WO2006118166A1 - Display device and electronic device provided with same - Google Patents

Display device and electronic device provided with same Download PDF

Info

Publication number
WO2006118166A1
WO2006118166A1 PCT/JP2006/308798 JP2006308798W WO2006118166A1 WO 2006118166 A1 WO2006118166 A1 WO 2006118166A1 JP 2006308798 W JP2006308798 W JP 2006308798W WO 2006118166 A1 WO2006118166 A1 WO 2006118166A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
active matrix
film
matrix substrate
region
Prior art date
Application number
PCT/JP2006/308798
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyuki Nagai
Hiromi Katoh
Yoshihiro Izumi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2006118166A1 publication Critical patent/WO2006118166A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133626Illuminating devices providing two modes of illumination, e.g. day-night
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • G02F2201/086UV absorbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector

Definitions

  • the present invention relates to a flat panel type display device such as a liquid crystal display device or an EL (Electroluminescence) display device, and in particular, a display device including an environmental sensor such as an optical sensor for detecting the brightness of the surrounding environment.
  • a background art related to an electronic device provided with such a display device is a background art related to an electronic device provided with such a display device
  • Flat panel display devices typified by liquid crystal display devices have features such as thin and light weight and low power consumption, and are aimed at improving display performance such as colorization, high definition, and video compatibility. Due to advanced technology development, it is currently incorporated into a wide range of information devices, TV devices, and amusement devices such as mobile phones, PDAs, DVD players, mopile game devices, notebook PCs, PC monitors, and TVs.
  • an optical sensor which is a discrete component, is provided in the vicinity of a display device, and based on the ambient illuminance detected by the optical sensor.
  • a method for automatically controlling the luminance of a display device is disclosed. As a result, if the display brightness is increased in a bright environment such as daytime or outdoors, and the display brightness is decreased in a relatively dark environment such as at night or indoors, the display brightness can be reduced automatically according to the brightness of the surrounding environment. Brightness adjustment (dimming) can be performed.
  • a display system equipped with an automatic light control function can achieve both good visibility and low power consumption against changes in the brightness of the usage environment, so it can be taken outdoors. It is particularly useful for mopile devices (cell phones, PDAs, mono-game devices, etc.) that have many opportunities to use and require battery operation.
  • FIG. 11 is an overall configuration diagram of a liquid crystal display device disclosed in Japanese Patent Laid-Open No. 2002-62856
  • FIG. 12 is a cross-sectional view of the photosensor mounting portion.
  • a substrate (active matrix substrate) 901 on which an active element such as a thin film transistor (TFT) is formed active matrix substrate 901 and a counter substrate 902 are bonded to each other, and a region surrounded by a frame-shaped sealing material 925 is formed between the two.
  • TFT thin film transistor
  • an optical sensor 907 which is a discrete component, is disposed in the peripheral portion of the active matrix substrate 901, that is, in the peripheral region S (frame region) where the counter substrate does not exist. The light is incident on the optical sensor 907 through a hole 916 provided in the housing 915.
  • the structure in which the optical sensor 907 is disposed in the peripheral region S has the following characteristics. That is, when the display mode of the liquid crystal display device is a transmissive type or a transflective type, it is necessary to provide the backlight system 914 on the back surface of the active matrix substrate 901, but the optical sensor 907 is arranged in the peripheral region S described above. Therefore, the malfunction of the light sensor 907 due to the light emitted from the knock light system 914 where the light emitted from the backlight system 914 directly reaches the light sensor 907 can be minimized. It is possible.
  • a force light sensor 907 having a polarizing plate (not shown) attached to the front side of the counter substrate 902 is disposed in the peripheral region S. Therefore, the light sensor 907 It is possible to introduce a sufficient amount of external light to the optical sensor so that the external light incident on is not blocked by the polarizing plate on the counter substrate 902. As a result, the optical sensor 907 can obtain a high SZN.
  • a thin film transistor (TFT) using an amorphous Si film or a polycrystalline Si film is generally used as an active element used in an active matrix display device.
  • TFT thin film transistor
  • a polycrystalline Si film is mainly used.
  • a structure of a TFT including a polycrystalline Si film formed as a semiconductor layer in each pixel of the pixel array region (display region) will be described with reference to FIG.
  • the TFT structure described here is called a “top gate structure” or “positive stagger structure”, and has a gate electrode on the upper layer of a semiconductor film (polycrystalline Si film) serving as a channel.
  • the TFT 500 includes a polycrystalline Si film 511 formed on a glass substrate 510, a gate insulating film 512 formed so as to cover the polycrystalline Si film, and a gate electrode 5 formed on the gate insulating film 512. 13 and a first interlayer insulating film 514 formed so as to cover the gate electrode 513.
  • the source electrode 517 formed on the first interlayer insulating film 514 is electrically connected to the source region 511 c of the semiconductor film through a contact hole that penetrates the first interlayer insulating film 514 and the gate insulating film 512. Has been.
  • the drain electrode 515 formed on the first interlayer insulating film 514 is electrically connected to the drain region 5 l ib of the semiconductor film through a contact hole that penetrates the first interlayer insulating film 514 and the gate insulating film 512. Connected. In addition, this A second interlayer insulating film 518 is formed so as to cover them.
  • the region of the semiconductor film facing the gate electrode 513 functions as the channel region 511a.
  • the regions other than the channel region 511a of the semiconductor film are highly doped with impurities, and function as the source region 511c and the drain region 51 lb.
  • a pixel electrode 519 for supplying an electric signal to the driven display medium is formed on the second interlayer insulating film 518.
  • the pixel electrode 519 is electrically connected to the drain electrode 515 through a contact hole provided in the second interlayer insulating film 518.
  • the pixel electrode 519 generally requires flatness, and the second interlayer insulating film 518 existing below the pixel electrode 519 is required to function as a flat film. Therefore, it is preferable to use an organic film (thickness: 2 to 3 m) such as acrylic resin for the second interlayer insulating film.
  • the second interlayer insulating film 518 is required to have a patterning performance, and usually a photosensitive organic film is often used.
  • FIG. 14 is a diagram showing a cross-section of the element structure of the optical sensor 400 that satisfies these conditions.
  • a semiconductor film 411 constituting an optical sensor is formed on a glass substrate 410, and a doping region (p region 41 lc or n region 41 lb) force of the semiconductor film 411 is applied to a non-doping region (i region 41 la). It is formed in the horizontal direction (plane direction) instead of the vertical direction (stacking direction).
  • a structure having a PIN junction in the lateral direction (plane direction) with respect to the formation surface is called a lateral PIN-type photodiode.
  • Each member constituting the optical sensor 400 is substantially the same as each member constituting the TFT of FIG. It is formed by the same process.
  • an insulating film 412 formed of the same material as the gate insulating film 512 is formed on the upper layer of the semiconductor film 411, and the same material as that of the source electrode 517 is formed on the upper layer of the first interlayer insulating film 414.
  • the p-side electrode 417 formed by the same process, the same material as the drain electrode 515, and the n-side electrode 415 formed by the same process are formed.
  • a surface protective film 418 formed of the same material as the second interlayer insulating film 518 and the same process is formed.
  • the second interlayer insulating film 518 electrically insulates the interlayer between the TFT 500 formation layer and the pixel electrode 519 formation layer, and improves the flatness of the formation surface of the pixel electrode 519.
  • the surface protective film 418 of the active matrix substrate is used as the surface sensor film 418 and the electrodes connected to the optical sensor 400 It plays a protective role.
  • the second interlayer insulating film 518 is generally formed on the substantially entire surface over the display region force peripheral region also serving as the surface protective film 418.
  • Such an optical sensor 400 shown in FIG. 14 can be used in place of the optical sensor 907 (discrete component provided in the peripheral area) of the conventional display device shown in FIG.
  • the display device shown in Fig. 11 is incorporated into an electronic device, the number of components and the component mounting process can be reduced.
  • JP-A-6-188400 as another example of the structure of the optical sensor 400, a TFT having a bottom gate structure (inverted stagger structure) using an amorphous silicon film, a MIS (MetaHnsulator- There is a description that a photodiode having a (Semiconductor) type junction is formed monolithically on the same substrate.
  • the active matrix substrate constituting the display device is roughly divided into a display area (H) and a peripheral area (frame area) (S).
  • the latter peripheral area (S) Furthermore, the light shielding area (S1) shielded from light by the housing, and the opening provided in the housing (for example, the opening 916 in FIG. 12).
  • It can be divided into non-light-shielding areas (S2) that are located in the same area and receive external light. Since the above-described optical sensor needs to receive external light, it is naturally necessary to be disposed in the non-shielding region (S2) on the active matrix substrate.
  • the second interlayer insulating film is formed on the substantially entire surface from the display region to the peripheral region.
  • the external light reaching the second interlayer insulating film in outdoor sunlight
  • the usage is as follows.
  • Display area (H) Since a part of external light is absorbed by a polarizing plate (not shown) and a color filter provided on the counter substrate, the display area (H) reaches the second interlayer insulating film on the active matrix substrate. External light reaching is limited to light in a specific wavelength region. In particular, since almost 100% of the ultraviolet light is absorbed by the polarizing plate and the color filter, no ultraviolet light reaches the second interlayer insulating film.
  • Light shielding area (S1) All external light is shielded by the casing. Of course, no ultraviolet rays reach the second interlayer insulating film on the active matrix substrate.
  • Non-shielding region (S2) Since external light is directly incident, light of all wavelengths (including ultraviolet rays) included in the external light reaches the second interlayer insulating film on the active matrix substrate.
  • the second interlayer insulating film is formed of a photosensitive organic film such as acrylic resin, but the organic film used here can be patterned by ultraviolet exposure.
  • the material is designed so that it contains a photosensitive group that absorbs ultraviolet rays, and a polymer polymerization reaction or a decay reaction is likely to occur by ultraviolet exposure. For this reason, it has the characteristics that it absorbs ultraviolet rays and is easily deteriorated compared to ordinary resin materials. Thus, the organic film used here was not considered for resistance to ultraviolet rays.
  • the second interlayer insulating film 418 is not provided in the upper region of the photosensor shown in FIG. It is.
  • each electrode of the optical sensor and the wiring member of the peripheral circuit are exposed to the outside air, so that the performance of the optical sensor is deteriorated and the electrode is exposed to the outside air, so that it is oxidized.
  • the electrical characteristics may change.
  • the present invention protects an environmental sensor without using a second interlayer insulating film in a display device including an environmental sensor (for example, an optical sensor) formed in a peripheral region of a pixel arrangement region in an active matrix substrate.
  • a display device has an active matrix substrate having a pixel array region in which a plurality of pixels are arrayed, and a pixel array region of the active matrix substrate.
  • a display device comprising: a counter substrate disposed on the active matrix substrate; and a display medium disposed on a gap between the active matrix substrate and the counter substrate.
  • An environmental sensor disposed in the region, and a surface protective film formed of the same material as a part of the constituent members of the active matrix substrate, and covering at least the electrode part of the environmental sensor in the upper layer of the environmental sensor; It is provided with.
  • each electrode of the optical sensor is not exposed to the outside air.
  • the manufacturing cost can be reduced.
  • a plurality of electrode wirings, a plurality of active elements, and an interlayer insulating film provided in an upper layer of the plurality of electrode wirings and the plurality of active elements are provided in a pixel array region of the active matrix substrate.
  • a plurality of pixel electrodes formed on the interlayer insulating film, the surface protection film is formed of the same material as the pixel electrode, and islands are formed with respect to each electrode of the environmental sensor. It can be set as the structure formed in the shape. According to this configuration, by forming the surface protective film with the same material as the pixel electrode, it is possible to provide a display device that is unlikely to change with time in the characteristics of the environmental sensor.
  • the conductive surface protective film is formed in an island shape with respect to each electrode of the environmental sensor so that the electrodes of the environmental sensor do not short-circuit. This improves the reliability of the environmental sensor. Further, since there is a portion that is not covered with the surface protective film between the electrodes of the environmental sensor, for example, when the environmental sensor is an optical sensor, there is an effect that the light incident efficiency to the optical sensor is improved.
  • the pixel electrode and the surface protective film are formed by the same process.
  • the pixel electrode and the surface protective film of the environmental sensor it is possible to realize a configuration having the surface protective film without increasing the number of processes.
  • a plurality of electrode wirings, a plurality of active elements, and a color filter layer provided above the plurality of electrode wirings and the plurality of active elements in a pixel array region of the active matrix substrate And a plurality of pixel electrodes formed on the color filter layer, and the surface protection film is made of the same material as the non-colored region of the color filter layer. it can.
  • the surface protective film can be formed from the same material as the non-colored region of the color filter layer, so that the environmental sensor characteristics change over time. Can be provided at a low cost.
  • an uncolored region of the color filter layer and the surface protective film are more preferably formed by the same process.
  • the non-colored region of the color filter layer and the surface protective film of the environmental sensor in the same process, it is possible to realize a configuration having the surface protective film without increasing the number of steps.
  • a plurality of electrode wirings, a plurality of active elements, and an interlayer insulating film provided in an upper layer of the plurality of electrode wirings and the plurality of active elements are provided in a pixel array region of the active matrix substrate.
  • the surface protective film may be formed of the same material as the photospacer. According to this configuration, the surface protective film can be formed of the same material as the photo spacer provided on the active matrix substrate in order to keep the distance from the counter substrate uniform, so that the environmental sensor characteristics change over time. V and display devices can be provided at low cost.
  • the photo spacer and the surface protective film are formed by the same process.
  • the photo spacer and the surface protection film of the environmental sensor in the same process, it is possible to realize a configuration having the surface protection film without increasing the number of processes.
  • the environmental sensor is manufactured in the same process as that of the active element. This is because the manufacturing process is simplified and costs can be reduced.
  • the environmental sensor is preferably formed monolithically on the main surface of the active matrix substrate.
  • the environmental sensor being “monolithically formed” on the active matrix substrate does not include that the environmental sensor is mounted on the active matrix substrate as a discrete component.
  • an environmental sensor is “monolithically formed” on an active matrix substrate means that a physical and Z or chemical process such as a film forming process or an etching process is performed directly on the active matrix substrate. It means that an environmental sensor is formed on the main surface of the active matrix substrate through the applied steps.
  • the active element is, for example, a thin film transistor.
  • a photodiode having a lateral structure can be used! /.
  • a circuit member is mounted in a peripheral region of the active matrix substrate, and a reinforcing member having the same material force as that of the surface protective film is disposed in the mounting portion of the circuit member.
  • a reinforcing member having the same material force as that of the surface protective film is disposed in the mounting portion of the circuit member.
  • the reinforcing member is disposed in the mounting portion of the circuit member, so that the mechanical strength of the mounting portion is increased and a moistureproof / dustproof effect is also obtained.
  • the reliability of connection with a circuit member improves.
  • the transparent conductive layer and the reinforcing member have the same material strength, the environmental sensor protection process and the wiring connection reinforcement process can be performed in the same process, thereby preventing an increase in man-hours.
  • an electronic apparatus includes the display device according to the present invention that works on any of the above-described configurations, and the environmental sensor is an optical sensor, A control circuit is provided that controls display brightness in accordance with brightness information of external light detected by the optical sensor.
  • the display luminance can be controlled by the control circuit controlling the luminance of the backlight system.
  • the display device is a self-luminous element, it can be realized by the control circuit controlling the light emission luminance. In this way, by controlling the display brightness so that it becomes necessary and sufficient brightness according to the ambient brightness, it is possible to provide an electronic device that reduces power consumption and realizes an easy-to-see display.
  • this electronic device can achieve both good visibility and low power consumption against changes in the brightness of the usage environment, it is particularly useful as a mopile device that needs to be taken outdoors and needs battery operation. Useful.
  • Such mopile devices are not intended to limit the application of the present invention, but include, for example, mobile phones, information terminals such as PDAs, mopile game devices, portable music players, digital cameras, There are video cameras.
  • the environmental sensor is used without using the second interlayer insulating film.
  • FIG. 1 is a perspective view showing an overall configuration of a display device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a state in which the display device according to the first embodiment is incorporated in a housing.
  • FIG. 3 is a cross-sectional view showing a structure per pixel of a pixel array region (display region) of the display device that is effective in the first embodiment.
  • FIG. 4 is a cross-sectional view showing an example of the structure of the optical sensor portion of the display device that is effective in the first embodiment.
  • FIG. 5 is a cross-sectional view showing a structure per pixel of a pixel arrangement region in a display device that is effective in the second embodiment.
  • FIG. 6 is a cross-sectional view showing an example of the structure of an optical sensor of a display device that is effective in the second embodiment.
  • FIG. 7 is a cross-sectional view showing a structure per pixel in a pixel arrangement region in a display device that is effective in the third embodiment.
  • FIG. 8 is a cross-sectional view showing an example of the structure of an optical sensor of a display device that works on the third embodiment.
  • FIG. 9 is a schematic plan view of a display device 40 according to a fourth embodiment and a cross-sectional view taken along the line BB ′.
  • FIG. 10 is a block diagram showing a schematic configuration of an electronic device according to an embodiment of the present invention.
  • FIG. 11 is an overall configuration diagram of a conventional liquid crystal display device disclosed in Japanese Patent Laid-Open No. 2002-62856.
  • FIG. 12 is a cross-sectional view of an optical sensor mounting portion disclosed in Japanese Patent Laid-Open No. 2002-62856.
  • FIG. 13 is a cross-sectional view of a conventional TFT formed in a pixel array region of an active matrix substrate.
  • FIG. 14 is a sectional view of an element structure of a conventional photosensor. BEST MODE FOR CARRYING OUT THE INVENTION
  • a display device that is useful for embodiments of the present invention.
  • a liquid crystal display device is given as an example of a display device.
  • the present invention can also be applied to display devices other than liquid crystal display devices.
  • FIG. 1 is an overall configuration diagram of a display device 1 that is useful for one embodiment of the present invention.
  • the display device 1 includes an active matrix substrate 2 in which a large number of pixels are arranged in a matrix, and a counter substrate 3 disposed so as to face the active matrix substrate 2, and a display medium 4 is provided in the gap therebetween. It has a structure in which liquid crystal is sandwiched.
  • the active matrix substrate 2 and the counter substrate 3 are bonded together by a frame-shaped seal resin (not shown) along the outer periphery of the counter substrate 3.
  • Each pixel 5 of the active matrix substrate 2 is formed with a thin film transistor (TFT) 6 and a pixel electrode 7 for driving the display medium 4.
  • TFT thin film transistor
  • a counter electrode (not shown) and a color filter (not shown) are formed on the counter substrate 3.
  • the active matrix substrate 2 has an area (pixel arrangement area) 8 in which the pixels 5 are arranged and a peripheral area 9 close to the pixel arrangement area, and the counter substrate 3 covers the pixel arrangement area 8 and the peripheral area It is arranged so that a part of 9 is exposed.
  • an FPC 10 for connecting an external drive circuit to the display device is mounted via a terminal 38 (see FIG. 2).
  • An optical sensor 11 for detecting the brightness of the light is provided.
  • other peripheral circuits a drive circuit (not shown) for driving the TFT 6 in the pixel array region 8
  • a wiring (not shown) connected to the optical sensor 11 and the drive circuit
  • the pixel array region 8 Lead-out wiring (not shown) etc. are also arranged!
  • the TFT 6 formed in the pixel array region 8 and the optical sensor 11 formed in the peripheral region 9 are monolithically formed on the active matrix substrate 2 by substantially the same process. That is, some constituent members of the optical sensor 11 are formed simultaneously with some constituent members of the TFT 6.
  • the display device 1 shown in FIG. 1 has the display shown in FIG. 12 of the conventional example as shown in FIG. Like the device, it is built into the housing 35 with holes.
  • the opening 37 of the housing 35 is provided at a predetermined position, and is structured so that external light reaches the optical sensor 11 through the opening 37.
  • 39 is a circuit board and 25 is a sealing material.
  • the display device When the display device is in a display mode using transmitted light, it is necessary to provide the backlight system 12 on the back side of the active matrix substrate 2 in the housing 35.
  • a knocklight system is not required.
  • the optical sensor 11 is intended to detect outside light, if the light of the knock light system 12 enters the optical sensor 11, the optical sensor 11 malfunctions, which causes another problem. . Therefore, a force that prevents the backlight system 12 from being arranged below the photosensor arrangement part of the active matrix substrate 2 and a light shielding member such as aluminum tape (see FIG. (Not shown) is necessary!
  • the display device 1 of the present embodiment described above is applied to a display system with an automatic light control function that detects the illuminance of external light using the optical sensor 11 and automatically controls the display luminance in accordance with the detected illuminance. be able to. That is, a control circuit that controls the luminance of the backlight system 12 or the luminance signal of the display signal based on the brightness information of the external light output from the optical sensor 11 provided in the peripheral region 9 of the active matrix substrate 2. By providing this, it is possible to automatically control the display brightness of the display device 1. As a result, brightness adjustment (dimming) can be automatically performed to increase the display brightness in bright environments such as outdoors, and to decrease the display brightness in relatively dark environments such as at night or indoors. Power consumption and longer life can be achieved.
