JP2000057627A - Light-reflecting film and optical recording medium using the same - Google Patents

Light-reflecting film and optical recording medium using the same

Info

Publication number
JP2000057627A
JP2000057627A JP10220453A JP22045398A JP2000057627A JP 2000057627 A JP2000057627 A JP 2000057627A JP 10220453 A JP10220453 A JP 10220453A JP 22045398 A JP22045398 A JP 22045398A JP 2000057627 A JP2000057627 A JP 2000057627A
Authority
JP
Japan
Prior art keywords
layer
recording medium
light
recording
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10220453A
Other languages
Japanese (ja)
Inventor
Hideki Umehara
英樹 梅原
Masashi Koike
正士 小池
Shin Fukuda
福田  伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP10220453A priority Critical patent/JP2000057627A/en
Publication of JP2000057627A publication Critical patent/JP2000057627A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve recording properties and durability by using a light- reflecting film which contains each one or more kinds of elements selected from a first group consisting of Al and Ag and a second group consisting of Bi, Rh and Zn and has specified thermal conductivity and reflectance of specified range for light of a specified wavelength. SOLUTION: The combination of metal elements is made to Al and Bi and/or Rh or Ag ans Bi and/or Zn and the total number of metal atoms in a second group is made to 1 to 49% for the total number of atoms of the first and second metals. The thermal conductivity is made to 140 to 370 W/(m.K) and the reflectance is made to >=70% for light in 830 to 370 nm wavelength range. When a reflecting film having the thermal conductivity above described is applied for a DRAW type optical recording medium using a dye as a recording layer, good pits can be obtd. while maintaining the recording sensitivity and further, good adhesion between the recording layer and a reflecting layer can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光反射膜、特に近
赤外レーザーから青色レーザー波長に対応した追記型光
記録媒体用光反射膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light reflection film, and more particularly to a light reflection film for a write-once optical recording medium corresponding to a wavelength from a near infrared laser to a blue laser.

【0002】[0002]

【従来の技術】従来より光記録媒体として、記録情報を
再生するために、あらかじめプレス等の手段を用いて、
透光性ポリカーボネート製等の基板上にプレピットやプ
リグルーブを形成し、このピットを形成した面にAu、
Al等の金属膜からなる光反射層を形成し、さらにその
上に光硬化型樹脂からなる保護層を形成した読みだし専
用の光記録媒体が、コンパクトディスク(以下CDと略
す)として実用化されている。このCDは、音楽、画
像、データ、プログラムなどを保存再生する目的で広く
普及している。このCDの記録および再生信号に関する
仕様は、CD規格として規定されており、この規格に準
拠する再生装置は、CDプレーヤーとして広く普及して
いる。
2. Description of the Related Art Conventionally, in order to reproduce recorded information as an optical recording medium, a means such as a press is used in advance.
Pre-pits and pre-grooves are formed on a substrate made of translucent polycarbonate or the like, and Au,
A read-only optical recording medium in which a light reflecting layer made of a metal film of Al or the like is formed and a protective layer made of a photocurable resin is further formed thereon has been put into practical use as a compact disk (hereinafter abbreviated as CD). ing. This CD is widely used for storing and reproducing music, images, data, programs and the like. The specification relating to the recording and reproduction signals of the CD is defined as a CD standard, and a reproducing apparatus conforming to the standard is widely used as a CD player.

【0003】CD規格に対応した追記型光記録媒体とし
て、CD−Recordable(以下CD−Rと略す)が提案・
開発されている〔例えば、日経エレクトロニクス No.4
65,p.107, 1989 年1月23日号、OPTICAL DATA STORAGE
DIGEST SERIES vol.1, p.45, 1989 、特開平2−13
2656号、特開平2−168446号、特開平3−2
15466号公報等〕。このCD−Rは、透明樹脂基板
上に、記録層、反射層、保護層がこの順で積層されてお
り、該記録層に高パワーのレーザ光を照射することによ
り、記録層が物理的あるいは化学的変化を起こし、ピッ
トの形で情報を記録する。形成されたピット部位に低パ
ワーのレーザ光を照射し、反射率の変化を検出すること
によりピットの情報を再生することができる。市販のC
D−Rは色素を含有した記録層を有し、この色素として
は大きく分けて、フタロシアニン色素とシアニン色素が
ある。該反射層は色素層に密着して設けられており、通
常、CD規格に準拠した反射率を得るために反射層は反
射率が高く、しかも耐食性が良好なAu薄膜が使用され
ている〔例えば、特開平2−79235号公報〕。
As a write-once optical recording medium conforming to the CD standard, a CD-Recordable (hereinafter abbreviated as CD-R) has been proposed.
[For example, Nikkei Electronics No.4
65, p.107, January 23, 1989, OPTICAL DATA STORAGE
DIGEST SERIES vol.1, p.45, 1989, JP-A-2-13
2656, JP-A-2-168446, JP-A-3-2
No. 15466, etc.]. In this CD-R, a recording layer, a reflective layer, and a protective layer are laminated in this order on a transparent resin substrate. By irradiating the recording layer with a high-power laser beam, the recording layer is physically or Make chemical changes and record information in the form of pits. The pit information can be reproduced by irradiating the formed pit portion with a low-power laser beam and detecting a change in reflectance. Commercial C
DR has a recording layer containing a dye. The dye is roughly classified into a phthalocyanine dye and a cyanine dye. The reflective layer is provided in close contact with the dye layer. Usually, in order to obtain a reflectivity conforming to the CD standard, the reflective layer is made of an Au thin film having high reflectivity and good corrosion resistance [for example, And JP-A-2-79235].

【0004】これらのCD−R媒体は、830〜770
nmの近赤外半導体レーザを用いて記録・再生を行い、
レッドブックやオレンジブック等のCDの規格に準拠し
ているため、CDプレーヤーやCD−ROMプレーヤー
と互換性を有するという特徴を有する。最近、波長69
0nm〜620nmの赤色半導体レーザが開発され、高
密度の記録及び/又は再生が可能となった。例えば、従
来の5〜8倍の記録容量を有する高密度記録媒体や、こ
の高密度記録媒体対応のプレーヤーが開発された。ま
た、YAGレーザの高調波変換による530nm、42
0nm付近の波長のレーザが実用化され、さらに、49
0nm、410nm、370nm付近の波長の半導体レ
ーザの開発も行われている。
[0004] These CD-R media are 830-770.
record / reproduce using near-infrared semiconductor laser
Because it complies with CD standards such as Red Book and Orange Book, it has the feature of being compatible with CD players and CD-ROM players. Recently, wavelength 69
A red semiconductor laser of 0 nm to 620 nm has been developed, and high-density recording and / or reproduction has become possible. For example, a high-density recording medium having a recording capacity 5 to 8 times that of a conventional recording medium and a player compatible with the high-density recording medium have been developed. In addition, 530 nm, 42
A laser having a wavelength around 0 nm has been put into practical use.
Semiconductor lasers having wavelengths around 0 nm, 410 nm, and 370 nm are also being developed.

