WO2006114457A1 - Submódulo para módulos de concentración fotovoltaica. módulo de concentración fotovoltaica, instalación de energía solar, método de empaquetado y procedimiento de calibración de posición para módulos de concentración fotovoltaica - Google Patents

Submódulo para módulos de concentración fotovoltaica. módulo de concentración fotovoltaica, instalación de energía solar, método de empaquetado y procedimiento de calibración de posición para módulos de concentración fotovoltaica Download PDF

Info

Publication number
WO2006114457A1
WO2006114457A1 PCT/ES2006/000130 ES2006000130W WO2006114457A1 WO 2006114457 A1 WO2006114457 A1 WO 2006114457A1 ES 2006000130 W ES2006000130 W ES 2006000130W WO 2006114457 A1 WO2006114457 A1 WO 2006114457A1
Authority
WO
WIPO (PCT)
Prior art keywords
modules
photovoltaic
module
photovoltaic concentration
submodule
Prior art date
Application number
PCT/ES2006/000130
Other languages
English (en)
French (fr)
Inventor
Ricard. Pardell Vilella
Original Assignee
Sol3G, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sol3G, S.L. filed Critical Sol3G, S.L.
Priority to CN2006800147565A priority Critical patent/CN101189732B/zh
Priority to EP06725820A priority patent/EP1892771A1/en
Priority to US11/912,428 priority patent/US20100307563A1/en
Publication of WO2006114457A1 publication Critical patent/WO2006114457A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/458Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes with inclined primary axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • Submodule for photovoltaic concentration modules includes photovoltaic concentration module. solar energy installation, packaging method and position calibration procedure for photovoltaic concentration modules
  • the purpose of this invention patent application is to register a sub-module to be applied to photovoltaic concentration modules, a photovoltaic concentration module, a solar energy installation and a packaging method for the aforementioned modules, which incorporate notable innovations and advantages. compared to known installations and systems for the generation of electrical energy from solar radiation.
  • the object of the invention refers to a submodule, a photovoltaic concentration module that incorporates the previous submodule and a solar energy installation that uses the aforementioned concentration module to be installed on flat surfaces, such as roofs of residential buildings, office buildings, factories and warehouses, as well as on pergola-type structures in parking lots, stations and stops for public and private means of transport, promenades, green areas and farms.
  • the main benefit of photovoltaic concentration systems is the reduction of costs by reducing the surface of the photovoltaic device.
  • the concentration of radiation requires active monitoring of the solar path by the concentrator system, in contrast to current flat photovoltaic panels, without concentration, in which the possibility of solar monitoring of the system is optional.
  • the precision with which said monitoring is carried out must be greater the higher the desired degree of solar concentration.
  • the photovoltaic concentration sets with tracking in two known axes for the generation of electrical energy from solar radiation are usually made up of a plurality of modules, each of which has at least one pair of lens sets or "parquets "
  • Each set of lenses consists of a transparent laminar body that can include, for example, a set with a determined number of lenses that focus the solar radiation on a set of solar cells located inside the module.
  • the advantage of using solar or photovoltaic cells is that they are devices capable of transforming solar radiation into electricity, in a direct way.
  • photovoltaic concentration devices are very difficult to install on the roofs of buildings or other types of use of secondary surfaces, their use being limited to centralized production on land dedicated to it. This is due to its high center of gravity and unfavorable aerodynamics, which also has a negative impact on its operational capacity in areas subject to sustained winds.
  • Another problem associated with photovoltaic concentration systems is heat dissipation. There is a direct relationship between the degree of concentration and the benefits of cost reduction by reducing the surface of the photovoltaic device, which, however, is negatively offset by the increase in costs implied by the need to dissipate more heat on a surface each time. smaller.
  • the present invention has been developed in order to provide a sub-module for photovoltaic concentration modules, a photovoltaic concentration module and a solar energy installation that solve the aforementioned drawbacks, also providing other additional advantages that will be evident from The accompanying description below.
  • the photovoltaic concentration module especially applicable on substantially flat surfaces of the present invention is characterized by the fact that it comprises a plurality of submodules of the type that will be described below arranged in parallel and equidistant from each other that rest on a platform placed substantially horizontal with respect to the support surface or the ground (that is, essentially parallel with respect to the surface on which the entire module rests), said platform being arranged on a support structure to be placed on the surface of a roof or support surface, also including electromechanical means of movement associated with movement in two axes to follow the solar path, one of the axes being associated with the rotary movement of the submodule and the other axis associated with the rotary movement of the platform.
  • the axis associated with the rotary movement of the submodule corresponds to tracking at altitude, that is, it rotates around a geometric axis parallel to the horizontal plane
  • the other axis associated with the rotary movement of the platform corresponds to tracking in azimuth, it is that is, it rotates around a geometric axis perpendicular to the horizontal plane, and by the fact that each rotary movement is powered by an independent motor for each movement.
  • Each module object of the invention is designed to provide around 200 watts of power with an ambient temperature of 25 0 C 1, although the system is basically scalable, for which significantly lower or higher power modules could be conceived based on the same principles. .
  • the present invention introduces a dissipation system suitable for a high concentration (of the order of 400 to 500 soles) on multi-junction photovoltaic cells of less than one square centimeter.
  • the new dissipation system is at the same time economic and efficient, with the result that the reduction in costs introduced by the reduction in the surface of the photovoltaic element is not negatively offset by the additional cost of the dissipation system.
  • a photovoltaic concentration module is obtained to be installed on the roofs of buildings with a flat surface, not requiring a large surface for the assembly of an installation with the type of module described above.
  • its installation is easy to carry out since it does not require the use of additional anchors or fixing elements (due to the relatively low position of the center of gravity), reducing the number of operators necessary to carry out said installation and adapting to work regulations that refer to lifting and handling heavy loads.
  • Its low aerodynamic profile allows its use in strong winds and offers less visual impact due to the flattened layout of the module, unlike others concentration systems with two-axis tracking, generally consisting of panels arranged on posts perpendicular to the ground with a considerably high center of gravity and a significant visual impact.
  • photovoltaic module compared to the systems known as the one previously mentioned in the background, is the fact that they require a low height (and therefore have a lower position of the center of gravity), so that they reduce the visual impact unlike for example the system described in the aforementioned patent.
  • the module may be provided with calculation means for positioning and tracking the sun based on the astronomical axes of altitude and azimuth (the invention not being limited solely and exclusively to said astronomical axes) in order to obtain the maximum degree of concentration, means for geographical positioning and orientation and a solar radiation sensor, such means being associated with the electromechanical rotating displacement means.
  • the module has the ability to determine if the light conditions in the sky are adequate to calibrate the most appropriate position depending on the presence or not of clouds. Mention that the monitoring of the sun is carried out based on the parameters of the altitude and the azimuth, and therefore, on two axes so that the concentration of the sun is higher in relation to known stationary-type energy collection systems or single axis tracking.
  • a photovoltaic concentration submodule for photovoltaic concentration modules which includes solar energy concentrators for capturing solar radiation, said concentrators being provided with Fresnel lenses and secondary optical elements, which is characterized by the fact that the submodule is formed by a laminar body with a central section and two noticeably perpendicular lateral fins defining a shape substantially U-shaped made of aluminum on which photovoltaic cells that are provided to each of the concentrators are fixed in the central section by means of fixing, the sheet body acting as a support structure for the concentrators and heat dissipating element for the photovoltaic cells, and by the fact that the Fresnel lenses are arranged in a front frame that is fitted with the laminar body, said lenses being placed in a row.
  • the metal dissipation surface is expanded in a simple way and at a lower cost, for example, with respect to the European patent previously mentioned in the background, where the dissipation surface is practically equivalent to the area occupied by the concentrating optical elements, unlike the present application, where said dissipation surface is equivalent to approximately 4 times the area occupied by the concentrating optical elements.
  • the fixing means comprise a silver-based epoxy resin which is a heat-transmitting substance and an electrical insulator.
  • Another object of this invention is to provide an installation for transforming solar energy into electrical energy that comprises a plurality of photovoltaic concentration modules of the type described hereinabove, being connected to each other by lateral ones defined with the hexagonal contour of each one. of the base support structures and with all the modules facing the same direction.
  • This installation is very suitable for placement on roofs or terraces of houses, apartment blocks, office buildings, warehouses, etc.
  • the installation will be made up of one or more groups of modules, or clusters, where each cluster comprises a master module and a plurality of slave modules interconnected and controlled by the master module.
  • the master module includes means for calculating the positioning and monitoring of the sun, communication means for controlling the slave modules and a solar radiation sensor.
  • the movements carried out by the modules' displacement means are angular movements that are carried out at predetermined intervals based on the acceptance angle of the solar energy concentrator.
  • Another object of the present invention is to provide packaging for a plurality of photovoltaic concentration modules comprising a pallet on the that a plurality of aligned modules are arranged in the upper part and vertically. In this way, the logistics costs for transporting the components of an installation from the pre-assembly point to the installation point of an installation are minimized.
  • Other characteristics and advantages of the photovoltaic concentration module and the solar energy installation object of the present invention will become evident from the description of a preferred, but not exclusive, embodiment, which is illustrated by way of non-limiting example in the drawings shown below. accompany, in which:
  • Figure 1. Is a perspective view of the photovoltaic concentration submodule object of the present invention in a disassembled condition