  • FIG. 3 is a cross-sectional structure diagram of each pixel in the pixel array region (display region) 8 in the display device 1 of FIG.
  • a display medium (liquid crystal) 4 is sandwiched between the active matrix substrate 2 and the counter substrate 3.
  • a thin film transistor (TFT) 6 and a pixel electrode 7 for driving a display medium are formed on the active matrix substrate 2.
  • TFT 6 using the polycrystalline Si film used in the present embodiment and the structure of the pixel 5 including the TFT 6 will be described.
  • the structure of the TFT 6 used here is called a “top gate structure” or “positive stagger structure”, and has a gate electrode on the semiconductor film (polycrystalline Si film) 13 to be a channel.
  • the TFT 6 includes a polycrystalline Si film 13 formed on a glass substrate 14, a gate insulating film 15 (an oxide silicon film, a silicon nitride film, etc.) formed so as to cover the polycrystalline Si film 13, a gate A gate electrode 16 (Al, Mo, T, or an alloy thereof) formed on the insulating film and a first interlayer insulating film 17 (oxynitride silicon film nitrided) formed so as to cover the gate electrode Silicon film).
  • a gate insulating film 15 an oxide silicon film, a silicon nitride film, etc.
  • a gate A gate electrode 16 Al, Mo, T, or an alloy thereof
  • the region of the semiconductor film which overlaps with the gate electrode 16 through the gate insulating film 15 functions as a channel region.
  • the region other than the channel region of the semiconductor film is a ⁇ + layer doped with impurities at a high concentration, and functions as a source region and a drain region.
  • LDD Lightly Doped Drain
  • a region is formed.
  • a base coat film (such as an oxide silicon film or a silicon nitride film) may be provided on the surface of the glass substrate (under the polycrystalline Si film 13).
  • amorphous Si film having an amorphous structure by heat treatment such as laser annealing or RTA (Rapid Thermal Annealing).
  • the source electrode 18 (Al, Mo, T, or an alloy thereof) formed on the first interlayer insulating film 17 has a contact hole that penetrates the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the source region of the semiconductor film.
  • the drain electrode 19 (Al, ⁇ , ⁇ or their alloys) formed on the first interlayer insulating film 17 has a contact hole penetrating the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the drain region of the semiconductor film.
  • a second interlayer insulating film 20 is further formed so as to cover the TFT 6.
  • the second interlayer insulating film 20 in addition to the insulating property between the layers, the second interlayer insulating film 20 serves to flatten the unevenness of the lower layer. Therefore, organic films that can be formed by coating or printing (for example, organic insulating films such as acrylic and polyimide) are mainly used.
  • a pixel electrode 7 (for example, ITO (Indium-Tin-Oxide), IZO (Indium-Zinc-Oxide), etc.) is formed on the second interlayer insulating film 20.
  • the pixel electrode 7 is electrically connected to the drain electrode 19 through a contact hole formed in the second interlayer insulating film 20.
  • a contact hole can be easily formed in the second interlayer insulating film 20 by mask exposure and development treatment that preferably uses a photosensitive organic insulating film. Examples of such an organic insulating film having photosensitivity include acrylic, polyimide, and BCB (Benzo-Cyclo-Butene).
  • 30 is a glass substrate which is a base substrate of the counter substrate 3
  • 31 is a color filter
  • 32 is a counter electrode formed on the entire surface of the counter substrate 3.
  • FIG. 4 is a cross-sectional structure diagram of the optical sensor 11 formed in the peripheral region 9.
  • the structure of the optical sensor 11 used here is called a “lateral structure photodiode”, and includes a diode in which a semiconductor PIN junction is formed in the surface direction (lateral direction) of the substrate.
  • a PIN diode made of a polycrystalline Si film 21 is formed on a glass substrate 14 (a substrate common with a TFT formed substrate) serving as a base substrate. Yes.
  • the polycrystalline Si film 21 of the optical sensor 11 is formed simultaneously with the same process as the polycrystalline Si film 13 (see FIG. 3) of the TFT 6 in the pixel array region 8 (display region). Therefore, the polycrystalline Si film 13 and the polycrystalline Si film 21 have the same film thickness.
  • the PIN junction is formed by a p + layer (region 21b) and an n + layer (region 21c) doped with impurities at a high concentration, and an i layer (region 21a) not doped with impurities.
  • a lightly doped P-layer or n-layer can be used alone or in combination.
  • a gate insulating film 15 such as an acid silicon film or a silicon nitride film
  • a first interlayer insulating film 17 such as an oxide silicon film
  • a silicon nitride film is formed.
  • the gate insulating film 15 and the first interlayer insulating film 17 shown in FIG. 4 are the same as the gate insulating film 15 and the first interlayer insulating film 17 (refer to FIG. 3) of the TFT 6 in the pixel array region 8. It extends to area 9.
  • the p-side electrode 33 (for example, Al, Mo, T, or an alloy thereof can be used) formed on the first interlayer insulating film 17 includes the first interlayer insulating film 17 and the gate insulating film 15 It is electrically connected to the ⁇ + region 21b of the polycrystalline Si film 21 through a contact hole penetrating through the polycrystalline silicon film 21.
  • the n-side electrode 34 (for example, Al, Mo, T, or an alloy thereof can be used) formed on the first interlayer insulating film 17 is used for the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the ⁇ + region 21c of the polycrystalline Si film 21 through a contact hole penetrating through.
  • the partial force photosensor 11 is exposed on the surface of the first interlayer insulating film 17.
  • the contact holes to the first interlayer insulating film 17 and the gate insulating film 15 in the peripheral region 9 are formed by the contact holes to the first interlayer insulating film 17 and the gate insulating film 15 in the pixel array region 8. It is performed simultaneously by the same process as forming.
  • the p-side electrode 33 and the n-side electrode 34 are formed simultaneously by the same process as the formation of the source electrode 18 and the drain electrode 19 of the TFT 6.
  • the above is the basic structure of the optical sensor 11.
  • the constituent members of the optical sensor 11 are basically the same as the constituent members of the TFT 6 in the pixel array region described above, and the manufacturing process is also common.
  • the active matrix substrate 2 has the TFT 6 in the pixel array region 8 and the optical sensor 11 in the peripheral region 9 formed monolithically.
  • the peripheral area 9 is connected to a peripheral circuit (a driving circuit (not shown) for driving the TFT 6 in the pixel array area 8), the optical sensor 11 and the driving circuit.
  • the wiring 36 and the lead-out wiring (not shown) from the pixel array region 8 are also formed.
  • the surface protective film 24 is formed so as to individually cover the p-side electrode 33 and the n-side electrode 34 of the optical sensor 11. It is.
  • the surface protective film 24 is formed of the same material as the pixel electrode 7 in the pixel array region 8, and serves to protect the p-side electrode 33 and the n-side electrode 34 from oxidation and moisture absorption.
  • the film formation and patterning of the surface protective film 24 are preferably performed simultaneously with the film formation and patterning of the pixel electrodes 7 in the pixel array region 8. This is because an increase in the number of processes for forming the surface protective film 24 can be avoided. Further, as shown in FIG.
  • recesses 33a and 34a are formed in the tops of the p-side electrode 33 and the n-side electrode 34, respectively.
  • the recesses 33a and 34a are formed, for example, by etching after the p-side electrode 33 and the n-side electrode 34 are patterned. In this way, the concave portions 33a and 34a are formed at the tops of the p-side electrode 33 and the n-side electrode 34, so that the tops of the p-side electrode 33 and the n-side electrode 34 and the surface protective film 24 are in close contact with each other. Improves.
  • the surface protective film 24 also has the same conductive material force as that of the pixel electrode 7. Therefore, in order to prevent the p-side electrode 33 and the n-side electrode 34 from conducting, the p-side electrode 33 and the n-side electrode It is shaped like an island with respect to each of the 34 upper layers. It is preferable that the surface protective film 24 also protects the wiring extending from these electrodes (the portion extending into the area under the counter substrate 3) that extends only from the p-side electrode 33 and the n-side electrode 34.
  • the p-side electrode 33 and the n-side electrode 34 are formed in an island shape in this way, the surface of the first interlayer insulating film 17 is between the p-type electrode 33 and the n-side electrode 34. A place where the protective film 24 does not exist is formed. As a result, the incidence rate of light on the i-layer (region 21a) of the polycrystalline Si film 21 can be ensured, and the brightness change of external light can be detected with high accuracy.
  • the surface protective film 24 having the same material force as the pixel electrodes 7 in the pixel array region 8 has the p-side electrode 33 and the n-side electrode 34 of the photosensor 11.
  • the electrodes By forming the electrodes so as to cover them, it is possible to suppress temporal changes caused by these electrodes coming into contact with outside air or moisture.
  • a display device according to the second embodiment of the present invention will be described below with reference to FIG. 5 and FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
  • the display device is a display device having a so-called color filter “on” TFT.
  • Array structure in which a color filter 70 is provided between the TFT 6 and the pixel electrode 7 in the active matrix substrate 2.
  • a surface protective film is formed on the upper layer of the optical sensor 11 using the same material as the non-colored region of the color filter.
  • FIG. 5 is a cross-sectional view showing the structure per pixel of the pixel array region (display region) 8 in the display device according to the present embodiment.
  • FIG. 6 is a cross-sectional view showing the structure of the optical sensor 11 of the display device according to the present embodiment.
  • the display device includes a source electrode 18, a drain electrode 19, a TFT 6, and a first electrode provided on the pixel electrode 7 in the active matrix substrate 2.
  • the color filter 70 is provided on the upper layer of the two interlayer insulating film 20.
  • the pixel electrode 7 and the drain electrode 19 of the TFT 6 are connected via a contact hole provided in the second interlayer insulating film 20 and the color filter 70.
  • a counter electrode 32 is formed on the entire surface of the glass substrate 30 which is a base substrate without a color filter.
  • the color filter 70 has a configuration in which one color filter region is regularly arranged in a plane for each pixel.
  • Examples of the color filter 70 include a four-color filter having each color region of red (R), green (G), blue (B), and non-colored (W), and a part of the color filter. You can use a 6-color filter etc.
  • As a method of forming the color filter 70 there are generally the following two methods which are not intended to limit the present invention.
  • the first method is a method in which films (dry film) that are pre-colored (uncolored in the W region) are sequentially applied and patterned according to the filter arrangement.
  • the second method is to apply a liquid colored pigment (called a liquid resist) and pattern it.
  • a surface protective film 44 is provided on the upper layer of the optical sensor 11 that is effective in the present embodiment so as to cover the p-side electrode 33 and the n-side electrode 34 as a whole. ing.
  • the surface protective film 44 is formed of the same material as the non-colored region (W region) of the color filter 70.
  • the surface protective film 44 since the surface protective film 44 is not conductive, it is not necessary to form the islands separated between the p-side electrode 33 and the n-side electrode 34 as in the first embodiment.
  • the surface protective film 44 may be patterned in an island shape as in the first embodiment.
  • the surface protective film 44 is formed of the same material as the W region of the color filter 70 as described above, it can be formed by the same process as the W region of the color filter 70. wear. That is, regardless of whether the color filter 70 is formed by the first or second method described above, an uncolored photosensitive transparent resin is formed on the pixel array region 8 and patterned. At the same time, by forming the same photosensitive transparent resin on the upper layer of the photosensor 11 in the peripheral region 9 and patterning it appropriately, the surface protective film 44 can be formed simultaneously.
  • recesses 33a and 34a may be formed on the tops of the p-side electrode 33 and the n-side electrode 34, respectively.
  • the recesses 33a and 34a are formed, for example, by etching after the p-side electrode 33 and the n-side electrode 34 are patterned.
  • the concave portions 33a and 34a are formed at the tops of the P-side electrode 33 and the n-side electrode 34, so that the adhesion between the tops of the P-side electrode 33 and the n-side electrode 34 and the surface protective film 44 is improved. improves.
  • the surface protective film 44 made of the same material as the non-colored region (W region) of the color filter 70 in the pixel array region 8 is formed on the p side of the photosensor 11.
  • the electrode 33 and the n-side electrode 34 By being formed so as to cover the electrode 33 and the n-side electrode 34, it is possible to suppress changes over time due to contact of these electrodes with the outside air or moisture.
  • highly accurate sensing can be performed over a long period of time, and as a result, a highly reliable display device capable of appropriately adjusting luminance according to changes in the brightness of external light can be provided.
  • a display device according to the third embodiment of the present invention will be described below with reference to FIG. 7 and FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
  • FIG. 7 is a plan view showing the structure of the pixel array region (display region) 8 of the active matrix substrate 2 in the display device according to the present embodiment.
  • FIG. 8 is a cross-sectional view showing the structure of the optical sensor 11 of the display device according to the present embodiment.
  • the active matrix substrate 2 of the display device has a pixel 5 including a TFT 6 and a pixel electrode 7 in order to control the distance from the counter substrate 3 to be constant.
  • a photospacer 71 is provided in between.
  • the photo spacer 71 is formed on the active matrix substrate 2 after the pixel electrode 7 is formed, and the second interlayer insulating film 20 outside the pixel 5. Above, it is formed by a photolithographic process.
  • the material of the photo spacer 71 is generally a transparent photosensitive resin.
  • the arrangement of the force photospacer exemplifying a configuration in which the photospacer 71 is arranged every other pixel is not limited to this example.
  • the same material as the photo spacer 71 is provided on the upper layer of the photosensor 11 that is effective in the present embodiment so as to cover the p-side electrode 33 and the n-side electrode 34 as a whole.
  • a surface protective film 45 is provided. Since the surface protective film 45 is not conductive, it is not necessary to form the islands separated between the p-side electrode 33 and the n-side electrode 34 as in the first embodiment. However, the surface protective film 45 may be patterned in an island shape, as in the first embodiment, from the viewpoint of the efficiency of light incidence on the i layer.
  • the surface protective film 45 is formed of the same material as the photospacer 71 as described above, it can be formed by the same process as the photospacer 71. That is, a photosensitive transparent resin, which is the material of the photo spacer 71, is formed on the pixel array region 8 and patterned, and at the same time, the same photosensitive transparent resin is formed on the upper layer of the optical sensor 11 in the peripheral region 9.
  • the surface protective film 45 can be formed at the same time by forming an oil film and appropriately patterning it.
  • recesses 33a and 34a may be formed on the tops of the p-side electrode 33 and the n-side electrode 34, respectively.
  • the recesses 33a and 34a are formed, for example, by etching after the p-side electrode 33 and the n-side electrode 34 are patterned. In this way, the concave portions 33a and 34a are formed at the tops of the P-side electrode 33 and the n-side electrode 34, so that the adhesion between the tops of the P-side electrode 33 and the n-side electrode 34 and the surface protective film 45 is improved. improves.
  • the surface protective film 45 having the same material force as that of the photo spacer 71 in the pixel array region 8 provides the p-side electrode 33 and the n-side electrode 34 of the photosensor 11.
  • the electrodes By forming the electrodes so as to cover them, it is possible to suppress temporal changes caused by these electrodes coming into contact with outside air or moisture.
  • Fig. 9 is a schematic plan view of a display device 40 according to the fourth embodiment of the present invention, and its B-B, line sectional view.
  • the active matrix substrate 2 and the counter substrate 3 are bonded to each other with a seal resin 25, and the optical sensor 11 is formed in the peripheral region 9, and the P-side electrode 33 and the n-side electrode 34 are respectively formed on the upper layer of the optical sensor 11.
  • the surface protective film 24 is provided to cover the islands in the same manner as the display device 1 of the first embodiment.
  • the display device 40 has the FPC 10 mounted in the peripheral area 9, and the connection of the FPC 10 is also reinforced around the mounting area of the FPC 10 (mechanical reinforcement or reliability improvement of the mounting section by moisture and dust prevention).
  • the sliding surface protection film 24 (that is, a film made of the same material as the pixel electrode 7 in the pixel array region 8) is present.
  • the reinforcing member that reinforces the connecting portion of the FPC 10 is formed of the same material as the surface protective film 24 of the optical sensor 11, so that the reinforcing member is made of a material different from that of the surface protective film 24. Compared to the case of forming with, it is possible to prevent an increase in man-hours.
  • the reinforcing member is made of the same material as the surface protective film 24 so as to fill the gap between the active matrix substrate 2 and the counter substrate 3 in the vicinity of the optical sensor 11 and the FPC 10. Is formed. According to this configuration, for example, when the circuit portion of the optical sensor 11 is provided on the counter substrate 3, the wiring connecting the optical sensor 11 and the circuit portion can be protected by the reinforcing member. There is.
  • FIG. 9 shows an example in which the optical sensor 11 is arranged near the center in the short side direction and the FPC 10 is arranged beside the optical sensor 11 in the peripheral region 9 of the display device 40. Also, illustration of drive circuits other than the optical sensor is omitted.
  • the arrangement position and the number of the optical sensors 11 and the arrangement position of the FPC 10 are not limited to the example shown in FIG.
  • a structure in which a plurality of optical sensors 11 are provided in the peripheral region 9 may be employed. In that case, the connecting portion of the FPC 10 and one or more optical sensors 11 that are relatively close to each other may be continuously covered with the same material as the surface protective film 24.
  • the surface protective film 24 is FPC1.
  • the configuration provided near the mounting portion of 0 is illustrated, the configuration in which the surface protection film 44 is also provided near the mounting portion of the FPC 10 in the second embodiment and the surface protection in the third embodiment A configuration in which the film 45 is also provided near the mounting portion of the FPC 10 also belongs to the technical scope of the present invention.
  • the powers exemplifying some embodiments of the display device of the present invention.
  • the present invention is not limited to these embodiments.
  • an example in which the TFT 6 and the optical sensor 11 are formed using a polycrystalline Si film is shown, but both can be formed of an amorphous Si film.
  • a TFT having a bottom gate structure (reverse stagger structure) may be used instead of a TFT having a top gate structure (forward stagger structure).
  • other active elements such as MIM (MetaHnsulator-Metal) can be used instead of TFT6.
  • the optical sensor can use a photodiode having a Schottky junction or an MIS type junction that is not limited to using a PIN junction.
  • a method of monolithically forming a TFT having a bottom gate structure (inverted stagger structure) using an amorphous Si film and a photodiode having an MIS type junction on the same substrate is disclosed in, for example, JP-A-6-188400. Since it is known as disclosed and obvious to those skilled in the art, a detailed description thereof is omitted here.
  • the present invention can be widely applied to flat panel display devices including active elements.
  • the present invention can be applied to various display devices such as EL display devices and electrophoretic display devices. Can be applied.
  • a temperature sensor, a humidity sensor, a knocklight color sensor instead of the force sensor described for the display device in which the optical sensor is formed in the peripheral region 9 as a representative of the environmental sensor.
  • brightness sensors can be used as environmental sensors, and similar effects can be obtained.
  • FIG. 10 is a block diagram showing a schematic configuration of the electronic apparatus according to the present embodiment.
  • the electronic device 60 according to the present embodiment includes the display device 1 according to the first embodiment and the display device. And a control circuit 61 that controls the display luminance of the display device 1 according to the brightness information of the external light detected by the one optical sensor 11.
  • the functional blocks in the display device 1 and the electronic device 60 are simply illustrated.
  • the control circuit 61 may have a function of controlling an arbitrary operation of the electronic device 60 in addition to the control of display luminance. Further, the electronic device 60 may have arbitrary functional blocks other than those shown in FIG.
  • the control circuit 61 controls the display brightness of the display device 1 by adjusting the brightness of the backlight system 12 according to the brightness information (sensor output) of the external light detected by the light sensor 11. For example, automatically adjusting the brightness (dimming) to increase the display brightness in bright environments such as outdoors, and to reduce the display brightness in relatively dark environments such as at night or indoors, reduces the power consumption of the display device. And longer life. In the case of a transflective display mode display device that uses both the transmissive display mode and the reflective display mode, the brightness of the backlight system can be reduced or turned off in bright environments such as outdoors. In addition, lower power consumption and longer life of the display device can be realized.
  • display device 1 is a liquid crystal display device
  • the display brightness can be adjusted by controlling the brightness of the backlight system.
  • a self-luminous element such as an EL element
  • the display brightness can be adjusted.
  • the circuit 61 is configured to control the light emission luminance of the self light emitting element.
  • the configuration using the display device 1 according to the first embodiment has been exemplified, but the display device that works well with the second to fourth embodiments and these modifications is used.
  • the electronic equipment that was used is also within the scope of the present invention.
  • the electronic device of the present embodiment can achieve both good visibility and low power consumption in response to changes in the brightness of the usage environment, so it is often used as a mopile device that needs to be taken outside and needs battery drive. It is particularly useful.
  • the application of the present invention is not limited to these.
  • information terminals such as mobile phones, PDAs, mopile game equipment, portable music players, digital cameras, video There are cameras.
  • the configuration in which the control circuit 61 for controlling the display brightness of the display device is provided outside the display device is illustrated, but the control circuit is provided as a part of the display device. It is good also as the structure comprised.
  • the present invention can be applied to a flat panel display device including an environmental sensor and an electronic apparatus including the flat panel display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A display device provided with an environmental sensor formed in a peripheral region of an active matrix substrate. The characteristics of the environmental sensor are not easily deteriorated in time. The display device is provided with the active matrix substrate (2) having a pixel arranged region (8) wherein a plurality of pixels are arranged; a facing substrate (3) arranged to face the pixel arranged region (8) of the active matrix substrate (2); and a display medium (4) arranged in a space between the active matrix substrate (2) and the facing substrate (3). In the display device, a light sensor (11) is arranged in the peripheral region (9) existing around the pixel arranged region (8) on the active matrix substrate (2), and a surface protecting film (24) is formed of a same material as that of a part of a member constituting the active matrix substrate (2), for covering at least electrode sections (33, 34) of the light sensor (11) at an upper layer of the light sensor (11).

