WO2015056709A1 - Electric motor - Google Patents
Electric motor Download PDFInfo
- Publication number
- WO2015056709A1 WO2015056709A1 PCT/JP2014/077431 JP2014077431W WO2015056709A1 WO 2015056709 A1 WO2015056709 A1 WO 2015056709A1 JP 2014077431 W JP2014077431 W JP 2014077431W WO 2015056709 A1 WO2015056709 A1 WO 2015056709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- permanent magnet
- coil
- rotor
- magnetic pole
- coil portion
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/141—Stator cores with salient poles consisting of C-shaped cores
- H02K1/143—Stator cores with salient poles consisting of C-shaped cores of the horse-shoe type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/24—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
Definitions
- the present invention relates to an electric motor that can be rotated with low power consumption.
- Patent Document 1 discloses an electric motor including a rotor in which permanent magnets are arranged along the circumferential direction and a stator that forms a magnetic field around the rotor and rotates the rotor.
- the permanent magnet synchronous motor described in Patent Document 1 includes a rotor having a plurality of permanent magnets arranged in the circumferential direction, and a stator core having a plurality of salient poles arranged to face each permanent magnet.
- a plurality of windings wound around each salient pole magnetic pole and a control device for applying an alternating current to each winding in accordance with the movement position of the permanent magnet are provided. This control device energizes each winding with an alternating current having the same number of phases as the number of types of phases corresponding to the positional relationship between the magnetic poles of each permanent magnet and the magnetic poles of each salient pole.
- the permanent magnet type synchronous motor described in Patent Document 1 an alternating current whose phase is sequentially shifted is passed through each winding, so that a current always flows through one of the windings. . Therefore, the permanent magnet type synchronous motor described in Patent Document 1 is considered to consume a large amount of power and generate a large amount of heat. If the power supply voltage is simply lowered, the power consumption is also reduced according to the degree of the power supply voltage drop, but this results in a shortage of torque and a reduction in output.
- an object of the present invention is to provide an electric motor capable of suppressing power consumption and suppressing heat generation while suppressing a decrease in output by efficiently rotating.
- a magnetic body that is magnetized and attracted when the permanent magnet approaches a rotor in which permanent magnets are arranged in a circumferential direction and a winding that generates a magnetic pole repelling the permanent magnet.
- a coil portion mounted as a core includes a stator arranged to face the permanent magnet, and a control device that controls energization of the winding, and the control device is configured to rotate the rotor when The permanent magnet is attracted by the magnetic body so that the coil part to which the permanent magnet approaches is not energized, and the coil part from which the permanent magnet is separated has a magnetic pole that repels the permanent magnet in the winding. It is characterized by carrying out control to energize the current to be generated.
- the attraction by the coil part contributing to the rotation of the permanent magnet is performed by the magnetic body mounted as the core, and the repulsion by the coil part is performed by energizing the coil part. It is possible to energize the other coil part but not energize the other coil part. Even if it does not supply with electricity to the other coil part, since a permanent magnet can be attracted
- the permanent magnet is arranged on the rotor with the first magnetic pole facing one side in the axial direction of the rotor and the second magnetic pole facing the other side, and the coil portion is Arranged on both sides of the permanent magnet, the control device generates a first magnetic pole in the coil portion located on one side of the permanent magnet, and the first magnetic pole is located on the coil portion located on the other side. It is desirable to generate two magnetic poles.
- the coil portions are arranged on both sides of the rotor permanent magnet, the rotor can be driven to rotate on both sides, so that high output can be obtained.
- the permanent magnets are alternately disposed along the circumferential direction with the first magnetic pole or the second magnetic pole facing the rotor, and the coil portions are disposed on both sides of the permanent magnet, It is desirable that the control device controls the direction of current so as to generate a magnetic pole that repels the coil portion in accordance with the magnetic pole of the permanent magnet that is separated from the coil portion.
- the permanent magnet repels and rotates in the coil portion, a magnetic force that repels the permanent magnet is generated in the coil portion positioned in the front in the rotation direction.
- this coil portion repels the permanent magnet whose magnetic poles are opposite. Therefore, for the rotating permanent magnet, the coil portion located in the front in the rotation direction acts as attraction. Therefore, the rotation of the permanent magnet is accelerated without being disturbed by the coil portion.
- the stator includes a yoke portion that connects the cores across the rotor and forms a magnetic path of a pair of the coil portions disposed on both sides of the permanent magnet.
- a yoke portion that connects the cores across the rotor and forms a magnetic path of a pair of the coil portions disposed on both sides of the permanent magnet.
- the yoke portion is provided with a winding for generating a magnetic force in accordance with the first magnetic pole and the second magnetic pole generated by the coil portions facing each other with the permanent magnet interposed therebetween.
- a strong magnetic force can be generated by the coil portions arranged to face each other.
- the arrangement interval of the coil portions is larger than the permanent magnet, it is preferable that a plurality of the permanent magnets are arranged in succession corresponding to the arrangement interval. If the arrangement interval of the coil part is larger than the permanent magnet and the permanent magnet is smaller than the coil part, a plurality of permanent magnets can be arranged continuously corresponding to this interval, so that the size of the coil part is increased.
- the rotor can be configured according to the number of arrangement.
- the end surface of the core on the rotor side is disposed at a position deeper than the winding.
- the winding of the coil portion can be arranged closer to the permanent magnet than the core, a strong repulsive force can be imparted to the permanent magnet.
- the end surface on the rotor side of the core is disposed at a position deeper than the winding, the attractive force with respect to the permanent magnet can be adjusted with respect to the repulsive force due to the winding of the coil portion.
- the electric motor of the present invention can be rotated efficiently by attracting a permanent magnet with a magnetic material and rotating a rotor without energizing the other coil part. Therefore, the electric motor of the present invention can be efficiently rotated, thereby suppressing power consumption and suppressing heat generation while suppressing a decrease in output.
- FIG. 5A It is a figure for demonstrating the operation
- FIG. 12B is a diagram for explaining the operation and use state of the electric motor shown in FIG. 9 following FIG. 12B. It is a figure for demonstrating the operation
- FIG. 10 is a diagram for explaining a state in which a winding wound around a yoke portion of the electric motor shown in FIG.
- Embodiment 1 An electric motor according to Embodiment 1 of the present invention will be described with reference to the drawings. 1 and 2, the power source for driving the electric motor is not shown.
- the electric motor 10 includes a rotor 20, a stator 30, and a control device 40.
- the rotor 20 is configured such that a columnar permanent magnet 22 is disposed along a circumferential direction on a disc-shaped main body 21 in which a rotation shaft 20 a is disposed on an axis.
- the permanent magnet 22 has the first magnetic pole (for example, N pole) directed to the main body 21 of the rotor 20 on one side in the axial direction (thickness direction) of the rotor 20 and the second magnetic pole on the other side. (For example, S pole.)
- N pole the first magnetic pole
- two permanent magnets 22 are set as one set, and three sets are embedded in the main body portion 21 every 120 degrees.
- the permanent magnet 22 can be a neodymium magnet because the stronger the magnetic force, the stronger the attractive force and repulsive force with the stator 30.
- the stator 30 includes a coil portion 33 including a first coil portion 31 and a second coil portion 32, and a yoke portion 34.
- the coil 33 is mounted with a core 33b which is a magnetic body that is magnetized and attracted when the permanent magnet 22 approaches the winding 33a that generates a magnetic pole that repels the opposed permanent magnet 22. Since the first coil portion 31 is disposed on one side of the permanent magnet 22 so as to face the permanent magnet 22 that generates the first magnetic pole, when a current is passed through the winding 33 a by the control device 40. The first magnetic pole is generated. Since the second coil portion 32 is disposed on the other side of the permanent magnet 22 so as to face the permanent magnet 22 that generates the second magnetic pole, a current is passed through the winding 33a by the control device 40. The second magnetic pole is generated.
- the core 33b of the first coil part 31 and the core 33b of the second coil part are formed at the shaft part 33c formed in a columnar shape as shown in FIG.
- the disc part 33d is formed.
- the yoke portion 34 is formed in a U shape. As shown in FIG. 4, the yoke portion 34 is integrally connected to the respective base end portions of the pair of cores 33b and straddles the rotor 20 as shown in FIG. This forms a magnetic path with the second coil portion 32.
- the control device 40 When the rotor 20 rotates, the control device 40 causes the core 33b, which is a magnetic material, to attract the permanent magnet 22 of the rotor 20, and performs control so that the coil portion 33 approaching the permanent magnet 22 is not energized. Is. In addition, the control device 40 performs control for energizing the coil portion 33 where the permanent magnet 22 is separated with a current that generates a magnetic pole repelling the permanent magnet 22 in the winding 33a.
- the control device 40 includes a sensor unit 41 for detecting the rotational position of the rotor 20, and a device main body 42 that energizes the coil unit 33 according to the rotational position of the rotor 20 detected by the sensor unit 41. Yes.
- the sensor unit 41 corresponds to the position of the rotating plate 41a that rotates together with the rotating shaft 20a, the shielding piece 41b that is provided at the peripheral portion of the rotating plate 41a, and indicates the period during which the permanent magnet 22 is separated from the coil unit 33, and the coil unit 33. And a photo interrupter 41c that is shielded by the shielding piece 41b.
- a lamp 41d that is lit while the light emitting portion and the light receiving portion of the photo interrupter 41c are shielded by the shielding piece 41b is provided.
- the apparatus main body 42 includes a power storage unit 42 a for performing rapid power supply from the power supply unit 42 p to the coil unit 33, and a current from the power storage unit 42 a according to a signal from the sensor unit 41. And a switch unit 42b to be supplied to 33.
- the power storage unit 42a and the switch unit 42b can have a circuit configuration as shown in FIG. 5B.
- FIG. 5B shows a circuit example in which the energization of the pair of coil parts 33 (the first coil part 31 and the second coil part 32) is controlled by one photo interrupter 41c of the sensor part 41.
- the circuit shown in FIG. 5B includes a battery BT as a power supply unit 42p, an electric double layer capacitor connected in series as a power storage unit 42a, and a p-type MOS FET as a switch unit 42b.
- a diode D for blocking a reverse current to the battery BT and a resistor R connected in parallel to each electric double layer capacitor are arranged.
- nine sets of circuits shown in FIG. 5B are formed corresponding to the nine coil sets 33 provided.
- the battery BT may be provided for each of nine sets, or all may be shared.
- FIG. 6 a pair of coil portions 33 (first coil portion 31 and second coil portion 32) at the 12 o'clock position of the timepiece are defined as a coil portion 30 a, and a coil is rotated clockwise from the coil portion 30 a.
- Description will be made assuming that the portion 30b, the coil portion 30c, the coil portion 30d,..., The coil portion 30i are arranged.
- the state when the two permanent magnets 22 move from the coil part 30h to the coil part 30i is demonstrated.
- the one located on the front side in the rotation direction will be described as a permanent magnet 22 a
- the one located on the rear side will be described as a permanent magnet 22 b.
- the permanent magnet 22a and 22b of the rotating rotor 20 shown in FIG. 6A are positioned on the coil portion 30h, specifically, the permanent magnet 22a is permanently attached to the first semicircular portion in the rotation direction F of the coil portion 33h.
- the shielding piece 41b corresponding to the coil portion 30h does not shield the photointerrupter 41c, so that the coil portion 30h is not energized.
- the magnetic body forming the core 33b of the coil part 30i adjacent to the rotation direction side of the coil part 30h is magnetized, and the rotor 20 rotates by attracting the permanent magnet 22a. Pulled in the direction and driven.
- a disk portion 33d larger than the contour of the winding 33a is formed on the shaft portion 33c mounted in the winding 33a. Therefore, the permanent magnet 22 approaching the disk portion 33d is attracted in a wide range. be able to.
- the permanent magnet 22a is attracted to the core 33b of the coil portion 30i and rotates, so that the permanent magnet 22a is hooked on the coil portion 30i, and the permanent magnet 22b is the first semicircular portion in the rotation direction of the coil portion 30h.
- the shielding piece 41b blocks the photo interrupter 41c corresponding to the coil portion 30h.
- the photo interrupter 41c is cut off, so that the switch unit 42b becomes effective, and the current from the power storage unit 42a flows to the coil unit 33 (in this case, the coil unit 30h).
- the first coil portion 31 facing the permanent magnet 22b facing the first magnetic pole (for example, N pole) generates the first magnetic pole.
- the second coil portion 32 facing the permanent magnet 22b facing the second magnetic pole (for example, the S pole) generates the second magnetic pole.
- the permanent magnet 22b is repelled by the coil part 30h, pushed in the rotation direction, and driven.
- the control device 40 energizes the coil portion 30h as a period in which the permanent magnet 22b is detached from the coil portion 30h while the shielding piece 41b shields the photo interrupter 41c.
- the attracting and repelling operations by the permanent magnet 22 and the coil portion 33 are performed at three locations of every 120 degrees of the rotor 20, and the rotor 20 rotates.
- the state of energization from the coil part 30a to the coil part 30i is shown in FIG.
- the permanent magnets 22 are arranged at three locations on the main body portion 21 of the rotor 20 as a set of two pieces, and a coil portion 33 (a set of the first coil portion 31 and the second coil portion 32) is provided. Since nine coils 30a to 30i are provided, as shown in FIG. 7, the rotation angle of the rotor 20 is 1/3 of 120 degrees in each coil 30a to 30i.
- the 40 degree is an energization period, and 2/3 is the rest period.
- the rotor 20 can be rotated by attracting the permanent magnet 22 by the core 33b formed of a magnetic material, so that the rotor 20 can be efficiently rotated.
- the coil part 33 consumes electric power in an energization period, since it does not consume electric power in an idle period, it can suppress power consumption. Furthermore, since the power is not consumed in the idle period, the coil part 33 does not generate heat and is also a cooling period in which the coil part 33 can be cooled by heat radiation. Therefore, the electric motor 10 can suppress power consumption and suppress heat generation while suppressing a decrease in output.
- the control device 40 has one coil unit 33 for each of the two coil units 33 that are in a rest period, with respect to the coil units 33 that are arranged at nine locations in total around 40 degrees of rotation.
- the coil part 33 is set as the energization period. This is because if the coil portion 33 in the idle period and the coil portion 33 in the energization period are alternately arranged, the permanent magnet attracted by the core 33b when the magnetic strength of the permanent magnet 22 and the magnetic strength of the coil portion 33 are strong. This is because 22 is affected by the repulsion of the coil portion 33 adjacent to the traveling direction side of the core 33b, and the rotational drive is hindered. Therefore, it is desirable to adjust the interval between the coil portions 33 as the energization period according to the strength of the magnetic force of the permanent magnet 22 and the strength of the magnetic force of the coil portion 33.
- the permanent magnet 22 is arranged on the main body 21 with the N pole facing one side in the thickness direction of the main body 21 of the rotor 20 and the S pole facing the other side.
- the first coil part 31 is arranged on one side with the magnet 22 in between, and the second coil part 32 is arranged on the other side.
- the permanent magnet 22 is disposed on the circumferential surface of the main body portion 21, the end surface of the permanent magnet 22 is directed outward in the radial direction, and the coil portions 33 are disposed radially toward the circumferential surface of the main body portion 21.
- the permanent magnet 22 may be opposed to the permanent magnet 22.
- the rotor 20 When the first coil portion 31 and the second coil portion 32 are disposed with the permanent magnet 22 disposed in the axial direction of the rotor 20 (in the thickness direction of the main body portion 21) interposed therebetween, the rotor 20 is Since both sides of the one side and the other side can be rotationally driven, high output can be obtained.
- the yoke part 34 straddles the rotor 20 and connects the cores 33b of the first coil part 31 and the second coil part 32 to form a magnetic path, the first coil part The leakage of magnetic force generated by the first coil 31 and the second coil portion 32 can be suppressed, and the permanent magnet 22 can be repelled.