  • Figure 2.- is a perspective detail view of a section of the submodule of Figure 1 that includes a photovoltaic cell and a Fresnel lens;
  • Figure 3.- Is a perspective view of the photovoltaic concentration module object of the present invention.
  • Figure 4.- Is a perspective view of an embodiment of a solar energy installation that includes the modules represented in Figure 3;
  • Figure 5. Is a perspective view of a solar energy installation with a pergola configuration;
  • Figure 6. Is a perspective view of a packaging arrangement of four modules of the invention;
  • Figure 7. Is a schematic of an installation of the present invention
  • Figure 8. Is a schematic view of another embodiment of a solar energy installation of the present invention
  • Figure 9. Is a schematic view of yet another embodiment of a solar energy installation with the sub-modules of the present invention.
  • the photovoltaic concentration submodules (1) for photovoltaic concentration modules are made up of ten solar energy concentrators for capturing solar radiation, each being of the concentrators consisting of a Fresnel lens (15) and a secondary optical element, which allows an increase in the degree of concentration, the angle of acceptance and uniform illumination of the cell, thus improving the performance and tolerance of the concentrators .
  • Said submodule (1) is formed by a laminar body (2) with a thickness equal to or less than 1 mm. with a flat central section and two substantially perpendicular lateral fins, conforming a substantially U-shaped.
  • the laminar body (2) is made of aluminum on which they are fixed in the central section by means of fixing, such as a silver-based epoxy resin which is a heat transmitter and electrical insulator, photovoltaic cells that are provided to each of the concentrators. It should be noted that the U-shaped laminar body (2) acts as a support structure for the concentrators and as a heat dissipating element for the photovoltaic cells.
  • Fresnel lenses (15) are located in a housing located in a front frame (3) fitted with the laminar body (2), said lenses ( 15) placed in a single row as can be seen in Figure 1.
  • the photovoltaic cells (4) have, for example, dimensions of 5.5 x 5.5 mm., Each one being mounted on a metallic ceramic substrate (5) that includes a by-pass protection diode and said cells (4) are attached to the secondary optical elements (made of glass) by means of the use of an elastomeric transparent silicone (see figure 2).
  • Said front frame (3) comprises a body made of plastic material with a low manufacturing cost on whose front face the Fresnel lenses (15) are mounted, said body closing the sides of the submodule (1) by means of lateral extensions (3a ) and the lenses themselves the front of the same, so that the interior of the submodule (1) is hermetically closed when it is coupled together with the laminar body, applying a silicone to the fixation of both.
  • the photovoltaic concentration module (6) is made up of five submodules (1) grouped in parallel and equidistant that rest on a single platform (7) that includes a lower horizontal plate (8) support. Each module (6) can give a power of around 200 watts.
  • Each one of the modules (6) is provided with electromechanical means of displacement in two axes, one of the axes to rotatably move the platform and the other axis to move each one of the submodules following the position of the sun, with what They include at least two conventional electric motors that allow tracking of the sun on both the azimuth axis and the altitude axis.
  • Such movements in the two astronomical axes are more clearly reflected in Figure 3 by means of the two arrows represented, the arrow (a) representing the tracking of the azimuth module and the arrow (b) monitoring the module in altitude represented.
  • the platform (7) is formed by five submodules (1) arranged equidistant and parallel, the whole set presenting a flat general arrangement.
  • the module (6) can rest on a positioning base (9) that advantageously has a hexagonal contour.
  • Said geometric arrangement has the advantage that it facilitates the alignment operations during the assembly operation of a solar installation. This is due to the fact that from the alignment of a single base (9), taking advantage of the regular hexagonal geometry, they can be aligned the rest of the bases (9) by simply fitting multiple bases (9) through the regular sides thereof.
  • the positioning base (9) is formed by a plurality of elements (10) with a regular trapezoidal contour (see Figure 5), which once joined together define a hexagonal contour.
  • the use of removable parts facilitates transport operations since it occupies less space in a condition prior to assembly and the assembly of the bases (9) is simple and fast.
  • One or several photovoltaic concentration modules (6) can be provided with calculation means for positioning and tracking the sun associated with the electromechanical means of rotary displacement, means for geographical positioning and orientation and a solar radiation sensor that allows measuring the radiation solar.
  • Said geographical positioning and orientation means consist of a GPS positioning system so that it allows knowing the latitude and longitude of the geographical point in which the module is installed, and time variables (such as the time and date GMT) thus allowing the astronomical calculation of the solar position, so that the modules (6) are oriented in the direction of the sun.
  • the geographic positioning and targeting means may include a conventional compass (not shown).
  • a plurality of photovoltaic concentration modules (6) can be grouped to create an installation for transforming solar energy into electricity, the modules (6) being coupled to each other on the sides defined with the hexagonal contour of each of the base support structures (9). All the modules (6) will be oriented in the same direction or cardinal point, as can be seen in Figure 4, in order to facilitate the sun tracking operations.
  • the installation that is remotely monitored from any given point is divided into clusters, each of which essentially comprises a master module (11) and a plurality of slave modules ( 12) interconnected and controlled by the master module (11), said master module (11) including means for calculating the positioning and tracking of the sun (calculations based on altitude and azimuth), control means for controlling the slave modules (12 ) and a Zenith-oriented solar radiation sensor.
  • the rest of the electromechanical, mechanical and optical components are common in both types of modules (11) and (12). The movements made by the modules displacement means
  • (6) are angular movements that are carried out at predetermined intervals, following an open-loop control strategy, based on the acceptance angle of the solar energy concentrator whose value is 1.25 °. Approximately every four minutes, the master module (11) will recalculate the position of the sun, and will order the slave modules (12) the desired movements.
  • the master module (11) will carry out an initial calibration procedure that consists of determining the deviation of the azimuth and altitude axes from the theoretical axes.
  • This procedure has the following stages: First, search for the sun in its theoretical position from the astronomical calculation. If the sun is within the module's field of vision, center its image within that field of vision using diagonal movements. If the sun is not within the field of vision of the module, proceed to make spiral movements until the sun is within the field of vision, and from there proceed as in the previous case. Once this procedure is completed, the master module will calculate the axis deviation angles from the difference between the observed position of the sun and its position expected from of astronomical calculation. In said procedure, the master module (11) acts following a closed-loop control strategy, fed back by the power generated by the module, which in this case acts as a photometer.
  • the master module will calculate the positioning errors of all its slave modules by executing the same calibration procedure for each one of them, but starting from the position corrected according to the error parameters of the master module itself. In this way the master module collects in a matrix the set of initial vectors of the positioning error parameters of the entire cluster of modules that it controls. From the error parameters, the master module will correct the astronomical position of the sun in the subsequent positioning commands that it will send to all the modules in the cluster during the follow-up operations.
  • the Zenith-oriented solar radiation sensor is used by the master module to decide when the calibration process is to be carried out, since it cannot be carried out under fully or partially covered skies, as well as to have an external reference that allows evaluating performance total of the installation.
  • the master system will be responsible for obtaining spot power measurements from the slave modules in order to detect significant performance deviations.
  • the master module detects that any of the slave modules in the cluster is performing significantly below the average level, the master module will recalibrate the affected slave module following the same procedure as during the installation process. Said procedure, as already mentioned, is only carried out if the conditions of solar radiation allow it, and not at any time. If the calibration attempt is unsuccessful, then the master system will generate an alarm addressed to the installation supervision system. This implies that the different master modules (one per cluster) of the installation will be connected to a general monitoring system thereof, which should preferably be equipped with telematic communication means that allow remote supervision.
  • FIG 5 a second preferred embodiment of the installation described here is shown, which presents a pergola configuration, so that it can be installed in a terrain in such a way that the ground surface can be used as having only one bar anchored as an element (14).
  • This configuration may be suitable for application in vehicle parking areas or gardens.
  • Figure 8 shows another embodiment of a photovoltaic concentration installation in which the submodules (1) are arranged on a platform (15) raised above the ground level by means of a rotating pivot (16) on its own longitudinal axis, of so that the movement of the platform tracks in azimuth and the movement of the submodules themselves tracks in altitude.
  • figure 9 schematically shows another alternative embodiment of a photovoltaic concentration installation that uses the sub-modules described here in which two different tracking axes have been used: the declination axis and the ascension axis.
  • the components that comprise an installation can be transported simply and quickly and at a relatively low cost by means of a suitable form of packaging.
  • Said packaging is formed by a pallet (13) on which four modules (6) are arranged in the upper part and in vertical position, which are aligned, said pallet (13) preferably having measurements of 1200 x 800 mm., So that four modules (6) of the invention are aligned. There is also the possibility of using a 1200 x 1200 mm pallet. so that six modules (6) can be placed aligned.
  • the packaging can include in the upper part a plurality of the elements (10) that have the trapezoidal contour arranged in a row.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Submódulo (1 ) de concentración fotovoltaica para módulos de concentración fotovoltaica, que incluye concentradores de energía solar para la captación de la radiación solar y comprendiendo dichos concentradores lentes de Fresnel (15) y elementos ópticos secundarios, estando el submódulo formado por un cuerpo laminar (2) con un tramo central y dos aletas laterales sensiblemente perpendiculares definiendo una forma sensiblemente en U hecho de aluminio sobre el que se fijan en el tramo central por medios de fijación células fotovoltaicas que se proporcionan a cada uno de los concentradores, actuando el cuerpo laminar (2) como una estructura de soporte de los concentradores y elemento disipador de calor para las células fotovoltaicas, y por el hecho de que las lentes de Fresnel están dispuestas en un montura frontal (3) que está encajada con el cuerpo laminar (2), estando dichas lentes colocadas en una hilera.

Description

Submódulo para módulos de concentración fotovoltaica. módulo de concentración fotovoltaica. instalación de energía solar, método de empaquetado v procedimiento de calibración de posición para módulos de concentración fotovoltaica
MEMORIA DESCRIPTIVA. OBJETO DE LA INVENCIÓN
La presente solicitud de Patente de Invención tiene por objeto el registro de un submódulo para aplicar en módulos de concentración fotovoltaica, un módulo de concentración fotovoltaica, una instalación de energía solar y un método de empaquetado para los citados módulos, que incorporan notables innovaciones y ventajas frente a instalaciones y sistemas conocidos para Ia generación de energía eléctrica a partir de Ia radiación solar.
Más concretamente, el objeto de Ia invención hace referencia a un submódulo, un módulo de concentración fotovoltaica que incorpora el submódulo anterior y una instalación de energía solar que utiliza el módulo de concentración citado con anterioridad para ser instalado sobre superficies planas, tales como tejados de edificios de viviendas, edificios de oficinas, fábricas y almacenes, así como sobre estructuras tipo pérgola en aparcamientos, estaciones y apeaderos de medios de transporte públicos y privados, paseos, zonas verdes y explotaciones agrícolas.
ANTECEDENTES DE LA INVENCIÓN.
En general, el principal beneficio que persiguen los sistemas de concentración fotovoltaica es Ia reducción de los costes mediante Ia reducción de Ia superficie del dispositivo fotovoltaico.
La concentración de Ia radiación exige un seguimiento activo de Ia trayectoria solar por parte del sistema concentrador, en contraste con los paneles fotovoltaicos planos actuales, sin concentración, en los cuales Ia posibilidad del seguimiento solar del sistema es opcional. La precisión con Ia que se realiza dicho seguimiento debe ser mayor cuanto mayor es el grado de concentración solar deseado.
Los conjuntos de concentración fotovoltaica con seguimiento en dos ejes conocidos para Ia generación de energía eléctrica a partir de Ia radiación solar están habitualmente constituidos por una pluralidad de módulos, cada uno de los cuales dispone de al menos un par de conjuntos de lentes o "parquets". Cada conjunto de lentes consiste en un cuerpo laminar transparente que puede incluir, por ejemplo, un juego con un número determinado de lentes que enfocan Ia radiación solar sobre un juego de células solares situadas dentro del módulo. La ventaja del uso de células solares o fotovoltaicas es que son dispositivos capaces de transformar Ia radiación solar en electricidad, de un modo directo.
Por otro lado, es conocida una amplia variedad de solicitudes de invenciones relacionadas con el diseño y estructuras para Ia formación de conjuntos fotovoltaicos del tipo descrito anteriormente, como por ejemplo, Ia solicitud EP 0581 889 que describe un conjunto fotovoltaico para Ia generación de energía eléctrica a partir de Ia radiación solar formado por una multiplicidad de conjuntos de lentes.
No obstante, debido a los costes de fabricación de componentes y mantenimiento que implican hoy en día Ia instalación de este tipo de estructuras, da lugar a que aún este tipo de aplicación no sea tan solicitada tal y como sería deseado ya que existen una serie de problemas que aún no han sido resueltos.
Además, los dispositivos de concentración fotovoltaica conocidos son de muy difícil instalación sobre tejados de edificios u otro tipo de aprovechamientos de superficies secundarias, estando limitado su uso a Ia producción centralizada sobre terrenos dedicados a ello. Esto se debe a su elevado centro de gravedad y aerodinámica desfavorable, Io cual también repercute negativamente en su capacidad operativa en zonas sometidas a vientos sostenidos. Otro problema asociado a los sistemas de concentración fotovoltaica es Ia disipación del calor. Existe una relación directa entre el grado de concentración y los beneficios de reducción de costes por reducción de superficie del dispositivo fotovoltaico que, sin embargo, se ve negativamente compensada por el incremento de costes que implica Ia necesidad de disipar más calor en una superficie cada vez más reducida.
DESCRIPCIÓN DE LA INVENCIÓN.
La presente invención se ha desarrollado con el fin de proporcionar un submódulo para módulos de concentración fotovoltaica, un módulo de concentración fotovoltaica y una instalación de energía solar que resuelvan los inconvenientes anteriormente mencionados, aportando, además, otras ventajas adicionales que serán evidentes a partir de Ia descripción que se acompaña a continuación.
El módulo de concentración fotovoltaica en especial aplicable sobre superficies sensiblemente planas de Ia presente invención se caracteriza por el hecho de que comprende una pluralidad de submódulos del tipo que se describirán a continuación dispuestos de forma paralela y equidistante entre sí que se apoyan sobre una plataforma colocada sensiblemente horizontal con respecto a Ia superficie de apoyo o bien del suelo (es decir, esencialmente en paralelo con respecto a Ia superficie en Ia que descansa todo el conjunto del módulo), estando dicha plataforma dispuesta sobre una estructura de soporte para ser colocada sobre Ia superficie de un tejado o superficie de apoyo, incluyendo además medios electromecánicos de desplazamiento asociados al movimiento en dos ejes para seguir Ia trayectoria solar, estando uno de los ejes asociado al movimiento giratorio del submódulo y el otro eje asociados al movimiento giratorio de Ia plataforma. Resaltar que el eje asociado al movimiento giratorio del submódulo corresponde al seguimiento en altitud, es decir, que gira alrededor de un eje geométrico paralelo al plano horizontal, mientras que el otro eje asociado al movimiento giratorio de Ia plataforma corresponde al seguimiento en azimut, es decir, gira alrededor de un eje geométrico perpendicular al plano horizontal, y por el hecho de que cada movimiento giratorio es accionado por un motor independiente para cada movimiento.
Cada módulo objeto de Ia invención está ideado para proporcionar alrededor de 200 vatios de potencia con una temperatura ambiente de 25 0C1 aunque el sistema es básicamente escalable, por Io que se podrían concebir módulos de potencias sensiblemente inferiores o superiores basados en los mismos principios.
La presente invención introduce un sistema de disipación adecuado para una alta concentración (del orden de 400 a 500 soles) sobre células fotovoltaicas multi-unión de menos de un centímetro cuadrado. El nuevo sistema de disipación es al mismo tiempo económico y eficiente, con Io que Ia reducción de costes introducida por Ia reducción de superficie de elemento fotovoltaico no se ve negativamente compensada por el coste adicional del sistema de disipación.
Gracias a estas características, se obtiene un módulo de concentración fotovoltaica para ser instalado en tejados de edificios con una superficie plana, no requiriendo de una amplia superficie para el montaje de una instalación con el tipo de módulo descrito anteriormente. Además, su instalación resulta sencilla de llevar a cabo ya que no requiere del uso de anclajes ni de elementos de fijación adicionales (debido a Ia posición relativamente baja del centro de gravedad), reduciendo el número de operarios necesarios para llevar a cabo dicha instalación y adaptándose a las normativas de trabajo que hacen referencia al levantamiento y manipulación de cargas pesadas. Su bajo perfil aerodinámico permite su uso con vientos fuertes y ofrece un menor impacto visual debido a Ia disposición aplanada del módulo, a diferencia de otros sistemas de concentración con seguimiento en dos ejes, generalmente constituidos por paneles dispuestos sobre postes perpendiculares al terreno con un centro de gravedad considerablemente alto y un importante impacto visual.
Además, otro aspecto ventajoso del módulo fotovoltaico frente a los sistemas conocidos como el mencionado previamente en los antecedentes, es el hecho de que requieren de poca altura (y por Io tanto tienen una posición más baja del centro de gravedad), de modo que reducen el impacto visual a diferencia de por ejemplo el sistema descrito en Ia patente anteriormente mencionada.
El módulo puede estar provisto de medios de cálculo para el posicionamiento y seguimiento del sol basados en los ejes astronómicos de altitud y azimut (no estando Ia invención limitada única y exclusivamente a dichos ejes astronómicos) a fin de obtener el máximo grado de concentración, medios de posicionamiento y orientación geográficos y un sensor de radiación solar, estando tales medios asociados a los medios electromecánicos de desplazamiento giratorio. Mediante Ia presencia de dicho sensor de radiación solar, el módulo dispone de Ia capacidad para determinar si las condiciones de luz en el cielo son adecuadas para calibrar Ia posición más apropiada en función de Ia presencia o no de nubes. Mencionar que, el seguimiento del sol se realiza en base a los parámetros de Ia altitud y el azimut, y por Io tanto, en dos ejes de manera que Ia concentración de sol es superior en relación a sistemas de obtención de energía conocidos de tipo estacionario o de seguimiento en un solo eje.