Description

明 細 書  Specification
表示装置およびこれを備えた電子機器  Display device and electronic apparatus equipped with the same
技術分野  Technical field
[0001] 本発明は、液晶表示装置や EL (Electroluminescence)表示装置などのフラットパネ ル型の表示装置に関し、特に、周囲環境の明るさを検出する光センサ等の環境セン サを備えた表示装置に関する。また、このような表示装置を備えた電子機器に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a flat panel type display device such as a liquid crystal display device or an EL (Electroluminescence) display device, and in particular, a display device including an environmental sensor such as an optical sensor for detecting the brightness of the surrounding environment. About. In addition, a background art related to an electronic device provided with such a display device
[0002] 液晶表示装置に代表されるフラットパネル型の表示装置は、薄型軽量、低消費電 力といった特徴を有し、さらに、カラー化、高精細化、動画対応といった表示性能の 向上に向けた技術開発が進んでいることから、現在では、携帯電話、 PDA, DVDプ レイヤー、モパイルゲーム機器、ノート PC、 PCモニター、 TV等、幅広い情報機器、 T V機器、アミューズメント機器に組み込まれている。  [0002] Flat panel display devices typified by liquid crystal display devices have features such as thin and light weight and low power consumption, and are aimed at improving display performance such as colorization, high definition, and video compatibility. Due to advanced technology development, it is currently incorporated into a wide range of information devices, TV devices, and amusement devices such as mobile phones, PDAs, DVD players, mopile game devices, notebook PCs, PC monitors, and TVs.
[0003] このような背景の中、表示装置の更なる視認性向上や低消費電力化を目的として、 使用環境、特に外光の明るさに応じて表示装置の輝度を自動的に制御する自動調 光機能付きの表示システムが提案されて 、る。  [0003] In such a background, for the purpose of further improving the visibility of the display device and reducing the power consumption, an automatic control for automatically controlling the brightness of the display device according to the use environment, particularly the brightness of the external light. A display system with dimming function has been proposed.
[0004] 例えば、特開平 4 174819号公報ゃ特開平 5— 241512号公報では、表示装置 の近傍にディスクリート部品である光センサを配設し、該光センサで検知した使用環 境照度を基に、表示装置の輝度を自動的に制御する方法が開示されている。この結 果、昼間や屋外など明るい環境下では表示輝度を高くし、夜間や室内など比較的暗 V、環境下では表示輝度を下げると!、つたように、周囲環境の明るさに応じて自動的 に輝度調整 (調光)を行うことができる。この場合、表示装置の観察者が暗い環境下 で画面をまぶしく感じることがなくなり、視認性の向上を図ることができる。また、使用 環境の明 Z暗にかかわらず、表示輝度を常に高く保つ使用方法に比べると、表示装 置の低消費電力化や長寿命化を実現することができる。さらに、光センサの検知情 報を基に自動的に輝度調整 (調光)を行うために、使用者の手を煩わせることもな!ヽ [0005] このように、自動調光機能を備えた表示システムは、使用環境の明るさの変化に対 して良好な視認性と低消費電力化を両立することができることから、屋外に持ち出し て使用する機会が多くバッテリー駆動を必要とするモパイル機器 (携帯電話、 PDA、 モノくィルゲーム機器等)に対して特に有用である。 [0004] For example, in Japanese Patent Application Laid-Open No. 4 174819 and Japanese Patent Application Laid-Open No. 5-241512, an optical sensor, which is a discrete component, is provided in the vicinity of a display device, and based on the ambient illuminance detected by the optical sensor. A method for automatically controlling the luminance of a display device is disclosed. As a result, if the display brightness is increased in a bright environment such as daytime or outdoors, and the display brightness is decreased in a relatively dark environment such as at night or indoors, the display brightness can be reduced automatically according to the brightness of the surrounding environment. Brightness adjustment (dimming) can be performed. In this case, the viewer of the display device does not feel dazzling in a dark environment, and visibility can be improved. In addition, regardless of whether the environment is bright or dark, the display device can achieve lower power consumption and longer life compared to a usage method that always maintains high display brightness. In addition, since the brightness adjustment (dimming) is automatically performed based on the detection information of the optical sensor, it does not bother the user! [0005] Thus, a display system equipped with an automatic light control function can achieve both good visibility and low power consumption against changes in the brightness of the usage environment, so it can be taken outdoors. It is particularly useful for mopile devices (cell phones, PDAs, mono-game devices, etc.) that have many opportunities to use and require battery operation.
[0006] 一方、特開 2002— 62856号公報には、ディスクリート部品である光センサを、表示 装置内に組み込む構造が開示されている。図 11は、特開 2002— 62856号公報に 開示されている液晶表示装置の全体構成図であり、図 12は、その光センサ実装部の 断面図である。この液晶表示装置は、薄膜トランジスタ (TFT)などのアクティブ素子 が形成される基板 (アクティブマトリクス基板) 901と対向基板 902が貼り合わされ、両 者の間隙において、枠状のシール材 925に囲まれた領域に、液晶層 903が挟持され た構造となっている。ここで、アクティブマトリクス基板 901の周辺部、すなわち対向基 板が存在しない周辺領域 S (額縁領域)に、ディスクリート部品である光センサ 907が 配設されている。光センサ 907への光の入射は筐体 915に設けられた開孔 916から 入射する仕組みになって ヽる。  [0006] On the other hand, Japanese Patent Application Laid-Open No. 2002-62856 discloses a structure in which an optical sensor, which is a discrete component, is incorporated in a display device. FIG. 11 is an overall configuration diagram of a liquid crystal display device disclosed in Japanese Patent Laid-Open No. 2002-62856, and FIG. 12 is a cross-sectional view of the photosensor mounting portion. In this liquid crystal display device, a substrate (active matrix substrate) 901 on which an active element such as a thin film transistor (TFT) is formed (active matrix substrate) 901 and a counter substrate 902 are bonded to each other, and a region surrounded by a frame-shaped sealing material 925 is formed between the two. In addition, the liquid crystal layer 903 is sandwiched. Here, an optical sensor 907, which is a discrete component, is disposed in the peripheral portion of the active matrix substrate 901, that is, in the peripheral region S (frame region) where the counter substrate does not exist. The light is incident on the optical sensor 907 through a hole 916 provided in the housing 915.
[0007] このように、光センサ 907を上記周辺領域 Sに配設する構造は、以下の特徴を備え ている。すなわち、液晶表示装置の表示モードが透過型や半透過型の場合には、ァ クティブマトリクス基板 901の裏面にバックライトシステム 914を備える必要があるが、 光センサ 907が上記の周辺領域 Sに配設されているので、バックライトシステム 914 力も発せられる光が直接光センサ 907に到達することがなぐノ ックライトシステム 91 4から発せられる光に起因する光センサ 907の誤動作を最小限に留めることが可能 である。また、通常の液晶表示装置ででは、対向基板 902の表側には偏光板(図示 せず)が貼られている力 光センサ 907が上記の周辺領域 Sに配設されているので、 光センサ 907に入射する外光が対向基板 902上の偏光板によって遮られることが無 ぐ十分な光量の外光を光センサに導くことが可能である。この結果、光センサ 907 は、高い SZNを得ることが可能である。  As described above, the structure in which the optical sensor 907 is disposed in the peripheral region S has the following characteristics. That is, when the display mode of the liquid crystal display device is a transmissive type or a transflective type, it is necessary to provide the backlight system 914 on the back surface of the active matrix substrate 901, but the optical sensor 907 is arranged in the peripheral region S described above. Therefore, the malfunction of the light sensor 907 due to the light emitted from the knock light system 914 where the light emitted from the backlight system 914 directly reaches the light sensor 907 can be minimized. It is possible. Further, in a normal liquid crystal display device, a force light sensor 907 having a polarizing plate (not shown) attached to the front side of the counter substrate 902 is disposed in the peripheral region S. Therefore, the light sensor 907 It is possible to introduce a sufficient amount of external light to the optical sensor so that the external light incident on is not blocked by the polarizing plate on the counter substrate 902. As a result, the optical sensor 907 can obtain a high SZN.
[0008] さらに、近年、表示装置の製造技術が急速に進展し、従来はディスクリート部品とし て表示装置の周辺部に実装していた ICチップや各種回路素子を、表示装置の構成 回路 '素子の形成時に、表示装置内(具体的には表示装置を構成するガラス基板上 )に同一プロセスでモノリシックに形成する技術が確立されてきている。 [0008] Further, in recent years, the manufacturing technology of display devices has rapidly progressed, and an IC chip and various circuit elements that have been conventionally mounted as discrete components on the periphery of the display device can be used as a component circuit of the display device. At the time of formation, inside the display device (specifically on the glass substrate constituting the display device) ) Has been established in the same process.
[0009] 例えば、特開 2002— 175026号公報では、基板上に表示領域部を形成する際、 表示領域部の周辺の領域に、垂直駆動回路、水平駆動回路、電圧変換回路、タイミ ング発生回路、光センサ回路などを、同一プロセスでモノリシックに形成する例が開 示されている。このようなディスクリート部品の表示装置内へのモノリシック形成は、部 品点数や部品実装プロセスの削減を可能にし、表示装置を組み込んだ電子機器の 小型化とコストダウンを実現することができる。もちろん、上述した表示装置の輝度調 節 (調光)に用いる光センサや、光センサ用の専用回路 (光量検出回路)などを、表 示装置内にモノリシックに形成することも可能である。また、上記の特開 2002— 628 56号公報においても、ディスクリート部品の光センサの代わりに、表示装置の構成基 板上に周辺回路と光センサを同一プロセスでモノリシックに形成する実施形態が開 示されている。  [0009] For example, in Japanese Patent Application Laid-Open No. 2002-175026, when a display area portion is formed on a substrate, a vertical drive circuit, a horizontal drive circuit, a voltage conversion circuit, and a timing generation circuit are formed around the display area portion. An example in which an optical sensor circuit and the like are formed monolithically by the same process is disclosed. Such monolithic formation of discrete components in a display device enables reduction of the number of components and component mounting process, and can achieve downsizing and cost reduction of an electronic device incorporating the display device. Of course, it is possible to monolithically form the optical sensor used for the luminance adjustment (dimming) of the display device described above, a dedicated circuit for the optical sensor (light amount detection circuit), and the like in the display device. Also in the above-mentioned Japanese Patent Application Laid-Open No. 2002-62856, an embodiment is disclosed in which a peripheral circuit and an optical sensor are formed monolithically by the same process on a constituent substrate of a display device instead of an optical sensor of a discrete part. Has been.
[0010] ところで、アクティブマトリクス型の表示装置に使用されるアクティブ素子としては、 非晶質 Si膜や多結晶 Si膜を用いた薄膜トランジスタ (TFT)が一般的である。上述の ようにアクティブ素子と各種回路素子を同一基板上にモノリシックに形成する場合は 、主として多結晶 Si膜を利用した TFTが用いられる。  Incidentally, as an active element used in an active matrix display device, a thin film transistor (TFT) using an amorphous Si film or a polycrystalline Si film is generally used. As described above, when an active element and various circuit elements are formed monolithically on the same substrate, a TFT using a polycrystalline Si film is mainly used.
[0011] そこで、図 13を参照しながら、画素配列領域 (表示領域)の各画素に形成される、 多結晶 Si膜を半導体層として備える TFTの構造を説明する。ここで説明する TFTの 構造は、「トップゲート構造」、または「正スタガ構造」と呼ばれるもので、チャネルとな る半導体膜 (多結晶 Si膜)の上層にゲート電極を備えるものである。  Therefore, a structure of a TFT including a polycrystalline Si film formed as a semiconductor layer in each pixel of the pixel array region (display region) will be described with reference to FIG. The TFT structure described here is called a “top gate structure” or “positive stagger structure”, and has a gate electrode on the upper layer of a semiconductor film (polycrystalline Si film) serving as a channel.
[0012] TFT500は、ガラス基板 510上に形成された多結晶 Si膜 511と、多結晶 Si膜を覆う ように形成されたゲート絶縁膜 512と、ゲート絶縁膜 512上に形成されたゲート電極 5 13と、ゲート電極 513を覆うように形成された第 1層間絶縁膜 514とを有している。第 1層間絶縁膜 514上に形成されているソース電極 517は、第 1層間絶縁膜 514およ びゲート絶縁膜 512を貫通するコンタクトホールを介して半導体膜のソース領域 511 cに電気的に接続されている。同様に、第 1層間絶縁膜 514上に形成されているドレ イン電極 515は、第 1層間絶縁膜 514およびゲート絶縁膜 512を貫通するコンタクト ホールを介して半導体膜のドレイン領域 5 l ibに電気的に接続されている。さらに、こ れらを覆うように第 2層間絶縁膜 518が形成されている。 The TFT 500 includes a polycrystalline Si film 511 formed on a glass substrate 510, a gate insulating film 512 formed so as to cover the polycrystalline Si film, and a gate electrode 5 formed on the gate insulating film 512. 13 and a first interlayer insulating film 514 formed so as to cover the gate electrode 513. The source electrode 517 formed on the first interlayer insulating film 514 is electrically connected to the source region 511 c of the semiconductor film through a contact hole that penetrates the first interlayer insulating film 514 and the gate insulating film 512. Has been. Similarly, the drain electrode 515 formed on the first interlayer insulating film 514 is electrically connected to the drain region 5 l ib of the semiconductor film through a contact hole that penetrates the first interlayer insulating film 514 and the gate insulating film 512. Connected. In addition, this A second interlayer insulating film 518 is formed so as to cover them.
[0013] このような構造において、ゲート電極 513と対向する半導体膜の領域がチャネル領 域 511aとして機能する。また、半導体膜のチャネル領域 511a以外の領域は、不純 物が高濃度にドープされており、ソース領域 511cおよびドレイン領域 51 lbとして機 能する。 In such a structure, the region of the semiconductor film facing the gate electrode 513 functions as the channel region 511a. The regions other than the channel region 511a of the semiconductor film are highly doped with impurities, and function as the source region 511c and the drain region 51 lb.
[0014] なお、ここでは図示しないが、ホットキャリアによる電気特性の劣化を防ぐために、ソ ース領域 51 lcのチャネル領域側およびドレイン領域 51 lbのチャネル領域側に、不 純物が低濃度にドープされた LDD (Lightly Doped Drain)領域が形成されている。  [0014] Although not shown here, in order to prevent deterioration of electrical characteristics due to hot carriers, impurities are reduced in concentration on the channel region side of the source region 51 lc and on the channel region side of the drain region 51 lb. Doped LDD (Lightly Doped Drain) regions are formed.
[0015] さらに、第 2層間絶縁膜 518の上層には、駆動される表示媒体に電気信号を供給 するための画素電極 519が形成される。画素電極 519は、第 2層間絶縁膜 518に設 けられたコンタクトホールを介して、ドレイン電極 515に電気的に接続される。この画 素電極 519は、一般に平坦性が求められることが多ぐ画素電極 519の下層に存在 する第 2層間絶縁膜 518は平坦ィ匕膜としての機能が要求される。このため第 2層間絶 縁膜には、アクリル榭脂などの有機膜 (厚み 2〜3 m)を用いることが好ましい。また 、 TFT500におけるコンタクトホールの形成や、周辺領域での電極取り出しのために 、第 2層間絶縁膜 518はパターユング性能が求められ、通常、感光性を有する有機 膜を用いることが多い。  Furthermore, a pixel electrode 519 for supplying an electric signal to the driven display medium is formed on the second interlayer insulating film 518. The pixel electrode 519 is electrically connected to the drain electrode 515 through a contact hole provided in the second interlayer insulating film 518. The pixel electrode 519 generally requires flatness, and the second interlayer insulating film 518 existing below the pixel electrode 519 is required to function as a flat film. Therefore, it is preferable to use an organic film (thickness: 2 to 3 m) such as acrylic resin for the second interlayer insulating film. Further, in order to form a contact hole in the TFT 500 and to take out an electrode in the peripheral region, the second interlayer insulating film 518 is required to have a patterning performance, and usually a photosensitive organic film is often used.
[0016] 一方、表示領域に上述の構造を有する TFTを備えた表示装置にお 、て、外光の 明るさを検知するための光センサを、表示装置の周辺領域にモノリシック形成しようと した場合、製造プロセスの増加を最小限に抑えようとすると、光センサの素子構造が 限定されること〖こなる。  [0016] On the other hand, in a display device including a TFT having the above-described structure in the display region, when an optical sensor for detecting the brightness of external light is to be monolithically formed in the peripheral region of the display device In order to minimize the increase in the manufacturing process, the element structure of the optical sensor is limited.
[0017] 図 14は、これらの条件を満たす光センサ 400の素子構造断面を示す図である。ガ ラス基板 410上に、光センサを構成する半導体膜 411が形成され、該半導体膜 411 のドーピング領域 (p領域 41 lc又は n領域 41 lb)力 ノンドーピング領域 (i領域 41 la )に対して縦方向(積層方向)ではなく横方向(面方向)に形成される。一般に、形成 面に対してすなわち横方向(面方向)に PIN接合を有する構造は、ラテラル構造の PI N型光ダイオードと呼ばれて!/、る。  FIG. 14 is a diagram showing a cross-section of the element structure of the optical sensor 400 that satisfies these conditions. A semiconductor film 411 constituting an optical sensor is formed on a glass substrate 410, and a doping region (p region 41 lc or n region 41 lb) force of the semiconductor film 411 is applied to a non-doping region (i region 41 la). It is formed in the horizontal direction (plane direction) instead of the vertical direction (stacking direction). In general, a structure having a PIN junction in the lateral direction (plane direction) with respect to the formation surface is called a lateral PIN-type photodiode.
[0018] また、光センサ 400を構成する各部材は、図 13の TFTを構成する各部材と、ほぼ 同じプロセスで形成されている。例えば、半導体膜 411の上層には、ゲート絶縁膜 5 12と同材料'同プロセスで形成される絶縁膜 412が形成され、第 1層間絶縁膜 414 の上層には、ソース電極 517と同材料 '同プロセスで形成される p側電極 417と、ドレ イン電極 515と同材料 .同プロセスで形成される n側電極 415が形成される。 [0018] Each member constituting the optical sensor 400 is substantially the same as each member constituting the TFT of FIG. It is formed by the same process. For example, an insulating film 412 formed of the same material as the gate insulating film 512 is formed on the upper layer of the semiconductor film 411, and the same material as that of the source electrode 517 is formed on the upper layer of the first interlayer insulating film 414. The p-side electrode 417 formed by the same process, the same material as the drain electrode 515, and the n-side electrode 415 formed by the same process are formed.
[0019] さらにその上層には、第 2層間絶縁膜 518と同材料 '同プロセスで形成される表面 保護膜 418が形成される。この場合、第 2層間絶縁膜 518は、画素配列領域 (表示 領域)においては、 TFT500形成層と画素電極 519形成層の層間を電気的に絶縁 するとともに、画素電極 519の形成面の平坦性を向上させる役割を果たし、画素配列 領域外 (表示領域外)の周辺領域 (額縁領域)では、アクティブマトリクス基板の表面 保護膜 418として光センサ 400や光センサ 400に接続される電極を外気カゝら保護す る役割を果たす。このように、第 2層間絶縁膜 518は、表面保護膜 418を兼ねて、表 示領域力 周辺領域に亘つて略全面に形成されることが一般的である。  Further, on the upper layer, a surface protective film 418 formed of the same material as the second interlayer insulating film 518 and the same process is formed. In this case, in the pixel array region (display region), the second interlayer insulating film 518 electrically insulates the interlayer between the TFT 500 formation layer and the pixel electrode 519 formation layer, and improves the flatness of the formation surface of the pixel electrode 519. In the peripheral area (frame area) outside the pixel array area (outside the display area), the surface protective film 418 of the active matrix substrate is used as the surface sensor film 418 and the electrodes connected to the optical sensor 400 It plays a protective role. As described above, the second interlayer insulating film 518 is generally formed on the substantially entire surface over the display region force peripheral region also serving as the surface protective film 418.
[0020] このような図 14に示した光センサ 400は、図 11に示した従来の表示装置の光セン サ 907 (周辺領域に設けられたディスクリート部品)の代わりに使用することができ、か つ、図 11に示した表示装置を電子機器に組み込む際に、部品点数の削減や部品実 装プロセスの削減を可能にする。  Such an optical sensor 400 shown in FIG. 14 can be used in place of the optical sensor 907 (discrete component provided in the peripheral area) of the conventional display device shown in FIG. In addition, when the display device shown in Fig. 11 is incorporated into an electronic device, the number of components and the component mounting process can be reduced.
