WO2006115071A1 - Magnetic force rotation device - Google Patents

Magnetic force rotation device Download PDF

Info

Publication number
WO2006115071A1
WO2006115071A1 PCT/JP2006/307841 JP2006307841W WO2006115071A1 WO 2006115071 A1 WO2006115071 A1 WO 2006115071A1 JP 2006307841 W JP2006307841 W JP 2006307841W WO 2006115071 A1 WO2006115071 A1 WO 2006115071A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
salient pole
magnetic
permanent magnets
pair
Prior art date
Application number
PCT/JP2006/307841
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Matama
Hiroshi Kuroki
Original Assignee
Konishi Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konishi Co., Ltd. filed Critical Konishi Co., Ltd.
Publication of WO2006115071A1 publication Critical patent/WO2006115071A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/20Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar machine

Definitions

  • the present invention relates to a magnetic rotating device that rotates using a repulsive force between a static magnetic field of a permanent magnet provided in a rotor and an electromagnetic field generated in a stator, and more specifically, the iron core of the stator is
  • the present invention relates to a magnetic rotating device which has a plurality of salient pole portions facing the outer peripheral surface of the rotor and is provided along the rotating direction to facilitate downsizing and rotation control of the device.
  • a conventional magnetic rotating device includes first and second rotors 2 and 3 that are supported by the same rotating shaft 1 and are provided apart from each other in the axial direction.
  • the N pole is positioned on the outer peripheral surface of the circumferential area of the first rotor 2
  • the S pole is positioned on the rotation center side, for example, obliquely with respect to the radial line of the first rotor 2.
  • the S pole is positioned on the outer peripheral surface of the circumferential region of the second rotor 3 and the N pole is positioned on the rotation center side, for example, so that the radial line of the second rotor 3 is positioned.
  • a plurality of permanent magnets 4 arranged at an angle to each other and two I-shaped iron cores 7 are wound with a drive coil 8 to form first and second salient pole parts 5 and 6, respectively.
  • the opposite sides of the first and second rotors 2 and 3 are connected by a yoke 26, and the first and second salient pole portions 5 and 6 are provided in the axial direction along the rotary shaft 1.
  • the first and second rotors 2 and 3 are provided with a magnet 9 facing the outer peripheral surface of the first and second rotors 2 and 3 with a gap therebetween, and the drive coil 8 is energized to generate N polarity in the first salient pole 5
  • the second rotor 3 By repelling the N pole of the permanent magnet 4 located on the outer peripheral surface of the first rotor 2 and generating the S polarity at the second salient pole 6, the second rotor 3
  • the permanent magnet 4 rotates on the outer peripheral surface while repelling it with the south pole (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent No. 2968918
  • the first and second rotors 2 and 3 side of the two I-shaped iron cores 7 are connected to the yoke 26. Connect to each other with Since the first and second salient pole portions 5 and 6 of each iron core 7 are opposed to the first and second rotors 2 and 3 provided in the axial direction of the rotating shaft 1, A closed magnetic circuit as shown by an arrow is formed, and the magnetic flux generated in the first and second salient pole portions 5 and 6 can be concentrated on the outer peripheral surfaces of the first and second rotors 2 and 3, Although the magnetic efficiency can be improved, since the first and second salient pole portions 5 and 6 are arranged along the rotation axis 1 in the axial direction, it is difficult to reduce the size of the apparatus.
  • the rotating force mainly includes the static magnetic field of the permanent magnet 4 and the electromagnet 9 of the first and second rotors 2 and 3. Because it is based on the repulsive force with the electromagnetic field, it was difficult to control the rotation speed, and there was a tendency to run away at a higher rotation speed.
  • an object of the present invention is to provide a magnetic rotating device that addresses such problems and facilitates downsizing and rotation control of the device.
  • a magnetic rotating device includes a rotor supported by a rotating shaft, and a circumferential region of the rotor, the surfaces intersecting the rotation direction as magnetic poles and having the same polarity.
  • the at least one pair of permanent magnets arranged close to or adjacent to each other with their magnetic poles facing each other and an outer peripheral surface of the rotor are opposed to each other with a gap, and a plurality of protrusions are arranged along the rotation direction of the rotor.
  • a stator having an iron core having a pole portion and winding a drive coil around the salient pole portion of the iron core so as to generate an electromagnetic field of opposite polarity between adjacent salient pole portions, and the rotor
  • the rotor is rotated by utilizing a repulsive force between a static magnetic field of the permanent magnet and electromagnetic fields generated from a plurality of salient pole portions of the stator.
  • At least the circumferential region of the rotor supported by the rotation shaft is disposed adjacent to or adjacent to each other so that the surfaces that intersect the rotation direction are the magnetic poles and the same polarity magnetic poles face each other.
  • An iron core having a plurality of salient pole portions along the rotation direction of the rotor is opposed to the static magnetic field of the pair of permanent magnets with a gap between the outer peripheral surface of the rotor and the rotor core.
  • a drive coil is wound around the pole portion so that an electromagnetic field of opposite polarity is generated between adjacent salient pole portions, and the electromagnetic field generated from the plurality of salient pole portions is repelled to rotate the rotor.
  • a plurality of pairs of permanent magnets of the rotor are provided at a predetermined interval along the rotation direction in a circumferential region of the rotor, and one salient pole portion of the iron core is provided with a rotor at the rotor.
  • the shape of the other salient pole part is located on the extension line of the line connecting the intermediate position of the pair of permanent magnets and the rotation center of the rotor.
  • the rotor is rotated by repelling the electromagnetic field generated from the plurality of salient pole portions of the iron core of the stator.
  • a control device is provided connected to the drive coil, and when the magnetic pole portions of the pair of permanent magnets face each other pass through the tip of one salient pole portion of the iron core by the control device.
  • the drive coil is energized, and the magnetic pole portions of the pair of permanent magnets face each other before passing through the tip of another salient pole portion positioned forward in the rotational direction of the rotor by the iron core.
  • the energization is canceled.
  • the control coil connected to the drive coil energizes the drive coil to generate a repulsive force when the opposing magnetic pole portions of the pair of permanent magnets pass through the tip of one salient pole portion of the iron core.
  • the drive coil is de-energized before the opposing magnetic pole portions of the pair of permanent magnets pass through the tip of another salient pole portion positioned forward of the rotor in the iron core.
  • stator iron core is surrounded by the rotor inside, and the outer peripheral side is magnetically connected to each other V, and a plurality of iron cores are arranged along the rotation direction of the rotor on the inner peripheral side.
  • a plurality of sets of salient poles are provided at predetermined intervals.
  • the rotor is placed inside and the outer peripheral side is magnetically connected to each other, and a plurality of salient pole portions are set at a predetermined interval along the rotation direction of the rotor on the inner peripheral side.
  • An electromagnetic field is generated by the iron core of the stator.
  • the iron core of the stator has a larger gap between the outer peripheral surface of the rotor and the plurality of salient poles than the other salient pole part, which is larger than the other salient pole part. It was formed as follows. As a result, the gap between the outer peripheral surface of the rotor and the plurality of salient pole parts is smaller than the one salient pole part. An electromagnetic field having a polarity opposite to that of the one salient pole part is generated at another salient pole part located adjacently so as to be large.
  • the pair of permanent magnets since the pair of permanent magnets has a surface that intersects the rotation direction as a magnetic pole, and the magnetic poles of the same polarity face each other in close proximity or adjacent to each other, the strength of the static magnetic field that appears on the outer peripheral surface of the rotor is large. In addition, it is possible to obtain a larger rotational force than before. In addition, an electromagnetic field of opposite polarity is generated between adjacent salient poles, so that the salient poles magnetized to the same polarity as the magnetic poles of the permanent magnet appearing on the outer peripheral surface of the rotor repel each other. Thus, when the rotor rotates, the magnetic poles of the permanent magnets are attracted to the salient poles magnetized in the opposite polarity, and braking is applied, thereby preventing runaway of the rotor and facilitating rotation control. it can.
  • a plurality of pairs of permanent magnets are provided in the circumferential region of the rotor at predetermined intervals along the direction of rotation, and the stator is one salient pole portion of the iron core. Is a line connecting an intermediate position between a pair of permanent magnets adjacent to the tip of the other salient pole part and the center of rotation of the rotor when the opposite magnetic pole part of the rotor permanent magnet faces each other.
  • the rotational force can be applied to a plurality of locations in the circumferential direction of the rotor, and the rotation can be made smooth. it can.
  • a control device is provided that is connected to the drive coil, and the magnetic pole portions of the pair of permanent magnets facing each other by the control device are the tip of one salient pole portion of the iron core. Energize the drive coil as it passes through the ends, so that the pair of permanent magnets By turning off the energization of the drive coil before the part passes through the tip of the other salient pole part located in front of the rotor in the direction of rotation of the rotor, the pair of permanent magnets of the rotor face each other. It is possible to prevent the magnetic pole portion from being attracted to the other salient pole portion of the stator core and to apply braking, thereby enabling high-speed rotation.
  • the stator iron core is surrounded with the rotor inside, the outer peripheral sides are magnetically connected to each other, and the rotor rotates on the inner peripheral side thereof.
  • the stator structure can be strengthened by forming a plurality of salient pole portions as a set along the direction with a plurality of sets at a predetermined interval.
  • assembly accuracy can be improved. Therefore, it is possible to easily manufacture a larger apparatus or a multipolar apparatus.
  • the stator is integrally formed surrounding the rotor, the electromagnetic field generated by the iron core force can be confined inside the stator, and the leakage of magnetic flux can be suppressed.
  • the space between the outer peripheral surface of the rotor and the plurality of salient pole portions is the gap between the other salient pole portions positioned adjacent to the one salient pole portion.
  • FIG. 1 is a side view showing an embodiment of a magnetic rotating device according to the present invention.
  • FIG. 2 is a cross-sectional view taken along line XX in FIG.
  • FIG. 3 is a plan view showing one shape of an iron core of an electromagnet of the magnetic rotating device.
  • FIG. 4 is a block diagram showing a configuration example of a control device used in the magnetic rotating device.
  • FIG. 5 is a main part enlarged explanatory view showing a position detecting means of the magnetic rotating device.
  • FIG. 6 is a timing chart showing excitation timing by the electromagnet of the magnetic rotating device.
  • FIG. 7 is a flowchart illustrating rotation control of the magnetic rotating device.
  • FIG.8 High rotational speed during startup, steady operation, and steady operation of the magnetic rotating device 6 is a timing chart for explaining rotation control when it fluctuates to the side.
  • FIG. 9 is an explanatory diagram showing another pulse waveform of the drive current supplied to the magnetic rotating device.
  • (A) shows the pulse waveform and (b) shows the current flowing through the drive coil.
  • FIG. 10 is a front sectional view showing another embodiment of the iron core in the electromagnet of the magnetic rotating device according to the present invention, where (a) shows an example in which the central salient pole part has four poles, and (b) shows the central salient pole part. This is an octupole example.
  • FIG. 11 is a front sectional view showing another arrangement example of permanent magnets in the rotor of the magnetic rotating device according to the present invention.
  • FIG. 12 is a diagram showing another configuration example of the position detecting means in the magnetic rotating device according to the present invention, where (a) is a side cross-sectional view and (b) is a main portion taken along the line Z-Z in (a).
  • FIG. 12 is a diagram showing another configuration example of the position detecting means in the magnetic rotating device according to the present invention, where (a) is a side cross-sectional view and (b) is a main portion taken along the line Z-Z in (a).
  • FIG. 13 is an enlarged side view showing a main part of a conventional magnetic rotating device.
  • FIG. 14 is a cross-sectional view taken along line YY in FIG.
  • FIG. 1 shows the present invention.
  • FIG. 2 is a side view showing an embodiment of the magnetic rotating device according to the present invention, and FIG.
  • This magnetic rotating device rotates using the repulsive force between the static magnetic field of the permanent magnet provided in the rotor and the electromagnetic field generated in the stator.
  • the rotor 10, the permanent magnet 4, the electromagnet 9 And comprising.
  • the rotor 10 is rotatably supported by a rotating shaft 1, and the rotating shaft 1 is held by a bearing portion 11 provided in a housing (not shown) so as to be rotatable. .
  • the rotor 10 is formed in a disk shape or a column shape having a predetermined radius (in FIG. 1, it is shown as a column shape).
  • At least a pair of permanent magnets 4 is provided in the circumferential area thereof.
  • the permanent magnet 4 generates a static magnetic field and gives a rotational force to the rotor 10 by a repulsive force with an electromagnetic field generated from a salient pole portion 12 of an iron core 7 of an electromagnet 9 described later.
  • the surface intersecting the rotation direction indicated by the arrow is the magnetic pole 4a, and the magnetic poles 4a of the same polarity, for example, N poles are arranged facing each other. It is installed.
  • eight pairs of permanent magnets 4 are arranged so as to be shifted from each other by 45 degrees in the circumferential direction.
  • the pair of permanent magnets 4 are arranged so that the central axes of the permanent magnets 4 are parallel to each other with the radial line of the rotor 10 in between. It should be noted that the pair of permanent magnets 4 is arranged such that the center axis of each permanent magnet 4 intersects with the rotation center of the rotor 10.
  • the static magnetic field strength appearing on the outer peripheral surface of the rotor 10 is superimposed on the magnetic field generated from each permanent magnet 4. 4 is the maximum at the intermediate position of the facing magnetic poles 4a, and about 1.5 times the strength can be obtained as compared with the case where only one permanent magnet 4 is arranged.
  • an electromagnet 9 is disposed so as to face the outer peripheral surface of the rotor 10 with a gap.
  • the electromagnet 9 generates an electromagnetic field repelling the static magnetic field generated from the magnetic pole 4a (see (b) of FIG. 2) facing the pair of permanent magnets 4, and the rotor 10
  • a drive coil 8 is wound around a central salient pole portion 13 (-salient pole portion) located at the center of an iron core 7 having three salient pole portions 12 along the rotation direction.
  • An electromagnetic field of opposite polarity is generated between the salient pole portion 13 and the end salient pole portion 14 (the other salient pole portion) provided adjacent thereto. And this electromagnet 9 becomes a stator.
  • the electromagnet 9 includes a bolt nut 25 (see FIG. 3) formed by laminating a plurality of substantially E-shaped iron materials and penetrating them in the thickness direction. 1 or FIG. 2) to form an iron core 7 having a salient pole portion 12 as shown in FIG. 2, and a drive coil 8 in which a coil is wound around, for example, a bobbin at a central salient pole portion 13 of the iron core 7. It is formed by wearing.
  • the electromagnet 9 is arranged so that the center line B of the central salient pole portion 13 of the iron core 7 matches the radial line of the rotor 10 and is opposed to the outer peripheral surface of the rotor 10 with a gap. It is installed.
  • the iron core 7 has a magnetic pole 4a in which the tip 13a of the central salient pole portion 13 faces the pair of permanent magnets 4 as shown in FIG. 2 (a) (see FIG. 2 (b)).
  • the shape is located on the extension C of the line connecting the intermediate position of the pair of permanent magnets 4 adjacent to the tip 14a of the end salient pole part 14 and the rotation center of the rotor 10 It is said that.
  • the static magnetic field generated by the plural pairs of permanent magnets 4 appearing on the outer peripheral surface of the rotor 10 and the electromagnetic field generated from the central salient pole portion 13 and the end salient pole portion 14 can be repelled.
  • the force can be added to obtain a larger rotational force.
  • the shape of the iron core 7 is not limited to the shape having three salient pole portions 12 and having a substantially E shape, but having two salient pole portions 12 and having a substantially U shape. Also good.
  • the end salient pole portion 14 where the gap between the outer peripheral surface of the rotor 10 and the plurality of salient pole portions 12 is located adjacent to the central salient pole portion 13 is larger. It is formed to become.
  • the rotor 10 can always be stopped in a state where the portion of the magnetic pole 4a facing the pair of permanent magnets 4 is attracted to the tip 13a of the central salient pole portion 13. Therefore, if an electromagnetic field having the same polarity as that of the magnetic pole 4a of the permanent magnet 4 is generated in the central salient pole portion 13, for example, N polarity, the rotor 10 can be easily started to rotate.
  • a control device 16 is connected to the drive coil 8 of the electromagnet 9.
  • the control device 16 energizes the drive coil 8 when a portion of the magnetic pole 4a facing the pair of permanent magnets 4 passes through the tip 13a of the central salient pole portion 13 of the iron core 7, and the pair of permanent magnets 4 direction Control is performed so that the energization of the drive coil 8 is canceled before the tightly-connected magnetic pole 4a passes through the tip 14a of the end salient pole portion 14 positioned forward in the rotation direction of the rotor 10 by the iron core 7.
  • the apparatus includes a position detection means 17, a control unit 18, a drive unit 19, a calculation unit 27, a storage unit 28, and an operation unit 29.
  • the position detecting means 17 is such that the intermediate position of the opposing magnetic poles 4a of the pair of permanent magnets 4 shown in Fig. 2 passes on the center line B of the central salient pole portion 13 of the iron core 7.