- the coil part 33 is arrange
- a stator in which 18 coil portions 33x are arranged every 20 degrees, and a permanent magnet 22x having a diameter or a little larger than the interval between the coil portions 33 is arranged every 60 degrees.
- attraction by the core of the coil portion 33x that is not energized on the front side in the rotation direction and repulsion by the coil portion 33x that is energized on the rear side in the rotation direction are one permanent magnet 22x. At the same time. Therefore, it is not necessary to use a plurality of permanent magnets 22x.
- the facing area with the coil portion 33x is doubled and the magnetic force is 2 than when two permanent magnets having a diameter half that of the permanent magnet 22x are used. Since it becomes larger than double, a high output can be obtained.
- Embodiment 2 An electric motor according to Embodiment 2 of the present invention will be described with reference to the drawings. 9 and 10, the same components as those in FIGS. 2 and 4 are given the same reference numerals, and description thereof is omitted.
- the power source for driving the electric motor is not shown.
- the electric motor 100 includes a rotor 200, a stator 300, and a control device 400.
- a columnar permanent magnet 22 is disposed along a circumferential direction between main bodies 201 formed by two disks.
- the permanent magnet 22 has a first magnetic pole (for example, an N pole) or a second magnetic pole (for example, an S pole) alternately on one side or the other side in the axial direction of the rotor 200 along the circumferential direction. It is arrange
- the permanent magnet 22 exposes both end faces from the main body portion 201 of the two disks.
- six permanent magnets 22 are arranged in the main body 201 at regular intervals in the circumferential direction every 120 degrees.
- the main body 201 is formed of two disks, but may be formed of a single thick plate and embedded with the permanent magnet 22.
- the stator 300 includes a coil portion 33 including a first coil portion 31 and a second coil portion 32, and a yoke portion 34.
- 12 sets of a pair of coil portions 33 and yoke portions 34 formed by the first coil portion 31 and the second coil portion 32 are arranged every 30 degrees.
- the coil unit 33 includes a first coil unit 31 (one side) that generates a first magnetic pole on both sides of the permanent magnet 22 and a second coil unit 32 (other side) that generates a second magnetic pole. Are alternately arranged along the circumferential direction.
- the first coil unit 31 and the second coil unit 32 are controlled by the control device 400 according to the magnetic pole of the permanent magnet 22 that is separated from the coil unit 33, thereby controlling the first magnetic pole.
- the second magnetic pole is generated and repelled by the permanent magnet 22.
- the coil part 33 (the first coil part 31 and the second coil part 32) is formed so that the core 33b around which the winding 33a is wound is shorter than the winding 33a.
- the end surface 33bs on the rotor 200 side of the core 33b is disposed at a position deeper than the winding 33a.
- the space formed by arranging the end surface 33bs of the core 33b at a position deeper than the winding 33a may be a cavity or may be filled with a nonmagnetic material such as resin.
- the yoke portion 34 is provided with a winding 35 for generating a magnetic force.
- This magnetic force is controlled by the control device 400 in accordance with the first magnetic pole and the second magnetic pole generated by the coil portions 33 (the first coil portion 31 and the second coil portion 32) facing each other with the permanent magnet 22 in between.
- the current flowing through the winding 35 is controlled.
- the control device 400 When the rotor 200 rotates, the control device 400 causes the core 33b, which is a magnetic body, to attract the permanent magnet 22 of the rotor 200, and performs control so that the coil portion 33 that the permanent magnet 22 approaches is not energized. . In addition, the control device 400 performs control so that a current that generates a magnetic pole repelling the permanent magnet 22 in the winding 33a is applied to the coil portion 33 from which the permanent magnet 22 is separated.
- the 12 o'clock position of the timepiece is set at a rotation angle of 0 degrees, and the first coil portion 31 of the pair of coil portions 33 located here is the coil portion 30a1, Let the 2nd coil part 32 which opposes this coil part 30a1 be coil part 30a2. And coil part 30b1, 30b2, coil part 30c1, 30c2, coil part 30d1, 30d2 ... coil part 30m1, 30m2 is arrange
- the permanent magnet 22 at the 12 o'clock position of the timepiece is designated as a permanent magnet 22m1, and 22m2, 22m3... 22m6 clockwise from the permanent magnet 22m1.
- the permanent magnets 22 are arranged in the main body 201 of the rotor 200 every 60 degrees.
- the coil portion 33 is disposed on the stator 300 every 30 degrees. Therefore, as shown in FIGS. 11 and 12A, for example, the rotating permanent magnets 22m1 to 22m6 include coil portions 30a1, 30a2, coil portions 30c1, 30c2, coil portions 30e1, 30e2, coil portions 30g1, 30g2, and coil portions.
- the energization period can be a position where the permanent magnets 22m1 to 22m6 are displaced by 30 degrees as shown in FIG. 11B.
- the control device 400 faces the first magnetic pole (N pole) of the permanent magnet 22 (permanent magnets 22m1, 22m3, 22m5) among these coil portions 33 during the energization period from the rotation angle of 0 degrees to 30 degrees.
- the first magnetic pole (N pole) is generated in the coil portion 30a1, the coil portion 30e1, and the coil portion 30i1.
- a second magnetic pole on the coil part 30a2, the coil part 30e2, and the coil part 30i2 facing the back side (second magnetic pole (S pole)) of the permanent magnet 22 (permanent magnets 22m1, 22m3, 22m5). S pole) is generated. That is, since the magnetic poles are opposite on the one end side and the other end side of the permanent magnet 22, the control device 400 generates the opposite magnetic poles in the coil portions 33 arranged to face each other.
- control device 400 includes a coil portion 30c1 that faces the second magnetic pole (S pole) of the permanent magnet 22 (permanent magnets 22m2, 22m4, and 22m6) during the energization period from the rotation angle of 0 degrees to 30 degrees, A second magnetic pole (S pole) is generated in the coil portion 30g1 and the coil portion 30k1.
- first magnetic pole on the coil portion 30c2, the coil portion 30g2, and the coil portion 30k2 facing the back side (first magnetic pole (N pole)) of the permanent magnet 22 (permanent magnets 22m2, 22m4, 22m6). N pole) is generated. That is, since the magnetic poles are opposite on the one end side and the other end side of the permanent magnet 22, the control device 400 generates the opposite magnetic poles in the coil portions 33 arranged to face each other.
- the permanent magnets 22m1 to 22m6 are not located, and the coil portions 30b1 and 30b2, the coil portions 30d1 and 30d2, the coil portions 30f1 and 30f2, the coil portions 30h1 and 30h2, and the coil portions 30j1 and 30j2 Since the coil portions 30m1 and 30m2 are in a pause period, the control device 400 is not energized.
- the permanent magnets 22m1 to 22m6 generate the magnetic force of the same magnetic pole from the respective coil portions 33, and therefore, a rotational force is applied by repelling.
- the coil portions 30b1, 30b2, the coil portions 30d1, 30d2, the coil portions 30f1, 30f2, the coil portions 30h1, 30h2, the coil portions 30j1, 30j2, and the coil portions 30m1, 30m2 are not energized because they are idle periods.
- the permanent magnets 22m1 to 22m6 are attracted to the cores 33b of these coil portions 33 and are given a rotational force. Therefore, as shown in FIG. 12B, for example, the permanent magnet 22m1 of the rotor 200 moves from the coil portions 30a1 and 30a2 to the coil portions 30b1 and 30b2.
- the permanent magnet 22 (permanent magnets 22m1 to 22m6) has a greater attractive force to the core 33b of the coil portion 33 during the rest period than the repulsive force of the coil portion 33 during the energization period. Therefore, when the permanent magnet 22 moves in the rotation direction F due to the repulsion of the coil portion 33 during the energization period and the energization period ends, this time, the permanent magnet 22 is pulled back by the core 33b. Therefore, in the coil section 33 according to the second embodiment, as shown in FIG. 10, the end surface 33bs on the rotor 200 side of the core 33b is disposed at a position deeper than the winding 33a.
- the winding 33a of the coil part 33 can be arranged closer to the permanent magnet 22 than the core 33b, a strong repulsive force can be applied to the permanent magnet 22. Further, since the end surface 33bs on the rotor 200 side of the core 33b is disposed at a position deeper than the winding 33a, the attractive force to the permanent magnet 22 is adjusted with respect to the repulsive force by the winding 33a of the coil portion 33. can do. Therefore, even if the permanent magnet 22 passes through the coil portion 33 and enters the rest period, the force that causes the permanent magnet 22 to be pulled back by the core 33b can be reduced.
- the permanent magnet 22m1 to 22m6 is positioned in the coil portion 33 at the next position.
- the first magnetic pole (N pole) of the permanent magnet 22 (permanent magnets 22m1, 22m3, 22m5) is opposed to and separated from the coil portion 30b1, the coil portion 30f1, and the coil portion 30j1.
- the control device 400 generates the first magnetic pole (N pole).
- the back side (second magnetic pole (S pole)) of the permanent magnet 22 permanent magnets 22m1, 22m3, 22m5 is separated from the coil portion 30b2, the coil portion 30f2, and the coil portion 30j2.
- the control device 400 generates a second magnetic pole (S pole).
- the control device 400 when the second magnetic pole (S pole) of the permanent magnet 22 (permanent magnets 22m2, 22m4, 22m6) is separated from the coil portion 30d1, the coil portion 30h1, and the coil portion 30m1, the control device 400 generates a second magnetic pole (S pole). Furthermore, the back side (first magnetic pole (N pole)) of the permanent magnet 22 (permanent magnets 22m2, 22m4, 22m6) is opposed to and separated from the coil portion 30d2, the coil portion 30h2, and the coil portion 30m2. When doing so, the control device 400 generates the first magnetic pole (N pole).
- the permanent magnets 22m1 to 22m6 generate the magnetic force of the same magnetic pole from the respective coil portions 33, and therefore, a rotational force is applied by repelling.
- the coil portions 30a1, 30a2, the coil portions 30c1, 30c2, the coil portions 30e1, 30e2, the coil portions 30f1, 30f2, the coil portions 30i1, 30i2, and the coil portions 30k1, 30k2 are not energized because they are idle periods.
- the permanent magnets 22m1 to 22m6 are attracted to the core 33b and are given a rotational force. Accordingly, for example, the permanent magnet 22m1 of the rotor 200 is directed from the coil portions 30b1 and 30b2 to the coil portions 30c1 and 30c2.
- the permanent magnet 22m1 to 22m6 is positioned in the coil portion 33 at the next position.
- the first magnetic pole (N pole) of the permanent magnet 22 permanent magnet 22m1, 22m3, 22m5 is separated from the coil portion 30c1, the coil portion 30g1, and the coil portion 30k1, the control device 400 is The first magnetic pole (N pole) is generated. Therefore, when the rotation angle of the permanent magnets 22m1 to 22m6 is 0 degree, the current is reversed to become the opposite magnetic pole.
- the control device 400 when the back side (second magnetic pole (S pole)) of the permanent magnet 22 (permanent magnets 22m1, 22m3, 22m5) is separated from the coil portion 30c2, the coil portion 30g2, and the coil portion 30k2.
- the control device 400 generates a second magnetic pole (S pole). Again, when the rotation angle of the permanent magnets 22m1 to 22m6 is 0 degree, the current is reversed to become the opposite magnetic pole.
- control apparatus 400 is the 2nd magnetic pole to the coil part 30e1, the coil part 30i1, and the coil part 30a1 which opposes the 2nd magnetic pole (S pole) of the permanent magnet 22 (permanent magnet 22m2, 22m4, 22m6).
- S pole is generated.
- the first magnetic pole on the coil portion 30e2, the coil portion 30i2, and the coil portion 30a2 facing the back side (first magnetic pole (N pole)) of the permanent magnet 22 (permanent magnets 22m2, 22m4, 22m6).
- N pole is generated. That is, since the magnetic poles are opposite on the one end side and the other end side of the permanent magnet 22, the control device 400 generates the opposite magnetic poles in the coil portions 33 arranged to face each other.
- the permanent magnet 22 is similarly repelled by the coil portion 33 on the rear side in the rotation direction F, and the core of the coil portion 33 on the front side.
- the rotation of the rotor 200 is promoted. Accordingly, the rotor 200 rotates by repeating the operations shown in FIGS. 12A to 12D.
- the permanent magnets 22 are alternately disposed along the circumferential direction so that the first magnetic pole or the second magnetic pole is directed to the rotor 200, and the coil portion 33 is permanent. They are arranged on both sides with the magnet 22 in between.
- the control device 400 generates a magnetic pole that repels the coil portion 33 in accordance with the magnetic pole of the permanent magnet 22 that is separated from the coil portion 33.
- a magnetic force that repels the permanent magnet 22 is generated in the coil portion 33 in the energization period located in front of the rotation direction F.
- the coil portion 33 repels the permanent magnet 22 whose magnetic poles are opposite.
- the coil portion 33 in the energization period located in front of the rotation direction F acts as attraction. Therefore, the rotation of the permanent magnet 22 is accelerated without being disturbed by the coil portion 33. Further, since the magnetic force generated by the coil portion 33 does not hinder the rotation of the permanent magnet 22, the interval between the coil portions 33 can be arranged narrowly.
- a current is applied to the winding 35 of the yoke portion 34 by the control device 400 during the energization period.
- the permanent magnet 22m1 is located between the coil part 30a1 and the coil part 30a2.
- the permanent magnet 22m1 has an N pole on the coil part 30a1 side and an S pole on the coil part 30a2 side.
- the coil portion 30a1 generates an N pole when a current is passed through the winding 33a
- the coil portion 30a2 generates an S pole when a current is passed through the winding 33a.
- the control device 400 energizes the winding 35 wound around the yoke portion 34 with a current such that the coil portion 30a1 side has an N pole and the coil portion 30a2 side has an S pole.
- the permanent magnet 22m6 when the permanent magnet 22m6 is positioned between the coil part 30a1 and the coil part 30a2, the permanent magnet 22m1 has an S pole on the coil part 30a1 side and an N pole on the coil part 30a2 side. It is. Therefore, the coil part 30a1 generates an S pole, and the coil part 30a2 generates an N pole.
- the control device 400 energizes the winding 35 wound around the yoke portion 34 with a current such that the coil portion 30a1 side is the S pole and the coil portion 30a2 side is the N pole. By doing so, a strong magnetic force can be generated by the coil part 30a1 and the coil part 30a2 that are arranged to face each other.
- the electric motor of the present invention can reduce power consumption and heat generation, it can be used in various industries that require rotational driving.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Provided is an electric motor that, by rotating efficiently, allows power consumption and radiated heat to be minimized with minimal reduction in output. An electric motor (10) is provided with a rotor (20), a stator (30), and a controller (40). The rotor (20) has permanent magnets disposed along the circumferential direction. The stator (30) has coil portions (33) disposed facing the permanent magnets, each of the coil portions (33) having therein a magnetic body as a core that becomes magnetized and attracted to the permanent magnet when the permanent magnet approaches wound wires (33a) that generate a magnetic pole repulsing the permanent magnet. The control device (40) does not pass electricity through the coil portions (33) for attracting the permanent magnet by a core (33b), but passes electricity through the coil portion (33) for repulsing the permanent magnet by the wound wire (33a) in the direction of rotation of the rotor (20). The control device (40) can cause the rotor (20) to rotate efficiently because the rotor (20) rotates by the permanent magnet being repulsed by the coil portion (33) and the permanent magnet is attracted to the core (33b) even without the flow of electricity through the coil portion (33).
Description
本発明は、低消費電力で回転させることができる電動機に関するものである。
The present invention relates to an electric motor that can be rotated with low power consumption.
永久磁石が円周方向に沿って配置された回転子と、回転子の周囲で磁界を形成して、回転子を回転させる固定子とを備えた電動機として、特許文献1に記載されたものが知られている。この特許文献1に記載の永久磁石形同期電動機は、円周方向に配置された複数の永久磁石を有する回転子と、各永久磁石に対向配置された複数の突極磁極を有する固定子鉄心と、各突極磁極に巻回された複数の巻線と、永久磁石の移動位置に応じて、各巻線に交流電流を通電させる制御装置とを備えたものである。この制御装置は、各永久磁石の磁極と各突極磁極の磁極との位置関係に対応した位相の種類数と同数の位相を持つ交流電流を各巻線に通電させる。
Patent Document 1 discloses an electric motor including a rotor in which permanent magnets are arranged along the circumferential direction and a stator that forms a magnetic field around the rotor and rotates the rotor. Are known. The permanent magnet synchronous motor described in Patent Document 1 includes a rotor having a plurality of permanent magnets arranged in the circumferential direction, and a stator core having a plurality of salient poles arranged to face each permanent magnet. A plurality of windings wound around each salient pole magnetic pole and a control device for applying an alternating current to each winding in accordance with the movement position of the permanent magnet are provided. This control device energizes each winding with an alternating current having the same number of phases as the number of types of phases corresponding to the positional relationship between the magnetic poles of each permanent magnet and the magnetic poles of each salient pole.
しかし、特許文献1に記載の永久磁石形同期電動機では、それぞれの巻線に、位相を順次ずらした交流電流を通電させているため、常に、いずれかの巻線に電流が流れた状態である。従って、特許文献1に記載の永久磁石形同期電動機では、消費電力が大きく、発熱も大きいものと思われる。単に、電源電圧を低下させると、消費電力も電源電圧の低下の度合いに応じて低下するが、それではトルクが不足し、出力が低下してしまう。
However, in the permanent magnet type synchronous motor described in Patent Document 1, an alternating current whose phase is sequentially shifted is passed through each winding, so that a current always flows through one of the windings. . Therefore, the permanent magnet type synchronous motor described in Patent Document 1 is considered to consume a large amount of power and generate a large amount of heat. If the power supply voltage is simply lowered, the power consumption is also reduced according to the degree of the power supply voltage drop, but this results in a shortage of torque and a reduction in output.
そこで本発明は、効率よく回転させることで、出力の低下を抑えつつ、消費電力を抑えることができると共に、発熱も抑えることができる電動機を提供することを目的とする。
Therefore, an object of the present invention is to provide an electric motor capable of suppressing power consumption and suppressing heat generation while suppressing a decrease in output by efficiently rotating.
本発明の電動機は、永久磁石が円周方向に沿って配置された回転子と、前記永久磁石に反発する磁極を発生する巻線に、前記永久磁石が接近すると磁化して吸引する磁性体がコアとして実装されたコイル部が、前記永久磁石に対向配置された固定子と、前記巻線への通電を制御する制御装置とを備え、前記制御装置は、前記回転子が回転するときに、前記磁性体によって前記永久磁石を吸引させて、前記永久磁石が接近する前記コイル部には通電せず、前記永久磁石が離間する前記コイル部には前記巻線に前記永久磁石と反発する磁極を発生させる電流を通電する制御を行うことを特徴とする。
In the electric motor of the present invention, a magnetic body that is magnetized and attracted when the permanent magnet approaches a rotor in which permanent magnets are arranged in a circumferential direction and a winding that generates a magnetic pole repelling the permanent magnet. A coil portion mounted as a core includes a stator arranged to face the permanent magnet, and a control device that controls energization of the winding, and the control device is configured to rotate the rotor when The permanent magnet is attracted by the magnetic body so that the coil part to which the permanent magnet approaches is not energized, and the coil part from which the permanent magnet is separated has a magnetic pole that repels the permanent magnet in the winding. It is characterized by carrying out control to energize the current to be generated.
本発明の電動機によれば、永久磁石の回転に寄与するコイル部による吸引を、コアとして実装された磁性体により行うと共に、コイル部による反発を、このコイル部への通電により行うことで、一方のコイル部には通電するが、他方のコイル部には通電しない状態ができる。他方のコイル部には通電しなくても、磁性体により永久磁石を吸引して回転子を回転させることができるので、効率よく回転させることができる。
According to the electric motor of the present invention, the attraction by the coil part contributing to the rotation of the permanent magnet is performed by the magnetic body mounted as the core, and the repulsion by the coil part is performed by energizing the coil part. It is possible to energize the other coil part but not energize the other coil part. Even if it does not supply with electricity to the other coil part, since a permanent magnet can be attracted | sucked with a magnetic body and a rotor can be rotated, it can be rotated efficiently.
前記永久磁石は、前記永久磁石は、前記回転子の軸線方向の一側に第1の磁極を向けると共に、他側に第2の磁極を向けて、前記回転子に配置され、前記コイル部は、前記永久磁石を挟んで両側に配置され、前記制御装置は、前記永久磁石の一側に位置する該コイル部に、第1の磁極を発生させ、他側に位置する該コイル部に、第2の磁極を発生させるのが望ましい。
回転子の永久磁石を挟んで、コイル部が両側に配置されていると、回転子を両側で、回転駆動できるため、高出力を得ることができる。 The permanent magnet is arranged on the rotor with the first magnetic pole facing one side in the axial direction of the rotor and the second magnetic pole facing the other side, and the coil portion is Arranged on both sides of the permanent magnet, the control device generates a first magnetic pole in the coil portion located on one side of the permanent magnet, and the first magnetic pole is located on the coil portion located on the other side. It is desirable to generate two magnetic poles.
When the coil portions are arranged on both sides of the rotor permanent magnet, the rotor can be driven to rotate on both sides, so that high output can be obtained.
回転子の永久磁石を挟んで、コイル部が両側に配置されていると、回転子を両側で、回転駆動できるため、高出力を得ることができる。 The permanent magnet is arranged on the rotor with the first magnetic pole facing one side in the axial direction of the rotor and the second magnetic pole facing the other side, and the coil portion is Arranged on both sides of the permanent magnet, the control device generates a first magnetic pole in the coil portion located on one side of the permanent magnet, and the first magnetic pole is located on the coil portion located on the other side. It is desirable to generate two magnetic poles.
When the coil portions are arranged on both sides of the rotor permanent magnet, the rotor can be driven to rotate on both sides, so that high output can be obtained.
前記永久磁石は、円周方向に沿って交互に、第1の磁極または第2の磁極を向けて、前記回転子に配置され、前記コイル部は、前記永久磁石を挟んで両側に配置され、前記制御装置は、前記コイル部から離間する前記永久磁石の磁極に応じて、該コイル部に反発する磁極を発生させるよう、電流の向きを制御するのが望ましい。
永久磁石がコイル部に反発して回転するときに、回転方向の前方に位置するコイル部に、永久磁石が反発する磁力が発生する。しかし、このコイル部は、磁極が反対となった永久磁石を反発させることになる。そのため、回転する永久磁石にとっては、回転方向の前方に位置するコイル部は吸引として作用する。従って、永久磁石はコイル部によって回転が阻害されることなく、反対に、回転が促進される。 The permanent magnets are alternately disposed along the circumferential direction with the first magnetic pole or the second magnetic pole facing the rotor, and the coil portions are disposed on both sides of the permanent magnet, It is desirable that the control device controls the direction of current so as to generate a magnetic pole that repels the coil portion in accordance with the magnetic pole of the permanent magnet that is separated from the coil portion.
When the permanent magnet repels and rotates in the coil portion, a magnetic force that repels the permanent magnet is generated in the coil portion positioned in the front in the rotation direction. However, this coil portion repels the permanent magnet whose magnetic poles are opposite. Therefore, for the rotating permanent magnet, the coil portion located in the front in the rotation direction acts as attraction. Therefore, the rotation of the permanent magnet is accelerated without being disturbed by the coil portion.
永久磁石がコイル部に反発して回転するときに、回転方向の前方に位置するコイル部に、永久磁石が反発する磁力が発生する。しかし、このコイル部は、磁極が反対となった永久磁石を反発させることになる。そのため、回転する永久磁石にとっては、回転方向の前方に位置するコイル部は吸引として作用する。従って、永久磁石はコイル部によって回転が阻害されることなく、反対に、回転が促進される。 The permanent magnets are alternately disposed along the circumferential direction with the first magnetic pole or the second magnetic pole facing the rotor, and the coil portions are disposed on both sides of the permanent magnet, It is desirable that the control device controls the direction of current so as to generate a magnetic pole that repels the coil portion in accordance with the magnetic pole of the permanent magnet that is separated from the coil portion.
When the permanent magnet repels and rotates in the coil portion, a magnetic force that repels the permanent magnet is generated in the coil portion positioned in the front in the rotation direction. However, this coil portion repels the permanent magnet whose magnetic poles are opposite. Therefore, for the rotating permanent magnet, the coil portion located in the front in the rotation direction acts as attraction. Therefore, the rotation of the permanent magnet is accelerated without being disturbed by the coil portion.
前記固定子には、前記回転子を跨いで前記コア同士を繋ぎ、前記永久磁石を挟んで両側に配置された一対の前記コイル部の磁路を形成するヨーク部を備えるのが望ましい。
ヨーク部により、一対のコイル部の磁路を形成することで、一対のコイル部が発生する磁力の漏れを抑え、永久磁石の反発に寄与させることができる。 It is preferable that the stator includes a yoke portion that connects the cores across the rotor and forms a magnetic path of a pair of the coil portions disposed on both sides of the permanent magnet.
By forming the magnetic path of the pair of coil portions by the yoke portion, leakage of magnetic force generated by the pair of coil portions can be suppressed and the permanent magnet can be repelled.
ヨーク部により、一対のコイル部の磁路を形成することで、一対のコイル部が発生する磁力の漏れを抑え、永久磁石の反発に寄与させることができる。 It is preferable that the stator includes a yoke portion that connects the cores across the rotor and forms a magnetic path of a pair of the coil portions disposed on both sides of the permanent magnet.
By forming the magnetic path of the pair of coil portions by the yoke portion, leakage of magnetic force generated by the pair of coil portions can be suppressed and the permanent magnet can be repelled.
前記ヨーク部には、前記永久磁石を挟んで対向する前記コイル部が発生する前記第1の磁極および前記第2の磁極に合わせて、磁力を発生させる巻線が設けられているのが望ましい。そうすることで、対向配置されたコイル部により強い磁力を発生させることができる。
Preferably, the yoke portion is provided with a winding for generating a magnetic force in accordance with the first magnetic pole and the second magnetic pole generated by the coil portions facing each other with the permanent magnet interposed therebetween. By doing so, a strong magnetic force can be generated by the coil portions arranged to face each other.
前記コイル部の配置間隔が、前記永久磁石より大きいときに、前記配置間隔に対応させて前記永久磁石が複数個連続して配置されているのが望ましい。
コイル部の配置間隔が永久磁石より大きく、コイル部と比較して永久磁石が小さいときに、複数個の永久磁石を、この間隔に対応させて複数個連続して配置すれば、コイル部の大きさ、配置数に応じて回転子を構成することができる。 When the arrangement interval of the coil portions is larger than the permanent magnet, it is preferable that a plurality of the permanent magnets are arranged in succession corresponding to the arrangement interval.
If the arrangement interval of the coil part is larger than the permanent magnet and the permanent magnet is smaller than the coil part, a plurality of permanent magnets can be arranged continuously corresponding to this interval, so that the size of the coil part is increased. The rotor can be configured according to the number of arrangement.
コイル部の配置間隔が永久磁石より大きく、コイル部と比較して永久磁石が小さいときに、複数個の永久磁石を、この間隔に対応させて複数個連続して配置すれば、コイル部の大きさ、配置数に応じて回転子を構成することができる。 When the arrangement interval of the coil portions is larger than the permanent magnet, it is preferable that a plurality of the permanent magnets are arranged in succession corresponding to the arrangement interval.
If the arrangement interval of the coil part is larger than the permanent magnet and the permanent magnet is smaller than the coil part, a plurality of permanent magnets can be arranged continuously corresponding to this interval, so that the size of the coil part is increased. The rotor can be configured according to the number of arrangement.
前記コアの前記回転子側の端面が、前記巻線より奥まった位置に配置されているのが望ましい。そうすることで、コイル部の巻線をコアより、永久磁石に接近させて配置できるので、強い反発力を永久磁石に付与することができる。また、コアの回転子側の端面が、巻線より奥まった位置に配置されているため、永久磁石に対する吸引力を、コイル部の巻線による反発力に対して調整することができる。
It is desirable that the end surface of the core on the rotor side is disposed at a position deeper than the winding. By doing so, since the winding of the coil portion can be arranged closer to the permanent magnet than the core, a strong repulsive force can be imparted to the permanent magnet. Moreover, since the end surface on the rotor side of the core is disposed at a position deeper than the winding, the attractive force with respect to the permanent magnet can be adjusted with respect to the repulsive force due to the winding of the coil portion.
本発明の電動機は、他方のコイル部には通電しなくても、磁性体により永久磁石を吸引して回転子を回転させることができることにより、効率よく回転させることができる。よって、本発明の電動機は、効率よく回転させることで、出力の低下を抑えつつ、消費電力を抑えることができると共に、発熱も抑えることができる。
The electric motor of the present invention can be rotated efficiently by attracting a permanent magnet with a magnetic material and rotating a rotor without energizing the other coil part. Therefore, the electric motor of the present invention can be efficiently rotated, thereby suppressing power consumption and suppressing heat generation while suppressing a decrease in output.
10,100 電動機
20,200 回転子
20a 回転軸
21,201 本体部
22,22a,22b,22x,22m1,22m2,22m3,22m4,22m5,22m6 永久磁石
30,300 固定子
31 第1のコイル部
32 第2のコイル部
33,33x コイル部
30a~30i,30a1,30a2,30b1,30b2,30c1,30c2,30d1,30d2,30e1,30e2,30f1,30f2,30g1,30g2,30h1,30h2,30i1,30i2,30j1,30j2,30k1,30k2,30m1,30m2 コイル部
33a 巻線
33b コア
33bs 端面
33c 軸部
33d 円盤部
34 ヨーク部
35 巻線
40,400 制御装置
41 センサ部
41a 回転盤
41b 遮蔽片
41c フォトインタラプタ
41d ランプ
42 装置本体
42p 電源部
42a 蓄電部
42b スイッチ部
BT 電池
R 抵抗
D ダイオード
F 回転方向 DESCRIPTION OF SYMBOLS 10,100 Electric motor 20,200Rotor 20a Rotating shaft 21,201 Main body part 22,22a, 22b, 22x, 22m1,22m2,22m3,22m4,22m5,22m6 Permanent magnet 30,300 Stator 31 First coil part 32 Second coil part 33, 33x Coil part 30a-30i, 30a1, 30a2, 30b1, 30b2, 30c1, 30c2, 30d1, 30d2, 30e1, 30e2, 30f1, 30f2, 30g1, 30g2, 30h1, 30h2, 30i1, 30i2, 30j1, 30j2, 30k1, 30k2, 30m1, 30m2 Coil part 33a Winding 33b Core 33bs End face 33c Shaft part 33d Disk part 34 Yoke part 35 Winding 40,400 Controller 41 Sensor part 41a Turntable 41b Shielding piece 41c Pho Tointerrupter 41d Lamp 42 Device body 42p Power supply unit 42a Power storage unit 42b Switch unit BT Battery R Resistance D Diode F Rotation direction
20,200 回転子
20a 回転軸
21,201 本体部
22,22a,22b,22x,22m1,22m2,22m3,22m4,22m5,22m6 永久磁石
30,300 固定子
31 第1のコイル部
32 第2のコイル部
33,33x コイル部
30a~30i,30a1,30a2,30b1,30b2,30c1,30c2,30d1,30d2,30e1,30e2,30f1,30f2,30g1,30g2,30h1,30h2,30i1,30i2,30j1,30j2,30k1,30k2,30m1,30m2 コイル部
33a 巻線
33b コア
33bs 端面
33c 軸部
33d 円盤部
34 ヨーク部
35 巻線
40,400 制御装置
41 センサ部
41a 回転盤
41b 遮蔽片
41c フォトインタラプタ
41d ランプ
42 装置本体
42p 電源部
42a 蓄電部
42b スイッチ部
BT 電池
R 抵抗
D ダイオード
F 回転方向 DESCRIPTION OF SYMBOLS 10,100 Electric motor 20,200
(実施の形態1)
本発明の実施の形態1に係る電動機を、図面に基づいて説明する。なお、図1および図2においては、電動機を駆動するための電源は図示していない。
図1に示すように電動機10は、回転子20と、固定子30と、制御装置40とを備えている。 (Embodiment 1)
An electric motor according toEmbodiment 1 of the present invention will be described with reference to the drawings. 1 and 2, the power source for driving the electric motor is not shown.
As shown in FIG. 1, theelectric motor 10 includes a rotor 20, a stator 30, and a control device 40.
本発明の実施の形態1に係る電動機を、図面に基づいて説明する。なお、図1および図2においては、電動機を駆動するための電源は図示していない。
図1に示すように電動機10は、回転子20と、固定子30と、制御装置40とを備えている。 (Embodiment 1)
An electric motor according to
As shown in FIG. 1, the
回転子20は、図3に示すように、回転軸20aが軸線に配置された円盤状の本体部21に、円柱状の永久磁石22が円周方向に沿って配置されたものである。永久磁石22は、回転子20の本体部21に、回転子20の軸線方向(厚み方向)の一側に第1の磁極(例えば、N極。)を向けると共に、他側に第2の磁極(例えば、S極。)を向け、両端面を露出させて埋め込まれている。
本実施の形態1では、永久磁石22は、2個を一組として、120度ごとに3組が、本体部21に埋め込まれている。永久磁石22は、磁力が強力な方が固定子30との吸引力、反発力が強くなるため、ネオジム磁石が使用できる。 As shown in FIG. 3, therotor 20 is configured such that a columnar permanent magnet 22 is disposed along a circumferential direction on a disc-shaped main body 21 in which a rotation shaft 20 a is disposed on an axis. The permanent magnet 22 has the first magnetic pole (for example, N pole) directed to the main body 21 of the rotor 20 on one side in the axial direction (thickness direction) of the rotor 20 and the second magnetic pole on the other side. (For example, S pole.)
In the first embodiment, twopermanent magnets 22 are set as one set, and three sets are embedded in the main body portion 21 every 120 degrees. The permanent magnet 22 can be a neodymium magnet because the stronger the magnetic force, the stronger the attractive force and repulsive force with the stator 30.
本実施の形態1では、永久磁石22は、2個を一組として、120度ごとに3組が、本体部21に埋め込まれている。永久磁石22は、磁力が強力な方が固定子30との吸引力、反発力が強くなるため、ネオジム磁石が使用できる。 As shown in FIG. 3, the
In the first embodiment, two
固定子30は、第1のコイル部31と、第2のコイル部32とから構成されたコイル部33と、ヨーク部34とを備えている。本実施の形態1では、第1のコイル部31と第2のコイル部32とによる一対のコイル部33とヨーク部34とが、40度ごとに9セット配置されている。
コイル部33は、対向配置された永久磁石22と反発する磁極を発生する巻線33aに、永久磁石22が接近すると磁化して吸引する磁性体がコア33bとして実装されている。
第1のコイル部31は、永久磁石22を挟んで一側に、第1の磁極を発生する永久磁石22に対向配置されているため、制御装置40により巻線33aに電流が通電されると、第1の磁極を発生する。第2のコイル部32は、永久磁石22を挟んで他側に、第2の磁極を発生する永久磁石22に対向配置されているため、制御装置40により巻線33aに電流が通電されると、第2の磁極を発生する。 Thestator 30 includes a coil portion 33 including a first coil portion 31 and a second coil portion 32, and a yoke portion 34. In the first embodiment, nine sets of a pair of coil portions 33 and yoke portions 34 formed by the first coil portion 31 and the second coil portion 32 are arranged every 40 degrees.
Thecoil 33 is mounted with a core 33b which is a magnetic body that is magnetized and attracted when the permanent magnet 22 approaches the winding 33a that generates a magnetic pole that repels the opposed permanent magnet 22.
Since thefirst coil portion 31 is disposed on one side of the permanent magnet 22 so as to face the permanent magnet 22 that generates the first magnetic pole, when a current is passed through the winding 33 a by the control device 40. The first magnetic pole is generated. Since the second coil portion 32 is disposed on the other side of the permanent magnet 22 so as to face the permanent magnet 22 that generates the second magnetic pole, a current is passed through the winding 33a by the control device 40. The second magnetic pole is generated.
コイル部33は、対向配置された永久磁石22と反発する磁極を発生する巻線33aに、永久磁石22が接近すると磁化して吸引する磁性体がコア33bとして実装されている。
第1のコイル部31は、永久磁石22を挟んで一側に、第1の磁極を発生する永久磁石22に対向配置されているため、制御装置40により巻線33aに電流が通電されると、第1の磁極を発生する。第2のコイル部32は、永久磁石22を挟んで他側に、第2の磁極を発生する永久磁石22に対向配置されているため、制御装置40により巻線33aに電流が通電されると、第2の磁極を発生する。 The
The
Since the
第1のコイル部31のコア33bと、第2のコイル部のコア33bとは、図4に示すように円柱状に形成された軸部33cと、永久磁石22と対向する先端部に形成された円盤部33dとから形成されている。
The core 33b of the first coil part 31 and the core 33b of the second coil part are formed at the shaft part 33c formed in a columnar shape as shown in FIG. The disc part 33d is formed.
ヨーク部34は、コ字状に形成されている。ヨーク部34は、図4に示すように、一対のコア33bのそれぞれの基端部と一体的に繋がると共に、図1に示すように回転子20を跨いで、第1のコイル部31と第2のコイル部32との磁路を形成するものである。
The yoke portion 34 is formed in a U shape. As shown in FIG. 4, the yoke portion 34 is integrally connected to the respective base end portions of the pair of cores 33b and straddles the rotor 20 as shown in FIG. This forms a magnetic path with the second coil portion 32.
制御装置40は、回転子20が回転するときに、磁性体であるコア33bによって、回転子20の永久磁石22を吸引させて、永久磁石22が接近するコイル部33には通電しない制御を行うものである。また、制御装置40は、永久磁石22が離れるコイル部33には巻線33aに永久磁石22と反発する磁極を発生させる電流を通電する制御を行うものである。
制御装置40は、回転子20の回転位置を検出するためのセンサ部41と、センサ部41によって検出された回転子20の回転位置に応じてコイル部33に通電する装置本体42とを備えている。 When therotor 20 rotates, the control device 40 causes the core 33b, which is a magnetic material, to attract the permanent magnet 22 of the rotor 20, and performs control so that the coil portion 33 approaching the permanent magnet 22 is not energized. Is. In addition, the control device 40 performs control for energizing the coil portion 33 where the permanent magnet 22 is separated with a current that generates a magnetic pole repelling the permanent magnet 22 in the winding 33a.
Thecontrol device 40 includes a sensor unit 41 for detecting the rotational position of the rotor 20, and a device main body 42 that energizes the coil unit 33 according to the rotational position of the rotor 20 detected by the sensor unit 41. Yes.
制御装置40は、回転子20の回転位置を検出するためのセンサ部41と、センサ部41によって検出された回転子20の回転位置に応じてコイル部33に通電する装置本体42とを備えている。 When the
The
センサ部41は、回転軸20aと共に回る回転盤41aと、回転盤41aの周縁部に設けられ、永久磁石22をコイル部33から離脱させる期間を示す遮蔽片41bと、コイル部33の位置に対応して配置され、遮蔽片41bによって遮光されるフォトインタラプタ41cとを備えている。なお、本実施の形態1では、フォトインタラプタ41cの発光部と受光部とが遮蔽片41bに遮蔽されている間に点灯するランプ41dが設けられている。
The sensor unit 41 corresponds to the position of the rotating plate 41a that rotates together with the rotating shaft 20a, the shielding piece 41b that is provided at the peripheral portion of the rotating plate 41a, and indicates the period during which the permanent magnet 22 is separated from the coil unit 33, and the coil unit 33. And a photo interrupter 41c that is shielded by the shielding piece 41b. In the first embodiment, a lamp 41d that is lit while the light emitting portion and the light receiving portion of the photo interrupter 41c are shielded by the shielding piece 41b is provided.
図5Aに示すように、装置本体42には、電源部42pからコイル部33への急峻な給電を行うための蓄電部42aと、センサ部41からの信号により蓄電部42aからの電流をコイル部33へ供給するスイッチ部42bとを備えている。
蓄電部42aとスイッチ部42bとは、図5Bに示すような回路構成とすることができる。
図5Bでは、センサ部41の1個のフォトインタラプタ41cにより、一対のコイル部33(第1のコイル部31,第2のコイル部32)の通電が制御される回路例を示している。 As shown in FIG. 5A, the apparatusmain body 42 includes a power storage unit 42 a for performing rapid power supply from the power supply unit 42 p to the coil unit 33, and a current from the power storage unit 42 a according to a signal from the sensor unit 41. And a switch unit 42b to be supplied to 33.
Thepower storage unit 42a and the switch unit 42b can have a circuit configuration as shown in FIG. 5B.
FIG. 5B shows a circuit example in which the energization of the pair of coil parts 33 (thefirst coil part 31 and the second coil part 32) is controlled by one photo interrupter 41c of the sensor part 41.
蓄電部42aとスイッチ部42bとは、図5Bに示すような回路構成とすることができる。
図5Bでは、センサ部41の1個のフォトインタラプタ41cにより、一対のコイル部33(第1のコイル部31,第2のコイル部32)の通電が制御される回路例を示している。 As shown in FIG. 5A, the apparatus
The
FIG. 5B shows a circuit example in which the energization of the pair of coil parts 33 (the
図5Bに示す回路は、電源部42pとしての電池BTと、蓄電部42aとしての直列接続された電気二重層コンデンサと、スイッチ部42bとしてのp型MOS FETと、により構成されている。蓄電部42aには、電池BTへの逆方向電流を阻止するためのダイオードDと、それぞれの電気二重層コンデンサに並列接続された抵抗Rとが配置されている。
装置本体42では、9セット設けられたコイル部33に対応して、図5Bに示す回路が9セット形成されている。なお、電池BTは9セットの個々に設けてもよいし、全部を共通させてもよい、 The circuit shown in FIG. 5B includes a battery BT as apower supply unit 42p, an electric double layer capacitor connected in series as a power storage unit 42a, and a p-type MOS FET as a switch unit 42b. In the power storage unit 42a, a diode D for blocking a reverse current to the battery BT and a resistor R connected in parallel to each electric double layer capacitor are arranged.
In the apparatusmain body 42, nine sets of circuits shown in FIG. 5B are formed corresponding to the nine coil sets 33 provided. In addition, the battery BT may be provided for each of nine sets, or all may be shared.
装置本体42では、9セット設けられたコイル部33に対応して、図5Bに示す回路が9セット形成されている。なお、電池BTは9セットの個々に設けてもよいし、全部を共通させてもよい、 The circuit shown in FIG. 5B includes a battery BT as a
In the apparatus
以上のように構成された本発明の実施の形態1に係る電動機10の動作および使用状態を、図面に基づいて説明する。なお、図6においては、時計の12時の位置にある一対のコイル部33(第1のコイル部31,第2のコイル部32)をコイル部30aとし、コイル部30aから時計回りに、コイル部30b,コイル部30c,コイル部30d・・・コイル部30iが配置されているものとして説明する。また、本実施の形態1では、2個の永久磁石22がコイル部30hからコイル部30iへ移動するときの状態を説明する。また、2個の永久磁石22のうち、回転方向の前側に位置する方を永久磁石22a、後側に位置する方を永久磁石22bとして説明する。
The operation and use state of electric motor 10 according to Embodiment 1 of the present invention configured as described above will be described with reference to the drawings. In FIG. 6, a pair of coil portions 33 (first coil portion 31 and second coil portion 32) at the 12 o'clock position of the timepiece are defined as a coil portion 30 a, and a coil is rotated clockwise from the coil portion 30 a. Description will be made assuming that the portion 30b, the coil portion 30c, the coil portion 30d,..., The coil portion 30i are arranged. Moreover, in this Embodiment 1, the state when the two permanent magnets 22 move from the coil part 30h to the coil part 30i is demonstrated. Of the two permanent magnets 22, the one located on the front side in the rotation direction will be described as a permanent magnet 22 a, and the one located on the rear side will be described as a permanent magnet 22 b.
図6Aに示す、回転している回転子20の永久磁石22a,22bが、コイル部30h上に位置したとき、詳しくは、永久磁石22aがコイル部33hの回転方向Fの前半円部分に、永久磁石22bがコイル部30hの回転方向の後半円部分に位置したときに、コイル部30hに対応する遮蔽片41bはフォトインタラプタ41cを遮蔽していないためコイル部30hは通電されていない。
When the permanent magnets 22a and 22b of the rotating rotor 20 shown in FIG. 6A are positioned on the coil portion 30h, specifically, the permanent magnet 22a is permanently attached to the first semicircular portion in the rotation direction F of the coil portion 33h. When the magnet 22b is positioned in the second half of the rotation direction of the coil portion 30h, the shielding piece 41b corresponding to the coil portion 30h does not shield the photointerrupter 41c, so that the coil portion 30h is not energized.
永久磁石22aがコイル部30iに接近すると、コイル部30hの回転方向側に隣接するコイル部30iのコア33bを形成する磁性体が磁化し、永久磁石22aを吸引することで、回転子20が回転方向に引かれ、駆動される。コア33bには、巻線33a内に実装される軸部33cに、巻線33aの輪郭より大きい円盤部33dが形成されているため、円盤部33dが接近する永久磁石22を幅広い範囲で吸引させることができる。
When the permanent magnet 22a approaches the coil part 30i, the magnetic body forming the core 33b of the coil part 30i adjacent to the rotation direction side of the coil part 30h is magnetized, and the rotor 20 rotates by attracting the permanent magnet 22a. Pulled in the direction and driven. In the core 33b, a disk portion 33d larger than the contour of the winding 33a is formed on the shaft portion 33c mounted in the winding 33a. Therefore, the permanent magnet 22 approaching the disk portion 33d is attracted in a wide range. be able to.
図6Bに示すように、永久磁石22aがコイル部30iのコア33bに吸引されて回転することで、永久磁石22aがコイル部30iに掛かり、永久磁石22bがコイル部30hの回転方向の前半円部分に位置する。このとき遮蔽片41bが、コイル部30hに対応するフォトインタラプタ41cを遮断する。
図5に示すように、フォトインタラプタ41cを遮断されたことで、スイッチ部42bが有効となり、蓄電部42aからの電流がコイル部33(この場合、コイル部30h)に流れる。 As shown in FIG. 6B, thepermanent magnet 22a is attracted to the core 33b of the coil portion 30i and rotates, so that the permanent magnet 22a is hooked on the coil portion 30i, and the permanent magnet 22b is the first semicircular portion in the rotation direction of the coil portion 30h. Located in. At this time, the shielding piece 41b blocks the photo interrupter 41c corresponding to the coil portion 30h.
As illustrated in FIG. 5, thephoto interrupter 41c is cut off, so that the switch unit 42b becomes effective, and the current from the power storage unit 42a flows to the coil unit 33 (in this case, the coil unit 30h).
図5に示すように、フォトインタラプタ41cを遮断されたことで、スイッチ部42bが有効となり、蓄電部42aからの電流がコイル部33(この場合、コイル部30h)に流れる。 As shown in FIG. 6B, the
As illustrated in FIG. 5, the
図6Cに示すように、コイル部30hに電流が流れることで、第1の磁極(例えば、N極。)が向いた永久磁石22bに対向する第1のコイル部31は第1の磁極を発生し、第2の磁極(例えば、S極。)が向いた永久磁石22bに対向する第2のコイル部32は第2の磁極を発生する。そうすることで、永久磁石22bは、コイル部30hに反発して、回転方向へ押され、駆動される。このようにして制御装置40は、遮蔽片41bがフォトインタラプタ41cを遮蔽している間を、永久磁石22bをコイル部30hから離脱させる期間として、コイル部30hに通電する。
As shown in FIG. 6C, when a current flows through the coil portion 30h, the first coil portion 31 facing the permanent magnet 22b facing the first magnetic pole (for example, N pole) generates the first magnetic pole. The second coil portion 32 facing the permanent magnet 22b facing the second magnetic pole (for example, the S pole) generates the second magnetic pole. By doing so, the permanent magnet 22b is repelled by the coil part 30h, pushed in the rotation direction, and driven. In this way, the control device 40 energizes the coil portion 30h as a period in which the permanent magnet 22b is detached from the coil portion 30h while the shielding piece 41b shields the photo interrupter 41c.
図6Dに示すように、コイル部30iのコア33bによる永久磁石22aへの吸引と,コイル部30hの巻線33aによる永久磁石22bへの反発により、永久磁石22a,22bがコイル部30iへ移動すると、図5Bと同様に、永久磁石22aがコイル部30aのコア33bに吸引されると共に、遮蔽片41bが、今度はコイル部30iに対応するフォトインタラプタ41cを遮断して、コイル部30iが反発動作となる。このとき、遮蔽片41bは、コイル部30hに対応するフォトインタラプタ41cを通過して遮断しなくなるため、コイル部30hへは通電しなくなる。
As shown in FIG. 6D, when the permanent magnets 22a and 22b move to the coil portion 30i due to the attraction of the coil portion 30i to the permanent magnet 22a by the core 33b and the repulsion of the coil portion 30h to the permanent magnet 22b. Similarly to FIG. 5B, the permanent magnet 22a is attracted to the core 33b of the coil part 30a, and the shielding piece 41b in turn interrupts the photo interrupter 41c corresponding to the coil part 30i, so that the coil part 30i repels. It becomes. At this time, since the shielding piece 41b does not pass through the photo interrupter 41c corresponding to the coil portion 30h, it does not energize the coil portion 30h.
このように、永久磁石22とコイル部33とによる吸引と反発の動作が、回転子20の全部で120度ごとの3箇所で行われて、回転子20が回転する。
コイル部30aからコイル部30iの通電の状態を図7に示す。回転子20の本体部21に、永久磁石22が、2個を一組として、3箇所に配置され、コイル部33(第1のコイル部31と第2のコイル部32とのセット)が、コイル部30aからコイル部30iまで9本設けられているため、図7に示すように、それぞれのコイル部30aからコイル部30iには、回転子20の回転角度が120度のうち、1/3の40度分が通電期間となり、2/3の80度分が休止期間となる。 In this way, the attracting and repelling operations by thepermanent magnet 22 and the coil portion 33 are performed at three locations of every 120 degrees of the rotor 20, and the rotor 20 rotates.
The state of energization from thecoil part 30a to the coil part 30i is shown in FIG. The permanent magnets 22 are arranged at three locations on the main body portion 21 of the rotor 20 as a set of two pieces, and a coil portion 33 (a set of the first coil portion 31 and the second coil portion 32) is provided. Since nine coils 30a to 30i are provided, as shown in FIG. 7, the rotation angle of the rotor 20 is 1/3 of 120 degrees in each coil 30a to 30i. The 40 degree is an energization period, and 2/3 is the rest period.
コイル部30aからコイル部30iの通電の状態を図7に示す。回転子20の本体部21に、永久磁石22が、2個を一組として、3箇所に配置され、コイル部33(第1のコイル部31と第2のコイル部32とのセット)が、コイル部30aからコイル部30iまで9本設けられているため、図7に示すように、それぞれのコイル部30aからコイル部30iには、回転子20の回転角度が120度のうち、1/3の40度分が通電期間となり、2/3の80度分が休止期間となる。 In this way, the attracting and repelling operations by the
The state of energization from the
コイル部30aからコイル部30iの休止期間であっても、磁性体により形成されたコア33bにより永久磁石22を吸引して回転子20を回転させることができるので、効率よく回転させることができる。また、コイル部33は、通電期間で電力を消費するが、休止期間は電力を消費しないため、消費電力を抑えることができる。更に、休止期間は電力を消費しないため、コイル部33が発熱しない期間であると共に、放熱によりコイル部33を冷やすことができる冷却期間ともなる。従って、電動機10は、出力の低下を抑えつつ、消費電力を抑えることができると共に、発熱も抑えることができる。
Even during the rest period of the coil portion 30a to the coil portion 30i, the rotor 20 can be rotated by attracting the permanent magnet 22 by the core 33b formed of a magnetic material, so that the rotor 20 can be efficiently rotated. Moreover, although the coil part 33 consumes electric power in an energization period, since it does not consume electric power in an idle period, it can suppress power consumption. Furthermore, since the power is not consumed in the idle period, the coil part 33 does not generate heat and is also a cooling period in which the coil part 33 can be cooled by heat radiation. Therefore, the electric motor 10 can suppress power consumption and suppress heat generation while suppressing a decrease in output.
本実施の形態1では、制御装置40は、回転周りに40度ごとに全部で9箇所に配置されたコイル部33に対して、休止期間とした2本のコイル部33ごとに、1本のコイル部33を通電期間としている。これは、休止期間のコイル部33と通電期間のコイル部33とを交互にすると、永久磁石22の磁力の強度やコイル部33の磁力の強度が強いと、コア33bにより吸引されている永久磁石22が、このコア33bの進行方向側に隣接するコイル部33の反発の影響を受け、回転駆動が阻害されるためである。従って、永久磁石22の磁力の強度やコイル部33の磁力の強度に応じて、通電期間とするコイル部33の間隔を調整するのが望ましい。
In the first embodiment, the control device 40 has one coil unit 33 for each of the two coil units 33 that are in a rest period, with respect to the coil units 33 that are arranged at nine locations in total around 40 degrees of rotation. The coil part 33 is set as the energization period. This is because if the coil portion 33 in the idle period and the coil portion 33 in the energization period are alternately arranged, the permanent magnet attracted by the core 33b when the magnetic strength of the permanent magnet 22 and the magnetic strength of the coil portion 33 are strong. This is because 22 is affected by the repulsion of the coil portion 33 adjacent to the traveling direction side of the core 33b, and the rotational drive is hindered. Therefore, it is desirable to adjust the interval between the coil portions 33 as the energization period according to the strength of the magnetic force of the permanent magnet 22 and the strength of the magnetic force of the coil portion 33.
本実施の形態1では、永久磁石22が、回転子20の本体部21の厚み方向の一側にN極を向けると共に、他側にS極を向けて、本体部21に配置され、この永久磁石22を挟んで一側に、第1のコイル部31が配置されている共に、他側に、第2のコイル部32が配置されている。
In the first embodiment, the permanent magnet 22 is arranged on the main body 21 with the N pole facing one side in the thickness direction of the main body 21 of the rotor 20 and the S pole facing the other side. The first coil part 31 is arranged on one side with the magnet 22 in between, and the second coil part 32 is arranged on the other side.
しかし、永久磁石22を本体部21の円周面に配置して、永久磁石22の端面を半径方向の外側に向け、コイル部33を、本体部21の円周面に向けて放射状に配置して、永久磁石22に対向させてもよい。このように永久磁石22とコイル部33とを配置すると、電動機として、回転軸20aからの直径が大きくなるだけでなく、一対のコイル部33のうち、第1のコイル部31または第2のコイル部32のいずれか一方のみしか、放射状に配置できないため、高出力を得ることができない。
However, the permanent magnet 22 is disposed on the circumferential surface of the main body portion 21, the end surface of the permanent magnet 22 is directed outward in the radial direction, and the coil portions 33 are disposed radially toward the circumferential surface of the main body portion 21. The permanent magnet 22 may be opposed to the permanent magnet 22. When the permanent magnet 22 and the coil portion 33 are arranged in this manner, the electric motor not only has a large diameter from the rotating shaft 20a, but also the first coil portion 31 or the second coil of the pair of coil portions 33. Since only one of the portions 32 can be arranged radially, a high output cannot be obtained.
回転子20の軸線方向(本体部21の厚み方向)に配置された永久磁石22を挟んで、第1のコイル部31と第2のコイル部32とが配置されていると、回転子20を一側および他側の両側で、回転駆動できるため、高出力を得ることができる。
When the first coil portion 31 and the second coil portion 32 are disposed with the permanent magnet 22 disposed in the axial direction of the rotor 20 (in the thickness direction of the main body portion 21) interposed therebetween, the rotor 20 is Since both sides of the one side and the other side can be rotationally driven, high output can be obtained.
更に、ヨーク部34が、回転子20を跨いで、第1のコイル部31と第2のコイル部32とのコア33b同士を繋いで、磁路を形成しているため、第1のコイル部31と第2のコイル部32とが発生する磁力の漏れを抑え、永久磁石22の反発に寄与させることができる。
Furthermore, since the yoke part 34 straddles the rotor 20 and connects the cores 33b of the first coil part 31 and the second coil part 32 to form a magnetic path, the first coil part The leakage of magnetic force generated by the first coil 31 and the second coil portion 32 can be suppressed, and the permanent magnet 22 can be repelled.
回転子20では、コイル部33の配置間隔が、永久磁石22より大きいときに、この配置間隔に対応させて、永久磁石22が複数個連続して配置されている。本実施の形態1では、40度ごとにコイル部33が配置されており、コイル部33の中心同士の間隔は、円柱状に形成された永久磁石22の直径より大きい。従って、コイル部33の大きさ、配置数に応じて、2個の永久磁石22を一組にして配置することで、大きさが小さい永久磁石22であっても、回転方向の前側の通電してないコイル部33のコア33bによる吸引と、回転方向の後側の通電したコイル部33による反発とを、2個の永久磁石22に対して、同時に作用させることができる。なお、永久磁石の大きさ(直径)が、コイル部33の配置間隔とほぼ同じであれば、永久磁石は1個でよい。
In the rotor 20, when the arrangement interval of the coil portions 33 is larger than the permanent magnet 22, a plurality of permanent magnets 22 are continuously arranged in correspondence with the arrangement interval. In this Embodiment 1, the coil part 33 is arrange | positioned every 40 degree | times and the space | interval of the centers of the coil part 33 is larger than the diameter of the permanent magnet 22 formed in the column shape. Therefore, by arranging two permanent magnets 22 as a set in accordance with the size and number of coils 33, even if the permanent magnets 22 have a small size, the front side current in the rotational direction is energized. It is possible to simultaneously act on the two permanent magnets 22 by the suction of the coil portion 33 that is not connected to the core 33 b and the repulsion by the energized coil portion 33 on the rear side in the rotation direction. In addition, if the magnitude | size (diameter) of a permanent magnet is substantially the same as the arrangement | positioning space | interval of the coil part 33, one permanent magnet may be sufficient.
例えば、図8に示すように、コイル部33xが20度ごとに18本配置された固定子と、コイル部33の間隔とほぼ同じ直径または少し大きい永久磁石22xが60度ごとに配置された回転子とによる電動機である場合には、回転方向の前側の通電してないコイル部33xのコアによる吸引と、回転方向の後側の通電したコイル部33xによる反発とを、1個の永久磁石22xで同時に作用させることができる。従って、複数個の永久磁石22xとする必要はない。また、直径が大きい1個の永久磁石22xとすることで、永久磁石22xの直径の半分の永久磁石を2個で使用するときより、コイル部33xとの対向面積は2倍となり、磁力は2倍より更に大きくなるため、高出力を得ることができる。
For example, as shown in FIG. 8, a stator in which 18 coil portions 33x are arranged every 20 degrees, and a permanent magnet 22x having a diameter or a little larger than the interval between the coil portions 33 is arranged every 60 degrees. In the case of an electric motor with a child, attraction by the core of the coil portion 33x that is not energized on the front side in the rotation direction and repulsion by the coil portion 33x that is energized on the rear side in the rotation direction are one permanent magnet 22x. At the same time. Therefore, it is not necessary to use a plurality of permanent magnets 22x. Further, by using one permanent magnet 22x having a large diameter, the facing area with the coil portion 33x is doubled and the magnetic force is 2 than when two permanent magnets having a diameter half that of the permanent magnet 22x are used. Since it becomes larger than double, a high output can be obtained.
(実施の形態2)
本発明の実施の形態2に係る電動機を、図面に基づいて説明する。なお、図9および図10においては、図2および図4と同じ構成のものは同符号を付して説明を省略する。また、図9においては、電動機を駆動するための電源は図示していない。
図9に示すように、電動機100は、回転子200と、固定子300と、制御装置400とを備えている。 (Embodiment 2)
An electric motor according to Embodiment 2 of the present invention will be described with reference to the drawings. 9 and 10, the same components as those in FIGS. 2 and 4 are given the same reference numerals, and description thereof is omitted. In FIG. 9, the power source for driving the electric motor is not shown.
As shown in FIG. 9, theelectric motor 100 includes a rotor 200, a stator 300, and a control device 400.
本発明の実施の形態2に係る電動機を、図面に基づいて説明する。なお、図9および図10においては、図2および図4と同じ構成のものは同符号を付して説明を省略する。また、図9においては、電動機を駆動するための電源は図示していない。
図9に示すように、電動機100は、回転子200と、固定子300と、制御装置400とを備えている。 (Embodiment 2)
An electric motor according to Embodiment 2 of the present invention will be described with reference to the drawings. 9 and 10, the same components as those in FIGS. 2 and 4 are given the same reference numerals, and description thereof is omitted. In FIG. 9, the power source for driving the electric motor is not shown.
As shown in FIG. 9, the
回転子200は、2枚の円盤により形成された本体部201の間に、円柱状の永久磁石22が円周方向に沿って配置されている。永久磁石22は、回転子200の軸線方向の一側または他側に、第1の磁極(例えば、N極。)または第2の磁極(例えば、S極)を、円周方向に沿って交互に向けて、回転子200に配置されている。永久磁石22は、2枚の円盤の本体部201から両端面を露出させている。
本実施の形態2では、永久磁石22は、円周方向に等間隔に、6個が120度ごとに本体部201に配置されている。なお、本体部201は、2枚の円盤から形成されているが、1枚の厚板により形成して、永久磁石22を埋め込んでもよい。 In therotor 200, a columnar permanent magnet 22 is disposed along a circumferential direction between main bodies 201 formed by two disks. The permanent magnet 22 has a first magnetic pole (for example, an N pole) or a second magnetic pole (for example, an S pole) alternately on one side or the other side in the axial direction of the rotor 200 along the circumferential direction. It is arrange | positioned at the rotor 200 toward. The permanent magnet 22 exposes both end faces from the main body portion 201 of the two disks.
In the second embodiment, sixpermanent magnets 22 are arranged in the main body 201 at regular intervals in the circumferential direction every 120 degrees. The main body 201 is formed of two disks, but may be formed of a single thick plate and embedded with the permanent magnet 22.