[0021] なお、特開平 6— 188400号公報には、光センサ 400の構造の他の例として、非結 晶 Si膜を用いたボトムゲート構造(逆スタガ構造)の TFTと、 MIS (MetaHnsulator-S emiconductor)型接合を有する光ダイオードを同一基板上にモノリシックに形成したも のが記載されている。  [0021] In addition, in JP-A-6-188400, as another example of the structure of the optical sensor 400, a TFT having a bottom gate structure (inverted stagger structure) using an amorphous silicon film, a MIS (MetaHnsulator- There is a description that a photodiode having a (Semiconductor) type junction is formed monolithically on the same substrate.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0022] し力しながら、上述した図 14に示す光センサを、アクティブマトリクス基板上の周辺 領域に形成して表示装置を実現しょうとすると、以下の問題が生じることが明らかにな つた o [0022] However, when the above-described optical sensor shown in FIG. 14 is formed in the peripheral region on the active matrix substrate to realize a display device, the following problems have been clarified.
[0023] 表示装置を構成するアクティブマトリクス基板は、図 12に示すように、表示領域 (H) と周辺領域 (額縁領域) (S)に大別されるが、後者の周辺領域 (S)は、さらに筐体で 遮光された遮光領域 (S1)と、筐体に設けられた開孔部(例えば図 12の開孔 916に 相当)に位置し外光の入射を受ける非遮光領域 (S2)に分けることができる。上述し た光センサは、外光を受光する必要があることから、当然、アクティブマトリクス基板上 の非遮光領域 (S2)に配置される必要がある。 As shown in FIG. 12, the active matrix substrate constituting the display device is roughly divided into a display area (H) and a peripheral area (frame area) (S). The latter peripheral area (S) Furthermore, the light shielding area (S1) shielded from light by the housing, and the opening provided in the housing (for example, the opening 916 in FIG. 12). It can be divided into non-light-shielding areas (S2) that are located in the same area and receive external light. Since the above-described optical sensor needs to receive external light, it is naturally necessary to be disposed in the non-shielding region (S2) on the active matrix substrate.
[0024] 第 2層間絶縁膜は、表示領域から周辺領域に亘つて略全面に形成される旨を前段 で説明したが、この第 2層間絶縁膜に到達する外光 (屋外太陽光下での使用を想定 )が第 2層間絶縁膜に如何に到達するかについて考えてみると、以下のようになる。  [0024] As described above, the second interlayer insulating film is formed on the substantially entire surface from the display region to the peripheral region. However, the external light reaching the second interlayer insulating film (in outdoor sunlight) Considering how it reaches the second interlayer insulating film, the usage is as follows.
[0025] 表示領域 (H):対向基板に備えられた偏光板(図示せず)やカラーフィルタによって 、外光の一部が吸収されるため、アクティブマトリクス基板上の第 2層間絶縁膜に到 達する外光は、特定の波長領域の光に限定される。特に偏光板やカラーフィルタで 紫外線は略 100%吸収されるために、第 2層間絶縁膜に到達する紫外線は皆無で ある。  [0025] Display area (H): Since a part of external light is absorbed by a polarizing plate (not shown) and a color filter provided on the counter substrate, the display area (H) reaches the second interlayer insulating film on the active matrix substrate. External light reaching is limited to light in a specific wavelength region. In particular, since almost 100% of the ultraviolet light is absorbed by the polarizing plate and the color filter, no ultraviolet light reaches the second interlayer insulating film.
[0026] 遮光領域 (S1):筐体によって外光が全て遮光される。もちろん、アクティブマトリク ス基板上の第 2層間絶縁膜に到達する紫外線は皆無である。  [0026] Light shielding area (S1): All external light is shielded by the casing. Of course, no ultraviolet rays reach the second interlayer insulating film on the active matrix substrate.
[0027] 非遮光領域 (S2):外光が直接入射するため、アクティブマトリクス基板上の第 2層 間絶縁膜に、外光に含まれる全波長の光 (紫外線含む)が到達する。  Non-shielding region (S2): Since external light is directly incident, light of all wavelengths (including ultraviolet rays) included in the external light reaches the second interlayer insulating film on the active matrix substrate.
[0028] つまり、表示装置を屋外で使用する場合を考えると、太陽光に含まれる紫外線は、 周辺領域の非遮光領域 (S2)のみにおいて、アクティブマトリクス基板上の第 2層間 絶縁膜に到達し得ることになる。  In other words, considering the case where the display device is used outdoors, ultraviolet rays contained in sunlight reach the second interlayer insulating film on the active matrix substrate only in the non-light-shielding region (S2) in the peripheral region. Will get.
[0029] 前述したように、第 2層間絶縁膜は、アクリル榭脂などの感光性を有する有機膜によ つて形成されているが、ここで用いる有機膜は、紫外線露光によってパターユングで きるように紫外線を吸収する感光基を含有しており、かつ、紫外線露光によって高分 子の重合反応や崩壊反応が生じやすいように材料設計されている。このため、通常 の榭脂材料に比べて紫外線を吸収しやすぐかつ劣化しやすいといった特性を備え ている。このように、ここで用いる有機膜は、紫外線に対する耐性は考慮されていな かった。  [0029] As described above, the second interlayer insulating film is formed of a photosensitive organic film such as acrylic resin, but the organic film used here can be patterned by ultraviolet exposure. The material is designed so that it contains a photosensitive group that absorbs ultraviolet rays, and a polymer polymerization reaction or a decay reaction is likely to occur by ultraviolet exposure. For this reason, it has the characteristics that it absorbs ultraviolet rays and is easily deteriorated compared to ordinary resin materials. Thus, the organic film used here was not considered for resistance to ultraviolet rays.
[0030] そこで、非遮光領域 (S2)に位置する第 2層間絶縁膜の耐光試験を実施してみると 、長期間の紫外線照射によって膜が劣化する現象、すなわち当初透明であった膜が 茶褐色化又は白濁化する現象が生じ、さらには、剥がれが生じる場合があることが判 明した。さらに、この結果、第 2層間絶縁膜の透明性が損なわれ、その下に位置する 光センサに到達する外光が減少して、光センサの感度不良および特性の経時変化 をもたらすことが判明した。 [0030] Thus, when the light resistance test of the second interlayer insulating film located in the non-light-shielding region (S2) is performed, the phenomenon that the film deteriorates due to long-term ultraviolet irradiation, that is, the film that was initially transparent is brownish It has been found that there is a phenomenon of becoming turbid or cloudy, and further peeling may occur. I am clear. Furthermore, as a result, it has been found that the transparency of the second interlayer insulating film is impaired, and the external light reaching the optical sensor located thereunder is reduced, resulting in poor sensitivity of the optical sensor and changes in characteristics over time. .
[0031] 一方、紫外線による第 2層間絶縁膜の劣化の影響を排除するために、図 14に示し た光センサの上部領域には第 2層間絶縁膜 418を設けない構成とすることも考えら れる。しかし、この構成では、光センサの各電極および周辺回路の配線部材等が外 気にさらされることになるため、光センサの性能が劣化したり、電極が外気にむき出し になるので酸ィ匕して電気特性が変化したりしてしまうおそれがある。  On the other hand, in order to eliminate the influence of the deterioration of the second interlayer insulating film due to ultraviolet rays, it may be considered that the second interlayer insulating film 418 is not provided in the upper region of the photosensor shown in FIG. It is. However, in this configuration, each electrode of the optical sensor and the wiring member of the peripheral circuit are exposed to the outside air, so that the performance of the optical sensor is deteriorated and the electrode is exposed to the outside air, so that it is oxidized. The electrical characteristics may change.
[0032] そこで本発明は、アクティブマトリクス基板における画素配列領域の周辺領域に形 成された環境センサ (例えば光センサ)を備えた表示装置において、第 2層間絶縁膜 を用いずに環境センサを保護することにより、環境センサの特性の経時変化が生じ にくい表示装置と、この表示装置を利用した電子機器とを提供することを目的とする 課題を解決するための手段  Therefore, the present invention protects an environmental sensor without using a second interlayer insulating film in a display device including an environmental sensor (for example, an optical sensor) formed in a peripheral region of a pixel arrangement region in an active matrix substrate. By means of this, means for solving the problems aimed at providing a display device in which the characteristics of the environmental sensor are unlikely to change over time and an electronic device using this display device are provided.
[0033] 上記の目的を達成するために、本発明にかかる表示装置は、複数の画素が配列さ れた画素配列領域を有するアクティブマトリクス基板と、前記アクティブマトリクス基板 の画素配列領域に対向するように配設される対向基板と、前記アクティブマトリクス基 板と前記対向基板の間隙に配設される表示媒体とを備えた表示装置において、前記 アクティブマトリクス基板における前記画素配列領域の周囲に存在する周辺領域に 配設される環境センサと、前記アクティブマトリクス基板の構成部材の一部と同一材 料で形成され、前記環境センサの上層にお 、て少なくとも前記環境センサの電極部 を覆う表面保護膜とを備えたことを特徴とする。この構成によれば、環境センサの上 層において少なくとも前記環境センサの電極部を覆う表面保護膜を備えたことにより 、光センサの各電極が外気にさらされずに済む。これにより、環境センサの特性の経 時変化が生じにくい表示装置を提供できる。なお、前記表面保護膜は、少なくとも一 部の構成部材が前記アクティブマトリクス基板の構成部材の一部と同一材料で形成 されているので、製造コストを削減できる。また、上記の表面保護膜として、アクティブ マトリクス基板の構成部材の一部であってかつ第 2層間保護膜以外の膜を用いること により、従来のように紫外線による第 2層間絶縁膜の劣化に起因する環境センサの感 度不良等を生じることがなぐ長年にわたって高精度なセンシングが可能な表示装置 を提供できる。 In order to achieve the above object, a display device according to the present invention has an active matrix substrate having a pixel array region in which a plurality of pixels are arrayed, and a pixel array region of the active matrix substrate. A display device comprising: a counter substrate disposed on the active matrix substrate; and a display medium disposed on a gap between the active matrix substrate and the counter substrate. An environmental sensor disposed in the region, and a surface protective film formed of the same material as a part of the constituent members of the active matrix substrate, and covering at least the electrode part of the environmental sensor in the upper layer of the environmental sensor; It is provided with. According to this configuration, since the surface protection film that covers at least the electrode portion of the environmental sensor is provided in the upper layer of the environmental sensor, each electrode of the optical sensor is not exposed to the outside air. As a result, it is possible to provide a display device in which the environmental sensor characteristics hardly change over time. In addition, since at least a part of the constituent member of the surface protective film is formed of the same material as a part of the constituent member of the active matrix substrate, the manufacturing cost can be reduced. In addition, a film other than the second interlayer protective film that is a part of the components of the active matrix substrate and is used as the surface protective film. As a result, it is possible to provide a display device capable of sensing with high accuracy for many years without causing a sensitivity failure of the environmental sensor due to deterioration of the second interlayer insulating film due to ultraviolet rays as in the past.
[0034] 上記の表示装置は、前記アクティブマトリクス基板の画素配列領域に、複数の電極 配線と、複数のアクティブ素子と、前記複数の電極配線および複数のアクティブ素子 の上層に設けられた層間絶縁膜と、この層間絶縁膜上に形成された複数の画素電 極とが配設されており、前記表面保護膜が、前記画素電極と同一材料で形成され、 前記環境センサの各電極に対して島状に形成された構成とすることができる。この構 成によれば、画素電極と同一材料で表面保護膜を形成することにより、環境センサの 特性の経時変化が生じにくい表示装置を低コストで提供できる。また、導電性の表面 保護膜は、環境センサの電極同士がショートしないよう、環境センサの各電極に対し て島状に形成されている。これにより、環境センサの信頼性が向上する。また、環境 センサの電極間に表面保護膜で覆われない箇所が存在することにより、例えば環境 センサが光センサである場合に、この光センサに対する光の入射効率が向上すると いう効果もある。  [0034] In the above display device, a plurality of electrode wirings, a plurality of active elements, and an interlayer insulating film provided in an upper layer of the plurality of electrode wirings and the plurality of active elements are provided in a pixel array region of the active matrix substrate. And a plurality of pixel electrodes formed on the interlayer insulating film, the surface protection film is formed of the same material as the pixel electrode, and islands are formed with respect to each electrode of the environmental sensor. It can be set as the structure formed in the shape. According to this configuration, by forming the surface protective film with the same material as the pixel electrode, it is possible to provide a display device that is unlikely to change with time in the characteristics of the environmental sensor. The conductive surface protective film is formed in an island shape with respect to each electrode of the environmental sensor so that the electrodes of the environmental sensor do not short-circuit. This improves the reliability of the environmental sensor. Further, since there is a portion that is not covered with the surface protective film between the electrodes of the environmental sensor, for example, when the environmental sensor is an optical sensor, there is an effect that the light incident efficiency to the optical sensor is improved.
[0035] 上記の表示装置において、前記画素電極と前記表面保護膜とが同一プロセスで形 成されたことがさらに好ましい。画素電極と環境センサの表面保護膜とを同一プロセ スで形成することにより、工程数を増やさずに表面保護膜を有する構成を実現できる 力 である。  In the above display device, it is more preferable that the pixel electrode and the surface protective film are formed by the same process. By forming the pixel electrode and the surface protective film of the environmental sensor in the same process, it is possible to realize a configuration having the surface protective film without increasing the number of processes.
[0036] 上記の表示装置は、前記アクティブマトリクス基板の画素配列領域に、複数の電極 配線と、複数のアクティブ素子と、前記複数の電極配線および複数のアクティブ素子 の上層に設けられたカラーフィルタ層と、このカラーフィルタ層上に形成された複数の 画素電極とが配設されており、前記表面保護膜が、前記カラーフィルタ層の無着色 領域と同一材料で形成されている構成とすることができる。この構成によれば、いわ ゆるカラーフィルタ'オン'アレイ構造の表示装置において、カラーフィルタ層の無着 色領域と同一材料で表面保護膜を形成することができるので、環境センサの特性の 経時変化が生じにくい表示装置を低コストで提供できる。  [0036] In the above display device, a plurality of electrode wirings, a plurality of active elements, and a color filter layer provided above the plurality of electrode wirings and the plurality of active elements in a pixel array region of the active matrix substrate And a plurality of pixel electrodes formed on the color filter layer, and the surface protection film is made of the same material as the non-colored region of the color filter layer. it can. According to this configuration, in a so-called color filter 'on' array display device, the surface protective film can be formed from the same material as the non-colored region of the color filter layer, so that the environmental sensor characteristics change over time. Can be provided at a low cost.
[0037] 上記の表示装置において、前記カラーフィルタ層の無着色領域と前記表面保護膜 とが同一プロセスで形成されていることがさらに好ましい。カラーフィルタ層の無着色 領域と環境センサの表面保護膜とを同一プロセスで形成することにより、工程数を増 やさずに表面保護膜を有する構成を実現できる力 である。 [0037] In the above display device, an uncolored region of the color filter layer and the surface protective film Are more preferably formed by the same process. By forming the non-colored region of the color filter layer and the surface protective film of the environmental sensor in the same process, it is possible to realize a configuration having the surface protective film without increasing the number of steps.
[0038] 上記の表示装置は、前記アクティブマトリクス基板の画素配列領域に、複数の電極 配線と、複数のアクティブ素子と、前記複数の電極配線および複数のアクティブ素子 の上層に設けられた層間絶縁膜と、この層間絶縁膜上に形成された複数の画素電 極と、前記層間絶縁膜上であって画素電極が存在しな 、領域に形成されたフォトス ぺーサとが配設されており、前記表面保護膜が、前記フォトスぺーサと同一材料で形 成された構成とすることができる。この構成によれば、対向基板との間隔を均一に保 つためにアクティブマトリクス基板上に設けられるフォトスぺーサと同一材料によって 表面保護膜を形成することができるので、環境センサの特性の経時変化が生じにく V、表示装置を低コストで提供できる。  [0038] In the display device described above, a plurality of electrode wirings, a plurality of active elements, and an interlayer insulating film provided in an upper layer of the plurality of electrode wirings and the plurality of active elements are provided in a pixel array region of the active matrix substrate. A plurality of pixel electrodes formed on the interlayer insulating film, and a photo spacer formed on the interlayer insulating film in a region where no pixel electrode exists, and The surface protective film may be formed of the same material as the photospacer. According to this configuration, the surface protective film can be formed of the same material as the photo spacer provided on the active matrix substrate in order to keep the distance from the counter substrate uniform, so that the environmental sensor characteristics change over time. V and display devices can be provided at low cost.
[0039] 上記の表示装置において、前記フォトスぺーサと前記表面保護膜とが同一プロセス で形成されて 、ることが好ま 、。フォトスぺーサと環境センサの表面保護膜とを同一 プロセスで形成することにより、工程数を増やさずに表面保護膜を有する構成を実現 できる力 である。  [0039] In the above display device, it is preferable that the photo spacer and the surface protective film are formed by the same process. By forming the photo spacer and the surface protection film of the environmental sensor in the same process, it is possible to realize a configuration having the surface protection film without increasing the number of processes.
[0040] 上記の表示装置にお!、て、前記環境センサは、少なくとも一部の構成部材が前記 アクティブ素子の構成部材と同一プロセスで製造されることが好まし 、。製造プロセス が簡略化され、コストを削減できるからである。  [0040] In the above display device, it is preferable that at least a part of the environmental sensor is manufactured in the same process as that of the active element. This is because the manufacturing process is simplified and costs can be reduced.
[0041] 上記の表示装置において、前記環境センサは、前記アクティブマトリクス基板の主 面上にモノリシックに形成されることが好ましい。なお、ここで、環境センサがァクティ ブマトリクス基板に「モノリシックに形成される」とは、環境センサがディスクリート部品と してアクティブマトリクス基板に実装されることは含まない。より具体的には、アクティブ マトリクス基板に環境センサが「モノリシックに形成される」とは、成膜処理やエツチン グ処理等の物理的及び Z又は化学的プロセスが当該アクティブマトリクス基板に対し て直接に施される工程を経て、当該アクティブマトリクス基板の主面上に環境センサ が形成されることを意味する。  [0041] In the above display device, the environmental sensor is preferably formed monolithically on the main surface of the active matrix substrate. Here, the environmental sensor being “monolithically formed” on the active matrix substrate does not include that the environmental sensor is mounted on the active matrix substrate as a discrete component. More specifically, an environmental sensor is “monolithically formed” on an active matrix substrate means that a physical and Z or chemical process such as a film forming process or an etching process is performed directly on the active matrix substrate. It means that an environmental sensor is formed on the main surface of the active matrix substrate through the applied steps.
[0042] 上記の表示装置において、前記アクティブ素子としては、例えば薄膜トランジスタを 用いることができ、前記環境センサとしては、ラテラル構造を有するフォトダイオードを 用!/、ることができる。 In the above display device, the active element is, for example, a thin film transistor. As the environmental sensor, a photodiode having a lateral structure can be used! /.
[0043] 上記の表示装置において、前記アクティブマトリクス基板の周辺領域に回路部材が 実装されており、前記表面保護膜と同一の材料力 なる補強部材が、前記回路部材 の実装部に配設されていることが好ましい。補強部材が回路部材の実装部に配設さ れたことにより、実装部の機械的強度が高まると共に、防湿 ·防塵効果も得られるから である。これにより、回路部材との接続の信頼性が向上する。さらに、透明導電層と補 強部材とが同一材料力 なることにより、環境センサの保護工程と配線接続部の補強 工程とを同一工程で行うことができ、工数の増加を防ぐことができる。  [0043] In the above display device, a circuit member is mounted in a peripheral region of the active matrix substrate, and a reinforcing member having the same material force as that of the surface protective film is disposed in the mounting portion of the circuit member. Preferably it is. This is because the reinforcing member is disposed in the mounting portion of the circuit member, so that the mechanical strength of the mounting portion is increased and a moistureproof / dustproof effect is also obtained. Thereby, the reliability of connection with a circuit member improves. Furthermore, since the transparent conductive layer and the reinforcing member have the same material strength, the environmental sensor protection process and the wiring connection reinforcement process can be performed in the same process, thereby preventing an increase in man-hours.