  • a slit disk 20 is provided on one side of the rotor 10 so as to be supported by the rotary shaft 1 and rotate integrally with the rotor 10, and the slit disk 20
  • a light-emitting element 21 and a light-receiving element 22 are provided on both sides with a slit disk 20 in between.
  • the light emitting element 21 and the light receiving element 22 are fixedly disposed on the casing.
  • the slit disk 20 has a slit 23 having a predetermined width at the periphery thereof, and one end of the slit 23 (hereinafter referred to as "rotation direction head").
  • 23a is aligned with the approximate center of the permanent magnet 4 on the leading side in the rotational direction indicated by the arrow A in the pair of permanent magnets 4 disposed on the rotor 10, and the other end (hereinafter referred to as the “tail portion in the rotational direction”).
  • 23b is positioned substantially at the center of the permanent magnet 4 at the tail in the rotational direction indicated by the arrow A of the rotor 10.
  • the light emitting element 21 and the light receiving element 22 are arranged at a position separated from the center line B of the central salient pole portion 13 of the iron core 7 by a distance L on the front side in the rotation direction indicated by the arrow A, by the distance L. It is arranged corresponding to the area.
  • the slit 23 passes between the light emitting element 21 and the light receiving element 22, the light emitted from the light emitting element 21 passes through the slit 23 and is received by the light receiving element 22.
  • an analog detection signal as shown in FIG.
  • the control unit 18 is connected to the position detection unit 17 and the drive unit 19 and generates a control signal for controlling the drive unit 19 based on a detection signal input from the position detection unit 17. As shown in FIG. 6 (b), when the detection signal of the light receiving element 22 is wave-shaped with a predetermined threshold value and the leading portion 23a in the rotation direction of the slit 23 formed in the slit disk 20 is detected. When a rising edge 23b in the rotational direction is detected, a falling pulse-like control signal is obtained and output to the drive section 19.
  • the drive unit 19 drives the electromagnet 9 and drives the control unit 18 and the electromagnet 9.
  • a drive current is generated in response to a control signal input from the control unit 18 and supplied to the drive coil 8 of the electromagnet 9 as shown in FIG. Energize and de-energize! / Speak.
  • the calculation unit 27 calculates the ON time and OFF time of the drive current during steady operation and the ON time and OFF time of the position detection means. For example, the operator operates a key (not shown).
  • the rotational speed n at the time of steady operation inputted in the above, the diameter D of the rotor 10 shown in FIG. 2 (b), which is the design value of the device stored in advance in the storage unit 28 described later, and the pair of permanent magnets 4 Each time is calculated based on the distance W between the centers and the arrangement pitch P along the outer circumferential surface of the rotor 10 of the pair of permanent magnets 4.
  • the storage unit 28 temporarily stores the design value of the device and each time calculated by the calculation unit 27, and includes a memory.
  • the operation unit 29 is used to input the start and stop of the apparatus, the drive rotation speed, and the like. For example, key input is possible.
  • the operation of the magnetic rotating device of the present invention configured as described above will be described.
  • the rotor 10 rotates and the portion of the magnetic pole 4a facing the pair of permanent magnets 4 arranged in the circumferential region of the rotor 10 passes the tip 13a of the central salient pole portion 13 of the electromagnet 9, the rotor 10 rotates.
  • the slit 23 of the slit disk 20 of the position detecting means 17 that rotates integrally with the child 10 passes through the arrangement part of the light emitting element 21 and the light receiving element 22. At this time, light from the light emitting element 21 passes through the slit 23 and is received by the light receiving element 22, and an analog detection signal as shown in FIG. 6A is sent from the light receiving element 22 to the control unit 18.
  • the control unit 18 shapes the detection signal with a predetermined threshold and generates a pulse-like control signal that rises when the rotation direction leading end 23a of the slit 23 is detected and falls when the rotation direction tail 23b is detected. Obtained and output to the drive unit 19.
  • the drive unit 19 generates a drive current having a waveform as shown in (c) of FIG. 6 based on a control signal input from the control unit 18 and supplies the drive current to the drive coil 8 of the electromagnet 9 to excite the electromagnet 9. And release the excitation.
  • the end salient pole portion 14 is excited when the drive current is supplied from the drive portion 19 to the drive coil 8 and the electromagnet 9 is excited as shown in FIG. 6 (e). It is magnetized to S polarity opposite to 13 (I period shown in Fig. 6 (g)). Even when the drive current is de-energized, the S magnetic field is maintained for a certain period due to the residual magnetic field (II period shown in Fig. 6 (g)).
  • the end salient pole portion 14 faces the intermediate portion between the pair of adjacent permanent magnets 4 during the period I, the polarity appearing on the outer peripheral surface of the rotor 10 is shown in FIG. S polarity as shown on the time axis of e). Therefore, as shown in FIG. 6 (f), the I period is repulsive due to the S polarity of the electromagnetic field generated at the end salient pole portion 14 and the S polarity of the intermediate portion of the pair of adjacent permanent magnets 4. Force is generated.
  • the end salient pole portion 14 facing the end salient pole portion 14 in the period II is the vicinity of the magnetic pole on the S pole side of the permanent magnet 4 located on the leading side in the rotational direction of the pair of permanent magnets 4.
  • the polarity that appears on the outer peripheral surface of the rotor 10 is the S polarity as shown on the time axis of FIG. 6 (e). Therefore, as indicated by the broken line (f) in Fig. 6, a repulsive force is generated between the S polarity of the residual magnetic field generated at the end salient pole 14 and the S polarity of the permanent magnet 4 during the period II. .
  • the rotor 10 rotates due to the repulsive force between the electromagnetic field generated at the central salient pole portion 13 and the end salient pole portion 14 of the electromagnet 9 and the static magnetic field of the permanent magnet 4.
  • the arch by the residual magnetic field generated at the central salient pole 13 of the electromagnet 9 and the static magnetic field of the permanent magnet 4a The rotor 10 rotates due to the force and the repulsive force between the residual magnetic field generated at the end salient pole 14 and the static magnetic field of the permanent magnet 4.
  • the polarity of the static magnetic field by the permanent magnet 4 appearing on the outer peripheral surface of the rotor 10 is shown corresponding to each time!
  • period III shown in FIG. 6 (g) is a period in which the electromagnetic field generated by energization of the electromagnet 9 is zero.
  • a back electromotive force is generated in the drive coil 8 because the static magnetic field of the permanent magnet 4 of the rotor 10 cuts the drive coil 8. Therefore, a current in the direction opposite to the energization direction flows through the drive coil 8 due to the back electromotive force, and the central salient pole portion 13 is magnetized to the S polarity as shown in FIG. 6 (d). It will be.
  • this period III is between the S polarity generated at the central salient pole 13 and the S polarity due to the permanent magnet 4 appearing on the outer peripheral surface of the rotor 10 as shown by the solid line in FIG. As a result, a repulsive force is generated and the rotor 10 rotates.
  • the end salient pole portion 14 is magnetized to N polarity as shown in FIG. 6E by the back electromotive force current. Therefore, among these III periods, the Ilia period, in particular, is the outer peripheral surface of the rotor 10 shown on the time axis in the same figure as the N polarity generated at the end salient pole 14 as shown by the broken line in FIG. An attraction force is generated between the S polarity that appears above and the rotor 10 rotates. Also, during the Illb period, as shown by the solid line, a repulsive force is generated between the N polarity generated at the end salient pole portion 14 and the N polarity that appears on the outer peripheral surface of the rotor 10, and the rotor 10 rotates. To do.
  • step S1 when the operator operates the operation unit 29 and inputs the rotation speed n at the time of steady operation, in step S1, the data of the diameter D of the rotor 10 stored in advance in the storage unit 28, a pair of permanent Magnet 4 The data of the distance W between the center lines of each magnet and the data of the arrangement pitch P along the outer peripheral surface of the rotor 10 of the pair of permanent magnets 4 (see (b) in FIG.
  • the ON time T1 of the pulsed drive current (hereinafter referred to as “drive current pulse”! Is set to a time shorter than the ON time tl of the position detection means 17 by a predetermined rate, and the drive The driving current OFF time T2 is calculated by the calculating unit 27 of the control device 16 so that the ON period of the current pulse is the same as the ON period (tl + t2) of the position detecting means 17. The result is temporarily stored in the storage unit 28.
  • step S2 when the operator operates the operation unit 29 to turn on the start key, the drive unit 19 turns on the drive current pulse using that as a trigger, and the drive current is supplied to each drive coil 8. Is done.
  • the rotor 10 stops in the state shown in FIG. 2 because the pair of permanent magnets 4 and the central salient pole portion 13 of the iron core 7 are attracted to each other! Therefore, when a drive current pulse is supplied to the drive coil 8 and the central salient pole portion 13 is excited and magnetized, for example, to the N pole, the rotor 10 becomes N of the pair of permanent magnets 4. The rotation starts by the repulsive action of the pole and the N pole of the central salient pole part 13 above.
  • step S3 the drive current pulse ON time T1 calculated in step S1 is read from the storage unit 28, and the elapsed time after the drive current pulse ON execution is monitored, and the T1 time has passed.
  • the controller 18 determines whether or not the force is applied. When the time T1 elapses and a “YES” determination is made, the process proceeds to step S4 where the drive current pulse is turned off.
  • step S5 the OFF time T2 calculated in step S1 is read from the storage unit 28, the elapsed time after the OFF execution of the drive current pulse is monitored, and the control unit determines whether or not the T2 time has elapsed. Judge by 18. When the time T2 elapses and the determination is “YES” (see point a in FIG. 8B), the process proceeds to step S6.
  • step S6 the control unit 18 determines whether or not the position detection means 17 is OFF.
  • step S4 The output of the position detection means 17 after the elapse of T2 after the current pulse is turned OFF is OFF as indicated by a point b in FIG. Therefore, step S6 is “YES” determination and the process proceeds to step S8.
  • step S6 is “NO” determination, and the process proceeds to step S7.
  • step S7 the ON time tl of the position detecting means 17 calculated in step S2 is read from the storage unit 28, and the control unit 18 determines whether or not the force has elapsed after the determination in step S6. Until the time tl elapses, step S6 and step S7 are repeatedly executed.
  • step S6 is determined as “Y ES” and the process proceeds to step S8. move on.
  • step S7 is judged “YES”, indicating that there is an abnormality. Determine and stop the device.
  • step S8 the control unit 18 determines whether or not the position detection means 17 is ON force. Normally, at the time of activation, the rotational speed is slow, so that the position detection means 17 is not determined to be ON immediately in step S8 after the position detection means 17 is determined to be 0 FF in step S6. Accordingly, step S8 is “NO” determination and the process proceeds to step S9.
  • step S9 the OFF time t2 of the position detection means 17 calculated in step S2 is read from the storage unit 28, and the control unit 18 determines whether or not the force has passed t2 time after the determination in step S6. . Until time t2 elapses, step S8, step S9 and force S are repeatedly executed.
  • step S8 is "YES” determination is made, and the process proceeds to step S10.
  • step S9 is determined as “YES”, and it is determined as abnormal. Stop the device.
  • step S10 the control unit 18 determines whether or not the operation unit 29 has been stopped by the operator. If the stop operation has not been performed, step S1 When “0” is determined, a “NO” determination is made and the process returns to step S2 to turn on the drive current pulse (see point d in FIG. 8B). Thereafter, Step S2 to Step S10 are repeatedly executed, and the rotation of the rotor 10 is accelerated to reach the rotation speed n during steady operation.
  • step S2 the drive current pulse is turned on. After the time T1 has elapsed, the drive current pulse is turned off in step S4. Thereafter, when the time T2 elapses (see point e in FIG. 8B), in step S6, it is determined whether or not the position detecting means 17 is OFF (see point f in FIG. 8A). Here, if the position detection means 17 is OFF and the determination is “YES”, the routine proceeds to step S8, where it is determined whether or not the position detection means 17 is ON. Further, here, when the position detecting means 17 is turned on (see point g in FIG. 8 (a)) and the determination is “YES”, the routine proceeds to step S10.
  • step S10 If the stop operation is not performed in step S10, the process returns to step S2 and the drive current noise is turned on (see point h in FIG. 8 (b)).
  • step S4 after the drive current pulse is turned off and the force T2 has elapsed, the next pair of permanent magnets 4 reaches the position of the position detection means 17, and the position detection means 17 Since it is the moment when it changes from OFF to ON, Steps S6 to S10 are executed instantaneously (points e to h in Fig. 8 are substantially the same time), and the drive current pulse is supplied at intervals of T2 to maintain steady operation.
  • step S2 the drive current pulse is turned ON, and after a lapse of T1 time, the drive current pulse is turned OFF in step S4. Thereafter, when time T2 elapses (see point i in FIG. 8 (b)), in step S6, it is determined whether or not the position detection means 17 is OFF.
  • step S6 it is determined whether or not the position detection means 17 is OFF.
  • step S7 when the rotational speed fluctuates to a higher speed than during steady operation, the next pair of permanent magnets 4 has already reached the position of the position detecting means 17, so the position detecting means 17 Since it is ON (see point j in Fig. 8 (a)), step S6 is “NO” determination and the process proceeds to step S7.
  • step S8 the process proceeds to step S8.
  • step S8 it is determined whether or not the position detection means 17 is ON. In this case, since it is the moment when the position detecting means 17 is changed from ON to OFF in step S6, step S8 is “NO” determination, and the process proceeds to step S9. And the next pair of permanent magnets 4 Steps S8 to S9 are repeatedly executed until the position of the position detection means 17 is reached. When the next pair of permanent magnets 4 reaches the position of the position detection means 17, the position detection means 17 is turned ON (see point m in FIG. 8 (a)), and step S8 is “YES”. "It becomes a judgment. Then, the process returns to step S2 through step S10, and the drive current pulse is turned on (see point p in FIG. 8 (b)). In this way, when the rotational speed fluctuates faster than the speed during steady operation, the supply of the drive current pulse for one pulse indicated by the broken line is stopped. It will be returned to the speed of.
  • the force described in the case of applying a pulse-shaped drive current having a time width T1 is not limited to this, and as shown in FIG. 9 (a), the time width T1 A driving current in which pulses having a predetermined width are repeatedly generated in a predetermined cycle may be applied.
  • a pulsed drive current having a time width T1 is supplied to the drive coil 8
  • the current flowing through the drive coil 8 gradually increases as shown by a two-dot chain line in FIG. It does not become zero immediately after the current is turned off, but gradually decreases as shown in the figure.
  • a drive current in which a pulse having a predetermined width is repeatedly generated in a predetermined cycle within a time width T1 as shown in FIG.
  • the current flowing through the drive coil 8 is as shown in FIG. (B) in Fig. 6 is shown by a solid line, and approximates the current shown by the two-dot chain line when a drive current pulse of time width T1 is supplied. Accordingly, the magnetic energy generated in the iron core 7 can be reduced by reducing the effective value of the driving current and reducing the power consumption while securing substantially the same energy as when the driving current pulse having the time width T1 is supplied.
  • FIG. 10 is a front sectional view showing another embodiment of the iron core 7 in the electromagnet 9 of the magnetic rotating device according to the present invention.
  • FIG. 10 (a) is an example in which the central salient pole portion 13 has four poles.
  • the iron core 7 of the electromagnet 9 is surrounded by the rotor 10 inside, and the outer peripheral side is magnetically connected to each other, and a plurality of salient pole portions along the rotational direction of the rotor 10 on the inner peripheral side.
  • a set of 12 is provided as a set at a predetermined interval.
  • FIG. 11 is a cross-sectional view showing another arrangement example of the permanent magnets 4 in the rotor 10 of the magnetic rotating device according to the present invention.
  • This rotor 10 has, for example, sixteen permanent magnets 4 that are elongated along the circumferential direction with the surface intersecting the rotation direction as a magnetic pole, and the same polarity magnetic poles face each other. Are arranged adjacent to each other.
  • a bonded magnet formed by mixing a binder with magnet powder may be used as the permanent magnet 4. Bonded magnets have characteristics such as being easy to process and resistant to impact, so they can be formed along the outer peripheral surface of the rotor 10, for example, and can be easily formed even on a small rotor 10. it can. Therefore, the magnetic rotating device can be reduced in size.
  • FIG. 12 is a diagram showing another configuration example of the position detecting means 17 in the magnetic rotating device according to the present invention, where (a) is a side sectional view and (b) is a Z-Z line of (a). It is a principal part expansion explanatory drawing by a cross section.
  • This position detection means 17 is a Hall element, and is provided on the front end surface of a support member 31 provided in parallel with the rotation axis 1 on the inner side surface 30a of the housing 30 as shown in FIG.
  • the permanent magnet 4 is arranged at a predetermined distance from one end surface of the permanent magnet 4 provided in the circumferential region of the child 10. Then, as shown in FIG.
  • the center line B force of the central salient pole portion 13 of the iron core 7 is also magnetically applied to the permanent magnet 4 at a position separated by a distance L on the front side in the rotational direction indicated by the arrow A. It is supposed to detect.
  • Position detecting means 17 may be provided corresponding to each. In this case, if each electromagnet 9 is individually controlled based on the detection signal of each position detecting means 17, the control accuracy of the excitation timing of each electromagnet 9 can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