Es objeto de Ia invención proporcionar un submódulo de concentración fotovoltaica para módulos de concentración fotovoltaica, que incluye concentradores de energía solar para Ia captación de Ia radiación solar, estando dichos concentradores provistos de lentes de Fresnel y elementos ópticos secundarios, que se caracteriza por el hecho de que el submódulo está formado por un cuerpo laminar con un tramo central y dos aletas laterales sensiblemente perpendiculares definiendo una forma sensiblemente en U hecho de aluminio sobre el que se fijan en el tramo central por medios de fijación células fotovoltaicas que se proporcionan a cada uno de los concentradores, actuando el cuerpo laminar como una estructura de soporte de los concentradores y elemento disipador de calor para las células fotovoltaicas, y por el hecho de que las lentes de Fresnel están dispuestas en un montura frontal que está encajada con el cuerpo laminar, estando dichas lentes colocadas en una hilera.
De este modo, gracias a Ia configuración de Ia estructura de soporte en forma de U se amplia Ia superficie metálica de disipación de una manera sencilla y con un coste inferior, por ejemplo, respecto a Ia patente europea anteriormente citada en los antecedentes, donde Ia superficie de disipación equivale prácticamente al área ocupada por los elementos ópticos concentradores a diferencia de Ia presente solicitud, donde dicha superficie de disipación equivale aproximadamente a 4 veces el área ocupada por los elementos ópticos concentradores.
Ventajosamente, los medios de fijación comprenden una resina epoxi basada en plata que es una sustancia transmisora de calor y aislante eléctrico.
Por otro lado, también gracias al diseño así como el tamaño de los diferentes componentes que conforman los módulos pueden ser fácilmente transportados en palets. De este modo se reducen los costes de transporte.
Otro objeto de esta invención consiste en proporcionar una instalación de transformación de energía solar en energía eléctrica que comprende una pluralidad de módulos de concentración fotovoltaica del tipo que se han descrito aquí anteriormente, estando acoplados entre sí por laterales definidos con el contorno hexagonal de cada una de las estructuras de soporte base y estando todos los módulos orientados en una misma dirección. Esta instalación resulta muy apropiada para su colocación en tejados o terrazas de viviendas, bloques de pisos, edificios de oficinas, almacenes, etc. Según otro aspecto de Ia invención, Ia instalación estará constituida por uno o más grupos de módulos, o racimos, donde cada racimo comprende un módulo maestro y una pluralidad de módulos esclavo interconectados y controlados por el módulo maestro. El módulo maestro incluye medios de cálculo del posicionamiento y seguimiento del sol, medios de comunicación para controlar los módulos esclavo y un sensor de radiación solar.
Gracias a que todos estos elementos adicionales se disponen en un solo módulo de cada racimo de Ia instalación, se consigue un ahorro en los costes de fabricación, mantenimiento y energía requerida para el funcionamiento de tal instalación ya que se evita que cada uno de los módulos que comprende una instalación deban disponer de todos estos elementos adicionales, estando solo el módulo maestro en un estado constante de monitorización y control, y obedeciendo los módulos esclavo de forma pasiva a las órdenes emitidas periódicamente por el módulo maestro, por Io que estos se encuentran Ia mayor parte del tiempo en "estado durmiente", minimizado de esta forma los consumos parasitarios debidos a las funciones de monitorización y control. Todos los módulos están conectados a un bus de datos que permite el intercambio de órdenes y respuestas entre el módulo maestro y los módulos esclavo. La descentralización del sistema permite asimismo una monitorización de Ia instalación a nivel de módulo, Io cual permite obtener el máximo de información de Ia instalación con el fin de optimizar las intervenciones de mantenimiento.
Cabe destacar que los movimientos realizados por los medios de desplazamiento de los módulos son movimientos angulares que se llevan a cabo a intervalos predeterminados en base al ángulo de aceptación del concentrador de energía solar. Otro objeto de Ia presente invención es proporcionar un empaquetado para una pluralidad de módulos de concentración fotovoltaica que comprende un palet sobre el que se dispone en Ia parte superior y en posición vertical una pluralidad de módulos alineados. De este modo, se minimizan los costes de logística para el transporte de los componentes de una instalación desde el punto de pre-ensamblaje al punto de montaje de una instalación. Otras características y ventajas del módulo de concentración fotovoltaica y Ia instalación de energía solar objeto de Ia presente invención resultarán evidentes a partir de Ia descripción de una realización preferida, pero no exclusiva, que se ilustra a modo de ejemplo no limitativo en los dibujos que se acompañan, en los cuales:
BREVE DESCRIPCIÓN DE LOS DISEÑOS. Figura 1.- Es una vista en perspectiva del submódulo de concentración fotovoltaica objeto de Ia presente invención en una condición desmontada;
Figura 2.- es una vista de detalle en perspectiva de un tramo del submódulo de Ia figura 1 que incluye una célula fotovoltaica y una lente de Fresnel;
Figura 3.- Es una vista en perspectiva del módulo de concentración fotovoltaica objeto de Ia presente invención;
Figura 4.- Es una vista en perspectiva de una realización de una instalación de energía solar que incluye los módulos representados en Ia figura 3;
Figura 5.- Es una vista en perspectiva de una instalación de energía solar con una configuración de pérgola; Figura 6.- Es una vista en perspectiva de una disposición de empaquetado de cuatro módulos de Ia invención;
Figura 7.- Es un esquema de una instalación de Ia presente invención; Figura 8.- Es una vista esquematizada de otra realización de una instalación de energía solar de Ia presente invención; y Figura 9.- Es una vista esquematizada de aún otra realización de una instalación de energía solar con los submódulos de Ia presente invención. DESCRIPCIÓN DE UNA REALIZACIÓN PREFERENTE
Tal como se muestra en Ia figura 1 , los submódulos (1) de concentración fotovoltaica para módulos de concentración fotovoltaica que se explicarán con mayor detalle más adelante, están constituidos por diez concentradores de energía solar para Ia captación de Ia radiación solar, estando cada uno de los concentradores compuesto por una lente de Fresnel (15) y un elemento óptico secundario, el cual permite un incremento del grado de concentración, el ángulo de aceptación y una iluminación uniforme de Ia célula, mejorando así el rendimiento y Ia tolerancia de los concentradores. Dicho submódulo (1) está formado por un cuerpo laminar (2) con un espesor igual o inferior a 1 mm. con un tramo central plano y dos aletas laterales sensiblemente perpendiculares, conformando una forma sensiblemente en U. El cuerpo laminar (2) está hecho de aluminio sobre el que se fijan en el tramo central por medios de fijación, como una resina epoxi basada en plata que es transmisora de calor y aislante eléctrico, células fotovoltaicas que se proporcionan a cada uno de los concentradores. Cabe destacar que el cuerpo laminar (2) en forma de U actúa como una estructura de soporte para los concentradores y como elemento disipador de calor para las células fotovoltaicas.
Las lentes de Fresnel (15) (no se explicarán aquí con mayor detalle ya que no son objeto de Ia invención) están ubicadas en un alojamiento situado en una montura frontal (3) encajada con el cuerpo laminar (2), estando dichas lentes (15) colocadas en una única fila tal como puede apreciarse en Ia figura 1.
Las células fotovoltaicas (4) tienen, por ejemplo, unas dimensiones de 5,5 x 5,5 mm., estando cada una de ellas montada sobre un sustrato (5) de cerámica metalizado que incluye un diodo by-pass de protección y dichas células (4) están unidas a los elementos ópticos secundarios (fabricados en vidrio) mediante Ia utilización de una silicona transparente elastomera (véase Ia figura 2). La citada montura frontal (3) comprende un cuerpo hecho de material plástico con un bajo coste de fabricación sobre cuya cara frontal se montan las lentes de Fresnel (15), cerrando dicho cuerpo los laterales del submódulo (1) mediante unas prolongaciones laterales (3a) y las propias lentes el frontal del mismo, de modo que el interior del submódulo (1 ) está herméticamente cerrado cuando se acopla conjuntamente con el cuerpo laminar, aplicando para Ia fijación de ambos una silicona.
Tal como se aprecia en Ia figura 3, el módulo de concentración fotovoltaica (6) está constituido por cinco submódulos (1 ) agrupados de forma paralela y equidistante que se apoyan sobre una sola plataforma (7) que incluye una placa horizontal inferior (8) de apoyo. Cada módulo (6) puede dar una potencia de alrededor de 200 vatios. Cada uno de los módulos (6) está provisto de medios electromecánicos de desplazamiento en dos ejes, uno de los ejes para mover de forma giratoria Ia plataforma y el otro eje para mover cada uno de los submódulos siguiendo Ia posición del sol, con Io que incluyen al menos dos motores eléctricos convencionales que permiten el seguimiento del sol tanto en el eje del azimut como en el eje de altitud. Tales movimientos en los dos ejes astronómicos quedan reflejados más claramente en Ia figura 3 mediante las dos flechas representadas, representado Ia flecha (a) el seguimiento del módulo azimut y Ia flecha (b) el seguimiento del módulo en altitud.
Preferentemente, Ia plataforma (7) está formada por cinco submódulos (1) dispuestos de forma equidistante y paralela, presentando todo el conjunto una disposición general plana.
El módulo (6) puede descansar sobre una base de posicionamiento (9) que presenta ventajosamente un contorno hexagonal. Dicha disposición geométrica presenta Ia ventaja de que facilita las operaciones de alineación durante Ia operación de montaje de una instalación solar. Ello se debe al hecho de que a partir de Ia alineación de una sola base (9), aprovechando Ia geometría regular hexagonal, pueden alinearse el resto de bases (9) mediante el simple encaje de múltiples bases (9) a través de los lados regulares de las mismas.
Más concretamente, Ia base de posicionamiento (9) está formada por una pluralidad de elementos (10) con un contorno trapezoidal regular (véase Ia figura 5), que una vez unidos entre sí definen un contorno hexagonal. De este modo, mediante el empleo de piezas desmontables se facilita las operaciones de transporte ya que ocupa menos espacio en una condición previa al ensamblaje y el montaje de las bases (9) resulta sencillo y rápido.
Uno o varios módulos de concentración fotovoltaica (6) pueden estar provistos de medios de cálculo para el posicionamiento y seguimiento del sol asociados con los medios electromecánicos de desplazamiento giratorio, medios de posicionamiento y orientación geográficos y un sensor de radiación solar que permite medir Ia radiación solar.
Dichos medios de posicionamiento y orientación geográficos consisten en un sistema de posicionamiento GPS de modo que permite conocer Ia latitud y Ia longitud del punto geográfico en el que está instalado el módulo, y variables de tiempo (tales como Ia hora y fecha GMT) permitiendo así el cálculo astronómico de Ia posición solar, para que los módulos (6) se orienten en Ia dirección del sol. Adicionalmente, los medios de posicionamiento y orientación geográficos pueden incluir una brújula convencional (no representada).
Por otro lado, una pluralidad de módulos de concentración fotovoltaica (6) pueden agruparse para crear una instalación de transformación de energía solar en electricidad, estando los módulos (6) acoplados entre sí por los laterales definidos con el contorno hexagonal de cada una de las estructuras de soporte base (9). Todos los módulos (6) estarán orientados en una misma dirección o punto cardinal, tal como puede apreciarse en Ia figura 4, a fin de facilitar las operaciones de seguimiento del sol. Tal y como puede verse en el esquema mostrado en Ia figura 7, Ia instalación que es monitorizada a distancia desde cualquier punto determinado se divide en racimos, cada uno de los cuales comprende esencialmente un módulo maestro (11 ) y una pluralidad de módulos esclavo (12) interconectados y controlados por el módulo maestro (11 ), incluyendo dicho módulo maestro (11) medios de cálculo del posicionamiento y seguimiento del sol (cálculos basados en Ia altitud y el azimut), medios de control para controlar los módulos esclavo (12) y un sensor de radiación solar orientado hacia el zenit. El resto de componentes electromecánicos, mecánicos y ópticos son comunes en ambos tipos de módulos (11 ) y (12). Los movimientos realizados por los medios de desplazamiento de los módulos
(6) son movimientos angulares que se llevan a cabo a intervalos predeterminados, siguiendo una estrategia de control de bucle abierto, en base al ángulo de aceptación del concentrador de energía solar cuyo valor es de 1 ,25°. Aproximadamente, cada cuatro minutos, el módulo maestro (11) recalculará Ia posición del sol, y ordenará a los módulos esclavo (12) los movimientos deseados.
Durante el proceso de instalación, el módulo maestro (11) realizará un procedimiento inicial de calibración que consiste en determinar Ia desviación de los ejes de azimut y altitud respecto a los ejes teóricos. Dicho procedimiento presenta las siguientes etapas: En primer lugar, buscar el sol en su posición teórica a partir del cálculo astronómico. En caso de encontrarse el sol dentro del campo de visión del módulo, centrar su imagen dentro de dicho campo de visión mediante movimientos diagonales. En caso de no encontrarse el sol dentro del campo de visión del módulo, proceder a realizar movimientos espirales hasta encontrar el sol dentro del campo de visión, y a partir de ahí proceder como en el caso anterior. Una vez finalizado dicho procedimiento el módulo maestro calculará los ángulos de desviación de los ejes a partir de Ia diferencia entre Ia posición observada del sol y su posición prevista a partir del cálculo astronómico. En dicho procedimiento el módulo maestro (11) actúa siguiendo una estrategia de control en bucle cerrado, retroalimentado por Ia propia potencia generada por el módulo, que en este caso actúa como fotómetro.
Así mismo, el módulo maestro calculará los errores de posicionamiento de todos sus módulos esclavos ejecutando el mismo procedimiento de calibración para cada uno de ellos, pero partiendo de Ia posición corregida según los propios parámetros de error del módulo maestro. De esta forma el módulo maestro recoge en una matriz el conjunto de vectores iniciales de los parámetros de error de posicionamiento de todo el racimo de módulos que controla. A partir de los parámetros de error el módulo maestro corregirá Ia posición astronómica del sol en las subsiguientes órdenes de posicionamiento que enviará a todos los módulos del racimo durante las operaciones de seguimiento.
El sensor de radiación solar orientado hacia el zenit es utilizado por el módulo maestro para decidir cuando se realiza el proceso de calibración, ya que no es posible realizarlo bajo cielos total o parcialmente cubiertos, así como para tener una referencia externa que permita valorar el rendimiento total de Ia instalación.
Por otro lado, el sistema maestro será responsable de obtener medidas de potencia puntual de los módulos esclavo con el fin de detectar desviaciones significativas de rendimiento. Cuando el módulo maestro detecte que alguno de los módulos esclavo del racimo está rindiendo sensiblemente por debajo del nivel medio, el módulo maestro procederá a recalibrar el módulo esclavo afectado siguiendo el mismo procedimiento que durante el proceso de instalación. Dicho procedimiento, como ya se ha mencionado, solo se ejecuta si las condiciones de radiación solar Io permiten, y no en cualquier momento. Si el intento de calibración no fructifica, entonces el sistema maestro generará una alarma dirigida al sistema de supervisión de Ia instalación,. Esto implica que los distintos módulos maestro (uno por racimo) de Ia instalación estarán conectados con un sistema de monitorización general de Ia misma, el cual deberá estar preferentemente dotado de medios de comunicación telemáticos que permitan su supervisión remota.
En Ia figura 5, se muestra una segunda realización preferida de Ia instalación aquí descrita que presenta una configuración de pérgola, de modo que puede instalarse en un terreno de tal manera que Ia superficie del suelo puede ser aprovechada al haber únicamente como elemento anclado una barra (14). Esta configuración puede ser apta para aplicar en zonas de aparcamiento de vehículos o jardines.
En Ia figura 8 se muestra otra realización de una instalación de concentración fotovoltaica en Ia que los submódulos (1) están dispuestos en una plataforma (15) elevada respecto al nivel del suelo mediante un pivote giratorio (16) sobre su propio eje longitudinal, de modo que el movimiento de Ia plataforma realiza el seguimiento en azimut y el movimiento de los propios submódulos realiza el seguimiento en altitud.
Además, en Ia figura 9 se muestra de forma esquemática otra realización alternativa de una instalación de concentración fotovoltaica que utiliza los submódulos aquí descritos en Ia cual se han empleados dos ejes de seguimiento diferentes: el eje de declinación y el eje de ascensión.
Tal y como puede verse en Ia figura 6, los componentes que comprenden una instalación pueden ser transportados de forma sencilla y rápida y con un coste relativamente bajo mediante una forma de empaquetado adecuada. Dicho empaquetado está formado por un palet (13) sobre el que se dispone en Ia parte superior y en posición vertical cuatro módulos (6) que quedan alineados, teniendo dicho palet (13) preferentemente unas medidas de 1200 x 800 mm., de modo que cuatro módulos (6) de Ia invención quedan alineados. También existe Ia posibilidad de utilizar un palet de 1200 x 1200 mm. de modo que pueden colocarse seis módulos (6) alineados. El empaquetado puede incluir en Ia parte más superior una pluralidad de los elementos (10) que presentan el contorno trapezoidal dispuestas en una hilera.
Los detalles, las formas, las dimensiones y demás elementos accesorios, así como los materiales empleados en Ia fabricación del módulo de concentración fotovoltaica así como en Ia instalación de la invención podrán, ser convenientemente sustituidos por otros que sean técnicamente equivalentes y no se aparten de Ia esencialidad de Ia invención ni del ámbito definido por las reivindicaciones que se incluyen a continuación.