[0044] また、上記の目的を達成するために、本発明にかかる電子機器は、上述したいず れかの構成に力かる本発明の表示装置を備え、前記環境センサが光センサであり、 前記光センサによって検出された外光の明るさ情報に応じて表示輝度を制御する制 御回路を備えたことを特徴とする。表示輝度の制御は、例えばバックライトシステムを 備えた表示装置であれば、前記制御回路がバックライトシステムの輝度を制御するこ とにより実現できる。また、表示装置が自発光素子の場合は、前記制御回路が発光 輝度を制御することにより実現できる。このように、周囲の明るさに応じて必要十分な 輝度になるよう表示輝度を制御することにより、消費電力を低減し、かつ、見易い表 示を実現する電子機器を提供できる。なお、この電子機器は、使用環境の明るさの 変化に対して良好な視認性と低消費電力化を両立できることから、屋外に持ち出し て使用する機会が多くバッテリー駆動を必要とするモパイル機器として特に有用であ る。なお、このようなモパイル機器としては、本発明の用途をこれらに限定するもので はないが、例えば、携帯電話、 PDA等の情報端末、モパイルゲーム機器、携帯型音 楽プレイヤー、デジタルカメラ、ビデオカメラ等がある。  [0044] Further, in order to achieve the above object, an electronic apparatus according to the present invention includes the display device according to the present invention that works on any of the above-described configurations, and the environmental sensor is an optical sensor, A control circuit is provided that controls display brightness in accordance with brightness information of external light detected by the optical sensor. For example, in the case of a display device including a backlight system, the display luminance can be controlled by the control circuit controlling the luminance of the backlight system. Further, when the display device is a self-luminous element, it can be realized by the control circuit controlling the light emission luminance. In this way, by controlling the display brightness so that it becomes necessary and sufficient brightness according to the ambient brightness, it is possible to provide an electronic device that reduces power consumption and realizes an easy-to-see display. Since this electronic device can achieve both good visibility and low power consumption against changes in the brightness of the usage environment, it is particularly useful as a mopile device that needs to be taken outdoors and needs battery operation. Useful. Such mopile devices are not intended to limit the application of the present invention, but include, for example, mobile phones, information terminals such as PDAs, mopile game devices, portable music players, digital cameras, There are video cameras.
発明の効果  The invention's effect
[0045] 本発明によれば、アクティブマトリクス基板における画素配列領域の周辺領域に形 成された環境センサ (例えば光センサ)を備えた表示装置において、第 2層間絶縁膜 を用いずに環境センサを保護することにより、環境センサの特性の経時変化が生じ にくい表示装置と、この表示装置を利用した電子機器とを提供できる。 図面の簡単な説明 According to the present invention, in a display device including an environmental sensor (for example, an optical sensor) formed in a peripheral region of a pixel arrangement region in an active matrix substrate, the environmental sensor is used without using the second interlayer insulating film. By protecting, it is possible to provide a display device in which the characteristics of the environmental sensor are unlikely to change with time and an electronic device using the display device. Brief Description of Drawings
[図 1]図 1は、本発明の第 1の実施形態にかかる表示装置の全体構成を示す斜視図 である。 FIG. 1 is a perspective view showing an overall configuration of a display device according to a first embodiment of the present invention.
[図 2]図 2は、第 1の実施形態にかかる表示装置を筐体に組み込んだ状態を示す断 面図である。  FIG. 2 is a cross-sectional view showing a state in which the display device according to the first embodiment is incorporated in a housing.
[図 3]図 3は、第 1の実施形態に力かる表示装置の画素配列領域 (表示領域)の画素 当たりの構造を示す断面図である。  FIG. 3 is a cross-sectional view showing a structure per pixel of a pixel array region (display region) of the display device that is effective in the first embodiment.
[図 4]図 4は、第 1の実施形態に力かる表示装置の光センサ部の構造の一例を示す 断面図である。  [FIG. 4] FIG. 4 is a cross-sectional view showing an example of the structure of the optical sensor portion of the display device that is effective in the first embodiment.
[図 5]図 5は、第 2の実施形態に力かる表示装置における画素配列領域の画素当たり の構造を示す断面図である。  FIG. 5 is a cross-sectional view showing a structure per pixel of a pixel arrangement region in a display device that is effective in the second embodiment.
[図 6]図 6は、第 2の実施形態に力かる表示装置の光センサの構造の一例を示す断 面図である。  FIG. 6 is a cross-sectional view showing an example of the structure of an optical sensor of a display device that is effective in the second embodiment.
[図 7]図 7は、第 3の実施形態に力かる表示装置における画素配列領域の画素当たり の構造を示す断面図である。  FIG. 7 is a cross-sectional view showing a structure per pixel in a pixel arrangement region in a display device that is effective in the third embodiment.
[図 8]図 8は、第 3の実施形態に力かる表示装置の光センサの構造の一例を示す断 面図である。  FIG. 8 is a cross-sectional view showing an example of the structure of an optical sensor of a display device that works on the third embodiment.
[図 9]図 9は、第 4の実施形態にかかる表示装置 40の概略平面図と、その B— B'線 断面図である。  FIG. 9 is a schematic plan view of a display device 40 according to a fourth embodiment and a cross-sectional view taken along the line BB ′.
[図 10]図 10は、本発明の一実施形態にカゝかる電子機器の概略構成を示すブロック 図である。  FIG. 10 is a block diagram showing a schematic configuration of an electronic device according to an embodiment of the present invention.
[図 11]図 11は、特開 2002— 62856号公報に開示されて 、る従来の液晶表示装置 の全体構成図である。  FIG. 11 is an overall configuration diagram of a conventional liquid crystal display device disclosed in Japanese Patent Laid-Open No. 2002-62856.
[図 12]図 12は、特開 2002— 62856号公報に開示されている光センサ実装部の断 面図である。  [FIG. 12] FIG. 12 is a cross-sectional view of an optical sensor mounting portion disclosed in Japanese Patent Laid-Open No. 2002-62856.
[図 13]図 13は、アクティブマトリクス基板の画素配列領域に形成される従来の TFTの 断面構造図である。  FIG. 13 is a cross-sectional view of a conventional TFT formed in a pixel array region of an active matrix substrate.
[図 14]図 14は、従来の光センサの素子構造断面図である。 発明を実施するための最良の形態 FIG. 14 is a sectional view of an element structure of a conventional photosensor. BEST MODE FOR CARRYING OUT THE INVENTION
[0047] 以下、図面を参照し、本発明の実施形態に力かる表示装置について説明する。な お、本実施形態では、表示装置の一例として液晶表示装置をあげるが、本発明は液 晶表示装置以外の表示装置にも適用可能である。  Hereinafter, with reference to the drawings, a description will be given of a display device that is useful for embodiments of the present invention. In this embodiment, a liquid crystal display device is given as an example of a display device. However, the present invention can also be applied to display devices other than liquid crystal display devices.
[0048] [第 1の実施形態]  [0048] [First embodiment]
図 1は、本発明の一実施形態に力かる表示装置 1の全体構成図である。この表示 装置 1は、多数の画素がマトリクス状に配列されたアクティブマトリクス基板 2と、これに 対向するように配置される対向基板 3を備えており、さらに両者の間隙には表示媒体 4である液晶が挟持された構造をなして ヽる。アクティブマトリクス基板 2と対向基板 3 は、対向基板 3の外周に沿った枠状のシール榭脂(図示せず)によって接着されてい る。  FIG. 1 is an overall configuration diagram of a display device 1 that is useful for one embodiment of the present invention. The display device 1 includes an active matrix substrate 2 in which a large number of pixels are arranged in a matrix, and a counter substrate 3 disposed so as to face the active matrix substrate 2, and a display medium 4 is provided in the gap therebetween. It has a structure in which liquid crystal is sandwiched. The active matrix substrate 2 and the counter substrate 3 are bonded together by a frame-shaped seal resin (not shown) along the outer periphery of the counter substrate 3.
[0049] アクティブマトリクス基板 2の各画素 5には、表示媒体 4を駆動するための薄膜トラン ジスタ (TFT) 6や画素電極 7が形成されている。対向基板 3には、対向電極(図示せ ず)やカラーフィルタ(図示せず)が形成されて ヽる。  Each pixel 5 of the active matrix substrate 2 is formed with a thin film transistor (TFT) 6 and a pixel electrode 7 for driving the display medium 4. A counter electrode (not shown) and a color filter (not shown) are formed on the counter substrate 3.
[0050] アクティブマトリクス基板 2は、画素 5が配列された領域 (画素配列領域) 8と、画素 配列領域に近接する周辺領域 9を有し、対向基板 3は画素配列領域 8を覆い、周辺 領域 9の一部が露出するように配設されて 、る。  [0050] The active matrix substrate 2 has an area (pixel arrangement area) 8 in which the pixels 5 are arranged and a peripheral area 9 close to the pixel arrangement area, and the counter substrate 3 covers the pixel arrangement area 8 and the peripheral area It is arranged so that a part of 9 is exposed.
[0051] また、アクティブマトリクス基板 2の周辺領域 9には、表示装置に外部の駆動回路を 接続するための FPC10が端子 38 (図 2参照)を介して実装され、さらに、環境センサ として、外光の明るさを検出するための光センサ 11が配設されている。また、その他 に周辺回路 (画素配列領域 8の TFT6を駆動するための駆動回路(図示せず)、光セ ンサ 11や駆動回路に接続される配線(図示せず)、画素配列領域 8からの引き出し 配線 (図示せず)など)も配設されて!/ヽる。  [0051] Further, in the peripheral region 9 of the active matrix substrate 2, an FPC 10 for connecting an external drive circuit to the display device is mounted via a terminal 38 (see FIG. 2). An optical sensor 11 for detecting the brightness of the light is provided. In addition, other peripheral circuits (a drive circuit (not shown) for driving the TFT 6 in the pixel array region 8), a wiring (not shown) connected to the optical sensor 11 and the drive circuit, and the pixel array region 8 Lead-out wiring (not shown) etc. are also arranged!
[0052] 画素配列領域 8に形成される TFT6と周辺領域 9に形成される光センサ 11は、ァク ティブマトリクス基板 2上に、ほぼ同一のプロセスによってモノリシックに形成されてい る。つまり、光センサ 11の一部の構成部材は、 TFT6の一部の構成部材と同時に形 成される。  The TFT 6 formed in the pixel array region 8 and the optical sensor 11 formed in the peripheral region 9 are monolithically formed on the active matrix substrate 2 by substantially the same process. That is, some constituent members of the optical sensor 11 are formed simultaneously with some constituent members of the TFT 6.
[0053] そして、図 1に示す表示装置 1は、図 2に示すように、従来例の図 12に示した表示 装置と同様に、開孔付き筐体 35に組み込まれる。筐体 35の開孔部 37は所定の位置 に設けられており、その開孔部 37を介して外光が上記光センサ 11に到達する仕組 みになっている。なお、図 2における 39は回路基板であり、 25はシール材である。 Then, the display device 1 shown in FIG. 1 has the display shown in FIG. 12 of the conventional example as shown in FIG. Like the device, it is built into the housing 35 with holes. The opening 37 of the housing 35 is provided at a predetermined position, and is structured so that external light reaches the optical sensor 11 through the opening 37. In FIG. 2, 39 is a circuit board and 25 is a sealing material.
[0054] なお、表示装置が透過光を利用する表示モードの場合には、筐体 35内のァクティ ブマトリクス基板 2の裏面側にバックライトシステム 12を備える必要がある。もちろん、 外光の反射を利用する反射表示モードを利用した液晶を使用する場合や、表示媒 体として ELなどの自発光素子を用いる場合には、ノ ックライトシステムは不要である [0054] When the display device is in a display mode using transmitted light, it is necessary to provide the backlight system 12 on the back side of the active matrix substrate 2 in the housing 35. Of course, when using a liquid crystal that uses a reflective display mode that uses reflection of external light, or when using a self-luminous element such as EL as the display medium, a knocklight system is not required.
[0055] また、光センサ 11は、外光を検知することを目的としているため、ノ ックライトシステ ム 12の光が光センサ 11に入射すると、光センサ 11が誤動作する t 、つた問題が生 じる。したがって、アクティブマトリクス基板 2の光センサ配設部の下側にバックライトシ ステム 12が配置されないようにする力、アクティブマトリクス基板 2の光センサ配設部 の裏面にアルミテープなどの遮光部材(図示せず)を具備すると!、つた配慮が必要で ある。 [0055] In addition, since the optical sensor 11 is intended to detect outside light, if the light of the knock light system 12 enters the optical sensor 11, the optical sensor 11 malfunctions, which causes another problem. . Therefore, a force that prevents the backlight system 12 from being arranged below the photosensor arrangement part of the active matrix substrate 2 and a light shielding member such as aluminum tape (see FIG. (Not shown) is necessary!
[0056] 上述した本実施形態の表示装置 1は、光センサ 11を用いて外光の照度を検出し、 それに合わせて表示輝度を自動的に制御する自動調光機能付きの表示システムに 適用することができる。つまり、上記アクティブマトリクス基板 2の周辺領域 9に設けら れた光センサ 11が出力する外光の明るさ情報を基に、バックライトシステム 12の輝度 、又は表示信号の輝度信号を制御する制御回路を備えておくことで、表示装置 1の 表示輝度を自動的に制御することが可能になる。この結果、屋外など明るい環境下 では表示輝度を高くし、夜間や室内など比較的暗い環境下では表示輝度を下げるよ うに輝度調整 (調光)を自動的に行うことができ、表示装置の低消費電力化や長寿命 化を実現することができる。  [0056] The display device 1 of the present embodiment described above is applied to a display system with an automatic light control function that detects the illuminance of external light using the optical sensor 11 and automatically controls the display luminance in accordance with the detected illuminance. be able to. That is, a control circuit that controls the luminance of the backlight system 12 or the luminance signal of the display signal based on the brightness information of the external light output from the optical sensor 11 provided in the peripheral region 9 of the active matrix substrate 2. By providing this, it is possible to automatically control the display brightness of the display device 1. As a result, brightness adjustment (dimming) can be automatically performed to increase the display brightness in bright environments such as outdoors, and to decrease the display brightness in relatively dark environments such as at night or indoors. Power consumption and longer life can be achieved.
[0057] 次に、本実施形態の表示装置 1の詳細な構造について、図 1、図 3、図 4を用いて 説明する。図 3は、図 1の表示装置 1における画素配列領域 (表示領域) 8の画素当 たりの断面構造図である。アクティブマトリクス基板 2と対向基板 3の間隙に表示媒体 ( 液晶) 4が挟持されている。アクティブマトリクス基板 2には、表示媒体を駆動するため の薄膜トランジスタ (TFT) 6や画素電極 7が形成されて ヽる。 [0058] 以下、図 1および図 3を参照しながら、本実施形態で用いる多結晶 Si膜を用いた T FT6と、この TFT6を含む画素 5の構造について説明する。ここで使用する TFT6の 構造は、「トップゲート構造」または「正スタガ構造」と呼ばれるもので、チャネルとなる 半導体膜 (多結晶 Si膜) 13の上層にゲート電極を備えるものである。 Next, the detailed structure of the display device 1 of the present embodiment will be described with reference to FIGS. 1, 3, and 4. FIG. FIG. 3 is a cross-sectional structure diagram of each pixel in the pixel array region (display region) 8 in the display device 1 of FIG. A display medium (liquid crystal) 4 is sandwiched between the active matrix substrate 2 and the counter substrate 3. A thin film transistor (TFT) 6 and a pixel electrode 7 for driving a display medium are formed on the active matrix substrate 2. Hereinafter, with reference to FIG. 1 and FIG. 3, the TFT 6 using the polycrystalline Si film used in the present embodiment and the structure of the pixel 5 including the TFT 6 will be described. The structure of the TFT 6 used here is called a “top gate structure” or “positive stagger structure”, and has a gate electrode on the semiconductor film (polycrystalline Si film) 13 to be a channel.
[0059] ベース基材となるガラス基板 14には、無アルカリのバリウムホウケィ酸ガラス、また はアルミノホウケィ酸ガラスなどが使用される。 TFT6は、ガラス基板 14上に形成され た多結晶 Si膜 13と、多結晶 Si膜 13を覆うように形成されたゲート絶縁膜 15 (酸ィ匕シリ コン膜ゃ窒化シリコン膜など)と、ゲート絶縁膜上に形成されたゲート電極 16 (Al、 M o、 Tほたはそれらの合金など)と、ゲート電極を覆うように形成された第 1層間絶縁膜 17 (酸ィ匕シリコン膜ゃ窒化シリコン膜)とを有している。ここでゲート絶縁膜 15を介し てゲート電極 16に重なる半導体膜の領域がチャネル領域として機能する。また、半 導体膜のチャネル領域以外の領域は、不純物が高濃度にドープされた η+層であり 、ソース領域およびドレイン領域として機能する。なお、ここでは図示しないが、ホット キャリアによる電気特性の劣化を防ぐために、ソース領域のチャネル領域側およびド レイン領域のチャネル領域側に、不純物が低濃度にドープされた LDD (Lightly Dop ed Drain)領域が形成されている。なお、ガラス基板の表面(多結晶 Si膜 13の下)に、 ベースコート膜 (酸ィ匕シリコン膜ゃ窒化シリコン膜など)を備えても良い。多結晶 Si膜 1 [0059] For the glass substrate 14 serving as the base substrate, non-alkali barium borosilicate glass, alumino borosilicate glass, or the like is used. The TFT 6 includes a polycrystalline Si film 13 formed on a glass substrate 14, a gate insulating film 15 (an oxide silicon film, a silicon nitride film, etc.) formed so as to cover the polycrystalline Si film 13, a gate A gate electrode 16 (Al, Mo, T, or an alloy thereof) formed on the insulating film and a first interlayer insulating film 17 (oxynitride silicon film nitrided) formed so as to cover the gate electrode Silicon film). Here, the region of the semiconductor film which overlaps with the gate electrode 16 through the gate insulating film 15 functions as a channel region. The region other than the channel region of the semiconductor film is a η + layer doped with impurities at a high concentration, and functions as a source region and a drain region. Although not shown here, LDD (Lightly Doped Drain) in which impurities are lightly doped on the channel region side of the source region and the channel region side of the drain region in order to prevent deterioration of electrical characteristics due to hot carriers. A region is formed. A base coat film (such as an oxide silicon film or a silicon nitride film) may be provided on the surface of the glass substrate (under the polycrystalline Si film 13). Polycrystalline Si film 1
3は、非晶質構造を有する半導体膜 (非結晶 Si膜)を、レーザーァニールや RTA(Ra pid Thermal Annealing)などの熱処理により結晶化することで得ることができる。 3 can be obtained by crystallizing a semiconductor film (amorphous Si film) having an amorphous structure by heat treatment such as laser annealing or RTA (Rapid Thermal Annealing).
[0060] 第 1層間絶縁膜 17上に形成されているソース電極 18 (Al、 Mo、 Tほたはそれらの 合金)は、第 1層間絶縁膜 17およびゲート絶縁膜 15を貫通するコンタクトホールを介 して半導体膜のソース領域に電気的に接続されている。同様に、第 1層間絶縁膜 17 上に形成されているドレイン電極 19 (Al、 Μο、 Τほたはそれらの合金)は、第 1層間 絶縁膜 17およびゲート絶縁膜 15を貫通するコンタクトホールを介して半導体膜のド レイン領域に電気的に接続されている。  [0060] The source electrode 18 (Al, Mo, T, or an alloy thereof) formed on the first interlayer insulating film 17 has a contact hole that penetrates the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the source region of the semiconductor film. Similarly, the drain electrode 19 (Al, Μο, Τ or their alloys) formed on the first interlayer insulating film 17 has a contact hole penetrating the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the drain region of the semiconductor film.
[0061] 以上が、ここで使用する TFT6の基本的な構造である。画素配列領域 (表示領域) 8においては、 TFT6を覆うように、さらに第 2層間絶縁膜 20が形成されている。ここ で、第 2層間絶縁膜 20としては、層間の絶縁性に加えて下層の凹凸を平坦化する役 割が要求されるので、塗布や印刷によって形成が可能な有機膜 (例えば、アクリル、 ポリイミドなどの有機絶縁膜)が主に使用される。 The above is the basic structure of the TFT 6 used here. In the pixel array region (display region) 8, a second interlayer insulating film 20 is further formed so as to cover the TFT 6. Here, as the second interlayer insulating film 20, in addition to the insulating property between the layers, the second interlayer insulating film 20 serves to flatten the unevenness of the lower layer. Therefore, organic films that can be formed by coating or printing (for example, organic insulating films such as acrylic and polyimide) are mainly used.
[0062] さらに、第 2層間絶縁膜 20の上層には、画素電極 7 (例えば、 ITO (Indium- Tin-Oxi de)、 IZO (Indium-Zinc-Oxide)など)が形成される。画素電極 7は、第 2層間絶縁膜 2 0に形成されたコンタクトホールを介して、ドレイン電極 19に電気的に接続されて!、る 。第 2層間絶縁膜 20として、感光性を有する有機絶縁膜を用いることが好ましぐマス ク露光と現像処理によって、簡便に第 2層間絶縁膜 20にコンタクトホールを形成する ことができる。このように感光性を有する有機絶縁膜としては、例えば、アクリル、ポリ イミド、 BCB (Benzo- Cyclo- Butene)などがあげられる。  Further, a pixel electrode 7 (for example, ITO (Indium-Tin-Oxide), IZO (Indium-Zinc-Oxide), etc.) is formed on the second interlayer insulating film 20. The pixel electrode 7 is electrically connected to the drain electrode 19 through a contact hole formed in the second interlayer insulating film 20. As the second interlayer insulating film 20, a contact hole can be easily formed in the second interlayer insulating film 20 by mask exposure and development treatment that preferably uses a photosensitive organic insulating film. Examples of such an organic insulating film having photosensitivity include acrylic, polyimide, and BCB (Benzo-Cyclo-Butene).
[0063] なお、図 3において、 30は対向基板 3のベース基板であるガラス基板であり、 31は カラーフィルタであり、 32は対向基板 3の全面に形成された対向電極である。  In FIG. 3, 30 is a glass substrate which is a base substrate of the counter substrate 3, 31 is a color filter, and 32 is a counter electrode formed on the entire surface of the counter substrate 3.
[0064] 図 4は、周辺領域 9に形成されている光センサ 11の断面構造図である。  FIG. 4 is a cross-sectional structure diagram of the optical sensor 11 formed in the peripheral region 9.
[0065] 以下、図 4を参照しながら、光センサ 11の構造について説明する。ここで使用する 光センサ 11の構造は、「ラテラル構造の光ダイオード」と呼ばれるものであり、半導体 の PIN接合が基板の面方向(横方向)に形成されたダイオードを備えるものである。  Hereinafter, the structure of the optical sensor 11 will be described with reference to FIG. The structure of the optical sensor 11 used here is called a “lateral structure photodiode”, and includes a diode in which a semiconductor PIN junction is formed in the surface direction (lateral direction) of the substrate.
[0066] 図 4に示す光センサ 11では、ベース基材となるガラス基板 14 (TFTが形成されて!ヽ る基板と共通の基板)上に、多結晶 Si膜 21による PINダイオードが形成されている。 この光センサ 11の多結晶 Si膜 21は、画素配列領域 8 (表示領域)の TFT6の多結晶 Si膜 13 (図 3参照)と同一プロセスで同時に形成されるものである。ゆえに、多結晶 Si 膜 13と多結晶 Si膜 21は、同じ膜厚を有する。  In the optical sensor 11 shown in FIG. 4, a PIN diode made of a polycrystalline Si film 21 is formed on a glass substrate 14 (a substrate common with a TFT formed substrate) serving as a base substrate. Yes. The polycrystalline Si film 21 of the optical sensor 11 is formed simultaneously with the same process as the polycrystalline Si film 13 (see FIG. 3) of the TFT 6 in the pixel array region 8 (display region). Therefore, the polycrystalline Si film 13 and the polycrystalline Si film 21 have the same film thickness.
[0067] PIN接合は、不純物が高濃度にドープされた p+層(領域 21b)と n+層(領域 21c)、 及び不純物がドープされない i層(領域 21a)によって形成されている。なお、 i層の代 わりに、低濃度にドープされた P—層や n—層を単独、又は併設して用いることも可能で ある。  [0067] The PIN junction is formed by a p + layer (region 21b) and an n + layer (region 21c) doped with impurities at a high concentration, and an i layer (region 21a) not doped with impurities. Instead of the i layer, a lightly doped P-layer or n-layer can be used alone or in combination.
[0068] さらに、 PIN接合を有する多結晶 Si膜 21を覆うように、ゲート絶縁膜 15 (酸ィ匕シリコ ン膜ゃ窒化シリコン膜など)と第 1層間絶縁膜 17 (酸ィ匕シリコン膜ゃ窒化シリコン膜) が形成される。図 4に示すゲート絶縁膜 15および第 1層間絶縁膜 17は、画素配列領 域 8における TFT6のゲート絶縁膜 15および第 1層間絶縁膜 17 (図 3参照)が、周辺 領域 9まで延在したものである。 [0068] Furthermore, a gate insulating film 15 (such as an acid silicon film or a silicon nitride film) and a first interlayer insulating film 17 (such as an oxide silicon film) are formed so as to cover the polycrystalline Si film 21 having a PIN junction. A silicon nitride film) is formed. The gate insulating film 15 and the first interlayer insulating film 17 shown in FIG. 4 are the same as the gate insulating film 15 and the first interlayer insulating film 17 (refer to FIG. 3) of the TFT 6 in the pixel array region 8. It extends to area 9.
[0069] 第 1層間絶縁膜 17上に形成されている p側電極 33 (例えば Al、 Mo、 Tほたはそれ らの合金が使用できる)は、第 1層間絶縁膜 17およびゲート絶縁膜 15を貫通するコ ンタクトホールを介して多結晶 Si膜 21の ρ+領域 21bに電気的に接続されている。同 様に、第 1層間絶縁膜 17上に形成されている n側電極 34 (例えば Al、 Mo、 Tほたは それらの合金が使用できる)は、第 1層間絶縁膜 17およびゲート絶縁膜 15を貫通す るコンタクトホールを介して多結晶 Si膜 21の η+領域 21cに電気的に接続されている。 P側電極 33および n側電極 34において第 1層間絶縁膜 17の表面に露出している部 分力 光センサ 11の電極部である。  [0069] The p-side electrode 33 (for example, Al, Mo, T, or an alloy thereof can be used) formed on the first interlayer insulating film 17 includes the first interlayer insulating film 17 and the gate insulating film 15 It is electrically connected to the ρ + region 21b of the polycrystalline Si film 21 through a contact hole penetrating through the polycrystalline silicon film 21. Similarly, the n-side electrode 34 (for example, Al, Mo, T, or an alloy thereof can be used) formed on the first interlayer insulating film 17 is used for the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the η + region 21c of the polycrystalline Si film 21 through a contact hole penetrating through. In the P-side electrode 33 and the n-side electrode 34, the partial force photosensor 11 is exposed on the surface of the first interlayer insulating film 17.
[0070] なお、周辺領域 9における第 1層間絶縁膜 17およびゲート絶縁膜 15へのコンタクト ホールの形成は、画素配列領域 8における第 1層間絶縁膜 17およびゲート絶縁膜 1 5へのコンタクトホールの形成と同一プロセスにより同時に行われる。また、 p側電極 3 3および n側電極 34の形成は、 TFT6のソース電極 18およびドレイン電極 19の形成 と同一プロセスにより同時に行われる。  It should be noted that the contact holes to the first interlayer insulating film 17 and the gate insulating film 15 in the peripheral region 9 are formed by the contact holes to the first interlayer insulating film 17 and the gate insulating film 15 in the pixel array region 8. It is performed simultaneously by the same process as forming. The p-side electrode 33 and the n-side electrode 34 are formed simultaneously by the same process as the formation of the source electrode 18 and the drain electrode 19 of the TFT 6.
[0071] 以上が、基本的な光センサ 11の構造である。光センサ 11の構成部材は、前述の画 素配列領域の TFT6の構成部材と基本的に同じであり、製造プロセスも共通である。 このように、アクティブマトリクス基板 2は、画素配列領域 8の TFT6と周辺領域 9の光 センサ 11がモノリシックに形成されて!、る。  The above is the basic structure of the optical sensor 11. The constituent members of the optical sensor 11 are basically the same as the constituent members of the TFT 6 in the pixel array region described above, and the manufacturing process is also common. As described above, the active matrix substrate 2 has the TFT 6 in the pixel array region 8 and the optical sensor 11 in the peripheral region 9 formed monolithically.
[0072] なお、周辺領域 9には、上記光センサ 11の他に、周辺回路(画素配列領域 8の TF T6を駆動するための駆動回路(図示せず)、光センサ 11や駆動回路に接続される配 線 36、画素配列領域 8からの引き出し配線(図示せず)など)も形成されている。  [0072] In addition to the optical sensor 11, the peripheral area 9 is connected to a peripheral circuit (a driving circuit (not shown) for driving the TFT 6 in the pixel array area 8), the optical sensor 11 and the driving circuit. The wiring 36 and the lead-out wiring (not shown) from the pixel array region 8 are also formed.
[0073] そして、本実施形態にかかる表示装置では、図 4に示すように、光センサ 11の p側 電極 33および n側電極 34のそれぞれを個別に覆うように、表面保護膜 24が形成さ れている。表面保護膜 24は、画素配列領域 8における画素電極 7と同一材料によつ て形成されており、酸化や吸湿から p側電極 33および n側電極 34を保護する役目を 果たす。表面保護膜 24の成膜およびパターユングは、画素配列領域 8の画素電極 7 の成膜およびパターユングと同時になされることが好ましい。表面保護膜 24を形成す るためのプロセス数の増加を回避できるからである。 [0074] また、図 4に示すように、 p側電極 33および n側電極 34の頭頂部には凹部 33a, 34 aがそれぞれ形成されている。凹部 33a, 34aは、 p側電極 33および n側電極 34のパ ターニング後、例えばエッチング処理により形成される。このように p側電極 33および n側電極 34の頭頂部に凹部 33a, 34aが形成されていることにより、 p側電極 33およ び n側電極 34の頭頂部と表面保護膜 24との密着性が向上する。 In the display device according to the present embodiment, as shown in FIG. 4, the surface protective film 24 is formed so as to individually cover the p-side electrode 33 and the n-side electrode 34 of the optical sensor 11. It is. The surface protective film 24 is formed of the same material as the pixel electrode 7 in the pixel array region 8, and serves to protect the p-side electrode 33 and the n-side electrode 34 from oxidation and moisture absorption. The film formation and patterning of the surface protective film 24 are preferably performed simultaneously with the film formation and patterning of the pixel electrodes 7 in the pixel array region 8. This is because an increase in the number of processes for forming the surface protective film 24 can be avoided. Further, as shown in FIG. 4, recesses 33a and 34a are formed in the tops of the p-side electrode 33 and the n-side electrode 34, respectively. The recesses 33a and 34a are formed, for example, by etching after the p-side electrode 33 and the n-side electrode 34 are patterned. In this way, the concave portions 33a and 34a are formed at the tops of the p-side electrode 33 and the n-side electrode 34, so that the tops of the p-side electrode 33 and the n-side electrode 34 and the surface protective film 24 are in close contact with each other. Improves.
[0075] なお、表面保護膜 24は、画素電極 7と同一の導電性材料力もなるため、 p側電極 3 3および n側電極 34の導通を防止するために、 p側電極 33および n側電極 34のそれ ぞれの上層に対して島状に形成されている。なお、表面保護膜 24により、 p側電極 3 3および n側電極 34だけでなぐこれらの電極から伸びて ヽる配線 (対向基板 3の下 に入り込むまでの部分)も保護することが好ましい。また、このように、 p側電極 33およ び n側電極 34を島状に形成することにより、第 1層間絶縁膜 17表面において p型電 極 33と n側電極 34との間に、表面保護膜 24が存在しない箇所ができる。これにより、 多結晶 Si膜 21の i層(領域 21a)への光の入射率を確保することができ、外光の明る さ変化を高精度に検出することができる。  It should be noted that the surface protective film 24 also has the same conductive material force as that of the pixel electrode 7. Therefore, in order to prevent the p-side electrode 33 and the n-side electrode 34 from conducting, the p-side electrode 33 and the n-side electrode It is shaped like an island with respect to each of the 34 upper layers. It is preferable that the surface protective film 24 also protects the wiring extending from these electrodes (the portion extending into the area under the counter substrate 3) that extends only from the p-side electrode 33 and the n-side electrode 34. In addition, by forming the p-side electrode 33 and the n-side electrode 34 in an island shape in this way, the surface of the first interlayer insulating film 17 is between the p-type electrode 33 and the n-side electrode 34. A place where the protective film 24 does not exist is formed. As a result, the incidence rate of light on the i-layer (region 21a) of the polycrystalline Si film 21 can be ensured, and the brightness change of external light can be detected with high accuracy.
[0076] 以上のとおり、本実施形態の表示装置 1は、画素配列領域 8の画素電極 7と同一材 料力もなる表面保護膜 24が、光センサ 11の p側電極 33および n側電極 34を覆うよう に形成されていることにより、これらの電極が外気または湿気に触れることによる経時 変化を抑制できる。この結果、長期間にわたって高精度なセンシングが可能となり、 ひいては、外光の明るさ変化に応じて適切な輝度調整が可能な、信頼性の高い表示 装置を提供することができる。  As described above, in the display device 1 according to the present embodiment, the surface protective film 24 having the same material force as the pixel electrodes 7 in the pixel array region 8 has the p-side electrode 33 and the n-side electrode 34 of the photosensor 11. By forming the electrodes so as to cover them, it is possible to suppress temporal changes caused by these electrodes coming into contact with outside air or moisture. As a result, it is possible to provide a highly reliable display device that can perform high-precision sensing over a long period of time and can appropriately adjust brightness according to changes in the brightness of external light.
[0077] [第 2の実施形態]  [0077] [Second Embodiment]
本発明の第 2の実施形態に力かる表示装置について、図 5および図 6を参照して以 下に説明する。なお、第 1の実施形態と同じ構成については第 1の実施形態と同一 の参照符号を付記し、その説明を省略する。  A display device according to the second embodiment of the present invention will be described below with reference to FIG. 5 and FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
[0078] 本実施形態にかかる表示装置は、アクティブマトリクス基板 2における TFT6と画素 電極 7との間にカラーフィルタ 70が設けられた、いわゆるカラーフィルタ 'オン 'TFT. アレイ構造をとる表示装置である。そして、このカラーフィルタの無着色領域と同一材 料により、光センサ 11の上層に表面保護膜が形成されている。 [0079] 図 5は、本実施形態にかかる表示装置における画素配列領域 (表示領域) 8の画素 当たりの構造を示す断面図である。図 6は、本実施形態にかかる表示装置の光セン サ 11の構造を示す断面図である。 The display device according to the present embodiment is a display device having a so-called color filter “on” TFT. Array structure in which a color filter 70 is provided between the TFT 6 and the pixel electrode 7 in the active matrix substrate 2. . A surface protective film is formed on the upper layer of the optical sensor 11 using the same material as the non-colored region of the color filter. FIG. 5 is a cross-sectional view showing the structure per pixel of the pixel array region (display region) 8 in the display device according to the present embodiment. FIG. 6 is a cross-sectional view showing the structure of the optical sensor 11 of the display device according to the present embodiment.
[0080] 図 5に示すように、本実施形態にかかる表示装置は、アクティブマトリクス基板 2にお いて、ソース電極 18、ドレイン電極 19、および TFT6と、画素電極 7の上層に設けら れた第 2層間絶縁膜 20の上層に、カラーフィルタ 70を備えた構成である。画素電極 7と TFT6のドレイン電極 19とは、第 2層間絶縁膜 20およびカラーフィルタ 70に設け られたコンタクトホールを介して接続されている。なお、対向基板 3側には、カラーフィ ルタは無ぐベース基板であるガラス基板 30の表面全体に、対向電極 32が形成され ている。  As shown in FIG. 5, the display device according to the present embodiment includes a source electrode 18, a drain electrode 19, a TFT 6, and a first electrode provided on the pixel electrode 7 in the active matrix substrate 2. The color filter 70 is provided on the upper layer of the two interlayer insulating film 20. The pixel electrode 7 and the drain electrode 19 of the TFT 6 are connected via a contact hole provided in the second interlayer insulating film 20 and the color filter 70. On the counter substrate 3 side, a counter electrode 32 is formed on the entire surface of the glass substrate 30 which is a base substrate without a color filter.
[0081] なお、カラーフィルタ 70は、各画素毎に 1色のフィルタ領域が平面内に規則的に配 列された構成である。カラーフィルタ 70としては、例えば赤 (R)、緑 (G)、青 (B)、お よび無着色 (W)の各色領域を有する 4色フィルタや、上記カラーフィルタのうち一部 の色味を変えたものを使う 6色カラーフィルタ等を用いることができる。カラーフィルタ 70の形成方法としては、一般的に、ただし本発明をこれらに限定するものではない 力 以下の 2通りがある。第 1の方法は、予め着色された (W領域については無着色 の)フィルム(ドライフィルム)を、順次貼ってフィルタ配列に従ってパターユングする方 法である。第 2の方法は、液状の色の付いた顔料 (液レジストと呼ばれる)を塗布して パターニングする方法である。  The color filter 70 has a configuration in which one color filter region is regularly arranged in a plane for each pixel. Examples of the color filter 70 include a four-color filter having each color region of red (R), green (G), blue (B), and non-colored (W), and a part of the color filter. You can use a 6-color filter etc. As a method of forming the color filter 70, there are generally the following two methods which are not intended to limit the present invention. The first method is a method in which films (dry film) that are pre-colored (uncolored in the W region) are sequentially applied and patterned according to the filter arrangement. The second method is to apply a liquid colored pigment (called a liquid resist) and pattern it.
[0082] 図 6に示すように、本実施形態に力かる光センサ 11の上層には、 p側電極 33およ び n側電極 34を全体的に覆うように、表面保護膜 44が設けられている。表面保護膜 44は、カラーフィルタ 70の無着色領域 (W領域)と同一材料で形成されている。つま り、表面保護膜 44は導電性ではないので、第 1の実施形態のように、 p側電極 33お よび n側電極 34の間で分離した島状に形成する必要はない。ただし、 i層への光の入 射効率の観点から、第 1の実施形態と同様に、表面保護膜 44を島状にパターニング しても良い。  As shown in FIG. 6, a surface protective film 44 is provided on the upper layer of the optical sensor 11 that is effective in the present embodiment so as to cover the p-side electrode 33 and the n-side electrode 34 as a whole. ing. The surface protective film 44 is formed of the same material as the non-colored region (W region) of the color filter 70. In other words, since the surface protective film 44 is not conductive, it is not necessary to form the islands separated between the p-side electrode 33 and the n-side electrode 34 as in the first embodiment. However, from the viewpoint of the efficiency of light incident on the i layer, the surface protective film 44 may be patterned in an island shape as in the first embodiment.
[0083] 表面保護膜 44は、上述のとおり、カラーフィルタ 70の W領域と同じ材料によって形 成されているので、カラーフィルタ 70の W領域と同一工程によって形成することがで きる。すなわち、カラーフィルタ 70が上述の第 1または第 2の方法で形成されるいず れの場合であっても、画素配列領域 8に無着色の感光性透明榭脂を成膜してパター ユングするのと同時に、周辺領域 9の光センサ 11の上層にも同じ感光性透明榭脂を 成膜して適宜パターユングすることにより、表面保護膜 44を同時に形成することがで きる。 [0083] Since the surface protective film 44 is formed of the same material as the W region of the color filter 70 as described above, it can be formed by the same process as the W region of the color filter 70. wear. That is, regardless of whether the color filter 70 is formed by the first or second method described above, an uncolored photosensitive transparent resin is formed on the pixel array region 8 and patterned. At the same time, by forming the same photosensitive transparent resin on the upper layer of the photosensor 11 in the peripheral region 9 and patterning it appropriately, the surface protective film 44 can be formed simultaneously.
[0084] また、第 1の実施形態と同様に、図 6に示すように、 p側電極 33および n側電極 34の 頭頂部に凹部 33a, 34aをそれぞれ形成しても良い。凹部 33a, 34aは、 p側電極 33 および n側電極 34のパターユング後、例えばエッチング処理により形成される。この ように P側電極 33および n側電極 34の頭頂部に凹部 33a, 34aが形成されていること により、 P側電極 33および n側電極 34の頭頂部と表面保護膜 44との密着性が向上 する。  Further, as in the first embodiment, as shown in FIG. 6, recesses 33a and 34a may be formed on the tops of the p-side electrode 33 and the n-side electrode 34, respectively. The recesses 33a and 34a are formed, for example, by etching after the p-side electrode 33 and the n-side electrode 34 are patterned. As described above, the concave portions 33a and 34a are formed at the tops of the P-side electrode 33 and the n-side electrode 34, so that the adhesion between the tops of the P-side electrode 33 and the n-side electrode 34 and the surface protective film 44 is improved. improves.
[0085] 以上のように、本実施形態によれば、画素配列領域 8のカラーフィルタ 70の無着色 領域 (W領域)と同一材料カゝらなる表面保護膜 44が、光センサ 11の p側電極 33およ び n側電極 34を覆うように形成されていることにより、これらの電極が外気または湿気 に触れることによる経時変化を抑制できる。この結果、長期間にわたって高精度なセ ンシングが可能となり、ひいては、外光の明るさ変化に応じて適切な輝度調整が可能 な、信頼性の高い表示装置を提供することができる。  As described above, according to the present embodiment, the surface protective film 44 made of the same material as the non-colored region (W region) of the color filter 70 in the pixel array region 8 is formed on the p side of the photosensor 11. By being formed so as to cover the electrode 33 and the n-side electrode 34, it is possible to suppress changes over time due to contact of these electrodes with the outside air or moisture. As a result, highly accurate sensing can be performed over a long period of time, and as a result, a highly reliable display device capable of appropriately adjusting luminance according to changes in the brightness of external light can be provided.
[0086] [第 3の実施形態]  [0086] [Third Embodiment]
本発明の第 3の実施形態に力かる表示装置について、図 7および図 8を参照して以 下に説明する。なお、第 1の実施形態と同じ構成については第 1の実施形態と同一 の参照符号を付記し、その説明を省略する。  A display device according to the third embodiment of the present invention will be described below with reference to FIG. 7 and FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
[0087] 図 7は、本実施形態に力かる表示装置におけるアクティブマトリクス基板 2の画素配 列領域 (表示領域) 8の構造を示す平面図である。図 8は、本実施形態にかかる表示 装置の光センサ 11の構造を示す断面図である。  FIG. 7 is a plan view showing the structure of the pixel array region (display region) 8 of the active matrix substrate 2 in the display device according to the present embodiment. FIG. 8 is a cross-sectional view showing the structure of the optical sensor 11 of the display device according to the present embodiment.
[0088] 図 7に示すように、本実施形態に力かる表示装置のアクティブマトリクス基板 2は、対 向基板 3との間隔を一定に制御するために、 TFT6および画素電極 7を含む画素 5の 間に、フォトスぺーサ 71を備えている。このフォトスぺーサ 71は、アクティブマトリクス 基板 2において、画素電極 7が形成された後に、画素 5の外部の第 2層間絶縁膜 20 上に、フォトリソグラフイエ程によって形成される。フォトスぺーサ 71の材料は、一般に 、透明感光性榭脂である。なお、図 7では、 1画素おきにフォトスぺーサ 71が配置さ れた構成を例示した力 フォトスぺーサの配置はこの例にのみ限定されな 、。 As shown in FIG. 7, the active matrix substrate 2 of the display device according to the present embodiment has a pixel 5 including a TFT 6 and a pixel electrode 7 in order to control the distance from the counter substrate 3 to be constant. A photospacer 71 is provided in between. The photo spacer 71 is formed on the active matrix substrate 2 after the pixel electrode 7 is formed, and the second interlayer insulating film 20 outside the pixel 5. Above, it is formed by a photolithographic process. The material of the photo spacer 71 is generally a transparent photosensitive resin. In FIG. 7, the arrangement of the force photospacer exemplifying a configuration in which the photospacer 71 is arranged every other pixel is not limited to this example.
[0089] 図 8に示すように、本実施形態に力かる光センサ 11の上層には、 p側電極 33およ び n側電極 34を全体的に覆うように、フォトスぺーサ 71と同一材料により、表面保護 膜 45が設けられている。なお、表面保護膜 45は導電性ではないので、第 1の実施形 態のように、 p側電極 33および n側電極 34の間で分離した島状に形成する必要はな い。ただし、 i層への光の入射効率の観点から、第 1の実施形態と同様に、表面保護 膜 45を島状にパターユングしても良い。  [0089] As shown in FIG. 8, the same material as the photo spacer 71 is provided on the upper layer of the photosensor 11 that is effective in the present embodiment so as to cover the p-side electrode 33 and the n-side electrode 34 as a whole. Thus, a surface protective film 45 is provided. Since the surface protective film 45 is not conductive, it is not necessary to form the islands separated between the p-side electrode 33 and the n-side electrode 34 as in the first embodiment. However, the surface protective film 45 may be patterned in an island shape, as in the first embodiment, from the viewpoint of the efficiency of light incidence on the i layer.
[0090] 表面保護膜 45は、上述のとおり、フォトスぺーサ 71と同一材料によって形成されて いるので、フォトスぺーサ 71と同一工程によって形成することができる。すなわち、画 素配列領域 8にフォトスぺーサ 71の材料である感光性透明榭脂を成膜してパター- ングするのと同時に、周辺領域 9の光センサ 11の上層にも同じ感光性透明榭脂を成 膜して適宜パターニングすることにより、表面保護膜 45を同時に形成することができ る。  Since the surface protective film 45 is formed of the same material as the photospacer 71 as described above, it can be formed by the same process as the photospacer 71. That is, a photosensitive transparent resin, which is the material of the photo spacer 71, is formed on the pixel array region 8 and patterned, and at the same time, the same photosensitive transparent resin is formed on the upper layer of the optical sensor 11 in the peripheral region 9. The surface protective film 45 can be formed at the same time by forming an oil film and appropriately patterning it.
[0091] また、第 1の実施形態と同様に、図 8に示すように、 p側電極 33および n側電極 34の 頭頂部に凹部 33a, 34aをそれぞれ形成しても良い。凹部 33a, 34aは、 p側電極 33 および n側電極 34のパターユング後、例えばエッチング処理により形成される。この ように P側電極 33および n側電極 34の頭頂部に凹部 33a, 34aが形成されていること により、 P側電極 33および n側電極 34の頭頂部と表面保護膜 45との密着性が向上 する。  [0091] Similarly to the first embodiment, as shown in FIG. 8, recesses 33a and 34a may be formed on the tops of the p-side electrode 33 and the n-side electrode 34, respectively. The recesses 33a and 34a are formed, for example, by etching after the p-side electrode 33 and the n-side electrode 34 are patterned. In this way, the concave portions 33a and 34a are formed at the tops of the P-side electrode 33 and the n-side electrode 34, so that the adhesion between the tops of the P-side electrode 33 and the n-side electrode 34 and the surface protective film 45 is improved. improves.
[0092] 以上のように、本実施形態によれば、画素配列領域 8のフォトスぺーサ 71と同一材 料力もなる表面保護膜 45が、光センサ 11の p側電極 33および n側電極 34を覆うよう に形成されていることにより、これらの電極が外気または湿気に触れることによる経時 変化を抑制できる。この結果、長期間にわたって高精度なセンシングが可能となり、 ひいては、外光の明るさ変化に応じて適切な輝度調整が可能な、信頼性の高い表示 装置を提供することができる。  As described above, according to the present embodiment, the surface protective film 45 having the same material force as that of the photo spacer 71 in the pixel array region 8 provides the p-side electrode 33 and the n-side electrode 34 of the photosensor 11. By forming the electrodes so as to cover them, it is possible to suppress temporal changes caused by these electrodes coming into contact with outside air or moisture. As a result, it is possible to provide a highly reliable display device that can perform high-precision sensing over a long period of time and can appropriately adjust brightness according to changes in the brightness of external light.
[0093] [第 4の実施形態] 本発明の第 4の実施形態に力かる表示装置について、図 9を参照しながら以下に 説明する。なお、第 1の実施形態と同じ構成については第 1の実施形態と同一の参 照符号を付記し、その説明を省略する。 [0093] [Fourth Embodiment] A display device according to the fourth embodiment of the present invention will be described below with reference to FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
[0094] 図 9は、本発明の第 4の実施形態に力かる表示装置 40の概略平面図と、その B— B ,線断面図である。アクティブマトリクス基板 2と対向基板 3がシール榭脂 25によって 貼り合わされており、周辺領域 9に光センサ 11が形成されており、光センサ 11の上層 に、 P側電極 33および n側電極 34のそれぞれを島状に覆う表面保護膜 24が設けら れている点は、第 1の実施形態の表示装置 1と同じである。ただし、表示装置 40は、 周辺領域 9に FPC10が実装されており、その FPC10の実装部周辺にも、 FPC10の 接続を補強 (機械的補強、又は、防湿 ·防塵による実装部の信頼性補強)すべぐ表 面保護膜 24 (すなわち画素配列領域 8における画素電極 7と同一材料による膜)が 存在した構造となって 、る。  [0094] Fig. 9 is a schematic plan view of a display device 40 according to the fourth embodiment of the present invention, and its B-B, line sectional view. The active matrix substrate 2 and the counter substrate 3 are bonded to each other with a seal resin 25, and the optical sensor 11 is formed in the peripheral region 9, and the P-side electrode 33 and the n-side electrode 34 are respectively formed on the upper layer of the optical sensor 11. The surface protective film 24 is provided to cover the islands in the same manner as the display device 1 of the first embodiment. However, the display device 40 has the FPC 10 mounted in the peripheral area 9, and the connection of the FPC 10 is also reinforced around the mounting area of the FPC 10 (mechanical reinforcement or reliability improvement of the mounting section by moisture and dust prevention). The sliding surface protection film 24 (that is, a film made of the same material as the pixel electrode 7 in the pixel array region 8) is present.
[0095] このように、光センサ 11の表面保護膜 24と同一の材料により、 FPC10の接続部を 補強する補強部材が形成されていることにより、前記補強部材を表面保護膜 24と別 の材料で形成する場合に比べると、工数の増加を防ぐことができる。  In this way, the reinforcing member that reinforces the connecting portion of the FPC 10 is formed of the same material as the surface protective film 24 of the optical sensor 11, so that the reinforcing member is made of a material different from that of the surface protective film 24. Compared to the case of forming with, it is possible to prevent an increase in man-hours.
[0096] さらに、図 9に示した例では、表面保護膜 24と同一材料により補強部材が、光セン サ 11および FPC10の近傍において、アクティブマトリクス基板 2と対向基板 3との隙 間を埋めるように形成されている。この構成によれば、例えば、対向基板 3に光センサ 11の回路部が設けられている場合、光センサ 11とこの回路部とを接続する配線も、 この補強部材によって保護することができるという利点がある。  Furthermore, in the example shown in FIG. 9, the reinforcing member is made of the same material as the surface protective film 24 so as to fill the gap between the active matrix substrate 2 and the counter substrate 3 in the vicinity of the optical sensor 11 and the FPC 10. Is formed. According to this configuration, for example, when the circuit portion of the optical sensor 11 is provided on the counter substrate 3, the wiring connecting the optical sensor 11 and the circuit portion can be protected by the reinforcing member. There is.
[0097] なお、図 9では、表示装置 40の周辺領域 9において、短辺方向中央部付近に光セ ンサ 11が配置され、 FPC10が光センサ 11の横に配置された例を示した。また、光セ ンサ以外の駆動回路の図示は省略されている。しかし、光センサ 11の配置位置およ び個数、並びに FPC10の配置位置は、図 9に示した例に限定されない。例えば、光 センサ 11を、周辺領域 9に複数個備えた構造としても良い。その場合、 FPC10の接 続部と、それに比較的距離が近い 1個ないし複数個の光センサ 11とを、前記の表面 保護膜 24と同一材料により、連続的に覆う構造とすれば良い。  FIG. 9 shows an example in which the optical sensor 11 is arranged near the center in the short side direction and the FPC 10 is arranged beside the optical sensor 11 in the peripheral region 9 of the display device 40. Also, illustration of drive circuits other than the optical sensor is omitted. However, the arrangement position and the number of the optical sensors 11 and the arrangement position of the FPC 10 are not limited to the example shown in FIG. For example, a structure in which a plurality of optical sensors 11 are provided in the peripheral region 9 may be employed. In that case, the connecting portion of the FPC 10 and one or more optical sensors 11 that are relatively close to each other may be continuously covered with the same material as the surface protective film 24.
[0098] また、本実施形態では、第 1の実施形態の構成において、表面保護膜 24が FPC1 0の実装部近傍にも設けられた構成を例示したが、第 2の実施形態において表面保 護膜 44が FPC10の実装部近傍にも設けられた構成や、第 3の実施形態において表 面保護膜 45が FPC10の実装部近傍にも設けられた構成も、本発明の技術的範囲 に属する。 [0098] Further, in the present embodiment, in the configuration of the first embodiment, the surface protective film 24 is FPC1. Although the configuration provided near the mounting portion of 0 is illustrated, the configuration in which the surface protection film 44 is also provided near the mounting portion of the FPC 10 in the second embodiment and the surface protection in the third embodiment A configuration in which the film 45 is also provided near the mounting portion of the FPC 10 also belongs to the technical scope of the present invention.
[0099] 以上、本発明の表示装置についてのいくつかの実施形態を例示した力 本発明は これらの実施形態にのみ限定されるものではない。例えば、上述の各実施形態では 、多結晶 Si膜を用いて TFT6と光センサ 11を形成した例を示したが、両者を非結晶 Si膜で形成することも可能である。また、トップゲート構造 (正スタガ構造)の TFTに限 らず、ボトムゲート構造 (逆スタガ構造)の TFTを用いても構わない。また、 TFT6の代 わりに、 MIM (MetaHnsulator-Metal)などの他のアクティブ素子を使用することも可 能である。  [0099] As described above, the powers exemplifying some embodiments of the display device of the present invention. The present invention is not limited to these embodiments. For example, in each of the above-described embodiments, an example in which the TFT 6 and the optical sensor 11 are formed using a polycrystalline Si film is shown, but both can be formed of an amorphous Si film. In addition, a TFT having a bottom gate structure (reverse stagger structure) may be used instead of a TFT having a top gate structure (forward stagger structure). In addition, other active elements such as MIM (MetaHnsulator-Metal) can be used instead of TFT6.
[0100] さらに、光センサは、 PIN接合を利用したものだけでなぐショットキー接合や MIS 型接合を有する光ダイオードを利用することもできる。例えば、非結晶 Si膜を用いた ボトムゲート構造 (逆スタガ構造)の TFTと、 MIS型接合を有する光ダイオードを同一 基板上にモノリシックに形成する方法は、例えば特開平 6— 188400号公報等に開 示されているとおり公知であり、当業者であれば自明であるため、ここでは詳細な説 明は省略する。  [0100] Furthermore, the optical sensor can use a photodiode having a Schottky junction or an MIS type junction that is not limited to using a PIN junction. For example, a method of monolithically forming a TFT having a bottom gate structure (inverted stagger structure) using an amorphous Si film and a photodiode having an MIS type junction on the same substrate is disclosed in, for example, JP-A-6-188400. Since it is known as disclosed and obvious to those skilled in the art, a detailed description thereof is omitted here.
[0101] なお、本発明は、アクティブ素子を備えたフラットパネル型表示装置に広く適用する ことができ、液晶表示装置に以外にも、 EL表示装置、電気泳動表示装置などの各種 表示装置などに適用することができる。  [0101] The present invention can be widely applied to flat panel display devices including active elements. In addition to liquid crystal display devices, the present invention can be applied to various display devices such as EL display devices and electrophoretic display devices. Can be applied.
[0102] また、上述の各実施形態では、環境センサの代表として光センサを周辺領域 9に形 成した表示装置について説明した力 光センサの代わりに、温度センサ、湿度センサ 、ノックライトの色センサや明るさセンサなどを環境センサとして採用することができ、 同様の効果が得られる。  [0102] In each of the above-described embodiments, a temperature sensor, a humidity sensor, a knocklight color sensor instead of the force sensor described for the display device in which the optical sensor is formed in the peripheral region 9 as a representative of the environmental sensor. And brightness sensors can be used as environmental sensors, and similar effects can be obtained.
[0103] [第 5の実施形態]  [Fifth Embodiment]
本発明にかかる電子機器の一実施形態について説明する。図 10は、本実施形態 にかかる電子機器の概略構成を示すブロック図である。図 10に示すように、本実施 形態にかかる電子機器 60は、第 1の実施形態にかかる表示装置 1と、この表示装置 1の光センサ 11によって検出された外光の明るさ情報に応じて、表示装置 1の表示 輝度を制御する制御回路 61とを備えている。なお、図 10では、表示装置 1および電 子機器 60における機能ブロックの図示を簡略ィ匕している。制御回路 61は、表示輝度 の制御以外に、電子機器 60の任意の動作を制御する機能を有していても良い。また 、電子機器 60は、その用途等に応じて、図 10に示した以外の任意の機能ブロックを 有し得る。 An embodiment of an electronic device according to the present invention will be described. FIG. 10 is a block diagram showing a schematic configuration of the electronic apparatus according to the present embodiment. As shown in FIG. 10, the electronic device 60 according to the present embodiment includes the display device 1 according to the first embodiment and the display device. And a control circuit 61 that controls the display luminance of the display device 1 according to the brightness information of the external light detected by the one optical sensor 11. In FIG. 10, the functional blocks in the display device 1 and the electronic device 60 are simply illustrated. The control circuit 61 may have a function of controlling an arbitrary operation of the electronic device 60 in addition to the control of display luminance. Further, the electronic device 60 may have arbitrary functional blocks other than those shown in FIG.
[0104] 制御回路 61は、光センサ 11によって検出された外光の明るさ情報 (センサ出力)に 応じてバックライトシステム 12の輝度を調整することにより、表示装置 1の表示輝度を 制御する。例えば、屋外など明るい環境下では表示輝度を高くし、夜間や室内など 比較的喑 、環境下では表示輝度を下げるように輝度調整 (調光)を自動的に行えば 、表示装置の低消費電力化や長寿命化を実現できる。また、透過表示モードと反射 表示モードを併用した半透過型表示モードの表示装置の場合は、屋外など明るい環 境下ではバックライトシステムの輝度を低くしたり、消したりすることが可能になり、さら に、表示装置の低消費電力化や長寿命化を実現できる。なお、表示装置 1は液晶表 示装置であるためバックライトシステムの輝度を制御することによって表示輝度の調 整が可能であるが、 EL素子等の自発光素子を表示装置として用いる場合は、制御 回路 61は、自発光素子の発光輝度を制御するよう構成される。  The control circuit 61 controls the display brightness of the display device 1 by adjusting the brightness of the backlight system 12 according to the brightness information (sensor output) of the external light detected by the light sensor 11. For example, automatically adjusting the brightness (dimming) to increase the display brightness in bright environments such as outdoors, and to reduce the display brightness in relatively dark environments such as at night or indoors, reduces the power consumption of the display device. And longer life. In the case of a transflective display mode display device that uses both the transmissive display mode and the reflective display mode, the brightness of the backlight system can be reduced or turned off in bright environments such as outdoors. In addition, lower power consumption and longer life of the display device can be realized. Since display device 1 is a liquid crystal display device, the display brightness can be adjusted by controlling the brightness of the backlight system. However, if a self-luminous element such as an EL element is used as the display device, the display brightness can be adjusted. The circuit 61 is configured to control the light emission luminance of the self light emitting element.
[0105] また、本実施形態では、第 1の実施形態にかかる表示装置 1を用いた構成を例示し たが、第 2〜第 4の実施形態ならびにこれらの変形例に力かる表示装置を用いた電 子機器も、本発明の範囲内である。  [0105] Further, in the present embodiment, the configuration using the display device 1 according to the first embodiment has been exemplified, but the display device that works well with the second to fourth embodiments and these modifications is used. The electronic equipment that was used is also within the scope of the present invention.
[0106] 以上のように、周囲の明るさに応じて必要十分な輝度になるよう表示輝度を制御す ることにより、消費電力を低減し、かつ、見易い表示を実現する電子機器を提供でき る。本実施形態の電子機器は、使用環境の明るさの変化に対して良好な視認性と低 消費電力化を両立できることから、屋外に持ち出して使用する機会が多くバッテリー 駆動を必要とするモパイル機器として特に有用である。このようなモパイル機器の具 体例としては、本発明の用途をこれらに限定するものではないが、例えば、携帯電話 、 PDA等の情報端末、モパイルゲーム機器、携帯型音楽プレイヤー、デジタルカメラ 、ビデオカメラ等がある。 [0107] なお、本実施形態では、表示装置の表示輝度を制御するための制御回路 61が表 示装置の外部に設けられた構成を例示したが、制御回路が表示装置の一部として設 けられた構成としても良い。 As described above, it is possible to provide an electronic device that reduces power consumption and realizes an easy-to-view display by controlling the display brightness so as to obtain a necessary and sufficient brightness according to the ambient brightness. . The electronic device of the present embodiment can achieve both good visibility and low power consumption in response to changes in the brightness of the usage environment, so it is often used as a mopile device that needs to be taken outside and needs battery drive. It is particularly useful. As specific examples of such mopile equipment, the application of the present invention is not limited to these. For example, information terminals such as mobile phones, PDAs, mopile game equipment, portable music players, digital cameras, video There are cameras. In the present embodiment, the configuration in which the control circuit 61 for controlling the display brightness of the display device is provided outside the display device is illustrated, but the control circuit is provided as a part of the display device. It is good also as the structure comprised.
産業上の利用可能性  Industrial applicability
[0108] 本発明は、環境センサを備えたフラットパネル型表示装置およびこれを備えた電子 機器に適用可能である。 The present invention can be applied to a flat panel display device including an environmental sensor and an electronic apparatus including the flat panel display device.