【0005】そこで、これらの短波長レーザに対応した
色素を用いた高密度に一回書き込み可能な光記録媒体が
提案されており、このような光記録媒体においては、短
波長領域で高い反射率を有する反射膜を使用する必要が
ある。さらに、該反射膜の熱伝導率を制御して、記録層
の分解、レーザ光に対する感度等を最適化する必要があ
る。特開平6−243509号公報では、反射膜に、A
g−In、Ag−VまたはAg−Nb等の合金を用い
て、熱伝導率を規定しているが、色素記録層の分解を考
慮したものではない。また、従来から用いられているA
u、Al、Ag等の反射膜を、記録層に色素を含有した
追記型光記録媒体に使用し、短波長レーザを用いて記録
再生した場合には、熱コントロール、密着性などの問題
が生じ、特にAuでは青色レーザ波長で極端に反射率が
低下した。
Therefore, an optical recording medium which can be written once at high density using a dye corresponding to these short wavelength lasers has been proposed, and such an optical recording medium has a high reflectance in a short wavelength region. It is necessary to use a reflective film having Furthermore, it is necessary to control the thermal conductivity of the reflective film to optimize the resolution of the recording layer, the sensitivity to laser light, and the like. In JP-A-6-243509, A
Although the thermal conductivity is specified using an alloy such as g-In, Ag-V, or Ag-Nb, the decomposition of the dye recording layer is not considered. In addition, the conventionally used A
When a reflective film made of u, Al, Ag, etc. is used for a write-once optical recording medium containing a dye in a recording layer, and recording and reproduction are performed using a short wavelength laser, problems such as heat control and adhesion may occur. In particular, in the case of Au, the reflectance was extremely reduced at the blue laser wavelength.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、レー
ザ光源の短波長化により高密度化した光記録媒体、特に
色素を記録層に含有する追記型高密度光記録媒体に使用
することのできる近赤外から青色波長までの光に対し高
反射率で、色素層との密着性が良好で、記録に適度な熱
伝導率を有する光反射膜を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical recording medium having a high density by shortening the wavelength of a laser light source, and particularly to a write-once high-density optical recording medium containing a dye in a recording layer. An object of the present invention is to provide a light reflection film which has a high reflectance to light from near infrared to blue wavelengths, has good adhesion to a dye layer, and has an appropriate thermal conductivity for recording.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を重ねた結果、本発明を完成する
に至った。すなわち、本発明は、 Al、Agからなる第1のグループ、及び、Bi、R
h、Znからなる第2のグループから選択された各1種
以上の元素を含有してなり、熱伝導率が140〜370
W/(m・K)であり、且つ、830〜370nmの波
長光に対して反射率が70%以上であることを特徴とす
る光反射膜、 第1グループの金属を主成分とし、第1及び第2グル
ープの全金属の原子数に対して、第2グループの金属を
原子数として1〜49%含有することを特徴とする前記
記載の光反射膜、 AlとBi及び/又はRh、あるいは、AgとBi及
び/又はZnを含有することを特徴とする前記または
記載の光反射膜、 透明な基板上に、少なくとも、色素を含有する記録層
と、前記〜のいずれかに記載の反射膜を有すること
を特徴とする光記録媒体、 基板側から入射した450〜370nmから選択され
るレーザ光に対する反射率が15%以上であることを特
徴とする前記記載の光記録媒体、に関するものであ
る。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, completed the present invention. That is, the present invention provides a first group consisting of Al and Ag, and Bi and R
h, containing at least one element selected from the second group consisting of Zn, and having a thermal conductivity of 140 to 370.
W / (m · K), and has a reflectance of 70% or more with respect to light having a wavelength of 830 to 370 nm. And the light reflecting film according to the above, wherein the metal of the second group is contained in an amount of 1 to 49% with respect to the number of atoms of all the metals of the second group, Al and Bi and / or Rh, or , Ag and Bi and / or Zn. The light reflecting film according to the above or the above, wherein at least a recording layer containing a dye is provided on a transparent substrate, and the reflecting film according to any of the above (1) to (4). An optical recording medium according to any one of the preceding claims, wherein the optical recording medium has a reflectance of 15% or more to a laser beam selected from 450 to 370 nm incident from the substrate side. .

【0008】[0008]

【発明の実施の形態】特定の元素を、ある割合で組み合
わせた本発明の反射膜は、近赤外〜青色波長領域の光に
対し、70%以上の高反射率を有し、しかも、光記録媒
体に適応した場合に、適度な熱伝導率を有し、色素層と
の密着性が良好なものである。本発明の反射膜は、A
l、Agからなる第1のグループ、及び、Bi、Rh、
Znからなる第2のグループから選択された各1種以上
の元素を含有してなるもので、反射層に占めるこれらの
元素の割合が50重量%以上のものである。本発明の反
射膜は、特に記録層に色素を用いた追記型の光記録媒体
において、緑色から青色波長領域において良好な記録お
よび再生を可能にするものである。
BEST MODE FOR CARRYING OUT THE INVENTION The reflective film of the present invention, in which specific elements are combined in a certain ratio, has a high reflectance of 70% or more with respect to light in the near-infrared to blue wavelength region. When applied to a recording medium, it has an appropriate thermal conductivity and good adhesion to a dye layer. The reflective film of the present invention has
l, a first group consisting of Ag, and Bi, Rh,
It contains at least one element selected from the second group consisting of Zn, and the proportion of these elements in the reflective layer is 50% by weight or more. The reflective film of the present invention enables good recording and reproduction in a green to blue wavelength region, particularly in a write-once optical recording medium using a dye for the recording layer.

【0009】本発明でいうレーザ光は、830、780
nm付近の発振波長の近赤外半導体レーザ、680、6
50及び635nm付近の発振波長の赤色半導体レー
ザ、530nm、490nm付近の発振波長の緑色レー
ザ、410nm、370nm付近の波長の青色半導体レ
ーザ、さらにYAGレーザの高調波変換による530n
m、420nm付近の波長のレーザである。本発明の光
記録媒体は、これらの中から選択される一波長または複
数の波長において、再生可能であり、且つ、反射率が1
5%以上である。
The laser light referred to in the present invention is 830, 780
near-infrared semiconductor lasers having an oscillation wavelength of around nm, 680, 6
Red semiconductor lasers having oscillation wavelengths of about 50 and 635 nm, green lasers having oscillation wavelengths of about 530 nm and 490 nm, blue semiconductor lasers having wavelengths of about 410 nm and 370 nm, and 530 n by harmonic conversion of YAG lasers
m, a laser having a wavelength around 420 nm. The optical recording medium of the present invention can be reproduced at one wavelength or a plurality of wavelengths selected from these, and has a reflectance of 1 or more.
5% or more.

【0010】本発明の具体的構成について、以下に詳細
に説明する。本発明の反射膜は、Al、Agからなる第
1のグループ、及び、Bi、Rh、Znからなる第2の
グループから選択された各1種以上の元素を含有してい
る。この反射膜の熱伝導率は140〜370W/(m・
K)であり、且つ、830〜370nmの波長光におい
て反射率が70%以上である。なお、第2のグループの
金属の含有原子数の合計が、第1と第2のグループの全
金属の合計原子数に対して、1〜49%であることが好
ましく、この混合割合は、熱伝導率の値が所定の値に合
うように考慮して定められる。特に好ましくは、Alと
Bi及び/又はRh、あるいは、AgとBi及び/又は
Znを含有してなる反射膜である。
The specific configuration of the present invention will be described in detail below. The reflective film of the present invention contains at least one element selected from a first group consisting of Al and Ag and a second group consisting of Bi, Rh and Zn. The thermal conductivity of this reflective film is 140 to 370 W / (m ·
K), and has a reflectance of 70% or more for light having a wavelength of 830 to 370 nm. The total number of atoms contained in the metal of the second group is preferably 1 to 49% with respect to the total number of atoms of all the metals of the first and second groups. The conductivity value is determined in consideration of a predetermined value. Particularly preferred is a reflective film containing Al and Bi and / or Rh, or Ag and Bi and / or Zn.

【0011】本発明の反射膜の熱伝導率は、140〜3
70W/(m・K)である。色素を記録層とした光記録
媒体に、このような反射膜を適応した場合、熱伝導率が
140W/(m・K)未満の反射膜では、熱が記録層内
にたまりやすく、記録した際に、記録ピットの周りへの
熱の影響のため、きれいなピットが得られにくい。一
方、370W/(m・K)より大きい反射膜では、記録
層の熱が逃げやすく記録感度が低下する傾向がある。さ
らに、本発明の反射膜とすると記録層と反射層の間の密
着性が良好化して、媒体の耐久性が向上する。
The thermal conductivity of the reflection film of the present invention is 140 to 3
70 W / (m · K). When such a reflective film is applied to an optical recording medium having a dye as a recording layer, heat tends to accumulate in the recording layer in a reflective film having a thermal conductivity of less than 140 W / (m · K), and thus, when recording is performed. In addition, it is difficult to obtain a clear pit due to the influence of heat around the recording pit. On the other hand, when the reflective film is larger than 370 W / (m · K), the heat of the recording layer tends to escape and the recording sensitivity tends to decrease. Further, when the reflective film of the present invention is used, the adhesion between the recording layer and the reflective layer is improved, and the durability of the medium is improved.

【0012】また、本発明の反射膜は、前記の第1と第
2のグループの金属を主として含有するが、その他の金
属を含有していてもよく、他の金属としては、Cu,
V,Ta,Cr,Mo,W,Mn,Fe,Co,Ni,
Pd,Pt,Au等が挙げられる。本発明の反射膜にお
いては、これら他の金属から選択される1つ以上の金属
の総含有量(含有原子数の合計)は、Al及び/又はA
gの全原子数に対して、20%以下である。本発明の反
射膜の形成方法としては、例えば、スパッタ法、イオン
プレーティング法、化学蒸着法、真空蒸着法等が挙げら
れ、通常、500〜2000Åの膜厚に成膜する。特に
多元金属ターゲットまたは合金ターゲットを使用したス
パッタ法が好ましい。
The reflection film of the present invention mainly contains the metals of the first and second groups, but may contain other metals, such as Cu,
V, Ta, Cr, Mo, W, Mn, Fe, Co, Ni,
Pd, Pt, Au and the like can be mentioned. In the reflective film of the present invention, the total content (total number of contained atoms) of one or more metals selected from these other metals is Al and / or A
20% or less based on the total number of atoms of g. Examples of the method for forming the reflection film of the present invention include a sputtering method, an ion plating method, a chemical vapor deposition method, and a vacuum vapor deposition method. Particularly, a sputtering method using a multimetal target or an alloy target is preferable.