A magnetic force rotation device comprising a rotor (10) supported on a rotary shaft (1), at least a pair of permanent magnets (4) arranged proximately or contiguously to each other in the circumferential region of the rotor (10) with the surfaces intersecting the rotational direction used as magnetic poles and the magnetic poles (4a) of the same polarity facing each other, and a core (7) opposing the outer circumferential surface of the rotor (10) through an air gap and having a plurality of salient pole portions (12) along the rotational direction of the rotor (10), wherein the device is further provided with an electromagnet (stator) (9) arranged to generate an electromagnetic field of the opposite polarity between adjacent salient pole portions (12) by winding a driving coil (8) around the salient pole portion (12) of the core (7), and the rotor (10) is rotated by utilizing the repulsion force between a static magnetic field of the permanent magnet (4) of the rotor (10) and an electromagnetic field generated from the plurality of salient pole portions (12) of the core (7). Consequently, the size of the device is reduced and its rotation control is facilitated.

Description

明 細 書  Specification
磁力回転装置  Magnetic rotating device
技術分野  Technical field
[0001] 本発明は、回転子に備えた永久磁石の静磁界と固定子に発生する電磁界との反 発力を利用して回転する磁力回転装置に関し、詳しくは、上記固定子の鉄心が有す る複数の突極部を回転子の外周面に対向させてその回転方向に沿って設けて、装 置の小型化及び回転制御を容易にしょうとする磁力回転装置に係るものである。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a magnetic rotating device that rotates using a repulsive force between a static magnetic field of a permanent magnet provided in a rotor and an electromagnetic field generated in a stator, and more specifically, the iron core of the stator is The present invention relates to a magnetic rotating device which has a plurality of salient pole portions facing the outer peripheral surface of the rotor and is provided along the rotating direction to facilitate downsizing and rotation control of the device. Background art
[0002] 従来の磁力回転装置は、図 13及び図 14に示すように、同一の回転軸 1に支持され て軸方向に離して設けられた第 1及び第 2の回転子 2, 3と、該第 1の回転子 2の円周 領域の外周面上に例えば N極を位置させ、回転中心側に例えば S極を位置させて上 記第 1の回転子 2の半径線に対して斜めに配置されると共に、上記第 2の回転子 3の 円周領域の外周面上に例えば S極を位置させ、回転中心側に例えば N極を位置さ せて上記第 2の回転子 3の半径線に対して斜めに配置された複数の永久磁石 4と、 I 字状の二つの鉄心 7に駆動コイル 8を巻いてそれぞれ第 1及び第 2の突極部 5, 6とし 、上記二つの鉄心 7の第 1及び第 2の回転子 2, 3と反対側をヨーク 26で接続すると 共に、上記第 1及び第 2の突極部 5, 6を上記回転軸 1に沿ってその軸方向に設けて それぞれ上記第 1及び第 2の回転子 2, 3の外周面に空隙をあけて対向させた電磁 石 9とを備え、上記駆動コイル 8に通電して第 1の突極部 5に N極性を発生させて上 記第 1の回転子 2の外周面上に位置する永久磁石 4の N極と反発させ、上記第 2の 突極部 6に S極性を発生させて上記第 2の回転子 3の外周面上に位置する永久磁石 4の S極と反発させて回転するようになっている(例えば、特許文献 1参照)。  As shown in FIGS. 13 and 14, a conventional magnetic rotating device includes first and second rotors 2 and 3 that are supported by the same rotating shaft 1 and are provided apart from each other in the axial direction. For example, the N pole is positioned on the outer peripheral surface of the circumferential area of the first rotor 2, and the S pole is positioned on the rotation center side, for example, obliquely with respect to the radial line of the first rotor 2. For example, the S pole is positioned on the outer peripheral surface of the circumferential region of the second rotor 3 and the N pole is positioned on the rotation center side, for example, so that the radial line of the second rotor 3 is positioned. A plurality of permanent magnets 4 arranged at an angle to each other and two I-shaped iron cores 7 are wound with a drive coil 8 to form first and second salient pole parts 5 and 6, respectively. The opposite sides of the first and second rotors 2 and 3 are connected by a yoke 26, and the first and second salient pole portions 5 and 6 are provided in the axial direction along the rotary shaft 1. That The first and second rotors 2 and 3 are provided with a magnet 9 facing the outer peripheral surface of the first and second rotors 2 and 3 with a gap therebetween, and the drive coil 8 is energized to generate N polarity in the first salient pole 5 By repelling the N pole of the permanent magnet 4 located on the outer peripheral surface of the first rotor 2 and generating the S polarity at the second salient pole 6, the second rotor 3 The permanent magnet 4 rotates on the outer peripheral surface while repelling it with the south pole (see, for example, Patent Document 1).
特許文献 1 :特許第 2968918号公報  Patent Document 1: Japanese Patent No. 2968918
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、このような従来の磁力回転装置においては、図 13に示すように、 I字状の二 つの鉄心 7の第 1及び第 2の回転子 2, 3側と反対側をヨーク 26で互いに接続して、 上記各鉄心 7の第 1及び第 2の突極部 5, 6を回転軸 1の軸方向に離して設けられた 第 1及び第 2の回転子 2, 3に対向させているので、同図に矢印で示すような閉磁路 が形成され上記第 1及び第 2の突極部 5, 6に発生する磁束を第 1及び第 2の回転子 2, 3の外周面に集中させることができ、磁気効率を向上することができるものの、上 記第 1及び第 2の突極部 5, 6が回転軸 1に沿ってその軸方向に配置されているので 装置の小型化が困難であった。 However, in such a conventional magnetic rotating device, as shown in FIG. 13, the first and second rotors 2 and 3 side of the two I-shaped iron cores 7 are connected to the yoke 26. Connect to each other with Since the first and second salient pole portions 5 and 6 of each iron core 7 are opposed to the first and second rotors 2 and 3 provided in the axial direction of the rotating shaft 1, A closed magnetic circuit as shown by an arrow is formed, and the magnetic flux generated in the first and second salient pole portions 5 and 6 can be concentrated on the outer peripheral surfaces of the first and second rotors 2 and 3, Although the magnetic efficiency can be improved, since the first and second salient pole portions 5 and 6 are arranged along the rotation axis 1 in the axial direction, it is difficult to reduce the size of the apparatus.
[0004] また、従来の磁力回転装置においては、図 14に示すように、回転力が主に第 1及 び第 2の回転子 2, 3に備えた永久磁石 4の静磁界と電磁石 9の電磁界との反発力に よるものであるので、回転数の制御が困難で回転数が上がって暴走する虡があった [0004] Also, in the conventional magnetic rotating device, as shown in FIG. 14, the rotating force mainly includes the static magnetic field of the permanent magnet 4 and the electromagnet 9 of the first and second rotors 2 and 3. Because it is based on the repulsive force with the electromagnetic field, it was difficult to control the rotation speed, and there was a tendency to run away at a higher rotation speed.
[0005] そこで、本発明は、このような問題点に対処し、装置の小型化及び回転制御を容易 にしようとする磁力回転装置を提供することを目的とする。 [0005] Therefore, an object of the present invention is to provide a magnetic rotating device that addresses such problems and facilitates downsizing and rotation control of the device.
課題を解決するための手段  Means for solving the problem
[0006] 上記目的を達成するために、本発明による磁力回転装置は、回転軸に支持された 回転子と、前記回転子の円周領域に、回転方向と交差する面を磁極とし互いに同一 極性の磁極を向き合わせて近接又は隣接して配置された少なくとも一対の永久磁石 と、前記回転子の外周面との間に空隙をあけて対向され、該回転子の回転方向に沿 つて複数の突極部を有する鉄心を備え、該鉄心の突極部に駆動コイルを巻いて隣合 う突極部間に反対極性の電磁界が発生するようにした固定子と、を具備し、前記回転 子の永久磁石の静磁界と前記固定子の複数の突極部から発生する電磁界との反発 力を利用して前記回転子を回転させるものである。  [0006] In order to achieve the above object, a magnetic rotating device according to the present invention includes a rotor supported by a rotating shaft, and a circumferential region of the rotor, the surfaces intersecting the rotation direction as magnetic poles and having the same polarity. The at least one pair of permanent magnets arranged close to or adjacent to each other with their magnetic poles facing each other and an outer peripheral surface of the rotor are opposed to each other with a gap, and a plurality of protrusions are arranged along the rotation direction of the rotor. A stator having an iron core having a pole portion and winding a drive coil around the salient pole portion of the iron core so as to generate an electromagnetic field of opposite polarity between adjacent salient pole portions, and the rotor The rotor is rotated by utilizing a repulsive force between a static magnetic field of the permanent magnet and electromagnetic fields generated from a plurality of salient pole portions of the stator.
[0007] このような構成により、回転軸に支持された回転子の円周領域に、回転方向と交差 する面を磁極とし互いに同一極性の磁極を向き合わせて近接又は隣接して配置され た少なくとも一対の永久磁石の静磁界と、前記回転子の外周面との間に空隙をあけ て対向され、該回転子の回転方向に沿って複数の突極部を有する鉄心を備え、該 鉄心の突極部に駆動コイルを巻いて隣合う突極部間に反対極性の電磁界が発生す るようにし、上記複数の突極部から発生する電磁界とを反発させ、回転子を回転させ る。 [0008] また、前記回転子の永久磁石は、該回転子の円周領域にその回転方向に沿って 所定間隔で複数対設けられ、前記固定子は、鉄心の一の突極部が回転子のいずれ か一対の永久磁石の向き合った磁極の部分と対向するときに、他の突極部の先端が 隣に位置する一対の永久磁石との中間位置と前記回転子の回転中心とを結ぶ線の 延長線上に位置する形状としたものである。これにより、回転子の円周領域にその回 転方向に沿って所定間隔で複数対設けられた永久磁石の静磁界と、鉄心の一の突 極部が回転子のいずれか一対の永久磁石の向き合った磁極の部分と対向するとき に、他の突極部の先端が隣に位置する一対の永久磁石との中間位置と上記回転子 の回転中心とを結ぶ線の延長線上に位置する形状とした固定子の上記鉄心の複数 の突極部から発生する電磁界とを反発させ、回転子を回転させる。 [0007] With such a configuration, at least the circumferential region of the rotor supported by the rotation shaft is disposed adjacent to or adjacent to each other so that the surfaces that intersect the rotation direction are the magnetic poles and the same polarity magnetic poles face each other. An iron core having a plurality of salient pole portions along the rotation direction of the rotor is opposed to the static magnetic field of the pair of permanent magnets with a gap between the outer peripheral surface of the rotor and the rotor core. A drive coil is wound around the pole portion so that an electromagnetic field of opposite polarity is generated between adjacent salient pole portions, and the electromagnetic field generated from the plurality of salient pole portions is repelled to rotate the rotor. [0008] In addition, a plurality of pairs of permanent magnets of the rotor are provided at a predetermined interval along the rotation direction in a circumferential region of the rotor, and one salient pole portion of the iron core is provided with a rotor at the rotor. A line connecting an intermediate position between the pair of permanent magnets adjacent to the tip of the other salient pole part and the rotation center of the rotor when facing one of the pair of permanent magnets. The shape is located on the extension line. As a result, a plurality of pairs of permanent magnets are provided in the circumferential region of the rotor at predetermined intervals along the rotation direction, and one salient pole portion of the iron core is formed by any one pair of permanent magnets of the rotor. When facing the opposite magnetic pole part, the shape of the other salient pole part is located on the extension line of the line connecting the intermediate position of the pair of permanent magnets and the rotation center of the rotor. The rotor is rotated by repelling the electromagnetic field generated from the plurality of salient pole portions of the iron core of the stator.
[0009] さらに、前記駆動コイルに接続して制御装置が備えられ、該制御装置により前記一 対の永久磁石の向き合った磁極の部分が前記鉄心の一の突極部の先端を通過する ときに前記駆動コイルに通電し、前記一対の永久磁石の向き合った磁極の部分が前 記鉄心にて回転子の回転方向前方に位置する他の突極部の先端を通過する前に 前記駆動コイルへの通電を解除するものである。これにより、駆動コイルに接続され た制御装置で一対の永久磁石の向き合った磁極の部分が鉄心の一の突極部の先 端を通過するときに上記駆動コイルに通電して反発力を発生させ、上記一対の永久 磁石の向き合った磁極の部分が上記鉄心にて回転子の回転方向前方に位置する他 の突極部の先端を通過する前に上記駆動コイルへの通電を解除する。  [0009] Further, a control device is provided connected to the drive coil, and when the magnetic pole portions of the pair of permanent magnets face each other pass through the tip of one salient pole portion of the iron core by the control device. The drive coil is energized, and the magnetic pole portions of the pair of permanent magnets face each other before passing through the tip of another salient pole portion positioned forward in the rotational direction of the rotor by the iron core. The energization is canceled. As a result, the control coil connected to the drive coil energizes the drive coil to generate a repulsive force when the opposing magnetic pole portions of the pair of permanent magnets pass through the tip of one salient pole portion of the iron core. The drive coil is de-energized before the opposing magnetic pole portions of the pair of permanent magnets pass through the tip of another salient pole portion positioned forward of the rotor in the iron core.
[0010] さらにまた、前記固定子の鉄心は、前記回転子を内側にして取り囲み外周側を互 V、に磁気的に接続し、その内周側にて前記回転子の回転方向に沿って複数の突極 部を一組として所定間隔で複数組備えたものである。これにより、回転子を内側にし て取り囲み外周側を互いに磁気的に接続し、その内周側にて前記回転子の回転方 向に沿って複数の突極部を一組として所定間隔で複数組備えた固定子の鉄心で電 磁界を発生する。  [0010] Further, the stator iron core is surrounded by the rotor inside, and the outer peripheral side is magnetically connected to each other V, and a plurality of iron cores are arranged along the rotation direction of the rotor on the inner peripheral side. A plurality of sets of salient poles are provided at predetermined intervals. As a result, the rotor is placed inside and the outer peripheral side is magnetically connected to each other, and a plurality of salient pole portions are set at a predetermined interval along the rotation direction of the rotor on the inner peripheral side. An electromagnetic field is generated by the iron core of the stator.
[0011] そして、前記固定子の鉄心は、前記回転子の外周面と複数の突極部との間の空隙 がーの突極部よりも隣に位置する他の突極部の方が大きくなるように形成したもので ある。これにより、回転子の外周面と複数の突極部との間の空隙が一の突極部よりも 大きくなるように形成された隣に位置する他の突極部で上記一の突極部と反対極性 の電磁界を発生する。 [0011] And, the iron core of the stator has a larger gap between the outer peripheral surface of the rotor and the plurality of salient poles than the other salient pole part, which is larger than the other salient pole part. It was formed as follows. As a result, the gap between the outer peripheral surface of the rotor and the plurality of salient pole parts is smaller than the one salient pole part. An electromagnetic field having a polarity opposite to that of the one salient pole part is generated at another salient pole part located adjacently so as to be large.
発明の効果  The invention's effect