Claims

請求の範囲 The scope of the claims
[1] 複数の画素が配列された画素配列領域を有するアクティブマトリクス基板と、  [1] an active matrix substrate having a pixel array region in which a plurality of pixels are arrayed;
前記アクティブマトリクス基板の画素配列領域に対向するように配設される対向基 板と、  A counter substrate disposed to face a pixel array region of the active matrix substrate;
前記アクティブマトリクス基板と前記対向基板の間隙に配設される表示媒体とを備 えた表示装置において、  In a display device comprising a display medium disposed in a gap between the active matrix substrate and the counter substrate,
前記アクティブマトリクス基板における前記画素配列領域の周囲に存在する周辺領 域に配設される環境センサと、  An environmental sensor disposed in a peripheral region existing around the pixel array region in the active matrix substrate;
前記アクティブマトリクス基板の構成部材の一部と同一材料で形成され、前記環境 センサの上層において少なくとも前記環境センサの電極部を覆う表面保護膜とを備 えたことを特徴とする表示装置。  A display device, comprising: a surface protective film that is formed of the same material as a part of constituent members of the active matrix substrate and covers at least an electrode portion of the environmental sensor in an upper layer of the environmental sensor.
[2] 前記アクティブマトリクス基板の画素配列領域に、複数の電極配線と、複数のァクテ イブ素子と、前記複数の電極配線および複数のアクティブ素子の上層に設けられた 層間絶縁膜と、この層間絶縁膜上に形成された複数の画素電極とが配設されており 前記表面保護膜が、前記画素電極と同一材料で形成され、前記環境センサの各 電極に対して島状に形成されて!、る、請求項 1に記載の表示装置。  [2] In the pixel array region of the active matrix substrate, a plurality of electrode wirings, a plurality of active elements, an interlayer insulating film provided above the plurality of electrode wirings and the plurality of active elements, and the interlayer insulating film A plurality of pixel electrodes formed on the film, and the surface protection film is formed of the same material as the pixel electrode and is formed in an island shape with respect to each electrode of the environmental sensor! The display device according to claim 1.
[3] 前記画素電極と前記表面保護膜とが同一プロセスで形成されている、請求項 2に 記載の表示装置。 3. The display device according to claim 2, wherein the pixel electrode and the surface protective film are formed by the same process.
[4] 前記アクティブマトリクス基板の画素配列領域に、複数の電極配線と、複数のァクテ イブ素子と、前記複数の電極配線および複数のアクティブ素子の上層に設けられた カラーフィルタ層と、このカラーフィルタ層上に形成された複数の画素電極とが配設さ れており、  [4] In the pixel array region of the active matrix substrate, a plurality of electrode wirings, a plurality of active elements, a color filter layer provided above the plurality of electrode wirings and the plurality of active elements, and the color filter A plurality of pixel electrodes formed on the layer, and
前記表面保護膜が、前記カラーフィルタ層の無着色領域と同一材料で形成されて いる、請求項 1に記載の表示装置。  2. The display device according to claim 1, wherein the surface protective film is formed of the same material as the non-colored region of the color filter layer.
[5] 前記カラーフィルタ層の無着色領域と前記表面保護膜とが同一プロセスで形成さ れている、請求項 4に記載の表示装置。 5. The display device according to claim 4, wherein the non-colored region of the color filter layer and the surface protective film are formed by the same process.
[6] 前記アクティブマトリクス基板の画素配列領域に、複数の電極配線と、複数のァクテ イブ素子と、前記複数の電極配線および複数のアクティブ素子の上層に設けられた 層間絶縁膜と、この層間絶縁膜上に形成された複数の画素電極と、前記層間絶縁 膜上であって画素電極が存在しない領域に形成されたフォトスぺーサとが配設され ており、 [6] In the pixel array region of the active matrix substrate, a plurality of electrode wires and a plurality of functions are provided. Eve element, an interlayer insulating film provided on the plurality of electrode wirings and the plurality of active elements, a plurality of pixel electrodes formed on the interlayer insulating film, and a pixel electrode on the interlayer insulating film And a photo spacer formed in an area where no
前記表面保護膜が、前記フォトスぺーサと同一材料で形成されている、請求項 1に 記載の表示装置。  The display device according to claim 1, wherein the surface protection film is formed of the same material as the photospacer.
[7] 前記フォトスぺーサと前記表面保護膜とが同一プロセスで形成されている、請求項 6に記載の表示装置。  7. The display device according to claim 6, wherein the photo spacer and the surface protective film are formed by the same process.
[8] 前記環境センサは、少なくとも一部の構成部材が前記アクティブ素子の構成部材と 同一プロセスで製造される、請求項 1〜7のいずれか一項に記載の表示装置。  8. The display device according to any one of claims 1 to 7, wherein at least a part of the environmental sensor is manufactured by the same process as that of the active element.
[9] 前記環境センサは、前記アクティブマトリクス基板の主面上にモノリシックに形成さ れる、請求項 1〜7のいずれか一項に記載の表示装置。 [9] The display device according to any one of [1] to [7], wherein the environmental sensor is formed monolithically on a main surface of the active matrix substrate.
[10] 前記アクティブ素子が薄膜トランジスタであり、前記環境センサがラテラル構造を有 するフォトダイオードである、請求項 1〜9のいずれか一項に記載の表示装置。 10. The display device according to any one of claims 1 to 9, wherein the active element is a thin film transistor, and the environmental sensor is a photodiode having a lateral structure.
[11] 前記アクティブマトリクス基板の周辺領域に回路部材が実装されており、前記表面 保護膜と同一の材料力もなる補強部材が、前記回路部材の実装部に配設されている[11] A circuit member is mounted in a peripheral region of the active matrix substrate, and a reinforcing member having the same material force as that of the surface protective film is disposed in the mounting portion of the circuit member.
、請求項 1〜10のいずれか一項に記載の表示装置。 The display device according to any one of claims 1 to 10.
[12] 請求項 1〜11のいずれか一項に記載の表示装置を備えた電子機器であって、 前記環境センサが光センサであり、 [12] An electronic device comprising the display device according to any one of claims 1 to 11, wherein the environmental sensor is an optical sensor,
前記光センサによって検出された外光の明るさ情報に応じて表示輝度を制御する 制御回路を備えたことを特徴とする電子機器。  An electronic apparatus comprising: a control circuit that controls display luminance according to brightness information of external light detected by the optical sensor.
PCT/JP2006/308798 2005-04-28 2006-04-27 Display device and electronic device provided with same WO2006118166A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-132934 2005-04-28
JP2005132934 2005-04-28

Publications (1)

Publication Number Publication Date
WO2006118166A1 true WO2006118166A1 (en) 2006-11-09

Family

ID=37307964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308798 WO2006118166A1 (en) 2005-04-28 2006-04-27 Display device and electronic device provided with same

Country Status (1)

Country Link
WO (1) WO2006118166A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170509A (en) * 2007-01-09 2008-07-24 Hitachi Displays Ltd Image display device provided with dimmer function
WO2010032632A1 (en) * 2008-09-19 2010-03-25 株式会社 東芝 Optical sensing element, optical sensing device, and display device with optical sensor function
JP2015135498A (en) * 2007-04-20 2015-07-27 ブイアイエイ オプトロニクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Bezelless display system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194679A (en) * 2000-01-13 2001-07-19 Seiko Epson Corp Liquid crystal device and its manufacturing method
JP2002062856A (en) * 2000-06-06 2002-02-28 Semiconductor Energy Lab Co Ltd Display device and manufacturing method therefor
JP2004109862A (en) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd Method for manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194679A (en) * 2000-01-13 2001-07-19 Seiko Epson Corp Liquid crystal device and its manufacturing method
JP2002062856A (en) * 2000-06-06 2002-02-28 Semiconductor Energy Lab Co Ltd Display device and manufacturing method therefor
JP2004109862A (en) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd Method for manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170509A (en) * 2007-01-09 2008-07-24 Hitachi Displays Ltd Image display device provided with dimmer function
JP2015135498A (en) * 2007-04-20 2015-07-27 ブイアイエイ オプトロニクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Bezelless display system
WO2010032632A1 (en) * 2008-09-19 2010-03-25 株式会社 東芝 Optical sensing element, optical sensing device, and display device with optical sensor function
JP2010073974A (en) * 2008-09-19 2010-04-02 Toshiba Corp Photo-detector, photo-detection device, and display device with photo-detection function

Similar Documents

Publication Publication Date Title
JP4621734B2 (en) Display device and electronic apparatus equipped with the same
US8085256B2 (en) Electronic device
US20090128529A1 (en) Display Device and Electronic Device
WO2006104212A1 (en) Active matrix substrate, and display device and electronic device provided with such active matrix substrate
US8013955B2 (en) Liquid crystal display with opening in reflective electrode
US7898619B2 (en) Liquid crystal display
US7682883B2 (en) Manufacturing method of thin film transistor array substrate and liquid crystal display panel
JP3015400B2 (en) Liquid crystal display
US8432510B2 (en) Liquid crystal display device and light detector having first and second TFT ambient light photo-sensors alternatively arranged on the same row
EP2154731B1 (en) Photodetector and display device provided with same
US20100128010A1 (en) Liquid crystal display device and method for driving the same
JP2010056303A (en) Optical sensor, and liquid crystal display using the same
WO2006104204A1 (en) Display device and electronic device provided with same
JP2009053261A (en) Liquid crystal display device
CN113488507A (en) Display panel, display module and electronic equipment
WO2006118166A1 (en) Display device and electronic device provided with same
JP2007304519A (en) Liquid crystal display device
JP2007304520A (en) Color liquid crystal display
JP4370957B2 (en) Image reading device
JP2008224896A (en) Display device
WO2006104210A1 (en) Active matrix substrate, display device and electronic device
CN112447791A (en) Display panel and terminal equipment
JP2008191498A (en) Liquid crystal display
JP4893115B2 (en) Display panel
JP5239293B2 (en) Liquid crystal device and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06732404

Country of ref document: EP

Kind code of ref document: A1