WO2006118248A1 - Cell growth inhibitory member, cell metastasis inhibitory member, method of inhibiting cell growth, method of inhibiting cell metastasis, layered film and medical instrument - Google Patents

Cell growth inhibitory member, cell metastasis inhibitory member, method of inhibiting cell growth, method of inhibiting cell metastasis, layered film and medical instrument Download PDF

Info

Publication number
WO2006118248A1
WO2006118248A1 PCT/JP2006/308980 JP2006308980W WO2006118248A1 WO 2006118248 A1 WO2006118248 A1 WO 2006118248A1 JP 2006308980 W JP2006308980 W JP 2006308980W WO 2006118248 A1 WO2006118248 A1 WO 2006118248A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
film
suppressing member
porous structure
member according
Prior art date
Application number
PCT/JP2006/308980
Other languages
French (fr)
Japanese (ja)
Inventor
Masaru Tanaka
Junichi Hamada
Yoshihide Toyokawa
Sada-Aki Yamamoto
Masatsugu Shimomura
Original Assignee
Japan Science And Technology Agency
National University Corporation Hokkaido University
Zeon Medical Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, National University Corporation Hokkaido University, Zeon Medical Inc. filed Critical Japan Science And Technology Agency
Priority to JP2007514835A priority Critical patent/JPWO2006118248A1/en
Publication of WO2006118248A1 publication Critical patent/WO2006118248A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials

Definitions

  • Cell proliferation inhibiting member cell metastasis inhibiting member, cell proliferation inhibiting method, cell metastasis inhibiting method, laminated film and medical device
  • the present invention relates to a cell growth suppressing member, a cell metastasis suppressing member, a cell proliferation suppressing method, a cell migration suppressing method, a laminated film and a medical device.
  • cancer treatment mainly consists of surgical treatment for resecting a tumor by surgery or the like, and acupuncture using an anti-cancer drug (anti-cancer drug) that selectively inhibits the growth of cancer (tumor) cells. It is
  • Surgical treatment is effective for treatment of solid tumors, but can not cope well with leukemia, lymphoma and metastatic cancer cells.
  • Chemotherapy with anticancer drugs is effective against leukemia and lymphoma.
  • tumor cells and normal cells show similar properties, so there are few anticancer drugs that show excellent selective toxicity.
  • anticancer drugs have different therapeutic effects for each patient, and it is difficult to predict their effects before the administration of anticancer drugs.
  • the anticancer drug which often causes side effects due to the administration of the anticancer drug, causes the patient to suffer undue pain.
  • Patent Document 1 a hydrophobic organic solvent solution of a biodegradable and amphiphilic single polymer or a polymer mixture consisting of a biodegradable polymer and an amphiphilic polymer is cast on a substrate, A HA-CAM structure film obtained by evaporating on a surface of an organic solvent solution (cast liquid) cast simultaneously with evaporating the solvent and evaporating fine water droplets generated by the condensation is described or a stretched film thereof. . And, when rat fetal heart-derived cardiomyocytes are cultured on this polymer film, since the cells were well expanded, this polymer film is considered to be useful as a substrate for cell culture.
  • Patent Document 2 describes the method described in Patent Document 1 in the same manner as the film described above.
  • a hemofilter membrane having a cam-like structure with a specific pore size and pore size variation that is formed is described. This filtration membrane is for removing white blood cells from whole blood for blood transfusion.
  • a medical device such as a stent has been kept in the body.
  • biliary stents and ureteral stents are known as medical tools for dilation of ureteral ducts and strictures due to stenosis or obstruction due to cancer.
  • Patent Document 3 a coating layer is provided on the surface of a medical device such as stent, and from this coating layer, a physiologically active substance capable of suppressing the growth of cancer cells such as a cancer drug is released over time. Medical devices that have been designed to
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-335949
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2003-149096
  • Patent Document 3 JP 2001-512354 (W098 Z36784)
  • the present invention has been made in view of the circumstances of the prior art as described above, and exhibits a cytostatic action or a cytostatic action even without using a physiologically active substance such as an anticancer drug, and a medical device It is an object of the present invention to provide a material suitable for constructing the
  • the present inventors by a method similar to the method described in Patent Documents 1 and 2, select a resin such as 1, 2-polybutadiene (note that, in the present specification, a resin is generally used). A solution of an organic solvent (including rubber) is also cast on the substrate to obtain a film having a porous structure. Then, when this film was placed in a culture medium and culture of various tumor cells was tried on the film, the growth of tumor cells was remarkably remarkable contrary to the example for cardiomyocytes of Patent Document 1. I found it to be suppressed.
  • an organic solvent solution containing a resin composition obtained by adding a predetermined amount of an anti-oxidation agent to a resin such as 1,2-polybutadiene is applied onto a substrate by the same method as described above.
  • a film having a porous structure was obtained, this film was placed in a culture medium, and culture of various tumor cells was attempted on the film.
  • this film significantly suppresses the growth of tumor cells, and is resistant to deterioration in the body which is difficult to oxidatively deteriorate even when stored for a long period of time, and is suitable for constructing a medical device. I found that.
  • the inventors of the present invention have the mechanical strength of the film so that the film is less likely to be damaged. As a result of examining the improvement of the degree (film strength), it was found that the method of laminating with another film to make a laminated film is preferable.
  • a cell proliferation suppressing member characterized by having a porous structure.
  • the cell growth suppressing member according to any one of (1) to (3), which is a film obtained by releasing the film, or a stretched film thereof.
  • a cell metastasis suppressing member characterized by having a porous structure.
  • An organic solvent solution containing a resin composition is cast on a substrate to evaporate the organic solvent and cause condensation on the surface of the organic solvent solution, thereby evaporating water droplets generated by the condensation.
  • (12) to (14) which is a film obtained by releasing the film, or a stretched film thereof.
  • the average pore diameter of the pores constituting the porous structure is 0.1 to 1: LOO / zm.
  • the following medical grade (23) is provided.
  • the cell proliferation suppressing member according to any one of (1) to (9), or all or part of the surface of a medical device substrate according to any one of (1) to (9), or any one of (12) to (20) A medical device characterized in that it is covered with a cell metastasis suppressing member.
  • a cell growth suppressing member and a cell growth suppressing member suitable for constituting a medical device which exhibit an excellent cell growth suppressing action without using a physiologically active substance, are hard to be damaged and hardly deteriorate.
  • a laminated film is provided.
  • a method for cell growth suppression using the cell growth suppression member of the present invention and a medical device in which this member is coated on a medical device substrate.
  • a cell metastasis suppressing member and a laminated film suitable for constituting a medical device which exhibit excellent cell metastasis suppressing action without using a physiologically active substance, are hard to break and hardly deteriorate, are provided.
  • a method for cell metastasis suppression using the cell metastasis suppressor of the present invention and a medical device in which the medical device substrate is coated with this member.
  • the cell proliferation suppressing member, the cell metastasis inhibiting member, the cell proliferation inhibiting method, the cell proliferation inhibiting method, the laminated film and the medical device of the present invention the cell proliferation inhibiting action and the Z without using a physiologically active substance Alternatively, since it can exert a cell metastasis suppressive action, it is possible to avoid the side effect of a physiologically active substance.
  • FIG. 1 is a sketch diagram of an optical micrograph of a cell proliferation suppressing member in which pores constituting a porous structure are arranged in a honeycomb manner.
  • FIG. 2 is a cross-sectional view of a tumor cell culture plate used in Example 1.
  • Example 1 the gallbladder cancer-derived cell line of the cell growth suppressing member according to the example
  • Example 2 the gallbladder cancer-derived cell line of the cell growth suppressing member according to the example
  • FIG. 5 is a histogram showing the results of examining the growth inhibitory action of a cell growth suppressing member on a common cholangiocarcinoma-derived cell line (TFK-1) in Example 1.
  • FIG. 6 is a histogram showing the results of examining the growth inhibitory action of a cell growth suppressing member on a common cholangiocarcinoma-derived cell line (TFK-1) in Example 2.
  • FIG. 7 is a histogram showing the results of examining the growth inhibitory action of a cell growth suppressing member on a malignant melanoma-derived cell line (MeWo) in Example 1.
  • FIG. 8 is a histogram showing the results of examining the growth inhibitory action of the cell growth suppressing member on a malignant melanoma-derived cell line (MeWo) in Example 2.
  • Example 1 the breast cancer-derived cell line of the cell growth inhibitory member (MDA-MB- 4
  • Example 2 a breast cancer-derived cell line (MDA-MB- 4) of the cell growth suppressing member
  • FIG. 11 A diagram summarizing the results of Example 1, and showing the growth inhibitory action of various cell growth suppressing members on various tumor cells (56 strains).
  • FIG. 12 is a diagram summarizing the results of Example 2, and showing the growth inhibitory action of various cell growth suppressing members on various tumor cells (56 strains).
  • FIG. 13 A diagram showing the results of examining the infiltration suppressing effect of PCL flat membranes on tumor cells (SAS) in Example 3, (a) is a microscope image at 100 times magnification, (b) is a microscopic image. It is a microscope image with a magnification of 200 times.
  • FIG. 14 A diagram showing the results of examining the infiltration inhibitory effect of the cell metastasis inhibiting member according to the present invention on tumor cells (SAS) in Example 3, and (a) is a microscopic image at 100 times magnification. (B) is a microscope image of 200 ⁇ magnification, and (c) is a microscope image of 400 ⁇ magnification.
  • SAS tumor cells
  • the cell growth suppressing member of the present invention is characterized by having a porous structure, and exerts a cell growth suppressing action.
  • the cytostatic activity refers to the activity of inhibiting the growth of tumor cells (including cancer cells) and the activity of killing Z or tumor cells.
  • the cell growth suppressing member of the present invention when the cell growth suppressing member of the present invention is disposed in a medium, and a cell line of tumor cells is seeded on this member to culture the cells, it has a porous structure, While cells proliferate normally on flat membrane structural members, when using the cell growth suppressing member of the present invention, cell proliferation is significantly suppressed or cells are killed. Therefore, the cell proliferation suppressing member of the present invention is useful as a material or the like constituting a medical device.
  • the porous structure is formed at least on the surface portion.
  • the respective pores of the porous structure have a continuous porous structure in which the pores of the porous structure communicate with each other in the interior of the member.
  • the holes constituting the porous structure may be through holes, non-through holes!
  • the opening shape of each hole of the porous structure may be any shape such as a circular shape, an elliptical shape, a square shape, a rectangular shape, or a hexagonal shape which is not particularly limited.
  • the average pore diameter of the pores constituting the porous structure is usually 0.50 to: LOO / zm, 0.1 to 1: LOO / zm. It is more preferable that the force S be S preferably 0.1 to 20 / ⁇ ⁇ 0 0.5 to L 0 m. Such an average By forming the porous structure from pores having a pore size, it is possible to obtain a member having a more excellent cell proliferation inhibitory action.
  • the hole diameter refers to the diameter of the largest inscribed circle with respect to the opening shape of the hole, and for example, when the hole opening shape is a substantially circular shape, it refers to the diameter of the circle. In the case of an oval shape, it refers to the minor axis of the ellipse, in the case of a substantially square shape it refers to the length of the side of the square, and in the case of a substantially rectangular shape, the length of the short side of the rectangle Point to the The measurement of the pore size can be performed using a scanning electron microscope (SEM) or the like.
  • SEM scanning electron microscope
  • the width between the pores constituting the porous structure is preferably 0.01 to 50 m. It is more preferable that it is -10 m.
  • the stem width is a hole constituting the porous structure in the cell proliferation suppressing member, and means the average value of the shortest distance between adjacent holes.
  • the stem width can be measured using a scanning electron microscope (SEM) or the like.
  • the porosity of the cell growth suppressing member of the present invention is not particularly limited !, but is preferably 10 to 90%, and more preferably 20 to 80%. More preferably, it is 70%.
  • the porosity means the ratio of the area occupied by the openings of the pores constituting the porous structure on the surface of the portion where the porous structure of the cell proliferation suppressing member of the present invention is present.
  • the porosity can be calculated, for example, using a photograph such as a scanning electron microscope (SEM) using a known image analysis software Scion Image (Scion Corporation). More specifically, it is as follows. When using SEM pictures, the holes appear black and round, and the stems appear white.
  • the porosity can be determined by [(total surface area of pores: total surface area of black portion) ⁇ (surface area of cell proliferation suppressing member: total surface area of total white and black portions) x 100].
  • the pores constituting the porous structure are regularly arranged and preferably arranged in a honeycomb manner.
  • the holes constituting the porous structure are arranged in the form of a hard cam, and the like, and the holes are the same as the arrangement in the case where the circle having the diameter is close-packed flatly. It indicates that the cells are arranged in the cell growth suppressing member, and the size and shape of each hole and the distance between the holes are not intended to be limited at all.
  • a sketch of an optical micrograph of a cell proliferation suppressing member in which the pores constituting the porous structure are arranged in a honeycomb-like manner is shown in FIG.
  • the material for the cell proliferation suppressing member of the present invention is not particularly limited as long as it can form a porous structure, but from the viewpoint of ease of coating on a medical device, it is preferable to be a resin. In addition, glass, ceramic or the like may be contained to improve the durability.
  • the resin that constitutes the cell growth suppressing member of the present invention No particular limitation is imposed on the resin that constitutes the cell growth suppressing member of the present invention, and the deviation of non-biodegradable resin and biodegradable resin can also be used.
  • a non-biodegradable resin which is not easily degraded in vivo.
  • the resin be soluble in an organic solvent.
  • the resin constituting the cell growth suppressing member of the present invention include polybutadiene (1,2 polybutadiene, 1,4 polybutadiene), polyisoprene, styrene butadiene copolymer, styrene-isoprene copolymer, Conjugated gen-type polymers such as acrylonitrile-butadiene-styrene copolymer; poly ⁇ -force prorataton; polyurethane; cellulose acetate, cenoreloid, cenolerose pate, casserole cenorerose such as acetinole cenorelose, cellophane cenorelase type r3 ⁇ 4 6, polyamides such as positamide 66, positamide 610, positamide 612, positamide 12, polyamide 46, and the like; polyamide based polymers such as polytetrafluoroethylene; polytetrafluoroethylene, polytrifluoroethylene
  • phenol resin amino resin Formaldehyde polymers such as urea resin, melamine resin and benzoguanamine resin
  • polyester polymers such as polybutylene terephthalate, polyethylene terephthalate and polyethylene naphthalate
  • epoxy resin poly (meth) acrylate (Meth) acrylic polymers such as sters, poly (2-hydroxy-) atalylate, methacrylate ester / cobalt acetate copolymer
  • norbornene resin silicone resin
  • polylactic acid, polyhydroxybutyric acid, polyglycolic acid And polymers of hydroxycarboxylic acids such as These can be used singly or in combination of two or more.
  • a cell growth suppressing member having an excellent cell growth suppressing action since a cell growth suppressing member having an excellent cell growth suppressing action can be obtained, the use of a conjugated gen polymer, a styrenic polymer or a polyurethane is preferred. 1, 2-polybutadiene The use of is particularly preferred.
  • an amphipathic substance may be added to the resin constituting the cell growth suppressing member of the present invention.
  • the amphiphilic substance to be added polyethylene glycol-polypropylene daly block copolymer; an acrylamide polymer as a main chain skeleton, a parent having both a dodecyl group as a hydrophobic side chain and a ratatose group or a carboxyl group as a hydrophilic side chain.
  • Hyperlipidates Ion complexes of hyperphilic polymers such as heparin and dextran sulfate, nucleic acids (DNA and RNA) and long-chain alkyl ammonium salts; Water-soluble proteins such as gelatin, collagen and albumin Amphiphilic resins with a hydrophilic group; polylactic acid-polyethylene glycol block copolymers, poly ⁇ monoprolatatone polyethylene glycol block copolymers, polymalic acid-polymalic acid alkyl ester block copolymers, etc. amphiphilic Resin; and the like.
  • the cell growth suppressing member of the present invention exhibits a cell growth suppressing action without the addition of a physiologically active substance, so from the viewpoint of avoiding a side effect, a physiologically active substance having a cell growth suppressing action It is preferred not to add quality. However, in order to obtain a stronger cell growth inhibitory action, a physiologically active substance having a cell proliferation inhibitory action may be added. Even in this case, since a sufficient cell growth inhibitory action can be obtained with a smaller addition amount as compared with the conventional case, the side effects due to the physiologically active substance can be significantly reduced.
  • the cell growth suppressing member of the present invention is preferably composed of a resin composition containing an anti-acid agent in addition to the above-mentioned resin.
  • a member having a porous structure is easily deteriorated due to its large specific surface area, but the addition of an anti-acid agent prevents the acid deterioration and enables long-term storage, and also in the body. Deterioration can also occur.
  • the antioxidative agent there are no particular limitations on the antioxidative agent to be used, and for example, it is preferable to use a phenolic antioxidant, a phosphorous antioxidant, an amine antioxidant, an aqueous antioxidant, etc. Can. Among these, it is preferable to use a phenol-based acid inhibitor and a phosphorus-based acid inhibitor together with a phenol-based acid inhibitor and a Z- or phosphorus-based acid inhibitor. Especially preferred.
  • One of the antioxidants may be used alone, or two or more thereof may be used in combination.
  • phenol-based anti-acid agents include: 2 tert-butyl 6- (3 tert-butyl-2 hydroxy- 1 5-methyl benzyl) 4- methylphenyl atalylate, 2, 4 di-tert-amylou 6-[1-(3, 5 di-tertiary amylu 2 hydroxyphenyl) ethyl] phenyl atarylated phenolic compounds such as atarilate; 2,6 di-tert-butyl-4-methylphenol, 2, 6 Tertiary butyl-4 hydroxyethyl phenol, octadecyl 3-(3, 5 di tertiary butyl 4 hydroxy phenyl) propionate, 2, 2, 1 methylene one bis (4 methyl 6-tertiary butyl phenol), 4, 4, -Butylidene-bis (6-tert-butyl-m-taresol), 4-, 4-thiobis (3-methyl-6-tert-butylphenol), bis (3-cycloxane-
  • phosphorus-based antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, ferridiisodecyl phosphite, tris (no-phenyl) phosphite, and tris (zino-phenyl) phosphite, Tris (2,4 di-tert-butylphenyl) phosphite, tris (2 tert-butyl 4-methylphenyl) phosphite, tris (cyclohexylene) phosphite, 2, 2-methylenebis (4, 6 di-tert-butylphenyl) octyl phosphite, 9, 10 dihydro-9 oxa 10, phosphaphenanthrene 10-oxide, 10- (3, 5-di-tert-butyl 4-hydroxybenzyl) 9, 10 dihydro-l 9- oxa 10 Phosphaphenanthrene 10 Oxide, 10
  • di-type antioxidants examples include dilauryl 3,3'-thiodipropionate, dimyristyl 3,3,1-thiodipropionate, distearyl 3,3,1-thiodipropionate, lauryl stearyl 3 , 3, 1-thiodipropionate, pentaerythritol-tetrakis-( ⁇ lauryl thiopropionate), 3, 9 bis (2 dodecyl thioethyl) 2, 4, 8, 10-tetraoxaspiro [5, 5 ] Undecane etc. can be mentioned.
  • the amount of the anti-acid agent (total amount when two or more types are used) is not particularly limited, but preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the resin used. More preferably 0.5 to 2 parts by weight.
  • the shape of the cell growth suppressing member of the present invention is not particularly limited, but is preferably in the form of a film.
  • the cell growth suppressing member of the present invention is a film-like material, it may be a film consisting of a single layer or a laminated film consisting of a plurality of layers.
  • a film may be formed on a substrate (for example, plastic, glass, etc.) It may be a laminated material.
  • the film thickness is not particularly limited. 0.50 to 50: preferred from the force of LOO / zm, 0.5 to 20 m The power of certain ⁇ ⁇ more preferred.
  • the cell growth suppressing member of the present invention is a laminated film of a resin film (second resin film) having a porous structure and another resin film (first resin film).
  • first resin film a resin film having a porous structure
  • second resin film another resin film
  • first resin film a resin film having a porous structure
  • second resin film another resin film
  • the mechanical strength (film strength) of the film is enhanced and the film is less likely to be damaged. Therefore, even when the cell growth suppressing member of the present invention, which is the laminated film of the present invention, is covered on the surface of a medical device substrate such as a stent substrate, the member can be installed and used in the body. It becomes possible to maintain the cell proliferation suppressing action which is difficult to damage the film for a long time.
  • the first resin film is a resin film laminated to a second resin film having a porous structure, and has a role of reinforcing the second resin film.
  • the first resin film has a role of reinforcing the second resin film, It is not particularly limited.
  • the first resin film may be, for example, a non-porous film (flat membrane) or a film having a porous structure.
  • a film having a porous structure is used as the first resin film, in the first resin film, the holes constituting the porous structure to be described later are arranged in a honeycomb pattern. You may use a film of the same form as the film used as the second resin film.
  • the first resin film may be a film having a single layer strength or a film having a plurality of layer strengths.
  • these layers may be composed of layers of the same form, or may be composed of layers of different forms.
  • the pore diameter of the pores forming the porous structure in the case of using a film having a porous structure as the first resin film is not particularly limited, but may be in the range of 0.1 to 500 m. It is more preferable that it is in the preferred range of 0. 1 to 1: LOO / zm.
  • polystyrene 1,2 polybutadiene, 1,4 polybutadiene
  • polyisoprene 1,2 polybutadiene, 1,4 polybutadiene
  • polyisoprene 1,4 polybutadiene
  • styrene butadiene copolymer 1,4 polybutadiene
  • styrene isoprene copolymer acrylico-tolyl butadiene-styrene copolymer, etc.
  • conjugated diene polymers poly epsilon - ⁇ Pu ⁇ easier Bokun; Pojikuretan; polyamide, 6, Pojiamido, 66, Pojiamido, 610, Pojiamido, 612, polyamide 12, polyamide-based polymers such as polyamide 46; polybutylene terephthalate, Polyester-based polymers such as poly (ethylene terephthalate) and polyethylene naphthalate; cenolose-based polymers such as cenolerose acetate, cenoreloid, cenolerose with correct acid, acetinolecenorelose and cellophane; polytetrafluoroethylene, polytrifluoroethylene , Perfull Fluoropolymers such as ethylene-propylene copolymer; polystyrene, styrene-ethylene-propylene copolymer, styrene-ethylene-butylene copolymer, chlorinated polyethylene-acrylonit
  • Olefin polymers such as phenol resin, amino resin, urea resin, melamine resin, benzoguanamine resin; epoxy resin; poly (meth) acrylic acid ester, poly 2-hydroxy ethyl (Meth) acrylic polymers such as atalylate, methacrylate ester / co-acetate copolymer; norbornene resin; silicone resin; polymer of hydroxycarboxylic acid such as polylactic acid, polyhydroxybutyric acid, polyglycolic acid; etc. Are listed. These can be used alone or in combination of two or more.
  • a polyurethane which is preferably used, such as a conjugated gen polymer, a polyurethane, a polyamide polymer, and a polyester polymer.
  • the method for producing the first resin film is not particularly limited, and a conventionally known molding method can be employed. For example, a heat melt molding method, a solution casting method, etc. may be mentioned. Also, the first resin film may be stretched.
  • the first resin film When a film having a porous structure is used as the first resin film, a method similar to the method for producing the cell proliferation suppressing member of the present invention, which is a film-like material described later, is used. It can also be used to produce the first resin film.
  • the thickness of the first resin film obtained as described above is not particularly limited, but usually 1 to 500 m, preferably 1
  • the present invention is not limited to the one comprising only the first resin film and the second resin film, for example, another film And the like may be included.
  • the method for producing the cell growth suppressing member of the present invention is not particularly limited.
  • an organic solvent solution containing the above-mentioned resin and a resin composition containing an antioxidant if desired is cast on a substrate.
  • an organic solvent solution containing (1) a resin composition and, optionally, a resin composition containing an acid inhibitor is cast on a substrate and sprayed with a high humidity gas.
  • a method of gradually evaporating the organic solvent and condensing moisture in the high-humidity gas on the surface of the cast liquid to evaporate water droplets generated by the condensation, or Solvent solution containing the resin composition containing the agent is cast on a substrate under gas with a relative humidity of 50 to 95% to evaporate the organic solvent and to condense moisture in the gas on the surface of the cast liquid
  • a method of evaporating water droplets generated by the condensation is cast on a substrate under gas with a relative humidity of 50 to 95%.
  • the organic solvent used be non-water soluble because it is necessary to form water droplet particles on the surface of the cast liquid. ,.
  • organic solvent to be used examples include halogenated hydrocarbon solvents such as chloroform and methylene chloride; saturated hydrocarbon solvents such as n-pentane, n-hexane and n-heptane; cyclopentane and cyclohexane Alicyclic hydrocarbon solvents such as benzene; aromatic hydrocarbon solvents such as benzene, toluene and xylene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as jetyl ketone and methyl isopyl ketone; Carbon and the like. These organic solvents can be used alone or as a mixed solvent of two or more of them.
  • halogenated hydrocarbon solvents such as chloroform and methylene chloride
  • saturated hydrocarbon solvents such as n-pentane, n-hexane and n-heptane
  • cyclopentane and cyclohexane Alicyclic
  • the concentration of fat dissolved in an organic solvent is preferably 0.01 to 10% by weight, more preferably 0.05 to 5% by weight.
  • the resin concentration is lower than 0.01% by weight, the mechanical strength of the resulting film is insufficient and it is not desirable.
  • the concentration of fat is 10% by weight or more, the desired porous structure may not be obtained.
  • Cap resin amphipathic resin
  • the amount to which the amphiphilic substance is added is preferably 99: 1 to 50:50 in weight ratio of resin: amphipathic substance.
  • an inorganic substrate such as a glass substrate, a metal substrate, a silicon substrate, etc .; an organic material such as polypropylene, polyethylene, polyether ketone etc.
  • Substrates include liquid substrates that can also be liquid such as water, liquid paraffin, liquid polyethers, and the like.
  • the pore diameter of the hole is adjusted to the resin concentration and amount of the solution to be cast and supplied to the support layer such as petri dish, and there is an atmosphere !, the temperature of the blowing gas and Z or the humidity and the flow rate of the blowing gas It can be controlled by control or by controlling the evaporation speed and Z or condensation speed of the solvent.