[0012] 請求項 1に係る発明によれば、固定子の鉄心の突極部を回転子の外周面との間に 空隙をあけて該回転子の回転方向に沿って複数設けたことにより、装置の厚みを薄 くすることができる。したがって、装置を小型化することができる。この場合、回転子の 回転方向に沿って設けた複数の突極部の電磁界と回転子の永久磁石の静磁界とを 反発させることができ、装置を小型化しても上記各突極部における反発力が加算さ れて大きな回転力を得ることができる。さらに、一対の永久磁石を回転方向と交差す る面を磁極とし互いに同一極性の磁極を向き合わせて近接又は隣接して配置してい るので、回転子の外周面に現れる静磁界の強度が大きくなリ、従来よりもより大きな回 転力を得ることができる。また、隣合う突極部間に反対極性の電磁界が発生するもの としているので、回転子の外周面上に現れる永久磁石の磁極の極性と同一極性に磁 化された突極部とが反発して回転子が回転したとき、上記永久磁石の磁極が反対極 性に磁化された突極部に吸引されて制動がかかり、回転子の暴走を防止して回転制 御を容易にすることができる。  [0012] According to the invention of claim 1, by providing a plurality of salient pole portions of the iron core of the stator along the rotation direction of the rotor with a gap between the outer peripheral surface of the rotor and The thickness of the device can be reduced. Therefore, the apparatus can be reduced in size. In this case, the electromagnetic fields of the plurality of salient poles provided along the rotation direction of the rotor and the static magnetic fields of the permanent magnets of the rotor can be repelled. A large rotational force can be obtained by adding the repulsive force. In addition, since the pair of permanent magnets has a surface that intersects the rotation direction as a magnetic pole, and the magnetic poles of the same polarity face each other in close proximity or adjacent to each other, the strength of the static magnetic field that appears on the outer peripheral surface of the rotor is large. In addition, it is possible to obtain a larger rotational force than before. In addition, an electromagnetic field of opposite polarity is generated between adjacent salient poles, so that the salient poles magnetized to the same polarity as the magnetic poles of the permanent magnet appearing on the outer peripheral surface of the rotor repel each other. Thus, when the rotor rotates, the magnetic poles of the permanent magnets are attracted to the salient poles magnetized in the opposite polarity, and braking is applied, thereby preventing runaway of the rotor and facilitating rotation control. it can.
[0013] また、請求項 2に係る発明によれば、複数対の永久磁石を回転子の円周領域にそ の回転方向に沿って所定間隔で設け、固定子を鉄心の一の突極部が上記回転子の 永久磁石の向き合った磁極の部分と対向するとき、他の突極部の先端が隣に位置す る一対の永久磁石との中間位置と上記回転子の回転中心とを結ぶ線の延長線上に 位置する形状としたことにより、回転子の外周面に現れる複数対の永久磁石による静 磁界と上記固定子の複数の突極部力 発生する電磁界とを反発させることができる。 したがって、より大きな回転力を得ることができる。さらに、回転子の回転方向に沿つ て複数対の永久磁石を配設しているので、回転力を回転子の円周方向の複数箇所 に作用させることができ、回転を滑らかにすることができる。  [0013] According to the invention of claim 2, a plurality of pairs of permanent magnets are provided in the circumferential region of the rotor at predetermined intervals along the direction of rotation, and the stator is one salient pole portion of the iron core. Is a line connecting an intermediate position between a pair of permanent magnets adjacent to the tip of the other salient pole part and the center of rotation of the rotor when the opposite magnetic pole part of the rotor permanent magnet faces each other. By adopting the shape located on the extension line, the static magnetic field generated by a plurality of pairs of permanent magnets appearing on the outer peripheral surface of the rotor and the electromagnetic field generated by the plurality of salient pole force of the stator can be repelled. Therefore, a larger rotational force can be obtained. In addition, since a plurality of pairs of permanent magnets are arranged along the rotation direction of the rotor, the rotational force can be applied to a plurality of locations in the circumferential direction of the rotor, and the rotation can be made smooth. it can.
[0014] さらに、請求項 3に係る発明によれば、駆動コイルに接続して制御装置を備え、該 制御装置により一対の永久磁石の向き合った磁極の部分が鉄心の一の突極部の先 端を通過するときに駆動コイルに通電し、上記一対の永久磁石の向き合った磁極の 部分が鉄心にて回転子の回転方向前方に位置する他の突極部の先端を通過する 前に駆動コイルへの通電を解除するものとしたことにより、回転子の一対の永久磁石 の向き合った磁極の部分が固定子の鉄心の他の突極部に吸引されて制動がかかる のを抑制して高速回転を可能にすることができる。 [0014] Further, according to the invention of claim 3, a control device is provided that is connected to the drive coil, and the magnetic pole portions of the pair of permanent magnets facing each other by the control device are the tip of one salient pole portion of the iron core. Energize the drive coil as it passes through the ends, so that the pair of permanent magnets By turning off the energization of the drive coil before the part passes through the tip of the other salient pole part located in front of the rotor in the direction of rotation of the rotor, the pair of permanent magnets of the rotor face each other. It is possible to prevent the magnetic pole portion from being attracted to the other salient pole portion of the stator core and to apply braking, thereby enabling high-speed rotation.
[0015] さらにまた、請求項 4に係る発明によれば、固定子の鉄心を、回転子を内側にして 取り囲み外周側を互いに磁気的に接続し、その内周側にて上記回転子の回転方向 に沿って複数の突極部を一組として所定間隔で複数組備えた形状としたことにより、 固定子の構造を強固にすることができる。また、複数組の突極部を一体的に形成す ることができるので、組み立て精度を向上することができる。したがって、より大型の装 置や多極の装置の製造も容易に行うことができる。さらに、固定子が回転子を取り囲 んで一体に形成されているので、鉄心力 発生する電磁界を固定子内部に閉じ込め ることができ、磁束の漏洩を抑制することができる。  [0015] Furthermore, according to the invention of claim 4, the stator iron core is surrounded with the rotor inside, the outer peripheral sides are magnetically connected to each other, and the rotor rotates on the inner peripheral side thereof. The stator structure can be strengthened by forming a plurality of salient pole portions as a set along the direction with a plurality of sets at a predetermined interval. In addition, since a plurality of sets of salient pole portions can be integrally formed, assembly accuracy can be improved. Therefore, it is possible to easily manufacture a larger apparatus or a multipolar apparatus. Furthermore, since the stator is integrally formed surrounding the rotor, the electromagnetic field generated by the iron core force can be confined inside the stator, and the leakage of magnetic flux can be suppressed.
[0016] そして、請求項 5に係る発明によれば、回転子の外周面と複数の突極部との間の空 隙が一の突極部よりも隣に位置する他の突極部の方が大きくなるように形成したこと により、静止時には、常に、回転子を一対の永久磁石の向き合った磁極の部分が上 記一の突極部に吸引された状態で停止させることができる。したがって、上記一の突 極部に永久磁石の磁極の極性と同一の極性の電磁界を発生させれば回転子を容易 に回転始動させることができる。  [0016] According to the invention of claim 5, the space between the outer peripheral surface of the rotor and the plurality of salient pole portions is the gap between the other salient pole portions positioned adjacent to the one salient pole portion. By forming it so as to be larger, the rotor can always be stopped at rest while the magnetic pole portions of the pair of permanent magnets facing each other are attracted to the salient pole portion. Therefore, if an electromagnetic field having the same polarity as the polarity of the magnetic pole of the permanent magnet is generated at the one salient pole portion, the rotor can be easily started to rotate.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明による磁力回転装置の実施形態を示す側面図である。 FIG. 1 is a side view showing an embodiment of a magnetic rotating device according to the present invention.
[図 2]図 1の X— X線断面図である。  FIG. 2 is a cross-sectional view taken along line XX in FIG.
[図 3]上記磁力回転装置の電磁石の鉄心の一形状を示す平面図である。  FIG. 3 is a plan view showing one shape of an iron core of an electromagnet of the magnetic rotating device.
[図 4]上記磁力回転装置に使用される制御装置の構成例を示すブロック図である。  FIG. 4 is a block diagram showing a configuration example of a control device used in the magnetic rotating device.
[図 5]上記磁力回転装置の位置検出手段を示す要部拡大説明図である。  FIG. 5 is a main part enlarged explanatory view showing a position detecting means of the magnetic rotating device.
[図 6]上記磁力回転装置の電磁石による励磁タイミングを示すタイミングチャートであ る。  FIG. 6 is a timing chart showing excitation timing by the electromagnet of the magnetic rotating device.
[図 7]上記磁力回転装置の回転制御を説明するフローチャートである。  FIG. 7 is a flowchart illustrating rotation control of the magnetic rotating device.
[図 8]上記磁力回転装置の起動時、定常運転時、定常運転時に回転スピードが高速 側に変動したとき、における回転制御を説明するタイミングチャートである。 [Fig.8] High rotational speed during startup, steady operation, and steady operation of the magnetic rotating device 6 is a timing chart for explaining rotation control when it fluctuates to the side.
[図 9]上記磁力回転装置に供給する駆動電流の他のパルス波形を示す説明図であり FIG. 9 is an explanatory diagram showing another pulse waveform of the drive current supplied to the magnetic rotating device.
、 (a)はパルス波形を、 (b)は駆動コイルを流れる電流を示す。 (A) shows the pulse waveform and (b) shows the current flowing through the drive coil.
[図 10]本発明による磁力回転装置の電磁石において、鉄心の他の実施形態を示す 正面断面図であり、(a)は中央突極部が四極の例、(b)は中央突極部が八極の例で ある。  FIG. 10 is a front sectional view showing another embodiment of the iron core in the electromagnet of the magnetic rotating device according to the present invention, where (a) shows an example in which the central salient pole part has four poles, and (b) shows the central salient pole part. This is an octupole example.
[図 11]本発明による磁力回転装置の回転子において、永久磁石の他の配置例を示 す正面断面図である。  FIG. 11 is a front sectional view showing another arrangement example of permanent magnets in the rotor of the magnetic rotating device according to the present invention.
[図 12]本発明による磁力回転装置において、位置検出手段の他の構成例を示す図 であり、(a)は側面断面図、(b)は (a)の Z— Z線断面による要部拡大説明図である。  FIG. 12 is a diagram showing another configuration example of the position detecting means in the magnetic rotating device according to the present invention, where (a) is a side cross-sectional view and (b) is a main portion taken along the line Z-Z in (a). FIG.
[図 13]従来の磁力回転装置の要部を拡大して示す側面図である。  FIG. 13 is an enlarged side view showing a main part of a conventional magnetic rotating device.
[図 14]図 13の Y—Y線断面図である。  14 is a cross-sectional view taken along line YY in FIG.
符号の説明  Explanation of symbols
[0018] 1…回転軸 [0018] 1 ... Rotating shaft
4…永久磁石  4 ... Permanent magnet
4a…磁極  4a… Magnetic pole
7…鉄心  7 ... Iron core
8…駆動コイル  8 ... Drive coil
9…電磁石(固定子)  9 ... Electromagnet (stator)
10· ··回転子  10 ... Rotor
12· · ·突極部  12
13· · ·中央突極部(一の突極部)  13 ··· Central salient pole (one salient pole)
13a…先端  13a… tip
14· · '端部突極部 (他の突極部)  14 ·· 'End salient pole (other salient pole)
14a…先端  14a ... tip
16· · ·制御装置  16 ··· Control device
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図 1は本発明に よる磁力回転装置の実施形態を示す側面図であり、図 2は図 1の X— X線断面図であ る。この磁力回転装置は、回転子に備えた永久磁石の静磁界と固定子に発生する電 磁界との反発力を利用して回転するものであり、回転子 10と、永久磁石 4と、電磁石 9とを備えて成る。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows the present invention. FIG. 2 is a side view showing an embodiment of the magnetic rotating device according to the present invention, and FIG. This magnetic rotating device rotates using the repulsive force between the static magnetic field of the permanent magnet provided in the rotor and the electromagnetic field generated in the stator. The rotor 10, the permanent magnet 4, the electromagnet 9 And comprising.
[0020] 上記回転子 10は、回転軸 1によって回転可能に支持されたものであり、回転軸 1が 図示省略の筐体に設けられた軸受部 11に保持されて回転可能となって 、る。そして 、回転子 10は、所定の半径を有する円板状又は円柱状に形成されている(図 1にお いては、円柱状で示す)。  [0020] The rotor 10 is rotatably supported by a rotating shaft 1, and the rotating shaft 1 is held by a bearing portion 11 provided in a housing (not shown) so as to be rotatable. . The rotor 10 is formed in a disk shape or a column shape having a predetermined radius (in FIG. 1, it is shown as a column shape).
[0021] 上記回転子 10上には、図 2に示すように、その円周領域に少なくとも一対の永久磁 石 4が設けられている。この永久磁石 4は、静磁界を発生して後述する電磁石 9の鉄 心 7の突極部 12から発生する電磁界との反発力により上記回転子 10に回転力を与 えるものであり、やや厚手の板状の磁性部材からなり、図 2の (b)に示すように矢印で 示す回転方向と交差する面を磁極 4aとして、互いに同一極性の磁極 4a、例えば N極 同士を向かい合わせて配設されている。そして、この実施形態においては、図 2の(a )に示すように八対の永久磁石 4が円周方向に互いに 45度ずれて配設されて 、る。  On the rotor 10, as shown in FIG. 2, at least a pair of permanent magnets 4 is provided in the circumferential area thereof. The permanent magnet 4 generates a static magnetic field and gives a rotational force to the rotor 10 by a repulsive force with an electromagnetic field generated from a salient pole portion 12 of an iron core 7 of an electromagnet 9 described later. Made of thick plate-like magnetic members, as shown in Fig. 2 (b), the surface intersecting the rotation direction indicated by the arrow is the magnetic pole 4a, and the magnetic poles 4a of the same polarity, for example, N poles are arranged facing each other. It is installed. In this embodiment, as shown in FIG. 2A, eight pairs of permanent magnets 4 are arranged so as to be shifted from each other by 45 degrees in the circumferential direction.
[0022] 図 2においては、一対の永久磁石 4は、各永久磁石 4の中心軸が回転子 10の半径 線を間にして互いに平行となるように配置されている。なお、一対の永久磁石 4は、各 永久磁石 4の中心軸が回転子 10の回転中心で交わるように配置されたものであって ちょい。  In FIG. 2, the pair of permanent magnets 4 are arranged so that the central axes of the permanent magnets 4 are parallel to each other with the radial line of the rotor 10 in between. It should be noted that the pair of permanent magnets 4 is arranged such that the center axis of each permanent magnet 4 intersects with the rotation center of the rotor 10.
[0023] このように一対の永久磁石 4を向かい合わせて配置することにより、回転子 10の外 周面に現れる静磁界強度は、各永久磁石 4から発生する磁界が重畳されて一対の 永久磁石 4の上記向き合った磁極 4aの中間位置で最大となり、永久磁石 4を一つだ け配置した場合に比べ約 1.5倍の強度を得ることができる。  By arranging the pair of permanent magnets 4 so as to face each other as described above, the static magnetic field strength appearing on the outer peripheral surface of the rotor 10 is superimposed on the magnetic field generated from each permanent magnet 4. 4 is the maximum at the intermediate position of the facing magnetic poles 4a, and about 1.5 times the strength can be obtained as compared with the case where only one permanent magnet 4 is arranged.
[0024] 上記回転子 10の外方近傍には、該回転子 10の外周面との間に空隙をあけて対向 された電磁石 9が配設されている。この電磁石 9は、上記一対の永久磁石 4の向き合 つた磁極 4a (図 2の (b)参照)から発生する静磁界に対して反発する電磁界を発生す るものであり、回転子 10の回転方向に沿って例えば三つの突極部 12を有する鉄心 7 の中央部に位置する中央突極部 13 (—の突極部)に駆動コイル 8を巻き、この中央 突極部 13及びそれと隣合って設けられた端部突極部 14 (他の突極部)間に反対極 性の電磁界を発生させるようになつている。そして、この電磁石 9は、固定子となるも のである。 In the vicinity of the outer side of the rotor 10, an electromagnet 9 is disposed so as to face the outer peripheral surface of the rotor 10 with a gap. The electromagnet 9 generates an electromagnetic field repelling the static magnetic field generated from the magnetic pole 4a (see (b) of FIG. 2) facing the pair of permanent magnets 4, and the rotor 10 For example, a drive coil 8 is wound around a central salient pole portion 13 (-salient pole portion) located at the center of an iron core 7 having three salient pole portions 12 along the rotation direction. An electromagnetic field of opposite polarity is generated between the salient pole portion 13 and the end salient pole portion 14 (the other salient pole portion) provided adjacent thereto. And this electromagnet 9 becomes a stator.