【0013】次に、本発明の反射膜を反射層として用い
る光記録媒体について記す。本発明でいう光記録媒体と
は、予め情報を記録されている再生専用の光再生用媒
体、及び、情報を記録して再生することのできる光記録
媒体の両方を示すものである。ここでは適例として、後
者の情報を記録して再生のできる光記録媒体、特に基板
上に、記録層、反射層及び保護層をこの順で形成した光
記録媒体、及び、反射層面に基板を貼り合わせた光記録
媒体に関して説明する。なお、基板と記録層の間、記録
層と反射層の間、反射層と保護層の間、反射層と基板の
間等に別の層が介在していてもよい。
Next, an optical recording medium using the reflection film of the present invention as a reflection layer will be described. The optical recording medium in the present invention refers to both a read-only optical reproduction medium on which information is recorded in advance and an optical recording medium on which information can be recorded and reproduced. Here, as an appropriate example, an optical recording medium capable of recording and reproducing the latter information, particularly an optical recording medium in which a recording layer, a reflective layer and a protective layer are formed in this order on a substrate, and a substrate on the reflective layer surface The bonded optical recording medium will be described. Note that another layer may be interposed between the substrate and the recording layer, between the recording layer and the reflective layer, between the reflective layer and the protective layer, between the reflective layer and the substrate, and the like.

【0014】基板の材質としては、基本的には、記録光
及び再生光の波長で透明であればよい。例えば、ポリカ
ーボネート樹脂、塩化ビニル樹脂、ポリメタクリル酸メ
チル等のアクリル樹脂、ポリスチレン樹脂、エポキシ樹
脂等の高分子材料や、ガラス等の無機材料が利用され
る。これらの基板材料は、射出成形法等により円盤状に
基板に成形される。追記型光記録媒体の場合は、必要に
応じて、基板表面に溝を形成することもある。
Basically, the material of the substrate only needs to be transparent at the wavelength of the recording light and the reproducing light. For example, an acrylic resin such as a polycarbonate resin, a vinyl chloride resin, and polymethyl methacrylate, a polymer material such as a polystyrene resin and an epoxy resin, and an inorganic material such as glass are used. These substrate materials are formed into substrates in a disk shape by an injection molding method or the like. In the case of a write-once optical recording medium, a groove may be formed on the substrate surface as necessary.

【0015】記録層としては、主としてレーザ波長域に
適度な吸収を有し、一定以上のエネルギーを持つレーザ
光の照射で、物理的/化学的変形・変質・分解を伴うよ
うな物質を含有する層であり、本発明は色素を含むもの
である。例えば、記録再生波長が450nm〜370n
mである場合の有効な記録能を有する材料としては、λ
max が350nm付近に存在し、450〜370nmで
の屈折率が大きく、吸光度が小さいものが好ましく、具
体的には、スピロ系色素、スチルベン系色素、フルオレ
イン系色素、イミダゾール系色素、ペリレン系色素、フ
ェナジン系色素、フェノチアジン系色素、ポリエン系色
素、キノン系色素、シアニン系色素、アクリジン系色
素、アクリジノン系色素、クマリン系色素、カルボスチ
リル系色素、ポルフィン系色素、スクアリリウム系色素
などがある。好ましくは、ポリエン系色素、スチルベン
系色素、キノン系色素である。なお、本発明では、記録
層に含有させる色素は、前記色素を単独で用いてもよい
し、2種以上の色素を混合または積層してもよい。
The recording layer mainly contains a substance which has an appropriate absorption in a laser wavelength range and which is physically / chemically deformed, deteriorated and decomposed by irradiation with a laser beam having a certain energy or more. Layer, and the invention includes a dye. For example, the recording / reproducing wavelength is 450 nm to 370 n
A material having an effective recording ability when m is λ
It is preferable that the max is around 350 nm, the refractive index at 450 to 370 nm is large, and the absorbance is small. Specifically, spiro dyes, stilbene dyes, fluorein dyes, imidazole dyes, perylene dyes And phenazine dyes, phenothiazine dyes, polyene dyes, quinone dyes, cyanine dyes, acridine dyes, acridinone dyes, coumarin dyes, carbostyril dyes, porphine dyes, and squarylium dyes. Preferred are polyene dyes, stilbene dyes, and quinone dyes. In the present invention, as the dye contained in the recording layer, the above dye may be used alone, or two or more dyes may be mixed or laminated.

【0016】また、色素に、必要に応じて、クエンチャ
ー、色素熱分解促進剤、紫外線吸収剤、接着剤等の添加
剤を、混合、あるいは、そのような性能を示す基を置換
基として導入することも可能である。クエンチャーとし
ては、アセチルアセトナート系、ビスジチオ−α−ジケ
トン系やビスフェニルジチオール系などのビスジチオー
ル系、チオカテコール系、サリチルアルデヒドオキシム
系、チオビスフェノレート系等の金属錯体が好ましい。
またアミン系も好適である。
Further, if necessary, additives such as a quencher, a dye thermal decomposition accelerator, an ultraviolet absorber, and an adhesive are mixed with the dye, or a group having such performance is introduced as a substituent. It is also possible. As the quencher, metal complexes such as acetylacetonate-based, bisdithio-α-diketone-based and bisphenyldithiol-based bisdithiol-based, thiocatechol-based, salicylaldehyde oxime-based, and thiobisphenolate-based metal complexes are preferable.
Also, amines are suitable.

【0017】色素熱分解促進剤としては、熱減量分析
(TG分析)等により、色素の熱分解の促進が確認でき
るものであれば特に限定されず、例えば、金属系アンチ
ノッキング剤、メタロセン化合物、アセチルアセトナト
系金属錯体等の金属化合物が挙げられる。金属系アンチ
ノッキング剤の例としては、四エチル鉛、その他の鉛系
化合物、シマントレン〔Mn(C5 5 )(CO)3
などのMn系化合物、また、メタロセン化合物の例とし
ては、鉄ビスシクロペンタジエニル錯体(フェロセン)
をはじめ、Ti、V、Mn、Cr、Co、Ni、Mo、
Ru、Rh、Zr、Lu、Ta、W、Os、Ir、S
c、Yなどのビスシクロペンタジエニル金属錯体があ
る。中でもフェロセン、ルテノセン、オスモセン、ニッ
ケロセン、チタノセン及びそれらの誘導体は良好な熱分
解促進効果がある。
The dye thermal decomposition accelerator is not particularly limited as long as it can confirm the promotion of the thermal decomposition of the dye by thermal weight loss analysis (TG analysis) and the like. For example, a metal anti-knocking agent, a metallocene compound, Metal compounds such as acetylacetonate-based metal complexes are exemplified. Examples of metal-based anti-knocking agents include tetraethyl lead, other lead-based compounds, and Simantrene [Mn (C 5 H 5 ) (CO) 3 ].
Examples of a Mn-based compound such as an iron biscyclopentadienyl complex (ferrocene)
, Ti, V, Mn, Cr, Co, Ni, Mo,
Ru, Rh, Zr, Lu, Ta, W, Os, Ir, S
There are biscyclopentadienyl metal complexes such as c and Y. Among them, ferrocene, ruthenocene, osmocene, nickelocene, titanocene and derivatives thereof have a good thermal decomposition promoting effect.

