) include
、以下に示す構造のァゾ系化合物が挙げられる。 And azo compounds having the structure shown below.
[0052] [化 3] [0052] [Chemical 3]
Figure imgf000017_0001
一方、上記"耐光性の劣る色素"として好ましいシァニン系色素の例としては、下記 一般式 (2)で表されるシァニン系色素(以下、適宜「色素(2)」という。)が挙げられる
Figure imgf000017_0001
On the other hand, examples of cyanine dyes preferable as the “dye having poor light resistance” include cyanine dyes represented by the following general formula (2) (hereinafter, referred to as “dye (2)” as appropriate).
[0054] [化 4] [0054] [Chemical 4]
Figure imgf000018_0001
Figure imgf000018_0001
[0055] 一般式(2)中、環 A及び環 Bはそれぞれ独立して、置換基を有してもよ!、ベンゼン 環又はナフタレン環を表わす。 In general formula (2), ring A and ring B may each independently have a substituent, and represent a benzene ring or a naphthalene ring.
R1C)及び R11はそれぞれ独立して、置換基を有してもよい炭素数 1から 5のアルキル 基を表わす。 R 1C) and R 11 each independently represents an alkyl group having 1 to 5 carbon atoms which may have a substituent.
R12、 R13、 R14及び R15はそれぞれ独立して、置換基を有してもよい炭素数 1から 5の アルキル基を表わす。 R 12 , R 13 , R 14 and R 15 each independently represents an alkyl group having 1 to 5 carbon atoms which may have a substituent.
R16は、水素原子、ハロゲン原子、シァノ基又は置換基を有してもよい炭素数 1から 5のアルキル基を表わす。 R 16 represents a hydrogen atom, a halogen atom, a cyano group or an alkyl group having 1 to 5 carbon atoms which may have a substituent.
Q—は、対ァ-オンを表わす。対ァ-オンとしては、 BF―、 PF―、金属錯体などの  Q— stands for anti-on. Counter-on includes BF-, PF-, metal complexes, etc.
4 6  4 6
各種のァ-オンが挙げられる。  There are various keyons.
[0056] R1C)及び R11として好ましくは、メチル基、ェチル基、プロピル基、イソプロピル基、ブ チル基、イソブチル基、 t?ブチル基、 sec?ブチル基等の炭素数が 1以上 5以下の直 鎖もしくは分岐のアルキル基である。特に好ましくは、立体障害が小さいという理由か ら、メチル基、ェチル基、等の炭素数 1若しくは 2の直鎖アルキル基である。またアル キル鎖の水素原子は、フッ素や後述する置換基によって置換されて 、てもよ 、。 [0056] Preferably, R 1C) and R 11 have 1 to 5 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, sec-butyl, etc. It is a straight chain or branched alkyl group. Particularly preferred is a straight-chain alkyl group having 1 or 2 carbon atoms such as a methyl group or an ethyl group because of its small steric hindrance. The hydrogen atom of the alkyl chain may be substituted with fluorine or a substituent described later.
[0057] R12、 R13、 R14、及び R15として好ましくは、メチル基、ェチル基、プロピル基、ブチル 基、ペンチル基等の炭素数 1以上 5以下の直鎖アルキル基;イソプロピル基、 sec?ブ チル基、イソブチル基、 t?ブチル基等の炭素数 3以上 5以下の分岐アルキル基等が 挙げられる。またアルキル鎖の水素原子は、フッ素や後述する置換基によって置換さ れていてもよい。 [0057] R 12 , R 13 , R 14 , and R 15 are preferably straight-chain alkyl groups having 1 to 5 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group; an isopropyl group, Examples thereof include branched alkyl groups having 3 to 5 carbon atoms such as sec-butyl group, isobutyl group and t-butyl group. The hydrogen atom of the alkyl chain may be substituted with fluorine or a substituent described later.
[0058] R16として好ましくは、水素原子; CI, Br等のハロゲン原子;シァノ基;メチル基、ェチ ル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、 t?ブチル基、 sec?ブチ ル基等の炭素数が 1以上 5以下の直鎖もしくは分岐のアルキル基である。また、アル キル基を用いる場合には、アルキル鎖の水素原子は後述する置換基によって置換さ れていてもよい。 [0058] R 16 is preferably a hydrogen atom; a halogen atom such as CI and Br; a cyano group; a methyl group; It is a straight chain or branched alkyl group having 1 to 5 carbon atoms, such as a ru group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, and a sec-butyl group. When an alkyl group is used, the hydrogen atom of the alkyl chain may be substituted with a substituent described later.
[0059] 尚、環 A及び環 Bのベンゼン環又はナフタレン環の好ましい置換基としては、 炭素数 1から 6の直鎖あるいは分岐のアルキル基、  [0059] In addition, as a preferable substituent of the benzene ring or naphthalene ring of ring A and ring B, a linear or branched alkyl group having 1 to 6 carbon atoms,
炭素数 1から 12の芳香族あるいは複素のァリール基 (炭素数 1から 12の炭素環式あ るいは複素環式ァリール基)、  Aromatic or heterocyclic aryl groups having 1 to 12 carbon atoms (carbocyclic or heterocyclic aryl groups having 1 to 12 carbon atoms),
炭素数 1から 6のアルコキシ基、  An alkoxy group having 1 to 6 carbon atoms,
炭素数 1から 6のエステル基、  An ester group having 1 to 6 carbon atoms,
炭素数 1から 6のジアルキルアミノ基、  A dialkylamino group having 1 to 6 carbon atoms,
ニトロ基、  Nitro group,
炭素数 1から 6のチォアルキル基、  A thioalkyl group having 1 to 6 carbon atoms,
炭素数 1から 6のアルキルスルホ-ル基、  An alkylsulfonyl group having 1 to 6 carbon atoms,
炭素数 1から 6のトリアルキルシリル基、  A trialkylsilyl group having 1 to 6 carbon atoms,
スルホン酸基、  Sulfonic acid groups,
リン酸基、  Phosphate group,
カルボン酸基、  Carboxylic acid groups,
シァノ基、  Ciano group,
ハロゲン原子  Halogen atom
などが挙げられる。  Etc.
[0060] また、 R1Gな 、し R16のアルキル基への好まし 、置換基としては、 [0060] Further, R 1G and R 16 are preferably substituted on the alkyl group.
炭素数 1から 12の芳香族あるいは複素のァリール基 (炭素数 1から 12の炭素環式あ るいは複素環式ァリール基)、  Aromatic or heterocyclic aryl groups having 1 to 12 carbon atoms (carbocyclic or heterocyclic aryl groups having 1 to 12 carbon atoms),
炭素数 1から 6のアルコキシ基、  An alkoxy group having 1 to 6 carbon atoms,
炭素数 1から 6のエステル基、  An ester group having 1 to 6 carbon atoms,
炭素数 1から 6のジアルキルアミノ基、  A dialkylamino group having 1 to 6 carbon atoms,
ニトロ基、 炭素数 1から 6のチォアルキル基、 Nitro group, A thioalkyl group having 1 to 6 carbon atoms,
炭素数 1から 6のアルキルスルホ-ル基、  An alkylsulfonyl group having 1 to 6 carbon atoms,
炭素数 1から 6のトリアルキルシリル基、  A trialkylsilyl group having 1 to 6 carbon atoms,
スルホン酸基、  Sulfonic acid groups,
リン酸基、  Phosphate group,
カルボン酸基、  Carboxylic acid groups,
シァノ基、  Ciano group,
ハロゲン原子、  Halogen atoms,
などが挙げられる。  Etc.
[0061] 上記置換基として好ましくは、炭素数 1から 12の炭素環式あるいは複素環式ァリー ル基である。より好ましくは炭素数 6から 12の炭素環式ァリール基である。記録特性 の観点から、さらに好ましくはベンゼン環である。  [0061] The substituent is preferably a carbocyclic or heterocyclic aryl group having 1 to 12 carbon atoms. More preferred is a carbocyclic aryl group having 6 to 12 carbon atoms. From the viewpoint of recording characteristics, a benzene ring is more preferable.
記録特性の面力も最も好ましいのは、 R12〜R16に用いられるアルキル基の一部に おいて、アルキル鎖の水素をベンゼン環で置換することが好ましい。具体的には、ベ ンゼン環を置換基として用いる方法として、下記 )〜( γ )の組み合わせを挙げる ことができる。立体障害等を考慮すると、(ひ)及び(|8 )の組み合わせで用いることが 好ましい。 The surface power of recording characteristics is also most preferable. It is preferable to substitute the hydrogen of the alkyl chain with a benzene ring in a part of the alkyl group used for R 12 to R 16 . Specifically, examples of the method of using a benzene ring as a substituent include the following combinations (1) to (γ). Considering steric hindrance and the like, it is preferable to use a combination of (iii) and (| 8).
[0062] ( a ) R12、 R13をアルキル基とした場合に、 R12、 R13の 、ずれか又は両方のアルキル 鎖の水素をベンゼン環で置換する。 [0062] (a) When R 12 and R 13 are alkyl groups, hydrogen in one or both alkyl chains of R 12 and R 13 is substituted with a benzene ring.
( j8 )R"、 R15をアルキル基とした場合に、 R14、 R15のいずれか又は両方のアルキル 鎖の水素をベンゼン環で置換する。 (j8) When R ″ and R 15 are alkyl groups, hydrogen in one or both of R 14 and R 15 is substituted with a benzene ring.
( γ )R16をアルキル基とした場合に、 R16のアルキル鎖の水素をベンゼン環で置換す る。 When (γ) R 16 is an alkyl group, the hydrogen of the alkyl chain of R 16 is substituted with a benzene ring.
[0063] かかる色素(2)の具体例としては、以下に示す構造の化合物が挙げられる。  [0063] Specific examples of the dye (2) include compounds having the structure shown below.
[0064] [化 5] [0064] [Chemical 5]
Figure imgf000021_0001
Figure imgf000021_0001
[0065] なお、記録層中の上記"耐光性の劣る色素"は、何れか一種を単独で用いてもよく 、二種以上を任意の組み合わせで用いてもよい。中でも、上述の色素(1)及び Z又 は色素(2)を少なくとも一種用いることが好ましい。この場合、上述の色素(1)のみを 何れか一種又は二種以上用いてもよぐ上述の色素(2)のみを何れか一種又は二種 以上用いてもよぐ更には、上述の色素(1)何れか一種又は二種以上と、上述の色 素(2)何れか一種又は二種以上とを、適宜組み合わせて用いてもよい。勿論、上述 の色素(1)及び Z又は色素(2)に加えて、更に別の"耐光性の劣る色素"を組み合 わせて用いてもよい。 Note that any one of the above “dyes having poor light resistance” in the recording layer may be used alone, or two or more may be used in any combination. Among them, it is preferable to use at least one of the above-mentioned dye (1) and Z or dye (2). In this case, only one or two or more of the above-described dye (1) may be used, or only one or two or more of the above-described dye (2) may be used. Any one or more of 1) and the above-described dye (2) may be used in combination as appropriate. Of course, in addition to the above-mentioned dyes (1) and Z or dye (2), another "dye having poor light resistance" may be used in combination.
[0066] 一方、上記の色素(1)や色素(2)と組み合わせることが好ま 、"耐光性の良好な 色素"としては、具体的には、各種のァゾ系化合物が 2個配位した、 Zn以外の遷移金 属(例えば V、 Cr、 Mn、 Fe、 Co、 Ni、 Cu)を中心金属とする含金属ァゾ錯体が挙げ られる。配位結合を形成する中心金属イオンは、 2価イオンであることが好ましい。 [0066] On the other hand, it is preferable to combine with the above dye (1) or dye (2). Specifically, as the “dye”, a transition metal other than Zn (for example, V, Cr, Mn, Fe, Co, Ni, Cu) in which two various azo compounds are coordinated is used as a central metal. A metal-containing azo complex is preferred, and the central metal ion forming a coordination bond is preferably a divalent ion.
[0067] 好ましくは、下記一般式(3)、(4)、(5)、(6)で表される化合物力 なる群より選ば れる少なくとも一種のァゾ系化合物と、 Znを除く 3d遷移元素の金属イオンと力 なる ァゾ金属キレート色素(以下、各々の一般式に該当するァゾ系化合物を有するァゾ 金属キレート色素を、それぞれ「色素(3)」「色素 (4)」「色素(5)」「色素(6)」と 、う場 合がある。 )が挙げられる。  [0067] Preferably, at least one azo compound selected from the group consisting of compound forces represented by the following general formulas (3), (4), (5), and (6), and a 3d transition element excluding Zn Azo metal chelate dyes (hereinafter referred to as azo metal chelate dyes having azo compounds corresponding to the respective general formulas, “Dye (3)”, “Dye (4)”, “Dye ( 5) ”and“ dye (6) ”.
[0068] [化 6]  [0068] [Chemical 6]
Figure imgf000022_0001
Figure imgf000022_0001
[化 8] [Chemical 8]
Figure imgf000023_0001
Figure imgf000023_0001
Figure imgf000023_0002
一般式 (3)及び (5)中、 は、水素原子、置換基を有していてもよい炭素数 1から 6の直鎖、分岐あるいは環状のアルキル基、又は、置換基を有していてもよい炭素数 1から 6の直鎖、分岐ある!/、は環状のアルキル基を有するエステル基を表わす。
Figure imgf000023_0002
In general formulas (3) and (5), is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms which may have a substituent, or a substituent. The straight chain, branched chain! /, Having 1 to 6 carbon atoms may represent an ester group having a cyclic alkyl group.
一般式 (4)及び (6)中、 R17は、置換基を有してもよい炭素数 1以上 6以下のアルキ ル基を表わす。 In the general formulas (4) and (6), R 17 represents an alkyl group having 1 to 6 carbon atoms which may have a substituent.
一般式 (3)及び (4)中の R21ないし R27、並びに、一般式 (5)及び (6)の R18及び R19 は、それぞれ独立して、水素原子、置換基を有してもよい炭素数 1以上 6以下の直鎖 、分岐あるいは環状のアルキル基を表わす。 R18及び R19は、互いに結合して環を形 成してちょい。 R 21 to R 27 in general formulas (3) and (4) and R 18 and R 19 in general formulas (5) and (6) each independently have a hydrogen atom or a substituent. It represents a straight, branched or cyclic alkyl group having 1 to 6 carbon atoms. R 18 and R 19 may combine with each other to form a ring.
一般式(3)、(4)、(5)、(6)中、 X1及び X2のうち、少なくともいずれか一方は NHS O Y基 (ここで、 Yは、少なくとも 2つのフッ素原子で置換されている直鎖又は分岐のIn general formulas (3), (4), (5), and (6), at least one of X 1 and X 2 is an NHS OY group (where Y is substituted with at least two fluorine atoms) Linear or branched
2 2
アルキル基を表わす。)を表わすとともに、残りは水素原子を表わす。 Represents an alkyl group. ) And the rest represent hydrogen atoms.
尚、前記 NHSO Y基力も H+が脱離して NSO Y—(陰性)基となり、上記一般式(3  The NHSO Y basic force is also removed from H + to form an NSO Y— (negative) group, and the above general formula (3
2 2  twenty two
)、(4)、(5)、(6)で表わされるァゾ系化合物は、金属イオンと配位結合を形成する。 ) The azo compounds represented by), (4), (5) and (6) form a coordinate bond with a metal ion. )
[0070] R17として好ましくは、メチル基、ェチル基、プロピル基、イソプロピル基、ブチル基、 イソブチル基、 t?ブチル基、 sec?ブチル基等の炭素数が 1以上 6以下の直鎖もしくは 分岐のアルキル基である。 [0070] R 17 is preferably a straight chain or branched chain having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, sec-butyl, etc. It is an alkyl group.
[0071] R18、 R19として好ましくは、メチル基、ェチル基、イソプロピル基、プロピル基、イソプ 口ピル基、ブチル基、イソブチル基、ペンチル基、へキシル基等の炭素数 1以上 6以 下の直鎖あるいは分岐鎖のアルキル基が挙げられる。また R18、 R19は、互いに結合 して環状のシクロへキシル基等の環状アルキル基を形成してもよい。 [0071] R 18 and R 19 are preferably a methyl group, an ethyl group, an isopropyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a hexyl group, and the like. And a linear or branched alkyl group. R 18 and R 19 may combine with each other to form a cyclic alkyl group such as a cyclic cyclohexyl group.
[0072] R2として好ましくは、水素原子;メチル基、ェチル基、プロピル基、イソプロピル基、 ブチル基、イソブチル基、ペンチル基、へキシル基等の炭素数 1以上 6以下の直鎖も しくは分岐のアルキル基;メチルエステル基、ェチルエステル基、プロピルエステル基 、イソプロピルエステル基、ブチルエステル基、イソブチルエステル基、ペンチルエス テル基、シクロへキシルエステル基等の炭素数 1以上 6以下の直鎖もしくは環状アル キル基を有するエステル基である。工業的な合成のしゃすさ、及び記録特性等を総 合的に考慮すると、 R2として特に好ましくは水素原子である。 [0072] R 2 is preferably a hydrogen atom; a straight or straight chain having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, and a hexyl group. Branched alkyl group; straight chain or cyclic having 1 to 6 carbon atoms, such as methyl ester group, ethyl ester group, propyl ester group, isopropyl ester group, butyl ester group, isobutyl ester group, pentyl ester group, cyclohexyl ester group An ester group having an alkyl group. In consideration of industrial synthesis, recording characteristics, etc., R 2 is particularly preferably a hydrogen atom.
[0073] R21¾ 、し R27として好ましくは、水素原子;メチル基、ェチル基、イソプロピル基、プ 口ピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、へキシル基等の炭 素数 1以上 6以下の直鎖あるいは分岐鎖のアルキル基;が挙げられる。 [0073] R 21 and R 27 are preferably hydrogen atoms; carbon numbers such as methyl group, ethyl group, isopropyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, and hexyl group. 1 or more and 6 or less linear or branched alkyl group;
X1、 X2、及び Yとしては、一般式(1)で表わされるァゾ系化合物と同様とすればよい X 1 , X 2 , and Y may be the same as those of the azo compound represented by the general formula (1)
[0074] 尚、上記一般式(3)、(4)、 (5)、 (6)の R17〜R27のアルキル基に置換して 、てもよ い置換基としては、 [0074] The above general formula (3), (4), (5), as substituted alkyl groups R 17 to R 27, optionally it may also substituents (6),
炭素数 1から 12の芳香族あるいは複素のァリール基 (炭素数 1から 12の炭素環式あ るいは複素環式ァリール基)、  Aromatic or heterocyclic aryl groups having 1 to 12 carbon atoms (carbocyclic or heterocyclic aryl groups having 1 to 12 carbon atoms),
炭素数 1から 6のアルコキシ基、  An alkoxy group having 1 to 6 carbon atoms,
炭素数 1から 6のエステル基、  An ester group having 1 to 6 carbon atoms,
炭素数 1から 6のジアルキルアミノ基、  A dialkylamino group having 1 to 6 carbon atoms,
ニトロ基、 炭素数 1から 6のチォアルキル基、 Nitro group, A thioalkyl group having 1 to 6 carbon atoms,
炭素数 1から 6のアルキルスルホ-ル基、  An alkylsulfonyl group having 1 to 6 carbon atoms,
炭素数 1から 6のトリアルキルシリル基、  A trialkylsilyl group having 1 to 6 carbon atoms,
シァノ基、  Ciano group,
ノヽロゲン原子  Neurogen atom
などが挙げられる。  Etc.
[0075] 力かるァゾ金属キレート色素を構成する一般式(3)、 (4)、 (5)、 (6)のァゾ系化合 物(配位子)の具体例としては、以下に示す構造の化合物が挙げられる。  [0075] Specific examples of the azo compound (ligand) of the general formulas (3), (4), (5), and (6) that constitute a powerful azo metal chelate dye are shown below. Compounds of the structure.
[0076] [化 10] [0076] [Chemical 10]
Figure imgf000026_0001
Figure imgf000026_0001
[0077] [化 11] [0077] [Chemical 11]
Figure imgf000027_0001
Figure imgf000027_0001
[0078] なお、上記"耐光性の良好な色素"も、何れか一種を単独で用いてもよぐ二種以上 を任意の組み合わせで用いてもよい。中でも、上述の色素(3)、色素 (4)、色素(5) 及び Z又は色素(6)を少なくとも一種用いることが好ましい。この場合、上述の色素( 3)、(4)、(5)及び(6)のうち何れか一つに該当するもののみを、一種又は二種以上 用いてもよぐ上述の色素(3)、(4)、(5)及び (6)のうち、複数のものをそれぞれ一種 又は二種以上ずつ、組み合わせて用いてもよい。勿論、上述の色素(3)、色素 (4)、 色素(5)及び Z又は色素(6)に加えて、更に別の"耐光性の良好な色素"を組み合 わせて用いてもよい。 It should be noted that any of the above “dyes having good light resistance” may be used alone, or two or more thereof may be used in any combination. Among them, it is preferable to use at least one of the above-mentioned dye (3), dye (4), dye (5) and Z or dye (6). In this case, only one or two or more of the dyes (3), (4), (5) and (6) described above may be used. , (4), (5) and (6), a plurality of them may be used alone or in combination of two or more. Of course, in addition to the above-mentioned dye (3), dye (4), dye (5) and Z or dye (6), another "light-resistant dye" may be used in combination.
[0079] 尚、上記のように、記録特性にその効果が明確となる色素の耐光性の指標は、以 下に説明する通りである。即ち、記録層を構成する"耐光性の劣る色素"ど'耐光性の 良好な色素"とを併用する場合には、これら色素の混合比率を以下のように制御する[0079] As described above, the light resistance index of a dye whose effect is clear on the recording characteristics is as follows. As described below. That is, when using together the “dye having poor light resistance” and the “dye having good light resistance” constituting the recording layer, the mixing ratio of these dyes is controlled as follows.
。つまり、かかる記録層単層(記録層を形成する有機色素単層)の色素保持率が ISO 105— B02に示される光照射条件、即ち、 Wool . That is, the dye retention rate of the recording layer single layer (the organic dye single layer forming the recording layer) is the light irradiation condition shown in ISO 105-B02, that is, Wool
scale 5級にぉ 、て 70%以下となるような比率で混合する。  Mix at a ratio of 70% or less for scale 5
[0080] この値よりも耐光性が良い場合には、分解において、十分な光学モードが発揮され ないために、色素の分解におけるヒートモード (熱分解反応)の寄与が大きぐそれ故 十分な記録特性の向上が望めない可能性がある。 [0080] If the light resistance is better than this value, the sufficient optical mode is not exhibited in the decomposition, so that the contribution of the heat mode (pyrolysis reaction) in the decomposition of the dye is large. It may not be possible to improve the characteristics.
[0081] 尚、上記記録層単層の色素保持率は、貼り合わせたディスクを貼り合わせ部分で 剥離し、現れた基板と色素とを有するディスク切片においても、下記実施例に記載す る方法で評価することが可能である。 [0081] Note that the dye retention of the single recording layer is determined by the method described in the following example even when the bonded disc is peeled off at the bonded portion and the disc slice having the substrate and the dye that appears. It is possible to evaluate.
[0082] 以上述べたように、高速記録に好適な上記のような色素の組み合わせは、その一 方で、ディスクの耐光性を劣化させるおそれがある。 [0082] As described above, the combination of the above-described dyes suitable for high-speed recording may deteriorate the light resistance of the disk.
[0083] 力かる"耐光性の劣る色素"の耐光性の向上の解決策として、一般的には、一重項 酸素クェンチヤ一として遷移金属キレートイ匕合物(例えば、ァセチルァセトナートキレ ート、ビスフエ-ルジチオール、サリチルアルデヒドォキシム、ビスジチォ OC ジケト ン等)等や、金属系化合物等の記録感度向上剤を含有していてもよい。ここで金属 系化合物とは、遷移金属等の金属が原子、イオン、クラスタ一等の形でィ匕合物に含ま れるものを言い、例えばエチレンジアミン系錯体、ァゾメチン系錯体、フエ-ルヒドロキ シアミン系錯体、フエナント口リン系錯体、ジヒドロキシァゾベンゼン系錯体、ジォキシ ム系錯体、ニトロソァミノフエノール系錯体、ピリジルトリアジン系錯体、ァセチルァセト ナート系錯体、メタ口セン系錯体、ボルフイリン系錯体のような有機金属化合物が挙 げられる。金属原子としては特に限定されないが、遷移金属であることが好ましい。 [0083] As a solution for improving the light resistance of a powerful “dye with poor light resistance”, a transition metal chelate compound (eg, acetyl acetyltonate chelate) is generally used as a singlet oxygen quencher. Bisphenol dithiol, salicylaldehyde oxime, bisdithio OC diketone, etc.) and a metal compound and the like may contain a recording sensitivity improver. Here, the metal compound means a compound in which a metal such as a transition metal is contained in the compound in the form of atoms, ions, clusters, etc., for example, an ethylenediamine complex, an azomethine complex, a phenol hydroxylamine complex. Organometallics such as phenantorphine complex, dihydroxyazobenzene complex, dioxime complex, nitrosaminophenol complex, pyridyltriazine complex, acetylylacetonate complex, metaorthocene complex, and volphiline complex Compounds are listed. Although it does not specifically limit as a metal atom, It is preferable that it is a transition metal.
[0084] しかしながら、力かるクェンチヤ一を添加することにより、記録マークのエッジの急峻 性が失われたり、製造工程が複雑になるおそれがある。  However, the addition of a strong quencher may lose the sharpness of the edge of the recording mark and may complicate the manufacturing process.
[0085] 本発明者らは、力かる添加剤を積極的に用いることなぐ「実用上の」耐光性を向上 させる検討を行なった。その結果、波長 300nm≤ λ≤500nmにおける空気中での 波長に対する反射率 Rの微分値 (dR/d λ )が(dRZd λ )≤ 3である反射層を用いる ことにより、記録層の耐光性を向上させることができる、という知見を得たのである。 [0085] The present inventors have studied to improve "practical" light resistance without using aggressive additives. As a result, a reflective layer is used in which the differential value (dR / d λ) of the reflectance R with respect to the wavelength in the air at a wavelength of 300 nm ≤ λ ≤ 500 nm is (dRZd λ) ≤ 3. As a result, the inventors have obtained the knowledge that the light resistance of the recording layer can be improved.
[0086] その理由としては、以下のように考えられる。即ち、金属の自由電子モデルに基づ けば、金属はある特定の光周波数を照射した際、金属内電子が集団的に共鳴する 現象が起こる。この共鳴が起こると、屈折率 (n)、ひいては反射率が特定の周波数で 急激に変化する。この電子集団共鳴が起こると、色素との界面において光励起による 、化学反応 (触媒反応も含む)が進みやすくなり、色素が劣化する可能性が高い。ゆ えに、ある特定の光周波数で急峻に反射率変動が起こることは耐光性の観点から望 ましくない。この結果から、反射率の絶対値のみならず、反射率の相対値が急激に変 化しない条件、すなわち、上記波長範囲において、(dRZd )≤3である反射層を 選ぶことが必要なのである。力かる条件を満たす材料としては、例えば、バンド間遷 移が 300nm〜500nmの範囲にないものなどが挙げられる。より好ましくは(dRZd λ )≤2、更に好ましくは(dRZ( )≤lである。尚、 dRZdえの規定の波長範囲を 3 OOnm力ら 500nmとする理由は、以下で説明する。  [0086] The reason is considered as follows. In other words, based on a metal free electron model, when a metal is irradiated with a specific optical frequency, a phenomenon occurs in which electrons in the metal collectively resonate. When this resonance occurs, the refractive index (n), and thus the reflectivity, changes abruptly at a specific frequency. When this electron collective resonance occurs, chemical reaction (including catalytic reaction) easily proceeds due to photoexcitation at the interface with the dye, and the dye is likely to deteriorate. Therefore, it is not desirable from the viewpoint of light resistance that the reflectance fluctuates sharply at a specific light frequency. From this result, it is necessary to select a reflective layer in which (dRZd) ≤3 in the wavelength range described above, that is, not only the absolute value of the reflectance but also the relative value of the reflectance does not change abruptly. Examples of the material that satisfies the strong condition include materials whose band-to-band transition is not in the range of 300 nm to 500 nm. More preferably, (dRZd λ) ≤2, more preferably (dRZ () ≤l. The reason why the specified wavelength range of dRZd is 3 OOnm force and 500 nm will be described below.
[0087] 力かる条件を満たす反射層の例としては、 Cu、 Au及び A1力 選ばれる少なくとも 1 種の元素(これを以下「特定元素」ということがある。)を含有するとともに、反射層中に おけるこれら特定元素の合計の比率が 50at%以上である反射層を挙げることができ る。この比率が 50at%を下回る場合には、前記の波長範囲での(dRZc )≤3を満 たさないおそれがあり、従って、十分な耐光性を得ることができないおそれがある。ま た、力かる反射層における上記特定元素以外の元素として、好ましくは、 Ag、 Cr、 Ni 、 Pt、 Ta、 Pd、 Mg、 Se、 Hf、 V、 Nb、 Ru、 W、 Mn、 Re、 Fe、 Co、 Rh、 Ir、 Cd、 Ga 、 In、 Si、 Ge、 Te、 Pb、 Po、 Sn、 Bi、 Ti、 Zn、 Zr及び希土類金属よりなる群より選ば れる少なくとも 1種の元素が挙げられる。中でも、反射層におけるこれらの元素の比率 力 上記特定元素の比率とあわせて 100at%となることが好ましい。特定元素以外の 元素の種類並びにその混合量は、前記の(dRZd X )≤ 3を満たすように調整するこ とが好ましい。  [0087] Examples of the reflective layer that satisfy the conditions to be applied include at least one element selected from Cu, Au, and A1 forces (hereinafter, sometimes referred to as "specific element"), and in the reflective layer. Examples include a reflective layer in which the total ratio of these specific elements is 50 at% or more. If this ratio is less than 50 at%, there is a possibility that (dRZc) ≤3 in the above wavelength range may not be satisfied, and therefore sufficient light resistance may not be obtained. Further, as elements other than the above-mentioned specific elements in the powerful reflective layer, preferably Ag, Cr, Ni, Pt, Ta, Pd, Mg, Se, Hf, V, Nb, Ru, W, Mn, Re, Fe And at least one element selected from the group consisting of Co, Rh, Ir, Cd, Ga, In, Si, Ge, Te, Pb, Po, Sn, Bi, Ti, Zn, Zr, and rare earth metals. Among them, the ratio of these elements in the reflective layer is preferably 100 at% together with the ratio of the specific elements. It is preferable to adjust the type of elements other than the specific element and the amount of the elements to satisfy (dRZd X) ≤3.
[0088] また、 300nm〜500nmでの空気中の反射率が 20%〜70%の反射層も好ましい。  [0088] Also, a reflective layer having a reflectance in air of 20% to 70% at 300 nm to 500 nm is preferable.
この要件は、従来のように、単に記録再生光波長での反射層が高い反射層を使用す るということば力りを意味するものではない。即ち、記録再生光波長では 80%以上の 高反射率でありながら、 300nm〜 500nmの波長域での空気中の反射層が 20 %〜 70%である反射層を用いることにより、記録層の「実用上の」耐光性がより向上すると いうものである。 This requirement does not mean the force of simply using a reflective layer having a high reflective layer at the recording / reproducing light wavelength as in the prior art. That is, 80% or more at the recording / reproducing light wavelength. It is said that the “practical” light resistance of the recording layer is further improved by using a reflection layer having a reflection layer in the air in the wavelength range of 300 nm to 500 nm of 20% to 70% while having a high reflectivity. Is.
[0089] 力かる要件を満たす反射層が記録層の耐光性を向上させる理由としては、以下の ように考えられる。そもそも、一般的に実施されている光ディスクの耐光性試験 (ISO - 105-B02)は、太陽光暴露を想定した試験方法である。太陽光は、 300nm〜5 00nm、特に、 400nm〜500nmで強度が飽和に達することが知られており、また、 光粒子のエネルギーは、光の振動数に比例することから、光粒子のエネルギーも、長 波長の光粒子のエネルギーよりも高い。高いエネルギーを持つ光粒子は、色素の結 合を破壊する閾値を越す確率が高くなるため、ディスクの耐光性を向上させるために は、この波長の光を過度に色素に吸収させないことが望ましい。つまり、この波長範 囲での反射率が小さい反射層を用いることが好ましいのである。そこで、上記波長範 囲において反射率が小さい反射層を使用すれば、色素記録層一反射層間の多重反 射の光量が低減されるために、耐光性の悪い色素を有する記録層の劣化が抑制さ れると考えられる。この様にして、「実用上の」耐光性をより向上させることができるの である。  [0089] The reason why the reflective layer satisfying the strong requirements improves the light resistance of the recording layer is considered as follows. In the first place, the light resistance test (ISO-105-B02) for optical disks, which is generally performed, is a test method that assumes exposure to sunlight. It is known that the intensity of sunlight reaches saturation at 300 nm to 500 nm, particularly 400 nm to 500 nm. Also, since the energy of light particles is proportional to the frequency of light, the energy of light particles is also Higher than the energy of long wavelength light particles. Since light particles with high energy have a higher probability of exceeding the threshold for breaking the binding of the dye, it is desirable that the light of this wavelength is not excessively absorbed by the dye in order to improve the light resistance of the disk. In other words, it is preferable to use a reflective layer having a low reflectance in this wavelength range. Therefore, if a reflective layer having a low reflectance in the above wavelength range is used, the amount of multiple reflected light between the dye recording layer and one reflective layer is reduced, so that deterioration of the recording layer having a dye having poor light resistance is suppressed. It is thought that In this way, the “practical” light resistance can be further improved.
[0090] 図 3 (a)は、主な金属材料の屈折率 (n)の波長分布を表わすグラフであり、図 3 (b) は、主な金属材料の消衰係数 (k)の波長分布を表わすグラフであり、図 3 (c)は、主 な金属材料を用いて形成した反射層 (膜厚 120nm)について計算した空気中での 反射率の波長分布を表わすグラフである。なお、反射層の膜厚 120nmは、反射率 が十分飽和する膜厚である。また、本明細書において「空気中での」反射率とは、入 射光を空気を介して直接反射層の膜面に照射した時の、もどり光強度の入射光強度 に対する割合を意味する。  [0090] Fig. 3 (a) is a graph showing the wavelength distribution of the refractive index (n) of the main metal material, and Fig. 3 (b) is the wavelength distribution of the extinction coefficient (k) of the main metal material. FIG. 3 (c) is a graph showing the wavelength distribution of reflectance in air calculated for a reflective layer (thickness 120 nm) formed using main metal materials. The film thickness of the reflective layer of 120 nm is a film thickness at which the reflectance is sufficiently saturated. In the present specification, the reflectance “in the air” means the ratio of the return light intensity to the incident light intensity when the incident light is directly irradiated onto the film surface of the reflective layer through the air.
[0091] 図 3 (a)から、一般的に反射層として使用されている Agに対して、 Au、 Cu、及び Al の屈折率(n)が 350nm〜500nmの領域において大きいことがわかる。特に Au及び Cuの屈折率 (n)は、この波長域で安定して 1前後である。また、図 3 (c)から、 Au及 び Cuの反射率は 30%〜70%と、 Agに比べてかなり小さいことがわ力る。  FIG. 3 (a) shows that the refractive index (n) of Au, Cu, and Al is larger in the region of 350 nm to 500 nm than Ag that is generally used as a reflective layer. In particular, the refractive index (n) of Au and Cu is around 1 stably in this wavelength range. Also, from Fig. 3 (c), the reflectivity of Au and Cu is 30% to 70%, which is quite small compared to Ag.
[0092] 尚、図 3 (a) , (b)における金属材料の屈折率 (n)及び消衰係数 (k)の値としては、 下記の文献に掲載されている値を使用した。 [0092] The values of the refractive index (n) and extinction coefficient (k) of the metal material in Figs. 3 (a) and (b) are as follows: Values listed in the following literature were used.
Springer— Verlag Heidelberg, Landolt Bornstein - Group III Condensed matter, Volume 15, subvolume B, 1985, p.222-236 (Ag-Ca), p.237- 248 (Cd- Eu), p.280-29 1  Springer— Verlag Heidelberg, Landolt Bornstein-Group III Condensed matter, Volume 15, subvolume B, 1985, p.222-236 (Ag-Ca), p.237-248 (Cd-Eu), p.280-29 1
(Ni-Pb) (ISSN: 1616-9549)  (Ni-Pb) (ISSN: 1616-9549)
[0093] 力かる条件を満たす反射層の例としては、 Cu、 Au及び A1力 選ばれる少なくとも 1 種の元素(これを以下「特定元素」ということがある。)を含有するとともに、反射層中に おけるこれら特定元素の合計の比率が 50at%以上である反射層を挙げることができ る。この比率が 50at%を下回る場合には、前記の好ましい反射率の範囲を満たさな いおそれがある。また、力かる反射層における上記特定元素以外の元素として、好ま しくは、 Ag、 Cr、 Ni、 Pt、 Ta、 Pd、 Mg、 Se、 Hf、 V、 Nb、 Ru、 W、 Mn、 Re、 Fe、 Co 、 Rh、 Ir、 Cd、 Ga、 In, Si、 Ge、 Te、 Pb、 Po、 Sn、 Bi、 Ti、 Zn、 Zr及び希土類金属 よりなる群より選ばれる少なくとも 1種の元素が挙げられる。中でも、反射層におけるこ れらの元素の比率力 上記特定元素の比率とあわせて 100at%となることが好ましい [0093] Examples of the reflective layer that satisfy the conditions to be applied include at least one element selected from Cu, Au, and A1 forces (hereinafter sometimes referred to as "specific element"), and in the reflective layer. Examples include a reflective layer in which the total ratio of these specific elements is 50 at% or more. If this ratio is less than 50 at%, the preferred reflectance range may not be satisfied. In addition, as elements other than the above-mentioned specific elements in the powerful reflective layer, Ag, Cr, Ni, Pt, Ta, Pd, Mg, Se, Hf, V, Nb, Ru, W, Mn, Re, Fe And at least one element selected from the group consisting of Co, Rh, Ir, Cd, Ga, In, Si, Ge, Te, Pb, Po, Sn, Bi, Ti, Zn, Zr, and rare earth metals. Among them, the ratio of these elements in the reflective layer is preferably 100 at% in combination with the ratio of the specific elements.
[0094] 更に、本発明者らは検討の結果、例えば、従来実用化されている銀又は銀合金で は、記録層及び反射層の記録前後の変化が低速記録時とは異なるために、 35. Om Zs以上の高速記録が困難となる可能性があることがわ力つた。これは、特に 35. Om Zsを超える記録においては、記録のため照射されるレーザー光のパルス幅が短小 ィ匕されることにより、反射層の塑性変形性、熱伝導度、吸収や屈折といった光学定数 の違いがより顕著に記録特性に反映する傾向があると考えられるからである。従って 、力かる高速記録用途の反射層の選択には、従来の低速記録における場合よりも、 いっそうの注意を要する。しかし、低速記録での記録特性の実績があること、また、比 較的安価なことにより銀或いは銀合金を反射層とする光記録媒体が広く実用化され ているのが現状である。 [0094] Further, as a result of investigations, for example, in silver or silver alloys that have been put to practical use in the past, the change before and after recording of the recording layer and the reflective layer is different from that during low-speed recording. It was obvious that high-speed recording over Om Zs may be difficult. This is especially true for recordings exceeding 35.Om Zs, because the pulse width of the laser light emitted for recording is shortened, so that optical properties such as plastic deformation, thermal conductivity, absorption and refraction of the reflective layer are reduced. This is because the difference in the constant tends to reflect the recording characteristics more remarkably. Therefore, the selection of the reflective layer for high-speed recording applications requires more caution than in the conventional low-speed recording. However, the present situation is that optical recording media having a reflective layer of silver or a silver alloy are widely put into practical use due to the fact that they have a record of recording characteristics in low-speed recording and are relatively inexpensive.
[0095] 本発明者らは鋭意検討の結果、高速 (特に 35. OmZs以上)の記録線速度、ひい ては低速から高速までの広い記録線速度における記録特性は、反射層により差異が 見られ、例えば、銅、金、ないしアルミニウムを主成分とする反射層を用いることにより 良好となることを見出した。 [0095] As a result of intensive studies, the present inventors have found that recording characteristics at high recording linear velocities (especially 35. OmZs or higher), and at wide recording linear velocities from low to high, differ depending on the reflective layer. For example, by using a reflective layer mainly composed of copper, gold, or aluminum It was found to be good.
[0096] 高速で記録することが記録特性にもたらす影響は様々ある。特に記録層が有機色 素からなる場合には、金属や半導体力 なる記録膜媒体などと比べて記録感度、ジ ッターなどの記録速度依存性が非常に顕著となる。そのため、有機色素を記録層と する媒体の反射層に要求される条件としては、ある値以上の高反射率を有し、且つ、 より高い熱伝導を持つ反射層が望まれる。反射率が高い金属反射膜とは、即ち、記 録波長における屈折率の実数部 nが一定値以下、且つ、虚数部 kが大きい反射層で あることである。実用的な反射率を得るための反射層の屈折率は、具体的には 0. 0 <η< 1. 0力つ k> 2. 0である。  [0096] There are various effects that high-speed recording has on recording characteristics. In particular, when the recording layer is made of organic pigment, the recording speed dependency such as recording sensitivity and jitter becomes very remarkable as compared with a recording film medium made of metal or semiconductor. Therefore, as a condition required for a reflection layer of a medium having an organic dye as a recording layer, a reflection layer having a high reflectance of a certain value or higher and higher heat conduction is desired. The metal reflective film having a high reflectance means that the reflective layer is a reflective layer in which the real part n of the refractive index at the recording wavelength is not more than a certain value and the imaginary part k is large. Specifically, the refractive index of the reflective layer for obtaining a practical reflectance is 0.0 <η <1.0 and k> 2.0.
[0097] また、熱伝導率は高!、ことが好ま 、。上記の反射率が高!、金属の例で言えば、 A g ( 320W/M · K)、 Cu (300W/M · K)、 Au ( 230W/M · K)、 Al ( 158W/M · K )などが挙げられる。  [0097] In addition, it is preferable that the thermal conductivity is high! The above reflectivity is high! In the example of metal, Ag (320W / M · K), Cu (300W / M · K), Au (230W / M · K), Al (158W / M · K) ) And the like.
[0098] これらの金属、あるいはその合金を用いることにより、高速記録が良好な媒体を得ら れる可能性がある。将来的に記録波長が短波長化した場合にも、上記金属の組み 合わせを最適化することにより、高い反射率と熱伝導率を両立できる良好な記録特 性を得られる可能性が高い。  [0098] By using these metals or alloys thereof, there is a possibility that a medium with good high-speed recording can be obtained. Even when the recording wavelength is shortened in the future, by optimizing the combination of the above metals, there is a high possibility of obtaining good recording characteristics that can achieve both high reflectivity and thermal conductivity.
[0099] また、有機色素を記録層に用いる媒体においては、長マーク(6Τマーク以上)を記 録した場合に、波形のボトムラインが水平ではなぐ傾斜する傾向(以下、波形歪みと 呼ぶ場合がある。)がある。その波形歪みがボトムジッターの劣化の原因になっている 場合がある。低速記録でボトムジッターが良好であるにもかかわらず、高速記録での ボトムジッターが悪い、或いは、その逆の場合もある。本発明者らは、かかる波形歪み が記録層の膜厚方向の温度分布と関係があり、それは、記録層と反射層の膜厚、光 学定数と反射層の熱伝導度の組み合わせを最適化することにより低減することがで き、その結果、 3. 5mZs〜35. Om/s,ひいては 3. 5mZs〜およそ 70mZsという 広 、記録線速度にぉ 、て、良好な記録が可能となると考えて 、る。  [0099] Also, in a medium using an organic dye for the recording layer, when a long mark (6 mm mark or more) is recorded, the bottom line of the waveform tends to be inclined rather than horizontal (hereinafter sometimes referred to as waveform distortion). There is.) The waveform distortion may cause the bottom jitter to deteriorate. Despite good bottom jitter at low speed recording, bottom jitter at high speed recording may be bad or vice versa. The present inventors have found that this waveform distortion is related to the temperature distribution in the film thickness direction of the recording layer, which optimizes the combination of the film thickness of the recording layer and the reflective layer, the optical constant, and the thermal conductivity of the reflective layer. As a result, it is considered that good recording is possible at a wide recording linear velocity of 3.5 mZs to 35. Om / s and eventually 3.5 mZs to approximately 70 mZs. RU
[0100] つまり、上記の理由から、熱的光学的に記録用レーザー光を無駄なく利用できる反 射層を有することによって、広い記録線速度範囲において、記録マークの波形が良 好になる可能性があるのである。 [0101] 尚、上記「反射層が銅、金、アルミニウムを主成分とする」とは、反射層が銅、金、も しくはアルミニウムをそれぞれ単独で、または、銅、金、及びアルミニウムの任意の二 種以上の組み合わせを合計で、 50原子%以上含む、ということを意味する。耐侯性 、膜の構造、及び、光学特性を最適化するために、銅、金以外の元素を含有すること が好ましい。このような元素としては、例えば、 Al、 Ag、 Cr、 Ni、 Pt、 Ta、 Pd、 Mg、 S e、 Hf、 V、 Nb、 Ru、 W、 Mn、 Re、 Fe、 Co、 Rh、 Ir、 Cd、 Ga、 In、 Si、 Ge、 Te、 Pb、 Po、 Sn、 Bi、 Ti、 Zn、 Zr及び希土類金属よりなる群が挙げられる。これら元素の含有 量は、 0. 1〜40原子%であることが好ましい。このような元素を含有する材料として は、例えば、 CuAg、 CuZrAg等が好ましい。 [0100] That is, for the reasons described above, the recording mark waveform may be improved in a wide recording linear velocity range by having a reflection layer that can use the recording laser light without waste in a thermal optical manner. There is. [0101] The above-mentioned "reflective layer is mainly composed of copper, gold, and aluminum" means that the reflective layer is made of copper, gold, or aluminum alone, or any of copper, gold, and aluminum. This means that it contains 50 atomic% or more of the combination of two or more. In order to optimize weather resistance, film structure, and optical properties, it is preferable to contain elements other than copper and gold. Examples of such elements include Al, Ag, Cr, Ni, Pt, Ta, Pd, Mg, Se, Hf, V, Nb, Ru, W, Mn, Re, Fe, Co, Rh, Ir, Examples include the group consisting of Cd, Ga, In, Si, Ge, Te, Pb, Po, Sn, Bi, Ti, Zn, Zr and rare earth metals. The content of these elements is preferably 0.1 to 40 atomic%. As a material containing such an element, for example, CuAg, CuZrAg and the like are preferable.
[0102] また、銅、金、及びアルミニウムは実施例で説明するように、波長 300nm〜500nm における空気中での波長に対する反射率の微分値 dRZd (%/m)が 3以下であ る。これに対して、 300ηπ!〜 500nmにおける純銀の反射率の微分値は、最大値で 5 を超えており、実用上の耐光性力 好ましくないが、例えば銀を含む金属反射膜に ぉ ヽても銀の組成比を少なくして、本発明の dRZd X値が 3以下とすることは可能で ある。 [0102] In addition, as described in Examples, copper, gold, and aluminum have a differential value dRZd (% / m) of reflectance of 3 or less with respect to the wavelength in air at a wavelength of 300 nm to 500 nm. In contrast, 300ηπ! The differential value of the reflectance of pure silver at ˜500 nm exceeds 5 at the maximum, which is not preferable for practical light resistance, but for example, even if it is a metal reflective film containing silver, the composition ratio of silver is reduced. Thus, the dRZd X value of the present invention can be 3 or less.
[0103] 以上説明したように、波長 300ηπ!〜 500nmにおける空気中での波長に対する反 射率の微分値 dRZd (%Znm)が 3以下である反射層と、耐光性の良くない色素 を含む記録層とを組み合わせることにより、初めて、 35m/s以上という極めて高速の 記録特性を持ちながら実用に耐えうる「実用上の」耐光性を有する光記録媒体が得ら れるのである。  [0103] As explained above, the wavelength is 300ηπ! 35 m / s for the first time by combining a reflective layer with a reflectance dRZd (% Znm) of 3 or less and a recording layer containing a dye with poor light resistance at a wavelength in the air of ~ 500 nm. Thus, an optical recording medium having “practical” light resistance that can withstand practical use while having extremely high recording characteristics as described above can be obtained.
[0104] 上述のように、本発明で規定する特定の波長域にお!、て (dRZd λ )≤ 3を満たす ように反射層を形成するためには、スパッタリングターゲットを選定することにより、反 射層が Cu、 Au及び A1力も選ばれる少なくとも 1種の元素を含有するとともに、前記 元素の合計の比率が、前記反射層中で 50原子% (「原子%」を「at%」と記載する場 合がある。)以上となるようにすることが好ましい。 Cu、 Au及び A1の中では、少なくと も反射率の観点から、 Cuと A1が好ましい。  [0104] As described above, in order to form the reflective layer so as to satisfy (dRZd λ) ≤ 3 in the specific wavelength range defined in the present invention, it is necessary to select a sputtering target. The reflective layer contains at least one element selected from Cu, Au and A1 force, and the total ratio of the elements is 50 atomic% in the reflective layer (“atomic%” is described as “at%”) In some cases, it is preferable to set the above. Among Cu, Au, and A1, Cu and A1 are preferred at least from the viewpoint of reflectivity.
[0105] 本発明者らの検討により、 A1はスパッタした膜の島状構造が、高温高湿度試験や 記録時の昇温過程において成長し、膜の平滑性が低下する可能性があり、その結果 、記録部分のジッターを低下させてしまう場合があることがわ力つた。 [0105] According to the study by the present inventors, the island-like structure of the sputtered film grows during the high-temperature and high-humidity test and the temperature rising process during recording, and the smoothness of the film may be reduced. result However, the fact that the jitter of the recorded portion is sometimes lowered is remarkable.
[0106] 以上のことから、反射層は、下記の組成 (A)で表わされる Cu合金を少なくとも含有 する薄膜であることが好まし 、。  [0106] From the above, the reflective layer is preferably a thin film containing at least a Cu alloy represented by the following composition (A).
[0107] [組成 (A) ] [0107] [Composition (A)]
50at%≤Cu≤97at%  50at% ≤Cu≤97at%
3at%≤Ag≤50at%  3at% ≤Ag≤50at%
0. 05at%≤X≤10at%  0. 05at% ≤X≤10at%
(ここで、 Xは、 Zn、 Al、 Pd、 In、 Sn、 Cr、 Niから成る群より選択される少なくとも 1種 の元素を表わす。以下の記載ではこの Xを「第三元素種」という場合がある。但し、 Cu 、 Ag、及び Xの合計量は 100at%以下である。 )  (Here, X represents at least one element selected from the group consisting of Zn, Al, Pd, In, Sn, Cr, and Ni. In the following description, when X is referred to as “third element species”, (However, the total amount of Cu, Ag, and X is 100at% or less.)