本実施の形態2では、永久磁石22は、円周方向に等間隔に、6個が120度ごとに本体部201に配置されている。なお、本体部201は、2枚の円盤から形成されているが、1枚の厚板により形成して、永久磁石22を埋め込んでもよい。 In the
In the second embodiment, six
固定子300は、実施の形態1と同様に、第1のコイル部31と、第2のコイル部32とから構成されたコイル部33と、ヨーク部34とを備えている。本実施の形態2では、第1のコイル部31と第2のコイル部32とによる一対のコイル部33とヨーク部34とが、30度ごとに12セット配置されている。
コイル部33は、永久磁石22を挟んで両側に、第1の磁極を発生する第1のコイル部31(一側)と、第2の磁極を発生する第2のコイル部32(他側)とが、円周方向に沿って交互に配置されている。
第1のコイル部31と、第2のコイル部32とは、制御装置400により、コイル部33から離間する永久磁石22の磁極に応じて、電流の向きを制御することで、第1の磁極または第2の磁極を発生させ、永久磁石22に反発させる。
コイル部33(第1のコイル部31,第2のコイル部32)は、図10に示すように、巻線33aより、巻線33aが巻かれたコア33bの方が短く形成されている。コア33bの回転子200側の端面33bsは、巻線33aより奥まった位置に配置されている。
コア33bの端面33bsが巻線33aより奥まった位置に配置されていることによってできた空間は、空洞でもよいし、樹脂などの非磁性体によって埋めてもよい。 As in the first embodiment, thestator 300 includes a coil portion 33 including a first coil portion 31 and a second coil portion 32, and a yoke portion 34. In the second embodiment, 12 sets of a pair of coil portions 33 and yoke portions 34 formed by the first coil portion 31 and the second coil portion 32 are arranged every 30 degrees.
Thecoil unit 33 includes a first coil unit 31 (one side) that generates a first magnetic pole on both sides of the permanent magnet 22 and a second coil unit 32 (other side) that generates a second magnetic pole. Are alternately arranged along the circumferential direction.
Thefirst coil unit 31 and the second coil unit 32 are controlled by the control device 400 according to the magnetic pole of the permanent magnet 22 that is separated from the coil unit 33, thereby controlling the first magnetic pole. Alternatively, the second magnetic pole is generated and repelled by the permanent magnet 22.
As shown in FIG. 10, the coil part 33 (thefirst coil part 31 and the second coil part 32) is formed so that the core 33b around which the winding 33a is wound is shorter than the winding 33a. The end surface 33bs on the rotor 200 side of the core 33b is disposed at a position deeper than the winding 33a.
The space formed by arranging the end surface 33bs of the core 33b at a position deeper than the winding 33a may be a cavity or may be filled with a nonmagnetic material such as resin.
コイル部33は、永久磁石22を挟んで両側に、第1の磁極を発生する第1のコイル部31(一側)と、第2の磁極を発生する第2のコイル部32(他側)とが、円周方向に沿って交互に配置されている。
第1のコイル部31と、第2のコイル部32とは、制御装置400により、コイル部33から離間する永久磁石22の磁極に応じて、電流の向きを制御することで、第1の磁極または第2の磁極を発生させ、永久磁石22に反発させる。
コイル部33(第1のコイル部31,第2のコイル部32)は、図10に示すように、巻線33aより、巻線33aが巻かれたコア33bの方が短く形成されている。コア33bの回転子200側の端面33bsは、巻線33aより奥まった位置に配置されている。
コア33bの端面33bsが巻線33aより奥まった位置に配置されていることによってできた空間は、空洞でもよいし、樹脂などの非磁性体によって埋めてもよい。 As in the first embodiment, the
The
The
As shown in FIG. 10, the coil part 33 (the
The space formed by arranging the end surface 33bs of the core 33b at a position deeper than the winding 33a may be a cavity or may be filled with a nonmagnetic material such as resin.
ヨーク部34には磁力を発生させる巻線35が設けられている。この磁力は、永久磁石22を挟んで対向するコイル部33(第1のコイル部31,第2のコイル部32)が発生する第1の磁極および第2の磁極に合わせて、制御装置400が巻線35に流れる電流を制御している。
The yoke portion 34 is provided with a winding 35 for generating a magnetic force. This magnetic force is controlled by the control device 400 in accordance with the first magnetic pole and the second magnetic pole generated by the coil portions 33 (the first coil portion 31 and the second coil portion 32) facing each other with the permanent magnet 22 in between. The current flowing through the winding 35 is controlled.
制御装置400は、回転子200が回転するときに、磁性体であるコア33bによって、回転子200の永久磁石22を吸引させて、永久磁石22が接近するコイル部33には通電しない制御を行う。また、制御装置400は、永久磁石22が離れるコイル部33には巻線33aに永久磁石22と反発する磁極を発生させる電流を通電する制御を行う。
When the rotor 200 rotates, the control device 400 causes the core 33b, which is a magnetic body, to attract the permanent magnet 22 of the rotor 200, and performs control so that the coil portion 33 that the permanent magnet 22 approaches is not energized. . In addition, the control device 400 performs control so that a current that generates a magnetic pole repelling the permanent magnet 22 in the winding 33a is applied to the coil portion 33 from which the permanent magnet 22 is separated.
以上のように構成された本発明の実施の形態2に係る電動機100の動作および使用状態を、図面に基づいて説明する。
なお、図11および図12A~図12Dにおいては、時計の12時の位置を回転角度0度として、ここに位置する一対のコイル部33のうち、第1のコイル部31をコイル部30a1とし、このコイル部30a1に対向する第2のコイル部32をコイル部30a2とする。
そして、コイル部30a1,30a2から、回転子200の回転方向である時計回りに、コイル部30b1,30b2、コイル部30c1,30c2,コイル部30d1,30d2・・・コイル部30m1,30m2が配置されているものとして説明する。
また、時計の12時の位置にある永久磁石22を永久磁石22m1とし、永久磁石22m1から時計回りに、22m2,22m3・・・22m6とする。 The operation and use state ofelectric motor 100 according to Embodiment 2 of the present invention configured as described above will be described with reference to the drawings.
In FIG. 11 and FIGS. 12A to 12D, the 12 o'clock position of the timepiece is set at a rotation angle of 0 degrees, and thefirst coil portion 31 of the pair of coil portions 33 located here is the coil portion 30a1, Let the 2nd coil part 32 which opposes this coil part 30a1 be coil part 30a2.
And coil part 30b1, 30b2, coil part 30c1, 30c2, coil part 30d1, 30d2 ... coil part 30m1, 30m2 is arrange | positioned from coil part 30a1, 30a2 to the clockwise rotation which is the rotation direction of therotor 200. Explain that it is.
Also, thepermanent magnet 22 at the 12 o'clock position of the timepiece is designated as a permanent magnet 22m1, and 22m2, 22m3... 22m6 clockwise from the permanent magnet 22m1.
なお、図11および図12A~図12Dにおいては、時計の12時の位置を回転角度0度として、ここに位置する一対のコイル部33のうち、第1のコイル部31をコイル部30a1とし、このコイル部30a1に対向する第2のコイル部32をコイル部30a2とする。
そして、コイル部30a1,30a2から、回転子200の回転方向である時計回りに、コイル部30b1,30b2、コイル部30c1,30c2,コイル部30d1,30d2・・・コイル部30m1,30m2が配置されているものとして説明する。
また、時計の12時の位置にある永久磁石22を永久磁石22m1とし、永久磁石22m1から時計回りに、22m2,22m3・・・22m6とする。 The operation and use state of
In FIG. 11 and FIGS. 12A to 12D, the 12 o'clock position of the timepiece is set at a rotation angle of 0 degrees, and the
And coil part 30b1, 30b2, coil part 30c1, 30c2, coil part 30d1, 30d2 ... coil part 30m1, 30m2 is arrange | positioned from coil part 30a1, 30a2 to the clockwise rotation which is the rotation direction of the
Also, the
永久磁石22は、回転子200の本体部201に60度ごとに配置されている。コイル部33は、固定子300に30度ごとに配置されている。
従って、図11および図12Aに示すように、例えば、回転している永久磁石22m1~22m6がコイル部30a1,30a2、コイル部30c1,30c2、コイル部30e1,30e2、コイル部30g1,30g2、コイル部30i1,30i2、コイル部30k1,30k2と軸線同士が重なった後に、これらのコイル部33から離間しようとする期間が通電期間となる。例えば、永久磁石22m1~22m6が、図11Bに示す30度ずれる位置までを通電期間とすることができる。
Thepermanent magnets 22 are arranged in the main body 201 of the rotor 200 every 60 degrees. The coil portion 33 is disposed on the stator 300 every 30 degrees.
Therefore, as shown in FIGS. 11 and 12A, for example, the rotating permanent magnets 22m1 to 22m6 include coil portions 30a1, 30a2, coil portions 30c1, 30c2, coil portions 30e1, 30e2, coil portions 30g1, 30g2, and coil portions. After the axes of 30i1 and 30i2 and the coil portions 30k1 and 30k2 overlap with each other, a period in which they are about to be separated from thesecoil portions 33 is an energization period. For example, the energization period can be a position where the permanent magnets 22m1 to 22m6 are displaced by 30 degrees as shown in FIG. 11B.
従って、図11および図12Aに示すように、例えば、回転している永久磁石22m1~22m6がコイル部30a1,30a2、コイル部30c1,30c2、コイル部30e1,30e2、コイル部30g1,30g2、コイル部30i1,30i2、コイル部30k1,30k2と軸線同士が重なった後に、これらのコイル部33から離間しようとする期間が通電期間となる。例えば、永久磁石22m1~22m6が、図11Bに示す30度ずれる位置までを通電期間とすることができる。
The
Therefore, as shown in FIGS. 11 and 12A, for example, the rotating permanent magnets 22m1 to 22m6 include coil portions 30a1, 30a2, coil portions 30c1, 30c2, coil portions 30e1, 30e2, coil portions 30g1, 30g2, and coil portions. After the axes of 30i1 and 30i2 and the coil portions 30k1 and 30k2 overlap with each other, a period in which they are about to be separated from these
制御装置400は、回転角度0度から30度までの通電期間では、これらのコイル部33のうち、永久磁石22(永久磁石22m1,22m3,22m5)の第1の磁極(N極)と対向する、コイル部30a1と、コイル部30e1と、コイル部30i1に第1の磁極(N極)を発生させる。
また、その永久磁石22(永久磁石22m1,22m3,22m5)の裏側(第2の磁極(S極))と対向するコイル部30a2と、コイル部30e2と、コイル部30i2とに第2の磁極(S極)を発生させる。つまり、永久磁石22の一端部側と他端部側とでは、磁極は反対になるため、制御装置400は、対向配置されたコイル部33に、それぞれ反対となる磁極を発生させる。 Thecontrol device 400 faces the first magnetic pole (N pole) of the permanent magnet 22 (permanent magnets 22m1, 22m3, 22m5) among these coil portions 33 during the energization period from the rotation angle of 0 degrees to 30 degrees. The first magnetic pole (N pole) is generated in the coil portion 30a1, the coil portion 30e1, and the coil portion 30i1.
Further, a second magnetic pole (on the coil part 30a2, the coil part 30e2, and the coil part 30i2 facing the back side (second magnetic pole (S pole)) of the permanent magnet 22 (permanent magnets 22m1, 22m3, 22m5). S pole) is generated. That is, since the magnetic poles are opposite on the one end side and the other end side of thepermanent magnet 22, the control device 400 generates the opposite magnetic poles in the coil portions 33 arranged to face each other.
また、その永久磁石22(永久磁石22m1,22m3,22m5)の裏側(第2の磁極(S極))と対向するコイル部30a2と、コイル部30e2と、コイル部30i2とに第2の磁極(S極)を発生させる。つまり、永久磁石22の一端部側と他端部側とでは、磁極は反対になるため、制御装置400は、対向配置されたコイル部33に、それぞれ反対となる磁極を発生させる。 The
Further, a second magnetic pole (on the coil part 30a2, the coil part 30e2, and the coil part 30i2 facing the back side (second magnetic pole (S pole)) of the permanent magnet 22 (permanent magnets 22m1, 22m3, 22m5). S pole) is generated. That is, since the magnetic poles are opposite on the one end side and the other end side of the
また、制御装置400は、回転角度0度から30度までの通電期間では、永久磁石22(永久磁石22m2,22m4,22m6)の第2の磁極(S極)と対向する、コイル部30c1と、コイル部30g1と、コイル部30k1に第2の磁極(S極)を発生させる。
また、その永久磁石22(永久磁石22m2,22m4,22m6)の裏側(第1の磁極(N極))と対向するコイル部30c2と、コイル部30g2と、コイル部30k2とに第1の磁極(N極)を発生させる。つまり、永久磁石22の一端部側と他端部側とでは、磁極は反対になるため、制御装置400は、対向配置されたコイル部33に、それぞれ反対となる磁極を発生させる。 Further, thecontrol device 400 includes a coil portion 30c1 that faces the second magnetic pole (S pole) of the permanent magnet 22 (permanent magnets 22m2, 22m4, and 22m6) during the energization period from the rotation angle of 0 degrees to 30 degrees, A second magnetic pole (S pole) is generated in the coil portion 30g1 and the coil portion 30k1.
In addition, the first magnetic pole (on the coil portion 30c2, the coil portion 30g2, and the coil portion 30k2 facing the back side (first magnetic pole (N pole)) of the permanent magnet 22 (permanent magnets 22m2, 22m4, 22m6). N pole) is generated. That is, since the magnetic poles are opposite on the one end side and the other end side of thepermanent magnet 22, the control device 400 generates the opposite magnetic poles in the coil portions 33 arranged to face each other.
また、その永久磁石22(永久磁石22m2,22m4,22m6)の裏側(第1の磁極(N極))と対向するコイル部30c2と、コイル部30g2と、コイル部30k2とに第1の磁極(N極)を発生させる。つまり、永久磁石22の一端部側と他端部側とでは、磁極は反対になるため、制御装置400は、対向配置されたコイル部33に、それぞれ反対となる磁極を発生させる。 Further, the
In addition, the first magnetic pole (on the coil portion 30c2, the coil portion 30g2, and the coil portion 30k2 facing the back side (first magnetic pole (N pole)) of the permanent magnet 22 (permanent magnets 22m2, 22m4, 22m6). N pole) is generated. That is, since the magnetic poles are opposite on the one end side and the other end side of the
このとき、図11に示すように、永久磁石22m1~22m6が位置していない、コイル部30b1,30b2、コイル部30d1,30d2、コイル部30f1,30f2、コイル部30h1,30h2、コイル部30j1,30j2、コイル部30m1,30m2には、休止期間であるため、制御装置400は通電しない。
At this time, as shown in FIG. 11, the permanent magnets 22m1 to 22m6 are not located, and the coil portions 30b1 and 30b2, the coil portions 30d1 and 30d2, the coil portions 30f1 and 30f2, the coil portions 30h1 and 30h2, and the coil portions 30j1 and 30j2 Since the coil portions 30m1 and 30m2 are in a pause period, the control device 400 is not energized.
このようにして、永久磁石22m1~22m6は、それぞれのコイル部33から同じ磁極の磁力が発生しているため、反発することで回転力が付与される。また、コイル部30b1,30b2、コイル部30d1,30d2、コイル部30f1,30f2、コイル部30h1,30h2、コイル部30j1,30j2、コイル部30m1,30m2は、休止期間であるため通電されていないが、永久磁石22m1~22m6は、これらのコイル部33のコア33bに引き寄せられて回転力が付与される。
従って、図12Bに示すように、回転子200の、例えば、永久磁石22m1は、コイル部30a1,30a2から、コイル部30b1,30b2へ向かう。 In this way, the permanent magnets 22m1 to 22m6 generate the magnetic force of the same magnetic pole from therespective coil portions 33, and therefore, a rotational force is applied by repelling. Also, the coil portions 30b1, 30b2, the coil portions 30d1, 30d2, the coil portions 30f1, 30f2, the coil portions 30h1, 30h2, the coil portions 30j1, 30j2, and the coil portions 30m1, 30m2 are not energized because they are idle periods. The permanent magnets 22m1 to 22m6 are attracted to the cores 33b of these coil portions 33 and are given a rotational force.
Therefore, as shown in FIG. 12B, for example, the permanent magnet 22m1 of therotor 200 moves from the coil portions 30a1 and 30a2 to the coil portions 30b1 and 30b2.
従って、図12Bに示すように、回転子200の、例えば、永久磁石22m1は、コイル部30a1,30a2から、コイル部30b1,30b2へ向かう。 In this way, the permanent magnets 22m1 to 22m6 generate the magnetic force of the same magnetic pole from the
Therefore, as shown in FIG. 12B, for example, the permanent magnet 22m1 of the
永久磁石22(永久磁石22m1~22m6)は、通電期間にあるコイル部33の反発力より、休止期間にあるコイル部33のコア33bへの吸引力の方が大きい。そのため、永久磁石22が、通電期間にあるコイル部33の反発により回転方向Fへ移動して、通電期間が終了すると、今度は永久磁石22に対して、コア33bによって引き戻される。
そこで、本実施の形態2に係るコイル部33では、図10に示すように、コア33bの回転子200側の端面33bsが、巻線33aより奥まった位置に配置されている。そうすることで、コイル部33の巻線33aをコア33bより、永久磁石22に接近させて配置できるので、強い反発力を永久磁石22に付与することができる。また、コア33bの回転子200側の端面33bsが、巻線33aより奥まった位置に配置されているため、永久磁石22に対する吸引力を、コイル部33の巻線33aによる反発力に対して調整することができる。
従って、永久磁石22がコイル部33を通過して休止期間に入ったとしても、コア33bによって永久磁石22が引き戻されるような力を減少させることができる。 The permanent magnet 22 (permanent magnets 22m1 to 22m6) has a greater attractive force to the core 33b of thecoil portion 33 during the rest period than the repulsive force of the coil portion 33 during the energization period. Therefore, when the permanent magnet 22 moves in the rotation direction F due to the repulsion of the coil portion 33 during the energization period and the energization period ends, this time, the permanent magnet 22 is pulled back by the core 33b.
Therefore, in thecoil section 33 according to the second embodiment, as shown in FIG. 10, the end surface 33bs on the rotor 200 side of the core 33b is disposed at a position deeper than the winding 33a. By doing so, since the winding 33a of the coil part 33 can be arranged closer to the permanent magnet 22 than the core 33b, a strong repulsive force can be applied to the permanent magnet 22. Further, since the end surface 33bs on the rotor 200 side of the core 33b is disposed at a position deeper than the winding 33a, the attractive force to the permanent magnet 22 is adjusted with respect to the repulsive force by the winding 33a of the coil portion 33. can do.
Therefore, even if thepermanent magnet 22 passes through the coil portion 33 and enters the rest period, the force that causes the permanent magnet 22 to be pulled back by the core 33b can be reduced.
そこで、本実施の形態2に係るコイル部33では、図10に示すように、コア33bの回転子200側の端面33bsが、巻線33aより奥まった位置に配置されている。そうすることで、コイル部33の巻線33aをコア33bより、永久磁石22に接近させて配置できるので、強い反発力を永久磁石22に付与することができる。また、コア33bの回転子200側の端面33bsが、巻線33aより奥まった位置に配置されているため、永久磁石22に対する吸引力を、コイル部33の巻線33aによる反発力に対して調整することができる。
従って、永久磁石22がコイル部33を通過して休止期間に入ったとしても、コア33bによって永久磁石22が引き戻されるような力を減少させることができる。 The permanent magnet 22 (permanent magnets 22m1 to 22m6) has a greater attractive force to the core 33b of the
Therefore, in the
Therefore, even if the
次に、永久磁石22m1~22m6の回転角度が30度となると、次の位置のコイル部33に位置する。
図12Cに示すように、永久磁石22(永久磁石22m1,22m3,22m5)の第1の磁極(N極)が、コイル部30b1と、コイル部30f1と、コイル部30j1とに対向して離間するときに、制御装置400は、第1の磁極(N極)を発生させる。
また、その永久磁石22(永久磁石22m1,22m3,22m5)の裏側(第2の磁極(S極))が、コイル部30b2と、コイル部30f2と、コイル部30j2とに対向して離間するときに、制御装置400は第2の磁極(S極)を発生させる。 Next, when the rotation angle of the permanent magnets 22m1 to 22m6reaches 30 degrees, the permanent magnet 22m1 to 22m6 is positioned in the coil portion 33 at the next position.
As shown in FIG. 12C, the first magnetic pole (N pole) of the permanent magnet 22 (permanent magnets 22m1, 22m3, 22m5) is opposed to and separated from the coil portion 30b1, the coil portion 30f1, and the coil portion 30j1. Sometimes, thecontrol device 400 generates the first magnetic pole (N pole).
Further, when the back side (second magnetic pole (S pole)) of the permanent magnet 22 (permanent magnets 22m1, 22m3, 22m5) is separated from the coil portion 30b2, the coil portion 30f2, and the coil portion 30j2. In addition, thecontrol device 400 generates a second magnetic pole (S pole).
図12Cに示すように、永久磁石22(永久磁石22m1,22m3,22m5)の第1の磁極(N極)が、コイル部30b1と、コイル部30f1と、コイル部30j1とに対向して離間するときに、制御装置400は、第1の磁極(N極)を発生させる。
また、その永久磁石22(永久磁石22m1,22m3,22m5)の裏側(第2の磁極(S極))が、コイル部30b2と、コイル部30f2と、コイル部30j2とに対向して離間するときに、制御装置400は第2の磁極(S極)を発生させる。 Next, when the rotation angle of the permanent magnets 22m1 to 22m6
As shown in FIG. 12C, the first magnetic pole (N pole) of the permanent magnet 22 (permanent magnets 22m1, 22m3, 22m5) is opposed to and separated from the coil portion 30b1, the coil portion 30f1, and the coil portion 30j1. Sometimes, the
Further, when the back side (second magnetic pole (S pole)) of the permanent magnet 22 (permanent magnets 22m1, 22m3, 22m5) is separated from the coil portion 30b2, the coil portion 30f2, and the coil portion 30j2. In addition, the
また、永久磁石22(永久磁石22m2,22m4,22m6)の第2の磁極(S極)が、コイル部30d1と、コイル部30h1と、コイル部30m1とに対向して離間するときに、制御装置400は、第2の磁極(S極)を発生させる。
更に、その永久磁石22(永久磁石22m2,22m4,22m6)の裏側(第1の磁極(N極))が、コイル部30d2と、コイル部30h2と、コイル部30m2とに、と対向して離間するときに、制御装置400は第1の磁極(N極)を発生させる。 Further, when the second magnetic pole (S pole) of the permanent magnet 22 (permanent magnets 22m2, 22m4, 22m6) is separated from the coil portion 30d1, the coil portion 30h1, and the coil portion 30m1, thecontrol device 400 generates a second magnetic pole (S pole).
Furthermore, the back side (first magnetic pole (N pole)) of the permanent magnet 22 (permanent magnets 22m2, 22m4, 22m6) is opposed to and separated from the coil portion 30d2, the coil portion 30h2, and the coil portion 30m2. When doing so, thecontrol device 400 generates the first magnetic pole (N pole).
更に、その永久磁石22(永久磁石22m2,22m4,22m6)の裏側(第1の磁極(N極))が、コイル部30d2と、コイル部30h2と、コイル部30m2とに、と対向して離間するときに、制御装置400は第1の磁極(N極)を発生させる。 Further, when the second magnetic pole (S pole) of the permanent magnet 22 (permanent magnets 22m2, 22m4, 22m6) is separated from the coil portion 30d1, the coil portion 30h1, and the coil portion 30m1, the
Furthermore, the back side (first magnetic pole (N pole)) of the permanent magnet 22 (permanent magnets 22m2, 22m4, 22m6) is opposed to and separated from the coil portion 30d2, the coil portion 30h2, and the coil portion 30m2. When doing so, the
このとき、図11および図12Cに示すように、永久磁石22m1~22m6が位置していない、コイル部30a1,30a2、コイル部30c1,30c2、コイル部30e1,30e2、コイル部30f1,30f2、コイル部30i1,30i2、コイル部30k1,30k2には、休止期間であるため、制御装置400は通電しない。
At this time, as shown in FIGS. 11 and 12C, the coil portions 30a1 and 30a2, the coil portions 30c1 and 30c2, the coil portions 30e1 and 30e2, the coil portions 30f1 and 30f2, and the coil portions where the permanent magnets 22m1 to 22m6 are not located. Since 30i1 and 30i2 and coil portions 30k1 and 30k2 are idle periods, control device 400 is not energized.
このようにして、永久磁石22m1~22m6は、それぞれのコイル部33から同じ磁極の磁力が発生しているため、反発することで回転力が付与される。また、コイル部30a1,30a2、コイル部30c1,30c2、コイル部30e1,30e2、コイル部30f1,30f2、コイル部30i1,30i2、コイル部30k1,30k2は、休止期間であるため通電されていないが、永久磁石22m1~22m6は、コア33bに引き寄せられて回転力が付与される。
従って、回転子200の、例えば、永久磁石22m1は、コイル部30b1,30b2から、コイル部30c1,30c2へ向かう。 In this way, the permanent magnets 22m1 to 22m6 generate the magnetic force of the same magnetic pole from therespective coil portions 33, and therefore, a rotational force is applied by repelling. In addition, the coil portions 30a1, 30a2, the coil portions 30c1, 30c2, the coil portions 30e1, 30e2, the coil portions 30f1, 30f2, the coil portions 30i1, 30i2, and the coil portions 30k1, 30k2 are not energized because they are idle periods. The permanent magnets 22m1 to 22m6 are attracted to the core 33b and are given a rotational force.
Accordingly, for example, the permanent magnet 22m1 of therotor 200 is directed from the coil portions 30b1 and 30b2 to the coil portions 30c1 and 30c2.
従って、回転子200の、例えば、永久磁石22m1は、コイル部30b1,30b2から、コイル部30c1,30c2へ向かう。 In this way, the permanent magnets 22m1 to 22m6 generate the magnetic force of the same magnetic pole from the
Accordingly, for example, the permanent magnet 22m1 of the
次に、永久磁石22m1~22m6の回転角度が60度となると、次の位置のコイル部33に位置する。
永久磁石22(永久磁石22m1,22m3,22m5)の第1の磁極(N極)が、コイル部30c1と、コイル部30g1と、コイル部30k1とに対向して離間するときに、制御装置400は、第1の磁極(N極)を発生させる。従って、永久磁石22m1~22m6の回転角度が0度のときと、電流が反転して反対の磁極となる。
同様に、永久磁石22(永久磁石22m1,22m3,22m5)の裏側(第2の磁極(S極))が、コイル部30c2と、コイル部30g2と、コイル部30k2とに対向して離間するときに、制御装置400は第2の磁極(S極)を発生させる。これも、永久磁石22m1~22m6の回転角度が0度のときと、電流が反転して反対の磁極となる。 Next, when the rotation angle of the permanent magnets 22m1 to 22m6 reaches 60 degrees, the permanent magnet 22m1 to 22m6 is positioned in thecoil portion 33 at the next position.
When the first magnetic pole (N pole) of the permanent magnet 22 (permanent magnet 22m1, 22m3, 22m5) is separated from the coil portion 30c1, the coil portion 30g1, and the coil portion 30k1, thecontrol device 400 is The first magnetic pole (N pole) is generated. Therefore, when the rotation angle of the permanent magnets 22m1 to 22m6 is 0 degree, the current is reversed to become the opposite magnetic pole.
Similarly, when the back side (second magnetic pole (S pole)) of the permanent magnet 22 (permanent magnets 22m1, 22m3, 22m5) is separated from the coil portion 30c2, the coil portion 30g2, and the coil portion 30k2. In addition, thecontrol device 400 generates a second magnetic pole (S pole). Again, when the rotation angle of the permanent magnets 22m1 to 22m6 is 0 degree, the current is reversed to become the opposite magnetic pole.
永久磁石22(永久磁石22m1,22m3,22m5)の第1の磁極(N極)が、コイル部30c1と、コイル部30g1と、コイル部30k1とに対向して離間するときに、制御装置400は、第1の磁極(N極)を発生させる。従って、永久磁石22m1~22m6の回転角度が0度のときと、電流が反転して反対の磁極となる。
同様に、永久磁石22(永久磁石22m1,22m3,22m5)の裏側(第2の磁極(S極))が、コイル部30c2と、コイル部30g2と、コイル部30k2とに対向して離間するときに、制御装置400は第2の磁極(S極)を発生させる。これも、永久磁石22m1~22m6の回転角度が0度のときと、電流が反転して反対の磁極となる。 Next, when the rotation angle of the permanent magnets 22m1 to 22m6 reaches 60 degrees, the permanent magnet 22m1 to 22m6 is positioned in the
When the first magnetic pole (N pole) of the permanent magnet 22 (permanent magnet 22m1, 22m3, 22m5) is separated from the coil portion 30c1, the coil portion 30g1, and the coil portion 30k1, the
Similarly, when the back side (second magnetic pole (S pole)) of the permanent magnet 22 (permanent magnets 22m1, 22m3, 22m5) is separated from the coil portion 30c2, the coil portion 30g2, and the coil portion 30k2. In addition, the
また、制御装置400は、永久磁石22(永久磁石22m2,22m4,22m6)の第2の磁極(S極)と対向する、コイル部30e1と、コイル部30i1と、コイル部30a1に第2の磁極(S極)を発生させる。
また、その永久磁石22(永久磁石22m2,22m4,22m6)の裏側(第1の磁極(N極))と対向するコイル部30e2と、コイル部30i2と、コイル部30a2とに第1の磁極(N極)を発生させる。つまり、永久磁石22の一端部側と他端部側とでは、磁極は反対になるため、制御装置400は、対向配置されたコイル部33に、それぞれ反対となる磁極を発生させる。 Moreover, thecontrol apparatus 400 is the 2nd magnetic pole to the coil part 30e1, the coil part 30i1, and the coil part 30a1 which opposes the 2nd magnetic pole (S pole) of the permanent magnet 22 (permanent magnet 22m2, 22m4, 22m6). (S pole) is generated.
The first magnetic pole (on the coil portion 30e2, the coil portion 30i2, and the coil portion 30a2 facing the back side (first magnetic pole (N pole)) of the permanent magnet 22 (permanent magnets 22m2, 22m4, 22m6). N pole) is generated. That is, since the magnetic poles are opposite on the one end side and the other end side of thepermanent magnet 22, the control device 400 generates the opposite magnetic poles in the coil portions 33 arranged to face each other.
また、その永久磁石22(永久磁石22m2,22m4,22m6)の裏側(第1の磁極(N極))と対向するコイル部30e2と、コイル部30i2と、コイル部30a2とに第1の磁極(N極)を発生させる。つまり、永久磁石22の一端部側と他端部側とでは、磁極は反対になるため、制御装置400は、対向配置されたコイル部33に、それぞれ反対となる磁極を発生させる。 Moreover, the
The first magnetic pole (on the coil portion 30e2, the coil portion 30i2, and the coil portion 30a2 facing the back side (first magnetic pole (N pole)) of the permanent magnet 22 (permanent magnets 22m2, 22m4, 22m6). N pole) is generated. That is, since the magnetic poles are opposite on the one end side and the other end side of the
このようにして、回転子200の回転角度が60度となっても、同様に、永久磁石22は、回転方向Fの後方側のコイル部33と反発しながら、前方側のコイル部33のコア33bに吸引することで、回転子200は、回転が促進される。
従って、回転子200は、図12Aから図12Dに示す動作を繰り返して回転する。 In this way, even if the rotation angle of therotor 200 is 60 degrees, the permanent magnet 22 is similarly repelled by the coil portion 33 on the rear side in the rotation direction F, and the core of the coil portion 33 on the front side. By rotating the rotor 200, the rotation of the rotor 200 is promoted.
Accordingly, therotor 200 rotates by repeating the operations shown in FIGS. 12A to 12D.
従って、回転子200は、図12Aから図12Dに示す動作を繰り返して回転する。 In this way, even if the rotation angle of the
Accordingly, the
本実施の形態2では、永久磁石22が、円周方向に沿って交互に、第1の磁極または第2の磁極を向けて、回転子200に配置されていると共に、コイル部33が、永久磁石22を挟んで両側に配置されている。そして、制御装置400が、コイル部33から離間する永久磁石22の磁極に応じて、このコイル部33に反発する磁極を発生させている。
永久磁石22がコイル部33に反発して回転するときに、回転方向Fの前方に位置する通電期間のコイル部33に、永久磁石22が反発する磁力が発生する。
しかし、このコイル部33は、磁極が反対となった永久磁石22を反発させている。そのため、回転する永久磁石22にとっては、回転方向Fの前方に位置する通電期間のコイル部33は吸引として作用する。従って、永久磁石22はコイル部33によって回転が阻害されることなく、反対に、回転が促進される。
また、コイル部33が発生する磁力が永久磁石22の回転を阻害しないので、コイル部33の間隔を狭く配置することができる。 In the second embodiment, thepermanent magnets 22 are alternately disposed along the circumferential direction so that the first magnetic pole or the second magnetic pole is directed to the rotor 200, and the coil portion 33 is permanent. They are arranged on both sides with the magnet 22 in between. The control device 400 generates a magnetic pole that repels the coil portion 33 in accordance with the magnetic pole of the permanent magnet 22 that is separated from the coil portion 33.
When thepermanent magnet 22 is repelled and rotated by the coil portion 33, a magnetic force that repels the permanent magnet 22 is generated in the coil portion 33 in the energization period located in front of the rotation direction F.
However, thecoil portion 33 repels the permanent magnet 22 whose magnetic poles are opposite. Therefore, for the rotating permanent magnet 22, the coil portion 33 in the energization period located in front of the rotation direction F acts as attraction. Therefore, the rotation of the permanent magnet 22 is accelerated without being disturbed by the coil portion 33.
Further, since the magnetic force generated by thecoil portion 33 does not hinder the rotation of the permanent magnet 22, the interval between the coil portions 33 can be arranged narrowly.
永久磁石22がコイル部33に反発して回転するときに、回転方向Fの前方に位置する通電期間のコイル部33に、永久磁石22が反発する磁力が発生する。
しかし、このコイル部33は、磁極が反対となった永久磁石22を反発させている。そのため、回転する永久磁石22にとっては、回転方向Fの前方に位置する通電期間のコイル部33は吸引として作用する。従って、永久磁石22はコイル部33によって回転が阻害されることなく、反対に、回転が促進される。
また、コイル部33が発生する磁力が永久磁石22の回転を阻害しないので、コイル部33の間隔を狭く配置することができる。 In the second embodiment, the
When the
However, the
Further, since the magnetic force generated by the
このとき、ヨーク部34の巻線35には、制御装置400により、通電期間に電流が通電される。
例えば、図12Aに示すように、永久磁石22m1が、コイル部30a1とコイル部30a2との間に位置しているものとする。そうした場合に、永久磁石22m1は、コイル部30a1側がN極であり、コイル部30a2側がS極である。また、コイル部30a1は巻線33aに電流が通電するとN極を発生し、コイル部30a2は巻線33aに電流が通電するとS極を発生する。
制御装置400は、図13Aに示すように、ヨーク部34に巻かれた巻線35に、コイル部30a1側がN極、コイル部30a2側がS極となるような電流を通電する。 At this time, a current is applied to the winding 35 of theyoke portion 34 by the control device 400 during the energization period.
For example, as shown in FIG. 12A, it is assumed that the permanent magnet 22m1 is located between the coil part 30a1 and the coil part 30a2. In such a case, the permanent magnet 22m1 has an N pole on the coil part 30a1 side and an S pole on the coil part 30a2 side. The coil portion 30a1 generates an N pole when a current is passed through the winding 33a, and the coil portion 30a2 generates an S pole when a current is passed through the winding 33a.
As shown in FIG. 13A, thecontrol device 400 energizes the winding 35 wound around the yoke portion 34 with a current such that the coil portion 30a1 side has an N pole and the coil portion 30a2 side has an S pole.
例えば、図12Aに示すように、永久磁石22m1が、コイル部30a1とコイル部30a2との間に位置しているものとする。そうした場合に、永久磁石22m1は、コイル部30a1側がN極であり、コイル部30a2側がS極である。また、コイル部30a1は巻線33aに電流が通電するとN極を発生し、コイル部30a2は巻線33aに電流が通電するとS極を発生する。
制御装置400は、図13Aに示すように、ヨーク部34に巻かれた巻線35に、コイル部30a1側がN極、コイル部30a2側がS極となるような電流を通電する。 At this time, a current is applied to the winding 35 of the
For example, as shown in FIG. 12A, it is assumed that the permanent magnet 22m1 is located between the coil part 30a1 and the coil part 30a2. In such a case, the permanent magnet 22m1 has an N pole on the coil part 30a1 side and an S pole on the coil part 30a2 side. The coil portion 30a1 generates an N pole when a current is passed through the winding 33a, and the coil portion 30a2 generates an S pole when a current is passed through the winding 33a.
As shown in FIG. 13A, the
また、図12Dに示すように、永久磁石22m6が、コイル部30a1とコイル部30a2との間に位置した場合では、永久磁石22m1は、コイル部30a1側がS極であり、コイル部30a2側がN極である。従って、コイル部30a1はS極を発生し、コイル部30a2はN極を発生する。
この場合では、制御装置400は、図13Bに示すように、ヨーク部34に巻かれた巻線35に、コイル部30a1側がS極、コイル部30a2側がN極となるような電流を通電する。
そうすることで、対向配置されたコイル部30a1とコイル部30a2とにより強い磁力を発生させることができる。 12D, when the permanent magnet 22m6 is positioned between the coil part 30a1 and the coil part 30a2, the permanent magnet 22m1 has an S pole on the coil part 30a1 side and an N pole on the coil part 30a2 side. It is. Therefore, the coil part 30a1 generates an S pole, and the coil part 30a2 generates an N pole.
In this case, as shown in FIG. 13B, thecontrol device 400 energizes the winding 35 wound around the yoke portion 34 with a current such that the coil portion 30a1 side is the S pole and the coil portion 30a2 side is the N pole.
By doing so, a strong magnetic force can be generated by the coil part 30a1 and the coil part 30a2 that are arranged to face each other.
この場合では、制御装置400は、図13Bに示すように、ヨーク部34に巻かれた巻線35に、コイル部30a1側がS極、コイル部30a2側がN極となるような電流を通電する。
そうすることで、対向配置されたコイル部30a1とコイル部30a2とにより強い磁力を発生させることができる。 12D, when the permanent magnet 22m6 is positioned between the coil part 30a1 and the coil part 30a2, the permanent magnet 22m1 has an S pole on the coil part 30a1 side and an N pole on the coil part 30a2 side. It is. Therefore, the coil part 30a1 generates an S pole, and the coil part 30a2 generates an N pole.
In this case, as shown in FIG. 13B, the
By doing so, a strong magnetic force can be generated by the coil part 30a1 and the coil part 30a2 that are arranged to face each other.
本発明の電動機は、消費電力を抑え、発熱を抑えることができるので、回転駆動が必要な、さまざまな産業に用いることができる。
Since the electric motor of the present invention can reduce power consumption and heat generation, it can be used in various industries that require rotational driving.
Claims (7)
- 永久磁石が円周方向に沿って配置された回転子と、
前記永久磁石に反発する磁極を発生する巻線に、前記永久磁石が接近すると磁化して吸引する磁性体がコアとして実装されたコイル部が、前記永久磁石に対向配置された固定子と、
前記巻線への通電を制御する制御装置とを備え、
前記制御装置は、前記回転子が回転するときに、前記磁性体によって前記永久磁石を吸引させて、前記永久磁石が接近する前記コイル部には通電せず、前記永久磁石が離間する前記コイル部には前記巻線に前記永久磁石と反発する磁極を発生させる電流を通電する制御を行うことを特徴とする電動機。 A rotor with permanent magnets arranged along the circumferential direction;
A coil portion mounted as a core with a magnetic body that is magnetized and attracted when the permanent magnet approaches a winding that generates a magnetic pole that repels the permanent magnet, and a stator that is disposed opposite to the permanent magnet,
A control device for controlling energization to the winding,
When the rotor rotates, the control device causes the permanent magnet to be attracted by the magnetic body, and does not energize the coil unit that the permanent magnet approaches, and the coil unit that separates the permanent magnet. In the electric motor, control is performed such that a current that generates a magnetic pole repelling the permanent magnet is supplied to the winding. - 前記永久磁石は、前記回転子の軸線方向の一側に第1の磁極を向けると共に、他側に第2の磁極を向けて、前記回転子に配置され、
前記コイル部は、前記永久磁石を挟んで両側に配置され、
前記制御装置は、前記永久磁石の一側に位置する該コイル部に、第1の磁極を発生させ、他側に位置する該コイル部に、第2の磁極を発生させる請求項1記載の電動機。 The permanent magnet is disposed on the rotor with the first magnetic pole directed to one side in the axial direction of the rotor and the second magnetic pole directed to the other side,
The coil part is disposed on both sides of the permanent magnet,
2. The electric motor according to claim 1, wherein the control device generates a first magnetic pole in the coil portion located on one side of the permanent magnet and generates a second magnetic pole in the coil portion located on the other side. . - 前記永久磁石は、円周方向に沿って交互に、第1の磁極または第2の磁極を向けて、前記回転子に配置され、
前記コイル部は、前記永久磁石を挟んで両側に配置され、
前記制御装置は、前記コイル部から離間する前記永久磁石の磁極に応じて、該コイル部に反発する磁極を発生させるよう、電流の向きを制御する請求項1記載の電動機。 The permanent magnets are alternately arranged along the circumferential direction with the first magnetic pole or the second magnetic pole facing the rotor.
The coil part is disposed on both sides of the permanent magnet,
The electric motor according to claim 1, wherein the control device controls the direction of current so as to generate a magnetic pole repelling the coil portion in accordance with the magnetic pole of the permanent magnet spaced apart from the coil portion. - 前記固定子には、前記回転子を跨いで前記コア同士を繋ぎ、前記永久磁石を挟んで両側に配置された一対の前記コイル部の磁路を形成するヨーク部を備えた請求項2または3記載の電動機。 The said stator was provided with the yoke part which connects the said cores straddling the said rotor, and forms the magnetic path of a pair of said coil part arrange | positioned on both sides across the said permanent magnet. The electric motor described.
- 前記ヨーク部には、前記永久磁石を挟んで対向する前記コイル部が発生する前記第1の磁極および前記第2の磁極に合わせて、磁力を発生させる巻線が設けられている請求項4記載の電動機。 The said yoke part is provided with the coil | winding which produces a magnetic force according to the said 1st magnetic pole and the said 2nd magnetic pole which the said coil part which opposes on both sides of the said permanent magnet generate | occur | produces. Electric motor.
- 前記コイル部の配置間隔が、前記永久磁石より大きいときに、前記配置間隔に対応させて前記永久磁石が複数個連続して配置されている請求項1記載の電動機。 The electric motor according to claim 1, wherein when the arrangement interval of the coil portions is larger than the permanent magnet, a plurality of the permanent magnets are continuously arranged corresponding to the arrangement interval.
- 前記コアの前記回転子側の端面は、前記巻線より奥まった位置に配置されている請求項1記載の電動機。 The electric motor according to claim 1, wherein an end surface of the core on the rotor side is disposed at a position deeper than the winding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015542632A JP5985760B2 (en) | 2013-10-16 | 2014-10-15 | Electric motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013215662 | 2013-10-16 | ||
JP2013-215662 | 2013-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015056709A1 true WO2015056709A1 (en) | 2015-04-23 |
Family
ID=52828151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/077431 WO2015056709A1 (en) | 2013-10-16 | 2014-10-15 | Electric motor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5985760B2 (en) |
WO (1) | WO2015056709A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017007443A1 (en) * | 2015-07-06 | 2017-01-12 | Анатолий Максимович АЛЕЕВ | Electric generator |
JP7179392B1 (en) | 2022-07-29 | 2022-11-29 | 株式会社空 | Rotating electric machine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112968578B (en) * | 2021-01-28 | 2022-10-21 | 山东聊城鲁岳汽车电机有限公司 | Multipolar magnetic shoe assembly system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08107662A (en) * | 1994-08-12 | 1996-04-23 | Ebara Corp | Brushless dc motor |
JPH11196558A (en) * | 1997-10-28 | 1999-07-21 | Fumio Uchiyama | Stator coil of rotating machine |
JP2003102135A (en) * | 2001-09-21 | 2003-04-04 | Yaskawa Electric Corp | Gap-winding motor |
-
2014
- 2014-10-15 WO PCT/JP2014/077431 patent/WO2015056709A1/en active Application Filing
- 2014-10-15 JP JP2015542632A patent/JP5985760B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08107662A (en) * | 1994-08-12 | 1996-04-23 | Ebara Corp | Brushless dc motor |
JPH11196558A (en) * | 1997-10-28 | 1999-07-21 | Fumio Uchiyama | Stator coil of rotating machine |
JP2003102135A (en) * | 2001-09-21 | 2003-04-04 | Yaskawa Electric Corp | Gap-winding motor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017007443A1 (en) * | 2015-07-06 | 2017-01-12 | Анатолий Максимович АЛЕЕВ | Electric generator |
JP7179392B1 (en) | 2022-07-29 | 2022-11-29 | 株式会社空 | Rotating electric machine |
JP2024018485A (en) * | 2022-07-29 | 2024-02-08 | 株式会社空 | Rotary electric machine |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015056709A1 (en) | 2017-03-09 |
JP5985760B2 (en) | 2016-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2013236987B2 (en) | Brushless DC motor | |
JP2006217771A (en) | Movable permanent magnet electric machine | |
KR20050071703A (en) | Magnetic structure and motor employing said magnetic structure, and driver comprising said motor | |
JP6327474B2 (en) | Outer rotor type variable field motor | |
US10523098B1 (en) | Progressive magnetic rotation motor | |
JP2009509482A (en) | Magnetic motor | |
JP2013544483A (en) | Rotating electric machine | |
JP5985760B2 (en) | Electric motor | |
JP6643980B2 (en) | Improved switch reluctance motor and switch reluctance device for hybrid vehicles | |
JP2006246605A (en) | Magnetic force rotating device | |
JP2007166764A (en) | Permanent magnet rotary electric machine | |
US20160156254A1 (en) | Progressive magnetic rotation motor | |
JP5091425B2 (en) | Magnetic power generator | |
JP5372115B2 (en) | Rotating electric machine | |
WO1999066627A1 (en) | Universal electric motor with variable air gap | |
JP2013106404A (en) | Rotor and motor | |
JP5763198B2 (en) | Magnetic drive blower or generator | |
JP2017060362A (en) | Linear motor | |
RU2371827C1 (en) | Engine | |
JP6340219B2 (en) | Linear motor | |
JP6205264B2 (en) | Axial variable gap rotating electric machine | |
JP6340218B2 (en) | Linear motor | |
JP2009027768A (en) | Permanent magnet synchronous motor | |
JP2002034222A (en) | Motor utilizing magnetic flux's phenomenon of convergence | |
JP2010281242A (en) | Inner rotor type direct-current fan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14854094 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015542632 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14854094 Country of ref document: EP Kind code of ref document: A1 |