[0025] この電磁石 9は、具体的には、図 3に示すように、略 E字状に形成された鉄材を複数 枚積層し、厚み方向に貫通させた孔部 15によりボルトナット 25 (図 1又は図 2参照)で 締結して、図 2に示すような突極部 12を有する鉄心 7を形成し、該鉄心 7の中央突極 部 13に例えばボビンにコイルを卷回した駆動コイル 8を装着して形成される。そして、 この電磁石 9は、上記鉄心 7の中央突極部 13の中心線 Bを上記回転子 10の半径線 と合致させ、回転子 10の外周面との間に空隙をあけて対向させて配設されている。  Specifically, as shown in FIG. 3, the electromagnet 9 includes a bolt nut 25 (see FIG. 3) formed by laminating a plurality of substantially E-shaped iron materials and penetrating them in the thickness direction. 1 or FIG. 2) to form an iron core 7 having a salient pole portion 12 as shown in FIG. 2, and a drive coil 8 in which a coil is wound around, for example, a bobbin at a central salient pole portion 13 of the iron core 7. It is formed by wearing. The electromagnet 9 is arranged so that the center line B of the central salient pole portion 13 of the iron core 7 matches the radial line of the rotor 10 and is opposed to the outer peripheral surface of the rotor 10 with a gap. It is installed.
[0026] この場合、上記鉄心 7は、図 2の(a)に示すように中央突極部 13の先端 13aが上記 一対の永久磁石 4の向き合った磁極 4a (図 2の (b)参照)の部分と対向するとき、端 部突極部 14の先端 14aが隣に位置する一対の永久磁石 4の中間位置と上記回転子 10の回転中心とを結ぶ線の延長線 C上に位置する形状とされている。これにより、回 転子 10の外周面に現れる複数対の永久磁石 4による静磁界と上記中央突極部 13及 び端部突極部 14から発生する電磁界とを反発させることができ、反発力が加算され てより大きな回転力を得ることができる。なお、上記鉄心 7の形状は、突極部 12を三 つ備えて略 E字状をなしたものに限られず、突極部 12を二つ備えて略 U字状をなし たものであってもよい。  In this case, the iron core 7 has a magnetic pole 4a in which the tip 13a of the central salient pole portion 13 faces the pair of permanent magnets 4 as shown in FIG. 2 (a) (see FIG. 2 (b)). The shape is located on the extension C of the line connecting the intermediate position of the pair of permanent magnets 4 adjacent to the tip 14a of the end salient pole part 14 and the rotation center of the rotor 10 It is said that. As a result, the static magnetic field generated by the plural pairs of permanent magnets 4 appearing on the outer peripheral surface of the rotor 10 and the electromagnetic field generated from the central salient pole portion 13 and the end salient pole portion 14 can be repelled. The force can be added to obtain a larger rotational force. The shape of the iron core 7 is not limited to the shape having three salient pole portions 12 and having a substantially E shape, but having two salient pole portions 12 and having a substantially U shape. Also good.
[0027] また、上記鉄心 7は、回転子 10の外周面と複数の突極部 12との間の空隙が中央突 極部 13よりも隣に位置する端部突極部 14の方が大きくなるように形成されている。こ れにより、静止時には、常に、回転子 10を上記一対の永久磁石 4の向き合った磁極 4aの部分が上記中央突極部 13の先端 13aに吸引された状態で停止させることがで きる。したがって、上記中央突極部 13に永久磁石 4の磁極 4aの極性と同一の極性、 例えば N極性の電磁界を発生させれば回転子 10を容易に回転始動させることがで きる。  [0027] Further, in the iron core 7, the end salient pole portion 14 where the gap between the outer peripheral surface of the rotor 10 and the plurality of salient pole portions 12 is located adjacent to the central salient pole portion 13 is larger. It is formed to become. Thus, when stationary, the rotor 10 can always be stopped in a state where the portion of the magnetic pole 4a facing the pair of permanent magnets 4 is attracted to the tip 13a of the central salient pole portion 13. Therefore, if an electromagnetic field having the same polarity as that of the magnetic pole 4a of the permanent magnet 4 is generated in the central salient pole portion 13, for example, N polarity, the rotor 10 can be easily started to rotate.
[0028] 上記電磁石 9の駆動コイル 8には、制御装置 16が接続されている。この制御装置 1 6は、一対の永久磁石 4の向き合った磁極 4aの部分が上記鉄心 7の中央突極部 13 の先端 13aを通過するときに上記駆動コイル 8に通電し、上記一対の永久磁石 4の向 き合った磁極 4aの部分が上記鉄心 7にて回転子 10の回転方向前方に位置する端 部突極部 14の先端 14aを通過する前に上記駆動コイル 8への通電を解除するように 制御するものであり、図 4に示すように、位置検出手段 17と、制御部 18と、駆動部 19 と、演算部 27と、記憶部 28と、操作部 29とを備えている。 A control device 16 is connected to the drive coil 8 of the electromagnet 9. The control device 16 energizes the drive coil 8 when a portion of the magnetic pole 4a facing the pair of permanent magnets 4 passes through the tip 13a of the central salient pole portion 13 of the iron core 7, and the pair of permanent magnets 4 direction Control is performed so that the energization of the drive coil 8 is canceled before the tightly-connected magnetic pole 4a passes through the tip 14a of the end salient pole portion 14 positioned forward in the rotation direction of the rotor 10 by the iron core 7. As shown in FIG. 4, the apparatus includes a position detection means 17, a control unit 18, a drive unit 19, a calculation unit 27, a storage unit 28, and an operation unit 29.
[0029] ここで、上記位置検出手段 17は、図 2に示す一対の永久磁石 4の向き合った磁極 4 aの中間位置が上記鉄心 7の中央突極部 13の中心線 B上を通過したことを検知する ものであり、例えば、図 1に示すように回転子 10の一側方に回転軸 1に支持されて回 転子 10と一体的に回転するスリット円盤 20を備え、該スリット円盤 20の周縁近傍には スリット円盤 20を間にして両側方に発光素子 21と受光素子 22とを備えている。なお、 この発光素子 21と受光素子 22とは、筐体に固定して配設されている。  [0029] Here, the position detecting means 17 is such that the intermediate position of the opposing magnetic poles 4a of the pair of permanent magnets 4 shown in Fig. 2 passes on the center line B of the central salient pole portion 13 of the iron core 7. For example, as shown in FIG. 1, a slit disk 20 is provided on one side of the rotor 10 so as to be supported by the rotary shaft 1 and rotate integrally with the rotor 10, and the slit disk 20 A light-emitting element 21 and a light-receiving element 22 are provided on both sides with a slit disk 20 in between. The light emitting element 21 and the light receiving element 22 are fixedly disposed on the casing.
[0030] 上記スリット円盤 20には、図 5に示すように、その周縁部に所定幅のスリット 23がー つ形成されており、スリット 23の一端部(以下、「回転方向先頭部」と記載する) 23aを 回転子 10に配設された一対の永久磁石 4のうち矢印 Aで示す回転方向先頭側の永 久磁石 4の略中心に一致させ、他端部(以下、「回転方向後尾部」と記載する) 23bを 回転子 10の矢印 Aで示す回転方向後尾の永久磁石 4の略中心に位置させている。 また、上記発光素子 21及び受光素子 22は、鉄心 7の中央突極部 13の中心線 Bから 矢印 Aで示す回転方向の前方側に距離 Lだけ離れた位置にて回転子 10の円周領 域に対応して配設されている。この場合、スリット 23が発光素子 21及び受光素子 22 間を通過するとき、発光素子 21から発射された光が上記スリット 23を通り抜けて受光 素子 22に受光される。これにより、受光素子 22から図 6の(a)に示すようなアナログの 検知信号が得られる。  [0030] As shown in FIG. 5, the slit disk 20 has a slit 23 having a predetermined width at the periphery thereof, and one end of the slit 23 (hereinafter referred to as "rotation direction head"). 23a is aligned with the approximate center of the permanent magnet 4 on the leading side in the rotational direction indicated by the arrow A in the pair of permanent magnets 4 disposed on the rotor 10, and the other end (hereinafter referred to as the “tail portion in the rotational direction”). 23b is positioned substantially at the center of the permanent magnet 4 at the tail in the rotational direction indicated by the arrow A of the rotor 10. Further, the light emitting element 21 and the light receiving element 22 are arranged at a position separated from the center line B of the central salient pole portion 13 of the iron core 7 by a distance L on the front side in the rotation direction indicated by the arrow A, by the distance L. It is arranged corresponding to the area. In this case, when the slit 23 passes between the light emitting element 21 and the light receiving element 22, the light emitted from the light emitting element 21 passes through the slit 23 and is received by the light receiving element 22. As a result, an analog detection signal as shown in FIG.
[0031] また、制御部 18は、上記位置検出手段 17及び駆動部 19に接続されており、位置 検出手段 17から入力する検知信号に基づいて、駆動部 19を制御する制御信号を発 生させるものであり、図 6の (b)に示すように上記受光素子 22の検知信号を所定の閾 値で波形整形してスリット円盤 20に形成されたスリット 23の回転方向先頭部 23aを検 出すると立ち上り、回転方向後尾部 23bを検出すると立ち下がるパルス状の制御信 号を得て駆動部 19に出力するようになって 、る。  The control unit 18 is connected to the position detection unit 17 and the drive unit 19 and generates a control signal for controlling the drive unit 19 based on a detection signal input from the position detection unit 17. As shown in FIG. 6 (b), when the detection signal of the light receiving element 22 is wave-shaped with a predetermined threshold value and the leading portion 23a in the rotation direction of the slit 23 formed in the slit disk 20 is detected. When a rising edge 23b in the rotational direction is detected, a falling pulse-like control signal is obtained and output to the drive section 19.
[0032] さらに、駆動部 19は、電磁石 9を駆動するもので、制御部 18及び電磁石 9の駆動コ ィル 8に接続されており、図 6の(c)に示すように制御部 18から入力する制御信号に 対応して駆動電流を発生して電磁石 9の駆動コイル 8に供給し、電磁石 9を励磁及び 励磁解除するようになって!/ヽる。 In addition, the drive unit 19 drives the electromagnet 9 and drives the control unit 18 and the electromagnet 9. As shown in FIG. 6 (c), a drive current is generated in response to a control signal input from the control unit 18 and supplied to the drive coil 8 of the electromagnet 9 as shown in FIG. Energize and de-energize! / Speak.
[0033] また、演算部 27は、定常運転時の駆動電流の ON時間及び OFF時間や、位置検出 手段の ON時間及び OFF時間を演算するものであり、例えばオペレータが図示省略 のキーを操作して入力した定常運転時の回転数 nと、後述の記憶部 28に予め記憶さ れた装置の設計値である図 2の(b)に示す回転子 10の直径 D、一対の永久磁石 4の 各中心間距離 W及び一対の永久磁石 4の回転子 10の外周面に沿った配列ピッチ P に基づ!/、て上記各時間を演算するようになって!/、る。  [0033] The calculation unit 27 calculates the ON time and OFF time of the drive current during steady operation and the ON time and OFF time of the position detection means. For example, the operator operates a key (not shown). The rotational speed n at the time of steady operation inputted in the above, the diameter D of the rotor 10 shown in FIG. 2 (b), which is the design value of the device stored in advance in the storage unit 28 described later, and the pair of permanent magnets 4 Each time is calculated based on the distance W between the centers and the arrangement pitch P along the outer circumferential surface of the rotor 10 of the pair of permanent magnets 4.
[0034] さらに、記憶部 28は、上記装置の設計値や、演算部 27で演算された上記各時間 を一時記憶するものであり、メモリから成る。そして、操作部 29は、装置の起動及び停 止並びに駆動回転数等を入力するためのものであり、例えばキー入力が可能となつ ている。  [0034] Further, the storage unit 28 temporarily stores the design value of the device and each time calculated by the calculation unit 27, and includes a memory. The operation unit 29 is used to input the start and stop of the apparatus, the drive rotation speed, and the like. For example, key input is possible.
[0035] 次に、このように構成された本発明の磁力回転装置の動作について説明する。回 転子 10が回転して該回転子 10の円周領域に配置された一対の永久磁石 4の向き 合った磁極 4aの部分が電磁石 9の中央突極部 13の先端 13aを通過すると、回転子 10と一体的に回転する位置検出手段 17のスリット円盤 20のスリット 23が発光素子 2 1及び受光素子 22の配置部分を通過する。このとき、発光素子 21からの光が上記ス リット 23を通り抜けて受光素子 22で受光され、受光素子 22から図 6の(a)に示すよう なアナログの検知信号が制御部 18に送られる。制御部 18では、該検知信号を所定 の閾値で波形整形して上記スリット 23の回転方向先頭端部 23aを検出すると立ち上 り、回転方向後尾部 23bを検出すると立ち下がるパルス状の制御信号を得て駆動部 19に出力する。駆動部 19からは、制御部 18から入力する制御信号に基づいて図 6 の(c)に示すような波形の駆動電流を発生して電磁石 9の駆動コイル 8に供給し、電 磁石 9を励磁及び励磁解除する。  Next, the operation of the magnetic rotating device of the present invention configured as described above will be described. When the rotor 10 rotates and the portion of the magnetic pole 4a facing the pair of permanent magnets 4 arranged in the circumferential region of the rotor 10 passes the tip 13a of the central salient pole portion 13 of the electromagnet 9, the rotor 10 rotates. The slit 23 of the slit disk 20 of the position detecting means 17 that rotates integrally with the child 10 passes through the arrangement part of the light emitting element 21 and the light receiving element 22. At this time, light from the light emitting element 21 passes through the slit 23 and is received by the light receiving element 22, and an analog detection signal as shown in FIG. 6A is sent from the light receiving element 22 to the control unit 18. The control unit 18 shapes the detection signal with a predetermined threshold and generates a pulse-like control signal that rises when the rotation direction leading end 23a of the slit 23 is detected and falls when the rotation direction tail 23b is detected. Obtained and output to the drive unit 19. The drive unit 19 generates a drive current having a waveform as shown in (c) of FIG. 6 based on a control signal input from the control unit 18 and supplies the drive current to the drive coil 8 of the electromagnet 9 to excite the electromagnet 9. And release the excitation.
[0036] この場合、中央突極部 13は、駆動部 19から駆動コイル 8に駆動電流が通電される と、図 6の(d)に示すように電磁石 9が励磁されて N極性に磁ィ匕される(図 6の(g)に示 す I期間)。また、駆動電流の通電が解除されても残留磁界により一定期間だけ N極 性の磁化状態が維持される(図 6の (g)に示す II期間)。ここで、上記 I期間に中央突 極部 13の先端 13aと対向して 、るのは、永久磁石 4の向き合つた磁極 4a近傍部であ るので、回転子 10の外周面に現れる極性は、図 6の(d)の時間軸上に示すように N 極性である。したがって、図 6の(f)に示すように、上記 I期間は、中央突極部 13から 発生する電磁界の N極性と永久磁石 4の対向する磁極 4a近傍部の N極性とによる反 発力が発生する。 In this case, when a drive current is applied from the drive unit 19 to the drive coil 8 in the central salient pole portion 13, the electromagnet 9 is excited as shown in FIG. (I period shown in Fig. 6 (g)). Even if the drive current is de-energized, N The magnetized state is maintained (II period shown in Fig. 6 (g)). Here, in the period I, the portion facing the tip 13a of the central salient pole 13 is in the vicinity of the magnetic pole 4a facing the permanent magnet 4, so the polarity appearing on the outer peripheral surface of the rotor 10 is As shown on the time axis in Fig. 6 (d), it has N polarity. Therefore, as shown in FIG. 6 (f), during the period I, the repulsive force due to the N polarity of the electromagnetic field generated from the central salient pole portion 13 and the N polarity in the vicinity of the opposing magnetic pole 4a of the permanent magnet 4 Will occur.
[0037] また、上記 II期間に中央突極部 13と対向しているのは、一対の永久磁石 4の回転 方向後方に位置する永久磁石 4の S極性側の側面であるので、回転子 10の外周面 に現れる極性は、図 6の(d)の時間軸上に示すように S極性である。したがって、図 6 の(f)に実線で示すように、 II期間は中央突極部 13に発生する残留磁界の N極性と 永久磁石 4の S極性とによる吸引力が発生する。  [0037] In addition, since the central salient pole portion 13 is opposed to the central salient pole portion 13 in the period II described above because it is the side surface on the S polarity side of the permanent magnet 4 located behind the pair of permanent magnets 4 in the rotor 10 The polarity that appears on the outer peripheral surface of S is the S polarity as shown on the time axis in Fig. 6 (d). Therefore, as indicated by a solid line in FIG. 6 (f), an attractive force is generated by the N polarity of the residual magnetic field generated at the central salient pole portion 13 and the S polarity of the permanent magnet 4 during the period II.