[0108] 具体的に、上記組成 (A)において、 Cuの含有率は、通常 50at%以上、好ましくは 65at%以上、更に好ましくは 80at%以上、また、通常 97at%以下、好ましくは 95at %以下、更に好ましくは 90at%以下の範囲である。  [0108] Specifically, in the composition (A), the Cu content is usually 50 at% or more, preferably 65 at% or more, more preferably 80 at% or more, and usually 97 at% or less, preferably 95 at% or less. More preferably, it is in the range of 90 at% or less.
[0109] また、上記組成 (A)にお!/、て、 Agの含有率は、通常 3at%以上、好ましくは 5at% 以上、また、通常 50at%以下、好ましくは 30at%以下の範囲である。  [0109] In the above composition (A), the content of! /, Ag is usually 3 at% or more, preferably 5 at% or more, and usually 50 at% or less, preferably 30 at% or less. .
[0110] 本発明で規定する特定の波長域特定の波長域にお!、て (dR/d λ )≤ 3を満たす ように反射層を形成するためには、 Agの含有量を 50at%以下とすることが好ましい。 また、後述する実施例より裏付けられるように、本発明の記載するような、高速記録に 耐え得る有機色素層を記録層としながら、反射層との組み合わせにより十分な耐光 性を向上させる効果をより確実に確保するためには、 Agの含有量を 30at%以下とす ることが好ましい。  [0110] In order to form the reflective layer to satisfy (dR / d λ) ≤ 3 in the specific wavelength range specified in the present invention, the Ag content should be 50 at% or less. It is preferable that In addition, as supported by the examples described later, the organic dye layer that can withstand high-speed recording as described in the present invention is used as the recording layer, and the effect of improving sufficient light resistance by combining with the reflective layer is further improved. In order to ensure it, it is preferable that the Ag content is 30 at% or less.
[0111] また、上記組成 (A)において、 Xの含有率は、通常 0. 05at%以上、好ましくは 0. 1 at%以上、また、通常 10at%以下、好ましくは 5at%以下の範囲である。尚、 Xとして 2種以上の金属元素が選択される場合には、それらの合計が上記範囲を満たすこと が好ましい。  [0111] In the composition (A), the content of X is usually 0.05 at% or more, preferably 0.1 at% or more, and usually 10 at% or less, preferably 5 at% or less. . In addition, when two or more metal elements are selected as X, it is preferable that the total of them satisfies the above range.
[0112] 第三元素種 Xの含有率は、 0. 05at%以上とすることが好ま U、。十分な効果を安 定して得やすくするためには、 0. lat%以上とすることがより好ましい。特に Znは融 点が低 、故に、ターゲットをスパッタした時に分量がスパッタされな 、場合があり得る ので、より安定な組成として 0. lat%以上とすることが好ましいと考えられる。 [0112] The content of the third element species X is preferably 0.05 at% or more. In order to stabilize and easily obtain a sufficient effect, it is more preferably set to 0.3 lat% or more. In particular, Zn has a low melting point, and therefore the amount may not be sputtered when the target is sputtered. Therefore, it is considered preferable that the composition is more than 0.3 lat% as a more stable composition.
[0113] また、第三元素種 Xの含有率は、 10at%以下とすることが好ましい。 10&%以下で あれば、高い反射率が確保し易くなる。十分高い反射率を確保し易くするためには、 第三元素種 Xの含有量を 5at%以下とすることがより好ましい。 [0113] The content of the third element species X is preferably 10 at% or less. If it is 10 &% or less, it is easy to secure a high reflectance. In order to easily ensure a sufficiently high reflectance, the content of the third element species X is more preferably 5 at% or less.
[0114] 尚、(dRZd )に対する第三元素種 Xの影響は殆ど無いと考えられる。つまり、第 三元素種 Xは、本発明の耐光性向上効果のために好ましいというよりは、むしろ、反 射率の微調整や反射層の保存安定性を確保するために好まし ヽものである。 [0114] It is considered that the third element species X has little influence on (dRZd). In other words, the third element species X is preferable for ensuring fine adjustment of the reflectance and storage stability of the reflective layer, rather than being preferable for the light resistance improvement effect of the present invention. .
[0115] 上述の第三元素種 Xのうち、 Zn、 Al、 Pd、 In、 Snが更に好ましい。中でも、 Zn、 A1 、 Pdは、十分な反射率を確保し易くなるので好ましい。特に Znは、本発明者らの検 討により、添加量が少なくてもより高い反射率が得られる可能性があることが分力つた o Inと Snも、 Zn、 Al、 Pdと同様、上述の効果力 ^期待できる。特に Zn、 In、 Snは、 Cu 合金をアタックする O成分と、導電性酸化物である ZnO、 In O、 SnOを形成する。 [0115] Of the third element species X described above, Zn, Al, Pd, In, and Sn are more preferable. Among these, Zn, A1, and Pd are preferable because sufficient reflectance can be easily secured. In particular, Zn was found to have a higher reflectivity even if the addition amount is small, as determined by the present inventors. O In and Sn are also the same as Zn, Al and Pd described above. The power of ^ can be expected. In particular, Zn, In, and Sn form an O component that attacks a Cu alloy and ZnO, In 2 O, and SnO that are conductive oxides.
2 2 3 2  2 2 3 2
この導電性酸化物 ZnO、 In O、 SnOは n型半導体であり、 Cuと接触電位差を発生  These conductive oxides ZnO, InO, and SnO are n-type semiconductors, and generate a contact potential difference with Cu.
2 3 2  2 3 2
する。その結果、酸素イオン (02_)は Cuよりも Zn、 In、 Sn側に引き寄せられ易くなり 、 Cuの酸ィ匕を遅延するものと考えられる。 To do. As a result, oxygen ions (0 2_ ) are more likely to be attracted to the Zn, In, and Sn sides than Cu, and it is considered that Cu oxides are delayed.
[0116] なお、第三元素種 Xとして低融点 *低沸点の元素を使用する場合、以上のような高 反射率であり保存安定性に優れた Cu合金を少なくとも含有する薄膜 (反射層)を形 成 (製造)するためには、以下のようなスパッタリングターゲットを使用することが好まし い。 [0116] When a low melting point * low boiling point element is used as the third element type X, a thin film (reflective layer) containing at least a Cu alloy having high reflectivity and excellent storage stability as described above is used. In order to form (manufacture), it is preferable to use the following sputtering target.
[0117] 例えば、第三元素種 Xとして Zn (融点 419. 6°C、沸点 907°C)を選択する場合には 、前述の組成(A)よりも 0. 01〜2. 5at%程度多ぐ Znをスパッタリングターゲット中 に含有させるようにすることが好ましい。何故ならば、低融点 '低沸点の元素は揮発し 易いためである。スパッタの際のターゲットと基板との間隔を他の場所よりも近くしたり することにより揮発を抑制する方法もあるが、より安定に無駄なく所定の反射層を得る ためには、スパッタリングターゲットが下記の組成 (B)を満たすことが特に好ましい。 組成 (B)をみてわ力るように、反射層の組成とターゲットの組成とを同一又は近い範 囲とすれば、組成 (A)を有する反射層を製造しやすくなる。  [0117] For example, when Zn (melting point: 419.6 ° C, boiling point: 907 ° C) is selected as the third element species X, it is about 0.01 to 2.5 at% higher than the above-mentioned composition (A). It is preferable to contain Zn in the sputtering target. This is because low melting point 'low boiling point elements are easy to volatilize. Although there is a method of suppressing volatilization by making the distance between the target and the substrate during sputtering closer than other places, in order to obtain a predetermined reflective layer more stably and without waste, the sputtering target must be It is particularly preferable that the composition (B) is satisfied. If the composition of the reflective layer and the composition of the target are made the same or close to each other so that the composition (B) can be seen, it becomes easy to produce a reflective layer having the composition (A).
[0118] [組成 (B) ] 50at%≤Cu≤97at% [0118] [Composition (B)] 50at% ≤Cu≤97at%
3at%≤Ag≤50at%  3at% ≤Ag≤50at%
0. 05at%≤X≤10at%  0. 05at% ≤X≤10at%
(ここで、 Xは、 Zn、 Al、 Pd、 In、 Sn、 Cr、 Niから成る群より選択される少なくとも 1種 の元素を表わす。但し、 Cu、 Ag、及び Xの合計量は 100at%以下である。 ) ここで、 Cu、 Ag、及び第三元素種 Xの好ましい含有量の範囲は、上記反射層の組 成として説明した組成 (A)と同様とすればょ ヽ。  (Where X represents at least one element selected from the group consisting of Zn, Al, Pd, In, Sn, Cr, and Ni, provided that the total amount of Cu, Ag, and X is 100 at% or less. Here, the preferable content range of Cu, Ag, and the third element species X is the same as that of the composition (A) described as the composition of the reflective layer.
[0119] 尚、 Xの融点は、先に述べた Zn以外には、 A1が 660. 4°C、 Pd力 550°C、 Snが 2 31. 97°C、Inが 156. 6°Cである (岩波理ィ匕学辞典第 5版、岩波書店、 1998年参照[0119] The melting point of X is 66.4 ° C for A1, Pd force 550 ° C, 2 31.97 ° C for Sn, and 156.6 ° C for In, in addition to Zn described above. Yes (See Iwanami Science Dictionary 5th Edition, Iwanami Shoten, 1998)
) o ) o
上記の Xのうち、特に Zn、 Al、 Pd、 In、 Snが好ましい。  Of the above X, Zn, Al, Pd, In, and Sn are particularly preferable.
[0120] 上記スパッタリングターゲットは、上述のように融点の差が小さい。従って、前述の特 許文献 4 (国際公開第 WO2002Z021524号パンフレット)に記載された母合金の 作製を省略できるようになる。つまり、以下のような工程が可能となる。すなわち、高周 波溶解炉において Cu及び Agを所定の割合で坩堝に入れ、真空溶解し、前記 Cu及 び Agが十分溶解された後に、第三元素種 Xを添加する。又は、高周波溶解炉にお いて Cu、 Ag及び第三元素種 Xを所定の割合で坩堝に入れ、真空溶解をすればよい 。このとき、第三元素種 Xとして Al、 Cr、 Ni、 Pd、 In、 Snを添カ卩するときは、 Cu、 Agと 共に所定の割合で添加しておけばよい。一方、第三元素種 Xとして Znを添加すると きは、 Cu及び Agが十分溶解された後に添加することが好ましい。これは蒸気圧の高 V、Znを最初力 装填すると揮発により組成が規定値とならな 、傾向にあるためである [0120] As described above, the sputtering target has a small difference in melting point. Therefore, it becomes possible to omit the production of the mother alloy described in the above-mentioned Patent Document 4 (Patent Document WO 2002Z021524). That is, the following processes are possible. That is, in a high frequency melting furnace, Cu and Ag are put into a crucible at a predetermined ratio, melted in a vacuum, and after the Cu and Ag are sufficiently dissolved, the third element species X is added. Alternatively, Cu, Ag, and third element species X may be put in a crucible at a predetermined ratio in a high-frequency melting furnace and vacuum-melted. At this time, when adding Al, Cr, Ni, Pd, In, and Sn as the third element species X, both Cu and Ag may be added at a predetermined ratio. On the other hand, when adding Zn as the third element species X, it is preferable to add it after Cu and Ag are sufficiently dissolved. This is because the composition tends to become the specified value due to volatilization when initially charging with high vapor pressure V and Zn.
[0121] ここで、炉内の溶解温度は 1100°C〜1200°C程度に設定し、坩堝の材料としては C、 Al O、 MgO又は ZrO等を使用する。次いで溶湯の铸型への铸込みを行ない、[0121] Here, the melting temperature in the furnace is set to about 1100 ° C to 1200 ° C, and the material of the crucible is C, Al 2 O, MgO or ZrO. Next, pour the molten metal into the bowl,
2 3 2 2 3 2
溶融物を铸型内で冷却し、凝固させてインゴットを作製し、そのインゴットを铸型から 取り出して常温まで冷却する。次にインゴットの最上部の押湯部を切断除去し、イン ゴットを圧縮機により圧延して、板状の合金を作製する。その後、前記の板状の合金 を製品形状にワイヤーカットし、製品の前面を研磨して、最終的に本発明の Cu合金 のスパッタリングターゲットを作製するのである。 The melt is cooled in a vertical mold and solidified to produce an ingot. The ingot is removed from the vertical mold and cooled to room temperature. Next, the uppermost feeder part of the ingot is cut and removed, and the ingot is rolled by a compressor to produce a plate-like alloy. Thereafter, the plate-like alloy is cut into a product shape, the front surface of the product is polished, and finally the Cu alloy of the present invention is used. This sputtering target is produced.
[0122] 尚、上記の母合金の作製工程が必要となる場合は、通常、主元素(上記スパッタリ ングターゲットでは Cu)の融点と添加元素の融点とが数百 °C程度離れて!/、るような、 著しく高 、場合である。仮に主元素 Cuの溶湯 (約 1000°C)へ融点 1668°Cの Tiを添 加する場合、固体拡散により合金化が進行するが、その速度は遅ぐ均一に歩留まり よく合金化することは困難である。もし、 Cuと Tiの量の割合を 1 : 1にすると、相関によ り融点は 960°Cとなる。その為、主元素溶湯へ容易に合金化を行なうことが可能とな る。しかし、融点が大きく異なっていても、母合金化が必要でないものもある。それは 、 Xとしての Pdである。溶湯温度 1100°Cの Agに Pd (融点 1554°C)を母合金化せず に投入しても、拡散速度が速いために、容易に合金化が進行する。  [0122] When the above-described master alloy fabrication process is required, the melting point of the main element (Cu in the above sputtering target) and the melting point of the additive element are usually separated by several hundred ° C! /, It is a case that is extremely high. If Ti with a melting point of 1668 ° C is added to a molten main element Cu (approximately 1000 ° C), alloying progresses due to solid diffusion, but the rate is slow and uniform yield is difficult to alloy well. It is. If the ratio of Cu and Ti is 1: 1, the melting point is 960 ° C due to the correlation. Therefore, it is possible to easily alloy the molten main element. However, there are some that do not require parent alloying even if their melting points differ greatly. It is Pd as X. Even if Pd (melting point: 1554 ° C) is added to Ag at a molten metal temperature of 1100 ° C without being mother alloyed, alloying proceeds easily due to the high diffusion rate.
[0123] 以上述べたスパッタリングターゲットは、後述のように優れた反射層を提供するもの である。このため、上記スパッタリングターゲットを用いて成膜した反射層のみの観点 から考えると、当該反射層を用いる光記録媒体の記録層に含有させる有機色素は特 に制限されない。このような有機色素としては、大環状ァザァヌレン系色素 (フタロシ ァニン色素、ナフタロシアニン色素、ポルフィリン色素など)、ポリメチン系色素(シァ ニン色素、メロシアニン色素、スクヮリリウム色素など)、アントラキノン系色素、ァズレ -ゥム系色素、ァゾ金属キレート系色素、含金属インドア-リン系色素などが挙げら れる。これらの有機色素のうち、生産性、性能、実績等の種々の要素を考慮すると、 ァゾ金属キレート系色素やフタロシアニン系色素を用いることが好ましい。ァゾ金属キ レート系色素の好ましい例としては、上記所定の構造を有するァゾ化合物と Ni、 Zn の金属イオンとからなるァゾ金属キレート色素を挙げることができる。但し、上記反射 層は"耐光性の悪い色素"を含有する記録層と組み合わせて用いることで、所定の効 果が発揮されて 、ることは前述の通りである。  [0123] The sputtering target described above provides an excellent reflective layer as described later. For this reason, from the viewpoint of only the reflective layer formed using the sputtering target, the organic dye to be contained in the recording layer of the optical recording medium using the reflective layer is not particularly limited. Examples of such organic dyes include macrocyclic azanulene dyes (phthalocyanoine dyes, naphthalocyanine dyes, porphyrin dyes, etc.), polymethine dyes (cyanine dyes, merocyanine dyes, squalium dyes, etc.), anthraquinone dyes, azulene dyes. And azo metal chelate dyes and metal-containing indoor-phosphorus dyes. Of these organic dyes, it is preferable to use azo metal chelate dyes or phthalocyanine dyes in consideration of various factors such as productivity, performance, and performance. Preferable examples of the azo metal chelate dyes include azo metal chelate dyes comprising the above-mentioned azo compound having a predetermined structure and Ni and Zn metal ions. However, as described above, the reflection layer exhibits a predetermined effect when used in combination with a recording layer containing a “dye having poor light resistance”.
[0124] 次に記録層、及び反射層に好まし 、記録再生波長における物性を示す。記録を実 施するレーザー波長において、記録するドライブ又は光学系の制約により、適切な反 射率を維持することが望ましい。また、例えば DVD— Rでは、通常、一般的に記録後 の屈折率 (n)が下がることから記録前の記録層の屈折率 (n)が高いこと、吸収がある 一定量より小さいことが、記録後の十分な信号振幅を確保するための必要条件となる 。また、反射層が薄いと透過光が増加し信号に寄与しない成分が増加することから、 反射層はある一定膜厚以上の膜厚が必要とされる。 Next, physical properties at the recording / reproducing wavelength are shown preferably for the recording layer and the reflective layer. It is desirable to maintain an appropriate reflectivity at the laser wavelength at which recording is performed due to restrictions on the drive or optical system used for recording. Also, for example, in DVD-R, the refractive index (n) after recording generally decreases, so the refractive index (n) of the recording layer before recording is high, and the absorption is smaller than a certain amount. This is a necessary condition to ensure sufficient signal amplitude after recording. . Also, if the reflective layer is thin, the transmitted light increases and the components that do not contribute to the signal increase. Therefore, the reflective layer needs to have a film thickness of a certain thickness or more.
[0125] このためには、記録層において、記録再生波長での屈折率 (n )が11 ≥1. 4を、記 録再生波長での消衰係数 (k W ≤0. 3を、溝内の膜厚 (d )が 0. 05≤ (n d / λ )≤0. 3をそれぞれ満たすことが好ましい。且つ、反射層が半透明膜として使用さ れるのでない場合には、反射層において、膜厚(d )が 50nm≤d≤250nmを満た すことが好ましい。 nの上限は、通常 4. 0である。 kの下限は、通常 0. 01である。  [0125] For this purpose, in the recording layer, the refractive index (n) at the recording / reproducing wavelength is 11 ≥1.4, and the extinction coefficient (k W ≤0.3 at the recording / reproducing wavelength) is set in the groove. It is preferable that the film thickness (d) of the film satisfies 0.05 ≤ (nd / λ) ≤ 0.3, and if the reflective layer is not used as a translucent film, The thickness (d) preferably satisfies 50nm≤d≤250nm The upper limit of n is usually 4.0, and the lower limit of k is usually 0.01.
w w  w w
[0126] 記録層及び反射層が上記の光学定数及び膜厚を満たすことにより、ドライブで記録 するために必要な、記録再生光波長における高い反射率、及び十分な記録後の信 号振幅を得ることができる。  [0126] When the recording layer and the reflective layer satisfy the optical constants and film thicknesses described above, the high reflectivity at the recording / reproducing light wavelength and sufficient signal amplitude after recording necessary for recording by the drive are obtained. be able to.
[0127] [II.本発明の実施の形態]  [II. Embodiment of the Present Invention]
以下、本発明の好ましい実施の形態について、図面を参照しながら詳細に説明す る。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0128] 本発明の第 1の光記録媒体は、基板上に上述した記録層及び反射層を有するもの であれば、その他の構成については特に制限されるものではないが、好ましい構成と しては、図 1 (a) , (b)に表わす構成に代表されるような、 2枚の基板間に記録層及び 反射層を狭持した構成と、図 1 (c)に表わす構成に代表されるような、 1枚の基板上に 反射層及び記録層が積層されてなる構成とが挙げられる。更には、図 2 (a) , (b)に 示すような、片面 2層タイプの構成にも本発明が適用できる。なお、図 l (a)〜(c)及 び図 2 (a) , (b)は何れも、本発明の実施の形態に係る光記録媒体の層構成を示す 模式的な断面図である。  [0128] The first optical recording medium of the present invention is not particularly limited as long as it has the above-described recording layer and reflective layer on a substrate, but is preferably a preferred configuration. Are represented by a configuration in which a recording layer and a reflective layer are sandwiched between two substrates, as represented by the configuration shown in FIGS. 1 (a) and (b), and a configuration shown in FIG. 1 (c). And a structure in which a reflective layer and a recording layer are laminated on a single substrate. Furthermore, the present invention can also be applied to a single-sided two-layer type configuration as shown in FIGS. 2 (a) and 2 (b). FIGS. 1 (a) to 1 (c) and FIGS. 2 (a) and 2 (b) are schematic cross-sectional views showing the layer structure of the optical recording medium according to the embodiment of the present invention.
[0129] 図 1 (a)に示す光記録媒体 100は、基板(1) 101と、記録層 ( 1) 102と、反射層(1) 103と、保護コート層(1) 104と、接着層 105と、保護コート層(2) 106と、反射層(2) 107と、記録層 (2) 108と、基板(2) 109とが順に積層された層構成を有する。この様 な光記録媒体 100は、基板(1) 101、記録層 ( 1) 102、反射層(1) 103、保護コート 層(1) 104をこの順に積層した貼り合わせ用ディスク 11と、基板(2) 109、記録層 (2) 108、反射層(2) 107、保護コート層(2) 106をこの順に積層した貼り合わせ用デイス ク 12とを、保護コート層(1) 104及び保護コート層(2) 106を対向させて接着層 105 で貼り合わせることにより構成される。そして、基板(2) 109側力もレーザー光 110を 照射することにより、記録層 (1) 102において、また、基板(1) 101側からレーザー光 111を照射することにより、記録層 (2) 108において、それぞれ情報の記録'再生が 行なわれる。 [0129] The optical recording medium 100 shown in Fig. 1 (a) includes a substrate (1) 101, a recording layer (1) 102, a reflective layer (1) 103, a protective coat layer (1) 104, and an adhesive layer. 105, a protective coat layer (2) 106, a reflective layer (2) 107, a recording layer (2) 108, and a substrate (2) 109 are laminated in this order. Such an optical recording medium 100 includes a substrate (1) 101, a recording layer (1) 102, a reflective layer (1) 103, a protective coating layer (1) 104, a bonding disk 11 and a substrate ( 2) 109, recording layer (2) 108, reflective layer (2) 107, protective coating layer (2) 106, laminating disk 12 in this order, protective coating layer (1) 104 and protective coating layer (2) Adhesive layer 105 with 106 facing each other It is configured by pasting together. The substrate (2) 109 side force is also applied to the recording layer (1) 102 by irradiating the laser beam 110, and the recording layer (2) 108 by irradiating the laser beam 111 from the substrate (1) 101 side. In this case, information recording / reproduction is performed.
[0130] 図 1 (b)に示す光記録媒体 200は、基板(1) 201と、反射層(1) 202と、保護コート 層(1) 203と、接着層 204と、保護コート層(2) 205と、反射層(2) 206と、記録層 20 7と、基板(2) 208とが順に積層された層構成を有する。この様な光記録媒体 200は 、基板(1) 201、反射層(1) 202、保護コート層(1) 203をこの順に積層したダミーデ イスク 21と、基板(2) 208、記録層 207、反射層(2) 206、保護コート層(2) 205をこ の順に積層した貼り合わせ用ディスク 22とを、保護コート層(1) 203及び保護コート 層(2) 205を対向させて接着層 204で貼り合わせることにより構成される。そして、基 板(2) 208側力もレーザー光 210を照射することにより、記録層 207で情報の記録 · 再生が行なわれる。  [0130] The optical recording medium 200 shown in FIG. 1 (b) includes a substrate (1) 201, a reflective layer (1) 202, a protective coat layer (1) 203, an adhesive layer 204, and a protective coat layer (2 ) 205, a reflective layer (2) 206, a recording layer 207, and a substrate (2) 208 are stacked in this order. Such an optical recording medium 200 includes a dummy disk 21 in which a substrate (1) 201, a reflective layer (1) 202, and a protective coat layer (1) 203 are laminated in this order, a substrate (2) 208, a recording layer 207, a reflective layer The bonding disk 22 having the layer (2) 206 and the protective coating layer (2) 205 laminated in this order is bonded to the protective coating layer (1) 203 and the protective coating layer (2) 205 with the adhesive layer 204 facing each other. It is configured by pasting together. Then, information on the recording layer 207 is recorded / reproduced by irradiating the laser beam 210 with the side force of the substrate (2) 208 as well.
[0131] 図 1 (c)に示す光記録媒体 300は、基板 301と、反射層 302と、記録層 303と、バリ ァ層 304と、透明榭脂層 305とが順に積層された層構成を有する。この光記録媒体 3 00においては、基板 301側ではなく透明榭脂層 305側力もレーザー光 310を照射 することにより、記録層 303において情報の記録'再生が行なわれる(膜面入射タイ プ)。  [0131] The optical recording medium 300 shown in FIG. 1 (c) has a layer structure in which a substrate 301, a reflective layer 302, a recording layer 303, a barrier layer 304, and a transparent resin layer 305 are sequentially laminated. Have. In this optical recording medium 300, information is recorded and reproduced on the recording layer 303 by irradiating the laser beam 310 not only on the substrate 301 side but also on the transparent resin layer 305 side (film surface incidence type).
[0132] 図 2 (a)に示す光記録媒体 400は、基板(1) 401と、記録層(1) 402と、反射層(1) 403と、中間層 404と、記録層(2) 405と、反射層(2) 406と、接着層 407と、基板(2 ) 408とが順に積層された層構成を有する。また、図 2 (b)に示す光記録媒体 500は、 基板(1) 501と、記録層 (1) 502と、反射層(1) 503と、接着層(中間層) 504と、バリ ァ層 508と、記録層 (2) 505と、反射層(2) 506と、基板(2) 507とが順に積層された 層構成を有する。これらの光記録媒体 400, 500においては、基板(1) 401, 501側 力もレーザー光 410, 510を照射することにより、記録層(1) 402, 502及び記録層( 2) 405, 505にお!/、て情報の記録 ·再生が行なわれる。  An optical recording medium 400 shown in FIG. 2A includes a substrate (1) 401, a recording layer (1) 402, a reflective layer (1) 403, an intermediate layer 404, and a recording layer (2) 405. A reflective layer (2) 406, an adhesive layer 407, and a substrate (2) 408 are sequentially laminated. Also, the optical recording medium 500 shown in FIG. 2 (b) includes a substrate (1) 501, a recording layer (1) 502, a reflective layer (1) 503, an adhesive layer (intermediate layer) 504, and a barrier layer. 508, a recording layer (2) 505, a reflective layer (2) 506, and a substrate (2) 507 are stacked in this order. In these optical recording media 400 and 500, the substrate (1) 401 and 501 side forces are also irradiated with laser light 410 and 510, whereby the recording layers (1) 402 and 502 and the recording layers (2) 405 and 505 are irradiated. ! /, Information is recorded and played back.
[0133] そして、図 1 (a)に示す光記録媒体 100の記録層 (1) 102及び記録層 (2) 108、図 1 (b)に示す光記録媒体 200の記録層 207、図 1 (c)に示す光記録媒体 300の記録 層 303、図 2 (a)に示す光記録媒体 400の記録層(1) 402及び記録層(2) 405、図 2 (b)に示す光記録媒体 500の記録層 (1) 502及び記録層 (2) 505として、上述した 本発明の記録層を適用することができる。また、それらの記録層と組み合わせて、図 1 (a)に示す光記録媒体 100の反射層(1) 103及び反射層(2) 107、図 1 (b)に示す 光記録媒体 200の反射層(1) 202及び反射層(2) 206、図 1 (c)に示す光記録媒体 300の反射層 302、図 2 (a)に示す光記録媒体 400の反射層(1) 403及び反射層(2 ) 406、図 2 (b)に示す光記録媒体 500の反射層(1) 503及び反射層(2) 506として 、上述した本発明の反射層を適用することができる。 Then, the recording layer (1) 102 and the recording layer (2) 108 of the optical recording medium 100 shown in FIG. 1 (a), the recording layer 207 of the optical recording medium 200 shown in FIG. Recording on optical recording medium 300 shown in c) Layer 303, recording layer (1) 402 and recording layer (2) 405 of optical recording medium 400 shown in FIG. 2 (a), recording layer (1) 502 and recording layer of optical recording medium 500 shown in FIG. 2 (b) (2) As the 505, the above-described recording layer of the present invention can be applied. Further, in combination with these recording layers, the reflective layer (1) 103 and the reflective layer (2) 107 of the optical recording medium 100 shown in FIG. 1 (a), and the reflective layer of the optical recording medium 200 shown in FIG. 1 (b) (1) 202 and reflection layer (2) 206, reflection layer 302 of the optical recording medium 300 shown in FIG. 1 (c), reflection layer (1) 403 and reflection layer of the optical recording medium 400 shown in FIG. 2) As the reflective layer (1) 503 and the reflective layer (2) 506 of the optical recording medium 500 shown in 406 and FIG. 2 (b), the above-described reflective layer of the present invention can be applied.
[0134] なお、図 1 (a)〜(c)の光記録媒体 100, 200, 300及び図 2 (a) , (b)の光記録媒 体 400, 500の構成に、種々の変形を加えることも可能である。例えば、本発明の趣 旨を逸脱しない範囲において、上述の各層の他に別の層を設けたり、一部の層を省 略したり、各層の積層順を変更したりしてもよい。具体例としては、図 1 (b)の光記録 媒体 200において、反射層(1) 202及び保護コート層(1) 203を省略し、基板 201を 接着層 204によって直接、貼り合わせ用ディスク 22に貼り合わせる構成としてもよい o更には、図 1 (a) , (b)の光記録媒体 100, 200において、保護コート層(1) 104, 2 03及び保護コート層(2) 106, 205を設けず、その替わりに保護コート層の機能を有 する接着層 105, 204を用いて接着してもよい。  [0134] Various modifications are made to the configurations of the optical recording media 100, 200, 300 in Figs. 1 (a) to (c) and the optical recording media 400, 500 in Figs. 2 (a), (b). It is also possible. For example, other layers may be provided in addition to the above-described layers, some layers may be omitted, or the stacking order of each layer may be changed without departing from the spirit of the present invention. As a specific example, in the optical recording medium 200 of FIG. 1 (b), the reflective layer (1) 202 and the protective coat layer (1) 203 are omitted, and the substrate 201 is directly attached to the bonding disk 22 by the adhesive layer 204. It may be configured to be bonded. O Furthermore, in the optical recording media 100 and 200 of FIGS. 1 (a) and 1 (b), protective coating layers (1) 104 and 203 and protective coating layers (2) 106 and 205 are provided. Instead, the adhesive layers 105 and 204 having the function of a protective coat layer may be used for bonding.
[0135] また、その他の変形例として、基板の鏡面側に、表面保護ゃゴミ等の付着防止のた めに紫外線硬化榭脂層や、無機系薄膜等を成膜してもよい。また、記録再生光の入 射面ではない側の面に、インクジェット、感熱転写等の各種プリンタ或いは各種筆記 用具に記入 (印刷)が可能な印刷受容層を設けてもよい。  [0135] As another modification, an ultraviolet curable resin layer, an inorganic thin film, or the like may be formed on the mirror surface side of the substrate to prevent adhesion of dust or the like. Further, a print receiving layer that can be written (printed) on various printers such as ink jet and thermal transfer or various writing tools may be provided on the surface that is not the incident surface of the recording / reproducing light.
[0136] 本発明の実施の形態に係る光記録媒体における基板の材料としては、基本的には 記録層に至るまでの厚さ方向にぉ 、て、記録光及び再生光の波長で透明であれば よい。  [0136] The material of the substrate in the optical recording medium according to the embodiment of the present invention is basically transparent in the wavelength direction of the recording light and the reproducing light in the thickness direction up to the recording layer. That's fine.
[0137] このような透明な厚み部分を有する材料としては、例えばアクリル系榭脂、メタクリル 系榭脂、ポリカーボネート榭脂、ポリオレフイン系榭脂 (特に非晶質ポリオレフイン)、 ポリエステル系榭脂、ポリスチレン榭脂、エポキシ榭脂等の樹脂からなるもの、ガラス カゝらなるもの、ガラス上に光硬化性榭脂等の放射線硬化性榭脂からなる榭脂層を設 けたもの等を使用することができる。 [0137] Examples of the material having such a transparent thickness portion include acrylic resin, methacrylic resin, polycarbonate resin, polyolefin resin (especially amorphous polyolefin), polyester resin, polystyrene resin, and the like. A resin layer made of resin such as fat or epoxy resin, glass glass, or a radiation curable resin such as photocurable resin on glass. Digits can be used.
[0138] なお、高生産性、コスト、耐吸湿性などの点からは、射出成型ポリカーボネートが好 ましい。耐薬品性、耐吸湿性などの点からは、非晶質ポリオレフインが好ましい。また 、高速応答性などの点からは、ガラス基板が好ましい。  [0138] Injection molded polycarbonate is preferred from the viewpoints of high productivity, cost, moisture absorption resistance, and the like. Amorphous polyolefin is preferred from the standpoint of chemical resistance and moisture absorption resistance. Moreover, a glass substrate is preferable from the viewpoint of high-speed response.
[0139] 記録層に接して榭脂基板又は榭脂層を設け、その榭脂基板又は榭脂層上に記録 再生光の案内溝やピットを有していてもよい。このような案内溝やピットは、基板の成 形時に付与することが好ましいが、基板の上に紫外線硬化榭脂層を用いて付与する こともできる。案内溝力スパイラル状の場合、この溝ピッチが 0. 1〜2. 0 m程度で あることが好ましい。  [0139] A resin substrate or a resin layer may be provided in contact with the recording layer, and a guide groove or pit for recording / reproducing light may be provided on the resin substrate or the resin layer. Such guide grooves and pits are preferably provided at the time of forming the substrate, but can also be provided on the substrate using an ultraviolet curable resin layer. In the case of a guide groove force spiral shape, the groove pitch is preferably about 0.1 to 2.0 m.
[0140] 溝深さは、 AFM (原子間力顕微鏡)測定値で、通常 50nm以上である。 DVD-R のように赤色半導体レーザー光では通常 lOOnm以上である力 特に、低速の 1倍速 (以下、「I X」のように記載する場合がある。)から高速の 8 Xの記録速度の範囲で記 録可能であるためには、溝深さは 120nm以上である。また、溝深さは通常 200nm以 下であり、好ましくは 180nm以下である。溝深さが上記の下限値より大きい場合は、 低速で変調度が出やすぐ溝深さが上記の上限値より小さい場合は、充分な反射率 を確保しやすい。溝幅は、 AFM (原子間力顕微鏡)測定値で、通常 0. 10 m以上 であり、好ましくは 0. 20 m以上である。また、溝幅は 0. 40 m以下が好ましい。尚 、 DVD— Rのように赤色半導体レーザー光での高速記録用途には、溝幅は 0. 28 m以上 0. 34 m以下とすることが更に好ましい。溝幅が上記の下限値より大きい場 合には、プッシュプル信号振幅が充分に得られやすい。また、基板の変形は記録信 号振幅に大きく影響する。このため、溝幅を上記の下限値より大きくすれば、 8 X以 上の高速で記録する場合において、熱干渉の影響を抑え、良好なジッターを得ること が容易となる。更に、記録パワーマージンが広くなり、レーザーパワーの変動に対す る許容値が大きくなる等、記録特性や記録条件が良好となる。溝幅が前記の上限値 より小さい場合には、 I X等の低速記録において、記録マーク内の熱干渉を抑えるこ とができ、良好なジッター値が得られやすい。  [0140] The groove depth is measured by AFM (atomic force microscope) and is usually 50 nm or more. Red semiconductor laser light, such as DVD-R, normally has a power of lOOnm or more, especially in the range of low 1x speed (hereinafter sometimes referred to as “IX”) to high speed 8 X recording speed. To be recordable, the groove depth is 120 nm or more. Further, the groove depth is usually 200 nm or less, preferably 180 nm or less. If the groove depth is larger than the above lower limit value, the degree of modulation is low, and if the groove depth is smaller than the upper limit value, it is easy to ensure a sufficient reflectivity. The groove width is measured by AFM (Atomic Force Microscope) and is usually at least 0.10 m, preferably at least 0.20 m. The groove width is preferably 0.40 m or less. For high-speed recording with red semiconductor laser light such as DVD-R, the groove width is more preferably 0.28 m or more and 0.34 m or less. When the groove width is larger than the lower limit, the push-pull signal amplitude can be obtained sufficiently. Moreover, the deformation of the substrate greatly affects the recording signal amplitude. For this reason, if the groove width is made larger than the above lower limit, it becomes easy to suppress the influence of thermal interference and obtain good jitter when recording at a high speed of 8 X or more. Furthermore, the recording power margin is widened and the tolerance for fluctuations in laser power is increased, so that the recording characteristics and recording conditions are improved. When the groove width is smaller than the above upper limit value, thermal interference in the recording mark can be suppressed in low-speed recording such as IX, and a good jitter value is easily obtained.
[0141] 本発明の実施の形態に係る光記録媒体には、アドレス情報、媒体の種類の情報、 記録パルス条件、及び最適記録パワー等の情報を記録することができる。これらの情 報を記録する形態としては、例えば、 DVD-R, DVD +Rの規格書に記載されてい る LPP (Land Pre- Pit)や ADIP (Address in Pre- groove)のフォーマット等を用いれば よい。 [0141] Information such as address information, medium type information, recording pulse conditions, and optimum recording power can be recorded on the optical recording medium according to the embodiment of the present invention. These emotions As a form for recording the information, for example, the LPP (Land Pre-Pit) or ADIP (Address in Pre-groove) format described in the DVD-R and DVD + R standards may be used.
[0142] 記録層の材料、混合の割合及び膜厚については上述の通りである。尚、溝間部の 膜厚は、溝内の膜厚よりも小さいことが好ましい。  [0142] The recording layer material, mixing ratio, and film thickness are as described above. In addition, it is preferable that the film thickness of the part between the grooves is smaller than the film thickness in the grooves.
[0143] 記録層の成膜方法としては、真空蒸着法、スパッタリング法、ドクターブレード法、キ ヤスト法、スピンコート法、浸漬法等一般に行われている薄膜形成法が挙げられるが 、量産性、コスト面からはスピンコート法が好ましい。また厚みの均一な記録層が得ら れるという点力もは、塗布法より真空蒸着法の方が好ましい。  [0143] Examples of the method for forming the recording layer include generally used thin film forming methods such as a vacuum deposition method, a sputtering method, a doctor blade method, a cast method, a spin coating method, and an immersion method. The spin coating method is preferable from the viewpoint of cost. Also, the vacuum deposition method is preferable to the coating method from the viewpoint of obtaining a recording layer having a uniform thickness.
[0144] スピンコート法による成膜の場合、回転数は 10〜15000rpmが好ましぐスピンコ ートの後、加熱或 、は溶媒蒸気にあてる等の処理を行なってもよ 、。  [0144] In the case of film formation by a spin coating method, after a spin coat where the rotational speed is preferably 10 to 15000 rpm, a treatment such as heating or application to a solvent vapor may be performed.
[0145] ドクターブレード法、キャスト法、スピンコート法、浸漬法等の塗布方法により記録層 を形成する場合の塗布溶媒としては、基板を侵さない溶媒であればよぐ特に限定さ れない。例えば、ジアセトンアルコール、 3 ヒドロキシ一 3—メチル 2 ブタノン等 のケトンアルコール系溶媒;メチルセ口ソルブ、ェチルセ口ソルブ等のセロソルブ系溶 媒; n—へキサン、 n—オクタン等の鎖状炭化水素系溶媒;シクロへキサン、メチルシク 口へキサン、ェチルシクロへキサン、ジメチルシクロへキサン、 n—ブチルシクロへキサ ン、 tert—プチルシクロへキサン、シクロオクタン等の環状炭化水素系溶媒;テトラフ ノレォロプロパノール、オタタフノレォロペンタノール、へキサフノレオロブタノ一ノレ等のノ 一フルォロアルキルアルコール系溶媒;乳酸メチル、乳酸ェチル、 2—ヒドロキシイソ 酪酸メチル等のヒドロキシカルボン酸エステル系溶媒等が挙げられる。  [0145] The coating solvent for forming the recording layer by a coating method such as a doctor blade method, a casting method, a spin coating method, or a dipping method is not particularly limited as long as it does not attack the substrate. For example, ketone alcohol solvents such as diacetone alcohol and 3-hydroxyl-3-methyl-2-butanone; cellosolve solvents such as methylcetosolve and ethylcetosolve; chain hydrocarbons such as n-hexane and n-octane Solvents; Cyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, n-butylcyclohexane, tert-butylcyclohexane, cyclooctane; tetrafluoropropanol, ota Non-fluoroalkyl alcohol solvents such as tafanolopentanol and hexafnoreorobutanol monole; hydroxycarboxylic acid ester solvents such as methyl lactate, ethyl lactate and methyl 2-hydroxyisobutyrate It is done.
[0146] 真空蒸着法の場合は、例えば有機色素と、必要に応じて各種添加剤等の記録層 成分を、真空容器内に設置された坩堝に入れ、真空容器内を適当な真空ポンプで 1 0_210_5Pa程度にまで排気した後、坩堝を加熱して記録層成分を蒸発させ、坩堝 と向き合って置かれた基板上に蒸着させることにより、記録層を形成する。 [0146] In the case of the vacuum deposition method, for example, an organic dye and recording layer components such as various additives as necessary are put in a crucible installed in a vacuum vessel, and the inside of the vacuum vessel is filled with an appropriate vacuum pump. After evacuating to about 0 — 2 to 105 Pa, the crucible is heated to evaporate the components of the recording layer, and vapor deposited on a substrate placed facing the crucible to form a recording layer.
[0147] 記録層は、前述の、記録層の安定ゃ耐光性向上のための化合物の他に、通常 CD —Rに用いられるような波長 770〜830nm程度の近赤外レーザーや、 DVD—Rに 用いられるような波長 620〜690nm程度の赤色レーザー、或いは波長 410nmや 51 5nmなどのいわゆるブルーレーザーなど、複数の波長の記録光に対し、各々を用い ての記録に適する色素を併用して、複数の波長域でのレーザー光による記録に対応 する光記録媒体とすることもできる。 [0147] In addition to the above-mentioned compounds for improving the stability and light resistance of the recording layer, the recording layer may be a near-infrared laser having a wavelength of about 770 to 830 nm, which is usually used for CD-R, or a DVD-R. A red laser with a wavelength of about 620 to 690 nm, or a wavelength of 410 nm or 51 A recording medium with multiple wavelengths, such as a so-called blue laser of 5 nm, should be used in combination with a dye suitable for recording using each of the recording media to provide an optical recording medium that supports recording with laser light in multiple wavelength ranges. You can also.
[0148] 併用可能な色素としては、上記特定の特性又は構造を有するァゾ金属キレート色 素と同系統の、ァゾ系色素又はァゾ系金属キレート色素、シァニン系色素、スクァリリ ゥム系色素、ナフトキノン系色素、アントラキノン系色素、ポルフィリン系色素、テトラビ ラボルフイラジン系色素、インドフエノール系色素、ピリリウム系色素、チォピリリウム系 色素、ァズレニウム系色素、トリフエ-ルメタン系色素、キサンテン系色素、インダンス レン系色素、インジゴ系色素、チォインジゴ系色素、メロシアニン系色素、ビスピロメ テン系色素、チアジン系色素、アタリジン系色素、ォキサジン系色素、インドア二リン 系色素等が挙げられ、他系統の色素でもよい。また、色素の熱分解促進剤としては、 例えば、金属系アンチノッキング剤、メタ口センィ匕合物、ァセチルァセトナート系金属 錯体等の金属化合物が挙げられる。 [0148] Examples of dyes that can be used in combination include azo dyes or azo metal chelate dyes, cyanine dyes, squalium dyes of the same type as the azo metal chelate dyes having the specific characteristics or structures described above. , Naphthoquinone dyes, anthraquinone dyes, porphyrin dyes, tetrabiborfylazine dyes, indophenol dyes, pyrylium dyes, thiopyrylium dyes, azurenium dyes, triphenylmethane dyes, xanthene dyes, indanthrene dyes Indigo dyes, thioindigo dyes, merocyanine dyes, bispyromethene dyes, thiazine dyes, atrazine dyes, oxazine dyes, indoor diphosphate dyes and the like, and other dyes may be used. Examples of the thermal decomposition accelerator for the dye include metal compounds such as a metal anti-knock agent, a metamouth compound, and an acetylethylacetonate metal complex.
[0149] 更に、本発明の記録層には、必要に応じて、ノインダー、レべリング剤、消泡剤等 を併用することもできる。好ましいバインダーとしては、ポリビュルアルコール、ポリビ -ルピロリドン、ニトロセルロース、酢酸セルロース、ケトン系榭脂、アクリル系榭脂、ポ リスチレン系榭脂、ウレタン系榭脂、ポリビニルブチラール、ポリカーボネート、ポリオ レフイン等が挙げられる。  [0149] Further, a noinder, a leveling agent, an antifoaming agent and the like can be used in combination with the recording layer of the present invention, if necessary. Preferable binders include polybutyl alcohol, polyvinyl pyrrolidone, nitrocellulose, cellulose acetate, ketone series resin, acrylic series resin, polystyrene series resin, urethane series resin, polyvinyl butyral, polycarbonate, and polyolefin. Can be mentioned.
[0150] 反射層の材料及び組成は、上述の通りである。  [0150] The material and composition of the reflective layer are as described above.
反射層を形成する方法としては、スパッタリング法、イオンプレーティング法、化学 蒸着法、真空蒸着法等が挙げられる。  Examples of the method for forming the reflective layer include sputtering, ion plating, chemical vapor deposition, and vacuum vapor deposition.
反射層の膜厚は、記録特性や工業生産等を考慮して以下の範囲とする。つまり、 反射層の膜厚は、通常 50nm以上、好ましくは 60nm以上、一方、通常 300nm以下 、好ましくは 250nm以下、より好ましくは 200nm以下とする。  The thickness of the reflective layer is set to the following range in consideration of recording characteristics and industrial production. That is, the thickness of the reflective layer is usually 50 nm or more, preferably 60 nm or more, while it is usually 300 nm or less, preferably 250 nm or less, more preferably 200 nm or less.
[0151] また、反射層の膜の荒さ (粒径)は金の薄膜並かそれ以下の程度に小さい方が、耐 侯性や反射率の観点から好ま 、。特に記録再生光波長が短!、高密度記録の場合 、アルミニウムの場合にはその荒さが大きくなりやすいので、合金化により平滑性を向 上させる工夫が必要である。また、反射層の膜の荒さを低減するためには、スパッタ 時のアルゴン圧を小さくするなどの工夫も挙げられる。 [0151] In addition, the roughness (particle size) of the reflective layer is preferably as small as that of a gold thin film or less from the viewpoint of weather resistance and reflectance. In particular, the recording / reproducing light wavelength is short, and in the case of high-density recording, the roughness of aluminum is likely to increase. Therefore, it is necessary to improve the smoothness by alloying. In order to reduce the roughness of the reflective layer, sputtering Another idea is to reduce the argon pressure at the time.
[0152] 反射層の上に形成する保護層の材料としては、反射層を外力から保護するもので あれば特に限定されない。有機物質の材料としては、熱可塑性榭脂、熱硬化性榭脂 、電子線硬化性榭脂、 UV硬化性榭脂等を挙げることができる。また、無機物質として は、 SiO、 SiN、 MgF、 SnO等が挙げられる。  [0152] The material of the protective layer formed on the reflective layer is not particularly limited as long as it protects the reflective layer from external force. Examples of the organic material include thermoplastic resin, thermosetting resin, electron beam curable resin, and UV curable resin. Examples of inorganic substances include SiO, SiN, MgF, and SnO.
2 4 2 2  2 4 2 2
[0153] 熱可塑性榭脂、熱硬化性榭脂などは適当な溶剤に溶解して塗布液を塗布し、乾燥 すること〖こよって形成することができる。 UV硬化性榭脂は、そのままもしくは適当な溶 剤に溶解して塗布液を調製した後にこの塗布液を塗布し、 UV光を照射して硬化さ せること〖こよって形成することができる。 UV硬化性榭脂としては、例えば、ウレタンァ タリレート、エポキシアタリレート、ポリエステルアタリレートなどのアタリレート系榭旨を 用いることができる。これらの材料は単独で或いは混合して用いてもよいし、 1層だけ ではなく多層膜にして用いてもょ 、。  [0153] Thermoplastic resin, thermosetting resin, and the like can be formed by dissolving in an appropriate solvent, applying a coating solution, and drying. The UV curable resin can be formed by preparing a coating solution as it is or by dissolving it in a suitable solvent, coating the coating solution, and curing it by irradiating with UV light. As the UV curable resin, for example, an acrylate-based effect such as urethane phthalate, epoxy acrylate or polyester acrylate can be used. These materials may be used alone or in combination, or they may be used as a multilayer film instead of just one layer.
[0154] 保護層の形成方法としては、記録層と同様にスピンコート法やキャスト法等の塗布 法やスパッタ法ゃィ匕学蒸着法等の方法が用いられるが、この中でもスピンコート法が 好ましい。  [0154] As a method for forming the protective layer, a coating method such as a spin coating method and a casting method, a sputtering method, a chemical vapor deposition method, and the like are used as in the recording layer. Among these, a spin coating method is preferable. .
[0155] 保護層の膜厚は、通常 0. 1 μ m以上、好ましくは 3 m以上が好ましい。一方、保 護層の膜厚は、通常 100 /z m以下、好ましくは 30 /z m以下である。  [0155] The thickness of the protective layer is usually 0.1 μm or more, preferably 3 m or more. On the other hand, the thickness of the protective layer is usually 100 / zm or less, preferably 30 / zm or less.
[0156] 記録 ·再生に使用するレーザーに特に限定はないが、例えば、可視領域の広範囲 で波長選択のできる色素レーザー、波長 633nmのヘリウムネオンレーザー、最近開 発されている波長 680、 660、 650、 635nm付近の高出力半導体レーザー、波長 5 32nmの高調波変換 YAGレーザー、 405nm付近の青色半導体レーザー等が挙げ られる。中でも、軽量性、取り扱いの容易さ、コンパクト性、コスト等の点で、半導体レ 一ザ一が好適である。本発明の実施の形態に係る光記録媒体は、これらの中から選 択される一波長又は複数波長において、高密度記録及び再生が可能となる。  [0156] There are no particular restrictions on the laser used for recording and playback, but for example, a dye laser capable of wavelength selection over a wide range in the visible region, a helium-neon laser with a wavelength of 633 nm, and a recently developed wavelength of 680, 660, 650 High power semiconductor lasers around 635 nm, harmonic conversion YAG lasers with a wavelength of 532 nm, blue semiconductor lasers around 405 nm, and the like. Among these, a semiconductor laser is preferable in terms of lightness, ease of handling, compactness, cost, and the like. The optical recording medium according to the embodiment of the present invention enables high-density recording and reproduction at one wavelength or a plurality of wavelengths selected from these.
[0157] 本発明の実施の形態に係る光記録媒体への記録は、通常、基板の両面又は片面 に設けた記録層に 1 μ m程度に集束したレーザー光を照射することにより行なう。レ 一ザ一光が照射された部分の記録層は、レーザー光エネルギーの吸収による昇温 の結果、分解、発熱、溶融等の記録層の熱的変化が起こり、位相差や光学定数等の 光学特性が変化する。 [0157] Recording on the optical recording medium according to the embodiment of the present invention is usually performed by irradiating a recording layer provided on both sides or one side of the substrate with laser light focused to about 1 μm. As a result of the temperature rise due to the absorption of laser light energy, the recording layer irradiated with laser light undergoes thermal changes in the recording layer, such as decomposition, heat generation, and melting. The optical characteristics change.
[0158] 記録された情報の再生は、再生用のレーザー光を照射して、光学特性の変化が起 きて 、る部分と起きて 、な 、部分の反射率の差を読みとることにより行なう。  [0158] The recorded information is reproduced by irradiating a reproduction laser beam and reading the difference in reflectance between the part and the part where the optical characteristics change.
[0159] [III.本発明の基本概念 2]  [III. Basic concept of the present invention 2]
なお、上記一般式(1)で表わされるァゾ系化合物と Znの金属イオンと力 なるァゾ 金属キレート色素は、上記 [I.本発明の基本概念 1]で述べた光記録媒体 (本発明の 第 1の光記録媒体)に制限されず、同心円状又はスパイラル状の溝を有する基板上 に、少なくとも有機色素を含有する記録層及び金属を含有する反射層を有し、最短 マーク長が 0. 未満である、或いは、 35. OmZs以上の記録線速度において記 録を行なう光記録媒体において、前記記録層の有機色素として広く用いることが可 能である。  The azo compound represented by the above general formula (1), the metal ion of Zn, and the azo metal chelate dye which is powerful, are the optical recording media described in [I. Basic concept 1 of the present invention] (the present invention). The first optical recording medium is not limited to this, and has a recording layer containing at least an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves, and the shortest mark length is 0. In an optical recording medium for recording at a recording linear velocity of 35.OmZs or more, it can be widely used as an organic dye for the recording layer.
[0160] 即ち、本発明の別の光記録媒体は、同心円状又はスパイラル状の溝を有する基板 上に、少なくとも有機色素を含有する記録層及び金属を含有する反射層を有し、最 短マーク長が 0. 未満である、或いは、 35. OmZs以上の記録線速度において 記録を行なう光記録媒体であって、前記記録層の有機色素が、上記一般式(1)で表 わされるァゾ系化合物と Znの金属イオンと力 なるァゾ金属キレート色素であるもの である (これを以下「本発明の第 2の光記録媒体」という場合がある。 )0本発明の第 2 の光記録媒体によれば、特にライフ特性 (長期保存安定性、及び高温高湿下におけ る保存安定性)に優れる t ヽぅ利点が得られる。 [0160] That is, another optical recording medium of the present invention has a recording layer containing at least an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves. Or an optical recording medium for recording at a recording linear velocity of 35 OmZs or more, wherein the organic dye of the recording layer is an azo compound represented by the general formula (1) A compound based on Zn and a metal ion of Zn and a powerful azo metal chelate dye (this may be hereinafter referred to as “the second optical recording medium of the present invention”). 0 Second optical recording of the present invention According to the medium, it is possible to obtain an advantage of particularly excellent life characteristics (long-term storage stability and storage stability under high temperature and high humidity).
[0161] なお、本発明の第 2の光記録媒体における、上記一般式(1)で表わされるァゾ系化 合物の詳細や具体例、及び、当該ァゾ系化合物と Zn金属イオンとからなるァゾ金属 キレート色素の詳細や具体例は、上記 [I.本発明の基本概念 1]の欄で説明したもの と同様である。  [0161] The details and specific examples of the azo compound represented by the general formula (1) in the second optical recording medium of the present invention, and the azo compound and Zn metal ion The details and specific examples of the azo metal chelate dye are the same as those described in the above section [I. Basic concept 1 of the present invention].
[0162] なお、本発明の第 2の光記録媒体においても、当該光記録媒体の反射層を、上記 組成 (A)で表される材料を含有するように構成することが好ま ヽ。こうした構成の光 記録媒体によれば、反射率の低下を最小限に抑制でき、かつライフ特性に優れると いう利点が得られる。  [0162] Note that, also in the second optical recording medium of the present invention, it is preferable that the reflective layer of the optical recording medium includes the material represented by the composition (A). According to the optical recording medium having such a configuration, it is possible to obtain the advantages that the decrease in reflectance can be suppressed to the minimum and the life characteristics are excellent.
なお、本発明の第 2の光記録媒体における、上記組成 (A)の詳細や具体例も、上 記 [L本発明の基本概念 1]の欄で説明したものと同様である。 Details and specific examples of the composition (A) in the second optical recording medium of the present invention are also shown above. This is the same as that described in the section of [L Basic concept 1 of the present invention].
[0163] [IV.本発明の基本概念 3]  [0163] [IV. Basic concept of the present invention 3]
また、上述の組成 Bで表される材料を少なくとも有するスパッタリングターゲットも、 上記 [I.本発明の基本概念 1]で述べた光記録媒体 (本発明の第 1の光記録媒体)の 反射層の形成に制限されず、同心円状又はスパイラル状の溝を有する基板上に、少 なくとも有機色素を含有する記録層及び金属を含有する反射層を有する光記録媒体 において、前記反射層を形成する際に広く用いることが可能である。  Further, the sputtering target having at least the material represented by the above-mentioned composition B is also used for the reflective layer of the optical recording medium (first optical recording medium of the present invention) described in [I. Basic concept 1 of the present invention]. When the reflective layer is formed in an optical recording medium having a recording layer containing at least an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves, the invention is not limited thereto. It can be used widely.
[0164] 即ち、本発明のスパッタリングターゲットは、同心円状又はスパイラル状の溝を有す る基板上に、少なくとも有機色素を含有する記録層及び金属を含有する反射層を有 する光記録媒体にぉ 、て、前記反射層を形成する際に用いられるスパッタリングター ゲットであって、上述の組成 Bで表される材料を少なくとも有するものである。本発明 のスパッタリングターゲットによれば、反射率の低下を最小限に抑制でき、かつライフ 特性に優れる高品質な媒体を提供できることに加えて、さらに安価に製造できるとい う利点が得られる。  That is, the sputtering target of the present invention is applied to an optical recording medium having a recording layer containing at least an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves. A sputtering target used for forming the reflective layer, which has at least the material represented by the composition B described above. According to the sputtering target of the present invention, it is possible to provide a high-quality medium that can suppress a decrease in reflectivity to a minimum and is excellent in life characteristics, and can be manufactured at a lower cost.
なお、本発明のスパッタリングターゲットにおける、上述の組成 Bの詳細や具体例は 、上記 [I.本発明の基本概念 1]の欄で説明したものと同様である。  The details and specific examples of the above-mentioned composition B in the sputtering target of the present invention are the same as those described in the above section [I. Basic concept 1 of the present invention].
[0165] なお、本発明のスパッタリングターゲットは、前記有機色素が、上述の一般式(1)で 表わされるァゾ系化合物と Ni, Znの金属イオンと力もなるァゾ金属キレート色素であ る光記録媒体の反射層の形成に、とりわけ好適に用いられる。このような光記録媒体 の反射層の形成に本発明のスパッタリングターゲットを用いることにより、従来の製造 プロセスを、ほとんど変更することなく媒体を安価に製造できるという利点が得られる [0165] In the sputtering target of the present invention, the organic dye is a light that is an azo metal chelate dye that also has the power of the azo compound represented by the general formula (1) and the metal ions of Ni and Zn. It is particularly preferably used for forming a reflective layer of a recording medium. By using the sputtering target of the present invention for the formation of the reflective layer of such an optical recording medium, there is an advantage that the medium can be manufactured at a low cost without almost changing the conventional manufacturing process.
[0166] [V.本発明の基本概念 4] [0166] [V. Basic Concept of the Invention 4]
また、上記一般式(1)で表わされるァゾ系化合物と Znの金属イオンと力 なるァゾ 金属キレート色素は、同心円状又はスパイラル状の溝を有する基板上に、少なくとも 有機色素を含有する記録層及び金属を含有する反射層を有し、最短マーク長が 0. 未満である、或いは、 35. OmZs以上の記録線速度において記録を行なう光 記録媒体の前記有機色素として、広く好適に用いることが可能である。 上記一般式(1)で表わされるァゾ系化合物と Znの金属イオンと力 なるァゾ金属キ レート色素を、以下「本発明の色素」と呼ぶ。本発明の色素を上述の高速記録又は 高密度記録の光記録媒体に用いることにより、従来と比較して低ジッター、低エラー レート、及び広記録マージンを達成できると 、う利点が得られる。 In addition, the azo compound represented by the above general formula (1), the metal ion of Zn, and the azo metal chelate dye, which is powerful, are recorded on a substrate having concentric or spiral grooves. A layer and a reflective layer containing a metal, and the shortest mark length is less than 0, or 35. Widely and suitably used as the organic dye of an optical recording medium for recording at a recording linear velocity of OmZs or higher. Is possible. The azo compound represented by the above general formula (1) and the azo metal chelate dye which is composed of Zn metal ions are hereinafter referred to as “the dye of the present invention”. By using the dye of the present invention in the above-mentioned optical recording medium for high-speed recording or high-density recording, there can be obtained an advantage that a low jitter, a low error rate, and a wide recording margin can be achieved as compared with the prior art.
なお、本発明の色素が有する、上記一般式(1)で表わされるァゾ系化合物の詳細 や具体例、及び、本発明の色素の詳細や具体例は、上記 [I.本発明の基本概念 1] の欄で説明したものと同様である。  The details and specific examples of the azo compound represented by the above general formula (1) possessed by the dye of the present invention and the details and specific examples of the dye of the present invention are described in [I. Basic concept of the present invention]. This is the same as that described in the section 1].
実施例  Example
[0167] 以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えな い限り、以下の実施例に限定されるものではない。  [0167] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
[0168] [単層色素保持率の測定法]  [0168] [Measurement method of monolayer dye retention]
以下の各実施例及び比較例において、特に断らない限り、色素保持率の測定は以 下の手順で行なった。  In each of the following Examples and Comparative Examples, the dye retention was measured according to the following procedure unless otherwise specified.
まず、鏡面加工を施したポリカーボネート製の基板を用意した。測定対象となる色 素混合物の濃度 1. 4重量0 /0のテトラフルォロブロノ V—ル (以下「TFP」という。)溶 液を用いて、以下の各実施例及び比較例における色素層の作製と同様にスピンコー トを実施した。得られた色素単層の小片を切り取り、分光光度計 (UV— VIS)を用い て、吸光度の波長分散の測定を行なった。得られた吸光度の最大値を初期値とした First, a polycarbonate substrate having a mirror finish was prepared. Tetrafluoropropoxy O Lovro Bruno V- le concentration 1.4 wt 0/0 color containing mixture to be measured (hereinafter referred to as "TFP".) Dissolved solution with the dye layer in the following Examples and Comparative Examples Spin coating was carried out in the same manner as in the above. A small piece of the obtained dye monolayer was cut out and the wavelength dispersion of absorbance was measured using a spectrophotometer (UV-VIS). The maximum value of the obtained absorbance was used as the initial value.
[0169] 次に、耐光性試験機 (東洋精機製サンテスト XLS + )を用いて、 Wool scale 5級を 満たす積算照射を測定し、装置を校正した。その照射強度の光を上述の色素単層 の小片に照射し、再び、分光光度計で吸光度の波長分散を測定した。ここで得られ た吸光度の最大値と、上述の初期値との比率を色素保持率とした。以下の各実施例 及び比較例では、 2200Wのキセノンランプを放射強度 550WZm2で 40時間照射 することが、 Wool [0169] Next, using a light resistance tester (Suntest XLS + manufactured by Toyo Seiki Co., Ltd.), integrated irradiation satisfying Wool scale class 5 was measured, and the apparatus was calibrated. The small piece of the dye single layer was irradiated with light having the irradiation intensity, and the wavelength dispersion of the absorbance was again measured with a spectrophotometer. The ratio between the maximum absorbance obtained here and the above-mentioned initial value was defined as the dye retention. In each of the following examples and comparative examples, it is possible to irradiate a 2200 W xenon lamp with a radiation intensity of 550 WZm 2 for 40 hours.
scale 5級を満たす設定条件であった。  It was a setting condition that satisfies scale 5.
[0170] [反射率の測定法] [0170] [Reflectance measurement method]
以下の各実施例及び比較例において、特に断らない限り、反射層の空気中の反射 率の測定は、以下の手順で行なった。即ち、反射層の材料をスライドガラスにスパッ タしたサンプルを用い、膜面力も反射率測定光を照射した (装置:日立 U3010型分 光光度計、測定モード:反射測定モード、スキャンスピード: 300nmZmin、スリット: lnm)。得られた反射率の測定値より、波長え = 300nm〜500nmに対する dRZd λを算出し、その最大値 dRZd (max)を求めた。 In each of the following examples and comparative examples, unless otherwise specified, the reflection of the reflective layer in the air The rate was measured according to the following procedure. That is, using a sample in which the material of the reflective layer was sputtered onto a slide glass, the film surface force was also irradiated with reflectance measurement light (apparatus: Hitachi U3010 spectrophotometer, measurement mode: reflection measurement mode, scan speed: 300 nmZmin, Slit: lnm). From the obtained reflectance measurement value, dRZd λ for wavelength = 300 nm to 500 nm was calculated, and the maximum value dRZd (max) was obtained.
[0171] [実施例 1] [Example 1]
トラックピッチ 0. 74 111、溝幅32011111、溝深さ16011111の案内溝を有する厚さ0. 6 mmのポリカーボネート製の支持基板上に、色素 A (下記構造式 (a)に示すァゾ系化 合物 2個とニッケルとからなるァゾ金属キレート色素) 40重量%と色素 B (下記構造式 (b)に示すァゾ系化合物 2個と亜鉛(2価イオン: Zn2+)とからなるァゾ金属キレート色 素) 60重量%からなる記録層(溝内膜厚 50nm)を、吸光度(Optical Density:空気を リファレンスとして測定した、波長 598nmにおける吸光度) 0. 65を示す厚みとなるよ うに、スピンコート法により設けた。尚、塗布溶液は、濃度 1. 3重量%の TFP溶液で あり、スピンコートの回転数は 1000rpm〜2500rpmであった。次いで、その上に銅( Cu)をスパッタ法により堆積させ、 120nmの厚みの Cu反射層を形成した。スパッタの 際に、通常良く知られている反射層の成膜条件よりもアルゴン圧を小さくして、投入パ ヮーを高くした。更に、この反射層の上に、紫外線硬化性榭脂(日本化薬 (株)製 KA YARADOn a support substrate made of polycarbonate with a thickness of 0.6 mm having a guide groove with a track pitch of 0.774 111, a groove width of 32011111, and a groove depth of 16011111, dye A (an azo system represented by the following structural formula (a)) 40% by weight of azo metal chelate dye comprising two compounds and nickel, and dye B (two azo compounds represented by the following structural formula (b) and zinc (divalent ion: Zn 2+ ) A recording layer (film thickness in the groove: 50 nm) composed of 60% by weight of the light-absorbing metal chelate pigment) has an absorbance (Optical Density: Absorbance at a wavelength of 598 nm measured with air as a reference). And provided by a spin coating method. The coating solution was a TFP solution having a concentration of 1.3% by weight, and the spin coating rotation speed was 1000 rpm to 2500 rpm. Next, copper (Cu) was deposited thereon by sputtering to form a 120 nm thick Cu reflective layer. At the time of sputtering, the argon pressure was made lower than the well-known conditions for forming the reflective layer, and the input power was increased. Furthermore, on this reflective layer, UV curable resin (KA YARAD manufactured by Nippon Kayaku Co., Ltd.)
SPC— 920)をスピンコートし硬化させて 10 mの保護層を形成した。こうして得られ た積層体を 2枚用意して、 UV硬化型接着剤(ソニーケミカル製 SK7100)を用いて、 基板が外側になるように 2枚貼り合わせることにより、光記録媒体を作製した。 SPC-920) was spin coated and cured to form a 10 m protective layer. Two sheets of the laminate thus obtained were prepared, and an optical recording medium was prepared by bonding two sheets using a UV curable adhesive (SK7100, manufactured by Sony Chemical Corporation) so that the substrate was on the outside.
[0172] [化 12] [0172] [Chemical 12]
Figure imgf000048_0001
( a ) [0173] 尚、色素 Aと色素 Bそれぞれの色素単層塗布膜の色素保有率は、それぞれ 90. 4
Figure imgf000048_0001
(a) [0173] The dye retention rates of the dye single-layer coating films of the dye A and the dye B are respectively 90.4
%と 0%であり、記録層単層の色素保持率は 56%であった。 % And 0%, and the dye retention of the recording layer single layer was 56%.
[0174] また、上述の手法により、 Cu反射層単層の反射率及び dRZd λの値を測定した。 [0174] Further, the reflectivity of the single Cu reflective layer and the value of dRZd λ were measured by the method described above.
その結果をそれぞれ図 8及び図 9 (a)のグラフに示す。 Cu反射層単層の 300ηπ!〜 5 The results are shown in the graphs of FIG. 8 and FIG. 9 (a), respectively. 300ηπ of Cu reflective layer single layer! ~ Five
OOnmの反射率は 29%〜56%であった(図 8)。また、同波長域における dRZd λ ( max)の値は 0. 36であった(図 9 (a) )。 The reflectivity of OOnm was 29% to 56% (Fig. 8). The value of dRZd λ (max) in the same wavelength range was 0.36 (Fig. 9 (a)).
[0175] 得られた光記録媒体に対し、波長 650nm、開口数 0. 65の記録再生装置で DVD-[0175] For the obtained optical recording medium, a DVD-
R R
specification for General Ver.2.1や DVD+R specification  specification for General Ver.2.1 and DVD + R specification
Ver.1.20に準拠した記録パルスストラテジー条件を用いて、記録速度 56. Om/s (D VD—Rの 16倍速)において、最短マーク長が 0. 4 μ mである EFMプラス変調のラ ンダム信号記録を行なった。なお、 3Tマーク長記録用のレーザーの照射パルス幅は 、 6. 5nsであった。そして、同じ評価機を用いて記録した部分の信号を再生し、マー ジン(ジッターの記録パワーマージン及びジッターのアシンメトリーマージン)を測定し た。また、「実用上の」耐光性の評価 (キセノン照射前後の記録特性評価)のための記 録は、 8倍速記録を行ない、その記録部分のジッター(data to clock jitter)の最小値 (最も良好なジッター特性値。以下「ボトムジッター」という。)、及び PI (Parity of Inner -code)エラーの最大値(以下「PI max」という。)を DVD— ROM検査機 (株式会社 シバソク製  EFM plus modulation random signal with a minimum mark length of 0.4 μm at a recording speed of 56. Om / s (16 times the speed of DVD—R) using the recording pulse strategy conditions compliant with Ver.1.20. Recorded. The irradiation pulse width of the laser for recording the 3T mark length was 6.5 ns. The recorded signal was reproduced using the same evaluator, and the margins (jitter recording power margin and jitter asymmetry margin) were measured. In addition, recording for evaluation of “practical” light resistance (evaluation of recording characteristics before and after xenon irradiation) is performed at 8 × speed, and the minimum value of jitter (data to clock jitter) of the recorded part (best) Jitter characteristic value (hereinafter referred to as “bottom jitter”) and the maximum value of PI (Parity of Inner-code) error (hereinafter referred to as “PI max”) is a DVD-ROM inspection machine (manufactured by Shibasoku Co., Ltd.).
LM2 20A)で測定した。  LM2 20A).
[0176] 記録パワーマージンの測定結果を図 4 (a)のグラフに、アシンメトリーマージンの測 定結果を図 4 (b)のグラフにそれぞれ示す。図 4 (a) , (b)から明らかなように、 Cu反 射層を用いた本実施例の光記録媒体は、ボトムジッターが 7%と極めて良好であった 。また、ジッターが 9%以下となるアシンメトリーマージンが 18%程度、ジッターが 8% 以下となるアシンメトリーマージンが 10%以上であり、アシンメトリー 5%近傍でもジッ ターが 8%前後と、非常に良好であった。  [0176] The measurement result of the recording power margin is shown in the graph of Fig. 4 (a), and the measurement result of the asymmetry margin is shown in the graph of Fig. 4 (b). As is clear from FIGS. 4 (a) and 4 (b), the optical recording medium of this example using a Cu reflecting layer had an extremely good bottom jitter of 7%. In addition, the asymmetry margin for which jitter is 9% or less is about 18%, the asymmetry margin for which jitter is 8% or less is 10% or more, and jitter is around 8% even in the vicinity of 5% asymmetry. It was.
[0177] また、ボトムジッターの耐光性試験前後の測定結果を図 4 (c)のグラフに、 PI max の測定結果を図 4 (d)のグラフにそれぞれ示す。図 4 (c) , (d)から明らかなように、 C u反射層を用いた本実施例の光記録媒体は、キセノン照射時間 40時間 (Wool scale 5級)でも、ボトムジッターはわずかに増加したものの、 PI maxが全く増加せず 、後述の Ag反射層の場合に比べて、「実用上の」耐光性が非常に改善されているこ とがわかる。 [0177] The measurement results before and after the light resistance test for bottom jitter are shown in the graph of Fig. 4 (c), and the measurement result of PI max is shown in the graph of Fig. 4 (d). As is clear from Fig. 4 (c) and (d), C u The optical recording medium of this example using a reflective layer had a slight increase in bottom jitter even after xenon irradiation time of 40 hours (Wool scale grade 5), but PI max did not increase at all. It can be seen that the “practical” light resistance is greatly improved compared to the case of.
[0178] [実施例 2] [0178] [Example 2]
実施例 1において、反射層の材料を金 (Au)に変え、その膜厚を 90nmに変えた他 は、同様の手順により光記録媒体を作製した。得られた光記録媒体に対して、実施 例 1と同様な条件で記録、再生を実施し、耐光性試験前後のボトムジッター及び PI maxを測定した。  An optical recording medium was prepared in the same manner as in Example 1, except that the material of the reflective layer was changed to gold (Au) and the film thickness was changed to 90 nm. Recording and reproduction were performed on the obtained optical recording medium under the same conditions as in Example 1, and bottom jitter and PI max before and after the light resistance test were measured.
[0179] ボトムジッターの測定結果を図 4 (c)のグラフに、 PI maxの測定結果を図 4 (d)のグ ラフにそれぞれ示す。図 4 (c) , (d)から明らかなように、 Au反射層を用いた本実施例 の光記録媒体は、 Cu反射層の場合よりはその効果は若干劣るものの、良好な結果 が得られた。  [0179] The measurement result of bottom jitter is shown in the graph of Fig. 4 (c), and the measurement result of PI max is shown in the graph of Fig. 4 (d). As can be seen from FIGS. 4 (c) and 4 (d), the optical recording medium of this example using the Au reflective layer was slightly less effective than the Cu reflective layer, but good results were obtained. It was.
[0180] また、上述の手法により、 Au反射層単層の反射率及び dRZd λの値を測定した。  [0180] Further, the reflectance of the Au reflective layer single layer and the value of dRZd λ were measured by the above-described method.
その結果をそれぞれ図 8及び図 9 (b)のグラフに示す。 Au反射層単層の 300ηπ!〜 5 OOnmの反射率は 37%〜50%であった(図 8)。また、同波長域における dRZd λ ( max)の値は Ο. 72であった(図 9 (b) )。  The results are shown in the graphs of FIG. 8 and FIG. 9 (b), respectively. 300 ηπ single Au reflective layer! The reflectance at ~ 5 OOnm was 37% ~ 50% (Figure 8). The value of dRZd λ (max) in the same wavelength range was 域 .72 (Fig. 9 (b)).
[0181] [比較例 1]  [0181] [Comparative Example 1]
実施例 1において、反射層の材料を銀 (Ag)に変え、その膜厚を 120nmに変えた 他は、同様の手順により光記録媒体を作製した。得られた光記録媒体に対して、実 施例 1と同様な条件で記録、再生を実施し、マージン (記録パワーマージン及びァシ ンメトリーマージン)、耐光性試験前後のボトムジッター及び PI  An optical recording medium was manufactured in the same manner as in Example 1, except that the material of the reflective layer was changed to silver (Ag) and the film thickness was changed to 120 nm. Recording and reproduction were performed on the obtained optical recording medium under the same conditions as in Example 1. Margin (recording power margin and asymmetric margin), bottom jitter before and after the light resistance test, and PI
maxを測定した。  max was measured.
[0182] 記録パワーマージンの測定結果を図 4 (a)のグラフに、アシンメトリーマージンの測 定結果を図 4 (b)のグラフにそれぞれ示す。図 4 (a) , (b)から明らかなように、 Ag反 射層を用いた本比較例の光記録媒体は、 Cu反射層の場合に比べて、ボトムジッター が悪ぐまた、アシンメトリーのマージンも狭いことがわかる。  [0182] The measurement result of the recording power margin is shown in the graph of Fig. 4 (a), and the measurement result of the asymmetry margin is shown in the graph of Fig. 4 (b). As is clear from Figs. 4 (a) and (b), the optical recording medium of this comparative example using an Ag reflecting layer has a lower bottom jitter than that of the Cu reflecting layer, and has an asymmetry margin. It can be seen that it is narrow.
[0183] また、ボトムジッターの測定結果を図 4 (c)のグラフに、 PI maxの測定結果を図 4 (d )のグラフにそれぞれ示す。図 4 (c) , (d)から明らかなように、 Ag反射層を用いた本 比較例の光記録媒体は、 Wool [0183] The bottom jitter measurement result is shown in the graph of Fig. 4 (c), and the PI max measurement result is shown in Fig. 4 (d). ) Graphs. As is clear from Figs. 4 (c) and (d), the optical recording medium of this comparative example using an Ag reflective layer is
scale 5級の条件(キセノン照射 40時間)において、ボトムジッター、エラー(PI max) 共に悪ィ匕しており、 Ag反射層では Wool scale 5級条件に耐えられない、即ち、「実 用上の」耐光性に劣ることがわかる。尚、エラー(PI  Under the condition of scale 5 (40 hours of xenon irradiation), both bottom jitter and error (PI max) are bad, and the Ag reflection layer cannot withstand the Wool scale 5 condition. It turns out that it is inferior to light resistance. In addition, error (PI
max)は、 DVD—Rの規格では 280個を超えないことが要件として記載されている。  max) is described as a requirement in the DVD-R standard that it does not exceed 280.
[0184] また、上述の手法により、 Ag反射層単層の反射率及び dRZd λの値を測定した。 [0184] Further, the reflectivity and dRZd λ value of the Ag reflection layer single layer were measured by the method described above.
その結果をそれぞれ図 8及び図 9 (c)のグラフに示す。 Ag反射層単層の 300ηπ!〜 5 The results are shown in the graphs of FIG. 8 and FIG. 9 (c), respectively. 300ηπ of Ag reflection layer single layer! ~ Five
OOnmの反射率は 4%〜96%であった(図 8)。また、同波長域における dRZd λ (m ax)の値は 5. 6であった(図 9 (c) )。 The reflectance of OOnm was 4% to 96% (Fig. 8). The value of dRZd λ (max) in the same wavelength range was 5.6 (Fig. 9 (c)).
[0185] [実施例 3] [0185] [Example 3]
実施例 1において、色素 Aを、下記構造式 (c)に示すァゾ系化合物を 2個配位する Ni錯体色素 C (65重量%) (Niは 2価イオン: Ni2+)に変え、色素 Bを、下記構造式 (d )に示すシァニン系色素 D (35重量%)に変えた以外は、同様の手順により光記録媒 体を作製した。なお、記録層の溝内膜厚を電子顕微鏡による断面解析で確認すると 、 25nmであった。また、 Cu反射層の膜厚は、実施例 1と同様 120nmであった。この 光記録媒体に対して、実施例 1と同様な条件で記録、再生を実施し、マージン (記録 パワーマージン及びアシンメトリーマージン)、耐光性試験前後のボトムジッター及び PImaxを測定した。 In Example 1, the dye A was changed to Ni complex dye C (65 wt%) (Ni is a divalent ion: Ni 2+ ) in which two azo compounds represented by the following structural formula (c) are coordinated, An optical recording medium was prepared by the same procedure except that the dye B was changed to the cyanine dye D (35% by weight) represented by the following structural formula (d). The film thickness in the groove of the recording layer was 25 nm as confirmed by cross-sectional analysis using an electron microscope. The film thickness of the Cu reflective layer was 120 nm as in Example 1. Recording and reproduction were performed on this optical recording medium under the same conditions as in Example 1, and margins (recording power margin and asymmetry margin), bottom jitter before and after the light resistance test, and PImax were measured.
[0186] [化 13] [0186] [Chemical 13]
Figure imgf000051_0001
[0187] 尚、色素 Cと色素 Dのそれぞれの色素単層塗布膜の色素保有率は、それぞれ 97. 0%と 0%であり、記録層単層の色素保持率は 68. 2%であった。
Figure imgf000051_0001
[0187] The dye retention ratios of the dye single layer coating films of Dye C and Dye were 97.0% and 0%, respectively, and the dye retention ratio of the recording layer single layer was 68.2%. It was.
[0188] 記録パワーマージンの測定結果を図 5 (a)のグラフに、アシンメトリーマージンの測 定結果を図 5 (b)のグラフにそれぞれ示す。図 5 (a) , (b)から明らかなように、 Cu反 射層を用いた本実施例の光記録媒体では、ジッターが 9%以下であるパワーマージ ンが約 lOmwと極めて安定なパワーマージンが実現されている。また、アシンメトリー が + 6. 0%を超えても 9%以下のジッターを有し、 9%以下のジッターのァシンメトリ 一マージンは約 20%という非常に広いマージンを示している。これら、マージンが極 めて良好であるということは、 56mZs (16倍速)という極めて高速の記録においても、 記録マークの熱的な劣化 (蓄熱や熱干渉)が小さ 、ことを意味する。  [0188] The measurement result of the recording power margin is shown in the graph of Fig. 5 (a), and the measurement result of the asymmetry margin is shown in the graph of Fig. 5 (b). As is clear from Figs. 5 (a) and 5 (b), in the optical recording medium of this example using a Cu reflective layer, the power margin with a jitter of 9% or less is about lOmw and an extremely stable power margin. Is realized. Even if the asymmetry exceeds + 6.0%, it has a jitter of 9% or less, and the asymmetry margin of jitter of 9% or less shows a very wide margin of about 20%. These extremely good margins mean that the thermal degradation (heat storage and thermal interference) of the recording mark is small even at extremely high speed recording of 56 mZs (16 × speed).
[0189] また、ボトムジッターの測定結果を図 5 (c)のグラフに、 PI maxの測定結果を図 5 (d )のグラフにそれぞれ示す。図 5 (c) , (d)から明らかなように、 Cu反射層を用いた本 実施例の光記録媒体では、後述の Ag反射層の場合に比べて、「実用上の」耐光性 がはるかに向上することがわかる。そして、色素単層では色素保持率が 0%である耐 光性がはるかに劣る色素 Dを含みながら、 Wool  [0189] The measurement results of bottom jitter are shown in the graph of Fig. 5 (c), and the measurement results of PI max are shown in the graph of Fig. 5 (d). As is clear from Figs. 5 (c) and 5 (d), the optical recording medium of this example using a Cu reflective layer has much more "practical" light resistance than the case of the Ag reflective layer described later. It can be seen that The dye monolayer contains dye D, which has a dye retention rate of 0%, which is much less resistant to light.
scale 5級の「実用上の」耐光性を有する光ディスクを実現できたことがわかる。  It can be seen that an optical disc with scale 5 “practical” light resistance has been realized.
[0190] [比較例 2] [0190] [Comparative Example 2]
実施例 3において、反射層の材料を銅カゝら銀に変え、膜厚 120nmの Ag反射層を 設けた以外は、同様の手順により光記録媒体を作製した。この光記録媒体に対して 、実施例 1と同様な条件で記録、再生を実施し、マージン (記録パワーマージン及び アシンメトリーマージン)、耐光性試験前後のボトムジッター及び PI  An optical recording medium was manufactured in the same manner as in Example 3 except that the material of the reflective layer was changed from copper to silver and an Ag reflective layer having a thickness of 120 nm was provided. This optical recording medium was recorded and reproduced under the same conditions as in Example 1, margin (recording power margin and asymmetry margin), bottom jitter before and after the light resistance test, and PI.
maxを測定した。  max was measured.
[0191] 記録パワーマージンの測定結果を図 5 (a)のグラフに、アシンメトリーマージンの測 定結果を図 5 (b)のグラフにそれぞれ示す。図 5 (a)力も明らかなように、 Ag反射層を 用いた本比較例の光記録媒体では、 Cu反射層の場合に比べて、記録パワーマージ ンがはるかに狭 、ことがわかる。  [0191] The measurement result of the recording power margin is shown in the graph of Fig. 5 (a), and the measurement result of the asymmetry margin is shown in the graph of Fig. 5 (b). As can be seen in Fig. 5 (a), the recording power margin is much narrower in the optical recording medium of this comparative example using the Ag reflective layer than in the case of the Cu reflective layer.
[0192] また、ボトムジッターの測定結果を図 5 (c)のグラフに、 PI maxの測定結果を図 5 (d )のグラフにそれぞれ示す。 Ag反射層を用いた本比較例の光記録媒体は、図 5 (c) では 40時間後のボトムジッターが悪化しており、図 5 (d)ではエラー (PI max)が 280をはるかに超えている。このことから、 Ag反射層を用いた本比較例の光 記録媒体は、 Wool scale 5級に耐えられないことがわかる。 [0192] The measurement result of bottom jitter is shown in the graph of Fig. 5 (c), and the measurement result of PI max is shown in the graph of Fig. 5 (d). The optical recording medium of this comparative example using an Ag reflective layer is shown in Fig. 5 (c). In Fig. 5 (d), the error (PI max) far exceeds 280. This indicates that the optical recording medium of this comparative example using an Ag reflective layer cannot withstand Wool scale 5 grade.
[0193] [実施例 4] [0193] [Example 4]
実施例 3の光記録媒体に対して、記録速度を 35. 0mZs (10 X相当)に変え、 3T マーク長記録用のレーザーの照射パルス幅を 7. 9nsに変えた他は、実施例 1と同様 な条件で記録'再生を実施し、マージン (記録パワーマージン及びアシンメトリーマー ジン)を測定した。  For the optical recording medium of Example 3, the recording speed was changed to 35.0 mZs (equivalent to 10 X), and the irradiation pulse width of the laser for recording the 3T mark length was changed to 7.9 ns. Recording and playback were performed under the same conditions, and margins (recording power margin and asymmetry margin) were measured.
[0194] 記録パワーマージンの測定結果を図 6 (a)のグラフに、アシンメトリーマージンの測 定結果を図 6 (b)のグラフにそれぞれ參印で示す。図 6 (a)より、 35. OmZsで記録を 行なった本実施例においても、 56. OmZs記録の場合と同様に、ボトムジッター 6. 0 %の非常に良好な記録が可能なことがわかる。  [0194] The measurement result of the recording power margin is shown in the graph of Fig. 6 (a), and the measurement result of the asymmetry margin is shown in the graph of Fig. 6 (b). From FIG. 6 (a), it can be seen that even in this example in which recording was performed with 35. OmZs, very good recording with a bottom jitter of 6.0% was possible as in the case of 56. OmZs recording.
[0195] [比較例 3]  [0195] [Comparative Example 3]
比較例 2の光記録媒体に対して、記録速度を 35. OmZs (10 X相当)に変え、 3T マーク長記録用のレーザーの照射パルス幅を 7. 9nsに変えた他は、実施例 1と同様 な条件で記録'再生を実施し、マージン (記録パワーマージン及びアシンメトリーマー ジン)を測定した。  For the optical recording medium of Comparative Example 2, the recording speed was changed to 35. OmZs (equivalent to 10 X), and the irradiation pulse width of the laser for 3T mark length recording was changed to 7.9 ns. Recording and playback were performed under the same conditions, and margins (recording power margin and asymmetry margin) were measured.
[0196] 記録パワーマージンの測定結果を図 6 (a)のグラフに、アシンメトリーマージンの測 定結果を図 6 (b)のグラフに、何れも中黒の△印で示す。図 6 (a) , (b)より、ボトムジッ ター 6. 7%と比較的良好であるものの、実施例 4の Cu反射膜を用いた光記録媒体と 比較すると、相対的にパワーマージンが劣っていることがわかる。  [0196] The measurement result of the recording power margin is shown in the graph of Fig. 6 (a), and the measurement result of the asymmetry margin is shown in the graph of Fig. 6 (b). From Fig. 6 (a) and (b), the bottom jitter is relatively good at 6.7%, but the power margin is relatively inferior compared with the optical recording medium using the Cu reflective film of Example 4. I understand that.
[0197] [比較例 4]  [0197] [Comparative Example 4]
実施例 1において、 "耐光性の劣る"色素 Bを、下記構造式 (e)で表わされるァゾ系 化合物を 2個配位する、 "耐光性の良好な" Ni錯体色素 E (Niは 2価イオン: Ni2+)に 変え、色素 Aと色素 Eとを 50重量%: 50重量%の比率で混合して用いた以外は、実 施例 1と同様の手順により光記録媒体を作製した。得られた記録層の溝内膜厚は 30 nmであった。また、 Cu反射層の膜厚は 120nmであった。 In Example 1, “Better light resistance” Ni complex dye E (Ni is 2) in which two “azo compounds” represented by the following structural formula (e) are coordinated with “Blow light resistance” Dye B valence ions: changed to Ni 2+), a dye a and dye E 50 wt%: except for using mixed at a ratio of 50 wt%, to prepare an optical recording medium by the same procedure as the actual Example 1 . The film thickness in the groove of the obtained recording layer was 30 nm. The film thickness of the Cu reflective layer was 120 nm.
[0198] [化 14] [0198] [Chemical 14]
Figure imgf000054_0001
Figure imgf000054_0001
尚、色素 E単層塗布膜の色素保持率は 87. 3%であり、この記録層単層の色素保 持率は 89. 0%であった。 The dye retention rate of the Dye E single layer coating film was 87.3%, and the dye retention rate of this recording layer single layer was 89.0%.
[0199] この光記録媒体に対して、実施例 1と同様な条件で記録、再生を実施し、マージン [0199] This optical recording medium was recorded and reproduced under the same conditions as in Example 1 to obtain a margin.
(記録パワーマージン及びアシンメトリーマージン)、耐光性試験前後のボトムジッタ 一及び PI  (Recording power margin and asymmetry margin), bottom jitter before and after light resistance test and PI
maxを測定した。  max was measured.
[0200] 記録パワーマージンの測定結果を図 7 (a)のグラフに、アシンメトリーマージンの測 定結果を図 7 (b)のグラフにそれぞれ示す。図 7 (a) , (b)から明らかなように、反射層 を Cu反射層にしても、あまり特性の改善は見られないことがわかる。ボトムジッターは 9%以上であり、パワーマージン、アシンメトリーマージン共に、極めて狭いことがわ力 る。特に、アシンメトリーマージンが悪ぐ—5%というかなり低い記録パワーにおいて もすでに熱的劣化が見られ、ジッターがボトムジッターよりも 1%以上も劣化している。 尚、アシンメトリーマージンは、 5%においてジッター 9%以下であることが好ましいと されている。  [0200] The measurement result of the recording power margin is shown in the graph of Fig. 7 (a), and the measurement result of the asymmetry margin is shown in the graph of Fig. 7 (b). As can be seen from Figs. 7 (a) and 7 (b), even if the reflective layer is a Cu reflective layer, the improvement in characteristics is not seen. The bottom jitter is 9% or more, indicating that both the power margin and asymmetry margin are extremely narrow. In particular, the asymmetry margin is bad – even at a recording power as low as 5%, thermal degradation has already been observed, and the jitter has deteriorated by more than 1% compared to the bottom jitter. The asymmetry margin is preferably 9% or less of jitter at 5%.
[0201] また、ボトムジッターの測定結果を図 7 (c)のグラフに、 PI maxの測定結果を図 7 (d )のグラフにそれぞれ示す。図 7 (c) , (d)に明らかなように、「実用上の」耐光性は非 常に良好であった。  [0201] The measurement results of bottom jitter are shown in the graph of Fig. 7 (c), and the measurement results of PI max are shown in the graph of Fig. 7 (d). As is clear from Figs. 7 (c) and (d), the "practical" light resistance was very good.
また、上記記録層上の反射層を、比較例 1と同じ Ag反射層に変えた場合には、耐 光性試験でのボトムジッターは 6. 9%から 7. 0%に、耐光性試験での PI  In addition, when the reflective layer on the recording layer is changed to the same Ag reflective layer as in Comparative Example 1, the bottom jitter in the light resistance test is changed from 6.9% to 7.0%, and the light resistance test is performed. PI
maxは 5から 8にそれぞれ変化し、非常に良好な「実用上の」耐光性を示した。  max varied from 5 to 8 respectively, showing very good “practical” lightfastness.
[0202] 以上の結果から、耐光性の良好な色素のみを含む記録層を用いた本比較例の光 記録媒体にぉ 、ては、 16倍速記録と!/、う極めて高速の記録では熱的な劣化が大きく[0202] From the above results, the light of this comparative example using a recording layer containing only a dye having good light resistance was used. For recording media, the thermal degradation is significant for 16x speed recording and extremely high speed recording.
、良好な記録マークが形成されないことがわかる。その劣化の程度は大きぐたとえ C u反射層を使用したとしても、改善することは難しいといえる。 It can be seen that good recording marks are not formed. Even if a Cu reflective layer is used, it is difficult to improve.
[0203] [1倍速記録試験]  [0203] [1x speed recording test]
上述の実施例 1、実施例 3、比較例 1、比較例 2、比較例 4の光記録媒体について、 記録速度を 1倍速に変えた他は、実施例 1と同様な条件で記録.再生を実施し、ボト ムジッターを測定した。結果を下記表 1に示す。  For the optical recording media of Example 1, Example 3, Comparative Example 1, Comparative Example 2, and Comparative Example 4 described above, recording and reproduction were performed under the same conditions as in Example 1 except that the recording speed was changed to 1 × speed. This was done and the bottom jitter was measured. The results are shown in Table 1 below.
[0204] [表 1] 表 1 [0204] [Table 1] Table 1
Figure imgf000055_0001
Figure imgf000055_0001
[0205] 一般に、ボトムジッターは 9%以下が必要とされている。表 1から明らかなように、実 施例 1、実施例 3、比較例 1、比較例 2、比較例 4の光記録媒体は、いずれも 1倍速記 録ではボトムジッターが 9%以下と、良好な記録特性を示している。それにもかかわら ず、高速記録では、上記に記載したように優劣が見られるのである。 [0205] Generally, bottom jitter is required to be 9% or less. As is clear from Table 1, the optical recording media of Example 1, Example 3, Comparative Example 1, Comparative Example 2, and Comparative Example 4 are all good, with bottom jitter of 9% or less in 1x speed recording. Recording characteristics. Nevertheless, superiority and inferiority are seen in high-speed recording as described above.
[0206] 以上の結果から、本発明の規定を満たす各実施例の光記録媒体は、 1倍速、 10倍 速、 16倍速と、非常に広い記録速度において良好な記録特性を示すことがわかる。  [0206] From the above results, it can be seen that the optical recording media of the respective examples that satisfy the provisions of the present invention exhibit good recording characteristics at very wide recording speeds such as 1 × speed, 10 × speed, and 16 × speed.
[0207] [実施例 5] 上述の手法により、アルミニウム (A1)を材料とした反射層(A1反射層単層)の反射 率及び dRZd λを測定した。その結果をそれぞれ図 8及び図 9 (d)のグラフに示す。 図 9 (d)から明らかなように、 A1反射層単層の dRZdえの値は、 300nm〜500nmの 範囲においては常に 0. 1以下であった。 [Example 5] The reflectivity and dRZd λ of the reflective layer (A1 reflective layer single layer) made of aluminum (A1) were measured by the method described above. The results are shown in the graphs of FIG. 8 and FIG. 9 (d), respectively. As is clear from Fig. 9 (d), the dRZd value of the single A1 reflective layer was always 0.1 or less in the range of 300nm to 500nm.
[0208] [実施例 6] [0208] [Example 6]
前記の [反射率の測定法]と同様に、 Cu87. 2原子%ZAgl2. 8原子% (以下適 宜「CuAg 」と記す。)と、 Cu86. 4原子%ZAgl2. 9原子%ZPdO. 7原子% (以  Similar to the above [Reflectance measurement method], Cu87.2 atom% ZAgl2. 8 atom% (hereinafter referred to as “CuAg”) and Cu86. 4 atom% ZAgl2. 9 atom% ZPdO. 7 atom %
12. 8  12. 8
下適宜「CuAg Pd 」と記す。 )とを、それぞれ別のスライドガラスにスパッタし、膜  Below, it will be described as “CuAg Pd”. ) And sputter on each glass slide.
12. 9 0. 7  12. 9 0. 7
面側から反射率を測定した。尚、スパッタの条件は実施例 1と同様とした。  The reflectance was measured from the surface side. The sputtering conditions were the same as in Example 1.
[0209] 図 10は、 CuAg 及び CuAg Pd の反射率の測定結果を、 [実施例 5]等に [0209] Fig. 10 shows the measurement results of the reflectance of CuAg and CuAg Pd in [Example 5] etc.
12. 8 12. 9 0. 7  12. 8 12. 9 0. 7
おいて得られた Ag、 Au、 Cuの測定結果とともに示すグラフである。図 10において、 横軸は波長え(nm)を表わし、縦軸は反射率(%)を表わす。図 10より、 CuAg と  It is a graph shown with the measurement result of Ag, Au, and Cu obtained in above. In FIG. 10, the horizontal axis represents wavelength (nm), and the vertical axis represents reflectance (%). From Fig. 10, CuAg and
12. 8 12. 8
CuAg Pd とは、何れも Cuとは明らかに異なる光学特性を有し、 Cuよりも AgにCuAg Pd has optical properties that are clearly different from those of Cu.
12. 9 0. 7 12. 9 0. 7
反射率がやや近くなつて ヽることが分かる。  You can see that the reflectivity is a little closer.
[0210] また、これら CuAg 及び CuAg Pd の dRZd λを計算した。図 11 (a) , (b) [0210] The dRZd λ of CuAg and CuAg Pd was also calculated. Fig. 11 (a), (b)
12. 8 12. 9 0. 7  12. 8 12. 9 0. 7
はそれぞれ、 CuAg 及び CuAg Pd の dRZdえの計算結果を示すグラフで  Are graphs showing the calculation results of dRZd for CuAg and CuAg Pd, respectively.
12. 8 12. 9 0. 7  12. 8 12. 9 0. 7
ある。図 11 (a) , (b)力もわ力るように、全体的にノイズが高くなつている力 Agの dR Zdえの最大値 5. 6のピーク波長が存在する 300〜500nmの波長域(図 9参照)に おいて、微弱ながら dRZdえのノイズの高まりが見られる。  is there. Fig. 11 (a), (b) The force that increases the noise so that the force is also increased. The maximum value of dR Zd of Ag 5.6 Wavelength range of 300 to 500 nm where the peak wavelength of 6 exists ( In Fig. 9, there is a slight increase in dRZd noise.
[0211] ここで、比較例 1の Agの反射率 R と実施例 1の Cuの反射率 R とから、 Cu( A [0211] Here, from the reflectivity R of Ag in Comparative Example 1 and the reflectivity R of Cu in Example 1, Cu (A
Ag Cu 1 -X) g (原子%: at%)の各波長での反射率 R (Cu Ag )を、下記式により計算した。 The reflectance R (Cu Ag) at each wavelength of Ag Cu 1 -X) g (atomic%: at%) was calculated by the following formula.
X (1 -X) X X (1 -X) X
R(Cu Ag ) =  R (Cu Ag) =
(1 -X) x  (1 -X) x
{ (1 -X) /100} XR(Cu) + (X/100) XR(Ag)  {(1 -X) / 100} XR (Cu) + (X / 100) XR (Ag)
[0212] その結果、 Agと Cuとの混合比を任意とした場合における図 10のような反射率の波 長依存性を示すスペクトルが得られる。そして、それぞれ所定の Ag及び Cuの混合比 率にぉ 、て、図 11 (a)と同様にして dRZd λを計算して 300〜500nmにおける dR /dえの最大値を求めた。ここで、 Agの含有量を横軸に、上記手順により求めた 300 〜500nmの波長域での dRZd λの最大値を縦軸にプロットして得られたグラフを図 12に示す。同図に示すように、 300ηπ!〜 500nmに見られる dRZdえの最大値と Ag 量との相関があることがわかる。そして、同図から、 dRZd 力^となるのは、 Agがお よそ 50at%となる場合であると言える。 [0212] As a result, a spectrum showing the wavelength dependence of the reflectance as shown in Fig. 10 is obtained when the mixing ratio of Ag and Cu is arbitrary. Then, dRZd λ was calculated in the same manner as in FIG. 11 (a) for the predetermined mixing ratio of Ag and Cu, and the maximum value of dR / d at 300 to 500 nm was obtained. Here, a graph obtained by plotting the maximum value of dRZd λ in the wavelength range of 300 to 500 nm obtained by the above procedure on the vertical axis is the content of Ag on the horizontal axis. Shown in Figure 12. As shown in the figure, 300ηπ! It can be seen that there is a correlation between the maximum value of dRZd seen at ~ 500nm and the amount of Ag. From the figure, it can be said that the dRZd force ^ is when Ag is approximately 50at%.
[0213] 一方、 CuAg にぉける300〜50011111での(11 [0213] On the other hand, (11)
12. 8 ^7(1ぇの最大値の実測値(図11 (& 12. 8 ^ 7 (The actual value of the maximum value of 1 (Fig. 11 (&
)参照)、 Cu(100at%)における 300〜500nmでの dRZdえの最大値の実測値(図 9 (a)参照)、及び Ag (100at%)における 300〜500nmでの dRZd λの最大値(図 9 (c)参照)の実測値力 予想すると、 dR/d λが 3となるのは Ag量がおよそ 50at% の場合となる。つまり、実測結果も先の計算結果とよい一致を示すと言える。つまり、 Agに由来する dRZdえの 300〜500nmの波長域の最大値は、 Agに Cu、 Al、 Au 等、 300〜500nmの波長域の dRZd 値が小さい金属を添加することによって、低 下させることができることがわかる。従って、 Agの含有量を 50at%以下とすれば、 30 0〜500nmの波長域〖こおける dRZd λの最大値を 3以下に制御できることがわかる )), The actual measured value of dRZd at 300 to 500 nm in Cu (100 at%) (see Fig. 9 (a)), and the maximum value of dRZd λ from 300 to 500 nm in Ag (100 at%) ( Measured force in Fig. 9 (c)) Assuming that dR / d λ is 3, the Ag amount is approximately 50 at%. In other words, it can be said that the actual measurement results are in good agreement with the previous calculation results. In other words, the maximum value in the 300 to 500 nm wavelength range of dRZd derived from Ag is reduced by adding a metal with a small dRZd value in the 300 to 500 nm wavelength range, such as Cu, Al, Au, etc., to Ag. You can see that Therefore, it can be seen that if the Ag content is 50 at% or less, the maximum value of dRZd λ in the wavelength range of 300 to 500 nm can be controlled to 3 or less.
[0214] 十分な耐光性を得ることができるかどうかについて、図 4 (c)のキセノン照射時間 40 時間で、反射層が Cuの場合と反射層が Agの場合とで比較を行なった。先に示した ように、 300〜500nmの波長域における dR/dえの最大値は、 Agの含有量とほぼ 線形の相関を有する。このため、耐光性が Agの含有量とほぼ線形な相関を有すると 仮定して、プレーヤーで再生可能とされるジッター値 13%をジッター劣化の許容限 界とした。そして、反射層を Cu(100at%)とした光記録媒体、及び反射層を Ag (10 Oat%)とした光記録媒体における、キセノン照射を 40時間行った後のボトムジッター 値を図 13にプロットした。つまり、図 13は、上記仮定を行った下での、 Cu Ag [0214] Whether or not sufficient light resistance can be obtained was compared between the case where the reflection layer was Cu and the case where the reflection layer was Ag at a xenon irradiation time of 40 hours in Fig. 4 (c). As shown above, the maximum value of dR / d in the wavelength range of 300 to 500 nm has a substantially linear correlation with the Ag content. For this reason, assuming that the light resistance has an almost linear correlation with the Ag content, a jitter value of 13% that can be reproduced by the player was set as an allowable limit for jitter deterioration. The bottom jitter values after 40 hours of xenon irradiation in an optical recording medium with the reflective layer made of Cu (100 at%) and an optical recording medium with the reflective layer made of Ag (10 Oat%) are plotted in FIG. did. In other words, Fig. 13 shows Cu Ag under the above assumption.
(100-X) X における Xの値 (Agの含有量: at%)とボトムジッター値との関係を示すグラフである。 図 13より、良好なジッター特性が得やすくなる Agの含有量の上限は、およそ 30at% であると考えられる。  5 is a graph showing the relationship between the value of X (Ag content: at%) and the bottom jitter value in (100-X) X. From Fig. 13, it is considered that the upper limit of the Ag content at which good jitter characteristics are easily obtained is approximately 30 at%.
[0215] 次に、実施例 1において、 Cu反射層を CuAg と CuAg Pd にそれぞれ変え  [0215] Next, in Example 1, the Cu reflective layer was changed to CuAg and CuAg Pd, respectively.
12. 8 12. 9 0. 7  12. 8 12. 9 0. 7
た以外は同様にして光記録媒体 (以下、それぞれ「CuAg DVD— R」及び「CuA  The optical recording medium (hereinafter referred to as “CuAg DVD-R” and “CuAg” respectively)
12. 8  12. 8
g Pd DVD— R」という場合がある。)を作製した。そしてこれら光記録媒体に対 g Pd DVD—R ”. ) Was produced. And these optical recording media
12. 9 0. 7 12. 9 0. 7
して 8倍速の記録を施した後、実施例 1と同様に耐光性試験 (但し、キセノン照射時 間は 120時間とした。)を行なった。結果を図 14 (a) (ジッター値)及び図 14 (b) (PIェ ラー)のグラフに示す。何れも劣化が全く見られず、極めて良好であり、上記銅合金 力 SCu反射層と同様の効果を有することが明らかとなった。 After recording at 8 times speed, the light resistance test was performed in the same way as in Example 1 (however, when xenon was irradiated) The interval was 120 hours. ). The results are shown in the graphs of Fig. 14 (a) (jitter value) and Fig. 14 (b) (PI error). In all cases, no deterioration was observed, and it was found to be very good and to have the same effect as the copper alloy force SCu reflective layer.
[0216] 更に、 CuAg DVD-R¾tJ^CuAg Pd DVD— Rについて、保存安定性試 [0216] Furthermore, CuAg DVD-R¾tJ ^ CuAg Pd DVD— R was tested for storage stability.
12. 8 12. 9 0. 7  12. 8 12. 9 0. 7
験を行なった。保存安定性試験 (ライフテストという場合もある。)は、恒温恒湿槽 (ェ スペック社製 SH— 641)を使用し、光記録媒体を 80°C、相対湿度 85%中で 875時 間保持することにより行なった。上記の CuAg DVD— R及び CuAg Pd DV  An experiment was conducted. Storage stability test (sometimes referred to as life test) uses a constant temperature and humidity chamber (SH-641 manufactured by ESPEC) and keeps optical recording media at 80 ° C and relative humidity 85% for 875 hours. It was done by doing. CuAg DVD—R and CuAg Pd DV
12. 8 12. 9 0. 7 12. 8 12. 9 0. 7
D—Rの高温高湿での保存安定性試験の結果を、図 15 (a) (ジッター値)及び図 15 ( b) (PIエラー)のグラフに示す。図 15 (a) , (b)中、 CuAg DVD— Rを「CuAg 」 The results of the storage stability test of D—R at high temperature and high humidity are shown in the graphs of Fig. 15 (a) (jitter value) and Fig. 15 (b) (PI error). In Fig. 15 (a) and (b), CuAg DVD—R is set to “CuAg”.
12. 8 12. 8 と示し、 CuAg Pd DVD— Rを「CuAg Pd 」と示している。何れも劣化が非  12. 8 12.8 and CuAg Pd DVD—R is shown as “CuAg Pd”. None of the deterioration
12. 9 0. 7 12. 9 0. 7  12. 9 0. 7 12. 9 0. 7
常に小さぐ極めて良好であった。  It was always small and very good.
[0217] [実施例 7及び実施例 8]  [Example 7 and Example 8]
実施例 6の CuAg 反射層、或いは CuAg Pd 反射層を、 CuAg Zn 反  The CuAg reflective layer or CuAg Pd reflective layer of Example 6 is
12. 8 12. 9 0. 7 12. 8 1. 1 射層と CuAg Zn  12. 8 12. 9 0. 7 12. 8 1. 1 Injection layer and CuAg Zn
12. 9 10. 6反射層に変えた以外は、全く同様にして光記録媒体を作製し た(以下、 CuAg Zn DVD—R (実施例 7)、 CuAg Zn DVD— R (実施例  12. 9 10.6 Optical recording media were fabricated in exactly the same manner except that the reflective layer was changed (hereinafter referred to as CuAg Zn DVD—R (Example 7), CuAg Zn DVD—R (Example
12. 8 1. 1 12. 9 10. 6  12. 8 1. 1 12. 9 10. 6
8)という場合がある。 )0 8) In some cases. ) 0
[0218] それぞれの光記録媒体に対して、実施例 6と同様にして耐光性テスト (結果を図 14  [0218] For each optical recording medium, a light resistance test was performed in the same manner as in Example 6 (results shown in Fig. 14
(a)及び図 14 (b)に示す。)と、高温高湿での保存安定性試験 (結果を図 15 (a)及び 図 15 (b)に示す。 )を実施した。  It is shown in (a) and Fig. 14 (b). ) And storage stability test at high temperature and high humidity (The results are shown in Fig. 15 (a) and Fig. 15 (b)).
[0219] CuAg Zn を反射層に有する場合には、耐光性テストにおいても保存安定性  [0219] Storage stability in light resistance test when CuAg Zn is included in the reflective layer
12. 8 1. 1  12. 8 1. 1
試験においても、実施例 6の CuAg を反射層に有する場合及び CuAg Pd  In the test, CuAg of Example 6 was included in the reflective layer and CuAg Pd
12. 8 12. 9 0. 7 を反射層に有する場合と同様に、極めて良好な特性を示した。それに対して、 CuAg Zn を反射層に有する場合には、高温高湿での保存安定性が、他の光記録媒 As in the case of having 12. 8 12. 9 0. 7 in the reflection layer, extremely good characteristics were exhibited. On the other hand, when CuAg Zn is included in the reflective layer, the storage stability at high temperature and high humidity is good for other optical recording media.
12. 9 10. 6 12. 9 10. 6
体と比較して若干劣る傾向が見られた。その理由はよくわ力 ないが、改良の余地は あるものと考えられる。  There was a tendency to be slightly inferior to the body. The reason for this is not good enough, but there seems to be room for improvement.
[0220] [実施例 9] [0220] [Example 9]
以下に説明する真空中での溶融方法に従い、スパッタリングターゲットの作製を行 なった。 [0221] まず、高周波溶解炉において、 Cu及び Agを所定の割合を坩堝に入れ、十分に真 空引きを行ないながら溶解した。このとき、第三元素種 Xとして Pd (実施例 6)、 Al、 Cr 、 Ni (実施例 9)、及び In、 Sn (後述の実施例 10)を添加するときは、 Cu、 Agと共に 所定の割合で添加しておいた。一方、第三元素種 Xとして Zn (実施例 7、 8、 9及び後 述の実施例 10)を添加するときは、 Cu及び Agが十分溶解された後に添加した。これ は蒸気圧の高い Znを最初力 装填すると揮発により組成が規定値とならないためで ある。 A sputtering target was produced in accordance with the melting method in vacuum described below. [0221] First, in a high-frequency melting furnace, Cu and Ag were put into a crucible at a predetermined ratio and melted while sufficiently vacuuming. At this time, when adding Pd (Example 6), Al, Cr, Ni (Example 9), and In, Sn (Example 10 described later) as the third element species X, together with Cu and Ag, a predetermined element Added in proportions. On the other hand, when Zn (Examples 7, 8, 9 and Example 10 described later) was added as the third element species X, it was added after Cu and Ag were sufficiently dissolved. This is because the composition does not reach the specified value due to volatilization when Zn with high vapor pressure is initially charged.
[0222] 炉内の溶融温度は、 1100〜1200°Cとした。坩堝は、 C、 Al O、 MgO又は ZrO  [0222] The melting temperature in the furnace was 1100 to 1200 ° C. The crucible is C, Al 2 O, MgO or ZrO
2 3 2 等を使用した。  2 3 2 etc. were used.
溶湯の铸込みは、アルミナ若しくはマグネシウム系タルクを内面に塗布してある Fe 若しくは C製の铸型に铸込むことにより行なった。  Melting of the molten metal was performed by pouring into a Fe or C cage having alumina or magnesium talc applied on the inner surface.
铸型は引け巣を防止するため、押湯部を注入前に予めヒーターで 300°C〜500°C 程度に熱しておき、下部力も上部に向けて一方向凝固させた。  In order to prevent shrinkage of the vertical type, the feeder was heated to about 300 ° C to 500 ° C with a heater in advance before pouring, and the lower force was solidified unidirectionally toward the upper part.
[0223] 溶融物を铸型内で冷却、凝固させてインゴットを作製し、そのインゴットを圧延機に より圧延して、 90 (mm) X 90 (mm) X 8. 1 (mm)の板状の合金を作製した。 [0223] The melt is cooled and solidified in a vertical mold to produce an ingot, and the ingot is rolled by a rolling mill to obtain a plate shape of 90 (mm) X 90 (mm) X 8.1 (mm) An alloy was prepared.
[0224] その後、電気炉で 400°C〜500°Cで Arガスを封入した状態で、該板状合金を 1〜 1. 5時間程度熱処理し、その後更にプレス機により反りを修正した。 [0224] Thereafter, in a state where Ar gas was sealed at 400 ° C to 500 ° C in an electric furnace, the plate-like alloy was heat-treated for about 1 to 1.5 hours, and then warpage was further corrected by a press.
そして、修正した板を製品形状にワイヤーカットした。耐水研磨紙を用いて製品の 前面を研磨して、表面粗度を調整し、最終的に Cu合金のスパッタリングターゲットを 作製した。  And the corrected board was wire-cut into a product shape. The front surface of the product was polished with water-resistant abrasive paper to adjust the surface roughness, and finally a Cu alloy sputtering target was produced.
[0225] なお、真空度は 1. 3 X 10_2Pa (l X 10_4Torr)以下の高真空に保った。これは、 A g、 Cuは溶湯に酸素を含有し易いために、減圧下での溶湯保持において脱酸を目 的とするものである。しかし、減圧下においては Agの揮発が進行するため、状況に応 じ種々の雰囲気調整を行なった。 [0225] Incidentally, the degree of vacuum was maintained at 1. 3 X 10 _2 Pa (l X 10 _4 Torr) following a high vacuum. This is because Ag and Cu are easy to contain oxygen in the molten metal, and are intended for deoxidation when the molten metal is held under reduced pressure. However, since the volatilization of Ag progresses under reduced pressure, various atmosphere adjustments were made according to the situation.
上記の方法にて、下記表 2に示す糸且成を有するスパッタリングターゲットを作製した  By the above method, a sputtering target having the yarn composition shown in Table 2 below was produced.
[0226] [表 2] 表 2 [0226] [Table 2] Table 2
Figure imgf000060_0001
Figure imgf000060_0001
[0227] 上記組成のターゲット並びにスパッタ膜の保存安定性及び反射率の傾向を調べる ために以下の実験を行なった。つまり、下記のスパッタ条件でガラス基板の上に通常 よりも厚目の膜厚である 150nmのスパッタ膜を形成した。そして、膜面側から 650nm の光を照射したときの反射率を測定した。その反射率の測定は、成膜直後と、 80°C で相対湿度が 80%の高温高湿下に 24時間保持した後とで実施した。成膜直後の反 射率の測定結果により、反射率とターゲット組成との相関を知ることができる。また、 高温高湿下に 24時間保持した後と、成膜直後の反射率の変化を測定することにより 、極めて厳しい保存安定性のテストの結果が得られる。尚、上記の反射率の測定に 使用した分光器は島津製作所製 UV— 3100PCであった。 [0227] In order to examine the storage stability and the reflectance tendency of the target having the above composition and the sputtered film, the following experiment was conducted. That is, a sputtered film with a thickness of 150 nm, which is thicker than usual, was formed on a glass substrate under the following sputtering conditions. And the reflectance when 650 nm light was irradiated from the film surface side was measured. The reflectivity was measured immediately after film formation and after being kept for 24 hours under high temperature and high humidity at 80 ° C and 80% relative humidity. The correlation between the reflectance and the target composition can be known from the measurement result of the reflectance immediately after the film formation. In addition, the results of extremely strict storage stability tests can be obtained by measuring the change in reflectivity after holding at high temperature and high humidity for 24 hours and immediately after film formation. The spectroscope used for the above reflectance measurement was UV-3100PC manufactured by Shimadzu Corporation.
[0228] <スパッタ条件 > [0228] <Sputtering conditions>
スパッタ装置 = アルバック製 (ULVAC) BC4341  Sputtering equipment = ULVAC (ULVAC) BC4341
到達真空度 = 5 X 10"4Pa Ultimate vacuum = 5 X 10 " 4 Pa
Arガス圧 = 0. 3Pa  Ar gas pressure = 0.3 Pa
スパッタ時投入パワー(最大値) = 200W  Sputtering power (maximum value) = 200W
[0229] 成膜直後の反射率の測定結果、高温高湿下に 24時間保持した後の反射率の測 定結果、及び反射率変化の測定結果を表 2に示す。表 2中、「timeO」と表示されて いるものが「成膜直後の反射率の測定結果」を示す。また、表 2中、「80°C80%RH2 4hr後」と表示されているものが「高温高湿下に 24時間保持した後の反射率の測定 結果」を示す。そして、表 2中、「反射率変化」と表示されているものが「反射率変化の 測定結果」を示す。 [0230] 表 2において、 Cu、 Agの二元系に比べて、第三元素種 Xの添加による保存安定性 の向上の効果が明確に現れている。即ち、例えば、 Cu Ag では反射率の低下 [0229] Table 2 shows the measurement results of the reflectivity immediately after film formation, the measurement results of the reflectivity after being held for 24 hours under high temperature and high humidity, and the measurement results of the change in reflectivity. In Table 2, “timeO” indicates “Reflectance measurement result immediately after deposition”. In Table 2, “After 80 ° C 80% RH2 4 hr” indicates “Reflectance measurement results after holding at high temperature and high humidity for 24 hours”. In Table 2, “Reflectance change” is indicated as “Measurement result of reflectivity change”. [0230] In Table 2, the effect of improving the storage stability by the addition of the third element species X clearly appears compared with the binary system of Cu and Ag. That is, for example, Cu Ag reduces the reflectivity.
87. 2 12. 8  87. 2 12. 8
力 ^26. 8%と大きくなる傾向にあるのに対して、 Cu Ag Al 、 Cu Ag Zn  Force tends to increase to 26. 8%, while Cu Ag Al, Cu Ag Zn
84. 8 12. 7 2. 5 86. 1 12. 8 84. 8 12. 7 2. 5 86. 1 12. 8
、 Cu Ag Cr 、 Cu Ag Ni の反射率の低下は、それぞれ 5· 96%、, Cu Ag Cr, Cu Ag Ni reflectivity drop is 5 · 96%,
1. 1 85. 9 12. 8 1. 3 85. 3 12. 8 1. 2 1. 1 85. 9 12. 8 1. 3 85. 3 12. 8 1. 2
2. 23%、 5. 05%、 3. 28%と、 /J、さくなつている。また、第三元素種 Xとして、表 2に おいては、 Al、 Zn、 Crの場合により高い反射率(90%強)が得られ、特にそれらの中 では、 A1と Znが高反射率で好ましいことが分かる。一方、 A1で検証したように、 CuA gの合金に第三元素種 Xを添加する際に、第三元素種 Xの含有量が 10at%を超える と、反射率変化が大きい傾向となることがわかる。  2. 23%, 5. 05%, 3. 28%, / J, sneak. In addition, as shown in Table 2, higher reflectivity (over 90%) is obtained for the third element species X in the case of Al, Zn, and Cr. Among them, A1 and Zn have high reflectivity. It turns out that it is preferable. On the other hand, as verified in A1, when adding the third element species X to the CuA g alloy, if the content of the third element species X exceeds 10 at%, the change in reflectance tends to be large. Recognize.
[0231] 尚、第三元素種 Xとしては、一種類以上ならば何種類でもよぐ二種類以上の金属 元素を用いる場合には、その総和が 10at%以下に設定すればよい。  [0231] As the third element type X, when two or more kinds of metal elements are used as long as they are one kind or more, the total sum may be set to 10 at% or less.
[0232] [実施例 10]  [Example 10]
実施例 9と同様にして、下記の表 3に記載された組成を有するスパッタリングターゲ ットを作製した。更に、そのスパッタリングターゲット並びにそのスパッタ膜の耐酸ィ匕性 及び耐腐食性を調べるために以下の実験を行なった。つまり、実施例 9と同様にガラ ス基板上にスパッタ膜を設けた。そして、ガラス基板上に設けられた上記スパッタ膜 の反射率を実施例 9と同様の方法で測定した後、濃度が lOOppmの H Sガス雰囲気  In the same manner as in Example 9, a sputtering target having the composition described in Table 3 below was produced. Furthermore, the following experiments were conducted to investigate the acid resistance and corrosion resistance of the sputtering target and the sputtered film. That is, a sputtered film was provided on the glass substrate as in Example 9. Then, the reflectance of the sputtered film provided on the glass substrate was measured by the same method as in Example 9, and then the H 2 S gas atmosphere having a concentration of lOOppm.
2  2
に 2時間保持した。そして、保持後の反射率を再度実施例 9と同様の方法で測定した 。尚、反射率測定の 650nmの光は、基板側から入射した。以上の実験で得られた結 果を表 3に示す。  For 2 hours. Then, the reflectance after holding was measured again in the same manner as in Example 9. The light of 650 nm for reflectance measurement was incident from the substrate side. Table 3 shows the results obtained in the above experiment.
[0233] 表 3において、「スパッタ膜成膜直後」と表示されているものが、ガラス基板上にスパ ッタ膜を成膜した直後の反射率の測定結果を示している。また、表 3において、「暴露 後」と表示されているもの力 H Sガス雰囲気に 2時間保持した後の反射率の測定結  In Table 3, “immediately after sputter film formation” indicates the reflectance measurement result immediately after the sputtering film is formed on the glass substrate. Also, in Table 3, the force indicated as “after exposure” is the measurement result of the reflectivity after holding in the H 2 S gas atmosphere for 2 hours.
2  2
果を示している。そして、表 3において、「変化率」と表示されているもの力 「スパッタ 膜成膜直後」と「暴露後」とにおける反射率の変化率を示して!/ヽる。  Showing the results. Table 3 shows the change rate of reflectivity between the power indicated as “change rate” and “immediately after sputter film formation” and “after exposure”.
[0234] [表 3] 表 3 [0234] [Table 3] Table 3
Figure imgf000062_0001
Figure imgf000062_0001
[0235] 表 3の結果より、 Cuに Agを 10at%以下含有させた状態で第三元素種 Xを 5&%以 下含有させると、 H Sガス暴露という極めて過酷な酸ィ匕及び腐食試験にもかかわらず 、反射率の変化率の多くが数%と非常に小さい値に制御できることがわかる。なお、 第三元素種 Xの 5at%以下の含有量は、従来用いられてきた添加量よりも少ない。こ のことからも、第三元素種 Xを 5at%以下でも、上記反射層において耐酸ィヒ性向上効 果及び耐腐食性向上効果が十分に発揮されることが分かる。 [0235] From the results shown in Table 3, when Cu is contained in Ag at 10at% or less and the third element species X is contained in 5 &% or less, it can be used for extremely severe acid and corrosion tests such as HS gas exposure. Regardless, it can be seen that most of the reflectance change rate can be controlled to a very small value of several percent. Note that the content of the third element species X of 5 at% or less is smaller than the additive amount conventionally used. This also shows that even when the third element type X is 5 at% or less, the above-mentioned reflective layer exhibits the effect of improving the acid resistance and the resistance to corrosion.
産業上の利用可能性  Industrial applicability
[0236] 本発明は、 DVD士 R等の赤色半導体レーザー用の光記録媒体や、青色半導体レ ザ 用の光記録媒体等の用途において、好適に利用することが可能である。  [0236] The present invention can be suitably used in applications such as an optical recording medium for red semiconductor lasers such as DVD player R, an optical recording medium for blue semiconductor lasers, and the like.
[0237] 本発明を特定の態様を用いて詳細に説明した力 本発明の意図と範囲を離れるこ となく様々な変更及び変形が可能であることは、当業者にとって明らかである。  [0237] The power of the present invention in detail using specific embodiments [0237] It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
尚、本出願は、 2005年 4月 28日付で出願された曰本特許出願 (特願 2005- 131 925)、及び、 2006年 4月 27日付けで出願された日本特許出願 (特願 2006— 124 059)に基づいており、その全体が引用により援用される。  This application consists of a Japanese patent application filed on April 28, 2005 (Japanese Patent Application No. 2005-131 925) and a Japanese patent application filed on April 27, 2006 (Japanese Patent Application 2006— 124 059), which is incorporated by reference in its entirety.

Claims

請求の範囲  The scope of the claims
[1] 同心円状又はスパイラル状の溝を有する基板上に、少なくとも有機色素力もなる記 録層及び金属を含有する反射層を有し、最短マーク長が 0. 4 m未満である、或い は、 35. OmZs以上の記録線速度において記録を行なう光記録媒体において、 前記基板上の案内溝のトラックピッチが 0. 8 m以下、溝幅が 0. 4 m以下、溝内 の記録層膜厚が 70nm以下であり、  [1] On a substrate having concentric or spiral grooves, at least a recording layer having an organic coloring power and a reflective layer containing a metal, and the shortest mark length is less than 0.4 m, or 35. In an optical recording medium for recording at a recording linear velocity of OmZs or more, the track pitch of the guide groove on the substrate is 0.8 m or less, the groove width is 0.4 m or less, and the recording layer thickness in the groove Is less than 70nm,
前記記録層を形成する前記有機色素単層の下記定義による色素保持率が、 ISO — 105— B02に示される光照射条件の Wool scale 5級(耐光性試験)において 70 %以下であり、  The organic dye single layer forming the recording layer has a dye retention rate of 70% or less in the Wool scale 5 (light resistance test) under the light irradiation conditions shown in ISO-105-B02, as defined below.
前記反射層の空気中での波長えに対する反射率 Rの微分値 dRZ (%/nm) 1S 300nm以上 500nm以下の波長域にお!、て 3以下である  The differential value of reflectivity R with respect to the wavelength of the reflective layer in air dRZ (% / nm) 1S In the wavelength range of 300 nm to 500 nm!
ことを特徴とする、光記録媒体。  An optical recording medium characterized by the above.
[色素保持率]  [Dye retention]
300〜800nmの波長域における前記記録層を形成する有機色素単層の塗布膜 の最大吸収波長における、前記耐光性試験前後の吸光度の比率、すなわち { (試験 後吸光度) / (試験前吸光度) } X 100 (%)を、色素保持率とする。  The ratio of the absorbance before and after the light resistance test at the maximum absorption wavelength of the coating film of the organic dye single layer forming the recording layer in the wavelength range of 300 to 800 nm, that is, {(absorbance after test) / (absorbance before test)} X 100 (%) is the dye retention.
[2] 前記反射層が、 Cu、 Au及び A1カゝら選ばれる少なくとも 1種の元素を含有するととも に、前記元素の合計の比率が、前記反射層中で 50at%以上である  [2] The reflective layer contains at least one element selected from Cu, Au, and A1, and the total ratio of the elements is 50 at% or more in the reflective layer.
ことを特徴とする、請求項 1記載の光記録媒体。  The optical recording medium according to claim 1, wherein:
[3] 前記反射層の波長 300ηπ!〜 500nmにおける空気中での反射率が 20%以上、 70 %以下である  [3] Wavelength of the reflective layer is 300ηπ! Reflectance in air at ~ 500nm is 20% or more and 70% or less
ことを特徴とする、請求項 1又は請求項 2に記載の光記録媒体。  The optical recording medium according to claim 1, wherein the optical recording medium is characterized in that
[4] 前記記録層が有機色素として、下記一般式(1)で表わされるァゾ系化合物と Znの 金属イオンとからなるァゾ金属キレート色素を少なくとも含有する [4] The recording layer contains at least a azo metal chelate dye comprising an azo compound represented by the following general formula (1) and a metal ion of Zn as an organic dye.
ことを特徴とする、請求項 1〜3の何れか一項に記載の光記録媒体。  The optical recording medium according to any one of claims 1 to 3, wherein the optical recording medium is characterized in that
[化 1] [Chemical 1]
Figure imgf000064_0001
Figure imgf000064_0001
(一般式 (1)中、 (In general formula (1),
R1は、水素原子又は CO R3で示されるエステル基 (ここで、 R3は、直鎖もしくは分 R 1 is a hydrogen atom or an ester group represented by CO R 3 (where R 3 is a straight chain or
2  2
岐のアルキル基、又は、シクロアルキル基を表わす。)を表わす。 Represents an alkyl group or a cycloalkyl group. ).
R2は、直鎖又は分岐のアルキル基を表わす。 R 2 represents a linear or branched alkyl group.
X1及び X2のうち、少なくともいずれか一方は NHSO Y基(ここで、 Yは、少なくとも 2 At least one of X 1 and X 2 is NHSO Y group (where Y is at least 2
2  2
つのフッ素原子で置換されている直鎖又は分岐のアルキル基を表わす。 )を表わす とともに、残りは水素原子を表わす。 Represents a straight-chain or branched alkyl group substituted by two fluorine atoms. ) And the rest represent hydrogen atoms.
R4及び R5はそれぞれ独立して、水素原子、直鎖若しくは分岐のアルキル基、又は 直鎖若しくは分岐のアルコキシ基を表わす。 R 4 and R 5 each independently represents a hydrogen atom, a linear or branched alkyl group, or a linear or branched alkoxy group.
R6、 R7、 R8及び R9はそれぞれ独立して、水素原子又は炭素数 1若しくは 2のアルキ ル基を表わす。 R 6 , R 7 , R 8 and R 9 each independently represent a hydrogen atom or an alkyl group having 1 or 2 carbon atoms.
尚、前記 NHSO Y基力も H+が脱離して NSO Y—(陰性)基となり、上記一般式(1  Note that the NHSO Y basic force is also HSO desorbed to become an NSO Y— (negative) group, and the above general formula (1
2 2  twenty two
)で表されるァゾ系化合物は金属イオンと配位結合を形成する。 )  The azo compound represented by) forms a coordinate bond with a metal ion. )
前記記録層が有機色素として、下記一般式 (2)で表されるシァニン系色素を少なく とも含有する  The recording layer contains at least a cyanine dye represented by the following general formula (2) as an organic dye.
ことを特徴とする、請求項 1〜4の何れか一項に記載の光記録媒体。 The optical recording medium according to any one of claims 1 to 4, wherein the optical recording medium is characterized in that
[化 2] [Chemical 2]
Figure imgf000065_0001
Figure imgf000065_0001
(一般式 (2)中、 (In general formula (2),
環 A及び環 Bはそれぞれ独立して、置換基を有してもょ 、ベンゼン環又はナフタレ ン環を表わす。  Ring A and ring B each independently have a substituent and represent a benzene ring or a naphthalene ring.
R1G及び R11はそれぞれ独立して、置換基を有してもよい炭素数 1から 5のアルキル 基を表わす。 R 1G and R 11 each independently represents an alkyl group having 1 to 5 carbon atoms which may have a substituent.
R12、 R13、 R14及び R15はそれぞれ独立して、置換基を有してもよい炭素数 1から 5の アルキル基を表わす。 R 12 , R 13 , R 14 and R 15 each independently represents an alkyl group having 1 to 5 carbon atoms which may have a substituent.
R16は、水素原子、ハロゲン原子、シァノ基、又は、置換基を有してもよい炭素数 1 から 5のアルキル基を表わす。 R 16 represents a hydrogen atom, a halogen atom, a cyano group, or an alkyl group having 1 to 5 carbon atoms which may have a substituent.
Q—は、対ァ-オンを表わす。 )  Q— stands for anti-on. )
前記記録層が有機色素として、下記一般式 (3)、(4)、(5)、(6)で表される化合物 力もなる群より選ばれる少なくとも一種のァゾ系化合物と Znを除く 3d遷移元素の金属 イオンとからなるァゾ金属キレート色素を少なくとも含有する  The recording layer is an organic dye, and is a compound represented by the following general formulas (3), (4), (5), (6): 3d transitions excluding Zn and at least one azo compound selected from the group consisting of also a compound force Contains at least a azo metal chelate dye consisting of elemental metal ions
ことを特徴とする、請求項 4記載の光記録媒体。 5. The optical recording medium according to claim 4, wherein:
[化 3] [Chemical 3]
R26 R25 [化 4] R 26 R 25 [Chemical 4]
Figure imgf000066_0001
Figure imgf000066_0001
(一般式(3)及び(5)中、 R2は、水素原子、置換基を有していてもよい炭素数 1から の直鎖、分岐あるいは環状のアルキル基、又は、置換基を有していてもよい炭素数 から 6の直鎖、分岐ある 、は環状のアルキル基を有するエステル基を表わす。 一般式 (4)及び (6)中、 R17は、置換基を有してもよい炭素数 1以上 6以下のアルキ ル基を表わす。 (In the general formulas (3) and (5), R 2 has a hydrogen atom, a linear, branched or cyclic alkyl group having 1 carbon atom which may have a substituent, or a substituent. Or a straight-chain, branched or ester group having a cyclic alkyl group having 6 to 6 carbon atoms, and in formulas (4) and (6), R 17 may have a substituent. C1-C6 alkyl Represents a ru group.
一般式 (3)及び (4)中の R21ないし R27、並びに、一般式 (5)及び (6)の R18及び R19 は、それぞれ独立して、水素原子、置換基を有してもよい炭素数 1以上 6以下の直鎖 、分岐あるいは環状のアルキル基を表わす。 R18及び R19は、互いに結合して環を形 成してちょい。 R 21 to R 27 in general formulas (3) and (4) and R 18 and R 19 in general formulas (5) and (6) each independently have a hydrogen atom or a substituent. It represents a straight, branched or cyclic alkyl group having 1 to 6 carbon atoms. R 18 and R 19 may combine with each other to form a ring.
一般式(3)、(4)、(5)、(6)中、 X1及び X2のうち、少なくともいずれか一方は NHS O Y基 (ここで、 Yは、少なくとも 2つのフッ素原子で置換されている直鎖又は分岐のIn general formulas (3), (4), (5), and (6), at least one of X 1 and X 2 is an NHS OY group (where Y is substituted with at least two fluorine atoms) Linear or branched
2 2
アルキル基を表わす。)を表わすとともに、残りは水素原子を表わす。 Represents an alkyl group. ) And the rest represent hydrogen atoms.
尚、前記 NHSO Y基力も H+が脱離して NSO Y—(陰性)基となり、上記一般式(3  The NHSO Y basic force is also removed from H + to form an NSO Y— (negative) group, and the above general formula (3
2 2  twenty two
)、(4)、(5)、(6)で表わされるァゾ系化合物は、金属イオンと配位結合を形成する。 )  The azo compounds represented by), (4), (5) and (6) form a coordinate bond with a metal ion. )
前記記録層が有機色素として、下記一般式 (3)、(4)、(5)、(6)で表される化合物 力もなる群より選ばれる少なくとも一種のァゾ系化合物と Znを除く 3d遷移元素の金属 イオンとからなるァゾ金属キレート色素を少なくとも含有する  The recording layer is an organic dye, and is a compound represented by the following general formulas (3), (4), (5), (6): 3d transitions excluding Zn and at least one azo compound selected from the group consisting of also a compound force Contains at least a azo metal chelate dye consisting of elemental metal ions
ことを特徴とする、請求項 5記載の光記録媒体。 6. The optical recording medium according to claim 5, wherein:
[化 7] [Chemical 7]
Figure imgf000067_0001
Figure imgf000067_0001
[化 8] [Chemical 8]
Figure imgf000068_0001
Figure imgf000068_0002
Figure imgf000068_0001
Figure imgf000068_0002
Figure imgf000068_0003
Figure imgf000068_0003
(一般式 (3)及び (5)中、 は、水素原子、置換基を有していてもよい炭素数 1から の直鎖、分岐あるいは環状のアルキル基、又は、置換基を有していてもよい炭素数 1から 6の直鎖、分岐ある 、は環状のアルキル基を有するエステル基を表わす。 一般式 (4)及び (6)中、 R17は、置換基を有してもよい炭素数 1以上 6以下のアルキ ル基を表わす。 (In the general formulas (3) and (5), is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 carbon atom which may have a substituent, or a substituent. A linear, branched or branched alkyl group having 1 to 6 carbon atoms represents an ester group having a cyclic alkyl group In the general formulas (4) and (6), R 17 is a carbon which may have a substituent. Number 1 to 6 Represents a ru group.
一般式 (3)及び (4)中の R21ないし R27、並びに、一般式 (5)及び (6)の R18及び R19 は、それぞれ独立して、水素原子、置換基を有してもよい炭素数 1以上 6以下の直鎖 、分岐あるいは環状のアルキル基を表わす。 R18及び R19は、互いに結合して環を形 成してちょい。 R 21 to R 27 in general formulas (3) and (4) and R 18 and R 19 in general formulas (5) and (6) each independently have a hydrogen atom or a substituent. It represents a straight, branched or cyclic alkyl group having 1 to 6 carbon atoms. R 18 and R 19 may combine with each other to form a ring.
一般式(3)、(4)、(5)、(6)中、 X1及び X2のうち、少なくともいずれか一方は NHS O Y基 (ここで、 Yは、少なくとも 2つのフッ素原子で置換されている直鎖又は分岐のIn general formulas (3), (4), (5), and (6), at least one of X 1 and X 2 is an NHS OY group (where Y is substituted with at least two fluorine atoms) Linear or branched
2 2
アルキル基を表わす。)を表わすとともに、残りは水素原子を表わす。 Represents an alkyl group. ) And the rest represent hydrogen atoms.
尚、前記 NHSO Y基力も H+が脱離して NSO Y—(陰性)基となり、上記一般式(3  The NHSO Y basic force is also removed from H + to form an NSO Y— (negative) group, and the above general formula (3
2 2  twenty two
)、(4)、(5)、(6)で表わされるァゾ系化合物は、金属イオンと配位結合を形成する。 )  The azo compounds represented by), (4), (5) and (6) form a coordinate bond with a metal ion. )
同心円状又はスパイラル状の溝を有する基板上に、少なくとも有機色素を含有する 記録層及び金属を含有する反射層を有し、最短マーク長が 0. 4 m未満である、或 いは、 35. OmZs以上の記録線速度において記録を行なう光記録媒体において、 前記記録層が有機色素として、下記一般式(1)で表わされるァゾ系化合物と Znの 金属イオンとからなるァゾ金属キレート色素を少なくとも含有する  It has a recording layer containing at least an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves, and the shortest mark length is less than 0.4 m, or 35. In an optical recording medium for recording at a recording linear velocity of OmZs or higher, an azo metal chelate dye comprising an azo compound represented by the following general formula (1) and a metal ion of Zn is used as the organic dye in the recording layer. Contain at least
ことを特徴とする、光記録媒体。 An optical recording medium characterized by the above.
[化 11] [Chemical 11]
Figure imgf000069_0001
Figure imgf000069_0001
(一般式 (1)中、 (In general formula (1),
R1は、水素原子又は CO R3で示されるエステル基 (ここで、 R3は、直鎖もしくは分 R 1 is a hydrogen atom or an ester group represented by CO R 3 (where R 3 is a straight chain or
2  2
岐のアルキル基、又は、シクロアルキル基を表わす。)を表わす。 R2は、直鎖又は分岐のアルキル基を表わす。 Represents an alkyl group or a cycloalkyl group. ). R 2 represents a linear or branched alkyl group.
X1及び X2のうち、少なくともいずれか一方は NHSO Y基(ここで、 Yは、少なくとも 2 At least one of X 1 and X 2 is NHSO Y group (where Y is at least 2
2  2
つのフッ素原子で置換されている直鎖又は分岐のアルキル基を表わす。 )を表わす とともに、残りは水素原子を表わす。 Represents a straight-chain or branched alkyl group substituted by two fluorine atoms. ) And the rest represent hydrogen atoms.
R4及び R5はそれぞれ独立して、水素原子、直鎖若しくは分岐のアルキル基、又は 直鎖若しくは分岐のアルコキシ基を表わす。 R 4 and R 5 each independently represents a hydrogen atom, a linear or branched alkyl group, or a linear or branched alkoxy group.
R6、 R7、 R8及び R9はそれぞれ独立して、水素原子又は炭素数 1若しくは 2のアルキ ル基を表わす。 R 6 , R 7 , R 8 and R 9 each independently represent a hydrogen atom or an alkyl group having 1 or 2 carbon atoms.
尚、前記 NHSO Y基力も H+が脱離して NSO Y—(陰性)基となり、上記一般式(1  Note that the NHSO Y basic force is also HSO desorbed to become an NSO Y— (negative) group, and the above general formula (1
2 2  twenty two
)で表されるァゾ系化合物は金属イオンと配位結合を形成する。 )  The azo compound represented by) forms a coordinate bond with a metal ion. )
前記反射層が、下記組成 (A)で表される材料を少なくとも含有する  The reflective layer contains at least a material represented by the following composition (A)
ことを特徴とする、請求項 1〜8のいずれ力 1項に記載の光記録媒体。 The optical recording medium according to any one of claims 1 to 8, wherein the optical recording medium is characterized by that.
[組成 (A) ] [Composition (A)]
50at%≤Cu≤97at%  50at% ≤Cu≤97at%
3at%≤Ag≤50at% 3at% ≤Ag≤50at%
0. 05at%≤X≤10at% 0. 05at% ≤X≤10at%
(ここで、 Xは、 Zn、 Al、 Pd、 In、 Sn、 Cr、 Niから成る群より選択される少なくとも 1種 の元素を表わす。但し、 Cu、 Ag、及び Xの合計量は 100at%以下である。 ) 同心円状又はスパイラル状の溝を有する基板上に、少なくとも有機色素を含有する 記録層及び金属を含有する反射層を有する光記録媒体の前記反射層の製造に用 Vヽるスパッタリングターゲットであって、  (Where X represents at least one element selected from the group consisting of Zn, Al, Pd, In, Sn, Cr, and Ni, provided that the total amount of Cu, Ag, and X is 100 at% or less. V) Sputtering target used for manufacturing the reflective layer of an optical recording medium having a recording layer containing at least an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves. Because
下記組成 Bで表される材料カゝら少なくともなる  At least the material represented by the following composition B
ことを特徴とする、スパッタリングターゲット。 A sputtering target characterized by that.
[組成 (B) ] [Composition (B)]
50at%≤Cu≤97at%  50at% ≤Cu≤97at%
3at%≤Ag≤50at% 3at% ≤Ag≤50at%
0. 05at%≤X≤10at% 0. 05at% ≤X≤10at%
(ここで、 Xは、 Zn、 Al、 Pd、 In、 Sn、 Cr、 Niから成る群より選択される少なくとも 1種 の元素を表わす。但し、 Cu、 Ag、及び Xの合計量は 100at%以下である。 ) (Where X is at least one selected from the group consisting of Zn, Al, Pd, In, Sn, Cr, Ni) Represents the element of However, the total amount of Cu, Ag, and X is 100at% or less. )
[11] 前記有機色素として、下記一般式(1)で表わされるァゾ系化合物と Ni, Zn金属ィ オンと力 なるァゾ金属キレート色素を用いる [11] As the organic dye, an azo compound represented by the following general formula (1) and a azo metal chelate dye which is powerful with Ni and Zn metal ions are used.
ことを特徴とする、請求項 10記載のスパッタリングターゲット。  The sputtering target according to claim 10, wherein
[化 12]  [Chemical 12]
Figure imgf000071_0001
Figure imgf000071_0001
(一般式 (1)中、 (In general formula (1),
R1は、水素原子又は CO R3で示されるエステル基 (ここで、 R3は、直鎖もしくは分 R 1 is a hydrogen atom or an ester group represented by CO R 3 (where R 3 is a straight chain or
2  2
岐のアルキル基、又は、シクロアルキル基を表わす。)を表わす。  Represents an alkyl group or a cycloalkyl group. ).
R2は、直鎖又は分岐のアルキル基を表わす。 R 2 represents a linear or branched alkyl group.
X1及び X2のうち、少なくともいずれか一方は NHSO Y基(ここで、 Yは、少なくとも 2 At least one of X 1 and X 2 is NHSO Y group (where Y is at least 2
2  2
つのフッ素原子で置換されている直鎖又は分岐のアルキル基を表わす。 )を表わす とともに、残りは水素原子を表わす。  Represents a straight-chain or branched alkyl group substituted by two fluorine atoms. ) And the rest represent hydrogen atoms.
R4及び R5はそれぞれ独立して、水素原子、直鎖若しくは分岐のアルキル基、又は 直鎖若しくは分岐のアルコキシ基を表わす。 R 4 and R 5 each independently represents a hydrogen atom, a linear or branched alkyl group, or a linear or branched alkoxy group.
R6、 R7、 R8及び R9はそれぞれ独立して、水素原子又は炭素数 1若しくは 2のアルキ ル基を表わす。 R 6 , R 7 , R 8 and R 9 each independently represent a hydrogen atom or an alkyl group having 1 or 2 carbon atoms.
尚、前記 NHSO Y基力も H+が脱離して NSO Y—(陰性)基となり、上記一般式(1  Note that the NHSO Y basic force is also HSO desorbed to become an NSO Y— (negative) group, and the above general formula (1
2 2  twenty two
)で表されるァゾ系化合物は金属イオンと配位結合を形成する。 )  The azo compound represented by) forms a coordinate bond with a metal ion. )
同心円状又はスパイラル状の溝を有する基板上に、少なくとも有機色素を含有する 記録層及び金属を含有する反射層を有し、最短マーク長が 0. 4 m未満である、或 いは、 35. OmZs以上の記録線速度において記録を行なう光記録媒体の前記有機 色素として用いられるァゾ金属キレート色素であって、 A recording layer containing at least an organic dye and a reflective layer containing a metal on a substrate having concentric or spiral grooves, and the shortest mark length is less than 0.4 m, or Or 35. an azo metal chelate dye used as the organic dye of an optical recording medium for recording at a recording linear velocity of OmZs or higher,
下記一般式(1)で表わされるァゾ系化合物と Znの金属イオンとからなる  Consists of an azo compound represented by the following general formula (1) and a metal ion of Zn
ことを特徴とする、ァゾ金属キレート色素。 An azo metal chelate dye characterized by the above.
[化 13] [Chemical 13]
Figure imgf000072_0001
Figure imgf000072_0001
(一般式 (1)中、 (In general formula (1),
R1は、水素原子又は CO R3で示されるエステル基 (ここで、 R3は、直鎖もしくは分 R 1 is a hydrogen atom or an ester group represented by CO R 3 (where R 3 is a straight chain or
2  2
岐のアルキル基、又は、シクロアルキル基を表わす。)を表わす。 Represents an alkyl group or a cycloalkyl group. ).
R2は、直鎖又は分岐のアルキル基を表わす。 R 2 represents a linear or branched alkyl group.
X1及び X2のうち、少なくともいずれか一方は NHSO Y基(ここで、 Yは、少なくとも 2 At least one of X 1 and X 2 is NHSO Y group (where Y is at least 2
2  2
つのフッ素原子で置換されている直鎖又は分岐のアルキル基を表わす。 )を表わす とともに、残りは水素原子を表わす。 Represents a straight-chain or branched alkyl group substituted by two fluorine atoms. ) And the rest represent hydrogen atoms.
R4及び R5はそれぞれ独立して、水素原子、直鎖若しくは分岐のアルキル基、又は 直鎖若しくは分岐のアルコキシ基を表わす。 R 4 and R 5 each independently represents a hydrogen atom, a linear or branched alkyl group, or a linear or branched alkoxy group.
R6、 R7、 R8及び R9はそれぞれ独立して、水素原子又は炭素数 1若しくは 2のアルキ ル基を表わす。 R 6 , R 7 , R 8 and R 9 each independently represent a hydrogen atom or an alkyl group having 1 or 2 carbon atoms.
尚、前記 NHSO Y基力も H+が脱離して NSO Y—(陰性)基となり、上記一般式(1  Note that the NHSO Y basic force is also HSO desorbed to become an NSO Y— (negative) group, and the above general formula (1
2 2  twenty two
)で表されるァゾ系化合物は金属イオンと配位結合を形成する。 )  The azo compound represented by) forms a coordinate bond with a metal ion. )
PCT/JP2006/309023 2005-04-28 2006-04-28 Optical recording medium, spattering target, and azo-metal chelate dye WO2006118266A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-131925 2005-04-28
JP2005131925 2005-04-28

Publications (1)

Publication Number Publication Date
WO2006118266A1 true WO2006118266A1 (en) 2006-11-09

Family

ID=37308060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309023 WO2006118266A1 (en) 2005-04-28 2006-04-28 Optical recording medium, spattering target, and azo-metal chelate dye

Country Status (3)

Country Link
CN (1) CN101171634A (en)
TW (1) TW200710170A (en)
WO (1) WO2006118266A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038603A1 (en) * 2006-09-25 2008-04-03 Mitsubishi Kagaku Media Co., Ltd. Metal-chelate azo dye and optical recording medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770828B (en) * 2017-10-06 2022-02-18 中环股份有限公司 Optical disk and method for manufacturing optical disk

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158862A (en) * 1999-12-02 2001-06-12 Mitsubishi Chemicals Corp Metal chelate coloring matter and optical recording medium
JP2002114922A (en) * 2000-08-04 2002-04-16 Mitsubishi Chemicals Corp Azo metal chelate coloring matter and optical recording medium made by using it
JP2002234258A (en) * 2001-02-13 2002-08-20 Ricoh Co Ltd Optical recording medium
JP2004272983A (en) * 2003-03-06 2004-09-30 Ricoh Co Ltd Optical recording and play-back method
JP2006040419A (en) * 2004-07-28 2006-02-09 Tdk Corp Optical recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158862A (en) * 1999-12-02 2001-06-12 Mitsubishi Chemicals Corp Metal chelate coloring matter and optical recording medium
JP2002114922A (en) * 2000-08-04 2002-04-16 Mitsubishi Chemicals Corp Azo metal chelate coloring matter and optical recording medium made by using it
JP2002234258A (en) * 2001-02-13 2002-08-20 Ricoh Co Ltd Optical recording medium
JP2004272983A (en) * 2003-03-06 2004-09-30 Ricoh Co Ltd Optical recording and play-back method
JP2006040419A (en) * 2004-07-28 2006-02-09 Tdk Corp Optical recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038603A1 (en) * 2006-09-25 2008-04-03 Mitsubishi Kagaku Media Co., Ltd. Metal-chelate azo dye and optical recording medium

Also Published As

Publication number Publication date
TW200710170A (en) 2007-03-16
CN101171634A (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JP4377877B2 (en) Ag alloy reflecting film for optical information recording medium, optical information recording medium, and Ag alloy sputtering target for forming Ag alloy reflecting film for optical information recording medium
CN1901054B (en) Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
TWI460723B (en) An optical information recording medium and an optical information recording medium
CN105793056B (en) Recording layer and optical recording medium for optical recording medium
EP2216780A1 (en) Recordable optical recording medium and method for manufacturing the same
TWI298881B (en)
JP2000057627A (en) Light-reflecting film and optical recording medium using the same
WO2007074861A1 (en) Optical recording medium and azacyanine dye
US20100227107A1 (en) Recording layer for optical information recording medium, optical information recording medium, and spattering target
JP4750504B2 (en) Optical recording medium and azo metal chelate dye additive
JP2006331619A (en) Optical recording medium, sputtering target and azo-metal chelate dye
WO2006118266A1 (en) Optical recording medium, spattering target, and azo-metal chelate dye
JP2007293983A (en) Optical information recording medium
JP2005339761A (en) Optical recording medium
JP2004001375A (en) Write once photorecording medium and recording agent for the medium
JP2003303447A (en) Optical recording medium
JP5298623B2 (en) Write-once optical recording medium
JP2007196683A (en) Recording layer for optical information recording medium, optical information recording medium and sputtering target
WO2008075683A1 (en) Optical information recording medium
JP2005293646A (en) Optical recording medium and its manufacturing method
US20030161987A1 (en) Optical recording medium
JP2003034078A (en) Photorecording medium
TWI229862B (en) Optical information recording medium
JP2002140836A (en) Optical recording medium
JP2008021393A (en) Optical recording medium and recording method of disk medium recognition signal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014810.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 4127/KOLNP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745882

Country of ref document: EP

Kind code of ref document: A1