  • the high-humidity gas sprayed onto the cast liquid may be any humidity capable of causing moisture in the gas to condense on the surface of the cast liquid, but one having a relative humidity of 20 to 100% is preferred 30 to 80 % Is more preferable.
  • the gas air; inert gas such as nitrogen, argon or the like can be used.
  • the flow rate of the high-humidity gas sprayed on the cast liquid can be such that the water content of the gas can be condensed on the cast liquid surface and the solvent used in the cast can be evaporated.
  • the time for spraying the high-humidity gas is until the solvent used for casting evaporates and a film is formed, and is usually 1 to 60 minutes.
  • the temperature of the atmosphere when spraying a high humidity gas may be a temperature at which the solvent used for casting can evaporate, but a temperature of 5 to 80 ° C. is desirable.
  • the method for producing the laminated film is not particularly limited.
  • An organic solvent solution hereinafter sometimes referred to as “resin solution”
  • resin solution An organic solvent solution containing resin used to form a fat film is cast, and the organic solvent is evaporated and the cast organic solvent solution is formed on the surface.
  • a method of causing condensation and evaporating a water droplet generated by the condensation may be mentioned, and the method (a) is preferable from the viewpoint of simplicity.
  • a film having a porous structure at least on its surface prepared as described above can be used as it is as a cell proliferation member. Force obtained by stretching this film A film can also be used as a cell proliferation inhibiting member.
  • the method for stretching the film is not particularly limited, and for example, it can be performed by gripping two or more ends of the film having a porous structure and pulling in the stretching direction.
  • the stretching may be uniaxial stretching or biaxial stretching.
  • the elongation rate in the stretching direction is not particularly limited.
  • the force is preferably in the range of 1. 1 to 10 times.
  • the stretching can also be performed by covering the cell growth inhibitory film of the present invention on a medical device base and expanding the medical device base. That is, by expanding the medical device substrate coated with the cell growth suppression film of the present invention, a stretched cell growth suppression film can be obtained.
  • the resin composition may be molded into a desired shape and size using a printing method such as an inkjet method or a screen method.
  • the surface may be further formed using a photolithography method or the like.
  • the method for suppressing cell growth of the present invention is characterized by suppressing the growth of cells in the contact portion by bringing the portion in which the porous structure of the cell growth suppressing member of the present invention is formed into contact with cells. .
  • the contact portion is obtained by bringing the surface portion of the cell growth suppressing member of the present invention into contact with cells.
  • the application target of the cell growth suppression method of the present invention is not particularly limited as long as it is a cell, but a tumor cell is preferable.
  • the tumor cells may be benign tumor cells or malignant tumor cells (cancer cells).
  • the above tumor may be an epithelial tumor that is a squamous epithelial 'glandular epithelial tumor, or a non-epithelial tumor that is a connective tissue' blood vessel ⁇ hematopoietic tissue ⁇ muscle tissue ⁇ nerve tissue tumor.
  • Malignant epithelial tumors include carcinoma, and malignant non-epithelial tumors include sarcoma, leukemia and the like. More specifically, oral squamous cell carcinoma (e.g. gingiva, tongue), squamous cell carcinoma (e.g. esophageal cancer, lung cancer, cervical cancer, skin cancer), adenocarcinoma (e.g.
  • the cell metastasis suppressing member of the present invention is characterized in that a porous structure is formed, and exerts a cell metastasis suppressing action. At this time, it is preferable that the cell metastasis suppressing member has a porous structure formed on at least a surface portion thereof.
  • cell metastasis refers to a phenomenon in which cells, in particular tumor cells, are transported to a place away from the primary site, and established and proliferated there. Metastasis may occur through processes such as migration of tumor cells from the main tumor, invasion and transport into the vessel, colonization and extravasation of the vessel wall, and growth at that site. Known! /.
  • the cell metastasis suppressing member according to the present invention is a member capable of suppressing the invasion of the tumor cells into peripheral yarns and weaves such as vessels, among the above-mentioned steps. It can suppress the metastasis of sexual tumors.
  • Cell metastasis suppression is also intended to suppress or arrest metastasis 100%.
  • the cell metastasis-suppressing member of the present invention has a function to inhibit tumor cell metastasis
  • tumor cells are layered on collagen gel containing human fetal fibroblasts
  • culture is carried out by bringing the cell metastasis-inhibiting member into contact with the tumor cells and in the case where the culture is carried out without bringing the cell metastasis-inhibition member into contact with the tumor cells V.
  • This evaluation method is a method uniquely devised by the present inventors after intensive studies.
  • the culture medium liquid
  • the cell metastasis suppressing member the test substance
  • the two can not be brought into close contact with each other. It was not possible to evaluate the infiltration suppressing ability of the substance.
  • the surface of the tumor cell layer is in contact with air (strictly, 5% (v / v) CO, 95% (v / v) air), and
  • Methods of evaluating tumor cell infiltration in vitro include conventionally known methods other than the above-mentioned methods (eg, Albini A, Iwamoto Y, Kleinman, Martin GR, Aaronson SA, Kozlowski JM, A cancer in vitro assay f or quantitating the invasive potential of tumor cells.
  • 'Cancer Res. 1987 Jun 15; 47 (12): 3239-45. Miyazaki YJ, Hamada J, Tada M, F uruuchi K, Takahashi Y, Kondo S, Katoh H, Moriuchi T. "HOX D3 enhances motility and invasiveness through the TGF- beta depend ent and-independent pathways in A549 cells.” Oncogene.
  • tumor cells contacted with a cell metastasis-inhibiting member and tumor cells not contacted are transplanted into the body (subcutaneous, abdominal cavity or thoracic cavity) of experimental animals such as mice and rats, respectively, and after a certain period of time, transplantation is carried out. Isolated the surrounding tissue and evaluate the presence or absence of tumor cell infiltration around the tumor and metastasis to the lymph node and other organs by staining, etc.
  • a cell metastasis suppressor is introduced into the affected area where the tumor arose,
  • a method is available in which peripheral tissues after a lapse of time are compared with peripheral tissues of the affected area by introducing a cell migration-suppressing member.
  • the same materials as those of the cell proliferation suppressing member described above can be suitably exemplified, and the material can be manufactured by the same manufacturing method.
  • the application target of the cell metastasis suppression method is not particularly limited as long as it is a cell, but a tumor cell is preferable.
  • the tumor cells may be benign tumor cells or malignant tumor cells (cancer cells).
  • the above tumor may be an epithelial tumor which is a squamous epithelial 'glandular epithelial tumor or a non-epithelial tumor which is a tumor of a connective tissue' blood vessel ', hematopoietic tissue, muscle tissue, nerve tissue.
  • Malignant epithelial tumors include carcinoma, and malignant non-epithelial tumors include sarcoma, leukemia and the like. More specifically, oral squamous cell carcinoma (e.g. gingiva, tongue), squamous cell carcinoma (e.g. esophageal cancer, lung cancer, cervical cancer, skin cancer), adenocarcinoma (e.g.
  • intrahepatic cholangiocarcinoma intrahepatic cholangiocarcinoma, common cholangiocarcinoma, Gallbladder cancer, breast cancer, renal cancer, stomach cancer, splenic cancer, thyroid cancer, prostate cancer, colon cancer, lung cancer), hepatocellular carcinoma, bladder cancer (transitional cell carcinoma), ovarian cancer, glioblastoma, malignant black Tumors, osteosarcoma, fibrosarcoma, neuroblastoma, choriocarcinoma and the like. 5) Medical Tools
  • the medical device of the present invention is characterized in that the whole or a part of the surface of the medical device substrate is coated with the cell proliferation suppressing member or the cell metastasis suppressing member of the present invention.
  • the medical device substrate is a substrate that can be used as a medical device by covering the cell proliferation suppressing member or the cell metastasis suppressing member of the present invention, but even if it is used alone, it can be used as a medical treatment. It may be used as a tool.
  • the medical device of the present invention is coated with a member that exhibits cytostatic and Z or cell migration inhibitory effects on tumor cells, so that the cancer can be progressed at the contact portion of the member. It can be suppressed.
  • cytostatic action and for inhibiting Z or cell metastasis are exhibited without the need for a physiologically active substance such as an anticancer drug, it is possible to avoid the side effects due to the physiologically active substance.
  • the medical device of the present invention is preferably a stent such as a stent, a catheter, a medical tube or the like, preferably a stent placed in a body lumen narrowed or occluded by tumor cells. Preferably there.
  • stents examples include ureteral stents, biliary stents, airway stents, esophageal stents, colon stents and the like.
  • the medical device of the present invention is a catheter based stent placed in a digestive system internal lumen such as bile duct, esophagus, duodenum, large intestine, etc. It is preferable to use one having a porous structure consisting of through holes, an average pore diameter of 0.1 to 20 / ⁇ , and a variation coefficient of the pore diameter of 30% or less. By coating such a member, it is possible to obtain a digestive system stent having functions not only for cell growth suppression but also for permeating digestive fluid and digestive enzymes contained therein and not permeating tumor cells. .
  • the method of coating the cell proliferation suppressing member or the cell metastasis suppressing member (hereinafter sometimes referred to as “the member of the present invention”) of the present invention on the medical device substrate For example, (.alpha.)
  • the method of coating the medical device substrate after producing the member of the present invention may be mentioned.
  • the first resin film and the second resin film are separately produced and A second resin film on the medical device substrate, and A method of coating a first resin film on the second resin film, ( ⁇ ) coating a second resin film on a medical device substrate, and forming a second resin film on the second resin film; And a method of forming a resin film of In these cases, adhesion can be obtained simply by bringing the manufactured member of the present invention into contact with the surface of the medical device base, but if necessary, means such as fusion with an adhesive or solvent, fusion with heat, etc. May be used.
  • the shape of the stent base is not particularly limited as long as it is a tubular body, but in general, it is a tubular body in which linear bodies or strip bodies are connected in a network to form a peripheral wall.
  • the wire diameter in the case where the stent base material is formed of a linear body is preferably 0.50 to: L mm.
  • the thickness is preferably in the range of 0.1 to 5 mm, preferably in the range of 0.1 to LO mm.
  • the size of the stent base as a tubular body varies depending on the size of the indwelling body lumen, but generally, the outer diameter is 2 to 30 mm, the inner diameter is 1 to 29 mm, and the length is 5 to 5 mm. It is 200 mm. In particular, when used to construct a biliary stent, it is preferable that the outer diameter is 5 to 20 mm, the inner diameter is 4 to 19 mm, and the length is 10 to 100 mm!
  • a synthetic resin or a metal is used as a material of the stent base.
  • the synthetic resin is used to some extent with hardness and elasticity, and a biocompatible resin is preferred.
  • a biocompatible resin is preferred.
  • polyolefin, polyester, fluorine resin and the like examples include polyethylene and polypropylene, and examples of the polyester include polyethylene terephthalate and polybutylene terephthalate.
  • the fluorine resin include polytetrafluoroethylene (PTFE) and ethylene.tetrafluoroethylene copolymer. And coalescence (ETFE).
  • a superelastic alloy such as a nickel titanium (Ti-Ni) alloy, a stainless steel, tantalum, titanium, a cobalt-chromium alloy and the like can be used.
  • a superelastic alloy is preferable.
  • the mechanical properties of the superalloy can be changed as appropriate by selecting the cooling processing rate and the condition of Z or final heat treatment.
  • stent base material for example, laser processing (for example, YAG laser), electrical discharge processing
  • the stent base material can be confirmed by fluoroscopy when deployed in a body lumen.
  • x-ray markers are provided.
  • the X-ray marker is formed of an X-ray contrast material (X-ray opaque material). This makes it possible to grasp the position of the stent base under radiography.
  • the radiopaque material for example, radiopaque metals such as gold, platinum, platinum-iridium alloy, platinum, silver, stainless steel, or alloys thereof are preferable.
  • the X-ray marker may be a resin molding containing an X-ray contrast material powder.
  • the X-ray contrast material powder barium sulfate, bismuth subcarbonate, tungsten powder, the above-mentioned metal powder and the like can be used.
  • the method for coating the inventive member on a stent substrate is not particularly limited, and a method for sticking the inventive member on a stent substrate can be mentioned.
  • the member of the present invention which also has a first resin film and a second resin film force
  • the stent substrate surface is coated with a second resin film, and then the second resin film is used.
  • a method of coating the first resin film on a fat film, and the like can be mentioned.
  • means such as adhesion with an adhesive or a solvent, or fusion with a heat may be used.
  • a method similar to a conventional stent may be used.
  • the stent base material is made of a highly elastic material such as a superelastic alloy
  • the stent peripheral wall is contracted, and the stent is inserted into a delivery catheter and carried to the place to be placed, and then the stent is removed.
  • the peripheral wall of the stent is expanded and deployed by taking it out of the delivery catheter.
  • it is made of a material with poor elasticity such as stent base material S stainless steel, it is necessary to externally fit the stent on the balloon catheter lane and carry it to the place where it is to be placed, and then the balloon.
  • stents are used as insulators When indwelling in the inner lumen, usually the force with which the stent base material is expanded The expansion of the stent base material may be used to stretch the coated member (film).
  • a stent which is an example of the medical device of the present invention, has a stent base coated with a member of the present invention
  • the stent can be placed in a body lumen narrowed or occluded by tumor cells to obtain tumor cells. Can prevent the narrowing of the body lumen caused by growth beyond the peripheral wall of the stent.
  • the cell growth suppressing member to be used in the present invention was produced as follows.
  • PCL resin weight average molecular weight: 70, 000 to 100, 000, hereinafter referred to as "PCL resin”
  • Cap resin (weight) Average molecular weight: 620,000, number average molecular weight: 21,000) were mixed at a weight ratio of 10: 1, and then dissolved in chloroform to prepare a fat solution (1) at a concentration of 5.
  • the prepared resin solution (1) is cast into a glass petri dish (diameter 9 cm), and then high humidity air with an relative humidity of 80% under an atmosphere of 23 ° C and a relative humidity of 35% 2.
  • OLZmin The cell growth suppression member (films A to G) having a porous structure was produced by spraying the liquid surface on a glass petri dish at a flow rate of
  • Films A to G were produced by changing the amount of the resin solution (1) cast in the above in the range of 4 to 20 mL.
  • the pore diameter, stem width and porosity of (the pores constituting) the porous structure of each of the produced films were measured and determined using a scanning electron microscope (SEM) (HITACHI, S-3500).
  • the stem width was determined by measuring the shortest distance between the holes at five arbitrary points per image and a total of 25 points using a total of five images, and calculating the average value.
  • the porosity was calculated using a SEM photograph and calculated using Scion Image software (manufactured by Scion Corporation) for image analysis.
  • PCL flat membrane (1) A film made of fat (hereinafter referred to as "PCL flat membrane (1)") was produced.
  • the cell growth suppressing member to be used in the present invention was produced as follows.
  • Films H to N were produced by changing the amount of the resin solution (2) cast in the above in the range of 4 to 20 mL.
  • the pore diameter, stem width and porosity of the pores constituting the porous structure of each of the produced films were measured and determined using a scanning electron microscope (SEM) (HITACHI, S-3500).
  • the hole diameter was determined by selecting an arbitrary 5 holes per image using a total of 5 images, and calculating the average value of the diameter of a total of 25 holes.
  • the stem width was determined by measuring the shortest distance between the holes at five arbitrary points per image and a total of 25 points using a total of five images, and calculating the average value.
  • the porosity is determined by using an SEM image and using Scion Image (Scion) software for image analysis. It calculated and calculated
  • the pore diameter, stem width, porosity and coefficient of variation of the pores constituting the porous structure of the cell proliferation suppressing member obtained by the above operation were as shown in Table 1 below, respectively.
  • PCL flat membrane (2) A film made of fat (hereinafter referred to as "PCL flat membrane (2)") was produced.
  • the cell proliferation suppressing member (films A to N) or the PCL flat membranes (1) and (2) prepared above were cut out and closely adhered to a circular cover glass (manufactured by MATSUNAMI) having a diameter of about 14 mm. Thereafter, it was placed in a well of a 24-well tissue culture plate (manufactured by Falcon). In order to fix the cover glass, a glass cylinder with an outer diameter of about 14 mm was set inside the well. In the case of control, only the above glass cylinder was set without laying the above cover glass.
  • a cross-sectional view of the tumor cell culture plate prepared above is shown in FIG.
  • DMEZF12 medium Dulbecco's modified MEM medium (available from: Nissui Pharmaceutical Co., Ltd.) and Ham's F12 medium (available from: Sigma company) in a volume of 1: 1) The culture medium was removed using an aspirator.
  • DMEZF12 medium was again injected at 1 mL per volume, and the medium was removed using an aspirator. Thereafter, DMEZF12 medium (hereinafter referred to as "DMEZF12-10% FBS") containing 10% fetal bovine serum (fetal bovine serum (FBS): manufactured by Ken Brecks Co., Ltd.) was injected at 0.95 mL per volume.
  • DMEZF12-10% FBS 10% fetal bovine serum
  • FBS fetal bovine serum
  • a suspension of various tumor cells prepared with DMEZF12-10% FBS was added at 0.05 mL / well at 1 X 10 7 ZmL, and cultured at 37 ° C for 2 to 4 days.
  • CO concentration 0.05 mL / well at 1 X 10 7 ZmL
  • the following cell lines were used as tumor cells.
  • Ca92 22 oral squamous cell carcinoma (gum), source: human science research resource bank), HSC 3 (oral squamous cell carcinoma (tongue), source: human science research resource bank), KYSE- 110 (esophageal cancer) (Squamous cell carcinoma), source: human science research resource bank), Li 7 (hepatocellular carcinoma, source: Tohoku University Institute of Aging Medicine, Medical Cell Resource Center), HuH-28 (intrahepatic cholangiocarcinoma (Adenal cancer), source: Tohoku University Institute of Aging Medicine, Medical Cell Resource Center, TFK-1 (Bobiliary ductal cancer (adenoma cancer), source: Tohoku University Institute of Aging Medicine, Medical Cell Resource Center) , GB-dl (gland cancer cancer (adrenal cancer), obtained from: Fukuoka University medical department Hideo Shimura), A549 (lung cancer (adrenal cancer), obtained from: Human Science research resource bank), Lu 99 (lung cancer (squamous epithelium)
  • SF 539 glioblastoma, source: National Cancer Institute, USA
  • SNB 75 glioblastoma, source: National Cancer Institute, USA
  • SNB-78 glioblastoma, available Destination: National Cancer Institute, USA
  • T98G glioblastoma, source: Human Science Research Resources Bank
  • AKI malignant melanoma, available from: RIKEN cell bank
  • A375M malignant melanoma, available from: Toyama Medical and Pharmaceutical University, Japanese medicine research institute Ikaki Michio
  • SaOS-2 osteosarcoma, available from: American Type Culture Collection
  • HT- 1080 fibrosarcoma, source: Human Science Research Resource Bank
  • HSC 2 oral squamous cell carcinoma, source: Human Science research resource bank
  • HSC-4 oral squamous cell carcinoma
  • Tongue Obtained from: Human Science Research Resources Bank
  • KATO III gastric cancer (adrenal cancer), Obtained from: Human science research resource bank), MKN-1 (stomach cancer (adrenal cancer), Obtained from: Human Science research resource bank), AZ- 521 (stomach cancer (adrenal cancer), source: Human science research resource bank), OCUG-1 (biliary gall bladder cancer (adrenal cancer) source: human science research resource bank), MIA PaCa
  • IMR- 32 (neuroblastoma, source: Human Science Research Resources Bank), GOTO
  • the number of cultured tumor cells was measured using Cell Counting Kit-8 (Dojindo).
  • the Cell Counting Kit- 8 produces a water-soluble formazan 4 ⁇ 3- (2- methoxy-4-nitrophenyl)-2- (4-nitrophenyl) -2H- 5-tetrazolio ⁇ -1, 3 -Benzene disulphonate sodium salt (hereinafter referred to as "WST-8".
  • WST-8 water-soluble formazan 4 ⁇ 3- (2- methoxy-4-nitrophenyl)-2- (4-nitrophenyl) -2H- 5-tetrazolio ⁇ -1, 3 -Benzene disulphonate sodium salt
  • WST-8 Dojindo Co., Ltd.
  • WST-8 is used as a chromophore
  • WST-8 is reduced by intracellular dehydrogenases to form water-soluble formazan. Since there is a linear proportional relationship between the number of cells and the water-soluble formazan, it is possible to easily determine the number of cells by measuring the absorbance value of formazan.
  • FIGs 3 and 4 show the results of gallbladder cancer-derived cell lines (GB-dl).
  • the results for the strain (TFK-1) are shown in Figure 5 and Figure 6, the results for the malignant melanoma cell line (MeWo) are shown in Figures 7 and 8, and the results for the breast cancer cell line (MDA-MB-435S) are shown. 9 and 10 show respectively.
  • the vertical axis shows the absorbance (450 nm), and the higher the absorbance, the larger the number of cells.
  • the horizontal axis shows the results for each well, and from left is control (indicated by C in the figure), and culture on a PCL flat membrane (in the figure, “FL1” when using the PCL flat membrane (1), The case of using PCL flat membrane (2) is shown as "FL 2".
  • Culture on films A to N film A in the figure is simply referred to as "A”.
  • films B to N And the same).
  • the growth of the malignant melanoma-derived cell line (MeWo) when cultured on the cell growth suppressing member is about 40% as compared to the culture on the PCL flat membrane. It was suppressed.
  • the above “about 40%” is an average value of the growth inhibitory rate (growth inhibitory action) of the tumor cells on the PCL flat membranes for the films B, D and F, and I, K and M, respectively.
  • the growth of the breast cancer cell line (MDA-MB-435S) when cultured on the cell growth-suppressing member is about compared to when grown on a PCL flat membrane. 50% was suppressed.
  • the above “about 50%” refers to the growth inhibitory rate of tumor cells on PCL flat membranes for films B, D and F, and I, K and M respectively Average value of
  • FIG. 11 shows the case where films A to G are used
  • FIG. 12 shows the case where films H to N are used.
  • evaluation of the growth inhibitory effect in FIG. 11, FIG. 12 was performed using the average value of the growth inhibitory rate (growth inhibitory effect) of the tumor cell with respect to PCL flat membrane about each of film AN.
  • The] in the column of the growth inhibitory action in FIG. 11 and FIG. 12 represents 60% or more of the cell proliferation of the culture on the PCL flat membrane when the cell proliferation is cultured on the cell proliferation suppression member.
  • the results of cells in which the cell growth inhibitory action was observed are shown, and ⁇ indicates that the cell growth when cultured on the cell growth inhibitory member is 30% or more and less than 60% of the cell growth in culture on PCL flat sheet
  • the results for cells with growth inhibitory activity were shown, and ⁇ represents cell proliferation when cultured on a cell proliferation inhibitory member, 10% or more but less than 30% of cell proliferation on culture on PCL flat membranes.
  • the results for cells with growth inhibitory activity are shown, and ⁇ indicates cell proliferation when cultured on a cell proliferation inhibitory member. Less than 10% of proliferation inhibitory activity on cell proliferation in culture on PCL flat membranes. The results of the seen cells are shown.
  • FIG. 11 from 12, Te 49 strain, i.e. 87.5 0/0 strain [trick! ⁇ of 56 Itoda ⁇ discussed, growth inhibition of 10% or more was observed.
  • the cell growth suppressing member of the present invention is a material that can be particularly used to suppress the growth of tumor cells.
  • Example 1 and Example 2 are different from Example 1 in that the acid anti-oxidant is not used, while Example 2 is the antioxidant (cyclic neopentanetetrayl bis (2, 6). -Di-Peptyl 4-methylphenyl phosphite))) but different from Example 1 and Example The cell growth inhibitory effect almost equivalent to 2 was obtained.
  • Example 2 since an antioxidant is added to the fat, oxidation degradation is prevented, long-term storage is possible, and degradation in the body also occurs. It is expected to do.
  • the pore diameter (of the pores constituting the film), the stem width, the porosity and the coefficient of variation of the porous structure of film (O) by the same method as in Example 2, the pore diameter is 12.5 / ⁇ .
  • the stem width was 5.3 ⁇ m, the porosity was 49.2%, and the coefficient of variation was 7%.
  • the purified Eagle's medium (DEM medium, manufactured by Invitrogen) and the suspension of human fetal fibroblasts are mixed at a ratio of 8: 1: 1: 0.5, and a 6-well tissue culture plate (Falcon) was injected in 3 mL Z-well.
  • the collagen gel is also peeled off by the swelling force, the collagen gel is suspended on a DEM liquid medium, and further cultured at 37 ° C for 2 days in a CO incubator (CO 5% vZv).
  • FIG. Fig. 13 (a) The microscope image when the PCL flat membrane (1) was placed on the side of the tumor cell (SAS) is shown in FIG. Fig. 13 (a) is observed at a magnification of 100 times, and Fig. 13 (b) is observed at a magnification of 200 times.
  • the area to the left of the arrow is the area covered by the PCL flat membrane (1) and the right side is the area not covered by the PCL flat membrane (1) (ie, the control area). Is shown.
  • FIG. 14 shows a microscopic image when the film (O) is placed on the side of the tumor cell (SAS).
  • Fig. 14 (a) is observed at a magnification of 100
  • Fig. 14 (b) is observed at a magnification of 200
  • Fig. 14 (c) is observed at a magnification of 400.
  • the area to the right of the arrow is covered by the porous film (O)
  • the left side is covered by the porous film (O). Show me! /.
  • film thickness 3-5 by spraying high humidity air with a relative humidity of 70% at a flow rate of 2L Zmin for 1 minute on a liquid surface on a glass petri dish under an atmosphere of 23.0 ° C and a relative humidity of 40%.
  • a zm film (P) was obtained.
  • Table 2 shows the film thickness of the film ( ⁇ ), the average pore diameter of the pores constituting the porous structure, and the variation coefficient of the pore diameter.
  • the film thickness of the obtained film (Q) and the average pore diameter of the pores constituting the porous structure and the variation coefficient of the pore diameter were measured in the same manner as described above. The measurement results are shown in Table 2.
  • film T What obtained the obtained film (P) and film (R) on each other (this is referred to as “film T”), and obtained on the film (Q) and film (S) on each other (this is called “film U”.
  • film T the film
  • film U the film
  • Each of the film (P) and the film (Q) was cut into a circle of 10 cm in diameter.
  • Each of the films (T), (U), (P) and (Q) was set in a tensile tester by being sandwiched from both sides by a chuck having a width of 10 cm and a distance between chucks of 1 cm. At this time, a 1 mm-thick silicone rubber sheet was sandwiched between the chuck and the film so that the center of the film was positioned between the chucks. Then, the film was pulled from both sides at a tensile speed of 30 mm Zmin, and the load when the film was broken (when one of the films was broken) was recorded.
  • Table 3 The test results are shown in Table 3.
  • the laminated film (T) was a film which was hard to be broken because the load at break was significantly larger than that of the single-layer resin film (P).
  • the laminated film (U) also had a load that was significantly greater than that of the single-layer resin film (Q) and was not easily broken.
  • the laminated films (T) and (U) are used by being placed in the body, they are unlikely to be damaged, and it is expected that the action to suppress cell proliferation and Z or cell metastasis is maintained for a long time.