[0038] 同様に、端部突極部 14は、駆動部 19から駆動コイル 8に駆動電流が通電されると 図 6の(e)に示すように電磁石 9が励磁されて上記中央突極部 13と逆の S極性に磁 化される(図 6の (g)に示す I期間)。また、駆動電流の通電が解除されても残留磁界 により一定期間だけ S極性の磁ィ匕状態が維持される(図 6の (g)に示す II期間)。ここ で、上記 I期間に端部突極部 14と対面しているのは、隣合う一対の永久磁石 4の中間 部分であるので、回転子 10の外周面に現れる極性は、図 6の(e)の時間軸上に示す ように S極性である。したがって、図 6の(f)に示すように、上記 I期間は、端部突極部 1 4に発生する電磁界の S極性と隣合う一対の永久磁石 4の中間部分の S極性とによる 反発力が発生する。  Similarly, the end salient pole portion 14 is excited when the drive current is supplied from the drive portion 19 to the drive coil 8 and the electromagnet 9 is excited as shown in FIG. 6 (e). It is magnetized to S polarity opposite to 13 (I period shown in Fig. 6 (g)). Even when the drive current is de-energized, the S magnetic field is maintained for a certain period due to the residual magnetic field (II period shown in Fig. 6 (g)). Here, since the end salient pole portion 14 faces the intermediate portion between the pair of adjacent permanent magnets 4 during the period I, the polarity appearing on the outer peripheral surface of the rotor 10 is shown in FIG. S polarity as shown on the time axis of e). Therefore, as shown in FIG. 6 (f), the I period is repulsive due to the S polarity of the electromagnetic field generated at the end salient pole portion 14 and the S polarity of the intermediate portion of the pair of adjacent permanent magnets 4. Force is generated.
[0039] また、上記 II期間に端部突極部 14と対面しているのは、一対の永久磁石 4の回転 方向先頭側に位置する永久磁石 4の S極側の磁極近傍部であるので、回転子 10の 外周面に現れる極性は、図 6の(e)の時間軸上に示すように S極性である。したがつ て、図 6の (f)〖こ破線で示すように、 II期間は端部突極部 14に発生する残留磁界の S 極性と永久磁石 4の S極性との反発力が発生する。  [0039] In addition, the end salient pole portion 14 facing the end salient pole portion 14 in the period II is the vicinity of the magnetic pole on the S pole side of the permanent magnet 4 located on the leading side in the rotational direction of the pair of permanent magnets 4. The polarity that appears on the outer peripheral surface of the rotor 10 is the S polarity as shown on the time axis of FIG. 6 (e). Therefore, as indicated by the broken line (f) in Fig. 6, a repulsive force is generated between the S polarity of the residual magnetic field generated at the end salient pole 14 and the S polarity of the permanent magnet 4 during the period II. .
[0040] このように、 I期間は、電磁石 9の中央突極部 13及び端部突極部 14に発生する電 磁界と永久磁石 4の静磁界との反発力により回転子 10が回転する。また、 II期間は、 電磁石 9の中央突極部 13に発生する残留磁界と永久磁石 4aの静磁界とによる吸弓 I 力及び端部突極部 14に発生する残留磁界と永久磁石 4の静磁界との反発力により 回転子 10が回転する。なお、図 6の(d)及び (e)の時間軸上には、各時刻に対応し て回転子 10の外周面に現れる永久磁石 4による静磁界の極性を示して!/、る。 Thus, during the period I, the rotor 10 rotates due to the repulsive force between the electromagnetic field generated at the central salient pole portion 13 and the end salient pole portion 14 of the electromagnet 9 and the static magnetic field of the permanent magnet 4. Also, during period II, the arch by the residual magnetic field generated at the central salient pole 13 of the electromagnet 9 and the static magnetic field of the permanent magnet 4a I The rotor 10 rotates due to the force and the repulsive force between the residual magnetic field generated at the end salient pole 14 and the static magnetic field of the permanent magnet 4. In addition, on the time axes of (d) and (e) in FIG. 6, the polarity of the static magnetic field by the permanent magnet 4 appearing on the outer peripheral surface of the rotor 10 is shown corresponding to each time!
[0041] 次に、図 6の(g)に示す III期間は、電磁石 9の通電による電磁界がゼロの期間であ る。しかし、この III期間は、回転子 10の永久磁石 4の静磁界が駆動コイル 8を切ること により駆動コイル 8に逆起電力が発生する。したがって、駆動コイル 8には、上記逆起 電力により通電方向とは逆向きの電流が流れ、図 6の(d)に示すように、中央突極部 13は、 S極性に磁ィ匕されることになる。それ故、この III期間は、図 6の (f)に実線で示 すように中央突極部 13に発生する S極性と回転子 10の外周面上に現れる永久磁石 4による S極性との間に反発力が発生して回転子 10が回転する。  Next, period III shown in FIG. 6 (g) is a period in which the electromagnetic field generated by energization of the electromagnet 9 is zero. However, during this period III, a back electromotive force is generated in the drive coil 8 because the static magnetic field of the permanent magnet 4 of the rotor 10 cuts the drive coil 8. Therefore, a current in the direction opposite to the energization direction flows through the drive coil 8 due to the back electromotive force, and the central salient pole portion 13 is magnetized to the S polarity as shown in FIG. 6 (d). It will be. Therefore, this period III is between the S polarity generated at the central salient pole 13 and the S polarity due to the permanent magnet 4 appearing on the outer peripheral surface of the rotor 10 as shown by the solid line in FIG. As a result, a repulsive force is generated and the rotor 10 rotates.
[0042] 同様に、上記逆起電力の電流により端部突極部 14は、図 6の(e)に示すように N極 性に磁化されることになる。したがって、この III期間のうち特に Ilia期間は、図 6の (f) に破線で示すように端部突極部 14に発生した N極性と同図の時間軸上に示す回転 子 10の外周面上に現れた S極性との間に吸引力が発生して回転子 10が回転する。 また、 Illb期間は、実線で示すように端部突極部 14に発生した N極性と回転子 10の 外周面上に現れた N極性との間に反発力が発生して回転子 10が回転する。さらに、 IIIc期間は、破線で示すように端部突極部 14に発生した N極性と回転子 10の外周面 上に現れた S極性との間に吸引力が発生して回転子 10が回転する。  Similarly, the end salient pole portion 14 is magnetized to N polarity as shown in FIG. 6E by the back electromotive force current. Therefore, among these III periods, the Ilia period, in particular, is the outer peripheral surface of the rotor 10 shown on the time axis in the same figure as the N polarity generated at the end salient pole 14 as shown by the broken line in FIG. An attraction force is generated between the S polarity that appears above and the rotor 10 rotates. Also, during the Illb period, as shown by the solid line, a repulsive force is generated between the N polarity generated at the end salient pole portion 14 and the N polarity that appears on the outer peripheral surface of the rotor 10, and the rotor 10 rotates. To do. Furthermore, during the period IIIc, as shown by the broken line, an attraction force is generated between the N polarity generated at the end salient pole portion 14 and the S polarity appearing on the outer peripheral surface of the rotor 10, and the rotor 10 rotates. To do.
[0043] このように、 III期間は、図 6の (f)に示すように、中央突極部 13及び端部突極部 14 に発生する逆起電力の電流による電磁界と、回転子 10の外周面上に現れた永久磁 石 4による静磁界との反発力及び吸引力により回転子 10が回転する。そして、回転 子 10の回転により、隣に位置する一対の永久磁石 4の向き合った磁極 4aの部分が 中央突極部 13の先端 13aを通過するとき再び駆動コイル 8に通電されて電磁石 9が 励磁され、上述の動作が繰り返される。  [0043] Thus, during period III, as shown in FIG. 6 (f), the electromagnetic field due to the back electromotive force current generated in the central salient pole portion 13 and the end salient pole portion 14 and the rotor 10 The rotor 10 is rotated by the repulsive force and attractive force with the static magnetic field due to the permanent magnet 4 appearing on the outer peripheral surface of the rotor. Then, due to the rotation of the rotor 10, when the portion of the magnetic pole 4 a facing the pair of adjacent permanent magnets 4 passes through the tip 13 a of the central salient pole portion 13, the drive coil 8 is energized again and the electromagnet 9 is excited. The above operation is repeated.
[0044] 次に、図 7及び図 8を参照して、本発明の磁力回転装置の回転制御について説明 する。ここでは先ず、起動時の制御について説明する。この場合、先ず、オペレータ が操作部 29を操作して、定常運転時の回転数 nを入力すると、ステップ S1において 、記憶部 28に予め記憶された回転子 10の直径 Dのデータ、一対の永久磁石 4にお ける各磁石の中心線間距離 Wのデータ及び一対の永久磁石 4の回転子 10の外周 面に沿った配列ピッチ Pのデータ(図 2の (b)参照)を記憶部 28から読み出し、該各 データと上記入力された回転数 nのデータとに基づいて定常運転時の位置検出手段 17の0 寺間1;1と、 OFF時間 t2が制御装置 16の制御部 18において演算される。そ して、その結果は、一時記憶部 28に記憶される。 Next, rotation control of the magnetic rotating device of the present invention will be described with reference to FIG. 7 and FIG. Here, first, the control at the time of activation will be described. In this case, first, when the operator operates the operation unit 29 and inputs the rotation speed n at the time of steady operation, in step S1, the data of the diameter D of the rotor 10 stored in advance in the storage unit 28, a pair of permanent Magnet 4 The data of the distance W between the center lines of each magnet and the data of the arrangement pitch P along the outer peripheral surface of the rotor 10 of the pair of permanent magnets 4 (see (b) in FIG. 2) are read from the storage unit 28, On the basis of the data and the input data of the rotational speed n, the 0 temple 1; 1 of the position detecting means 17 during steady operation and the OFF time t2 are calculated in the control unit 18 of the control device 16. The result is stored in the temporary storage unit 28.
[0045] また、パルス状の駆動電流(以下、「駆動電流パルス」と!、う)の ON時間 T1が上記 位置検出手段 17の ON時間 tlよりも所定の割合だけ短い時間に設定され、駆動電流 パルスの ON周期が上記位置検出手段 17の ON周期(tl +t2)と同じになるように、駆 動電流の OFF時間 T2が制御装置 16の演算部 27において演算される。そして、その 結果は、一時、記憶部 28に記憶される。  In addition, the ON time T1 of the pulsed drive current (hereinafter referred to as “drive current pulse”!) Is set to a time shorter than the ON time tl of the position detection means 17 by a predetermined rate, and the drive The driving current OFF time T2 is calculated by the calculating unit 27 of the control device 16 so that the ON period of the current pulse is the same as the ON period (tl + t2) of the position detecting means 17. The result is temporarily stored in the storage unit 28.
[0046] ステップ S2において、オペレータが操作部 29を操作して起動キーを ONすると、そ れをトリガとして駆動部 19から駆動電流パルスの ONが実行されて駆動電流が各駆 動コイル 8に供給される。ここで、装置の停止時には、回転子 10は、その一対の永久 磁石 4と鉄心 7の中央突極部 13とが引き合って図 2に示す状態で停止して!/、る。した がって、駆動コイル 8に駆動電流パルスが供給され、上記中央突極部 13が励磁され て例えば N極に磁ィ匕されると、回転子 10は、その一対の永久磁石 4の N極と上記中 央突極部 13の N極との反発作用により回転を開始する。  [0046] In step S2, when the operator operates the operation unit 29 to turn on the start key, the drive unit 19 turns on the drive current pulse using that as a trigger, and the drive current is supplied to each drive coil 8. Is done. Here, when the apparatus is stopped, the rotor 10 stops in the state shown in FIG. 2 because the pair of permanent magnets 4 and the central salient pole portion 13 of the iron core 7 are attracted to each other! Therefore, when a drive current pulse is supplied to the drive coil 8 and the central salient pole portion 13 is excited and magnetized, for example, to the N pole, the rotor 10 becomes N of the pair of permanent magnets 4. The rotation starts by the repulsive action of the pole and the N pole of the central salient pole part 13 above.
[0047] ステップ S3にお!/、て、ステップ S1で算出した駆動電流パルスの ON時間 T1を記憶 部 28から読み出して駆動電流パルス ON実行後の経過時間を監視し、 T1時間が経 過した力否かを制御部 18において判定する。そして、 T1時間が経過して" YES"判定 となると、ステップ S4に進んで駆動電流パルスの OFFを実行する。  [0047] In step S3, the drive current pulse ON time T1 calculated in step S1 is read from the storage unit 28, and the elapsed time after the drive current pulse ON execution is monitored, and the T1 time has passed. The controller 18 determines whether or not the force is applied. When the time T1 elapses and a “YES” determination is made, the process proceeds to step S4 where the drive current pulse is turned off.
[0048] ステップ S5においては、ステップ S1で算出した OFF時間 T2を記憶部 28から読み 出して駆動電流パルスの OFF実行後の経過時間を監視し、 T2時間が経過したカゝ否 かを制御部 18で判定する。そして、 T2時間が経過して" YES"判定となると(図 8の (b )の点 a参照)、ステップ S6に進む。  [0048] In step S5, the OFF time T2 calculated in step S1 is read from the storage unit 28, the elapsed time after the OFF execution of the drive current pulse is monitored, and the control unit determines whether or not the T2 time has elapsed. Judge by 18. When the time T2 elapses and the determination is “YES” (see point a in FIG. 8B), the process proceeds to step S6.
[0049] ステップ S6においては、位置検出手段 17が OFFか否かを制御部 18で判定する。  [0049] In step S6, the control unit 18 determines whether or not the position detection means 17 is OFF.
通常、起動時は、回転スピードが遅いため、上記時間 T2以内に次の一対の永久磁 石 4が上記位置検出手段 17に到達することはない。したがって、ステップ S4で駆動 電流パルスが OFFされてから、 T2時間経過後の位置検出手段 17の出力は、図 8の( a)の点 bに示すように OFFである。それ故、ステップ S6は、 "YES"判定となってステツ プ S8に進む。 Usually, at the time of start-up, since the rotation speed is slow, the next pair of permanent magnets 4 will not reach the position detection means 17 within the time T2. Therefore, drive in step S4 The output of the position detection means 17 after the elapse of T2 after the current pulse is turned OFF is OFF as indicated by a point b in FIG. Therefore, step S6 is “YES” determination and the process proceeds to step S8.
[0050] なお、負荷が重くて起動時の立ち上がりが極めて遅い場合には、 T2時間経過後も 一対の永久磁石 4の例えば N極性領域の回転方向後尾が位置検出手段 17の検出 位置を通過していない場合がある。この場合には、位置検出手段 17は ONの状態に あるから、ステップ S6は" NO"判定となり、ステップ S7に進む。  [0050] Note that, when the load is heavy and the start-up at startup is extremely slow, the tail of the pair of permanent magnets 4 in the rotation direction of the N-polar region, for example, of the pair of permanent magnets 4 passes the detection position of the position detection means 17 even after the elapse of T2. There may not be. In this case, since the position detection means 17 is in the ON state, step S6 is “NO” determination, and the process proceeds to step S7.
[0051] ステップ S7においては、ステップ S2において算出した位置検出手段 17の ON時間 tlを記憶部 28から読み出し、ステップ S6の判定後 tl時間が経過した力否かを制御 部 18で判定する。そして、 tl時間が経過するまでは、ステップ S6とステップ S7とが繰 り返し実行され、 tl時間内に位置検出手段 17が OFFしたときには、ステップ S6が" Y ES"判定となってステップ S8に進む。一方、負荷が重すぎた場合や何らかの異常に より回転子 10の回転が停止して時間 tlが経過しても位置検出手段 17が OFFしない ときには、ステップ S7は、 "YES"判定となり、異常と判断して装置を停止する。  [0051] In step S7, the ON time tl of the position detecting means 17 calculated in step S2 is read from the storage unit 28, and the control unit 18 determines whether or not the force has elapsed after the determination in step S6. Until the time tl elapses, step S6 and step S7 are repeatedly executed. When the position detecting means 17 is turned off within the time tl, step S6 is determined as “Y ES” and the process proceeds to step S8. move on. On the other hand, if the load is too heavy or some abnormality causes the rotor 10 to stop rotating and the position detection means 17 does not turn off even after the time tl has elapsed, step S7 is judged “YES”, indicating that there is an abnormality. Determine and stop the device.
[0052] ステップ S8においては、位置検出手段 17が ON力否かを制御部 18で判定する。通 常、起動時は、回転スピードが遅いため、ステップ S6において位置検出手段 17が 0 FFと判定された後、直ちに、ステップ S8において位置検出手段 17が ONと判定され ることはない。したがって、ステップ S8は、 "NO"判定となってステップ S9に進む。  [0052] In step S8, the control unit 18 determines whether or not the position detection means 17 is ON force. Normally, at the time of activation, the rotational speed is slow, so that the position detection means 17 is not determined to be ON immediately in step S8 after the position detection means 17 is determined to be 0 FF in step S6. Accordingly, step S8 is “NO” determination and the process proceeds to step S9.