Claims

REIVINDICACIONES
1. "Submódulo (1) de concentración fotovoltaica" para módulos de concentración fotovoltaica, incluyendo concentradores de energía solar para Ia captación de Ia radiación solar y comprendiendo dichos concentradores lentes de Fresnel (15) y elementos ópticos secundarios, caracterizado por el hecho de que el submódulo está formado por un cuerpo laminar (2) con un tramo central y dos aletas laterales sensiblemente perpendiculares definiendo una forma sensiblemente en U hecho de aluminio sobre el que se fijan en el tramo central por medios de fijación células fotovoltaicas que se proporcionan a cada uno de los concentradores, actuando el cuerpo laminar (2) como una estructura de soporte de los concentradores y elemento disipador de calor para las células fotovoltaicas, y por el hecho de que las lentes de Fresnel están dispuestas en un montura frontal (3) que está encajada con el cuerpo laminar (2), estando dichas lentes colocadas en una hilera.
2. "Submódulo (1 ) de concentración fotovoltaica" según Ia reivindicación 1 , caracterizado por el hecho de que los medios de fijación comprenden una resina epoxí basada en plata que es transmisor de calor.
3. "Submódulo (1) de concentración fotovoltaica" según Ia reivindicación 1 , caracterizado por el hecho de que cada una de las células fotovoltaicas está montada sobre un sustrato de cerámica metalizado que incluye un diodo by-pass de protección y estando dichas células unidas a los elementos ópticos secundarios mediante silicona transparente elastomera.
4. "Submódulo (1) de concentración fotovoltaica" según las reivindicaciones 1 y 3, caracterizado por el hecho de que las células fotovoltaicas tienen unas dimensiones de 5,5 x 5,5 mm.
5. "Submódulo (1) de concentración fotovoltaica" según Ia reivindicación 1 , caracterizado por el hecho de que el cuerpo laminar (2) en forma de U tiene un espesor igual o inferior a 1 mm.
6. "Submódulo (1) de concentración fotovoltaica" según Ia reivindicación 1 , caracterizado por el hecho de que Ia montura frontal (3) comprende un cuerpo hecho de material plástico sobre el cual se acoplan las lentes y que incluye prolongaciones laterales, de modo que en una condición de acoplamiento conjuntamente con el cuerpo laminar 2, el interior del submódulo está herméticamente cerrado.
7. "Módulo de concentración fotovoltaica (6)", en especial aplicable sobre superficies sensiblemente planas caracterizado por el hecho de que comprende una pluralidad de submódulos (1 ) según las reivindicaciones 1 a 6 dispuestos de forma paralela y equidistante entre sí, estando Ia pluralidad de submódulos apoyada sobre una plataforma colocada sensiblemente horizontal con respecto a una superficie de apoyo, estando dicha plataforma dispuesta sobre una estructura de soporte para ser colocada sobre Ia superficie de un tejado o superficie de apoyo e incluyendo además medios electromecánicos de desplazamiento asociados al movimiento en dos ejes para seguir Ia trayectoria solar, estando uno de los ejes asociado al movimiento giratorio del submódulo (1 ) y el otro eje asociado al movimiento giratorio de Ia plataforma (7).
8. "Módulo de concentración fotovoltaica (6)" según Ia reivindicación 7, caracterizado por el hecho de que el eje asociado al movimiento giratorio del submódulo (1) corresponde al seguimiento en altitud mientras que el otro eje asociado al movimiento giratorio de Ia plataforma (7) corresponde al seguimiento en azimut y por el hecho de que cada movimiento giratorio es accionado por un motor independiente.
9. "Módulo de concentración fotovoltaica (6)" según Ia reivindicación 7, caracterizado por el hecho de que Ia plataforma presenta cinco submódulos dispuestos de forma equidistante y paralela.
10. "Módulo de concentración fotovoltaica (6)" según Ia reivindicación 7, caracterizado por el hecho incluye una base de posicionamiento (9) sobre Ia cual descansa Ia estructura de soporte, presentando dicha base (9) un contorno hexagonal.
11. "Módulo de concentración fotovoltaica (6)" según Ia reivindicación 9, caracterizado por el hecho de que Ia base de posicionamiento (9) está formada por una pluralidad de elementos (10) que presentan un contorno trapezoidal, que son interconectables entre sí de modo que en una condición montada definen el contorno hexagonal de Ia base (9).
12. "Módulo de concentración fotovoltaica (6)" según Ia reivindicación 7, caracterizado por el hecho de que está provisto de medios de cálculo para el posicionamiento y seguimiento del sol basados en los ejes de altitud y el azimut, medios de posicionamiento y orientación geográficos y un sensor de radiación solar, estando tales medios asociados a los medios electromecánicos de desplazamiento giratorio.
13. "Módulo de concentración fotovoltaica (6)" según Ia reivindicación 11 , caracterizado por el hecho de que los medios de posicionamiento y orientación geográficos consisten en un sistema de posicionamiento GPS.
14. "Módulo de concentración fotovoltaica (6)" según Ia reivindicación 11 , caracterizado por el hecho de que los medios de posicionamiento y orientación geográficos consisten en una brújula.
15. "Instalación de transformación de energía solar en energía eléctrica" caracterizada por el hecho de que comprende una pluralidad de módulos de concentración fotovoltaica (6) según las reivindicaciones 7 a 14, estando los módulos (6) acoplados entre sí por los laterales geométricos de cada una de las estructuras de soporte base de contorno hexagonal y estando todos los módulos (6) orientados en una misma dirección.
16. "Instalación de transformación de energía solar en energía eléctrica" según Ia reivindicación 15, caracterizada por el hecho de que está dividida en un conjunto de racimos, cada uno de los cuales comprende un módulo maestro (11) y una pluralidad de módulos esclavo (12) interconectados y controlados por el módulo maestro (11 ).
17. "Instalación de transformación de energía solar en energía eléctrica" según
Ia reivindicación 16, caracterizada por el hecho de que el módulo maestro (11) incluye medios de cálculo del posicionamiento y seguimiento del sol, medios de control para controlar los módulos esclavo (12) y un sensor de radiación solar.
18. "Instalación de transformación de energía solar en energía eléctrica" según Ia reivindicación 16, caracterizada por el hecho de que los movimientos realizados por los medios de desplazamiento de los módulos son movimientos angulares que se llevan a cabo a intervalos predeterminados en base al ángulo de aceptación del concentrador de energía solar.
19. "Instalación de transformación de energía solar en energía eléctrica" según las reivindicaciones 15 a 18, caracterizada por el hecho de que está constituida por una pluralidad de racimos, estando cada racimo constituido por un módulo maestro (11) y una pluralidad de módulos esclavo (12).
20. "Método de empaquetado" para una pluralidad de módulos de concentración fotovoltaica según cualquiera de las reivindicaciones 7 a 14, caracterizado por el hecho de que comprende un palet (13) sobre el que se dispone en Ia parte superior y en posición vertical una pluralidad de módulos (6) alineados.
21. Método de empaquetado según Ia reivindicación 20, caracterizado por el hecho de que el palet tiene unas medidas de 1200 x 1200 mm., comprendiendo dicho palet seis módulos alineados en posición vertical.
22. Método de empaquetado según Ia reivindicación 20, caracterizado por el hecho de que el palet tiene unas medidas de 1200 x 800 mm., comprendiendo dicho palet cuatro módulos alineados en posición vertical.
23. Método de empaquetado según Ia reivindicación 20, caracterizado por el hecho de que incluye una pluralidad de elementos (10) que presentan el contorno trapezoidal dispuestas en una hilera.
24. "Procedimiento de calibración de posición para módulos de concentración fotovoltaica" para posicionar el sol en el campo de visión los módulos de concentración fotovoltaica de una instalación del tipo descrito en las reivindicaciones 15 a 19, caracterizado por el hecho de que presenta las siguientes etapas: a) buscar el sol en su posición teórica a partir del cálculo astronómico; b) (i) centrar su imagen dentro de dicho campo de visión mediante movimientos diagonales en caso de encontrarse el sol dentro del campo de visión del módulo y (ii) proceder a realizar movimientos espirales hasta encontrar el sol dentro del campo de visión en caso de no encontrarse el sol dentro del campo de visión del módulo; c) calcular el módulo maestro los ángulos de desviación de los ejes a partir de Ia diferencia entre Ia posición observada del sol y su posición prevista a partir del cálculo astronómico; d) calcular mediante el módulo maestro los errores de posicionamiento de todos sus módulos esclavos ejecutando el mismo procedimiento de calibración para cada uno de ellos, pero partiendo de Ia posición corregida según los propios parámetros de error del módulo maestro; y e) corregir a partir de los parámetros de error el módulo maestro Ia posición astronómica del sol en las subsiguientes órdenes de posicionamiento que enviará a todos los módulos del racimo durante las operaciones de seguimiento.
PCT/ES2006/000130 2005-04-27 2006-03-16 Submódulo para módulos de concentración fotovoltaica. módulo de concentración fotovoltaica, instalación de energía solar, método de empaquetado y procedimiento de calibración de posición para módulos de concentración fotovoltaica WO2006114457A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800147565A CN101189732B (zh) 2005-04-27 2006-03-16 用于光伏聚光模块的子模块、光伏聚光模块、太阳能装置和用于光伏聚光模块的包装方法和位置校准方法
EP06725820A EP1892771A1 (en) 2005-04-27 2006-03-16 Submodule for photovoltaic concentration modules, photovoltaic concentration module, solar power installation, packing method and position calibration method for photovoltaic concentration modules
US11/912,428 US20100307563A1 (en) 2005-04-27 2006-03-16 Sub-Module for Photovoltaic Concentration Modules, Photovoltaic Concentration Module, Solar Power Installation, Packing Method and Position Calibration Method for Photovoltaic Concentration Modules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200501024 2005-04-27
ES200501024A ES2267382B1 (es) 2005-04-27 2005-04-27 Submodulo para modulos de concentracion fotovoltaica, modulo de concentracion fotovoltaica, instalacion de energia solar, metodo de empaquetado y procedimiento de calibracion de posicion para modulos de concentracion fotovoltaica.

Publications (1)

Publication Number Publication Date
WO2006114457A1 true WO2006114457A1 (es) 2006-11-02

Family

ID=37214428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000130 WO2006114457A1 (es) 2005-04-27 2006-03-16 Submódulo para módulos de concentración fotovoltaica. módulo de concentración fotovoltaica, instalación de energía solar, método de empaquetado y procedimiento de calibración de posición para módulos de concentración fotovoltaica

Country Status (5)

Country Link
US (1) US20100307563A1 (es)
EP (1) EP1892771A1 (es)
CN (1) CN101189732B (es)
ES (1) ES2267382B1 (es)
WO (1) WO2006114457A1 (es)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007084517A2 (en) * 2006-01-17 2007-07-26 Soliant Energy, Inc. Concentrating solar panel and related systems and methods
US7807920B2 (en) 2007-10-30 2010-10-05 Opel, Inc. Concentrated solar photovoltaic module
US7855336B2 (en) 2007-10-30 2010-12-21 Opel, Inc. Concentrated solar photovoltaic module with protective light shielding
US20110048535A1 (en) * 2009-09-03 2011-03-03 Emcore Solar Power, Inc. Encapsulated Concentrated Photovoltaic System Subassembly for III-V Semiconductor Solar Cells
WO2011101516A1 (es) 2010-02-19 2011-08-25 Abengoa Solar New Technologies, S.A. Sistema de concentración solar fotovoltaica.
US8697983B2 (en) 2008-05-16 2014-04-15 Suncore Photovoltaics, Inc. Concentrating photovoltaic solar panel
US9000293B2 (en) 2010-09-27 2015-04-07 Abengoa Solar New Technologies, S.A. Reflective photovoltaic solar concentration system
US9012771B1 (en) * 2009-09-03 2015-04-21 Suncore Photovoltaics, Inc. Solar cell receiver subassembly with a heat shield for use in a concentrating solar system
US9331228B2 (en) 2008-02-11 2016-05-03 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9923112B2 (en) 2008-02-11 2018-03-20 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
DE102021006164A1 (de) 2021-12-14 2023-06-15 Kastriot Merlaku Solarmodul-Nachführ-System
DE102021006163A1 (de) 2021-12-14 2023-06-15 Kastriot Merlaku Solar-Tracking-System für Solarmodule

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008351529A1 (en) * 2008-02-25 2009-09-03 Isofoton Photovoltaic concentration module and device
ES2351919B8 (es) 2009-07-28 2012-05-30 Abengoa Solar New Technologies, S.A. Seguidor solar para módulos solares fotovoltáicos de alta concentración de tipo giratorio para cubierta y huertos solares.
US20110029351A1 (en) * 2009-07-31 2011-02-03 Siemens Ag Systems and Methods for Providing Compliance Functions in a Business Entity
ES2357931B1 (es) 2009-09-23 2012-03-12 Abengoa Solar Solar New Technologies S.A. Módulo solar fotovoltaico de alta concentración.
ES2385244B1 (es) * 2010-09-02 2013-05-03 Ignacio José Pou De Los Mozos Módulo solar de láminas de células fotovoltaicas.
DE102010041903B4 (de) * 2010-10-04 2017-03-09 Siemens Aktiengesellschaft Durchlaufdampferzeuger mit integriertem Zwischenüberhitzer
JP6225744B2 (ja) * 2014-02-24 2017-11-08 住友電気工業株式会社 集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電装置
ITUB20159766A1 (it) * 2015-12-30 2017-06-30 Energer S R L Impianto fotovoltaico con sistema ad inseguimento solare mono assiale
FR3077141B1 (fr) * 2018-01-22 2020-07-03 Kerlink Procede de geolocalisation d'un dispositif emetteur de signal
BR112022002285A2 (pt) * 2019-08-08 2022-04-26 Nanoptek Corp Célula e painel de eletrolisador assistido por radiação

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990415A (en) * 1994-12-08 1999-11-23 Pacific Solar Pty Ltd Multilayer solar cells with bypass diode protection
US6037535A (en) * 1994-06-03 2000-03-14 Yoshino; Kazuo Sunlight collection apparatus
ES2155030A1 (es) * 1999-05-03 2001-04-16 Orti Javier Porcar Sistema de aplicacion de lentes concentradoras de radiacion solar sobre celulas fotovoltaicas para el aumento de la capacidad de produccion de energia electrica de las mismas.
US20020139413A1 (en) * 2001-03-29 2002-10-03 Ikuji Sasaki Power generation equipment using sunlight
US6483093B1 (en) * 1999-11-24 2002-11-19 Honda Giken Kogyo Kabushiki Kaisha Solar generator system
US20040216734A1 (en) * 2001-05-29 2004-11-04 Paul Lawheed Conversion of solar energy
US20040246596A1 (en) * 2003-06-03 2004-12-09 Rensselaer Polytechnic Institute Concentrating type solar collection and daylighting system within glazed building envelopes
ES2229950A1 (es) * 2001-01-11 2005-04-16 Solar Systems Technology Incorporated Modulo de energia solar.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350234A (en) * 1963-06-03 1967-10-31 Hoffman Electronics Corp Flexible solar-cell concentrator array
US4187123A (en) * 1975-10-21 1980-02-05 Diggs Richard E Directionally controlled array of solar power units
US4109638A (en) * 1977-04-04 1978-08-29 Matlock William C Solar energy converter carousel
DE9006002U1 (de) * 1990-05-26 1990-08-02 Grundmann, Ernst H., 4005 Meerbusch Drehtellereinrichtung
US5444602A (en) * 1994-02-25 1995-08-22 Intel Corporation An electronic package that has a die coupled to a lead frame by a dielectric tape and a heat sink that providees both an electrical and a thermal path between the die and teh lead frame
US6020554A (en) * 1999-03-19 2000-02-01 Photovoltaics International, Llc Tracking solar energy conversion unit adapted for field assembly
CN100523595C (zh) * 2004-11-01 2009-08-05 帕兰斯日光公司 光收集装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037535A (en) * 1994-06-03 2000-03-14 Yoshino; Kazuo Sunlight collection apparatus
US5990415A (en) * 1994-12-08 1999-11-23 Pacific Solar Pty Ltd Multilayer solar cells with bypass diode protection
ES2155030A1 (es) * 1999-05-03 2001-04-16 Orti Javier Porcar Sistema de aplicacion de lentes concentradoras de radiacion solar sobre celulas fotovoltaicas para el aumento de la capacidad de produccion de energia electrica de las mismas.
US6483093B1 (en) * 1999-11-24 2002-11-19 Honda Giken Kogyo Kabushiki Kaisha Solar generator system
ES2229950A1 (es) * 2001-01-11 2005-04-16 Solar Systems Technology Incorporated Modulo de energia solar.
US20020139413A1 (en) * 2001-03-29 2002-10-03 Ikuji Sasaki Power generation equipment using sunlight
US20040216734A1 (en) * 2001-05-29 2004-11-04 Paul Lawheed Conversion of solar energy
US20040246596A1 (en) * 2003-06-03 2004-12-09 Rensselaer Polytechnic Institute Concentrating type solar collection and daylighting system within glazed building envelopes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAQUE A.S.: "Processing and Characterization of Device Solder Interconnection and Module Attachment for Power Electronics Modules", VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, 15 September 2000 (2000-09-15), pages 71 - 80, XP008121798, Retrieved from the Internet <URL:http://www.web.archive.org/web/20000915144443> *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007084517A2 (en) * 2006-01-17 2007-07-26 Soliant Energy, Inc. Concentrating solar panel and related systems and methods
WO2007084517A3 (en) * 2006-01-17 2008-02-21 Soliant Energy Inc Concentrating solar panel and related systems and methods
US7807920B2 (en) 2007-10-30 2010-10-05 Opel, Inc. Concentrated solar photovoltaic module
US7855336B2 (en) 2007-10-30 2010-12-21 Opel, Inc. Concentrated solar photovoltaic module with protective light shielding
US9331228B2 (en) 2008-02-11 2016-05-03 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9923112B2 (en) 2008-02-11 2018-03-20 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US8697983B2 (en) 2008-05-16 2014-04-15 Suncore Photovoltaics, Inc. Concentrating photovoltaic solar panel
US9012771B1 (en) * 2009-09-03 2015-04-21 Suncore Photovoltaics, Inc. Solar cell receiver subassembly with a heat shield for use in a concentrating solar system
US20110048535A1 (en) * 2009-09-03 2011-03-03 Emcore Solar Power, Inc. Encapsulated Concentrated Photovoltaic System Subassembly for III-V Semiconductor Solar Cells
US9806215B2 (en) 2009-09-03 2017-10-31 Suncore Photovoltaics, Inc. Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells
WO2011101516A1 (es) 2010-02-19 2011-08-25 Abengoa Solar New Technologies, S.A. Sistema de concentración solar fotovoltaica.
US9000293B2 (en) 2010-09-27 2015-04-07 Abengoa Solar New Technologies, S.A. Reflective photovoltaic solar concentration system
DE102021006164A1 (de) 2021-12-14 2023-06-15 Kastriot Merlaku Solarmodul-Nachführ-System
DE102021006163A1 (de) 2021-12-14 2023-06-15 Kastriot Merlaku Solar-Tracking-System für Solarmodule

Also Published As

Publication number Publication date
CN101189732A (zh) 2008-05-28
US20100307563A1 (en) 2010-12-09
ES2267382B1 (es) 2008-03-01
ES2267382A1 (es) 2007-03-01
EP1892771A1 (en) 2008-02-27
CN101189732B (zh) 2010-12-22

Similar Documents

Publication Publication Date Title
ES2267382B1 (es) Submodulo para modulos de concentracion fotovoltaica, modulo de concentracion fotovoltaica, instalacion de energia solar, metodo de empaquetado y procedimiento de calibracion de posicion para modulos de concentracion fotovoltaica.
US7923624B2 (en) Solar concentrator system
ES2538815T3 (es) Panel solar fotovoltaico de concentración
ES2306813T3 (es) Generador solar de electricidad.
ES2400182T3 (es) Sistema de iluminación diurno y recolección solar de tipo concentración dentro de cerramientos de edificios en vidrio
US7858875B2 (en) Radiant energy conversion system
US9074797B2 (en) Assembling and aligning a two-axis tracker assembly in a concentrated photovoltaic system
US20090250095A1 (en) Low-profile solar tracking module
ES2810936T3 (es) Campo solar con central solar de referencia para una gestión mejorada
US20120152311A1 (en) Components of a two-axis tracking assembly in a concentrated photovoltaic system
ES2340562A1 (es) Conjunto solar terrestre.
US10077920B2 (en) Apparatus and method for high efficiency fixed target solar thermal concentrator power plants
ES2659211T3 (es) Planta fotovoltaica
ES2313861B1 (es) Seguidor solar aplicable a torres eolicas.
ES2898974T3 (es) Faceta autónoma para concentradores solares y concentrador solar que comprende dicha faceta
ES2355883B1 (es) Equipo fotovoltaico de generación de energía eléctrica por concentración con reflectores en forma de mariposa.
KR101150655B1 (ko) 다이아몬드형 다방향 고정추적식 태양전지 시스템 가로등 및 그 제조방법
TWI493148B (zh) 太陽能收集器定位裝置
van der Sluys et al. CPV in the built environment
ES2332084B2 (es) Seguidor solar basado en cinematica paralela de accionamiento en linea.
ES2404671B1 (es) Método para orientación de captadores solares de eje rotativo no vertical.
ES2331721B2 (es) Seguidor solar basado en cinematica paralela de accionamiento individual.
ES2311429B1 (es) Seguidor torregiro.
ES2898277A1 (es) Estructura de soporte de paneles fotovoltaicos bifaciales y planta solar que comprende dicha estructura
ES2372083A1 (es) Elemento de concentración solar fotovoltaica, módulo que comprende dichos elementos y dispositivo modular formado por dichos módulos.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006725820

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680014756.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006725820

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11912428

Country of ref document: US