Abstract

(1) A cell growth inhibitory member characterized by having a porous structure; (2) a method of inhibiting cell growth characterized by comprising bringing a part having the porous structure formed therein of the above cell growth inhibitory member into contact with cells and thus inhibiting the growth of the cells in the contact part; (3) a layered film composed of a first resin film and a second resin film, which is the above cell growth inhibitory member, layered thereon; (4) a cell metastasis inhibitory member characterized by having a porous structure; (5) a method of inhibiting cell metastasis characterized by comprising bringing a part having the porous structure formed therein of the above cell metastasis inhibitory member into contact with cells and thus inhibiting the metastasis of the cells in the contact part; (6) a layered film composed of a first resin film and a second resin film, which is the above cell metastasis inhibitory member, layered thereon; and (7) a medical instrument characterized in that the surface of the medical instrument is entirely or partly coated with the above cell growth inhibitory member or the above cell metastasis inhibitory member. Thus, an excellent cell growth inhibitory effect or an excellent cell metastasis inhibitory effect can be obtained without resorting to a physiologically active substance such as carcinostatic agent.

Description

細胞増殖抑制部材、細胞転移抑制部材、細胞増殖抑制方法、細胞転移 抑制方法、積層フィルムおよび医療用具  Cell proliferation inhibiting member, cell metastasis inhibiting member, cell proliferation inhibiting method, cell metastasis inhibiting method, laminated film and medical device
技術分野  Technical field
[0001] 本発明は、細胞増殖抑制部材、細胞転移抑制部材、細胞増殖抑制方法、細胞転 移抑制方法、積層フィルムおよび医療用具に関する。  The present invention relates to a cell growth suppressing member, a cell metastasis suppressing member, a cell proliferation suppressing method, a cell migration suppressing method, a laminated film and a medical device.
背景技術  Background art
[0002] 現在のガン治療は、腫瘍を手術等により切除する外科療法や、ガン (腫瘍)細胞の 増殖を選択的に阻害する制ガン剤 (抗ガン剤)を用いたィ匕学療法が主に行なわれて いる。  [0002] Currently, cancer treatment mainly consists of surgical treatment for resecting a tumor by surgery or the like, and acupuncture using an anti-cancer drug (anti-cancer drug) that selectively inhibits the growth of cancer (tumor) cells. It is
外科療法は、固形腫瘍に対する治療に有効であるが、白血病やリンパ腫、転移性 のガン細胞には十分に対応できない。制ガン剤を用いる化学療法は、白血病やリン パ腫に対して有効である。し力しながら、腫瘍細胞と正常細胞は類似した性質を示す ことから、優れた選択毒性を示す制ガン剤は少ない。また、制ガン剤は、患者毎にそ の治療効果が異なり、その効果を制ガン剤投与前に予想することが難しい。さらに制 ガン剤投与による副作用が生じることが多ぐ制ガン剤は、患者に過度の苦痛を強い るものである。  Surgical treatment is effective for treatment of solid tumors, but can not cope well with leukemia, lymphoma and metastatic cancer cells. Chemotherapy with anticancer drugs is effective against leukemia and lymphoma. At the same time, tumor cells and normal cells show similar properties, so there are few anticancer drugs that show excellent selective toxicity. In addition, anticancer drugs have different therapeutic effects for each patient, and it is difficult to predict their effects before the administration of anticancer drugs. Furthermore, the anticancer drug, which often causes side effects due to the administration of the anticancer drug, causes the patient to suffer undue pain.
[0003] 一方、細胞と材料との相互作用にお 、て、細胞は、材料表面の化学的な性質のみ ならず微細な形状による影響を受けることも知られている。例えば、特許文献 1には、 生体分解性かつ両親媒性を有する単独のポリマー又は生体分解性ポリマーと両親 媒性ポリマーとからなるポリマー混合物の疎水性有機溶媒溶液を基板上にキャストし 、該有機溶媒を蒸散させると同時にキャストした有機溶媒溶液 (キャスト液)表面で結 露させ、該結露により生じた微小水滴を蒸発させることにより得られるハ-カム構造体 フィルム又はその延伸フィルムが記載されている。そして、このポリマーフィルム上で ラット胎児心臓由来心筋細胞を培養すると、細胞がよく伸展したことから、このポリマ 一フィルムは、細胞培養用基材として有用であると考えられて ヽる。  On the other hand, it is also known that cells are affected not only by the chemical properties of the material surface but also by the fine shape due to the interaction between the cells and the material. For example, in Patent Document 1, a hydrophobic organic solvent solution of a biodegradable and amphiphilic single polymer or a polymer mixture consisting of a biodegradable polymer and an amphiphilic polymer is cast on a substrate, A HA-CAM structure film obtained by evaporating on a surface of an organic solvent solution (cast liquid) cast simultaneously with evaporating the solvent and evaporating fine water droplets generated by the condensation is described or a stretched film thereof. . And, when rat fetal heart-derived cardiomyocytes are cultured on this polymer film, since the cells were well expanded, this polymer film is considered to be useful as a substrate for cell culture.
[0004] また、特許文献 2には、前記特許文献 1に記載されて 、るフィルムと同様の方法によ り形成される、特定の孔径と孔径バラツキをもつハ-カム様構造を有する血液濾過膜 が記載されている。この濾過膜は、輸血用の全血から白血球を除去するためのもの である。 [0004] Patent Document 2 describes the method described in Patent Document 1 in the same manner as the film described above. A hemofilter membrane having a cam-like structure with a specific pore size and pore size variation that is formed is described. This filtration membrane is for removing white blood cells from whole blood for blood transfusion.
[0005] ところで、近年、種々の病症を治療するためにステントなどの医療用具を体内に留 置することが行われている。例えば、ガンなどで狭窄 ·閉鎖した胆管ゃ尿管を拡張す るための医療用具として胆管ステントや尿管ステントが知られている。  By the way, in recent years, in order to treat various diseases, a medical device such as a stent has been kept in the body. For example, biliary stents and ureteral stents are known as medical tools for dilation of ureteral ducts and strictures due to stenosis or obstruction due to cancer.
[0006] これらのステントを用いる場合には、ガンの進行により、ー且拡張した胆管ゃ尿管が 再狭窄 '閉鎖してしまう場合がある。そこで、これを防ぐために、特許文献 3には、ステ ントなどの医療器具の表面に被覆層を設け、この被覆層から、経時的に制ガン剤な どのガン細胞の増殖を抑制できる生理活性物質を放出するようにした医療器具が提 案されている。  [0006] When these stents are used, the progress of the cancer may cause the dilated bile duct and ureter to close again. Therefore, in order to prevent this, in Patent Document 3, a coating layer is provided on the surface of a medical device such as stent, and from this coating layer, a physiologically active substance capable of suppressing the growth of cancer cells such as a cancer drug is released over time. Medical devices that have been designed to
し力しながら、この医療器具においては、生理活性物質が人体に与える副作用が 大きぐ患者に与える負担も大きいという問題があった。  However, in this medical device, there is a problem that the burden on patients, in which the side effects of physiologically active substances on the human body are large, is also large.
[0007] 特許文献 1:特開 2002— 335949号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2002-335949
特許文献 2 :特開 2003— 149096号公報  Patent Document 2: Japanese Unexamined Patent Application Publication No. 2003-149096
特許文献 3:特表 2001— 512354号公報(W098Z36784号)  Patent Document 3: JP 2001-512354 (W098 Z36784)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0008] 本発明は、このような従来技術の実情に鑑みてなされたものであり、制ガン剤等の 生理活性物質を使用することなくとも細胞増殖抑制作用又は細胞転移抑制作用を示 し、医療用具を構成するために好適な材料を提供することを課題とする。 The present invention has been made in view of the circumstances of the prior art as described above, and exhibits a cytostatic action or a cytostatic action even without using a physiologically active substance such as an anticancer drug, and a medical device It is an object of the present invention to provide a material suitable for constructing the
課題を解決するための手段  Means to solve the problem
[0009] 本発明者らは、特許文献 1および 2に記載された方法と同様な方法により、 1, 2- ポリブタジエンなどの榭脂 (なお、本明細書において、榭脂には、一般的にいう榭脂 に加えてゴムも含まれる)の有機溶媒溶液を基板上にキャストして、多孔構造を有す るフィルムを得た。そして、このフィルムを培地中に設置して、該フィルム上で各種腫 瘍細胞の培養を試みたところ、意外にも、特許文献 1の心筋細胞に対する例とは反 対に腫瘍細胞の増殖が著しく抑制されることを見出した。 [0010] さらに、 1, 2—ポリブタジエンなどの樹脂に所定量の酸ィ匕防止剤を添加して得られ る榭脂組成物を含む有機溶媒溶液を、先と同様な方法により、基板上にキャストして 、多孔構造を有するフィルムを得、このフィルムを培地中に設置して、該フィルム上で 各種腫瘍細胞の培養を試みた。その結果、このフィルムは、腫瘍細胞の増殖を著しく 抑制する上、長期間保存した場合であっても酸化劣化し難ぐ体内での劣化も起こり 難く、医療用具を構成するために好適なものであることを見出した。 [0009] The present inventors, by a method similar to the method described in Patent Documents 1 and 2, select a resin such as 1, 2-polybutadiene (note that, in the present specification, a resin is generally used). A solution of an organic solvent (including rubber) is also cast on the substrate to obtain a film having a porous structure. Then, when this film was placed in a culture medium and culture of various tumor cells was tried on the film, the growth of tumor cells was remarkably remarkable contrary to the example for cardiomyocytes of Patent Document 1. I found it to be suppressed. Furthermore, an organic solvent solution containing a resin composition obtained by adding a predetermined amount of an anti-oxidation agent to a resin such as 1,2-polybutadiene is applied onto a substrate by the same method as described above. By casting, a film having a porous structure was obtained, this film was placed in a culture medium, and culture of various tumor cells was attempted on the film. As a result, this film significantly suppresses the growth of tumor cells, and is resistant to deterioration in the body which is difficult to oxidatively deteriorate even when stored for a long period of time, and is suitable for constructing a medical device. I found that.
[0011] また、本発明者らは、このフィルムをステント基材などの表面に被覆して体内に設置 して使用する場合に、このフィルムが破損し難くなるように、このフィルムの力学的強 度 (膜強度)の改良を検討したところ、他のフィルムと積層して積層フィルムとする手 法が好適であることを見出した。  [0011] Also, when the film is used by placing the film on a surface such as a stent base and placing it in the body, the inventors of the present invention have the mechanical strength of the film so that the film is less likely to be damaged. As a result of examining the improvement of the degree (film strength), it was found that the method of laminating with another film to make a laminated film is preferable.
すなわち、前記フィルムを医療用具基材に被覆することにより、生理活性物質の副 作用による患者への負担が無ぐガン細胞の増殖や転移を抑制することができ、しか も、被覆されたフィルムが破損し難い医療用具を得ることができることを見出し、本発 明を完成するに至った。  That is, by coating the film on a medical device substrate, it is possible to suppress the growth and metastasis of cancer cells which cause no burden on the patient due to the side effect of the physiologically active substance, and the coated film We found that we could obtain medical devices that are not easily damaged, and we came to complete the present invention.
[0012] 力べして本発明の第 1によれば、下記(1)〜(9)の細胞増殖抑制部材が提供される  According to a first aspect of the present invention, there is provided a cell proliferation suppressing member of the following (1) to (9):
(1)多孔構造を有することを特徴とする細胞増殖抑制部材。 (1) A cell proliferation suppressing member characterized by having a porous structure.
(2)前記多孔構造が、少なくとも表面部に形成されていることを特徴とする(1)に記載 の細胞増殖抑制部材。  (2) The cell proliferation suppressing member according to (1), wherein the porous structure is formed at least on the surface portion.
(3)フィルムである(1)または(2)に記載の細胞増殖抑制部材。  (3) The cell growth inhibitory member as described in (1) or (2) which is a film.
[0013] (4)榭脂組成物を含む有機溶媒溶液を基板上にキャストし、該有機溶媒を蒸散させ るとともに、前記有機溶媒溶液表面で結露を起こさせ、該結露により生じた水滴を蒸 発させることにより得られるフィルム、またはその延伸フィルムであることを特徴とする( 1)〜(3)の 、ずれかに記載の細胞増殖抑制部材。  (4) An organic solvent solution containing a resin composition is cast on a substrate to evaporate the organic solvent and cause condensation on the surface of the organic solvent solution to vaporize water droplets generated by the condensation. The cell growth suppressing member according to any one of (1) to (3), which is a film obtained by releasing the film, or a stretched film thereof.
(5)前記フィルムは酸化防止剤を含有してなることを特徴とする(3)または (4)に記載 の細胞増殖抑制部材。  (5) The cell growth suppressing member according to (3) or (4), wherein the film contains an antioxidant.
(6)前記多孔構造を構成する孔がハ-カム様に配列されていることを特徴とする(1) 〜(5)の 、ずれかに記載の細胞増殖抑制部材。 [0014] (7)前記多孔構造を構成する孔の平均孔径が 0. 1〜: LOO /z mであることを特徴とす る(1)〜(6)のいずれかに記載の細胞増殖抑制部材。 (6) The cell proliferation suppressing member as described in any one of (1) to (5), wherein the pores constituting the porous structure are arranged in a honeycomb pattern. (7) The cell proliferation suppressing member according to any one of (1) to (6), wherein the average pore diameter of the pores constituting the porous structure is 0.1 to 1: LOO / zm. .
(8)前記多孔構造を構成する孔の孔径の変動係数が 30%以下であることを特徴と する(1)〜(7)のいずれかに記載の細胞増殖抑制部材。  (8) The cell proliferation suppressing member according to any one of (1) to (7), wherein the variation coefficient of the pore diameter of the pores constituting the porous structure is 30% or less.
(9)前記酸化防止剤の含有量が、榭脂 100重量部に対して、 0. 1重量部〜 5重量部 であることを特徴とする(5)に記載の細胞増殖抑制部材。  (9) The cell proliferation suppressing member as described in (5), wherein the content of the antioxidant is 0.1 part by weight to 5 parts by weight with respect to 100 parts by weight of the trunk fat.
[0015] 本発明の第 2によれば、下記(10)の細胞増殖抑制方法が提供される。  According to a second aspect of the present invention, there is provided the following method (10) for suppressing cell growth.
(10)前記(1)〜(9)の 、ずれかに記載の細胞増殖抑制部材の多孔構造が形成され ている部分を細胞に接触させることにより、該接触部における細胞の増殖を抑制する ことを特徴とする細胞増殖抑制方法。  (10) Suppressing the proliferation of cells in the contact portion by bringing the cell formation suppressing member described in any one of (1) to (9) into contact with the cell. Cell growth suppression method characterized by
[0016] 本発明の第 3によれば、下記(11)の積層フィルムが提供される。  According to a third aspect of the present invention, there is provided a laminated film of the following (11).
(11)第 1の榭脂フィルムと第 2の榭脂フィルムとが積層された積層フィルムであって、 前記第 2の榭脂フィルムが、 (1)〜(9)の 、ずれかに記載の細胞増殖抑制部材であ ることを特徴とする積層フィルム。  (11) A laminated film in which a first resin film and a second resin film are laminated, wherein the second resin film is any one of (1) to (9). A laminated film characterized by being a cell proliferation suppressing member.
[0017] 本発明の第 4によれば、下記(12)〜(20)の細胞転移抑制部材が提供される。  According to a fourth aspect of the present invention, there is provided a cell metastasis suppressing member of the following (12) to (20).
(12)多孔構造を有することを特徴とする細胞転移抑制部材。  (12) A cell metastasis suppressing member characterized by having a porous structure.
(13)前記多孔構造が、少なくとも表面部に形成されて!、ることを特徴とする (12)に記 載の細胞転移抑制部材。  (13) The cell metastasis suppressing member according to (12), wherein the porous structure is formed at least on the surface portion !.
(14)フィルムである (12)または(13)に記載の細胞転移抑制部材。  (14) The cell transfer suppressing member according to (12) or (13), which is a film.
[0018] (15)榭脂組成物を含む有機溶媒溶液を基板上にキャストし、該有機溶媒を蒸散させ るとともに、前記有機溶媒溶液表面で結露を起こさせ、該結露により生じた水滴を蒸 発させることにより得られるフィルム、またはその延伸フィルムであることを特徴とする( 12)〜(14)のいずれかに記載の細胞転移抑制部材。  (15) An organic solvent solution containing a resin composition is cast on a substrate to evaporate the organic solvent and cause condensation on the surface of the organic solvent solution, thereby evaporating water droplets generated by the condensation. (12) to (14), which is a film obtained by releasing the film, or a stretched film thereof.
(16)前記フィルムは酸ィ匕防止剤を含有してなることを特徴とする (14)または(15)に記 載の細胞転移抑制部材。  (16) The cell transfer suppressing member as described in (14) or (15), wherein the film contains an anti-acid agent.
(17)前記多孔構造を構成する孔がハ-カム様に配列されていることを特徴とする(12 )〜(16)の 、ずれかに記載の細胞転移抑制部材。  (17) The cell metastasis-suppressing member according to any one of (12) to (16), wherein the pores constituting the porous structure are arranged in a honeycomb manner.
[0019] (18)前記多孔構造を構成する孔の平均孔径が 0. 1〜: LOO /z mであることを特徴とす る(12)〜(17)のいずれかに記載の細胞転移抑制部材。 (18) The average pore diameter of the pores constituting the porous structure is 0.1 to 1: LOO / zm. The cell migration inhibitory member in any one of (12)-(17).
(19)前記多孔構造を構成する孔の孔径の変動係数が 30%以下であることを特徴と する (12)〜(18)のいずれかに記載の細胞転移抑制部材。  (19) The cell metastasis suppressing member according to any one of (12) to (18), wherein the variation coefficient of the pore diameter of the pores constituting the porous structure is 30% or less.
(20)前記酸化防止剤の含有量が、榭脂 100重量部に対して、 0. 1重量部〜 5重量 部であることを特徴とする (16)に記載の細胞転移抑制部材。  (20) The cell transfer suppressing member according to (16), wherein the content of the antioxidant is 0.1 parts by weight to 5 parts by weight with respect to 100 parts by weight of the trunk fat.
[0020] 本発明の第 5によれば、下記(21)の細胞転移抑制方法が提供される。  According to a fifth aspect of the present invention, there is provided the following method (21) for suppressing cell metastasis.
(21)前記(12)〜(20)のいずれかに記載の細胞増殖抑制部材の多孔構造が形成さ れている部分を細胞に接触させることにより、該接触部における細胞の増殖を抑制す ることを特徴とする細胞転移抑制方法。  (21) By contacting the cell with the portion in which the porous structure of the cell growth suppressing member according to any one of (12) to (20) is formed, the cell proliferation in the contact portion is suppressed. Cell metastasis suppression method characterized in that.
[0021] 本発明の第 6によれば、下記(22)の積層フィルムが提供される。  According to a sixth aspect of the present invention, there is provided a laminate film of the following (22).
(22)第 1の榭脂フィルムと第 2の榭脂フィルムとが積層された積層フィルムであって、 前記第 2の榭脂フィルムが、(12)〜(20)の 、ずれかに記載の細胞転移抑制部材で あることを特徴とする積層フィルム。  (22) A laminated film in which a first resin film and a second resin film are laminated, wherein the second resin film is any one of (12) to (20). A laminated film characterized by being a cell metastasis suppressing member.
[0022] 本発明の第 7によれば、下記(23)の医療用号が提供される。  According to a seventh aspect of the present invention, the following medical grade (23) is provided.
(23)医療用具基材の表面の全部または一部を、 (1)〜(9)の ヽずれかに記載の細胞 増殖抑制部材、または、(12)〜(20)の 、ずれかに記載の細胞転移抑制部材で被 覆してなることを特徴とする医療用具。  (23) The cell proliferation suppressing member according to any one of (1) to (9), or all or part of the surface of a medical device substrate according to any one of (1) to (9), or any one of (12) to (20) A medical device characterized in that it is covered with a cell metastasis suppressing member.
発明の効果  Effect of the invention
[0023] 本発明によれば、生理活性物質を使用しなくとも優れた細胞増殖抑制作用を示し、 破損し難く劣化し難い、医療用具を構成するために好適な、細胞増殖抑制部材およ び積層フィルムが提供される。  According to the present invention, a cell growth suppressing member and a cell growth suppressing member suitable for constituting a medical device, which exhibit an excellent cell growth suppressing action without using a physiologically active substance, are hard to be damaged and hardly deteriorate. A laminated film is provided.
本発明によれば、本発明の細胞増殖抑制部材を用いた細胞増殖抑制方法と、医療 用具基材にこの部材が被覆されてなる医療用具が提供される。  According to the present invention, there are provided a method for cell growth suppression using the cell growth suppression member of the present invention, and a medical device in which this member is coated on a medical device substrate.
本発明によれば、生理活性物質を使用しなくとも優れた細胞転移抑制作用を示し、 破損し難く劣化し難い、医療用具を構成するために好適な、細胞転移抑制部材およ び積層フィルムが提供される。  According to the present invention, a cell metastasis suppressing member and a laminated film suitable for constituting a medical device, which exhibit excellent cell metastasis suppressing action without using a physiologically active substance, are hard to break and hardly deteriorate, are provided. Provided.
本発明によれば、本発明の細胞転移抑制部材を用いた細胞転移抑制方法と、医療 用具基材にこの部材が被覆されてなる医療用具が提供される。 [0024] 本発明の細胞増殖抑制部材、細胞転移抑制部材、細胞増殖抑制方法、細胞転移 抑制方法、積層フィルムおよび医療用具によれば、生理活性物質を使用しなくとも、 細胞増殖抑制作用および Z又は細胞転移抑制作用を発揮できるので、生理活性物 質による副作用を回避することができる。 According to the present invention, there are provided a method for cell metastasis suppression using the cell metastasis suppressor of the present invention, and a medical device in which the medical device substrate is coated with this member. According to the cell proliferation suppressing member, the cell metastasis inhibiting member, the cell proliferation inhibiting method, the cell proliferation inhibiting method, the laminated film and the medical device of the present invention, the cell proliferation inhibiting action and the Z without using a physiologically active substance Alternatively, since it can exert a cell metastasis suppressive action, it is possible to avoid the side effect of a physiologically active substance.
図面の簡単な説明  Brief description of the drawings
[0025] [図 1]多孔構造を構成する孔がハ二カム様に配列されている細胞増殖抑制部材の光 学顕微鏡写真のスケッチ図である。  FIG. 1 is a sketch diagram of an optical micrograph of a cell proliferation suppressing member in which pores constituting a porous structure are arranged in a honeycomb manner.
[図 2]実施例 1において使用する腫瘍細胞培養プレートの断面図である。  FIG. 2 is a cross-sectional view of a tumor cell culture plate used in Example 1.
[図 3]実施例 1にお 、て、実施例にかかる細胞増殖抑制部材の胆嚢ガン由来細胞株 [FIG. 3] In Example 1, the gallbladder cancer-derived cell line of the cell growth suppressing member according to the example
(GB - dl)に対する増殖抑制作用を検討した結果を示すヒストグラムである。 It is a histogram which shows the result of having examined the growth inhibitory effect with respect to (GB-dl).
[図 4]実施例 2にお 、て、実施例にかかる細胞増殖抑制部材の胆嚢ガン由来細胞株 [FIG. 4] In Example 2, the gallbladder cancer-derived cell line of the cell growth suppressing member according to the example
(GB - dl)に対する増殖抑制作用を検討した結果を示すヒストグラムである。 It is a histogram which shows the result of having examined the growth inhibitory effect with respect to (GB-dl).
[図 5]実施例 1において、細胞増殖抑制部材の総胆管ガン由来細胞株 (TFK— 1)に 対する増殖抑制作用を検討した結果を示すヒストグラムである。  FIG. 5 is a histogram showing the results of examining the growth inhibitory action of a cell growth suppressing member on a common cholangiocarcinoma-derived cell line (TFK-1) in Example 1.
[図 6]実施例 2において、細胞増殖抑制部材の総胆管ガン由来細胞株 (TFK— 1)に 対する増殖抑制作用を検討した結果を示すヒストグラムである。  FIG. 6 is a histogram showing the results of examining the growth inhibitory action of a cell growth suppressing member on a common cholangiocarcinoma-derived cell line (TFK-1) in Example 2.
[図 7]実施例 1において、細胞増殖抑制部材の悪性黒色腫由来細胞株 (MeWo)に 対する増殖抑制作用を検討した結果を示すヒストグラムである。  FIG. 7 is a histogram showing the results of examining the growth inhibitory action of a cell growth suppressing member on a malignant melanoma-derived cell line (MeWo) in Example 1.
[図 8]実施例 2において、細胞増殖抑制部材の悪性黒色腫由来細胞株 (MeWo)に 対する増殖抑制作用を検討した結果を示すヒストグラムである。  FIG. 8 is a histogram showing the results of examining the growth inhibitory action of the cell growth suppressing member on a malignant melanoma-derived cell line (MeWo) in Example 2.
[図 9]実施例 1において、細胞増殖抑制部材の乳ガン由来細胞株 (MDA— MB— 4 [FIG. 9] In Example 1, the breast cancer-derived cell line of the cell growth inhibitory member (MDA-MB- 4
35S)に対する増殖抑制作用を検討した結果を示すヒストグラムである。 It is a histogram which shows the result of having examined the growth inhibitory effect with respect to 35S.
[図 10]実施例 2において、細胞増殖抑制部材の乳ガン由来細胞株(MDA— MB— 4 [FIG. 10] In Example 2, a breast cancer-derived cell line (MDA-MB- 4) of the cell growth suppressing member
35S)に対する増殖抑制作用を検討した結果を示すヒストグラムである。 It is a histogram which shows the result of having examined the growth inhibitory effect with respect to 35S.
[図 11]実施例 1の結果をまとめた図であり、細胞増殖抑制部材の各種腫瘍細胞(56 株)に対する増殖抑制作用を示す図である。  [FIG. 11] A diagram summarizing the results of Example 1, and showing the growth inhibitory action of various cell growth suppressing members on various tumor cells (56 strains).
[図 12]実施例 2の結果をまとめた図であり、細胞増殖抑制部材の各種腫瘍細胞(56 株)に対する増殖抑制作用を示す図である。 [図 13]実施例 3において、 PCL平膜の腫瘍細胞(SAS)に対する浸潤抑制効果を検 討した結果を示す図であり、(a)は倍率 100倍の顕微鏡像であり、(b)は倍率 200倍 の顕微鏡像である。 FIG. 12 is a diagram summarizing the results of Example 2, and showing the growth inhibitory action of various cell growth suppressing members on various tumor cells (56 strains). [FIG. 13] A diagram showing the results of examining the infiltration suppressing effect of PCL flat membranes on tumor cells (SAS) in Example 3, (a) is a microscope image at 100 times magnification, (b) is a microscopic image. It is a microscope image with a magnification of 200 times.
[図 14]実施例 3において、本発明にかかる細胞転移抑制部材の腫瘍細胞(SAS)に 対する浸潤抑制効果を検討した結果を示す図であり、 (a)は倍率 100倍の顕微鏡像 であり、(b)は倍率 200倍の顕微鏡像であり、(c)は倍率 400倍の顕微鏡像である。 発明を実施するための最良の形態  [FIG. 14] A diagram showing the results of examining the infiltration inhibitory effect of the cell metastasis inhibiting member according to the present invention on tumor cells (SAS) in Example 3, and (a) is a microscopic image at 100 times magnification. (B) is a microscope image of 200 × magnification, and (c) is a microscope image of 400 × magnification. BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
1)細胞増殖抑制部材  1) Cell growth control member
本発明の細胞増殖抑制部材は、多孔構造を有することを特徴とし、細胞増殖抑制 作用を発揮するものである。  The cell growth suppressing member of the present invention is characterized by having a porous structure, and exerts a cell growth suppressing action.
[0027] ここで、細胞増殖抑制作用とは、腫瘍細胞 (ガン細胞を含む)が増殖するのを抑制 する作用および Zまたは腫瘍細胞を死滅させる作用をいう。具体的には、培地中に 本発明の細胞増殖抑制部材を配置して、この部材上に腫瘍細胞の細胞株を播種し て細胞の培養を行ったときに、多孔構造をもたな 、通常の平膜構造の部材上では細 胞が正常に増殖するのに対し、本発明の細胞増殖抑制部材を用いる場合には、細 胞の増殖が著しく抑制され、あるいは細胞が死滅する。従って、本発明の細胞増殖 抑制部材は、医療用具を構成する材料などとして有用である。  Here, the cytostatic activity refers to the activity of inhibiting the growth of tumor cells (including cancer cells) and the activity of killing Z or tumor cells. Specifically, when the cell growth suppressing member of the present invention is disposed in a medium, and a cell line of tumor cells is seeded on this member to culture the cells, it has a porous structure, While cells proliferate normally on flat membrane structural members, when using the cell growth suppressing member of the present invention, cell proliferation is significantly suppressed or cells are killed. Therefore, the cell proliferation suppressing member of the present invention is useful as a material or the like constituting a medical device.
[0028] 本発明の細胞増殖抑制部材は、多孔構造を有していればよぐこの際、多孔構造 は少なくとも表面部に形成されていることが好ましい。また、該多孔構造の各孔同士 が部材内部にぉ 、て連通して 、る連続性多孔構造を有するものであるのが好ま ヽ  In the cell growth suppressing member of the present invention, as long as it has a porous structure, at this time, it is preferable that the porous structure is formed at least on the surface portion. In addition, it is preferable that the respective pores of the porous structure have a continuous porous structure in which the pores of the porous structure communicate with each other in the interior of the member.
[0029] 前記多孔構造を構成する孔は、貫通孔、非貫通孔の!、ずれであってもよ!/、。また、 前記多孔構造の各孔の開口形状に特に限定はなぐ円形状、楕円形状、正方形状 、長方形状、六角形状などのいかなる形状であってもよい。 The holes constituting the porous structure may be through holes, non-through holes! In addition, the opening shape of each hole of the porous structure may be any shape such as a circular shape, an elliptical shape, a square shape, a rectangular shape, or a hexagonal shape which is not particularly limited.
[0030] 本発明の細胞増殖抑制部材にお!/、て、前記多孔構造を構成する孔の平均孔径は 、通常 0. 05〜: LOO /z mであり、 0. 1〜: LOO /z mであること力 S好ましく、 0. 1〜20 /ζ πι であることがより好ましぐ 0. 5〜: L0 mであることがさらに好ましい。このような平均 孔径を有する孔から多孔構造が構成されてなることにより、より優れた細胞増殖抑制 作用を有する部材を得ることができる。 In the cell proliferation suppressing member of the present invention, the average pore diameter of the pores constituting the porous structure is usually 0.50 to: LOO / zm, 0.1 to 1: LOO / zm. It is more preferable that the force S be S preferably 0.1 to 20 / ζ π 0 0.5 to L 0 m. Such an average By forming the porous structure from pores having a pore size, it is possible to obtain a member having a more excellent cell proliferation inhibitory action.
[0031] ここで、孔径とは孔の開口形状に対する最大内接円の直径を指し、例えば、孔の開 口形状が実質的に円形状である場合はその円の直径を指し、実質的に楕円形状で ある場合はその楕円の短径を指し、実質的に正方形状である場合はその正方形の 辺の長さを指し、実質的に長方形状である場合はその長方形の短辺の長さを指すも のである。当該孔径の測定は走査型電子顕微鏡 (SEM)等を用いて行なうことができ る。  Here, the hole diameter refers to the diameter of the largest inscribed circle with respect to the opening shape of the hole, and for example, when the hole opening shape is a substantially circular shape, it refers to the diameter of the circle. In the case of an oval shape, it refers to the minor axis of the ellipse, in the case of a substantially square shape it refers to the length of the side of the square, and in the case of a substantially rectangular shape, the length of the short side of the rectangle Point to the The measurement of the pore size can be performed using a scanning electron microscope (SEM) or the like.
[0032] 本発明の細胞増殖抑制部材にお!/、て、前記多孔構造を構成する孔の孔径の変動 係数〔=標準偏差 ÷平均値 X 100 (%)〕が 30%以下であることが好ましぐ孔径の変 動係数が 20%以下であることがより好ましい。このような孔径の均一性が高い孔から 多孔構造が構成されてなることにより、より優れた細胞増殖抑制作用を有する部材を 得ることができる。  In the cell proliferation suppressing member of the present invention, the variation coefficient of the pore diameter of the pores constituting the porous structure [= standard deviation / average value x 100 (%)] is 30% or less More preferably, the variation coefficient of the preferred pore diameter is 20% or less. By forming the porous structure from the pores having high uniformity of the pore diameter, it is possible to obtain a member having a more excellent cell proliferation inhibitory action.
[0033] 本発明の細胞増殖抑制部材において、多孔構造を構成する孔と孔との間の幅 (以 下「幹幅」という)は 0. 01〜50 mであること力好ましく、 0. 1〜10 mであることが より好ましい。ここで、幹幅は、細胞増殖抑制部材における多孔構造を構成する孔で あって、隣接する孔同士間の最短距離の平均値をいう。当該幹幅の測定は走査型 電子顕微鏡 (SEM)等を用いて行なうことができる。  [0033] In the cell proliferation suppressing member of the present invention, the width between the pores constituting the porous structure (hereinafter referred to as "stem width") is preferably 0.01 to 50 m. It is more preferable that it is -10 m. Here, the stem width is a hole constituting the porous structure in the cell proliferation suppressing member, and means the average value of the shortest distance between adjacent holes. The stem width can be measured using a scanning electron microscope (SEM) or the like.
[0034] また、本発明の細胞増殖抑制部材の空孔率は、特に制限されな!、が、 10〜90% であることが好ましぐ 20〜80%であることがより好ましぐ 40〜70%であることがさら に好ましい。ここで、空孔率は、本発明の細胞増殖抑制部材の多孔構造が存在する 部分の表面において、多孔構造を構成する孔の開口が占める面積の割合を意味す る。この空孔率は、例えば、走査型電子顕微鏡 (SEM)等の写真を公知の画像解析 ソフトウェア Scion Image (Scion Corporation)を用いて算出することができる。 より具体的には、以下の通りである。 SEM写真を用いる場合、孔は黒く丸く写り、幹 は白く写る。よって、空孔率は、〔(孔の総表面積:黒い部分の総表面積) ÷ (細胞増 殖抑制部材の表面積:白い部分と黒い部分の合計の総表面積) X 100〕で求めるこ とがでさる。 [0035] 本発明の細胞増殖抑制部材において、多孔構造を構成する孔は規則的に配列さ れていることが好ましぐハ-カム様に配列されていることがより好ましい。ここで、多 孔構造を構成する孔がハ-カム様に配列されて 、るとは、等し 、径を有する円が平 面状に最密充填される場合の配列と同様に、孔が細胞増殖抑制部材に配列されて いることを指すものであり、各孔の大きさおよび形状ゃ各孔同士の間隔については、 何ら限定することを意図するものではない。一例として、多孔構造を構成する孔がハ 二カム様に配列されている細胞増殖抑制部材の光学顕微鏡写真のスケッチ図を図 1 に示す。 In addition, the porosity of the cell growth suppressing member of the present invention is not particularly limited !, but is preferably 10 to 90%, and more preferably 20 to 80%. More preferably, it is 70%. Here, the porosity means the ratio of the area occupied by the openings of the pores constituting the porous structure on the surface of the portion where the porous structure of the cell proliferation suppressing member of the present invention is present. The porosity can be calculated, for example, using a photograph such as a scanning electron microscope (SEM) using a known image analysis software Scion Image (Scion Corporation). More specifically, it is as follows. When using SEM pictures, the holes appear black and round, and the stems appear white. Therefore, the porosity can be determined by [(total surface area of pores: total surface area of black portion) ÷ (surface area of cell proliferation suppressing member: total surface area of total white and black portions) x 100]. Saru. [0035] In the cell growth suppressing member of the present invention, it is more preferable that the pores constituting the porous structure are regularly arranged and preferably arranged in a honeycomb manner. Here, the holes constituting the porous structure are arranged in the form of a hard cam, and the like, and the holes are the same as the arrangement in the case where the circle having the diameter is close-packed flatly. It indicates that the cells are arranged in the cell growth suppressing member, and the size and shape of each hole and the distance between the holes are not intended to be limited at all. As an example, a sketch of an optical micrograph of a cell proliferation suppressing member in which the pores constituting the porous structure are arranged in a honeycomb-like manner is shown in FIG.
[0036] 本発明の細胞増殖抑制部材の材質としては、多孔構造を形成できるものであれば 特に制約はないが、医療用具への被覆のし易さから榭脂であるのが好ましい。また、 耐久性を向上させるために、ガラス、セラミック等が含まれていてもよい。  The material for the cell proliferation suppressing member of the present invention is not particularly limited as long as it can form a porous structure, but from the viewpoint of ease of coating on a medical device, it is preferable to be a resin. In addition, glass, ceramic or the like may be contained to improve the durability.
[0037] 本発明の細胞増殖抑制部材を構成する榭脂としては、特に限定されず、非生体分 解性榭脂と生体分解性榭脂の!、ずれも使用できる。生体内にお!ヽて細胞増殖抑制 作用を長期間持続させる観点からは、生体内で容易に分解されない非生体分解性 榭脂から形成されてなるものが好ましい。また、腫瘍細胞の増殖を選択的に抑制する ことを考慮すれば、毒性が無い若しくは少ないものが好ましぐ細胞増殖抑制部材を 、特許文献 1に記載されるような方法に従って作製する場合は、有機溶媒に溶解する 榭脂であることが好ましい。  No particular limitation is imposed on the resin that constitutes the cell growth suppressing member of the present invention, and the deviation of non-biodegradable resin and biodegradable resin can also be used. In vivo! From the viewpoint of maintaining the cell growth inhibitory action for a long time, it is preferable to use a non-biodegradable resin which is not easily degraded in vivo. In addition, in the case where a cell proliferation suppressing member which has no or less toxicity is preferably prepared in consideration of selectively suppressing the growth of tumor cells, according to the method described in Patent Document 1, It is preferable that the resin be soluble in an organic solvent.
[0038] 本発明の細胞増殖抑制部材を構成する榭脂の具体例としては、ポリブタジエン(1 , 2 ポリブタジエン、 1, 4 ポリブタジエン)、ポリイソプレン、スチレン ブタジエン 共重合体、スチレン—イソプレン共重合体、アクリロニトリル—ブタジエン—スチレン 共重合体などの共役ジェン系高分子;ポリ ε—力プロラタトン;ポリウレタン;酢酸セル ロース、セノレロイド、確酸セノレロース、ァセチノレセノレロース、セロファンなどのセノレロー ス系 r¾ チ;ポリアミド、 6、ポジアミド、 66、ポジアミド、 610、ポジアミド、 612、ポジアミド、 12、 ポリアミド 46などのポリアミド系高分子;ポリテトラフルォロエチレン、ポリトリフルォロェ チレン、パーフルォロエチレン プロピレン共重合体などのフッ素系高分子;ポリスチ レン、スチレン一エチレン一プロピレン共重合体、スチレン一エチレン一ブチレン共 重合体、塩素化ポリエチレン—アクリロニトリル スチレン共重合体、メタクリル酸エス テル スチレン共重合体、スチレン—アクリロニトリル共重合体、スチレン 無水マレ イン酸共重合体、アクリル酸エステル—アクリロニトリル スチレン共重合体などのス チレン系高分子;ポリエチレン、塩素化ポリエチレン、エチレン aーォレフイン共重 合体、エチレン 酢酸ビュル共重合体、エチレン一塩化ビュル共重合体、エチレン 酢酸ビュル共重合体、ポリプロピレン、ォレフィン ビュルアルコール共重合体、 ポリメチルペンテンなどのォレフィン系高分子;フエノール榭脂、アミノ榭脂、尿素榭 脂、メラミン榭脂、ベンゾグアナミン榭脂などのホルムアルデヒド系高分子;ポリブチレ ンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリェ ステル系高分子;エポキシ榭脂;ポリ(メタ)アクリル酸エステル、ポリ— 2—ヒドロキシェ チルアタリレート、メタクリル酸エステル 酢酸ビュル共重合体などの(メタ)アクリル系 高分子;ノルボルネン系榭脂;シリコン榭脂;ポリ乳酸、ポリヒドロキシ酪酸、ポリグリコ ール酸などのヒドロキシカルボン酸の重合体;などが挙げられる。これらは 1種単独で 、あるいは 2種以上を組み合わせて用いることができる。 Specific examples of the resin constituting the cell growth suppressing member of the present invention include polybutadiene (1,2 polybutadiene, 1,4 polybutadiene), polyisoprene, styrene butadiene copolymer, styrene-isoprene copolymer, Conjugated gen-type polymers such as acrylonitrile-butadiene-styrene copolymer; poly ε -force prorataton; polyurethane; cellulose acetate, cenoreloid, cenolerose pate, casserole cenorerose such as acetinole cenorelose, cellophane cenorelase type r3⁄4 6, polyamides such as positamide 66, positamide 610, positamide 612, positamide 12, polyamide 46, and the like; polyamide based polymers such as polytetrafluoroethylene; polytetrafluoroethylene, polytrifluoroethylene, perfluoroethylene propylene copolymer Fluorine-based polymers such as polystyrene; Ethylene-propylene-copolymer, styrene-ethylene-butylene-copolymer, chlorinated polyethylene-acrylonitrile-styrene copolymer, methacrylic acid S Styrene polymers such as terstyrene copolymer, styrene-acrylonitrile copolymer, styrene-maleic anhydride copolymer, acrylic ester-acrylonitrile-styrene copolymer; polyethylene, chlorinated polyethylene, ethylene alefin copolymer Olefin-based polymers such as united, ethylene-acetate-butyl copolymer, ethylene-monochloride-bullet copolymer, ethylene-acetate-butyl copolymer, polypropylene, olefin-bule alcohol copolymer, polymethylpentene, etc. phenol resin, amino resin Formaldehyde polymers such as urea resin, melamine resin and benzoguanamine resin; polyester polymers such as polybutylene terephthalate, polyethylene terephthalate and polyethylene naphthalate; epoxy resin; poly (meth) acrylate (Meth) acrylic polymers such as sters, poly (2-hydroxy-) atalylate, methacrylate ester / cobalt acetate copolymer; norbornene resin; silicone resin; polylactic acid, polyhydroxybutyric acid, polyglycolic acid And polymers of hydroxycarboxylic acids such as These can be used singly or in combination of two or more.
[0039] これらの中でも、優れた細胞増殖抑制作用を有する細胞増殖抑制部材を得ること ができることから、共役ジェン系高分子、スチレン系高分子またはポリウレタンの使用 力 り好ましぐ 1, 2—ポリブタジエンの使用が特に好ましい。  Among these, since a cell growth suppressing member having an excellent cell growth suppressing action can be obtained, the use of a conjugated gen polymer, a styrenic polymer or a polyurethane is preferred. 1, 2-polybutadiene The use of is particularly preferred.
[0040] また、本発明の細胞増殖抑制部材を構成する榭脂には、両親媒性物質を添加して もよい。添加する両親媒性物質としては、ポリエチレングリコール一ポリプロピレンダリ コールブロック共重合体;アクリルアミドポリマーを主鎖骨格とし疎水性側鎖としてドデ シル基と親水性側鎖としてラタトース基またはカルボキシル基を併せ持つ両親媒性 榭脂;へパリンゃデキストラン硫酸、核酸 (DNAや RNA)などのァ-オン性高分子と 長鎖アルキルアンモ-ゥム塩とのイオンコンプレックス;ゼラチン、コラーゲン、アルブ ミンなどの水溶性タンパク質を親水性基とした両親媒性榭脂;ポリ乳酸—ポリエチレン グリコールブロック共重合体、ポリ ε一力プロラタトン ポリエチレングリコールブロック 共重合体、ポリリンゴ酸—ポリリンゴ酸アルキルエステルブロック共重合体などの両親 媒性榭脂;などが挙げられる。 In addition, an amphipathic substance may be added to the resin constituting the cell growth suppressing member of the present invention. As the amphiphilic substance to be added, polyethylene glycol-polypropylene daly block copolymer; an acrylamide polymer as a main chain skeleton, a parent having both a dodecyl group as a hydrophobic side chain and a ratatose group or a carboxyl group as a hydrophilic side chain. Hyperlipidates; Ion complexes of hyperphilic polymers such as heparin and dextran sulfate, nucleic acids (DNA and RNA) and long-chain alkyl ammonium salts; Water-soluble proteins such as gelatin, collagen and albumin Amphiphilic resins with a hydrophilic group; polylactic acid-polyethylene glycol block copolymers, poly ε monoprolatatone polyethylene glycol block copolymers, polymalic acid-polymalic acid alkyl ester block copolymers, etc. amphiphilic Resin; and the like.
[0041] 本発明の細胞増殖抑制部材は、生理活性物質を添加しなくとも細胞増殖抑制作用 を示すので、副作用を回避する観点から、細胞増殖抑制作用を有する生理活性物 質を添加しないことが好ましい。ただし、より強い細胞増殖抑制作用を得る目的で、 細胞増殖抑制作用を有する生理活性物質を添加しても良い。この場合でも、従来に 比して少ない添加量で、十分な細胞増殖抑制作用を得ることができるので、生理活 性物質による副作用を大幅に低減することができる。 The cell growth suppressing member of the present invention exhibits a cell growth suppressing action without the addition of a physiologically active substance, so from the viewpoint of avoiding a side effect, a physiologically active substance having a cell growth suppressing action It is preferred not to add quality. However, in order to obtain a stronger cell growth inhibitory action, a physiologically active substance having a cell proliferation inhibitory action may be added. Even in this case, since a sufficient cell growth inhibitory action can be obtained with a smaller addition amount as compared with the conventional case, the side effects due to the physiologically active substance can be significantly reduced.
[0042] 本発明の細胞増殖抑制部材は、上記榭脂に加えて酸ィ匕防止剤を含有する榭脂組 成物よりなることが好ましい。多孔構造を有する部材は比表面積が大きぐ構造上劣 化し易いものであるが、酸ィ匕防止剤を添加することにより酸ィ匕劣化が防止され、長期 保存が可能となり、また、体内での劣化も起こりに《することができる。  The cell growth suppressing member of the present invention is preferably composed of a resin composition containing an anti-acid agent in addition to the above-mentioned resin. A member having a porous structure is easily deteriorated due to its large specific surface area, but the addition of an anti-acid agent prevents the acid deterioration and enables long-term storage, and also in the body. Deterioration can also occur.
[0043] 用いる酸ィ匕防止剤は特に限定されず、例えば、フ ノール系酸ィ匕防止剤、リン系酸 化防止剤、アミン系酸化防止剤、ィォゥ系酸ィ匕防止剤等を用いることができる。これら のなかでも、フエノール系酸ィ匕防止剤および Zまたはリン系酸ィ匕防止剤を用いること が好ましぐフエノール系酸ィ匕防止剤とリン系酸ィ匕防止剤とを併用することが特に好ま しい。酸化防止剤は、 1種を単独で用いてもよいし、 2種以上を併用してもよい。  There are no particular limitations on the antioxidative agent to be used, and for example, it is preferable to use a phenolic antioxidant, a phosphorous antioxidant, an amine antioxidant, an aqueous antioxidant, etc. Can. Among these, it is preferable to use a phenol-based acid inhibitor and a phosphorus-based acid inhibitor together with a phenol-based acid inhibitor and a Z- or phosphorus-based acid inhibitor. Especially preferred. One of the antioxidants may be used alone, or two or more thereof may be used in combination.
[0044] フエノール系酸ィ匕防止剤としては、例えば、 2 第 3ブチルー 6—(3 第 3ブチルー 2 ヒドロキシ一 5—メチルベンジル) 4—メチルフエ-ルアタリレート、 2, 4 ジ一第 3アミルー 6—〔1— (3, 5 ジ—第 3アミルー 2 ヒドロキシフエ-ル)ェチル〕フエ-ル アタリレートなどのアタリレート系フエノール化合物; 2, 6 ジー第 3ブチルー 4ーメチ ルフエノール、 2, 6 ジー第 3ブチルー 4 ェチルフエノール、ォクタデシルー 3— (3 , 5 ジ一第 3ブチル 4 ヒドロキシフエ-ル)プロピオネート、 2, 2,一メチレン一ビ ス(4ーメチルー 6—第 3ブチルフエノール)、 4, 4,ーブチリデン—ビス(6—第 3ブチ ルー m—タレゾール)、 4, 4,ーチォビス(3—メチルー 6—第 3ブチルフエノール)、ビ ス(3 シクロへキシル 2 ヒドロキシ一 5—メチルフエ-ル)メタン、 3, 9 ビス {2— 〔3—(3 第 3ブチルー 4ーヒドロキシー 5 メチルフエ-ル)プロピオ-ルォキシ〕 1 , 1—ジメチルェチル } 2, 4, 8, 10—テトラオキサスピロ [5, 5]ゥンデカン、 1, 1, 3 —トリス(2—メチル 4 ヒドロキシ一 5 第 3ブチルフエ-ル)ブタン、 1, 3, 5 トリメ チル— 2, 4, 6 トリス(3, 5 ジ—第 3ブチル—4 ヒドロキシベンジル)ベンゼン、 テトラキス(メチレンー3— (3' , 5,一ジー第 3ブチルー 4,ーヒドロキシフエ-ルプロピ ォネート)メタン、トリエチレングリコールビス〔3— (3—第 3ブチル 4—ヒドロキシ一 5 メチルフエ-ル)プロピオネート〕、トコフエノールなどのアルキル置換フエノール系 化合物; 6—(4ーヒドロキシ—3, 5 ジー第 3ブチルァ-リノ)—2, 4 ビスォクチル チォ一 1, 3, 5 トリァジン、 6— (4 ヒドロキシ一 3, 5 ジメチルァ-リノ)一 2, 4— ビスォクチルチオ一 1, 3, 5 トリァジン、 6— (4—ヒドロキシ一 3—メチル 5 第 3 ブチルァニリノ) 2, 4 ビスォクチルチオ 1, 3, 5 トリァジン、 2—ォクチルチオ —4, 6 ビス—(3, 5 ジ—第 3ブチル—4—ォキシァ-リノ)— 1, 3, 5 トリァジン などのトリアジン系化合物;などが挙げられる。 [0044] Examples of phenol-based anti-acid agents include: 2 tert-butyl 6- (3 tert-butyl-2 hydroxy- 1 5-methyl benzyl) 4- methylphenyl atalylate, 2, 4 di-tert-amylou 6-[1-(3, 5 di-tertiary amylu 2 hydroxyphenyl) ethyl] phenyl atarylated phenolic compounds such as atarilate; 2,6 di-tert-butyl-4-methylphenol, 2, 6 Tertiary butyl-4 hydroxyethyl phenol, octadecyl 3-(3, 5 di tertiary butyl 4 hydroxy phenyl) propionate, 2, 2, 1 methylene one bis (4 methyl 6-tertiary butyl phenol), 4, 4, -Butylidene-bis (6-tert-butyl-m-taresol), 4-, 4-thiobis (3-methyl-6-tert-butylphenol), bis (3-cyclohexyl 2-hydroxy-5-methylphenyl) methane, 3, 9 S {2- [3- (3 tert-butyl-4-hydroxy-5-methylphenyl) propio-oxy] 1, 1 -dimethylethl 2 2, 4, 8, 10-tetraoxaspiro [5, 5] undecane, 1, 1 , 3-tris (2-methyl 4-hydroxy-1.5 tert-butyl phenyl) butane, 1, 3, 5 trimethyl-2, 4, 6 tris (3, 5 di-tert-butyl-4 hydroxybenzyl) benzene, Tetrakis (methylene-3- (3 ', 5,5 di-tert-butyl-4-hydroxyphenylpropionate) methane, triethylene glycol bis [3- (3-tert-butyl 4-hydroxyl-5) (Methylphenyl) propionate], tocofenol, and other alkyl-substituted phenolic compounds; 6- (4-hydroxy-3,5 ditertiary tert-butylarino) -2; 4,4 bisoctyyl thio 1,3,5 triazine, 6- ( 4 hydroxy is 3,5 dimethyl alino) 1, 2,4 bisoxothiol 1,3,5 triazine, 6-(4-hydroxy mono 3-methyl 5 tert-butylino) 2,4 bisoctythio 1,3,5 triazine, And 2-triazines such as 2-hydroxythio-4,6 bis- (3,5-di-tert-butyl-4-oxy-lino)-1, 3, 5 triazine and the like.
リン系酸化防止剤としては、例えば、トリフエ-ルホスフアイト、ジフエ-ルイソデシル ホスファイト、フエ-ルジイソデシルホスフアイト、トリス(ノ -ルフエ-ル)ホスファイト、ト リス(ジノ-ルフエ-ル)ホスファイト、トリス(2, 4 ジ—第 3ブチルフエ-ル)ホスフアイ ト、トリス(2 第 3ブチル 4—メチルフエ-ル)ホスファイト、トリス(シクロへキシルフェ -ル)ホスファイト、 2, 2—メチレンビス(4, 6 ジ一第 3ブチルフエ-ル)ォクチルホス ファイト、 9, 10 ジヒドロー 9 ォキサ 10 ホスファフェナントレン 10—ォキサイ ド、 10— (3, 5 ジ一第 3ブチル 4 ヒドロキシベンジル) 9, 10 ジヒドロ一 9— ォキサ 10 ホスファフェナントレン 10 オキサイド、 10 デシロキシ 9, 10— ジヒドロー 9 ォキサ 10 ホスファフェナントレンなどのモノホスファイト系化合物; 4 , 4,—ブチリデン—ビス(3—メチル—6—第 3ブチルフエ-ルージ—トリデシルホスフ アイト)、 4, 4,—イソプロピリデン—ビス(フエ-ル―ジ—アルキル(C12〜C15)ホス ファイト)、 4, 4,—イソプロピリデン—ビス(ジフエ-ルモノアルキル(C12〜C15)ホス ファイト)、 1, 1, 3 トリス(2—メチル—4 ジ—トリデシルホスファイト— 5 第 3ブチ ルフエ-ル)ブタン、テトラキス(2, 4 ジ一第 3ブチルフエ-ル) 4, 4'—ビフエ-レ ンジホスファイト、サイクリックネオペンタンテトライルビス(イソデシルホスフアイト)、サ イクリックネオペンタンテトライルビス(ノユルフェ-ルホスフアイト)、サイクリックネオペ ンタンテトライルビス(2, 4 ジ一第 3ブチルフエ-ルホスフアイト)、サイクリックネオペ ンタンテトライルビス(2, 4 ジメチルフエ-ルホスフアイト)、サイクリックネオペンタン テトライルビス(2, 6 ジー第 3ブチルフエ-ルホスフアイト)、サイクリックネオペンタン テトライルビス(2, 6 ジ一第 3ブチル 4—メチルフエ-ルホスフアイト)などのジホス ファイト系化合物などが挙げられる。 これらの中でも、サイクリックネオペンタンテトライルビス(2, 6 ジ一第 3ブチル 4 メチルフエ-ルホスフアイト)を用いることが特に好まし!/、。 Examples of phosphorus-based antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, ferridiisodecyl phosphite, tris (no-phenyl) phosphite, and tris (zino-phenyl) phosphite, Tris (2,4 di-tert-butylphenyl) phosphite, tris (2 tert-butyl 4-methylphenyl) phosphite, tris (cyclohexylene) phosphite, 2, 2-methylenebis (4, 6 di-tert-butylphenyl) octyl phosphite, 9, 10 dihydro-9 oxa 10, phosphaphenanthrene 10-oxide, 10- (3, 5-di-tert-butyl 4-hydroxybenzyl) 9, 10 dihydro-l 9- oxa 10 Phosphaphenanthrene 10 Oxide, 10 decyloxy 9, 10-Dihydro-9 oxa 10 Monophosphite such as phosphaphenanthrene Compound; 4,4, -Butylidene-bis (3-methyl-6-tert-butylphenyl-tridecyl phosphite), 4,4-isopropylidene-bis (phenyl-di-alkyl (C12-C15) phos , 4-, 4-isopropylidene-bis (diphenyl monoalkyl (C12 to C15) phosphite), 1,1,3 tris (2-methyl-4-di-tridecyl phosphite-5) tertiary butyl ether -Le) butane, tetrakis (2,4 di-tert-tert-butylphenyl) 4, 4'- biphenyl dithione phosphite, cyclic neopentane tetrayl bis (isodecyl phosphite), cyclic neopentane tetrale Ylbis (Noyurferyl phosphite), cyclic neopane dian tetrayl bis (2, 4 di tertiary butyl phenyl phosphite), cyclic neopane tetrayl bis (2, 4 di Diphosphite compounds such as methylphenyl phosphite), cyclic neopentane tetrayl bis (2, 6 di tertiary butyl phenyl phosphite), cyclic neo pentane tetrayl bis (2, 6 di tertiary butyl 4-methyl phenyl phosphite), etc. It can be mentioned. Among these, it is particularly preferable to use cyclic neopentanetetrayl bis (2, 6 di-tert-butyl 4-methyl phenyl phosphite)! /.
[0046] ィォゥ系酸化防止剤としては、例えば、ジラウリル 3, 3' チォジプロピオネート、ジ ミリスチル 3, 3,一チォジプロピオネート、ジステアリル 3, 3,一チォジプロピオネート、 ラウリルステアリル 3, 3,一チォジプロピオネート、ペンタエリスリトールーテトラキスー( β ラウリル チォープロピオネート)、 3, 9 ビス(2 ドデシルチオェチル) 2, 4 , 8, 10—テトラオキサスピロ [5, 5]ゥンデカンなどを挙げることができる。  Examples of di-type antioxidants include dilauryl 3,3'-thiodipropionate, dimyristyl 3,3,1-thiodipropionate, distearyl 3,3,1-thiodipropionate, lauryl stearyl 3 , 3, 1-thiodipropionate, pentaerythritol-tetrakis-(β lauryl thiopropionate), 3, 9 bis (2 dodecyl thioethyl) 2, 4, 8, 10-tetraoxaspiro [5, 5 ] Undecane etc. can be mentioned.
[0047] 用いる酸ィ匕防止剤の量(2種以上用いる場合にはその総量)は、特に限定されない 力 用いる榭脂 100重量部に対して、 0. 1〜5重量部であることが好ましぐ 0. 5〜2 重量部であることがより好まし 、。  The amount of the anti-acid agent (total amount when two or more types are used) is not particularly limited, but preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the resin used. More preferably 0.5 to 2 parts by weight.
[0048] 本発明の細胞増殖抑制部材の形状は、特に限定されるものではないが、フィルム 状であるのが好ましい。本発明の細胞増殖抑制部材がフィルム状物である場合、単 層からなるフィルムであっても、複数層からなる積層フィルムであってもよぐ基板 (例 えば、プラスチック、ガラスなど)上にフィルム状の材料が積層されたものであってもよ い。  The shape of the cell growth suppressing member of the present invention is not particularly limited, but is preferably in the form of a film. When the cell growth suppressing member of the present invention is a film-like material, it may be a film consisting of a single layer or a laminated film consisting of a plurality of layers. A film may be formed on a substrate (for example, plastic, glass, etc.) It may be a laminated material.
[0049] 本発明の細胞増殖抑制部材がフィルム状物である場合、その膜厚は特に制限され な ヽカ 0. 05〜: LOO /z mであるの力より好ましく、 0. 5〜 20 mであるの力 ^更に好ま しい。  When the cell growth suppressing member of the present invention is a film-like material, the film thickness is not particularly limited. 0.50 to 50: preferred from the force of LOO / zm, 0.5 to 20 m The power of certain ^ ^ more preferred.
[0050] また、本発明の細胞増殖抑制部材は、多孔構造を有する榭脂フィルム (第 2の榭脂 フィルム)と他の榭脂フィルム(第 1の榭脂フィルム)との積層フィルムであってもよ 、。 第 1の榭脂フィルムを第 2の榭脂フィルムに積層することによって、フィルムの力学的 強度 (膜強度)が高められ、フィルムが破損し難くなる。従って、本発明の積層フィル ムである本発明の細胞増殖抑制部材を、ステント基材などの医療用具基材表面に被 覆するなどして、体内に設置して使用する場合であっても、フィルムが破損し難ぐ細 胞増殖抑制作用を長期間維持することが可能となる。  In addition, the cell growth suppressing member of the present invention is a laminated film of a resin film (second resin film) having a porous structure and another resin film (first resin film). Well, By laminating the first resin film to the second resin film, the mechanical strength (film strength) of the film is enhanced and the film is less likely to be damaged. Therefore, even when the cell growth suppressing member of the present invention, which is the laminated film of the present invention, is covered on the surface of a medical device substrate such as a stent substrate, the member can be installed and used in the body. It becomes possible to maintain the cell proliferation suppressing action which is difficult to damage the film for a long time.
[0051] 前記第 1の榭脂フィルムは、多孔構造を有する第 2の榭脂フィルムに積層される榭 脂フィルムであって、第 2の榭脂フィルムを補強する役割を有する。  The first resin film is a resin film laminated to a second resin film having a porous structure, and has a role of reinforcing the second resin film.
[0052] 第 1の榭脂フィルムの形態は、第 2の榭脂フィルムを補強する役割を有していれば、 特に限定されない。第 1の榭脂フィルムは、例えば孔を有しないフィルム(平膜)であ つてもよいし、多孔構造が形成されたフィルムであってもよい。また、第 1の榭脂フィル ムとして、多孔構造を有するフィルムを用いる場合には、第 1の榭脂フィルムは、後述 するような多孔構造を構成する孔がハ-カム様に配列されて 、るフィルムを用いても よ!、し、第 2の榭脂フィルムとして用いるフィルムと同じ形態のフィルムを用いてもょ ヽ [0052] If the form of the first resin film has a role of reinforcing the second resin film, It is not particularly limited. The first resin film may be, for example, a non-porous film (flat membrane) or a film having a porous structure. When a film having a porous structure is used as the first resin film, in the first resin film, the holes constituting the porous structure to be described later are arranged in a honeycomb pattern. You may use a film of the same form as the film used as the second resin film.
[0053] また第 1の榭脂フィルムは、単層力もなるフィルムであっても、複数の層力もなるフィ ルムであってもよい。第 1の榭脂フィルムが複数の層力 なるフィルムである場合、こ れらの層を同一形態の層により構成してもよ 、し、相異なる形態の層により構成しても よい。 The first resin film may be a film having a single layer strength or a film having a plurality of layer strengths. When the first resin film is a film having a plurality of layers, these layers may be composed of layers of the same form, or may be composed of layers of different forms.
[0054] 第 1の榭脂フィルムとして、多孔構造が形成されたフィルムを用いる場合の多孔構 造を形成する孔の孔径は、特に限定されないが、 0. 1〜500 mの範囲にあること が好ましぐ 0. 1〜: LOO /z mの範囲にあることがより好ましい。  The pore diameter of the pores forming the porous structure in the case of using a film having a porous structure as the first resin film is not particularly limited, but may be in the range of 0.1 to 500 m. It is more preferable that it is in the preferred range of 0. 1 to 1: LOO / zm.
[0055] 第 1の榭脂フィルムを構成する榭脂としては、特に限定されず、非生体分解性榭脂 と生体分解性榭脂の 、ずれも使用できる。  There are no particular limitations on the type of resin that constitutes the first resin film, and a non-biodegradable resin and a biodegradable resin can also be used.
[0056] その具体例としては、ポリブタジエン(1, 2 ポリブタジエン、 1, 4 ポリブタジエン) 、ポリイソプレン、スチレン ブタジエン共重合体、スチレン イソプレン共重合体、ァ クリロ-トリル—ブタジエン—スチレン共重合体などの共役ジェン系高分子;ポリ ε - 为プ ρラク卜ン;ポジクレタン;ポリアミド、 6、ポジアミド、 66、ポジアミド、 610、ポジアミド、 612、 ポリアミド 12、ポリアミド 46などのポリアミド系高分子;ポリブチレンテレフタレート、ポリ エチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系高分子;酢酸 セノレロース、セノレロイド、確酸セノレロース、ァセチノレセノレロース、セロファンなどのセノレ ロース系高分子;ポリテトラフルォロエチレン、ポリトリフルォロエチレン、パーフルォロ エチレン プロピレン共重合体などのフッ素系高分子;ポリスチレン、スチレンーェチ レン プロピレン共重合体、スチレン エチレンーブチレン共重合体、塩素化ポリエ チレン—アクリロニトリル スチレン共重合体、メタクリル酸エステルースチレン共重合 体、スチレン—アクリロニトリル共重合体、スチレン 無水マレイン酸共重合体、アタリ ル酸エステル—アクリロニトリル スチレン共重合体などのスチレン系高分子;ポリエ チレン、塩素化ポリエチレン、エチレン α—ォレフイン共重合体、エチレン 酢酸 ビュル共重合体、エチレン一塩化ビュル共重合体、エチレン 酢酸ビニル共重合体 、ポリプロピレン、ォレフィン ビュルアルコール共重合体、ポリメチルペンテンなどの ォレフィン系高分子;フエノール榭脂、アミノ榭脂、尿素樹脂、メラミン榭脂、ベンゾグ アナミン榭脂などのホルムアルデヒド系高分子;エポキシ榭脂;ポリ (メタ)アクリル酸ェ ステル、ポリ 2—ヒドロキシェチルアタリレート、メタクリル酸エステル 酢酸ビュル共 重合体などの (メタ)アクリル系高分子;ノルボルネン系榭脂;シリコン榭脂;ポリ乳酸、 ポリヒドロキシ酪酸、ポリグリコール酸などのヒドロキシカルボン酸の重合体;などが挙 げられる。これらは 1種単独で、あるいは 2種以上を組み合わせて用いることができる Specific examples thereof include polybutadiene (1,2 polybutadiene, 1,4 polybutadiene), polyisoprene, styrene butadiene copolymer, styrene isoprene copolymer, acrylico-tolyl butadiene-styrene copolymer, etc. conjugated diene polymers; poly epsilon -为Pu ρ easier Bokun; Pojikuretan; polyamide, 6, Pojiamido, 66, Pojiamido, 610, Pojiamido, 612, polyamide 12, polyamide-based polymers such as polyamide 46; polybutylene terephthalate, Polyester-based polymers such as poly (ethylene terephthalate) and polyethylene naphthalate; cenolose-based polymers such as cenolerose acetate, cenoreloid, cenolerose with correct acid, acetinolecenorelose and cellophane; polytetrafluoroethylene, polytrifluoroethylene , Perfull Fluoropolymers such as ethylene-propylene copolymer; polystyrene, styrene-ethylene-propylene copolymer, styrene-ethylene-butylene copolymer, chlorinated polyethylene-acrylonitrile-styrene copolymer, methacrylic acid-styrene copolymer, Styrene-based polymers such as styrene-acrylonitrile copolymer, styrene / maleic anhydride copolymer, allic acid ester / acrylonitrile / styrene copolymer; Tyrene, chlorinated polyethylene, ethylene α-olefin copolymer, ethylene-acetate copolymer, ethylene-monochloride-bullet copolymer, ethylene-vinyl acetate copolymer, polypropylene, olefin-bule alcohol copolymer, polymethylpentene, etc. Olefin polymers; formaldehyde polymers such as phenol resin, amino resin, urea resin, melamine resin, benzoguanamine resin; epoxy resin; poly (meth) acrylic acid ester, poly 2-hydroxy ethyl (Meth) acrylic polymers such as atalylate, methacrylate ester / co-acetate copolymer; norbornene resin; silicone resin; polymer of hydroxycarboxylic acid such as polylactic acid, polyhydroxybutyric acid, polyglycolic acid; etc. Are listed. These can be used alone or in combination of two or more.
[0057] これらの中でも、共役ジェン系高分子、ポリウレタン、ポリアミド系高分子、ポリエステ ル系高分子を用いることが好ましぐポリウレタンを用いることが特に好まし 、。 Among these, it is particularly preferable to use a polyurethane which is preferably used, such as a conjugated gen polymer, a polyurethane, a polyamide polymer, and a polyester polymer.
[0058] 第 1の榭脂フィルムの製造方法は、特に限定されず、従来公知の成形方法が採用 できる。例えば、加熱溶融成形法、溶液流延法などが挙げられる。また、第 1の榭脂 フィルムは、延伸したものであってもよい。 The method for producing the first resin film is not particularly limited, and a conventionally known molding method can be employed. For example, a heat melt molding method, a solution casting method, etc. may be mentioned. Also, the first resin film may be stretched.
[0059] また、第 1の榭脂フィルムとして多孔構造が形成されたフィルムを用いる場合は、後 述する、フィルム状物である本発明の細胞増殖抑制部材を製造する方法と同様の方 法を採用して、第 1の榭脂フィルムを製造することもできる。 When a film having a porous structure is used as the first resin film, a method similar to the method for producing the cell proliferation suppressing member of the present invention, which is a film-like material described later, is used. It can also be used to produce the first resin film.
[0060] 以上のようにして得られる第 1の榭脂フィルムの厚さ(複数の層力 なるフィルムであ る場合には、その総厚さ)は、特に限定されないが、通常、 1〜500 m、好ましくは 1[0060] The thickness of the first resin film obtained as described above (in the case of a film having a plurality of layers, its total thickness) is not particularly limited, but usually 1 to 500 m, preferably 1
〜: LOO /z mである。 ~: LOO / z m.
[0061] なお、本発明の細胞増殖抑制部材が積層フィルムである場合、第 1の榭脂フィルム および第 2の榭脂フィルムのみで構成されるものに限定されるものではなぐ例えば、 別のフィルムなどの他の構成要素を有したものであってもよい。  In the case where the cell growth suppressing member of the present invention is a laminated film, the present invention is not limited to the one comprising only the first resin film and the second resin film, for example, another film And the like may be included.
[0062] (細胞増殖抑制部材の作製)  (Fabrication of Cell Proliferation Inhibitory Member)
本発明の細胞増殖抑制部材を作製する方法は特に限定されない。例えば、フィル ム状の本発明の細胞増殖抑制部材を製造する場合には、前記榭脂および所望によ り酸化防止剤を含有する榭脂組成物を含む有機溶媒溶液を基板上にキャストし、該 有機溶媒を蒸散させるとともに前記キャストした有機溶媒溶液表面で結露を起こさせ 、該結露により生じた水滴を蒸発させることにより、多孔構造を有する細胞増殖抑制 部材を得る方法が挙げられる。 The method for producing the cell growth suppressing member of the present invention is not particularly limited. For example, in the case of producing the cell-growth-inhibiting member of the present invention in the form of a film, an organic solvent solution containing the above-mentioned resin and a resin composition containing an antioxidant if desired is cast on a substrate. Said There is a method of obtaining a cell proliferation suppressing member having a porous structure by evaporating the organic solvent and causing condensation on the surface of the cast organic solvent solution and evaporating water droplets generated by the condensation.
[0063] より具体的には、(1)榭脂および所望により酸ィ匕防止剤を含有する榭脂組成物を含 む有機溶媒溶液を基板上にキャストし、高湿度ガスを吹き付けることで該有機溶媒を 徐々に蒸散させるとともに該キャスト液表面で、該高湿度ガス中の水分を結露させ、 該結露により生じた水滴を蒸発させる方法、または、(2)榭脂および所望により酸ィ匕 防止剤を含有する榭脂組成物を含む有機溶媒溶液を、相対湿度 50〜95%のガス 下で基板上にキャストし、該有機溶媒を蒸散させるとともに該キャスト液表面でガス中 の水分を結露させ、該結露により生じた水滴を蒸発させる方法である。これらの方法 によれば、比較的容易に、所望の孔径を有し、しかも孔径の均一性が高い孔からなり 、孔がハ二カム様に配列されてなる多孔構造を有するフィルム状の細胞増殖抑制部 材 (以下、「細胞増殖抑制フィルム」 t 、うことがある。 )を得ることができる。  More specifically, an organic solvent solution containing (1) a resin composition and, optionally, a resin composition containing an acid inhibitor is cast on a substrate and sprayed with a high humidity gas. A method of gradually evaporating the organic solvent and condensing moisture in the high-humidity gas on the surface of the cast liquid to evaporate water droplets generated by the condensation, or Solvent solution containing the resin composition containing the agent is cast on a substrate under gas with a relative humidity of 50 to 95% to evaporate the organic solvent and to condense moisture in the gas on the surface of the cast liquid And a method of evaporating water droplets generated by the condensation. According to these methods, it is relatively easy to form a film-like cell growth having a porous structure consisting of pores having a desired pore size and high uniformity of pore size and in which the pores are arranged like a honeycomb. An inhibitory member (hereinafter, "cell growth inhibitory film" t may be obtained) can be obtained.
[0064] これらの方法により本発明の細胞増殖抑制フィルムを作製するにあたっては、キヤ スト液表面上に水滴粒子を形成させる必要があることから、使用する有機溶媒は非 水溶性であることが好ま 、。  When producing the cell growth inhibitory film of the present invention by these methods, it is preferable that the organic solvent used be non-water soluble because it is necessary to form water droplet particles on the surface of the cast liquid. ,.
[0065] 用いる有機溶媒としては、クロ口ホルム、塩化メチレンなどのハロゲン化炭化水素系 溶媒; n—ペンタン、 n—へキサン、 n—ヘプタンなどの飽和炭化水素系溶媒;シクロ ペンタン、シクロへキサンなどの脂環式炭化水素系溶媒;ベンゼン、トルエン、キシレ ンなどの芳香族炭化水素系溶媒;酢酸ェチル、酢酸ブチルなどのエステル系溶媒; ジェチルケトン、メチルイソプチルケトンなどのケトン系溶媒;二硫ィ匕炭素;などが挙げ られる。これらの有機溶媒は 1種単独で、あるいはこれらの 2種以上カゝらなる混合溶媒 として使用することができる。  Examples of the organic solvent to be used include halogenated hydrocarbon solvents such as chloroform and methylene chloride; saturated hydrocarbon solvents such as n-pentane, n-hexane and n-heptane; cyclopentane and cyclohexane Alicyclic hydrocarbon solvents such as benzene; aromatic hydrocarbon solvents such as benzene, toluene and xylene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as jetyl ketone and methyl isopyl ketone; Carbon and the like. These organic solvents can be used alone or as a mixed solvent of two or more of them.
[0066] 有機溶媒に溶解する榭脂の濃度は、好ましくは 0. 01〜10重量%、より好ましくは 0 . 05〜5重量%である。樹脂濃度が 0. 01重量%より低いと得られるフィルムの力学 的強度が不足し望ましくない。また、榭脂濃度が 10重量%以上では、所望の多孔構 造が得られなくなるおそれがある。  [0066] The concentration of fat dissolved in an organic solvent is preferably 0.01 to 10% by weight, more preferably 0.05 to 5% by weight. When the resin concentration is lower than 0.01% by weight, the mechanical strength of the resulting film is insufficient and it is not desirable. In addition, if the concentration of fat is 10% by weight or more, the desired porous structure may not be obtained.
[0067] 上述した方法により多孔構造を有する細胞増殖抑制フィルムを作製する場合は、 前述の両親媒性物質を榭脂組成物中に添加することが好ましい。なかでも、水に対 して溶解性が低ぐ有機溶媒に可溶である、下記に示す両親媒性榭脂 (以下「Cap 榭脂」という。)を添加することが好ましい。 [0067] In the case of producing a cell proliferation inhibitory film having a porous structure by the method described above, It is preferred to add the aforementioned amphiphilic substance to the fat composition. Among them, it is preferable to add an amphipathic resin (hereinafter referred to as "Cap resin") which is soluble in an organic solvent having low solubility in water as shown below.
[0068] [化 1]  [Formula 1]
Figure imgf000019_0001
Figure imgf000019_0001
[0069] (上記式中、 m、 nはそれぞれ任意の自然数を表す。 ) (In the above formulas, m and n each represent an arbitrary natural number.)
[0070] このような両親媒性物質を添加することで、水滴の融合が抑えられ安定ィ匕するので 、孔径の均一性がさらに向上した多孔構造を有する部材を得ることができる。両親媒 性物質を添加する量は、榭脂:両親媒性物質の重量比で 99 : 1〜50: 50であること が好ましい。  By adding such an amphiphilic substance, the coalescence of water droplets is suppressed and stabilized, and therefore, a member having a porous structure in which the uniformity of the pore diameter is further improved can be obtained. The amount to which the amphiphilic substance is added is preferably 99: 1 to 50:50 in weight ratio of resin: amphipathic substance.
[0071] 前記榭脂ゃ榭脂組成物を含む有機溶媒溶液をキャストする基板としては、ガラス基 板、金属基板、シリコン基板などの無機基板;ポリプロピレン、ポリエチレン、ポリエー テルケトンなどの高分子力もなる有機基板;水、流動パラフィン、液状ポリエーテルな どの液状物力もなる液状基板;などが挙げられる。  As a substrate for casting an organic solvent solution containing the above-mentioned resin composition, an inorganic substrate such as a glass substrate, a metal substrate, a silicon substrate, etc .; an organic material such as polypropylene, polyethylene, polyether ketone etc. Substrates include liquid substrates that can also be liquid such as water, liquid paraffin, liquid polyethers, and the like.
[0072] 孔の孔径は、キャストする液の榭脂濃度および液量を調節してシャーレなどの支持 層に供給し、雰囲気ある!、は吹き付けるガスの温度および Zまたは湿度と吹き付ける ガスの流量を制御することにより、或いは溶媒の蒸発スピードおよび Zまたは結露ス ピードを制御することによって、制御することができる。  [0072] The pore diameter of the hole is adjusted to the resin concentration and amount of the solution to be cast and supplied to the support layer such as petri dish, and there is an atmosphere !, the temperature of the blowing gas and Z or the humidity and the flow rate of the blowing gas It can be controlled by control or by controlling the evaporation speed and Z or condensation speed of the solvent.
[0073] キャスト液に吹き付ける高湿度ガスは、キャスト液表面にガス中の水分を結露させる ことができる湿度であればよいが、相対湿度が 20〜100%のものが好ましぐ 30〜8 0%のものがより好ましい。また、ガスとしては、空気;窒素、アルゴンなどの不活性な ガス;等を用いることができる。  The high-humidity gas sprayed onto the cast liquid may be any humidity capable of causing moisture in the gas to condense on the surface of the cast liquid, but one having a relative humidity of 20 to 100% is preferred 30 to 80 % Is more preferable. Further, as the gas, air; inert gas such as nitrogen, argon or the like can be used.
[0074] キャスト液に吹き付ける高湿度ガスの流量は、キャスト液面にガス中の水分を結露さ せることができ、キャストに用いた溶媒を蒸発させることができる流量であればよぐ例 えば、直径 10cmのガラスシャーレ上でフィルムを作製する場合は、 l〜5LZminで あることが好ましい。 The flow rate of the high-humidity gas sprayed on the cast liquid can be such that the water content of the gas can be condensed on the cast liquid surface and the solvent used in the cast can be evaporated. When making a film on a glass petri dish of 10 cm in diameter, Is preferred.
[0075] 高湿度ガスを吹き付ける時間は、キャストに用いた溶媒が蒸発し、フィルムが成膜さ れるまでであり、通常、 1〜60分である。  The time for spraying the high-humidity gas is until the solvent used for casting evaporates and a film is formed, and is usually 1 to 60 minutes.
高湿度ガスを吹き付けるときの雰囲気の温度は、キャストに用いた溶媒が蒸発する ことができる温度であればよいが、 5〜80°Cの温度であることが望ましい。  The temperature of the atmosphere when spraying a high humidity gas may be a temperature at which the solvent used for casting can evaporate, but a temperature of 5 to 80 ° C. is desirable.
[0076] また、本発明の細胞増殖抑制部材が、第 1の榭脂フィルムと第 2の榭脂フィルムとの 積層フィルムである場合、この積層フィルムを作製する方法は特に限定されない。例 えば、(a)第 1の榭脂フィルムと第 2の榭脂フィルムとを別々に製造し、両者を重ね合 わせる方法、(b)第 1の榭脂フィルム上に、第 2の榭脂フィルムを構成するために用い る榭脂を含む有機溶媒溶液 (以下、「榭脂溶液」ということがある。)をキャストし、該有 機溶媒を蒸散させるとともに前記キャストした有機溶媒溶液表面で結露を起こさせ、 該結露により生じた水滴を蒸発させる方法、などが挙げられ、簡便性の観点から (a) の方法が好ましい。  In addition, when the cell growth suppressing member of the present invention is a laminated film of a first resin film and a second resin film, the method for producing the laminated film is not particularly limited. For example, (a) a method of separately producing a first resin film and a second resin film and laminating the two, (b) on a first resin film, a second method An organic solvent solution (hereinafter sometimes referred to as “resin solution”) containing resin used to form a fat film is cast, and the organic solvent is evaporated and the cast organic solvent solution is formed on the surface. A method of causing condensation and evaporating a water droplet generated by the condensation may be mentioned, and the method (a) is preferable from the viewpoint of simplicity.
[0077] 本発明にお ヽては、上記のようにして作製した少なくとも表面部に多孔構造を有す るフィルムをそのまま細胞増殖部材として用いることができる力 このフィルムを延伸 することにより得られる延伸フィルムを細胞増殖抑制部材として用いることもできる。  In the present invention, a film having a porous structure at least on its surface prepared as described above can be used as it is as a cell proliferation member. Force obtained by stretching this film A film can also be used as a cell proliferation inhibiting member.
[0078] フィルムを延伸する方法は特に限定されず、例えば、多孔構造を有するフィルムの 2以上の端を把持して、伸長方向に引っ張ることにより行うことができる。また延伸は、 一軸延伸、または二軸延伸であってもよい。延伸方向の伸長率は特に限定されない 力 好ましくは 1. 1〜10倍の範囲内である。  The method for stretching the film is not particularly limited, and for example, it can be performed by gripping two or more ends of the film having a porous structure and pulling in the stretching direction. The stretching may be uniaxial stretching or biaxial stretching. The elongation rate in the stretching direction is not particularly limited. The force is preferably in the range of 1. 1 to 10 times.
[0079] また延伸は、後述するように、本発明の細胞増殖抑制フィルムを医療用具基材に被 覆し、該医療用具基材を拡張させることによつても行うことができる。すなわち、本発 明の細胞増殖抑制フィルムで被覆した医療用具基材を拡張させることにより、延伸さ れた細胞増殖抑制フィルムが得られる。  Further, as described later, the stretching can also be performed by covering the cell growth inhibitory film of the present invention on a medical device base and expanding the medical device base. That is, by expanding the medical device substrate coated with the cell growth suppression film of the present invention, a stretched cell growth suppression film can be obtained.
[0080] また、本発明の細胞増殖抑制フィルムを形成するために、インクジェット方式または スクリーン方式のような印刷法を用いて榭脂組成物を所望の形状およびサイズにぺ 一ストしてもよいし、フォトリソグラフィ一法などを用いてさらに表面を成形してもよい。  In addition, in order to form the cell growth inhibitory film of the present invention, the resin composition may be molded into a desired shape and size using a printing method such as an inkjet method or a screen method. The surface may be further formed using a photolithography method or the like.
[0081] 2)細胞増殖抑制方法 本発明の細胞増殖抑制方法は、上記した本発明の細胞増殖抑制部材の多孔構造 が形成されている部分を細胞に接触させることにより、該接触部における細胞の増殖 を抑制することを特徴とする。本発明の細胞増殖抑制部材が、少なくとも表面部に多 孔構造が形成されて 、るものである場合には、本発明の細胞増殖抑制部材の表面 部分を細胞に接触させることにより、該接触部における細胞の増殖を抑制することが できる。本発明の方法によれば、生理活性物質を使用しなくとも優れた細胞増殖抑 制効果を得ることができる。 2) Cell growth suppression method The method for suppressing cell growth of the present invention is characterized by suppressing the growth of cells in the contact portion by bringing the portion in which the porous structure of the cell growth suppressing member of the present invention is formed into contact with cells. . In the case where the cell growth suppressing member of the present invention has a porous structure formed at least on the surface, the contact portion is obtained by bringing the surface portion of the cell growth suppressing member of the present invention into contact with cells. Can suppress the proliferation of cells in According to the method of the present invention, an excellent cell growth inhibitory effect can be obtained without using a physiologically active substance.
[0082] 本発明の細胞増殖抑制方法の適用対象は、細胞であれば特に限定されないが、 腫瘍細胞が好ましい。腫瘍細胞は、良性腫瘍細胞であっても、悪性腫瘍細胞 (ガン 細胞)であってもよい。  The application target of the cell growth suppression method of the present invention is not particularly limited as long as it is a cell, but a tumor cell is preferable. The tumor cells may be benign tumor cells or malignant tumor cells (cancer cells).
[0083] 上記腫瘍は、扁平上皮'腺上皮の腫瘍である上皮性腫瘍であっても、結合組織 '血 管 ·造血組織 ·筋組織 ·神経組織の腫瘍である非上皮性腫瘍であってもよ ヽ。悪性の 上皮性腫瘍としてはガン腫、悪性の非上皮性腫瘍は肉腫、白血病等が挙げられる。 より具体的には、口腔扁平上皮ガン (例えば歯肉、舌)、扁平上皮ガン (例えば食道 ガン、肺ガン、子宮頸ガン、皮膚ガン)、腺ガン (例えば肝内胆管ガン、総胆管ガン、 胆嚢ガン、乳ガン、腎ガン、胃ガン、脾ガン、甲状腺ガン、前立腺ガン、大腸ガン、肺 ガン)、肝細胞ガン、膀胱ガン (移行上皮ガン)、卵巣ガン、神経膠芽腫、悪性黒色腫 、骨肉腫、線維肉腫、神経芽細胞腫、絨毛ガン等が挙げられる。  [0083] The above tumor may be an epithelial tumor that is a squamous epithelial 'glandular epithelial tumor, or a non-epithelial tumor that is a connective tissue' blood vessel · hematopoietic tissue · muscle tissue · nerve tissue tumor. Yo. Malignant epithelial tumors include carcinoma, and malignant non-epithelial tumors include sarcoma, leukemia and the like. More specifically, oral squamous cell carcinoma (e.g. gingiva, tongue), squamous cell carcinoma (e.g. esophageal cancer, lung cancer, cervical cancer, skin cancer), adenocarcinoma (e.g. intrahepatic cholangiocarcinoma, cholangiocarcinoma, gallbladder) Cancer, breast cancer, kidney cancer, stomach cancer, splenic cancer, thyroid cancer, prostate cancer, colon cancer, lung cancer), hepatocellular carcinoma, bladder cancer (transitional cell carcinoma), ovarian cancer, glioblastoma, malignant melanoma, Osteosarcoma, fibrosarcoma, neuroblastoma, choriocarcinoma and the like.
[0084] 3)細胞転移抑制部材  3) Cell Metastasis Suppression Member
本発明の細胞転移抑制部材は、多孔構造が形成されていることを特徴とし、細胞 転移抑制作用を発揮するものである。この際、細胞転移抑制部材は、少なくとも表面 部に多孔構造が形成されて 、ることが好ま 、。  The cell metastasis suppressing member of the present invention is characterized in that a porous structure is formed, and exerts a cell metastasis suppressing action. At this time, it is preferable that the cell metastasis suppressing member has a porous structure formed on at least a surface portion thereof.
[0085] ここで、細胞転移とは、細胞、特に腫瘍細胞が原発部位から離れた場所に運ばれ、 その場所で定着し増殖する現象のことを言う。転移は、腫瘍細胞の主腫瘍力ゝらの遊 離、脈管内への浸潤と運搬、脈管壁への定着と管外への脱出、およびその部位での 増殖等の工程を経て起こることが知られて!/、る。  [0085] Here, cell metastasis refers to a phenomenon in which cells, in particular tumor cells, are transported to a place away from the primary site, and established and proliferated there. Metastasis may occur through processes such as migration of tumor cells from the main tumor, invasion and transport into the vessel, colonization and extravasation of the vessel wall, and growth at that site. Known! /.
本発明の細胞転移抑制部材は、上記工程のうち、特に腫瘍細胞が脈管等の周辺 糸且織への浸潤を抑制することができるものであり、力かる作用によって、腫瘍、特に悪 性腫瘍の転移を抑制することができるものである。 The cell metastasis suppressing member according to the present invention is a member capable of suppressing the invasion of the tumor cells into peripheral yarns and weaves such as vessels, among the above-mentioned steps. It can suppress the metastasis of sexual tumors.
[0086] 細胞転移抑制とは、転移を 100%抑制する、すなわち阻止することも意図される。  [0086] Cell metastasis suppression is also intended to suppress or arrest metastasis 100%.
本発明の細胞転移抑制部材が、腫瘍細胞の転移を抑制する機能を有するか否か を評価する方法としては、例えば、ヒト胎児線維芽細胞を含有するコラーゲンゲル上 に、腫瘍細胞を重層し、細胞転移抑制部材を腫瘍細胞に接触させて培養を行なった 場合と、細胞転移抑制部材を腫瘍細胞に接触させずに培養を行なった場合とにお V、て、腫瘍細胞のコラーゲンゲルへの浸潤の程度を比較する方法が挙げられる。  As a method for evaluating whether or not the cell metastasis-suppressing member of the present invention has a function to inhibit tumor cell metastasis, for example, tumor cells are layered on collagen gel containing human fetal fibroblasts, In the case where culture is carried out by bringing the cell metastasis-inhibiting member into contact with the tumor cells and in the case where the culture is carried out without bringing the cell metastasis-inhibition member into contact with the tumor cells V, There is a method of comparing the degree of
[0087] この評価方法は、本発明者らが鋭意検討の上、独自に考案した方法である。従来 法では、腫瘍細胞は培地内に浸っているため、腫瘍細胞と細胞転移抑制部材 (被験 物)との間に培地 (液体)が介在してしまい、両者を密着させることができず、被験物 の浸潤抑制能を評価することができなかった。上記評価方法によれば、腫瘍細胞層 の表面が空気 (厳密には 5% (v/v) CO、 95% (v/v)空気)に接しており、被験物  This evaluation method is a method uniquely devised by the present inventors after intensive studies. In the conventional method, since the tumor cells are immersed in the culture medium, the culture medium (liquid) intervenes between the tumor cells and the cell metastasis suppressing member (the test substance), and the two can not be brought into close contact with each other. It was not possible to evaluate the infiltration suppressing ability of the substance. According to the above evaluation method, the surface of the tumor cell layer is in contact with air (strictly, 5% (v / v) CO, 95% (v / v) air), and
2  2
を腫瘍細胞へ直接接触させることができるため、本発明の細胞転移抑制部材のごと く腫瘍細胞と接触させることが必要な被験物について、 in vitroで簡便に腫瘍細胞 の浸潤抑制能を評価することができる。  Therefore, it is possible to easily evaluate the tumor cell infiltration-suppressing ability in vitro for a test substance that needs to be brought into contact with tumor cells, as well as the cell metastasis-suppressing member of the present invention, because Can.
[0088] in vitroで腫瘍細胞の浸潤を評価する方法は、上記方法以外にも従来から知られ る方法があった(例えば Albini A, Iwamoto Y, Kleinman ΗΚ, Martin GR, Aaronson SA, Kozlowski JM, McEwan RN. A rapid in vitro assay f or quantitating the invasive potential of tumor cells. 'Cancer Res. 1987 Jun 15 ;47 (12) : 3239-45.、 Miyazaki YJ, Hamada J, Tada M, F uruuchi K, Takahashi Y, Kondo S, Katoh H, Moriuchi T. "HOXD3 enhances motility and invasiveness through the TGF― beta― depend ent and― independent pathways in A549 cells. "Oncogene. 2002 Ja n 24 ; 21 (5) : 798— 808.、および Shindoh M, Sun Q, Pater A, Pater M M: "Prevention of carcinoma in situ of human papil lomavirus type lb— immortalized human endo cervical cells by retinoic acid in org anotypic raft culture. Obstet Gynecol 1995, 85 : 721— 728等参照)。  Methods of evaluating tumor cell infiltration in vitro include conventionally known methods other than the above-mentioned methods (eg, Albini A, Iwamoto Y, Kleinman, Martin GR, Aaronson SA, Kozlowski JM, A cancer in vitro assay f or quantitating the invasive potential of tumor cells. 'Cancer Res. 1987 Jun 15; 47 (12): 3239-45., Miyazaki YJ, Hamada J, Tada M, F uruuchi K, Takahashi Y, Kondo S, Katoh H, Moriuchi T. "HOX D3 enhances motility and invasiveness through the TGF- beta depend ent and-independent pathways in A549 cells." Oncogene. 2002 Jan 24; 21 (5): 798-808. , And Shindoh M, Sun Q, Pater A, Pater MM: "Prevention of carcinoma in situ of human papil lomavirus type lb-Immunized human endo cervical cells by retinoic acid in org anotypic raft culture. Obstet Gynecol 1995, 85: 721-728- Etc.).
[0089] また、 in vivoにおいて腫瘍細胞の転移を抑制するか否かを評価する方法としては 、例えば細胞転移抑制部材を接触させた腫瘍細胞と、接触させていない腫瘍細胞と をそれぞれマウス、ラット等の実験動物の体内 (皮下、腹腔あるいは胸腔内)に移植し 、一定期間経過後、移植した周辺組織を摘出し腫瘍細胞の周囲への浸潤ならびにリ ンパ節および隔臓器への転移の有無を染色法等により評価するという方法、腫瘍が 生じた患部に細胞転移抑制部材を導入し、一定期間経過後の周辺組織を、細胞転 移抑制部材を導入して 、な 、患部の周辺組織と比較すると 、う方法が挙げられる。 In addition, as a method of evaluating whether or not tumor cell metastasis is suppressed in vivo, For example, tumor cells contacted with a cell metastasis-inhibiting member and tumor cells not contacted are transplanted into the body (subcutaneous, abdominal cavity or thoracic cavity) of experimental animals such as mice and rats, respectively, and after a certain period of time, transplantation is carried out. Isolated the surrounding tissue and evaluate the presence or absence of tumor cell infiltration around the tumor and metastasis to the lymph node and other organs by staining, etc. A cell metastasis suppressor is introduced into the affected area where the tumor arose, A method is available in which peripheral tissues after a lapse of time are compared with peripheral tissues of the affected area by introducing a cell migration-suppressing member.
[0090] 本発明の細胞転移抑制部材を構成する材料や形態としては、前述した細胞増殖抑 制部材と同様のものを好適に挙げることができ、同様の製造方法により製造すること ができる。  As the material and the form of the cell migration suppressing member of the present invention, the same materials as those of the cell proliferation suppressing member described above can be suitably exemplified, and the material can be manufactured by the same manufacturing method.
[0091] 4)細胞転移抑制方法  4) Cell metastasis suppression method
本発明の細胞転移抑制方法は、上記した本発明の細胞転移抑制部材の多孔構造 が形成されている部分を細胞に接触させることにより、該接触部における細胞の転移 を抑制することを特徴とする。本発明の細胞転移抑制部材が、少なくとも表面部に多 孔構造が形成されて ヽるものである場合には、本発明の細胞転移抑制部材の表面 部分を細胞に接触させることにより、該接触部における細胞の転移を抑制することが できる。本発明の方法によれば、生理活性物質を使用しなくとも優れた細胞転移抑 制効果を得ることができる。  The method for suppressing cell metastasis of the present invention is characterized in that the cell metastasis at the contact portion is suppressed by bringing the portion in which the porous structure of the cell metastasis suppressing member of the present invention is formed into contact with cells. . In the case where the cell metastasis suppressing member of the present invention has a porous structure formed on at least the surface portion, the contact portion is obtained by bringing the surface portion of the cell metastasis suppressing member of the present invention into contact with cells. Can suppress cell metastasis in According to the method of the present invention, an excellent cell transfer suppression effect can be obtained without using a physiologically active substance.
[0092] 細胞転移抑制方法の適用対象は、細胞であれば特に限定されな 、が、腫瘍細胞 が好ましい。腫瘍細胞は、良性腫瘍細胞であっても、悪性腫瘍細胞 (ガン細胞)であ つてもよい。  [0092] The application target of the cell metastasis suppression method is not particularly limited as long as it is a cell, but a tumor cell is preferable. The tumor cells may be benign tumor cells or malignant tumor cells (cancer cells).
また上記腫瘍は、扁平上皮 '腺上皮の腫瘍である上皮性腫瘍であっても、結合組 織 '血管'造血組織 ·筋組織 ·神経組織の腫瘍である非上皮性腫瘍であってもよ ヽ。 悪性の上皮性腫瘍としてはガン腫、悪性の非上皮性腫瘍は肉腫、白血病等が挙げ られる。より具体的には、口腔扁平上皮ガン (例えば歯肉、舌)、扁平上皮ガン (例え ば食道ガン、肺ガン、子宮頸ガン、皮膚ガン)、腺ガン (例えば肝内胆管ガン、総胆管 ガン、胆嚢ガン、乳ガン、腎ガン、胃ガン、脾ガン、甲状腺ガン、前立腺ガン、大腸ガ ン、肺ガン)、肝細胞ガン、膀胱ガン (移行上皮ガン)、卵巣ガン、神経膠芽腫、悪性 黒色腫、骨肉腫、線維肉腫、神経芽細胞腫、絨毛ガン等が挙げられる。 [0093] 5)医療用具 Further, the above tumor may be an epithelial tumor which is a squamous epithelial 'glandular epithelial tumor or a non-epithelial tumor which is a tumor of a connective tissue' blood vessel ', hematopoietic tissue, muscle tissue, nerve tissue. . Malignant epithelial tumors include carcinoma, and malignant non-epithelial tumors include sarcoma, leukemia and the like. More specifically, oral squamous cell carcinoma (e.g. gingiva, tongue), squamous cell carcinoma (e.g. esophageal cancer, lung cancer, cervical cancer, skin cancer), adenocarcinoma (e.g. intrahepatic cholangiocarcinoma, common cholangiocarcinoma, Gallbladder cancer, breast cancer, renal cancer, stomach cancer, splenic cancer, thyroid cancer, prostate cancer, colon cancer, lung cancer), hepatocellular carcinoma, bladder cancer (transitional cell carcinoma), ovarian cancer, glioblastoma, malignant black Tumors, osteosarcoma, fibrosarcoma, neuroblastoma, choriocarcinoma and the like. 5) Medical Tools
本発明の医療用具は、医療用具基材の表面の全部または一部を、本発明の細胞 増殖抑制部材または細胞転移抑制部材で被覆してなることを特徴とする。  The medical device of the present invention is characterized in that the whole or a part of the surface of the medical device substrate is coated with the cell proliferation suppressing member or the cell metastasis suppressing member of the present invention.
[0094] ここで、医療用具基材とは、本発明の細胞増殖抑制部材または細胞転移抑制部材 を被覆することで医療用具として用いることができる基材であるが、単体であっても医 療用具として用いることができるものであってもよ 、。  Here, the medical device substrate is a substrate that can be used as a medical device by covering the cell proliferation suppressing member or the cell metastasis suppressing member of the present invention, but even if it is used alone, it can be used as a medical treatment. It may be used as a tool.
[0095] 本発明の医療用具は、腫瘍細胞に対し細胞増殖抑制作用および Zまたは細胞転 移抑制作用を示す部材で被覆されてなるので、該部材の接触部にぉ 、てガンの進 行を抑制することができる。また、この細胞増殖抑制作用および Zまたは細胞転移抑 制作用は、制ガン剤などの生理活性物質を必要とすることなく発揮されるので、生理 活性物質による副作用を回避することができる。  [0095] The medical device of the present invention is coated with a member that exhibits cytostatic and Z or cell migration inhibitory effects on tumor cells, so that the cancer can be progressed at the contact portion of the member. It can be suppressed. In addition, since this cytostatic action and for inhibiting Z or cell metastasis are exhibited without the need for a physiologically active substance such as an anticancer drug, it is possible to avoid the side effects due to the physiologically active substance.
[0096] 本発明の医療用具としては、例えば、ステント、カテーテル、医療用チューブなどが 挙げられる力 ステントであるのが好ましぐ特に腫瘍細胞により狭窄または閉塞した 体内管腔に留置されるステントであるのが好ましい。  [0096] The medical device of the present invention is preferably a stent such as a stent, a catheter, a medical tube or the like, preferably a stent placed in a body lumen narrowed or occluded by tumor cells. Preferably there.
[0097] そのようなステントとしては、尿管ステント、胆管ステント、気道ステント、食道ステント 、大腸ステントなどが挙げられる。  [0097] Examples of such stents include ureteral stents, biliary stents, airway stents, esophageal stents, colon stents and the like.
[0098] また、本発明の医療用具が、胆管、食道、十二指腸、大腸などの消化器系体内管 腔に留置される消ィ匕器系ステントである場合には、被覆に用いる部材には、多孔構 造が貫通孔からなり、平均孔径が 0. 1〜20 /ζ πιで、孔径の変動係数が 30%以下で あるものを用いることが好ましい。このような部材を被覆することで、細胞増殖抑制作 用のみならず、消化液およびそれに含まれる消化酵素を透過させ、腫瘍細胞は透過 させな 、機能をも備えた消化器系ステントが得られる。  Further, when the medical device of the present invention is a catheter based stent placed in a digestive system internal lumen such as bile duct, esophagus, duodenum, large intestine, etc. It is preferable to use one having a porous structure consisting of through holes, an average pore diameter of 0.1 to 20 / ζπι, and a variation coefficient of the pore diameter of 30% or less. By coating such a member, it is possible to obtain a digestive system stent having functions not only for cell growth suppression but also for permeating digestive fluid and digestive enzymes contained therein and not permeating tumor cells. .
[0099] 前記医療用具基材に本発明の細胞増殖抑制部材または細胞転移抑制部材 (以下 、「本発明部材」ということがある。)を被覆する方法は特に限定されない。例えば、 ( α )本発明部材を作製する方法と同様に、本発明部材を製造した後に、医療用具基 材に被覆する方法が挙げられる。また、第 1の榭脂フィルムと第 2の榭脂フィルムから なる本発明部材を用いる場合には、 ( )8 )第 1の榭脂フィルムおよび第 2の榭脂フィル ムを別々に製造しておき、医療用具基材上に第 2の榭脂フィルムを被覆させ、さらに 該第 2の榭脂フィルム上に第 1の榭脂フィルムを被覆させる方法、( γ )医療用具基材 上で第 2の榭脂フィルムを被覆し、該第 2の榭脂フィルム上に第 1の榭脂フィルムを成 膜する方法などが挙げられる。これらの場合は、作製した本発明部材を医療用具基 材の表面に接触させるのみで接着力が得られるが、必要に応じて、接着剤、溶媒に よる融着、熱による融着などの手段を用いてもよい。 There is no particular limitation on the method of coating the cell proliferation suppressing member or the cell metastasis suppressing member (hereinafter sometimes referred to as “the member of the present invention”) of the present invention on the medical device substrate. For example, (.alpha.) In the same manner as the method of producing the member of the present invention, the method of coating the medical device substrate after producing the member of the present invention may be mentioned. When using the member of the present invention consisting of the first resin film and the second resin film, () 8) the first resin film and the second resin film are separately produced and A second resin film on the medical device substrate, and A method of coating a first resin film on the second resin film, (γ) coating a second resin film on a medical device substrate, and forming a second resin film on the second resin film; And a method of forming a resin film of In these cases, adhesion can be obtained simply by bringing the manufactured member of the present invention into contact with the surface of the medical device base, but if necessary, means such as fusion with an adhesive or solvent, fusion with heat, etc. May be used.
[0100] 次に、本発明の医療用具の一例として、ステント基材を本発明部材で被覆してなる ステントについて説明する。 Next, as an example of the medical device of the present invention, a stent obtained by coating a stent base material with the member of the present invention will be described.
[0101] ステント基材の形状は、管状体であれば特に限定されないが、通常、線状体または 帯状体が網目状に連なって周壁を形成する管状体である。  The shape of the stent base is not particularly limited as long as it is a tubular body, but in general, it is a tubular body in which linear bodies or strip bodies are connected in a network to form a peripheral wall.
[0102] ステント基材を線状体で構成する場合の線径は、 0. 05〜: Lmmであることが好まし い。また、ステント基材を帯状体で構成する場合、その幅が 0. 1〜: LOmmであること が好ましぐ厚さが 0. 05〜5mmであることが好ましい。  [0102] The wire diameter in the case where the stent base material is formed of a linear body is preferably 0.50 to: L mm. When the stent base material is formed in a band, the thickness is preferably in the range of 0.1 to 5 mm, preferably in the range of 0.1 to LO mm.
[0103] このステント基材の管状体としての大きさは、留置される体内管腔の大きさにより異 なるが、通常、外径が 2〜30mm、内径が l〜29mm、長さが 5〜200mmである。 特に、胆管ステントを構成するために用いる場合は、外径が 5〜20mm、内径が 4〜 19mm、長さが 10〜 100mmであることが好まし!/、。  The size of the stent base as a tubular body varies depending on the size of the indwelling body lumen, but generally, the outer diameter is 2 to 30 mm, the inner diameter is 1 to 29 mm, and the length is 5 to 5 mm. It is 200 mm. In particular, when used to construct a biliary stent, it is preferable that the outer diameter is 5 to 20 mm, the inner diameter is 4 to 19 mm, and the length is 10 to 100 mm!
[0104] ステント基材の材料としては、合成樹脂または金属が使用される。合成樹脂はある 程度、硬度と弾性があるものが使用され、生体適合性榭脂が好ましい。具体的には、 ポリオレフイン、ポリエステル、フッ素榭脂などがある。ポリオレフインとしては、例えば ポリエチレン、ポリプロピレンが挙げられ、ポリエステルとしては、例えば、ポリエチレン テレフタレート、ポリブチレンテレフタレート、フッ素榭脂としては、ポリテトラフルォロェ チレン(PTFE)、エチレン.テトラフルォロエチレン共重合体(ETFE)などが挙げられ る。また、金属としては、ニッケルチタン (Ti—Ni)合金のような超弾性合金、ステンレ ス鋼、タンタル、チタン、コバルトクロム合金などが使用できる力 特に、超弾性合金 が好ましい。  As a material of the stent base, a synthetic resin or a metal is used. The synthetic resin is used to some extent with hardness and elasticity, and a biocompatible resin is preferred. Specifically, there are polyolefin, polyester, fluorine resin and the like. Examples of the polyolefin include polyethylene and polypropylene, and examples of the polyester include polyethylene terephthalate and polybutylene terephthalate. Examples of the fluorine resin include polytetrafluoroethylene (PTFE) and ethylene.tetrafluoroethylene copolymer. And coalescence (ETFE). Further, as the metal, a superelastic alloy such as a nickel titanium (Ti-Ni) alloy, a stainless steel, tantalum, titanium, a cobalt-chromium alloy and the like can be used. In particular, a superelastic alloy is preferable.
[0105] なかでも、 49〜53原子%Niの Ti— Ni合金を用いることが特に好ましい。また、 Ti —Ni合金中の原子の一部を 0. 01〜: LO. 0%の他の原子で置換した Ti—Ni—X合 金(X=Co、 Feゝ Mn、 Crゝ V、 Al、 Nbゝ W、 Bなど)とする力、、または Ti—Ni—X合金 の一部を 0. 01〜30. 0%の他の原子で置換した Ti— Ni— X合金(X=Cu、 Pb、 ZrAmong them, it is particularly preferable to use a 49-53 atomic% Ni Ti—Ni alloy. In addition, Ti—Ni—X alloy in which a part of the atoms in the Ti—Ni alloy is substituted by 0.01 to: LO. 0% of other atoms (X = Co, Fe Mn Mn, Cr ゝ V, Al , Nb ゝ W, B etc.), or Ti-Ni-X alloy Ti-Ni-X alloy (X = Cu, Pb, Zr) in which a part of Cu is replaced by 0.01 to 30.0% of other atoms
)として、冷却加工率および Zまたは最終熱処理の条件を選択することにより、超弹 性合金の機械的特性を適宜変更することができる。 The mechanical properties of the superalloy can be changed as appropriate by selecting the cooling processing rate and the condition of Z or final heat treatment.
[0106] ステント基材の成形は、例えば、レーザー加工 (例えば YAGレーザー)、放電加工[0106] For forming the stent base material, for example, laser processing (for example, YAG laser), electrical discharge processing
、化学エッチング、切削加工などにより、パイプをカ卩ェすることで行うことができる。 , Chemical etching, cutting, etc., by caulking the pipe.
[0107] ステント基材には、体内管腔に留置した際に X線透視により位置を確認できるように[0107] The stent base material can be confirmed by fluoroscopy when deployed in a body lumen.
X線マーカーを設けることが好ましい。 X線マーカーは、 X線造影性材料 (X線不透過 材料)により形成されている。これにより、 X線造影下でステント基材の位置を把握す ることがでさる。 Preferably, x-ray markers are provided. The X-ray marker is formed of an X-ray contrast material (X-ray opaque material). This makes it possible to grasp the position of the stent base under radiography.
[0108] X線不透過材料としては、例えば、金、プラチナ、プラチナイリジウム合金、白金、銀 、ステンレス、あるいはそれらの合金などの X線造影性金属が好適である。さら〖こ、 X 線マーカーは、 X線造影物質粉末を含有する榭脂成型物であってもよい。 X線造影 物質粉末としては、硫酸バリウム、次炭酸ビスマス、タングステン粉末、上記した金属 粉末などが使用できる。  As the radiopaque material, for example, radiopaque metals such as gold, platinum, platinum-iridium alloy, platinum, silver, stainless steel, or alloys thereof are preferable. Furthermore, the X-ray marker may be a resin molding containing an X-ray contrast material powder. As the X-ray contrast material powder, barium sulfate, bismuth subcarbonate, tungsten powder, the above-mentioned metal powder and the like can be used.
[0109] 本発明部材をステント基材に被覆する方法は、特に限定されず、本発明部材をス テント基材に卷きつける方法が挙げられる。また、第 1の榭脂フィルムと第 2の榭脂フ イルム力もなる本発明部材を用いる場合には、ステント基材表面に第 2の榭脂フィル ムを被覆し、ついで、該第 2の榭脂フィルム上に第 1の榭脂フィルムを被覆する方法 などが挙げられる。また、必要に応じて、接着剤、溶媒による融着、熱による融着など の手段を用いてもよい。  The method for coating the inventive member on a stent substrate is not particularly limited, and a method for sticking the inventive member on a stent substrate can be mentioned. In addition, when using the member of the present invention which also has a first resin film and a second resin film force, the stent substrate surface is coated with a second resin film, and then the second resin film is used. A method of coating the first resin film on a fat film, and the like can be mentioned. Also, if necessary, means such as adhesion with an adhesive or a solvent, or fusion with a heat may be used.
[0110] ステントを体内管腔に留置するには、従来のステントと同様の方法を用いればよい 。例えば、ステント基材が超弾性合金などの弾性に富んだ材料で構成されている場 合には、ステント周壁を収縮させた状態でデリバリーカテーテルに挿入して留置する 箇所まで運び、それから、ステントをデリバリーカテーテルから出すことでステントの周 壁を拡張させて留置する方法が挙げられる。また、ステント基材カ Sステンレス鋼などの 弾性の乏し ヽ材料で構成されて ヽる場合には、バルーンカテーテルのノ レーンにス テントを外嵌して、留置する箇所まで運び、それから、バルーンを拡張させることでス テントの周壁を拡張させて留置する方法が挙げられる。なお、ステントを消ィ匕器系体 内管腔に留置させる際には、通常、ステント基材が拡張される力 このステント基材の 拡張を利用して被覆された部材 (フィルム)の延伸を行ってもょ ヽ。 To place a stent in a body lumen, a method similar to a conventional stent may be used. For example, if the stent base material is made of a highly elastic material such as a superelastic alloy, the stent peripheral wall is contracted, and the stent is inserted into a delivery catheter and carried to the place to be placed, and then the stent is removed. There is a method in which the peripheral wall of the stent is expanded and deployed by taking it out of the delivery catheter. In addition, if it is made of a material with poor elasticity such as stent base material S stainless steel, it is necessary to externally fit the stent on the balloon catheter lane and carry it to the place where it is to be placed, and then the balloon. There is a method of expanding and retaining the peripheral wall of the stent by expanding it. In addition, stents are used as insulators When indwelling in the inner lumen, usually the force with which the stent base material is expanded The expansion of the stent base material may be used to stretch the coated member (film).
[0111] 本発明の医療用具の一例であるステントは、ステント基材を本発明部材で被覆して なるので、このステントを腫瘍細胞により狭窄または閉塞した体内管腔に留置すること で、腫瘍細胞がステントの周壁を超えて成長して生じる体内管腔の狭窄を防止するこ とがでさる。  Since a stent, which is an example of the medical device of the present invention, has a stent base coated with a member of the present invention, the stent can be placed in a body lumen narrowed or occluded by tumor cells to obtain tumor cells. Can prevent the narrowing of the body lumen caused by growth beyond the peripheral wall of the stent.
実施例  Example
[0112] 次に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例 に限定されるものではない。  Next, the present invention will be more specifically described by way of examples, but the present invention is not limited to the following examples.
[0113] (実施例 1) Example 1
(細胞増殖抑制部材の作製)  (Preparation of cell proliferation suppressing member)
本発明に力かる細胞増殖抑制部材を以下のようにして作製した。  The cell growth suppressing member to be used in the present invention was produced as follows.
ポリ 一力プロラタトン)(Poly( ε -caprolactone); (株)和光純薬工業、重量平 均分子量: 70, 000〜100, 000、以下「PCL榭脂」という。)と、 Cap榭脂(重量平均 分子量: 62, 000、数平均分子量: 21, 000)とを重量比 10 : 1の割合で混合した後 にクロ口ホルムに溶解し、濃度 5. OmgZmLの榭脂溶液(1)を調製した。  Wako Pure Chemical Industries, Ltd., weight average molecular weight: 70, 000 to 100, 000, hereinafter referred to as "PCL resin", and Cap resin (weight) Average molecular weight: 620,000, number average molecular weight: 21,000) were mixed at a weight ratio of 10: 1, and then dissolved in chloroform to prepare a fat solution (1) at a concentration of 5. Omg ZmL. .
[0114] 調製した榭脂溶液(1)をガラスシャーレ(直径 9cm)にキャストし、次いで、 23°C、相 対湿度 35%の雰囲気下で、相対湿度 80%の高湿度空気を 2. OLZminの流量で、 ガラスシャーレ上の液面に吹き付けることにより、多孔構造を有する細胞増殖抑制部 材 (フィルム A〜G)を作製した。 [0114] The prepared resin solution (1) is cast into a glass petri dish (diameter 9 cm), and then high humidity air with an relative humidity of 80% under an atmosphere of 23 ° C and a relative humidity of 35% 2. OLZmin The cell growth suppression member (films A to G) having a porous structure was produced by spraying the liquid surface on a glass petri dish at a flow rate of
[0115] フィルム A〜Gは、上記においてキャストする榭脂溶液(1)の量を 4〜20mLの範囲 で変えることにより作製したものである。 Films A to G were produced by changing the amount of the resin solution (1) cast in the above in the range of 4 to 20 mL.
作製した各フィルムの多孔構造 (を構成する孔)の孔径、幹幅および空孔率を、走 查型電子顕微鏡(SEM) (HITACHI, S— 3500)を用いて測定し求めた。  The pore diameter, stem width and porosity of (the pores constituting) the porous structure of each of the produced films were measured and determined using a scanning electron microscope (SEM) (HITACHI, S-3500).
孔径は、合計 5枚の画像を用いて、画像 1枚あたり任意の 5個の孔を選択し、合計 2 As for the hole diameter, using a total of 5 images, select any 5 holes per image, a total of 2
5個の孔の直径の平均値を計算することにより求めた。また幹幅は、合計 5枚の画像 を用いて、画像 1枚あたり任意の 5箇所、合計 25箇所について孔同士間の最短距離 を測定し、その平均値を計算することにより求めた。 また空孔率は、 SEM写真を用い、画像解析用ソフトウェア Scion Image (Scion Corporation製)により算出して求めた。 It calculated | required by calculating the average value of the diameter of five holes. The stem width was determined by measuring the shortest distance between the holes at five arbitrary points per image and a total of 25 points using a total of five images, and calculating the average value. The porosity was calculated using a SEM photograph and calculated using Scion Image software (manufactured by Scion Corporation) for image analysis.
[0116] 上記の操作によって得られた細胞増殖抑制部材の、多孔構造を構成する孔の孔 径、幹幅、空孔率、変動係数は、それぞれ下記第 1表に示す通りであった。 [0116] The pore diameter, stem width, porosity and coefficient of variation of the pores constituting the porous structure of the cell proliferation suppressing member obtained by the above operation were as shown in Table 1 below, respectively.
[0117] また、上記榭脂溶液(1)を 18mm角のカバーガラス上に滴下し、 1000rpm、 30秒 の条件でスピンコーター(MIKASA製)を用いることにより、多孔構造を有さない PC L榭脂製のフィルム (以下、「PCL平膜 (1)」という。)を作製した。 Further, the resin solution (1) is dropped onto a 18 mm square cover glass, and using a spin coater (manufactured by MIKASA) under conditions of 1000 rpm and 30 seconds, PC L PC having no porous structure. A film made of fat (hereinafter referred to as "PCL flat membrane (1)") was produced.
[0118] (実施例 2) Example 2
(細胞増殖抑制部材の作製)  (Preparation of cell proliferation suppressing member)
本発明に力かる細胞増殖抑制部材を以下のようにして作製した。  The cell growth suppressing member to be used in the present invention was produced as follows.
PCL榭脂と Cap榭脂 (重量平均分子量: 62, 000、数平均分子量: 21, 000)とを 重量比 10 : 1の割合で混合した後にクロ口ホルムに溶解し、濃度 5. OmgZmLの混 合溶液を調製した。  After mixing PCL fat and Cap fat (weight average molecular weight: 62, 000, number average molecular weight: 21,000) at a weight ratio of 10: 1, dissolve in crook hole, concentration 5. Mix Omg ZmL The combined solution was prepared.
[0119] この混合溶液に、 PCL榭脂 100重量部に対して、 1重量部のサイクリックネオペンタ ンテトライルビス(2, 6 ジ一第 3ブチル 4—メチルフエ-ルホスフアイト)を添カ卩して 榭脂溶液 (2)を得た。得られた榭脂溶液 (2)をガラスシャーレ(直径 9cm)にキャスト し、次いで、 23°C、相対湿度 35%の雰囲気下で、相対湿度 80%の高湿度空気を 2 . OLZminの流量で、ガラスシャーレ上の液面に吹き付けることにより、多孔構造を 有する細胞増殖抑制部材 (フィルム H〜N)を作製した。  [0119] To this mixed solution, 1 part by weight of cyclic neopentatetrayl bis (2, 6 di-tert-butyl 4-methylphenyl phosphite) is added by adding 100 parts by weight of PCL resin. A resin solution (2) was obtained. The resulting resin solution (2) is cast into a glass petri dish (diameter 9 cm), and then in a 23 ° C., 35% relative humidity atmosphere, high humidity air with a relative humidity of 80% is applied at a flow rate of 2. OLZmin. By spraying on a liquid surface on a glass petri dish, a cell growth suppressing member (film H to N) having a porous structure was produced.
[0120] フィルム H〜Nは、上記においてキャストする榭脂溶液(2)の量を 4〜20mLの範囲 で変えることにより作製したものである。 [0120] Films H to N were produced by changing the amount of the resin solution (2) cast in the above in the range of 4 to 20 mL.
作製した各フィルムの、多孔構造を構成する孔の孔径、幹幅および空孔率を、走査 型電子顕微鏡(SEM) (HITACHI, S— 3500)を用いて測定し求めた。  The pore diameter, stem width and porosity of the pores constituting the porous structure of each of the produced films were measured and determined using a scanning electron microscope (SEM) (HITACHI, S-3500).
孔径は、合計 5枚の画像を用いて、画像 1枚あたり任意の 5個の孔を選択し、合計 2 5個の孔の直径の平均値を計算することにより求めた。また幹幅は、合計 5枚の画像 を用いて、画像 1枚あたり任意の 5箇所、合計 25箇所について孔同士間の最短距離 を測定し、その平均値を計算することにより求めた。  The hole diameter was determined by selecting an arbitrary 5 holes per image using a total of 5 images, and calculating the average value of the diameter of a total of 25 holes. The stem width was determined by measuring the shortest distance between the holes at five arbitrary points per image and a total of 25 points using a total of five images, and calculating the average value.
また空孔率は、 SEM写真を用い、画像解析用ソフトウェア Scion Image (Scion Corporation製)により算出して求めた。 In addition, the porosity is determined by using an SEM image and using Scion Image (Scion) software for image analysis. It calculated and calculated | required by Corporation make.
[0121] 上記の操作によって得られた細胞増殖抑制部材の、多孔構造を構成する孔の孔 径、幹幅、空孔率、変動係数は、それぞれ下記第 1表に示す通りであった。 The pore diameter, stem width, porosity and coefficient of variation of the pores constituting the porous structure of the cell proliferation suppressing member obtained by the above operation were as shown in Table 1 below, respectively.
[0122] [表 1] [Table 1]
第 1 表  Table 1
Figure imgf000029_0001
Figure imgf000029_0001
[0123] また、上記榭脂溶液(2)を 18mm角のカバーガラス上に滴下し、 1000rpm、 30秒 の条件でスピンコーター(MIKASA製)を用いることにより、多孔構造を有さない PC L榭脂製のフィルム (以下、「PCL平膜 (2)」という。)を作製した。 Further, the above-mentioned resin solution (2) is dropped onto a 18 mm square cover glass, and a spin coater (manufactured by MIKASA) is used under the conditions of 1000 rpm and 30 seconds to obtain PC L な い having no porous structure. A film made of fat (hereinafter referred to as "PCL flat membrane (2)") was produced.
[0124] (腫瘍細胞培養プレートの作製)  (Preparation of Tumor Cell Culture Plate)
上記で作製した細胞増殖抑制部材 (フィルム A〜N)、または PCL平膜(1)、 (2)を 切り取り、直径約 14mmの円型カバーガラス(MATSUNAMI製)に密着させた。そ の後、 24— well tissue culture plate (ファルコン社製)のゥエル内に敷いた。当 該カバーガラスを固定するため、外径約 14mmのガラスシリンダーをゥエルの内側に セットした。なお、コントロールの場合は上記カバーガラスを敷かずに、上記ガラスシリ ンダ一のみをセットした。 上記で作製した腫瘍細胞培養プレートの断面図を図 2に示す。 The cell proliferation suppressing member (films A to N) or the PCL flat membranes (1) and (2) prepared above were cut out and closely adhered to a circular cover glass (manufactured by MATSUNAMI) having a diameter of about 14 mm. Thereafter, it was placed in a well of a 24-well tissue culture plate (manufactured by Falcon). In order to fix the cover glass, a glass cylinder with an outer diameter of about 14 mm was set inside the well. In the case of control, only the above glass cylinder was set without laying the above cover glass. A cross-sectional view of the tumor cell culture plate prepared above is shown in FIG.
[0125] (腫瘍細胞の培養) (Culture of tumor cells)
上記腫瘍細胞培養プレートのゥヱル内に 100% (vZv)エタノールを 0. lmLずつ注 入した。エタノールが蒸発する前に、 DMEZF12培地(ダルベッコ改変 MEM培地( 入手先:日水製薬社)とハム F12培地 (入手先:シグマ社)を 1: 1の容量で混合した培 地)をゥエルあたり lmLずつ注入し、ァスピレータを用いて当該培地を除去した。  0.1 ml of 100% (vZv) ethanol was injected into each volume of the above-mentioned tumor cell culture plate. Before ethanol evaporation, lmL per well of DMEZF12 medium (Dulbecco's modified MEM medium (available from: Nissui Pharmaceutical Co., Ltd.) and Ham's F12 medium (available from: Sigma company) in a volume of 1: 1) The culture medium was removed using an aspirator.
[0126] DMEZF12培地をゥヱルあたり lmLずつ再度注入し、ァスピレータを用いて当該 培地を除去した。その後、 10%ゥシ胎児血清(featal bovine serum (FBS):ケン ブレックス社製)を含んだ DMEZF12培地(以下「DMEZF12— 10%FBS」と表記 する)をゥヱルあたり 0. 95mLずつ注入した。 [0126] DMEZF12 medium was again injected at 1 mL per volume, and the medium was removed using an aspirator. Thereafter, DMEZF12 medium (hereinafter referred to as "DMEZF12-10% FBS") containing 10% fetal bovine serum (fetal bovine serum (FBS): manufactured by Ken Brecks Co., Ltd.) was injected at 0.95 mL per volume.
1 X 107個 ZmLとなるように、 DMEZF12— 10%FBSで調製した各種腫瘍細胞 浮遊液を、 0. 05mL/ゥエルずつ添カ卩し、 37°C、 2〜4日間培養を行なった (CO濃 A suspension of various tumor cells prepared with DMEZF12-10% FBS was added at 0.05 mL / well at 1 X 10 7 ZmL, and cultured at 37 ° C for 2 to 4 days. CO concentration
2 度 5%vZv)。  2 degrees 5% vZv).
[0127] なお、腫瘍細胞は以下の細胞株を用いた。 The following cell lines were used as tumor cells.
Ca9 22 (口腔扁平上皮ガン (歯肉)、入手先:ヒューマンサイエンス研究資源バン ク)、 HSC 3 (口腔扁平上皮ガン (舌)、入手先:ヒューマンサイエンス研究資源バン ク)、 KYSE- 110 (食道ガン (扁平上皮ガン)、入手先:ヒューマンサイエンス研究資 源バンク)、 Li 7 (肝細胞ガン、入手先:東北大学加齢医学研究所附属医用細胞資 源センター)、 HuH— 28 (肝内胆管ガン (腺ガン)、入手先:東北大学加齢医学研究 所附属医用細胞資源センター)、 TFK— 1 (総胆管ガン (腺ガン)、入手先:東北大学 加齢医学研究所附属医用細胞資源センター)、 GB— dl (胆嚢ガン (腺ガン)、入手 先:福岡大学医学部志村英生氏)、 A549 (肺ガン (腺ガン)、入手先:ヒューマンサイ エンス研究資源バンク)、 Lu99 (肺ガン (扁平上皮ガン)、入手先:東北大学加齢医 学研究所附属医用細胞資源センター)、 MDA-MB-435S (乳ガン (腺ガン)、入 手先: American Type Culture Collection)、 RXF— 631L (腎ガン(腺ガン)、 入手先: National Cancer Institute, USA)、 EJ— 1 (fl旁胱ガン(移行上皮ガン) 、入手先:ヒューマンサイエンス研究資源バンク)、 HeLa (子宮頸ガン (扁平上皮ガン )、入手先:ヒューマンサイエンス研究資源バンク)、 SK— OV— 3 (卵巣ガン、入手先 : National Cancer Institute, USA)、 SF295 (神経膠芽腫、入手先: NationalCa92 22 (oral squamous cell carcinoma (gum), source: human science research resource bank), HSC 3 (oral squamous cell carcinoma (tongue), source: human science research resource bank), KYSE- 110 (esophageal cancer) (Squamous cell carcinoma), source: human science research resource bank), Li 7 (hepatocellular carcinoma, source: Tohoku University Institute of Aging Medicine, Medical Cell Resource Center), HuH-28 (intrahepatic cholangiocarcinoma (Adenal cancer), source: Tohoku University Institute of Aging Medicine, Medical Cell Resource Center, TFK-1 (Bobiliary ductal cancer (adenoma cancer), source: Tohoku University Institute of Aging Medicine, Medical Cell Resource Center) , GB-dl (gland cancer cancer (adrenal cancer), obtained from: Fukuoka University medical department Hideo Shimura), A549 (lung cancer (adrenal cancer), obtained from: Human Science research resource bank), Lu 99 (lung cancer (squamous epithelium) Cancer), source: Tohoku University Institute of Aging Medicine Medical Cell Resource Center), MDA-MB-435S (breast cancer (adrenal cancer), source: American Type Culture Collection), RXF— 631 L (renal cancer (adrenal cancer), source: National Cancer Institute, USA), EJ— 1 (fl 旁 cancer (transitional cell carcinoma), source: Human Science Research Resource Bank), HeLa (cervical cancer (squamous cell carcinoma), source: Human Science Research Resource Bank), SK-OV-3 (ovary Gun, source : National Cancer Institute, USA, SF 295 (glioblastoma, source: National
Cancer Institute, USA)、 SF539 (神経膠芽腫、入手先: National Cancer Institute, USA)、 SNB75 (神経膠芽腫、入手先: National Cancer Institute , USA)、 SNB— 78 (神経膠芽腫、入手先: National Cancer Institute, USA) 、 T98G (神経膠芽腫、入手先:ヒューマンサイエンス研究資源バンク)、 Cancer Institute, USA), SF 539 (glioblastoma, source: National Cancer Institute, USA), SNB 75 (glioblastoma, source: National Cancer Institute, USA), SNB-78 (glioblastoma, available Destination: National Cancer Institute, USA), T98G (glioblastoma, source: Human Science Research Resources Bank),
[0128] AKI (悪性黒色腫、入手先:理研細胞バンク)、 A375M (悪性黒色腫、入手先:富山 医科薬科大学和漢薬研究所済木育夫氏)、 SaOS— 2 (骨肉腫、入手先: American Type Culture Collection)、 HT— 1080 (線維肉腫、入手先:ヒューマンサイエ ンス研究資源バンク)、 HSC 2 (口腔扁平上皮ガン、入手先:ヒューマンサイエンス 研究資源バンク)、 HSC— 4 (口腔扁平上皮ガン (舌)、入手先:ヒューマンサイエンス 研究資源バンク)、 KATO— III (胃ガン (腺ガン)、入手先:ヒューマンサイエンス研究 資源バンク)、 MKN— 1 (胃ガン (腺ガン)、入手先:ヒューマンサイエンス研究資源バ ンク)、 AZ— 521 (胃ガン (腺ガン)、入手先:ヒューマンサイエンス研究資源バンク)、 OCUG- 1 (胆嚢ガン (腺ガン)入手先:ヒューマンサイエンス研究資源バンク)、 MIA PaCa— 2 (膝ガン (腺ガン)、入手先:ヒューマンサイエンス研究資源バンク)、 8505C (甲状腺ガン、入手先:ヒューマンサイエンス研究資源バンク)、 TCO- 1 (甲状腺ガ ン、入手先:ヒューマンサイエンス研究資源バンク)、 MCF— 7 (乳ガン (腺ガン)、入 手先: American Type Culture Collection)、 ACHN (腎ガン(腺ガン)、入手 先: National Cancer Institute, USA)、 LNCap (前立腺ガン(腺ガン)、入手先 : American Type Culture Collection)、 OVCAR— 3 (卵巣ガン、入手先: Nat ional Cancer Institute, USA)、 OVCAR— 5 (卵巣ガン、入手先: National C ancer Institute, USA)、 HKA— 1 (皮膚ガン(扁平上皮ガン)、入手先:ヒユーマ ンサイエンス研究資源ノ ンク)、 [0128] AKI (malignant melanoma, available from: RIKEN cell bank), A375M (malignant melanoma, available from: Toyama Medical and Pharmaceutical University, Japanese medicine research institute Ikaki Michio), SaOS-2 (osteosarcoma, available from: American Type Culture Collection), HT- 1080 (fibrosarcoma, source: Human Science Research Resource Bank), HSC 2 (oral squamous cell carcinoma, source: Human Science research resource bank), HSC-4 (oral squamous cell carcinoma) (Tongue), Obtained from: Human Science Research Resources Bank), KATO III (gastric cancer (adrenal cancer), Obtained from: Human science research resource bank), MKN-1 (stomach cancer (adrenal cancer), Obtained from: Human Science research resource bank), AZ- 521 (stomach cancer (adrenal cancer), source: Human science research resource bank), OCUG-1 (biliary gall bladder cancer (adrenal cancer) source: human science research resource bank), MIA PaCa — 2 ( Cancer (gland cancer), source: Human science research resource bank), 8505C (thyroid cancer, source: human science research resource bank), TCO-1 (thyroid cancer, source: human science research resource bank), MCF — 7 (Mammary cancer (adrenal cancer), source: American Type Culture Collection), ACHN (renal cancer (adrenal cancer), source: National Cancer Institute, USA), LNCap (prostate cancer (adrenal cancer), source: American Type Culture Collection), OVCAR-3 (Ovarian cancer, source: Nat ional Cancer Institute, USA), OVCAR-5 (ovarian cancer, source: National Cancer Institute, USA), HKA-1 (skin cancer (squamous epithelium) Cancer), source: human science research resources nonk),
[0129] IMR- 32 (神経芽細胞腫、入手先:ヒューマンサイエンス研究資源バンク)、 GOTO  [0129] IMR- 32 (neuroblastoma, source: Human Science Research Resources Bank), GOTO
(神経芽細胞腫、入手先:ヒューマンサイエンス研究資源バンク)、 SF268 (神経膠芽 腫、入手先: National Cancer Institute, USA)、 MeWo (悪性黒色腫、入手先 :ヒューマンサイエンス研究資源バンク)、 SAS (口腔扁平上皮ガン (舌)、入手先:ヒュ 一マンサイエンス研究資源バンク)、 KYSE 140 (食道ガン (扁平上皮ガン)、入手 先:ヒューマンサイエンス研究資源バンク)、 DLD- 1 (大腸ガン (腺ガン)、入手先:ヒ ユーマンサイエンス研究資源バンク)、 PC— 3 (lung) (肺ガン (腺ガン):ヒユーマンサ ィエンス研究資源バンク)、 HSC 1 (皮膚ガン (扁平上皮ガン)、入手先:ヒユーマン サイエンス研究資源バンク)、 HSC 5 (皮膚ガン (扁平上皮ガン)、入手先:ヒユーマ ンサイエンス研究資源バンク)、 C8161 (悪性黒色腫、入手先:ノバルティスファーマ 中島元夫氏)、 SW480 (大腸ガン (腺ガン)、入手先:東北大学加齢医学研究所附属 医用細胞資源センター)、 LoVo (大腸ガン (腺ガン)、入手先:ヒューマンサイエンス 研究資源バンク)、 HLE (肝細胞ガン、入手先:ヒューマンサイエンス研究資源バンク )、 HuCCT— 1 (肝内胆管ガン (腺ガン)、入手先:東北大学加齢医学研究所附属医 用細胞資源センター)、 SUIT- 2 (脾ガン (腺ガン)、入手先:宫崎医科大学岩村威 志氏)、 ABC— 1 (肺ガン (腺ガン)、入手先:ヒューマンサイエンス研究資源バンク)、 BeWo (絨毛ガン、入手先:ヒューマンサイエンス研究資源バンク)。 (Neuroblastoma, source: human science research resource bank), SF268 (glioblastoma, source: National Cancer Institute, USA), MeWo (malignant melanoma, source: human science research resource bank), SAS (Oral squamous cell carcinoma (tongue), source: Human Science Research Resource Bank), KYSE 140 (esophageal cancer (squamous cell carcinoma), obtained Where to go: Human Science Research Resources Bank), DLD-1 (large intestine cancer (adrenal cancer), source: Heuman Science Research Resources Bank), PC-3 (lung) (lung cancer (adenal cancer): Human Science Research Resources Bank), HSC 1 (skin cancer (squamous cell carcinoma), source: human science research resource bank), HSC 5 (skin cancer (squamous cell carcinoma), source: human science research resource bank), C8161 (malignant black) Tumor, source: Novartis Pharma Nakajima, SW480 (colorectal cancer (adrenal cancer), source: Tohoku University Institute of Aging Medicine, Medical Cell Resource Center), LoVo (colorectal cancer (adrenal cancer), source: Human Science Research Resources Bank), HLE (Hepatocellular Carcinoma, Obtained from: Human Science Research Resources Bank), HuCCT-1 (Intrahepatic cholangiocarcinoma (adenoma cancer), Obtained from: Tohoku University Institute for Aging Medicine Medical Cell Resource Center for Genus, SUIT- 2 (splenic cancer (adrenal cancer), source: Takeshi Iwamura, Amagasaki Medical University), ABC-1 (lung cancer (adrenal cancer), source: Human Science Research Resources Banks), BeWo (Choryoguns, source: Human Science Research Resources Bank).
[0130] (腫瘍細胞の増殖の評価方法) [0130] (Method for Evaluating Tumor Cell Proliferation)
培養した腫瘍細胞の細胞数は、 Cell Counting Kit— 8 (Dojindo社)を用いて 測定した。  The number of cultured tumor cells was measured using Cell Counting Kit-8 (Dojindo).
[0131] 当該 Cell Counting Kit— 8は、水溶性ホルマザンを生成する 4{ 3—(2— meth oxy— 4— nitrophenyl)— 2— (4— nitrophenyl)― 2H— 5— tetrazolio }— 1 , 3 -benzene disulfonate sodium salt (以下「WST— 8」という。 Dojindo社)を発 色質として利用するものであり、 WST— 8は細胞内の脱水素酵素によって還元され、 水溶性ホルマザンを生成する。細胞数と水溶性ホルマザンとの間には、直線的な比 例関係があることが分力つており、ホルマザンの吸光値を測定することによって、細胞 数を簡単に測定することができる。  The Cell Counting Kit- 8 produces a water-soluble formazan 4 {3- (2- methoxy-4-nitrophenyl)-2- (4-nitrophenyl) -2H- 5-tetrazolio}-1, 3 -Benzene disulphonate sodium salt (hereinafter referred to as "WST-8". Dojindo Co., Ltd.) is used as a chromophore, and WST-8 is reduced by intracellular dehydrogenases to form water-soluble formazan. Since there is a linear proportional relationship between the number of cells and the water-soluble formazan, it is possible to easily determine the number of cells by measuring the absorbance value of formazan.
[0132] 上記 Cell Counting Kit— 8を用いた細胞数の測定は、簡単には以下のようにし て行なった。培養終了後の各ゥエルに 0. 08mLの WST— 8を添加し、 37°Cで 1時間 、 COインキュベーター(CO 5%v/v)内で培養し、 450nm (参考波長: 655nm)の The measurement of the number of cells using the above-mentioned Cell Counting Kit-8 was carried out simply as follows. Add 0. 08 mL of WST-8 to each well after incubation and incubate at 37 ° C for 1 hour in a CO incubator (CO 5% v / v), 450 nm (reference wavelength: 655 nm)
2 2 twenty two
吸光度を測定した。  Absorbance was measured.
[0133] (結果)  (Result)
胆嚢ガン由来細胞株 (GB— dl)の結果を図 3および図 4に、総胆管ガン由来細胞 株 (TFK— 1)の結果を図 5および図 6に、悪性黒色腫由来細胞株 (MeWo)の結果 を図 7および図 8に、乳ガン由来細胞株(MDA— MB— 435S)の結果を図 9および 図 10にそれぞれ示した。 Figures 3 and 4 show the results of gallbladder cancer-derived cell lines (GB-dl). The results for the strain (TFK-1) are shown in Figure 5 and Figure 6, the results for the malignant melanoma cell line (MeWo) are shown in Figures 7 and 8, and the results for the breast cancer cell line (MDA-MB-435S) are shown. 9 and 10 show respectively.
[0134] 図 3〜図 10において、縦軸は吸光度 (450nm)を示しており、当該吸光度が高い ほど細胞数が多いことを示している。また横軸は、各ゥエルの結果を示し、左からコン トロール (図中 C)で示す)、 PCL平膜上における培養(図中、 PCL平膜 (1)を用いた 場合を「FL1」、 PCL平膜 (2)を用いた場合を「FL2」で示す。)、フィルム A〜N上に おける培養(図中フィルム Aを単に「A」と表記する。以下フィルム B〜Nにつ!/、て同じ である。)の結果を示す。  In FIG. 3 to FIG. 10, the vertical axis shows the absorbance (450 nm), and the higher the absorbance, the larger the number of cells. The horizontal axis shows the results for each well, and from left is control (indicated by C in the figure), and culture on a PCL flat membrane (in the figure, “FL1” when using the PCL flat membrane (1), The case of using PCL flat membrane (2) is shown as "FL 2". Culture on films A to N (film A in the figure is simply referred to as "A". Hereinafter, films B to N) , And the same).
[0135] 図 3および図 4の結果より、細胞増殖抑制部材上で培養した場合の胆嚢ガン由来 細胞株 (GB-dl)の増殖は、コントロールおよび PCL平膜上で培養した場合に比べ 、著しく(約 80%)抑制されていた。なお、上記「約 80%」は、フィルム A、 B、 C、 Eお よび G、並びに H、 I、 J、 Lおよび Nそれぞれについての PCL平膜に対する腫瘍細胞 の増殖抑制率 (増殖抑制作用)の平均値である。  From the results in FIG. 3 and FIG. 4, the growth of the gallbladder cancer-derived cell line (GB-dl) when cultured on the cell growth inhibitory member is significantly higher than that when cultured on control and PCL flat membranes. (About 80%) was suppressed. The above "about 80%" refers to the growth inhibitory rate (tumor growth inhibitory effect) of tumor cells on PCL flat membranes for films A, B, C, E and G, and H, I, J, L and N respectively. Is the average value of
[0136] 図 5および図 6の結果より、細胞増殖抑制部材上で培養した場合の総胆管ガン由 来細胞株 (TFK- 1)の増殖は、 PCL平膜上で培養した場合に比べ、著しく(約 60%) 抑制されていた。なお上記「約 60%」は、フィルム B、 Dおよび F、並びに I、 Kおよび Mそれぞれについての PCL平膜に対する腫瘍細胞の増殖抑制率 (増殖抑制作用) の平均値である。  From the results in FIG. 5 and FIG. 6, the growth of the common bile duct cancer-derived cell line (TFK-1) when cultured on the cell growth-suppressing member is significantly greater than that when cultured on a PCL flat membrane. (About 60%) was suppressed. The above "about 60%" is an average value of the growth inhibitory rate (growth inhibitory effect) of the tumor cells on the PCL flat membranes for the films B, D and F, and I, K and M respectively.
[0137] 図 7および図 8の結果より、細胞増殖抑制部材上で培養した場合の悪性黒色腫由 来細胞株 (MeWo)の増殖は、 PCL平膜上で培養した場合に比べ、約 40%抑制さ れていた。なお上記「約 40%」は、フィルム B、 Dおよび F、並びに I、 Kおよび Mそれ ぞれについての PCL平膜に対する腫瘍細胞の増殖抑制率 (増殖抑制作用)の平均 値である。  From the results in FIG. 7 and FIG. 8, the growth of the malignant melanoma-derived cell line (MeWo) when cultured on the cell growth suppressing member is about 40% as compared to the culture on the PCL flat membrane. It was suppressed. The above "about 40%" is an average value of the growth inhibitory rate (growth inhibitory action) of the tumor cells on the PCL flat membranes for the films B, D and F, and I, K and M, respectively.
[0138] 図 9および図 10の結果より、細胞増殖抑制部材上で培養した場合の乳ガン由来細 胞株(MDA—MB—435S)の増殖は、 PCL平膜上で培養した場合に比べ、約 50 %抑制されていた。なお、上記「約 50%」は、フィルム B、 Dおよび F、並びに I、 Kおよ び Mそれぞれにつ 、ての PCL平膜に対する腫瘍細胞の増殖抑制率 (増殖抑制作用 )の平均値である。 From the results in FIG. 9 and FIG. 10, the growth of the breast cancer cell line (MDA-MB-435S) when cultured on the cell growth-suppressing member is about compared to when grown on a PCL flat membrane. 50% was suppressed. The above "about 50%" refers to the growth inhibitory rate of tumor cells on PCL flat membranes for films B, D and F, and I, K and M respectively Average value of
[0139] また、本発明にかかる細胞増殖抑制部材の各種腫瘍細胞に対する増殖抑制作用 の検討結果を図 11、図 12に示した。図 11がフィルム A〜Gを用いた場合、図 12がフ イルム H〜Nを用いた場合である。なお、図 11、図 12における増殖抑制作用の評価 は、フィルム A〜Nそれぞれにつ 、ての PCL平膜に対する腫瘍細胞の増殖抑制率( 増殖抑制作用)の平均値を用いて行なった。  Further, the examination results of the growth inhibitory action of the cell growth suppressing member according to the present invention on various tumor cells are shown in FIG. 11 and FIG. FIG. 11 shows the case where films A to G are used, and FIG. 12 shows the case where films H to N are used. In addition, evaluation of the growth inhibitory effect in FIG. 11, FIG. 12 was performed using the average value of the growth inhibitory rate (growth inhibitory effect) of the tumor cell with respect to PCL flat membrane about each of film AN.
[0140] 図 11、図 12中の増殖抑制作用の欄における◎は、細胞増殖抑制部材上で培養し た場合の細胞増殖力 PCL平膜上での培養の細胞増殖に対して 60%以上の細胞 増殖抑制作用が見られた細胞の結果を示し、〇は細胞増殖抑制部材上で培養した 場合の細胞増殖が、 PCL平膜上での培養の細胞増殖に対して 30%以上 60%未満 の増殖抑制作用が見られた細胞の結果を示し、 Δは細胞増殖抑制部材上で培養し た場合の細胞増殖力 PCL平膜上での培養の細胞増殖に対して 10%以上 30%未 満の増殖抑制作用が見られた細胞の結果を示し、▲は細胞増殖抑制部材上で培養 した場合の細胞増殖力 PCL平膜上での培養の細胞増殖に対して 10%未満の増 殖抑制作用が見られた細胞の結果を示した。  The] in the column of the growth inhibitory action in FIG. 11 and FIG. 12 represents 60% or more of the cell proliferation of the culture on the PCL flat membrane when the cell proliferation is cultured on the cell proliferation suppression member. The results of cells in which the cell growth inhibitory action was observed are shown, and 細胞 indicates that the cell growth when cultured on the cell growth inhibitory member is 30% or more and less than 60% of the cell growth in culture on PCL flat sheet The results for cells with growth inhibitory activity were shown, and Δ represents cell proliferation when cultured on a cell proliferation inhibitory member, 10% or more but less than 30% of cell proliferation on culture on PCL flat membranes. The results for cells with growth inhibitory activity are shown, and ▲ indicates cell proliferation when cultured on a cell proliferation inhibitory member. Less than 10% of proliferation inhibitory activity on cell proliferation in culture on PCL flat membranes. The results of the seen cells are shown.
[0141] 図 11、図 12より、検討した 56糸田胞株のうち 49株、すなわち 87. 50/0の株【こつ!ヽて、 10%以上の増殖抑制作用が見られた。また検討した 56細胞株のうち 42株、すなわ ち 75%の株について、 30%以上の増殖抑制作用が見られた。また検討した 56細胞 株のうち 23株、すなわち 41%の株について、 60%以上の増殖抑制作用が見られた [0141] FIG. 11, from 12, Te 49 strain, i.e. 87.5 0/0 strain [trick!ヽof 56 Itoda胞株discussed, growth inhibition of 10% or more was observed. In addition, 42 out of 56 cell lines examined, that is, 75%, showed a growth inhibitory effect of 30% or more. In addition, 23 out of 56 cell lines examined, that is, 41%, showed a growth inhibitory effect of 60% or more.
[0142] 以上の結果より、実施例 2にかかる細胞増殖抑制部材上で腫瘍細胞を培養する ことにより、通常の平膜上で培養した場合に比して顕著にその増殖を抑制することが できるということがわ力つた。また、腫瘍細胞の種類によらず、細胞増殖抑制作用を示 すということもわ力つた。したがって、本発明の細胞増殖抑制部材は、特に腫瘍細胞 の増殖抑制に利用することができる材料であるといえる。 From the above results, by culturing the tumor cells on the cell growth suppressing member according to Example 2, the growth can be significantly suppressed as compared to the case where the cells are cultured on a normal flat membrane. It was strong. Also, regardless of the type of tumor cell, it was also effective to show cytostatic activity. Therefore, it can be said that the cell growth suppressing member of the present invention is a material that can be particularly used to suppress the growth of tumor cells.
[0143] また、実施例 1と実施例 2とは、実施例 1が酸ィ匕防止剤を使用しないのに対し、実施 例 2が酸化防止剤(サイクリックネオペンタンテトライルビス (2, 6—ジ—第 3プチルー 4—メチルフエニルホスファイト) )を使用する点で相違して ヽるが、実施例 1と実施例 2とは、ほぼ同等の細胞増殖抑制効果が得られた。実施例 2の細胞増殖抑制フィル ムにおいては、榭脂に酸ィ匕防止剤が添加されているので、酸化劣化が防止され、長 期保存が可能となり、また、体内での劣化も起こりに《することが期待される。 Further, Example 1 and Example 2 are different from Example 1 in that the acid anti-oxidant is not used, while Example 2 is the antioxidant (cyclic neopentanetetrayl bis (2, 6). -Di-Peptyl 4-methylphenyl phosphite))) but different from Example 1 and Example The cell growth inhibitory effect almost equivalent to 2 was obtained. In the cytostatic film of Example 2, since an antioxidant is added to the fat, oxidation degradation is prevented, long-term storage is possible, and degradation in the body also occurs. It is expected to do.
[0144] (実施例 3)  Example 3
(細胞転移抑制部材の作製)  (Preparation of cell metastasis suppressing member)
PCL榭脂と Cap榭脂 (重量平均分子量: 62, 000、数平均分子量: 21 , 000)とを 重量比 10 : 1の割合で混合した後にクロ口ホルムに溶解し、濃度 5. OmgZmLの榭 脂溶液を調製した。この溶液をガラスシャーレ(直径 9cm)にキャストし、次いで、 23 。C、相対湿度 35%の雰囲気下で、相対湿度 80%の高湿度空気を 2. OLZminの流 量で、ガラスシャーレ上の液面に吹き付けることにより、多孔構造を有する細胞転移 抑制部材 (フィルム (O) )を作製した。  After mixing PCL fat and Cap fat (weight average molecular weight: 62, 000, number average molecular weight: 21, 000) in a weight ratio of 10: 1, it is dissolved in chloroform and dissolved to a concentration of 5. Omg ZmL. A fat solution was prepared. The solution is cast into a glass petri dish (diameter 9 cm) and then 23. C, in a 35% relative humidity atmosphere, high humidity air with a relative humidity of 80% is applied at a flow rate of 2. OLZmin onto the liquid surface above the glass petri dish, to prevent cell migration suppressing member having porous structure (film ( O)) was produced.
[0145] 実施例 2と同様の方法により、フィルム (O)の多孔構造 (を構成する孔の)孔径、 幹幅、空孔率、および変動係数を測定した結果、孔径は 12. 5 /ζ πι、幹幅は 5. 3 μ m、空孔率は 49. 2%、変動係数は 7%であった。  As a result of measuring the pore diameter (of the pores constituting the film), the stem width, the porosity and the coefficient of variation of the porous structure of film (O) by the same method as in Example 2, the pore diameter is 12.5 / ζ. The stem width was 5.3 μm, the porosity was 49.2%, and the coefficient of variation was 7%.
[0146] (腫瘍細胞の転移の評価方法)  (Method for evaluating metastasis of tumor cells)
(a)コラーゲン溶液(Cellmatrix type IA, Nitta Gelatin)、中和緩衝液(0. 05 N NaOH, 2. 2%NaHCO , 200mM HEPES)、 10倍濃縮の Dulbcco ' s mo  (a) collagen solution (Cellmatrix type IA, Nitta Gelatin), neutralization buffer (0. 05 N NaOH, 2.2% NaHCO3, 200 mM HEPES), 10-fold concentrated Dulbcco's mo
3  3
dified Eagle ' s培地(DEM培地、インビトロゲン社製)、およびヒト胎児線維芽細胞 浮遊液を 8 : 1 : 1 : 0. 5の割合で混合し、 6— well tissue culture plate (フアルコ ン社)に 3mLZゥヱルずつ注入した。  The purified Eagle's medium (DEM medium, manufactured by Invitrogen) and the suspension of human fetal fibroblasts are mixed at a ratio of 8: 1: 1: 0.5, and a 6-well tissue culture plate (Falcon) Was injected in 3 mL Z-well.
(b) 30分間、 COインキュベーター内(CO 5%vZv)で静置し、コラーゲンのゲル化  (b) Incubate for 30 minutes in a CO incubator (CO 5% vZv) to gelate collagen
2 2  twenty two
を行なった。  Did.
[0147] (c)腫瘍細胞 (SAS :口腔扁平上皮ガン (舌))浮遊液を上記コラーゲンゲルの上に 重層した。  (C) A suspension of tumor cells (SAS: oral squamous cell carcinoma (tongue)) was overlaid on the above collagen gel.
(d) COインキュベーター内(CO 5%vZv)で、 37°C、 1日間培養を行なった。  (d) The cells were cultured at 37 ° C. for 1 day in a CO incubator (CO 5% vZv).
2 2  twenty two
(e)その後、コラーゲンゲルをゥエル力も剥離し、 DEM液体培地上に当該コラーゲン ゲルを浮遊させ、さらに COインキュベーター内(CO 5%vZv)で、 37°C、 2日間培  (e) Then, the collagen gel is also peeled off by the swelling force, the collagen gel is suspended on a DEM liquid medium, and further cultured at 37 ° C for 2 days in a CO incubator (CO 5% vZv).
2 2  twenty two
養を行なった (この培養方法を「ラフトカルチャー」と称する)。 [0148] (f) 6 -well tissue culture plate (ファルコン社)のゥエル内にセットしたセルスト レイナー(ファルコン製)上に、ラフトカルチャー後のコラーゲンゲルを載置し、コラー ゲンゲルの最上面が浸らない程度の DEM液体培地を添カ卩した。 Nourishing was performed (this culture method is called "raft culture"). (F) The collagen gel after raft culture is placed on Celsto Reiner (manufactured by Falcon) set in the well of 6-well tissue culture plate (Falcon), and the top surface of the collagen gel is not immersed The medium was supplemented with DEM liquid medium.
(g)コラーゲンゲルの最上面 (腫瘍細胞側の面)に、フィルム Hまたは実施例 1で作製 した PCL平膜(1)を載せ、 COインキュベーター内(CO 5%vZv)で、 37°C、 7日間  (g) Place the film H or the PCL flat membrane (1) prepared in Example 1 on the top surface of the collagen gel (the surface on the tumor cell side) at 37 ° C. in a CO incubator (CO 5% vZv) 7 days
2 2  twenty two
培養を行なった。  Culture was performed.
[0149] (h)培養後のコラーゲンゲルを、 10%ホルマリンで固定を行な!/、、パラフィン切片を 作製し、へマトキシリン'ェォジン染色を行なった。へマトキシリン'ェォジン染色は、 常法に従い行なった。  (H) The cultured collagen gel is fixed with 10% formalin! /, Paraffin sections are prepared, and hematoxylin ′ ′ stained. Hematoxylin'eosin staining was performed according to a conventional method.
(i)へマトキシリン'ェォジン染色を行なったパラフィン切片を顕微鏡により観察を行な V、、腫瘍細胞がコラーゲンゲル内に浸潤して 、るか否かを評価した。  (i) Hematoxylin'- stained stained paraffin sections were observed under a microscope V, and it was evaluated whether tumor cells infiltrated into the collagen gel.
[0150] (結果) (Result)
PCL平膜 ( 1 )を腫瘍細胞(S AS)側の面に載せた場合の顕微鏡像を図 13に示した 。図 13 (a)は倍率 100倍で観察したもの、図 13 (b)は倍率 200倍で観察したもので ある。なお、図 13において、矢印より左側の領域が PCL平膜(1)で覆われていた領 域であり、右側が PCL平膜(1)で覆われていな力つた領域 (すなわちコントロール領 域)を示している。  The microscope image when the PCL flat membrane (1) was placed on the side of the tumor cell (SAS) is shown in FIG. Fig. 13 (a) is observed at a magnification of 100 times, and Fig. 13 (b) is observed at a magnification of 200 times. In FIG. 13, the area to the left of the arrow is the area covered by the PCL flat membrane (1) and the right side is the area not covered by the PCL flat membrane (1) (ie, the control area). Is shown.
[0151] 一方、フィルム (O)を腫瘍細胞(SAS)側の面に載せた場合の顕微鏡像を図 14に 示した。図 14 (a)は倍率 100倍で観察したもの、図 14 (b)は倍率 200倍で観察した もの、図 14 (c)は倍率 400倍で観察したものである。なお、図 14において矢印より右 側の領域が多孔性フィルム(O)で覆われて 、た領域であり、左側が多孔性フィルム( O)で覆われて 、な力つた領域 (すなわちコントロール領域)を示して!/、る。  On the other hand, FIG. 14 shows a microscopic image when the film (O) is placed on the side of the tumor cell (SAS). Fig. 14 (a) is observed at a magnification of 100, Fig. 14 (b) is observed at a magnification of 200, and Fig. 14 (c) is observed at a magnification of 400. In FIG. 14, the area to the right of the arrow is covered by the porous film (O), and the left side is covered by the porous film (O). Show me! /.
[0152] 図 13および図 14に示す観察結果から、腫瘍細胞(SAS)に PCL平膜を載せた領 域、および腫瘍細胞(SAS)にフィルム Hを載せた領域はいずれにおいても、コント口 ール領域に比べて明らかに腫瘍細胞の浸潤が抑制されていた。特に、図 14 (c)に示 すように、腫瘍細胞と多孔性フィルム(フィルム E (孔径 12. 5 /ζ πι、幹幅 5. 、空 孔率 49. 2%、変動係数 7%) )とが接触していた部分は、細胞の形状が凸凹になつ ていた。 [0153] 以上のことから、腫瘍細胞と PCL平膜(1)または多孔性フィルムとを接触させること によって、腫瘍細胞の浸潤を抑制する、すなわち転移を抑制することができるというこ とがわかった。 From the observation results shown in FIG. 13 and FIG. 14, it is understood that the area in which the PCL flat membrane was placed on the tumor cell (SAS) and the area on which the film H was placed on the tumor cell (SAS) are both controlled. Clearly, tumor cell infiltration was suppressed compared to the case of In particular, as shown in Fig. 14 (c), tumor cells and porous film (film E (pore size 12.5 / ι π ι, stem width 5., porosity 49. 2%, coefficient of variation 7%)) In the portion where the and were in contact, the shape of the cell was uneven. From the above, it was found that by contacting tumor cells with PCL flat membrane (1) or porous film, it is possible to suppress tumor cell infiltration, that is, to suppress metastasis. .
[0154] (実施例 4) Example 4
(積層型の細胞増殖抑制フィルムまたは細胞転移抑制フィルムの製造)  (Production of laminated cell proliferation inhibitory film or cell migration inhibitory film)
(製造例 1)  (Production example 1)
1, 2—ポリブタジエン (商品名: RB820、 JSR社製)と Cap榭脂 (重量平均分子量: 62, 000、数平均分子量: 21, 000)を、 10 : 1の重量比でクロ口ホルムに溶解した榭 脂溶液(1, 2—ポリブタジエンの濃度: 0. 27重量%) 6mlを、直径 10cmのガラスシャ ーレ上に一様に展開した。  Dissolve 1, 2-polybutadiene (trade name: RB820, manufactured by JSR Corporation) and Cap resin (weight average molecular weight: 620,000, number average molecular weight: 21,000) in a 10: 1 ratio by weight in black mouth form 6 ml of the resulting resin solution (1, 2-polybutadiene concentration: 0.27% by weight) was spread uniformly on a 10 cm diameter glass shear.
次いで、 23. 0°C、相対湿度 40%の雰囲気下、相対湿度 70%の高湿度空気を 2L Zminの流量で、 1分間ガラスシャーレ上の液面に吹き付けることにより、膜厚 3〜5 /z mフィルム(P)を得た。  Then, film thickness 3-5 by spraying high humidity air with a relative humidity of 70% at a flow rate of 2L Zmin for 1 minute on a liquid surface on a glass petri dish under an atmosphere of 23.0 ° C and a relative humidity of 40%. A zm film (P) was obtained.
[0155] フィルム (P)を光学顕微鏡 (BH2、ォリンパス社製)を用いて、 100倍の倍率で観察 した結果、孔がハ-カム様に配列されて ヽる多孔構造が形成されて ヽることが確認さ れた。その多孔構造を構成する孔の平均孔径は 3. 5 ^ πι,孔径の変動係数は 7%で あった。なお、平均孔径および孔径の変動係数は、実施例 1と同様の方法により求め たものである。 [0155] As a result of observing the film (P) with an optical microscope (BH2, manufactured by Olin Paus) at a magnification of 100 times, pores are arranged in a Harcomm-like manner, and a porous structure is formed. That was confirmed. The average pore diameter of the pores constituting the porous structure was 3.5 ^ πι, and the coefficient of variation of the pore diameter was 7%. The average pore size and the variation coefficient of the pore size are determined by the same method as in Example 1.
フィルム (Ρ)の膜厚および多孔構造を構成する孔の平均孔径、孔径の変動係数を 第 2表に示す。  Table 2 shows the film thickness of the film (Ρ), the average pore diameter of the pores constituting the porous structure, and the variation coefficient of the pore diameter.
[0156] (製造例 2) Production Example 2
24. 0°C、相対湿度 40%の雰囲気下、相対湿度 70%の高湿度空気を 2LZminの 流量で、 1分間ガラスシャーレ上の液面に吹き付けたこと以外は前記(1)と同様にし て、フィルム(Q)を得た。  24. In the same manner as (1) above except that high humidity air with a relative humidity of 70% was sprayed at a flow rate of 2 LZ min for 1 minute on a liquid surface on a glass petri dish under an atmosphere of 0 ° C. and a relative humidity of 40%. , Film (Q) was obtained.
得られたフィルム (Q)の膜厚および多孔構造を構成する孔の平均孔径、孔径の変 動係数を前記と同様に測定した。測定結果を第 2表に示す。  The film thickness of the obtained film (Q) and the average pore diameter of the pores constituting the porous structure and the variation coefficient of the pore diameter were measured in the same manner as described above. The measurement results are shown in Table 2.
[0157] (製造例 3、 4) (Production Example 3 and 4)
榭脂として、 1, 2—ポリブタジエンに代えて、ポリウレタン (商品名:ミラクトラン E385 、 日本ミラクトラン社製)を使用し、溶媒として、クロ口ホルムに代えて、クロ口ホルムとテ トラヒドロフランとの混合溶媒 (混合比は重量比で、クロ口ホルム 10に対してテトラヒド 口フラン 1)を使用すること以外は、それぞれ製造例 1、 2と同様にして、フィルム )、 (S)を得た。 As a resin, in place of 1,2-polybutadiene, polyurethane (trade name: Milactolan E 385) (Japan Milactolan Co., Ltd.), and using a mixed solvent of cromoform and tetrahydrofuran as a solvent in place of cromoform (mixing ratio is by weight ratio of tetrahydriene to cromoform 10) Films (S) and (S) were obtained in the same manner as in Production Examples 1 and 2, respectively, except that 1) was used.
得られたフィルム (R)、 (S)を光学顕微鏡で観察した結果、孔がハ-カム様に配列 されている多孔構造が形成されていることが確認された。フィルム )、 (S)の膜厚お よび多孔構造を構成する孔の平均孔径、孔径の変動係数を第 2表に示す。  As a result of observing the obtained films (R) and (S) with an optical microscope, it was confirmed that a porous structure in which the pores were arranged in a honeycomb manner was formed. The film thickness of the film) and (S) and the average pore diameter of the pores constituting the porous structure and the variation coefficient of the pore diameter are shown in Table 2.
[0158] [表 2] [Table 2]
第 2 表
Figure imgf000038_0001
Table 2
Figure imgf000038_0001
[0159] (強度試験方法) (Method for testing strength)
得られたフィルム(P)とフィルム(R)を重ね合わせたもの(このものを「フィルム T」と する)、フィルム(Q)とフィルム(S)を重ね合わせたもの(このものを「フィルム U」とする )、フィルム(P)、およびフィルム(Q)のそれぞれを直径 10cmの円形に切り取った。 フィルム(T)、 (U)、 (P)および(Q)のそれぞれを、幅 10cm、チャック間距離 lcm のチャックで両側から挟んで、引張試験機にセットした。この際、チャックとフィルムの 間には、 1mm厚シリコーンゴム製シートを挟み、フィルムの中心がチャック間に位置 するようにした。そして、 30mmZminの引張速度で、フィルムを両側から引張り、フィ ルムが破断したとき(フィルムを重ねた場合は、どちらか一方でも破断したとき)の荷 重を記録した。試験結果を第 3表に示す。  What obtained the obtained film (P) and film (R) on each other (this is referred to as “film T”), and obtained on the film (Q) and film (S) on each other (this is called “film U”. Each of the film (P) and the film (Q) was cut into a circle of 10 cm in diameter. Each of the films (T), (U), (P) and (Q) was set in a tensile tester by being sandwiched from both sides by a chuck having a width of 10 cm and a distance between chucks of 1 cm. At this time, a 1 mm-thick silicone rubber sheet was sandwiched between the chuck and the film so that the center of the film was positioned between the chucks. Then, the film was pulled from both sides at a tensile speed of 30 mm Zmin, and the load when the film was broken (when one of the films was broken) was recorded. The test results are shown in Table 3.
[0160] [表 3]  [0160] [Table 3]
3 ¾  3 3⁄4
フイノレム 破断時荷重 (N )  Feinolem Load at break (N)
T 1 8 . 0  T 18. 0
U 1 3 . 0  U 1 3.0
P 3 . 0  P 3. 0
Q 2 . 2 第 3表から、積層フィルム (T)は、単層の榭脂フィルム (P)と比較して破断時荷重が 著しく大きぐ破れ難いものとなっていた。また、積層フィルム (U)も単層の榭脂フィル ム (Q)と比較して破断時荷重が著しく大きぐ破れ難いものとなっていた。 Q 2.2 2 From Table 3, it was found that the laminated film (T) was a film which was hard to be broken because the load at break was significantly larger than that of the single-layer resin film (P). In addition, the laminated film (U) also had a load that was significantly greater than that of the single-layer resin film (Q) and was not easily broken.
従って、積層フィルム (T)、 (U)を体内に設置して使用する場合においては、破損 し難く、細胞増殖および Zまたは細胞転移を抑制する作用が長期間維持されること が期待される。  Therefore, when the laminated films (T) and (U) are used by being placed in the body, they are unlikely to be damaged, and it is expected that the action to suppress cell proliferation and Z or cell metastasis is maintained for a long time.

Claims

請求の範囲 The scope of the claims
[I] 多孔構造を有することを特徴とする細胞増殖抑制部材。  [I] A cell proliferation suppressing member having a porous structure.
[2] 前記多孔構造が、少なくとも表面部に形成されていることを特徴とする請求項 1に 記載の細胞増殖抑制部材。  [2] The cell proliferation suppressing member according to claim 1, wherein the porous structure is formed at least on the surface portion.
[3] フィルムである請求項 1または 2に記載の細胞増殖抑制部材。 [3] The cell growth suppressing member according to claim 1 or 2, which is a film.
[4] 榭脂組成物を含む有機溶媒溶液を基板上にキャストし、該有機溶媒を蒸散させると ともに、前記有機溶媒溶液表面で結露を起こさせ、該結露により生じた水滴を蒸発さ せることにより得られるフィルム、またはその延伸フィルムであることを特徴とする請求 項 1〜3のいずれかに記載の細胞増殖抑制部材。 [4] An organic solvent solution containing a resin composition is cast on a substrate, and the organic solvent is evaporated and condensation is caused on the surface of the organic solvent solution to evaporate water droplets generated by the condensation. It is a film obtained by, or its stretched film, The cell growth suppression member in any one of the Claims 1-3 characterized by the above-mentioned.
[5] 前記フィルムは酸ィ匕防止剤を含有してなることを特徴とする請求項 3または 4に記載 の細胞増殖抑制部材。 [5] The cell growth suppressing member according to claim 3 or 4, wherein the film contains an anti-acid agent.
[6] 前記多孔構造を構成する孔がハ-カム様に配列されていることを特徴とする請求 項 1〜5のいずれかに記載の細胞増殖抑制部材。  [6] The cell proliferation suppressing member according to any one of claims 1 to 5, wherein the pores constituting the porous structure are arranged in a honeycomb manner.
[7] 前記多孔構造を構成する孔の平均孔径が 0. 1〜: LOO μ mであることを特徴とする 請求項 1〜6のいずれかに記載の細胞増殖抑制部材。 [7] The cell proliferation suppressing member according to any one of claims 1 to 6, wherein an average pore diameter of pores constituting the porous structure is 0.1 to 1: LOO μm.
[8] 前記多孔構造を構成する孔の孔径の変動係数が 30%以下であることを特徴とする 請求項 1〜7のいずれかに記載の細胞増殖抑制部材。 [8] The cell proliferation suppressing member according to any one of claims 1 to 7, wherein the variation coefficient of the pore diameter of the pores constituting the porous structure is 30% or less.
[9] 前記酸化防止剤の含有量が、榭脂 100重量部に対して、 0. 1重量部〜 5重量部で あることを特徴とする請求項 5に記載の細胞増殖抑制部材。 [9] The cell proliferation suppressing member according to claim 5, wherein a content of the antioxidant is 0.1 part by weight to 5 parts by weight with respect to 100 parts by weight of a trunk fat.
[10] 請求項 1〜9のいずれかに記載の細胞増殖抑制部材の多孔構造が形成されている 部分を細胞に接触させることにより、該接触部における細胞の増殖を抑制することを 特徴とする細胞増殖抑制方法。 [10] A feature of the present invention characterized by suppressing cell proliferation in the contact portion by bringing a cell formed part of the cell proliferation suppressing member according to any one of claims 1 to 9 into contact with cells. Cell growth suppression method.
[II] 第 1の榭脂フィルムと第 2の榭脂フィルムとが積層された積層フィルムであって、 前記第 2の榭脂フィルムが、請求項 1〜9の 、ずれかに記載の細胞増殖抑制部材で あることを特徴とする積層フィルム。  [II] A laminated film in which a first resin film and a second resin film are laminated, wherein the second resin film is the cell proliferation according to any one of claims 1 to 9. A laminated film characterized by being a suppressing member.
[12] 多孔構造を有することを特徴とする細胞転移抑制部材。  [12] A cell metastasis suppressing member characterized by having a porous structure.
[13] 前記多孔構造が、少なくとも表面部に形成されていることを特徴とする請求項 12に 記載の細胞転移抑制部材。 [13] The cell metastasis suppressing member according to claim 12, wherein the porous structure is formed at least on the surface portion.
[14] フィルムである請求項 12または 13に記載の細胞転移抑制部材。 [14] The cell transfer suppressing member according to claim 12 or 13, which is a film.
[15] 榭脂組成物を含む有機溶媒溶液を基板上にキャストし、該有機溶媒を蒸散させると ともに、前記有機溶媒溶液表面で結露を起こさせ、該結露により生じた水滴を蒸発さ せることにより得られるフィルム、またはその延伸フィルムであることを特徴とする請求 項 12〜 14のいずれかに記載の細胞転移抑制部材。  [15] An organic solvent solution containing a resin composition is cast on a substrate to evaporate the organic solvent and cause condensation on the surface of the organic solvent solution to evaporate water droplets generated by the condensation. It is a film obtained by the above, or its stretched film, The cell metastasis | transition suppression member in any one of the Claims 12-14 characterized by the above-mentioned.
[16] 前記フィルムは酸ィ匕防止剤を含有してなることを特徴とする請求項 14または 15に 記載の細胞転移抑制部材。 [16] The cell transfer suppressing member according to claim 14 or 15, wherein the film contains an anti-acid agent.
[17] 前記多孔構造を構成する孔がハ-カム様に配列されていることを特徴とする請求 項 12〜16のいずれかに記載の細胞転移抑制部材。 [17] The cell metastasis suppressing member according to any one of claims 12 to 16, wherein the pores constituting the porous structure are arranged in a honeycomb manner.
[18] 前記多孔構造を構成する孔の平均孔径が 0. 1〜: LOO μ mであることを特徴とする 請求項 12〜 17のいずれかに記載の細胞転移抑制部材。 [18] The cell metastasis suppressing member according to any one of claims 12 to 17, wherein an average pore diameter of pores constituting the porous structure is 0.1 to 1: LOO μm.
[19] 前記多孔構造を構成する孔の孔径の変動係数が 30%以下であることを特徴とする 請求項 12〜18のいずれかに記載の細胞転移抑制部材。 [19] The cell metastasis suppressing member according to any one of claims 12 to 18, wherein the variation coefficient of the pore diameter of the pores constituting the porous structure is 30% or less.
[20] 前記酸化防止剤の含有量が、榭脂 100重量部に対して、 0. 1重量部〜 5重量部で あることを特徴とする請求項 16に記載の細胞転移抑制部材。 [20] The cell transfer suppressing member according to claim 16, wherein the content of the antioxidant is 0.1 parts by weight to 5 parts by weight with respect to 100 parts by weight of the trunk fat.
[21] 請求項 12〜20のいずれかに記載の細胞増殖抑制部材の多孔構造が形成されて いる部分を細胞に接触させることにより、該接触部における細胞の増殖を抑制するこ とを特徴とする細胞転移抑制方法。 [21] A feature of the present invention characterized by suppressing cell proliferation in the contact portion by bringing a cell-formation-promoting member according to any one of claims 12 to 20 into contact with cells at which the porous structure is formed. Cell metastasis suppression method.
[22] 第 1の榭脂フィルムと第 2の榭脂フィルムとが積層された積層フィルムであって、 前記第 2の榭脂フィルムが、請求項 12〜20の 、ずれかに記載の細胞転移抑制部材 であることを特徴とする積層フィルム。 [22] A laminated film in which a first resin film and a second resin film are laminated, wherein the second resin film is a cell transition according to any one of claims 12 to 20. It is a suppression member. Laminated | multilayer film characterized by the above-mentioned.
[23] 医療用具基材の表面の全部または一部を、請求項 1〜9のいずれかに記載の細胞 増殖抑制部材、または、請求項 12〜20のいずれかに記載の細胞転移抑制部材で 被覆してなることを特徴とする医療用具。 [23] The cell proliferation suppressing member according to any one of claims 1 to 9 or the cell metastasis suppressing member according to any of claims 12 to 20 of all or part of the surface of a medical device substrate A medical device characterized by being covered.
PCT/JP2006/308980 2005-04-28 2006-04-28 Cell growth inhibitory member, cell metastasis inhibitory member, method of inhibiting cell growth, method of inhibiting cell metastasis, layered film and medical instrument WO2006118248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007514835A JPWO2006118248A1 (en) 2005-04-28 2006-04-28 Cell growth suppressing member, cell metastasis suppressing member, cell growth suppressing method, cell metastasis suppressing method, laminated film and medical device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-133320 2005-04-28
JP2005133320 2005-04-28
JP2005-162044 2005-06-01
JP2005162044 2005-06-01
JP2005162043 2005-06-01
JP2005-162043 2005-06-01

Publications (1)

Publication Number Publication Date
WO2006118248A1 true WO2006118248A1 (en) 2006-11-09

Family

ID=37308042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308980 WO2006118248A1 (en) 2005-04-28 2006-04-28 Cell growth inhibitory member, cell metastasis inhibitory member, method of inhibiting cell growth, method of inhibiting cell metastasis, layered film and medical instrument

Country Status (2)

Country Link
JP (1) JPWO2006118248A1 (en)
WO (1) WO2006118248A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242492A (en) * 2008-03-28 2009-10-22 Fujifilm Corp Method for producing porous film
JP2011156083A (en) * 2010-01-29 2011-08-18 Nippon Zeon Co Ltd Stent for digestive system
JP2012080836A (en) * 2010-10-13 2012-04-26 Toyo Seikan Kaisha Ltd Culture container for adherent cells and method for manufacturing culture container for adherent cells
WO2015190541A1 (en) * 2014-06-12 2015-12-17 国立研究開発法人国立循環器病研究センター Stent
CN105496475A (en) * 2015-11-23 2016-04-20 安徽养和医疗器械设备有限公司 Antibacterial intervention medical instrument
KR101730482B1 (en) 2015-07-23 2017-04-27 재단법인 한국화학융합시험연구원 Protective shield of bodily tissue
US9637722B2 (en) 2013-07-09 2017-05-02 Toyoda Gosei Co., Ltd. Production method of polyurethane porous membrane to be used for at least one of applications of cell culture and cancer cell growth inhibition
CN113144297A (en) * 2021-04-30 2021-07-23 中山大学孙逸仙纪念医院 Thin film material for blocking tumor diffusion of ovarian germ cells and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009883A1 (en) * 1993-10-05 1995-04-13 Board Of Regents, The University Of Texas System Multifunctional organic polymers
JP2001157574A (en) * 1999-11-30 2001-06-12 Terumo Corp Honeycomb structure, method for preparing the structure, film and cell culture bade using the structure
JP2002347107A (en) * 2001-05-22 2002-12-04 Inst Of Physical & Chemical Res Stretched film and cell culture base material using the same
WO2003045973A2 (en) * 2001-11-28 2003-06-05 Becton, Dickinson And Company Peptides with growth inhibitory action
WO2004089434A1 (en) * 2003-04-10 2004-10-21 Teijin Limited Biodegradable film having honeycomb structure
WO2005051450A1 (en) * 2003-11-28 2005-06-09 Zeon Medical, Inc. Cell growth-inhibiting film, medical instrument and stent for digestive organs

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002347101A (en) * 2001-05-22 2002-12-04 Sekisui Chem Co Ltd Device and method for manufacturing sheet-form molded article
KR20060003100A (en) * 2003-05-16 2006-01-09 블루 멤브레인스 게엠베하 Medical implants comprising biocompatible coatings
JP4512351B2 (en) * 2003-11-28 2010-07-28 ゼオンメディカル株式会社 Gastrointestinal stent
JP4610885B2 (en) * 2003-11-28 2011-01-12 ゼオンメディカル株式会社 Cell growth suppression film and medical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009883A1 (en) * 1993-10-05 1995-04-13 Board Of Regents, The University Of Texas System Multifunctional organic polymers
JP2001157574A (en) * 1999-11-30 2001-06-12 Terumo Corp Honeycomb structure, method for preparing the structure, film and cell culture bade using the structure
JP2002347107A (en) * 2001-05-22 2002-12-04 Inst Of Physical & Chemical Res Stretched film and cell culture base material using the same
WO2003045973A2 (en) * 2001-11-28 2003-06-05 Becton, Dickinson And Company Peptides with growth inhibitory action
WO2004089434A1 (en) * 2003-04-10 2004-10-21 Teijin Limited Biodegradable film having honeycomb structure
WO2005051450A1 (en) * 2003-11-28 2005-06-09 Zeon Medical, Inc. Cell growth-inhibiting film, medical instrument and stent for digestive organs

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
SATO K. ET AL.: "Seibunkaisei Kobunshi o Mochiita Takosei scaffold ni yoru Saibo Secchaku.Keitai no Seigyo", THE JAPANESE JOURNAL OF ARTIFICIAL ORGANS (JAPANES SOCIETY FOR ARTIFICIAL ORGANS), vol. 31, no. 2, 2002, pages S-86, XP003004634 *
SATO K. ET AL.: "Seibunkaisei Kobunshi o Mochiita Takosei scaffold no Kokei Seigyo ni yoru Saibo Secchaku.Keitai no Henka. (Preparation of the honeycomb patterned porous films of biodegradable polymer for tissue engineering scaffolds)", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOENSHU, vol. 83, no. 2, 2002, pages 958, XP003004635 *
SATO K. ET AL.: "Seibunkaisei Kobunshi o Mochiita Takosei scaffold no Sakusei to Saibo Secchaku.Keitai no Henka. (Cell adhesion and morphology on porous scaffolds of biodegadable polymers)", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOENSHU, vol. 82, 2003, pages 138, XP003004636 *
SUNAMI H. ET AL.: "Saibo Zoshoku o Seigyo shiuru Saibogai Matrix (ECM) Kyuchaku Honeycomb Film no Sakusei", THE JAPANESE SOCIETY FOR REGENERATIVE MEDICINE ZASSHI, vol. 4, no. SUPPL., 10 February 2005 (2005-02-10), pages 100, XP003004633 *
SUNAMI H. ET AL.: "Saibogai Matrix Kyuchaku Honeycomb Film o Mochiita Saibo Zoshoku no Seigyo. (Control of the cell proliferation by using ECM adsorbed honeycomb films)", POLYMER PREPRINTS, JAPAN, vol. 54, no. 1, 10 May 2005 (2005-05-10), pages 2232, XP003004637 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242492A (en) * 2008-03-28 2009-10-22 Fujifilm Corp Method for producing porous film
JP2011156083A (en) * 2010-01-29 2011-08-18 Nippon Zeon Co Ltd Stent for digestive system
JP2012080836A (en) * 2010-10-13 2012-04-26 Toyo Seikan Kaisha Ltd Culture container for adherent cells and method for manufacturing culture container for adherent cells
US9637722B2 (en) 2013-07-09 2017-05-02 Toyoda Gosei Co., Ltd. Production method of polyurethane porous membrane to be used for at least one of applications of cell culture and cancer cell growth inhibition
WO2015190541A1 (en) * 2014-06-12 2015-12-17 国立研究開発法人国立循環器病研究センター Stent
KR101730482B1 (en) 2015-07-23 2017-04-27 재단법인 한국화학융합시험연구원 Protective shield of bodily tissue
CN105496475A (en) * 2015-11-23 2016-04-20 安徽养和医疗器械设备有限公司 Antibacterial intervention medical instrument
CN113144297A (en) * 2021-04-30 2021-07-23 中山大学孙逸仙纪念医院 Thin film material for blocking tumor diffusion of ovarian germ cells and preparation method thereof

Also Published As

Publication number Publication date
JPWO2006118248A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
WO2006118248A1 (en) Cell growth inhibitory member, cell metastasis inhibitory member, method of inhibiting cell growth, method of inhibiting cell metastasis, layered film and medical instrument
WO2005051450A1 (en) Cell growth-inhibiting film, medical instrument and stent for digestive organs
JP4512351B2 (en) Gastrointestinal stent
JP4755096B2 (en) Stent device and method for manufacturing the stent
JP4662556B2 (en) Implantable or insertable medical devices containing compatible polymer blends for therapeutic drug delivery control
JP4610885B2 (en) Cell growth suppression film and medical device
Laukens et al. Tauroursodeoxycholic acid inhibits experimental colitis by preventing early intestinal epithelial cell death
US20060127443A1 (en) Medical devices having vapor deposited nanoporous coatings for controlled therapeutic agent delivery
US7857804B2 (en) Use of Bcl inhibitors for the prevention of fibroproliferative reclosure of dilated blood vessels and other iatrogenic fibroproliferative disorders
JP2009504330A (en) Surface modification of ePTFE and implant using the same
Fregnan et al. Chitosan crosslinked flat scaffolds for peripheral nerve regeneration
JP2010194355A (en) Drug delivery construct including block copolymer and medical instrument
EP3160389B1 (en) Nickel titanium oxide coated articles
Lamichhane et al. Dextran sulfate as a drug delivery platform for drug‐coated balloons: Preparation, characterization, in vitro drug elution, and smooth muscle cell response
Abuayyash et al. Antibacterial Efficacy of Sacrifical Anode Thin Films Combining Silver with Platinum Group Elements within a Bacteria‐Containing Human Plasma Clot
Hang et al. Biological response of endothelial cells to diamond‐like carbon‐coated NiTi alloy
Li et al. Rapamycin-loaded nanoporous α-Fe 2 O 3 as an endothelial favorable and thromboresistant coating for biodegradable drug-eluting Fe stent applications
JP5028605B2 (en) Biofilm formation inhibitor and therapeutic device
Guo et al. Biodegradable JDBM coating stent has potential to be used in the treatment of benign biliary strictures
Bittner et al. Effects of gold and PCL-or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier
Toyokawa et al. A fully covered self-expandable metallic stent coated with poly (2-methoxyethyl acrylate) and its derivative: In vitro evaluation of early-stage biliary sludge formation inhibition
US10357596B2 (en) Biocorrodible implants having a functionalized coating
JP2011156083A (en) Stent for digestive system
WO2014131037A1 (en) Thin film vascular stent for arterial disease
JP2020500057A (en) Vascular graft, method for producing the same, and articles containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514835

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745839

Country of ref document: EP

Kind code of ref document: A1