[0053] ステップ S9においては、ステップ S2において算出した位置検出手段 17の OFF時 間 t2を記憶部 28から読み出し、ステップ S6の判定後 t2時間が経過した力否かを制 御部 18で判定する。そして、 t2時間が経過するまでは、ステップ S8とステップ S9と力 S 繰り返し実行され、 t2時間内に位置検出手段 17が ONしたときには(図 8の(a)の点 c 参照)、ステップ S8が" YES"判定となってステップ S 10に進む。一方、 t2時間が経過 しても位置検出手段 17が ONしないときには、何らかの異常により回転子 10の回転が 停止したと考えられ、この場合は、ステップ S9は" YES"判定となり、異常と判断して装 置を停止する。  [0053] In step S9, the OFF time t2 of the position detection means 17 calculated in step S2 is read from the storage unit 28, and the control unit 18 determines whether or not the force has passed t2 time after the determination in step S6. . Until time t2 elapses, step S8, step S9 and force S are repeatedly executed. When position detecting means 17 is turned on within time t2 (see point c in FIG. 8 (a)), step S8 is "YES" determination is made, and the process proceeds to step S10. On the other hand, if the position detection means 17 does not turn on even after t2 has elapsed, it is considered that the rotation of the rotor 10 has stopped due to some abnormality. In this case, step S9 is determined as “YES”, and it is determined as abnormal. Stop the device.
[0054] ステップ S10においては、オペレータによって操作部 29の停止操作がされたか否 かが制御部 18で判定される。ここで、停止操作がされていないときには、ステップ S1 0は、 "NO"判定となってステップ S2に戻り、駆動電流パルスの ONが実行される(図 8 の(b)の点 d参照)。以降、ステップ S 2からステップ S 10が繰り返し実行され、回転子 10の回転が加速されて定常運転時の回転数 nに達する。 [0054] In step S10, the control unit 18 determines whether or not the operation unit 29 has been stopped by the operator. If the stop operation has not been performed, step S1 When “0” is determined, a “NO” determination is made and the process returns to step S2 to turn on the drive current pulse (see point d in FIG. 8B). Thereafter, Step S2 to Step S10 are repeatedly executed, and the rotation of the rotor 10 is accelerated to reach the rotation speed n during steady operation.
[0055] 次に、定常運転時の制御について説明する。先ず、ステップ S2において、駆動電 流パルスが ONされ、それ力 T1時間経過後に、ステップ S4において駆動電流パル スが OFFされる。その後、 T2時間が経過すると(図 8の(b)の点 e参照)、ステップ S6 において、位置検出手段 17が OFFか否かが判定される(図 8の(a)の点 f参照)。ここ で、位置検出手段 17が OFFで" YES"判定となるとステップ S8に進んで位置検出手 段 17が ONか否かが判定される。さらにここで、位置検出手段 17が ONして(図 8の(a )の点 g参照)" YES"判定となるとステップ S 10に進む。そして、ステップ S10において 停止操作がされない場合には、ステップ S2に戻って駆動電流ノ ルスの ONが実行さ れる(図 8の(b)の点 h参照)。なお、定常運転時には、ステップ S4において、駆動電 流パルスが OFFされて力 T2時間経過後は、次の一対の永久磁石 4が位置検出手 段 17の位置に到達して、位置検出手段 17が OFFから ONに変わる瞬間であるから、 ステップ S6〜ステップ S10は瞬時に実行され(図 8の点 e〜hは略同時刻)、 T2時間 間隔で駆動電流パルスが供給されて定常運転が持続される。  [0055] Next, control during steady operation will be described. First, in step S2, the drive current pulse is turned on. After the time T1 has elapsed, the drive current pulse is turned off in step S4. Thereafter, when the time T2 elapses (see point e in FIG. 8B), in step S6, it is determined whether or not the position detecting means 17 is OFF (see point f in FIG. 8A). Here, if the position detection means 17 is OFF and the determination is “YES”, the routine proceeds to step S8, where it is determined whether or not the position detection means 17 is ON. Further, here, when the position detecting means 17 is turned on (see point g in FIG. 8 (a)) and the determination is “YES”, the routine proceeds to step S10. If the stop operation is not performed in step S10, the process returns to step S2 and the drive current noise is turned on (see point h in FIG. 8 (b)). During steady operation, in step S4, after the drive current pulse is turned off and the force T2 has elapsed, the next pair of permanent magnets 4 reaches the position of the position detection means 17, and the position detection means 17 Since it is the moment when it changes from OFF to ON, Steps S6 to S10 are executed instantaneously (points e to h in Fig. 8 are substantially the same time), and the drive current pulse is supplied at intervals of T2 to maintain steady operation. The
[0056] 次に、定常運転時に回転スピードが高速側に変動したときの制御について説明す る。先ず、ステップ S2において、駆動電流パルスが ONされ、それから T1時間経過後 に、ステップ S4において駆動電流パルスは OFFされる。その後、 T2時間が経過する と(図 8の(b)の点 i参照)、ステップ S6において、位置検出手段 17が OFFか否かが判 定される。ここで、回転スピードが定常運転時よりも高速側に変動している場合には、 既に、次の一対の永久磁石 4が位置検出手段 17の位置に到達しているため、位置 検出手段 17は ONしており(図 8の(a)の点 j参照)、ステップ S6は" NO"判定となって ステップ S7に進む。そして、所定の待ち時間 tl内に位置検出手段 17が OFFすると( 図 8の(a)の点 k参照)、ステップ S8に進む。  [0056] Next, control when the rotation speed fluctuates to the high speed side during steady operation will be described. First, in step S2, the drive current pulse is turned ON, and after a lapse of T1 time, the drive current pulse is turned OFF in step S4. Thereafter, when time T2 elapses (see point i in FIG. 8 (b)), in step S6, it is determined whether or not the position detection means 17 is OFF. Here, when the rotational speed fluctuates to a higher speed than during steady operation, the next pair of permanent magnets 4 has already reached the position of the position detecting means 17, so the position detecting means 17 Since it is ON (see point j in Fig. 8 (a)), step S6 is “NO” determination and the process proceeds to step S7. Then, when the position detecting means 17 is turned off within the predetermined waiting time tl (see point k in FIG. 8 (a)), the process proceeds to step S8.
[0057] ステップ S8においては、位置検出手段 17が ONか否かが判定される。この場合、ス テツプ S6で位置検出手段 17が ONから OFFに変わった瞬間であるので、ステップ S8 は" NO"判定となって、ステップ S9に進む。そして、さらに次の一対の永久磁石 4が位 置検出手段 17の位置に到達までステップ S8〜ステップ S9が繰り返し実行される。こ こで、上記さらに次の一対の永久磁石 4が位置検出手段 17の位置に到達すると、位 置検出手段 17は ONし(図 8の(a)の点 m参照)、ステップ S8は" YES"判定となる。そ して、ステップ S10を経てステップ S2に戻り、駆動電流パルスの ONが実行される(図 8の(b)の点 p参照)。このように、回転スピードが定常運転時のスピードよりも高速側 に変動した場合には、破線で示す 1パルス分の駆動電流パルスの供給が停止される ため、回転スピードが低下して定常運転時のスピードに戻されることになる。 In step S8, it is determined whether or not the position detection means 17 is ON. In this case, since it is the moment when the position detecting means 17 is changed from ON to OFF in step S6, step S8 is “NO” determination, and the process proceeds to step S9. And the next pair of permanent magnets 4 Steps S8 to S9 are repeatedly executed until the position of the position detection means 17 is reached. When the next pair of permanent magnets 4 reaches the position of the position detection means 17, the position detection means 17 is turned ON (see point m in FIG. 8 (a)), and step S8 is “YES”. "It becomes a judgment. Then, the process returns to step S2 through step S10, and the drive current pulse is turned on (see point p in FIG. 8 (b)). In this way, when the rotational speed fluctuates faster than the speed during steady operation, the supply of the drive current pulse for one pulse indicated by the broken line is stopped. It will be returned to the speed of.
[0058] なお、以上の説明にお 、ては、時間幅 T1のパルス状の駆動電流を適用した場合 について述べた力 これに限られず、図 9の(a)に示すように、時間幅 T1内に所定幅 のパルスが所定周期で繰り返し発生するようにした駆動電流を適用してもよい。一般 に、時間幅 T1のパルス状の駆動電流を駆動コイル 8に供給した場合、駆動コイル 8 を流れる電流は、パルス状ではなぐ図 9の (b)に二点鎖線で示すように漸増し、電 流 OFF後も直ちにゼロとなるのではなぐ同図に示すように漸減する。一方、図 9の(a )に示すような時間幅 T1内に所定幅のパルスが所定周期で繰り返し発生するように した駆動電流を供給した場合には、駆動コイル 8を流れる電流は、図 9の (b)に実線 で示すものとなり、時間幅 T1の駆動電流パルスを供給した場合の二点鎖線で示す 電流と近似したものとなる。したがって、鉄心 7に発生する磁気エネルギーについて、 時間幅 T1の駆動電流パルスを供給した場合と略同じエネルギーを確保しながら、駆 動電流の実行値を下げて、消費電力を低減することができる。  [0058] In the above description, the force described in the case of applying a pulse-shaped drive current having a time width T1 is not limited to this, and as shown in FIG. 9 (a), the time width T1 A driving current in which pulses having a predetermined width are repeatedly generated in a predetermined cycle may be applied. In general, when a pulsed drive current having a time width T1 is supplied to the drive coil 8, the current flowing through the drive coil 8 gradually increases as shown by a two-dot chain line in FIG. It does not become zero immediately after the current is turned off, but gradually decreases as shown in the figure. On the other hand, when a drive current in which a pulse having a predetermined width is repeatedly generated in a predetermined cycle within a time width T1 as shown in FIG. 9 (a) is supplied, the current flowing through the drive coil 8 is as shown in FIG. (B) in Fig. 6 is shown by a solid line, and approximates the current shown by the two-dot chain line when a drive current pulse of time width T1 is supplied. Accordingly, the magnetic energy generated in the iron core 7 can be reduced by reducing the effective value of the driving current and reducing the power consumption while securing substantially the same energy as when the driving current pulse having the time width T1 is supplied.
[0059] 図 10は、本発明による磁力回転装置の電磁石 9において、鉄心 7の他の実施形態 を示す正面断面図であり、(a)は中央突極部 13が四極の例で、(b)は中央突極部 1 3が八極の例である。この電磁石 9の鉄心 7は、回転子 10を内側にして取り囲み外周 側を互 ヽに磁気的に接続し、その内周側にて上記回転子 10の回転方向に沿って複 数の突極部 12を一組として所定間隔で複数組備えたものである。そして、各組の複 数の突極部 12において、中央突極部 13に駆動コイル 8を装着した後、中央突極部 1 3及び端部突極部 14の先端近傍にクサビ 24を設けて両突極部間の隙間を塞ぎ、駆 動コイル 8を例えばワニスで固めて固定している。この場合、中央突極部 13の数が多 いほど回転を滑らかにすることができる。 [0060] なお、上記実施形態においては、回転子 10に八対の永久磁石 4を回転方向に等 間隔で配設した場合について説明したが、これに限られず、一対以上であれば幾つ であってもよい。 FIG. 10 is a front sectional view showing another embodiment of the iron core 7 in the electromagnet 9 of the magnetic rotating device according to the present invention. FIG. 10 (a) is an example in which the central salient pole portion 13 has four poles. ) Is an example where the central salient pole part 13 is octupole. The iron core 7 of the electromagnet 9 is surrounded by the rotor 10 inside, and the outer peripheral side is magnetically connected to each other, and a plurality of salient pole portions along the rotational direction of the rotor 10 on the inner peripheral side. A set of 12 is provided as a set at a predetermined interval. Then, in the plurality of salient pole portions 12 of each set, after the drive coil 8 is mounted on the central salient pole portion 13, a wedge 24 is provided near the tips of the central salient pole portion 13 and the end salient pole portion 14. The gap between both salient poles is closed, and the drive coil 8 is fixed with, for example, varnish. In this case, the rotation can be smoothed as the number of the central salient pole portions 13 increases. In the above embodiment, the case where eight pairs of permanent magnets 4 are arranged at equal intervals in the rotation direction in the rotor 10 has been described. However, the present invention is not limited to this, and any number of pairs may be used. May be.
[0061] 図 11は、本発明による磁力回転装置の回転子 10において、永久磁石 4の他の配 置例を示す横断面図である。この回転子 10は、その円周領域に、回転方向と交差す る面を磁極として円周方向に沿って細長く形成された例えば 16個の永久磁石 4を互 いに同一極性の磁極を向き合わせて隣接して配置したものである。この場合、永久 磁石 4として例えば磁石粉末に結合材を混ぜて成形したボンド磁石を使用するとよい 。ボンド磁石は、加工し易ぐ衝撃にも強いなどの特徴があるため、例えば回転子 10 の外周面に沿って形成することができ、小型の回転子 10に対しても容易に形成する ことができる。したがって、磁力回転装置の小型化を図ることができる。  FIG. 11 is a cross-sectional view showing another arrangement example of the permanent magnets 4 in the rotor 10 of the magnetic rotating device according to the present invention. This rotor 10 has, for example, sixteen permanent magnets 4 that are elongated along the circumferential direction with the surface intersecting the rotation direction as a magnetic pole, and the same polarity magnetic poles face each other. Are arranged adjacent to each other. In this case, for example, a bonded magnet formed by mixing a binder with magnet powder may be used as the permanent magnet 4. Bonded magnets have characteristics such as being easy to process and resistant to impact, so they can be formed along the outer peripheral surface of the rotor 10, for example, and can be easily formed even on a small rotor 10. it can. Therefore, the magnetic rotating device can be reduced in size.
[0062] 図 12は、本発明による磁力回転装置において、位置検出手段 17の他の構成例を 示す図であり、(a)は側面断面図、(b)は (a)の Z—Z線断面による要部拡大説明図 である。この位置検出手段 17は、ホール素子であり、図 12の(a)に示すように、筐体 30の内側面 30aに回転軸 1に平行に設けた支持部材 31の先端面に備えられ、回転 子 10の円周領域に設けられた永久磁石 4の一端面と所定の間隔を有して配設され ている。そして、図 12の(b)に示すように、鉄心 7の中央突極部 13の中心線 B力も矢 印 Aで示す回転方向の前方側に距離 Lだけ離れた位置で上記永久磁石 4の磁力を 検知するようになつている。  FIG. 12 is a diagram showing another configuration example of the position detecting means 17 in the magnetic rotating device according to the present invention, where (a) is a side sectional view and (b) is a Z-Z line of (a). It is a principal part expansion explanatory drawing by a cross section. This position detection means 17 is a Hall element, and is provided on the front end surface of a support member 31 provided in parallel with the rotation axis 1 on the inner side surface 30a of the housing 30 as shown in FIG. The permanent magnet 4 is arranged at a predetermined distance from one end surface of the permanent magnet 4 provided in the circumferential region of the child 10. Then, as shown in FIG. 12 (b), the center line B force of the central salient pole portion 13 of the iron core 7 is also magnetically applied to the permanent magnet 4 at a position separated by a distance L on the front side in the rotational direction indicated by the arrow A. It is supposed to detect.
[0063] なお、以上の説明においては、一つの位置検出手段 17の検出信号に基づいて複 数の電磁石 9の励磁タイミングを同時に制御する場合について述べた力 これに限ら れず、複数の電磁石 9のそれぞれに対応して位置検出手段 17を設けてもよい。この 場合、各位置検出手段 17の検知信号に基づいて各電磁石 9を個別に制御するよう にすれば、各電磁石 9の励磁タイミングの制御精度をより向上することができる。  In the above description, the force described in the case where the excitation timings of a plurality of electromagnets 9 are simultaneously controlled based on the detection signal of one position detection means 17 is not limited to this. Position detecting means 17 may be provided corresponding to each. In this case, if each electromagnet 9 is individually controlled based on the detection signal of each position detecting means 17, the control accuracy of the excitation timing of each electromagnet 9 can be further improved.
[0064] また、上記実施形態において、回転子 10には永久磁石 4のみが配設された場合に ついて説明したが、回転子 10のバランスをとるためのバランサーを所定の位置に配 設してちよい。  [0064] In the above embodiment, the case where only the permanent magnet 4 is disposed on the rotor 10 has been described. However, a balancer for balancing the rotor 10 is disposed at a predetermined position. It ’s good.