【0018】その他、鉄系金属化合物として、メタロセ
ンの他に、ギ酸鉄、シュウ酸鉄、ラウリル酸鉄、ナフテ
ン酸鉄、ステアリン酸鉄、酪酸鉄などの有機酸鉄化合
物、アセチルアセトナート鉄錯体、フェナントロリン鉄
錯体、ビスピリジン鉄錯体、エチレンジアミン鉄錯体、
エチレンジアミン四酢酸鉄錯体、ジエチレントリアミン
鉄錯体、ジエチレングリコールジメチルエーテル鉄錯
体、ジホスフィノ鉄錯体、ジメチルグリオキシマート鉄
錯体などのキレート鉄錯体、カルボニル鉄錯体、シアノ
鉄錯体、アンミン鉄錯体などの鉄錯体、塩化第一鉄、塩
化第二鉄、臭化第一鉄、臭化第二鉄などのハロゲン化
鉄、あるいは、硝酸鉄、硫酸鉄などの無機鉄塩類、さら
には、酸化鉄などが挙げられる。ここで用いる熱分解促
進剤は有機溶剤に可溶で、且つ、耐湿熱性及び耐光性の
良好なものが望ましい。上述した各種のクエンチャー及
び色素熱分解促進剤は、必要に応じて、多種類を混合し
て用いても、また、バインダー、レベリング剤、消泡剤
等の添加物質を加えてもよい。
Other iron-based metal compounds include, in addition to metallocene, iron acid organic compounds such as iron formate, iron oxalate, iron laurate, iron naphthenate, iron stearate and iron butyrate; iron acetylacetonate complex; Phenanthroline iron complex, bispyridine iron complex, ethylenediamine iron complex,
Iron complexes such as iron complexes of ethylenediaminetetraacetate, iron complexes of diethylenetriamine, iron complexes of diethyleneglycol dimethylether, iron complexes of diphosphino and iron dimethylglyoximate, iron complexes such as carbonyl iron complexes, cyanoiron complexes and ammineiron complexes, Examples thereof include iron halides such as iron, ferric chloride, ferrous bromide, and ferric bromide; inorganic iron salts such as iron nitrate and iron sulfate; and iron oxide. It is desirable that the thermal decomposition accelerator used here is soluble in an organic solvent and has good wet heat resistance and light resistance. The above-mentioned various quenchers and dye thermal decomposition accelerators may be used as a mixture of various types, if necessary, or an additive substance such as a binder, a leveling agent, or an antifoaming agent may be added.

【0019】記録層の作製方法としては、スピンコート
法やキャスト法等の塗布法、スパッタ法、光CVD法、
イオンプレーティング法、電子ビーム蒸着法、化学蒸着
法および真空蒸着法等があり、特に限定はされない。し
かしながら、本発明では、色素選択、媒体設計、製造上
の自由度や容易さがより拡大する点で、塗布法による作
製が好ましい。塗布法で用いる溶媒は、色素を溶解また
は分散させやすいもので、且つ基板にダメージを与えな
いものでなくてはならない。例えば、アルコール系溶媒
(メタノール、エタノール、プロパノール等) 、ハロゲ
ン化アルコール系溶媒(2,2,3,3-テトラフルオロ-1- プ
ロパノール、ヘキサフルオロイソプロパノール等) 、炭
化水素系溶媒(ヘキサン、シクロヘキサン、エチルシク
ロヘキサン、シクロオクタン、ジメチルシクロヘキサ
ン、オクタン、ベンゼン、トルエン、キシレン等) 、ハ
ロゲン化炭化水素系溶媒(ジクロロメタン、クロロホル
ム、四塩化炭化水素、テトラクロロエチレン、ジクロロ
ジフルオロエタン等) 、エーテル系溶媒(テトラヒドロ
フラン、ジエチルエーテル、ジプロピルエーテル、ジブ
チルエーテル、ジオキサン等) 、セロソルブ系溶媒(メ
チルセルソルブ、エチルセルソルブ等)、ケトン系溶媒
(アセトン,シクロヘキサノン、メチルエチルケトン
等) 、エステル系溶媒(酢酸エチル、酢酸ブチル等) な
どが挙げられる。これらの溶媒は1種あるいは複数混合
して用いられる。
The recording layer may be formed by a coating method such as a spin coating method or a casting method, a sputtering method, a photo CVD method,
There are an ion plating method, an electron beam evaporation method, a chemical evaporation method, a vacuum evaporation method and the like, and there is no particular limitation. However, in the present invention, the production by the coating method is preferable in that the degree of freedom and easiness in dye selection, medium design, and production are further expanded. The solvent used in the coating method must be one that easily dissolves or disperses the dye and does not damage the substrate. For example, alcohol solvents (methanol, ethanol, propanol, etc.), halogenated alcohol solvents (2,2,3,3-tetrafluoro-1-propanol, hexafluoroisopropanol, etc.), hydrocarbon solvents (hexane, cyclohexane, etc.) Ethylcyclohexane, cyclooctane, dimethylcyclohexane, octane, benzene, toluene, xylene, etc.), halogenated hydrocarbon solvents (dichloromethane, chloroform, tetrachloride hydrocarbon, tetrachloroethylene, dichlorodifluoroethane, etc.), ether solvents (tetrahydrofuran, diethyl ether) , Dipropyl ether, dibutyl ether, dioxane, etc.), cellosolve solvents (methylcellosolve, ethylcellosolve, etc.), ketone solvents (acetone, cyclohexanone, methylethylketone, etc.), Ester solvents (such as ethyl acetate and butyl acetate). These solvents are used alone or as a mixture of two or more.

【0020】塗布法としては、バインダー樹脂を20重
量%以下、好ましくは0%、色素を0.05〜30重量
%、好ましくは0.5〜20重量%となるように、溶媒
に溶解し、スピンコーターで塗布する方法が好ましい。
記録層の膜厚は、通常、30〜1000nmであるが、
好ましくは50〜500nmである。なお、当然のこと
であるが、この膜厚があまり薄く、例えば、30nm未
満の膜厚だと、金属反射層への放熱が回避出来ず、感度
低下をきたす場合もありうる。膜厚は、記録層の再生レ
ーザー波長の光に対する吸光度が適切になるように設定
する。
As a coating method, the binder resin is dissolved in a solvent so as to be 20% by weight or less, preferably 0%, and the pigment is 0.05 to 30% by weight, preferably 0.5 to 20% by weight. The method of applying with a spin coater is preferred.
The thickness of the recording layer is usually 30 to 1000 nm,
Preferably it is 50 to 500 nm. Needless to say, if the film thickness is too small, for example, less than 30 nm, heat radiation to the metal reflection layer cannot be avoided, and the sensitivity may be reduced. The film thickness is set so that the absorbance of the recording layer with respect to the light of the reproduction laser wavelength becomes appropriate.

【0021】反射層は、上記したような方法で、記録層
の上に成膜するが、反射率を高めるためや密着性をよく
するために、記録層と反射層の間に反射増幅層や接着層
を設けることもできる。反射層の上に、さらに公知の方
法により保護層を形成させることもできる。保護層の材
料としては、反射層を外力から保護するものであれば、
有機、無機物質のいずれでもよく、特に限定されない。
有機物質としては、熱可塑性樹脂、熱硬化性樹脂、UV
硬化性樹脂等を挙げることができ、なかでも、UV硬化
性樹脂が好ましい。無機物質としては、SiO2 、Si
O、SnO2 、Si3 4 、MgF2 、AlN等が挙げ
られる。
The reflection layer is formed on the recording layer by the above-described method. In order to increase the reflectance and improve the adhesion, the reflection amplification layer and the reflection amplification layer are provided between the recording layer and the reflection layer. An adhesive layer can also be provided. On the reflective layer, a protective layer can be further formed by a known method. As the material of the protective layer, if the material protects the reflective layer from external force,
Any of organic and inorganic substances may be used, and there is no particular limitation.
Organic materials include thermoplastic resin, thermosetting resin, UV
Curable resins and the like can be mentioned, and among them, UV curable resins are preferable. As the inorganic substance, SiO 2 , Si
O, SnO 2 , Si 3 N 4 , MgF 2 , AlN, and the like.

【0022】熱可塑性樹脂、熱硬化性樹脂などを用いる
場合は、適当な溶剤に溶解して、塗布液を反射層上に塗
布、乾燥することによって保護層を形成することができ
る。UV硬化性樹脂の場合は、そのまま、もしくは適当
な溶剤に溶解して塗布液を調製した後に、この塗布液を
塗布し、UV光を照射して硬化させることによって保護
層を形成することができる。UV硬化性樹脂としては、
例えば、ウレタンアクリレート、エポキシアクリレー
ト、ポリエステルアクリレートなどのアクリレート樹脂
を用いることができる。これらの材料は単独であるいは
混合して用いても良いし、1層だけでなく多層膜にして
用いても一向に差し支えない。
When a thermoplastic resin, a thermosetting resin or the like is used, a protective layer can be formed by dissolving in an appropriate solvent, applying a coating solution on the reflective layer, and drying. In the case of a UV curable resin, a protective layer can be formed by applying the coating liquid as it is or after dissolving it in an appropriate solvent to prepare a coating liquid and irradiating with UV light to cure the coating liquid. . As UV curable resin,
For example, acrylate resins such as urethane acrylate, epoxy acrylate, and polyester acrylate can be used. These materials may be used alone or as a mixture, or may be used not only in one layer but also in a multilayer film.

【0023】保護層の形成の方法としては、記録層と同
様にスピンコート法やキャスト法などの塗布法、スパッ
タ法、化学蒸着法等が用いられるが、このなかでもスピ
ンコート法が好ましい。保護層の膜厚は、一般には0.
1〜100μmの範囲にあるが、本発明においては3〜
30μmの膜厚が好ましい。
As a method for forming the protective layer, a coating method such as a spin coating method or a casting method, a sputtering method, a chemical vapor deposition method, and the like are used as in the recording layer. Among them, the spin coating method is preferable. In general, the thickness of the protective layer is set to 0.
In the range of 1 to 100 μm, in the present invention, it is 3 to 100 μm.
A film thickness of 30 μm is preferred.

【0024】また、本発明の光記録媒体は、反射層面に
保護シートまたは基板を貼り合わせる、あるいは、反射
層面の相互を内側として対向させ光記録媒体2枚を貼り
合わせる、等の層構成であってもよい。本発明の光記録
媒体は、保護層の上に、更にレーベル等の印刷などを行
うこともできる。
The optical recording medium of the present invention has such a layer structure that a protective sheet or a substrate is bonded to the reflective layer surface, or two optical recording media are bonded to each other with the reflective layer surfaces facing each other. You may. In the optical recording medium of the present invention, printing of a label or the like can be further performed on the protective layer.

【0025】[0025]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れによりなんら限定されるものではない。 〔実施例1〕基板としてポリカーボネート樹脂製で、連
続した案内溝(トラックピッチ:0.7μm)を有する
外径120mm、厚さ0.6mmの円盤状のものを用い
た。この基板上に、下記式(化1)で表されるポリエン
化合物0.25gを2,2,3,3-テトラフルオロ-1- プロパ
ノール10mlに溶解した色素溶液を、回転数2000
rpmでスピンコートし、70℃で2時間乾燥して、厚
さ約100nmの光記録層を形成した。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited by these examples. Example 1 A disc-shaped substrate made of polycarbonate resin and having a continuous guide groove (track pitch: 0.7 μm) and an outer diameter of 120 mm and a thickness of 0.6 mm was used. On this substrate, a dye solution obtained by dissolving 0.25 g of a polyene compound represented by the following formula (Formula 1) in 10 ml of 2,2,3,3-tetrafluoro-1-propanol was used.
Spin coating was performed at rpm, and drying was performed at 70 ° C. for 2 hours to form an optical recording layer having a thickness of about 100 nm.

【0026】[0026]

【化1】 Embedded image

【0027】この記録層の上に、島津製作所製スパッタ
装置を用いて、AlターゲットとBiターゲットを用い
た2元DCスパッタを行い、厚さ100nmのAl−B
i反射膜を形成した。スパッタガスにはアルゴンガスを
用い、スパッタパワー0.5A、スパッタガス圧1.0
×10-3Torrの条件で行った。形成された反射膜の
表面分析の結果、Bi/(Al+Bi)の原子数%は約
8%であった。同時に、5cm角のガラス板上に、厚さ
100nmのAl−Bi合金膜を設け、分光反射率と熱
伝導率を測定した。その結果、反射率は830nm〜3
70nmの波長領域で73%以上あり、熱伝導率は19
0W/(m・K)であった。さらに反射層の上に、紫外
線硬化樹脂をスピンコートした後、前記基板と同様な案
内溝のない基板を載せ、紫外線照射して、基板を貼り合
わせて、光記録媒体を作製した。
On this recording layer, binary DC sputtering using an Al target and a Bi target was performed by using a sputtering apparatus manufactured by Shimadzu Corporation to obtain an Al-B having a thickness of 100 nm.
An i reflection film was formed. An argon gas was used as a sputtering gas, a sputtering power of 0.5 A and a sputtering gas pressure of 1.0.
The test was performed under the conditions of × 10 −3 Torr. As a result of surface analysis of the formed reflective film, the atomic number% of Bi / (Al + Bi) was about 8%. At the same time, a 100 nm thick Al-Bi alloy film was provided on a 5 cm square glass plate, and the spectral reflectance and thermal conductivity were measured. As a result, the reflectance is 830 nm to 3
73% or more in a wavelength region of 70 nm and a thermal conductivity of 19%
0 W / (m · K). Furthermore, after a UV curable resin was spin-coated on the reflective layer, a substrate similar to the above-mentioned substrate without a guide groove was mounted thereon, and irradiated with ultraviolet rays to bond the substrates, thereby producing an optical recording medium.

【0028】この媒体に、430nmの青色高調波変換
レーザーヘッド(NA=0.65)を搭載したパルステ
ック工業製光ディスク評価装置(DDU−1000)及
びKENWOOD製EFMエンコーダーを用いて、最短
ピットが0.4μmのEFM変調信号を、線速度5.6
m/s、レーザーパワー10mWで記録した。記録後、
同評価装置を用いてレーザー出力を0.5mWにして信
号を再生し、反射率、エラーレート及びジッターを測定
した結果、いずれも良好な値を示した。なお、再生の際
はイコライゼーション処理を施した。この記録した媒体
について、加速劣化試験(湿度85%RH、80℃で1
00時間)を行い、試験後の反射率及びエラーレートを
測定した結果、変化は小さく優れた耐久性を有すること
が確認された。
On this medium, the shortest pit was reduced to 0 using an optical disk evaluation device (DDU-1000) manufactured by Pulstec Industrial equipped with a 430 nm blue harmonic conversion laser head (NA = 0.65) and an EFM encoder manufactured by KENWOOD. The EFM modulated signal of .4 μm was converted to a linear velocity of 5.6.
m / s and recording with a laser power of 10 mW. After recording,
A signal was reproduced with the laser output set to 0.5 mW using the evaluation apparatus, and the reflectance, error rate, and jitter were measured. At the time of reproduction, an equalization process was performed. The recorded medium was subjected to an accelerated deterioration test (85% RH, 80 ° C.
00 hours), and the reflectivity and the error rate after the test were measured. As a result, it was confirmed that the change was small and the durability was excellent.

【0029】〔実施例2〕AlターゲットとRhターゲ
ットを用いた2元DCスパッタを行い、厚さ100nm
のAl−Rh反射膜を形成する以外は、実施例1と同様
にして光記録媒体を作製した。形成された反射膜の表面
分析の結果、Rh/(Al+Rh)の原子数%が約20
%であった。同時に、5cm角のガラス板上に、厚さ1
00nmのAl−Rh合金膜を設け、分光反射率と熱伝
導率を測定した。その結果、反射率は830nm〜37
0nmの波長領域で75%以上あり、熱伝導率は200
W/(m・K)であった。作製した媒体に実施例1と同
様に、430nmの青色レーザーヘッドを搭載したパル
ステック工業製光ディスク評価装置DDU−1000及
びKENWOOD製EFMエンコーダーを用いて記録し
た。記録後、実施例1と同様の測定を行った結果、良好
な記録特性と耐久性を示した。
Example 2 Binary DC sputtering using an Al target and a Rh target was performed to a thickness of 100 nm.
An optical recording medium was produced in the same manner as in Example 1, except that the Al-Rh reflection film was formed. As a result of surface analysis of the formed reflective film, the atomic number% of Rh / (Al + Rh) was about 20%.
%Met. At the same time, on a 5 cm square glass plate,
A 00 nm Al-Rh alloy film was provided, and the spectral reflectance and thermal conductivity were measured. As a result, the reflectance is 830 nm to 37.
75% or more in a wavelength region of 0 nm and a thermal conductivity of 200
W / (m · K). In the same manner as in Example 1, recording was performed on the produced medium using an optical disk evaluation device DDU-1000 manufactured by Pulstec Industrial equipped with a 430 nm blue laser head and an EFM encoder manufactured by KENWOOD. After recording, the same measurement as in Example 1 was performed. As a result, good recording characteristics and durability were shown.

【0030】〔実施例3〕Al、RhおよびBiターゲ
ットを用いた3元DCスパッタを行い、厚さ100nm
のAl−Rh反射膜を形成する以外は、実施例1と同様
にして光記録媒体を作製した。形成された反射膜の表面
分析の結果、(Rh+Bi)/(Al+Rh+Bi)の
原子数%が約40%、Bi/Rhの原子数比は約1/7
であった。同時に5cm角のガラス板上に、厚さ100
nmのAl−Rh−Bi合金膜を設け、分光反射率と熱
伝導率を測定した。その結果、反射率は830nm〜3
70nmの波長領域で72%以上あり、熱伝導率は16
0W/(m・K)であった。作製した媒体に実施例1と
同様に、430nmの青色レーザーヘッドを搭載したパ
ルステック工業製光ディスク評価装置DDU−1000
及びKENWOOD製EFMエンコーダーを用いて記録
した。記録後、実施例1と同様の測定を行った結果、良
好な記録特性と耐久性を示した。
[Example 3] Ternary DC sputtering using Al, Rh and Bi targets was carried out to a thickness of 100 nm.
An optical recording medium was produced in the same manner as in Example 1, except that the Al-Rh reflection film was formed. As a result of surface analysis of the formed reflective film, the atomic number% of (Rh + Bi) / (Al + Rh + Bi) was about 40%, and the atomic number ratio of Bi / Rh was about 1/7.
Met. At the same time, on a 5 cm square glass plate,
An Al-Rh-Bi alloy film having a thickness of nm was provided, and the spectral reflectance and the thermal conductivity were measured. As a result, the reflectance is 830 nm to 3
It is more than 72% in the wavelength region of 70 nm and the thermal conductivity is 16
0 W / (m · K). An optical disk evaluation device DDU-1000 manufactured by Pulstec Industrial having a 430 nm blue laser head mounted on the manufactured medium in the same manner as in Example 1.
And KENWOOD EFM encoder. After recording, the same measurement as in Example 1 was performed. As a result, good recording characteristics and durability were shown.

【0031】〔実施例4〕AgとBiの合金ターゲット
(原子数比 Ag:Bi=85:15)を用いたDCス
パッタを行い、厚さ100nmのAg−Bi反射膜を形
成する以外は、実施例1と同様にして光記録媒体を作製
した。形成された反射膜の表面分析の結果、Bi/(A
g+Bi)の原子数%が約15%であった。同時に5c
m角のガラス板上に、厚さ100nmのAg−Bi合金
膜を設け、分光反射率と熱伝導率を測定した。その結
果、反射率は830nm〜370nmの波長領域で75
%以上あり、熱伝導率は270W/(m・K)であっ
た。作製した媒体に実施例1と同様に、430nmの青
色レーザーヘッドを搭載したパルステック工業製光ディ
スク評価装置DDU−1000及びKENWOOD製E
FMエンコーダーを用いて記録した。記録後、実施例1
と同様の測定を行った結果、良好な記録特性と耐久性を
示した。
Example 4 The procedure was performed except that an Ag—Bi reflective film having a thickness of 100 nm was formed by performing DC sputtering using an alloy target of Ag and Bi (atomic ratio: Ag: Bi = 85: 15). An optical recording medium was produced in the same manner as in Example 1. As a result of surface analysis of the formed reflective film, Bi / (A
The atomic number% of g + Bi) was about 15%. 5c at the same time
An Ag-Bi alloy film having a thickness of 100 nm was provided on an m-square glass plate, and the spectral reflectance and the thermal conductivity were measured. As a result, the reflectance is 75 in the wavelength range of 830 nm to 370 nm.
%, And the thermal conductivity was 270 W / (m · K). In the same manner as in Example 1, an optical disk evaluation device DDU-1000 manufactured by Pulstec Industrial and E manufactured by KENWOOD equipped with a 430 nm blue laser head on the manufactured medium.
Recorded using an FM encoder. After recording, Example 1
As a result, good recording characteristics and durability were shown.

【0032】〔実施例5〕AgとZnの合金ターゲット
(原子数比 Ag:Zn=60:40)を用いたDCス
パッタを行い、厚さ100nmのAg−Zn反射膜を形
成する以外は、実施例1と同様にして光記録媒体を作製
した。形成された反射膜の表面分析の結果、Zn/(A
g+Zn)の原子数%が約39%であった。同時に5c
m角のガラス板上に、厚さ100nmのAg−Zn合金
膜を設け、分光反射率と熱伝導率を測定した。その結
果、反射率は830nm〜370nmの波長領域で72
%以上あり、熱伝導率は290W/(m・K)であっ
た。作製した媒体に実施例1と同様に、430nmの青
色レーザーヘッドを搭載したパルステック工業製光ディ
スク評価装置DDU−1000及びKENWOOD製E
FMエンコーダーを用いて記録した。記録後、実施例1
と同様の測定を行った結果、良好な記録特性と耐久性を
示した。
Example 5 The procedure was performed except that DC sputtering was performed using an alloy target of Ag and Zn (atomic ratio: Ag: Zn = 60: 40) to form an Ag-Zn reflective film having a thickness of 100 nm. An optical recording medium was produced in the same manner as in Example 1. As a result of surface analysis of the formed reflective film, Zn / (A
g + Zn) was about 39%. 5c at the same time
An Ag-Zn alloy film having a thickness of 100 nm was provided on an m-square glass plate, and its spectral reflectance and thermal conductivity were measured. As a result, the reflectance is 72 in the wavelength range of 830 nm to 370 nm.
%, And the thermal conductivity was 290 W / (m · K). In the same manner as in Example 1, the optical disk evaluation device DDU-1000 manufactured by Pulstec Industrial and E manufactured by KENWOOD equipped with a 430 nm blue laser head on the manufactured medium.
Recorded using an FM encoder. After recording, Example 1
As a result, good recording characteristics and durability were shown.

【0033】〔実施例6〕AgとZnの合金ターゲット
(原子数比 Ag:Zn=80:20)を用いたDCス
パッタを行い、厚さ100nmのAg−Zn反射膜を形
成する以外は、実施例1と同様にして光記録媒体を作製
した。形成された反射膜の表面分析の結果、Zn/(A
g+Zn)の原子数%が約19%であった。同時に5c
m角のガラス板上に、厚さ100nmのAg−Zn合金
膜を設け、分光反射率と熱伝導率を測定した。その結
果、反射率は830nm〜370nmの波長領域で75
%以上あり、熱伝導率は340W/(m・K)であっ
た。作製した媒体に実施例1と同様に、430nmの青
色レーザーヘッドを搭載したパルステック工業製光ディ
スク評価装置DDU−1000及びKENWOOD製E
FMエンコーダーを用いて記録した。記録後、実施例1
と同様の測定を行った結果、良好な記録特性と耐久性を
示した。
Example 6 The procedure was performed except that DC sputtering was performed using an alloy target of Ag and Zn (atomic ratio: Ag: Zn = 80: 20) to form an Ag-Zn reflective film having a thickness of 100 nm. An optical recording medium was produced in the same manner as in Example 1. As a result of surface analysis of the formed reflective film, Zn / (A
g + Zn) was about 19%. 5c at the same time
An Ag-Zn alloy film having a thickness of 100 nm was provided on an m-square glass plate, and its spectral reflectance and thermal conductivity were measured. As a result, the reflectance is 75 in the wavelength range of 830 nm to 370 nm.
%, And the thermal conductivity was 340 W / (m · K). In the same manner as in Example 1, the optical disk evaluation device DDU-1000 manufactured by Pulstec Industrial and E manufactured by KENWOOD equipped with a 430 nm blue laser head on the manufactured medium.
Recorded using an FM encoder. After recording, Example 1
As a result, good recording characteristics and durability were shown.

【0034】〔実施例7〕Ag、BiおよびZnの合金
ターゲット(原子数比 Ag:Bi:Zn=65:5:
30)を用いたDCスパッタを行い、厚さ100nmの
Ag−Bi−Zn反射膜を形成する以外は、実施例1と
同様にして光記録媒体を作製した。形成された反射膜の
表面分析の結果、(Bi+Zn)/(Ag+Bi+Z
n)の原子数%が約34%、Bi/Znの原子数比は約
1/6であった。同時に5cm角のガラス板上に、厚さ
100nmのAg−Bi−Zn合金膜を設け、分光反射
率と熱伝導率を測定した。その結果、反射率は830n
m〜370nmの波長領域で72%以上あり、熱伝導率
は310W/(m・K)であった。作製した媒体に実施
例1と同様に、430nmの青色レーザーヘッドを搭載
したパルステック工業製光ディスク評価装置DDU−1
000及びKENWOOD製EFMエンコーダーを用い
て記録した。記録後、実施例1と同様の測定を行った結
果、良好な記録特性と耐久性を示した。
Example 7 Alloy target of Ag, Bi and Zn (atomic ratio: Ag: Bi: Zn = 65: 5:
An optical recording medium was manufactured in the same manner as in Example 1 except that DC sputtering using the method 30) was performed to form an Ag-Bi-Zn reflective film having a thickness of 100 nm. As a result of the surface analysis of the formed reflection film, (Bi + Zn) / (Ag + Bi + Z)
The atomic number% of n) was about 34%, and the atomic number ratio of Bi / Zn was about 1/6. At the same time, an Ag-Bi-Zn alloy film having a thickness of 100 nm was provided on a 5 cm square glass plate, and the spectral reflectance and the thermal conductivity were measured. As a result, the reflectance is 830n.
It was 72% or more in the wavelength range of m to 370 nm, and the thermal conductivity was 310 W / (m · K). In the same manner as in Example 1, an optical disk evaluation device DDU-1 manufactured by Pulstec Industrial Co., Ltd. equipped with a 430 nm blue laser head
000 and KENWOOD EFM encoder. After recording, the same measurement as in Example 1 was performed. As a result, good recording characteristics and durability were shown.

【0035】〔比較例1〕実施例1において、記録層上
に島津製作所製スパッタ装置を用いて、AlをDCスパ
ッタし、厚さ100nmの反射層を形成した以外は、同
様にして光記録媒体を作製した。同時に5cm角のガラ
ス板上に、厚さ100nmのAl合金膜を設け、分光反
射率と熱伝導率を測定した。その結果、反射率は830
nm〜370nmの波長領域で80%以上、熱伝導率は
220W/(m・K)であった。作製した媒体に実施例
1と同様に、430nmの青色レーザーヘッドを搭載し
たパルステック工業製光ディスク評価装置DDU−10
00及びKENWOOD製EFMエンコーダーを用いて
記録した。記録後、実施例1と同様の測定を行った結
果、良好な記録特性を示したが耐久性は悪かった。
Comparative Example 1 An optical recording medium was prepared in the same manner as in Example 1, except that Al was DC-sputtered on the recording layer using a sputtering apparatus manufactured by Shimadzu Corporation to form a reflective layer having a thickness of 100 nm. Was prepared. At the same time, an Al alloy film having a thickness of 100 nm was provided on a 5 cm square glass plate, and the spectral reflectance and the thermal conductivity were measured. As a result, the reflectance is 830
It was 80% or more in the wavelength region of nm to 370 nm, and the thermal conductivity was 220 W / (m · K). An optical disk evaluation device DDU-10 manufactured by Pulstec Industrial having a 430 nm blue laser head mounted on the manufactured medium in the same manner as in Example 1.
00 and KENWOOD EFM encoder. After recording, the same measurement as in Example 1 was performed. As a result, good recording characteristics were shown, but durability was poor.

【0036】〔比較例2〕実施例1において、記録層上
に島津製作所製スパッタ装置を用いて、AgをDCスパ
ッタし、厚さ100nmの反射層を形成した以外は、同
様にして光記録媒体を作製した。同時に5cm角のガラ
ス板上に、厚さ100nmのAg合金膜を設け、分光反
射率と熱伝導率を測定した。その結果、反射率は830
nm〜370nmの波長領域で80%以上、熱伝導率は
408W/(m・K)であった。作製した媒体に実施例
1と同様に、430nmの青色レーザーヘッドを搭載し
たパルステック工業製光ディスク評価装置DDU−10
00及びKENWOOD製EFMエンコーダーを用いて
記録した。記録後、実施例1と同様の測定を行った結
果、記録感度が悪く良好な記録特性得られず、耐久性も
悪かった。
Comparative Example 2 An optical recording medium was produced in the same manner as in Example 1, except that a reflective layer having a thickness of 100 nm was formed on the recording layer by DC sputtering of Ag using a sputtering apparatus manufactured by Shimadzu Corporation. Was prepared. At the same time, an Ag alloy film having a thickness of 100 nm was provided on a 5 cm square glass plate, and the spectral reflectance and the thermal conductivity were measured. As a result, the reflectance is 830
It was 80% or more in the wavelength region of 370 nm to 370 nm, and the thermal conductivity was 408 W / (m · K). An optical disk evaluation device DDU-10 manufactured by Pulstec Industrial having a 430 nm blue laser head mounted on the manufactured medium in the same manner as in Example 1.
00 and KENWOOD EFM encoder. After recording, the same measurement as in Example 1 was performed. As a result, the recording sensitivity was poor, good recording characteristics could not be obtained, and the durability was poor.

【0037】なお、実施例1〜7及び比較例1、2で得
られた記録した媒体について実施した加速劣化試験前後
(初期、試験後)の反射率、エラーレート及びジッター
の値を(表1)にまとめて記載した。
The values of the reflectance, error rate, and jitter before and after the accelerated deterioration test (initial and after the tests) performed on the recorded media obtained in Examples 1 to 7 and Comparative Examples 1 and 2 are shown in Table 1. ).

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】適当な元素を用い、その構成割合を限定
した適度な熱伝導率を有する本発明の反射膜は、830
〜370nmの波長領域で高反射率を有し、色素層との
密着性が良好であり、この反射膜を用いることにより、
記録特性および耐久性が良好な光記録媒体を提供するこ
とが可能となった。
The reflection film of the present invention having an appropriate thermal conductivity by using an appropriate element and limiting the composition ratio is 830.
It has a high reflectance in the wavelength region of 3370 nm, has good adhesion to the dye layer, and by using this reflective film,
It has become possible to provide an optical recording medium having good recording characteristics and durability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 5/08 B41M 5/26 Y Fターム(参考) 2H042 DA01 DA11 DA17 DC02 DC03 DC04 DC08 DE00 DE07 2H111 EA03 EA12 EA39 FA12 FA33 FA35 FA36 FA37 FB42 FB43 FB46 FB60 FB63 GA02 GA03 GA07 5D029 JA04 JB47 MA13 MA17 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02B 5/08 B41M 5/26 Y F term (Reference) 2H042 DA01 DA11 DA17 DC02 DC03 DC04 DC08 DE00 DE07 2H111 EA03 EA12 EA39 FA12 FA33 FA35 FA36 FA37 FB42 FB43 FB46 FB60 FB63 GA02 GA03 GA07 5D029 JA04 JB47 MA13 MA17

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Al、Agからなる第1のグループ、及
び、Bi、Rh、Znからなる第2のグループから選択
された各1種以上の元素を含有してなり、熱伝導率が1
40〜370W/(m・K)であり、且つ、830〜3
70nmの波長光に対して反射率が70%以上であるこ
とを特徴とする光反射膜。
1. A semiconductor device comprising one or more elements selected from a first group consisting of Al and Ag and a second group consisting of Bi, Rh and Zn, and having a thermal conductivity of 1 or more.
40 to 370 W / (m · K) and 830 to 3
A light reflection film having a reflectance of 70% or more for light having a wavelength of 70 nm.
【請求項2】 第1グループの金属を主成分とし、第1
及び第2グループの全金属の原子数に対して、第2グル
ープの金属を原子数として1〜49%含有することを特
徴とする請求項1記載の光反射膜。
2. The method according to claim 1, further comprising a first group of metals as a main component.
The light reflecting film according to claim 1, wherein the light reflecting film contains the metal of the second group in an amount of 1 to 49% based on the total number of atoms of the metal of the second group.
【請求項3】 AlとBi及び/又はRh、あるいは、
AgとBi及び/又はZnを含有することを特徴とする
請求項1または2記載の光反射膜。
3. Al and Bi and / or Rh, or
The light reflecting film according to claim 1, comprising Ag, Bi, and / or Zn.
【請求項4】 透明な基板上に、少なくとも、色素を含
有する記録層と、請求項1〜3のいずれかに記載の反射
膜を有することを特徴とする光記録媒体。
4. An optical recording medium comprising, on a transparent substrate, at least a recording layer containing a dye and the reflective film according to claim 1.
【請求項5】 基板側から入射した450〜370nm
から選択されるレーザ光に対する反射率が15%以上で
あることを特徴とする請求項4記載の光記録媒体。
5. 450 to 370 nm incident from the substrate side
5. The optical recording medium according to claim 4, wherein the reflectance to the laser light selected from the group consisting of 15% or more.
JP10220453A 1998-08-04 1998-08-04 Light-reflecting film and optical recording medium using the same Pending JP2000057627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10220453A JP2000057627A (en) 1998-08-04 1998-08-04 Light-reflecting film and optical recording medium using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10220453A JP2000057627A (en) 1998-08-04 1998-08-04 Light-reflecting film and optical recording medium using the same

Publications (1)

Publication Number Publication Date
JP2000057627A true JP2000057627A (en) 2000-02-25

Family

ID=16751362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10220453A Pending JP2000057627A (en) 1998-08-04 1998-08-04 Light-reflecting film and optical recording medium using the same

Country Status (1)

Country Link
JP (1) JP2000057627A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1589531A2 (en) * 2004-04-21 2005-10-26 Kabushiki Kaisha Kobe Seiko Sho Semi-reflective film and reflective film for optical information recording medium, and sputtering target
KR100614736B1 (en) * 2003-06-27 2006-08-22 가부시키가이샤 고베 세이코쇼 REFLECTIVE Ag ALLOY FILM FOR REFLECTORS AND REFLECTOR PROVIDED WITH THE SAME
EP1560704A4 (en) * 2003-04-18 2006-09-06 Target Technology Co Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
EP1712647A1 (en) * 2005-04-14 2006-10-18 Kabushiki Kaisha Kobe Seiko Sho Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
SG137678A1 (en) * 2003-05-16 2007-12-28 Kobe Steel Ltd Ag-bi-base alloy sputtering target, and method for producing the same
EP1947645A1 (en) 2003-03-13 2008-07-23 Mitsubishi Materials Corporation Silver alloy sputtering target for forming reflective layer of optical recording medium
US7419711B2 (en) 2002-08-08 2008-09-02 Kobe Steel, Ltd. Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
US7517575B2 (en) 2005-07-22 2009-04-14 Kobe Steel, Ltd. Optical information recording media and silver alloy reflective films for the same
US7572517B2 (en) 2002-07-08 2009-08-11 Target Technology Company, Llc Reflective or semi-reflective metal alloy coatings
US7687130B2 (en) * 2000-07-21 2010-03-30 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7695792B2 (en) 2005-07-22 2010-04-13 Kobe Steel, Ltd. Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
US7713608B2 (en) 2005-07-22 2010-05-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
US7790263B2 (en) 2005-12-21 2010-09-07 Sony Corporation Ag alloy reflective film for optical information recording medium, optical information recording medium and Ag alloy sputtering target for forming Ag alloy reflective film for optical information recording medium
US7843796B2 (en) 2006-05-16 2010-11-30 Sony Corporation Optical information recording medium and method of marking BCA (burst cutting area) into the same
US8092889B2 (en) 2006-08-28 2012-01-10 Kobe Steel, Ltd. Silver alloy reflective film for optical information storage media, optical information storage medium, and sputtering target for the deposition of silver alloy reflective film for optical information storage media
US8152976B2 (en) 2007-08-29 2012-04-10 Kobelco Research Institute, Inc. AG-based alloy sputtering target
US8309195B2 (en) 2007-09-19 2012-11-13 Kobe Steel, Ltd. Read-only optical information recording medium
US8431931B2 (en) 2008-11-10 2013-04-30 Kobe Steel, Ltd. Reflective anode and wiring film for organic EL display device
US8470426B2 (en) 2008-09-11 2013-06-25 Kobe Steel, Ltd. Read-only optical information recording medium and sputtering target for depositing reflective film for the optical information recording medium
US8530023B2 (en) 2009-04-14 2013-09-10 Kobe Steel, Ltd. Optical information recording medium and sputtering target for forming reflective film for optical information recording medium

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687130B2 (en) * 2000-07-21 2010-03-30 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7572517B2 (en) 2002-07-08 2009-08-11 Target Technology Company, Llc Reflective or semi-reflective metal alloy coatings
US7419711B2 (en) 2002-08-08 2008-09-02 Kobe Steel, Ltd. Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
US7566417B2 (en) 2002-08-08 2009-07-28 Kobe Steel, Ltd. Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
US7871686B2 (en) 2002-08-08 2011-01-18 Kobe Steel, Ltd. Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
US7776420B2 (en) 2002-08-08 2010-08-17 Kobe Steel, Ltd. Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
US7758942B2 (en) 2002-08-08 2010-07-20 Kabushiki Kaisha Kobe Seiko Sho Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
US7722942B2 (en) 2002-08-08 2010-05-25 Kobe Steel, Ltd. Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
US8936856B2 (en) 2002-08-08 2015-01-20 Kobe Steel, Ltd. AG base alloy thin film and sputtering target for forming AG base alloy thin film
US7514037B2 (en) 2002-08-08 2009-04-07 Kobe Steel, Ltd. AG base alloy thin film and sputtering target for forming AG base alloy thin film
US8178174B2 (en) 2002-08-08 2012-05-15 Kobe Steel, Ltd. Ag base alloy thin film and sputtering target for forming Ag base alloy thin film
KR100895759B1 (en) * 2002-08-08 2009-04-30 가부시키가이샤 고베 세이코쇼 LIQUID CRYSTAL DISPLAY DEVICE COMPRISING Ag-BASED OPTICAL REFLECTIVE FILM
EP1947645A1 (en) 2003-03-13 2008-07-23 Mitsubishi Materials Corporation Silver alloy sputtering target for forming reflective layer of optical recording medium
US7645500B2 (en) 2003-04-18 2010-01-12 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
EP1560704A4 (en) * 2003-04-18 2006-09-06 Target Technology Co Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
SG137678A1 (en) * 2003-05-16 2007-12-28 Kobe Steel Ltd Ag-bi-base alloy sputtering target, and method for producing the same
KR100614736B1 (en) * 2003-06-27 2006-08-22 가부시키가이샤 고베 세이코쇼 REFLECTIVE Ag ALLOY FILM FOR REFLECTORS AND REFLECTOR PROVIDED WITH THE SAME
CN1331138C (en) * 2004-04-21 2007-08-08 株式会社神户制钢所 Semi-reflective film or reflective film, optical information recording medium, and sputtering target
EP1589531A3 (en) * 2004-04-21 2006-04-19 Kabushiki Kaisha Kobe Seiko Sho Semi-reflective film and reflective film for optical information recording medium, and sputtering target
EP1589531A2 (en) * 2004-04-21 2005-10-26 Kabushiki Kaisha Kobe Seiko Sho Semi-reflective film and reflective film for optical information recording medium, and sputtering target
US7754307B2 (en) * 2005-04-14 2010-07-13 Kobe Steel, Ltd. Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
US7476431B2 (en) 2005-04-14 2009-01-13 Kobe Steel, Ltd. Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
EP1712647A1 (en) * 2005-04-14 2006-10-18 Kabushiki Kaisha Kobe Seiko Sho Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
US7713608B2 (en) 2005-07-22 2010-05-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
US7517575B2 (en) 2005-07-22 2009-04-14 Kobe Steel, Ltd. Optical information recording media and silver alloy reflective films for the same
US7695792B2 (en) 2005-07-22 2010-04-13 Kobe Steel, Ltd. Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
US7790263B2 (en) 2005-12-21 2010-09-07 Sony Corporation Ag alloy reflective film for optical information recording medium, optical information recording medium and Ag alloy sputtering target for forming Ag alloy reflective film for optical information recording medium
US7843796B2 (en) 2006-05-16 2010-11-30 Sony Corporation Optical information recording medium and method of marking BCA (burst cutting area) into the same
US8092889B2 (en) 2006-08-28 2012-01-10 Kobe Steel, Ltd. Silver alloy reflective film for optical information storage media, optical information storage medium, and sputtering target for the deposition of silver alloy reflective film for optical information storage media
US8152976B2 (en) 2007-08-29 2012-04-10 Kobelco Research Institute, Inc. AG-based alloy sputtering target
US8309195B2 (en) 2007-09-19 2012-11-13 Kobe Steel, Ltd. Read-only optical information recording medium
US8470426B2 (en) 2008-09-11 2013-06-25 Kobe Steel, Ltd. Read-only optical information recording medium and sputtering target for depositing reflective film for the optical information recording medium
US8431931B2 (en) 2008-11-10 2013-04-30 Kobe Steel, Ltd. Reflective anode and wiring film for organic EL display device
US8530023B2 (en) 2009-04-14 2013-09-10 Kobe Steel, Ltd. Optical information recording medium and sputtering target for forming reflective film for optical information recording medium

Similar Documents

Publication Publication Date Title
JP2000057627A (en) Light-reflecting film and optical recording medium using the same
EP0822544B1 (en) Optical recording medium
US5161150A (en) Optical recording medium
JP2000108513A (en) Photorecording medium
JP3708298B2 (en) Optical recording medium
JPH082107A (en) Optical recording medium
JP3614586B2 (en) Dipyromethene metal chelate compound and optical recording medium using the same
KR100204455B1 (en) Optical recording medium
JP2686841B2 (en) Information recording medium and optical information recording method
JPH10330633A (en) Subphthalocyanin compound and optical recording medium using the same
JPH1192479A (en) Optical recording medium
JP3820050B2 (en) Optical recording medium
JP2000222771A (en) Optical recording medium
JP3482481B2 (en) Optical information recording medium
JPH07262604A (en) Optical recording medium
JP3742507B2 (en) Optical recording medium
JP2000318312A (en) Optical recording medium
JP3608873B2 (en) Optical recording medium
JP3704230B2 (en) Optical recording medium
JP2000318313A (en) Optical recording medium
US20030161987A1 (en) Optical recording medium
JPH0954980A (en) Optical recording medium
JP2001307375A (en) Optical information recording medium and method for optical information recording and reproducing
JP2000263939A (en) Optical recording medium
JP2000263938A (en) Optical recording medium