Claims

請求の範囲 The scope of the claims
[1] 回転軸に支持された回転子と、  [1] a rotor supported by a rotating shaft;
前記回転子の円周領域に、回転方向と交差する面を磁極とし互いに同一極性の磁 極を向き合わせて近接又は隣接して配置された少なくとも一対の永久磁石と、 前記回転子の外周面との間に空隙をあけて対向され、該回転子の回転方向に沿つ て複数の突極部を有する鉄心を備え、該鉄心の突極部に駆動コイルを巻いて隣合う 突極部間に反対極性の電磁界が発生するようにした固定子と、を具備し、  At least a pair of permanent magnets arranged in proximity to or adjacent to each other in the circumferential region of the rotor, with the surfaces intersecting the rotation direction as magnetic poles and facing the same polarity of magnets; and the outer circumferential surface of the rotor And an iron core having a plurality of salient pole portions along the rotation direction of the rotor, and a drive coil is wound around the salient pole portions of the iron core between adjacent salient pole portions. A stator configured to generate an electromagnetic field of opposite polarity,
前記回転子の永久磁石の静磁界と前記固定子の複数の突極部から発生する電磁 界との反発力を利用して前記回転子を回転させることを特徴とする磁力回転装置。  A magnetic force rotating device that rotates the rotor by utilizing a repulsive force between a static magnetic field of a permanent magnet of the rotor and electromagnetic fields generated from a plurality of salient pole portions of the stator.
[2] 前記回転子の永久磁石は、該回転子の円周領域にその回転方向に沿って所定間 隔で複数対設けられ、前記固定子は、鉄心の一の突極部が回転子のいずれか一対 の永久磁石の向き合った磁極の部分と対向するときに、他の突極部の先端が隣に位 置する一対の永久磁石との中間位置と前記回転子の回転中心とを結ぶ線の延長線 上に位置する形状としたことを特徴とする請求項 1記載の磁力回転装置。  [2] A plurality of pairs of the permanent magnets of the rotor are provided at predetermined intervals along the rotation direction in a circumferential region of the rotor, and the stator has one salient pole portion of the rotor as a rotor. A line connecting the intermediate position of the pair of permanent magnets adjacent to the tip of the other salient pole part and the rotation center of the rotor when facing the opposite magnetic pole part of one pair of permanent magnets 2. The magnetic rotating device according to claim 1, wherein the magnetic rotating device has a shape located on an extension line of.
[3] 前記駆動コイルに接続して制御装置が備えられ、該制御装置により前記一対の永 久磁石の向き合った磁極の部分が前記鉄心の一の突極部の先端を通過するときに 前記駆動コイルに通電し、前記一対の永久磁石の向き合った磁極の部分が前記鉄 心にて回転子の回転方向前方に位置する他の突極部の先端を通過する前に前記 駆動コイルへの通電を解除することを特徴とする請求項 1又は 2記載の磁力回転装 置。  [3] A control device is provided that is connected to the drive coil, and when the magnetic pole portions of the pair of permanent magnets face each other pass through the tip of one salient pole portion of the iron core, the drive device The coil is energized, and the drive coil is energized before the opposing magnetic pole portions of the pair of permanent magnets pass through the tip of the other salient pole portion located forward of the rotor in the rotational direction of the iron core. The magnetic rotating apparatus according to claim 1 or 2, wherein the magnetic rotating apparatus is released.
[4] 前記固定子の鉄心は、前記回転子を内側にして取り囲み外周側を互いに磁気的 に接続し、その内周側にて前記回転子の回転方向に沿って複数の突極部を一組と して所定間隔で複数組備えたことを特徴とする請求項 1〜3のいずれ力 1項に記載の 磁力回転装置。  [4] The iron core of the stator surrounds the rotor inside, and the outer peripheral sides are magnetically connected to each other, and a plurality of salient pole portions are arranged on the inner peripheral side along the rotation direction of the rotor. 4. The magnetic force rotating device according to claim 1, wherein a plurality of sets are provided at predetermined intervals as a set.
[5] 前記固定子の鉄心は、前記回転子の外周面と複数の突極部との間の空隙が一の 突極部よりも隣に位置する他の突極部の方が大きくなるように形成したことを特徴とす る請求項 1〜4のいずれ力 1項に記載の磁力回転装置。  [5] The iron core of the stator is such that the gap between the outer peripheral surface of the rotor and the plurality of salient pole parts is larger in the other salient pole part positioned adjacent to the one salient pole part. The magnetic rotating device according to claim 1, wherein the magnetic rotating device is formed as follows.
PCT/JP2006/307841 2005-04-19 2006-04-13 Magnetic force rotation device WO2006115071A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-121700 2005-04-19
JP2005121700 2005-04-19

Publications (1)

Publication Number Publication Date
WO2006115071A1 true WO2006115071A1 (en) 2006-11-02

Family

ID=37214694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307841 WO2006115071A1 (en) 2005-04-19 2006-04-13 Magnetic force rotation device

Country Status (1)

Country Link
WO (1) WO2006115071A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010077181A1 (en) 2008-12-29 2010-07-08 ФИЛОНЕНКО, Светлана Николаевна Electric machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718847U (en) * 1980-07-04 1982-01-30
JPS5742580U (en) * 1980-08-22 1982-03-08
JPS57201079U (en) * 1981-06-16 1982-12-21
JPH0429537A (en) * 1990-05-25 1992-01-31 Japan Servo Co Ltd Permanent magnet type rotor
JPH08507991A (en) * 1994-01-11 1996-08-27 シュヴァラー エドヴィーン Lighting systems and generators for motorcycles
JP2000050610A (en) * 1998-07-30 2000-02-18 Fuji Elelctrochem Co Ltd Permanent magnet mounted stepping motor
JP2000050544A (en) * 1998-08-03 2000-02-18 Okuma Corp Permanent magnet motor
JP2004304928A (en) * 2003-03-31 2004-10-28 Mitsuba Corp Brushless motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718847U (en) * 1980-07-04 1982-01-30
JPS5742580U (en) * 1980-08-22 1982-03-08
JPS57201079U (en) * 1981-06-16 1982-12-21
JPH0429537A (en) * 1990-05-25 1992-01-31 Japan Servo Co Ltd Permanent magnet type rotor
JPH08507991A (en) * 1994-01-11 1996-08-27 シュヴァラー エドヴィーン Lighting systems and generators for motorcycles
JP2000050610A (en) * 1998-07-30 2000-02-18 Fuji Elelctrochem Co Ltd Permanent magnet mounted stepping motor
JP2000050544A (en) * 1998-08-03 2000-02-18 Okuma Corp Permanent magnet motor
JP2004304928A (en) * 2003-03-31 2004-10-28 Mitsuba Corp Brushless motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010077181A1 (en) 2008-12-29 2010-07-08 ФИЛОНЕНКО, Светлана Николаевна Electric machine
CN102308460A (en) * 2008-12-29 2012-01-04 斯韦特兰娜·尼古拉耶芙娜·菲洛年科 Electric machine
US8772998B2 (en) 2008-12-29 2014-07-08 Andrei Mikhailovich MAXIMOV Electric machine
CN102308460B (en) * 2008-12-29 2014-12-03 斯韦特兰娜·尼古拉耶芙娜·菲洛年科 Electric machine

Similar Documents

Publication Publication Date Title
JP5700033B2 (en) Magnetic bearing
KR100816421B1 (en) Magnetic force rotating device
US5548173A (en) Switched reluctance motors
WO2018037903A1 (en) Synchronous motor
US20020135242A1 (en) Electric motor utilizing convergence of magnetic flux
JPS5947538A (en) Solenoid clutch-brake
JP2009072012A (en) Axial gap type rotary electric machine
JP2006246605A (en) Magnetic force rotating device
JP2008187830A (en) Rotor for reluctance motor, and reluctance motor equipped with the same
US20140265689A1 (en) Generating radial electromagnetic forces
WO2013073416A1 (en) Dynamo-electric machine
WO2006115071A1 (en) Magnetic force rotation device
WO2000035069A1 (en) Magnetic force rotating device
WO2015056709A1 (en) Electric motor
JP2000134849A (en) Reluctance motor
JP2011166952A (en) Permanent magnet rotary machine
JP3693669B1 (en) Magnetic rotating device
JP6616538B1 (en) Rotating device and power generation system
JP2009038860A (en) Rotor for dynamo-electric machine
JPH09200987A (en) Motor
JP6765157B2 (en) Energy generation system that applies an attractive magnetic field
WO2006098500A1 (en) Magnetic device
JP2007215368A (en) Motor with brake
JP5792411B1 (en) Magnetic rotating device
JP5522187B2 (en) NEGATIVE ELECTRIC BRAKE DEVICE, ITS CONTROL METHOD, CONTROL DEVICE, AND DRIVE DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP