WO2006112236A1 - Flow rate control valve - Google Patents

Flow rate control valve Download PDF

Info

Publication number
WO2006112236A1
WO2006112236A1 PCT/JP2006/306141 JP2006306141W WO2006112236A1 WO 2006112236 A1 WO2006112236 A1 WO 2006112236A1 JP 2006306141 W JP2006306141 W JP 2006306141W WO 2006112236 A1 WO2006112236 A1 WO 2006112236A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
ball screw
control valve
servo motor
disposed
Prior art date
Application number
PCT/JP2006/306141
Other languages
French (fr)
Japanese (ja)
Inventor
Kazutoshi Itoh
Masashi Yanagawa
Original Assignee
Ckd Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ckd Corporation filed Critical Ckd Corporation
Publication of WO2006112236A1 publication Critical patent/WO2006112236A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/12Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with streamlined valve member around which the fluid flows when the valve is opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/047Actuating devices; Operating means; Releasing devices electric; magnetic using a motor characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus
    • F16K51/02Other details not peculiar to particular types of valves or cut-off apparatus specially adapted for high-vacuum installations

Definitions

  • the present invention relates to a flow control valve that controls, for example, a vacuum pressure.
  • FIG. 4 is a cross-sectional view of the flow path opening / closing valve 101 of the invention of Patent Document 1, and shows the valve closed state.
  • the flow path opening / closing valve 101 has an outer shape formed by valve nosing 111.
  • the valve housing 111 has flange portions 112, 113 at both ends, and a fluid flow path is provided between the flange portions 112, 113. 114 is formed.
  • valve body 117 pivots about the connection point A, and the valve body disk portion 119 substantially overlaps the pipe portion centerline shaft 120 as shown in FIG.
  • the valve opening degree of the flow path opening / closing valve 101 becomes the maximum.
  • FIG. 6 shows a cross-sectional view of the flow control valve 201 of the invention of Patent Document 2.
  • This non-reflow body 201 is connected to the non-reflex body 211, and the non-reb body 211 is connected to the flow passage port 212, the valve seat 213 hole 214, the valve chamber 215, and the flow passage port 212 to form a flow passage 216.
  • a stepping motor 221 is disposed in the drive system, and the rotational driving force of the stepping motor 221 is converted into a linear driving force by the eccentric cam 222, and the valve body 217 is controlled via the valve body operating member 223.
  • valve opening and valve closing operations are performed.
  • Patent Document 1 JP-A-10-196806
  • Patent Document 2 JP 2002-168361
  • the opening / closing operation of the valve is performed by rotating the first link 121, the second link 122, and the third link 123. And the valve opening cannot be set accurately.
  • the force of the fluid flowing along the fluid flow path 114 formed between the flange portions 112 and 113, and the rotation of the disc disc portion 119 is performed against the flow of the fluid. This may cause the fluid flow to become unstable.
  • the rotational driving force of the stepping motor 221 is converted into a linear driving force by the eccentric cam 222.
  • the eccentric cam 222 is likely to slip during conversion of the driving force, it takes a lot of time to perform accurate positioning, and it is difficult to accurately vary the valve opening at high speed.
  • the mounting part of the stepping motor 221 becomes large and the flow control valve becomes large.
  • the present invention can reduce the flow path resistance to facilitate the flow of the fluid, can stabilize the flow of the fluid, can be changed to a fast and accurate valve opening,
  • An object of the present invention is to provide a flow control valve that can increase the responsiveness of the opening and closing operations and can prolong the service life.
  • the present invention has the following features.
  • the present invention converts the nut that transmits the rotational drive of the servo motor and the rotational drive to linear drive.
  • a linear transformation comprising a ball screw that rotates and a main shaft on which a spline that transmits linear driving is formed, and a valve body that is translated in the direction of the central axis of the first port and the second port and that is integral with the main shaft. It is characterized by having.
  • the present invention provides the flow rate control valve according to (1), wherein a support member disposed on the inner peripheral surface side of the substantially cylindrical cover portion, and a substantially cylindrical bracket attached to the support member And a ball screw disposed on the inner peripheral surface side of the bracket, a main shaft disposed on the inner peripheral surface side of the ball screw, and a valve body disposed on the end of the main shaft opposite to the ball screw. It is characterized by having.
  • the present invention is the flow control valve according to (1) or (2), wherein the servo motor disposed on the outer peripheral surface side of the substantially cylindrical cover portion is integrated with the servo motor. Timing to connect the first pulley arranged on the second port side, the second pulley arranged on the second port side, which is integrated with the ball screw nut constituting the ball screw, and the first pulley and the second pulley It is characterized by having a belt.
  • valve open state force when the valve open state force is also set to the valve closed state, the valve body is moved to the valve seat by the driving force of the motor.
  • the servo motor is stopped when the torque value of the servo motor reaches a predetermined value.
  • the first port, the valve body, the linear deformation, and the second port are arranged on a straight line.
  • a linear structure comprising a nut for transmitting the rotational drive of the servo motor, a ball screw for converting the rotational drive to a linear drive, and a main shaft on which a spline for transmitting the linear drive is formed, and a first port and a second
  • the parallel movement in the direction of the center axis of the 2 ports has a valve body integrated with the main shaft, so the flow path is formed in a straight line! Therefore, the flow resistance is reduced and the fluid flows.
  • the valve body moves parallel to the fluid flow, and the fluid flow can be stabilized, and the servo motor is driven by the built-in encoder signal.
  • valve opening can be changed at high speed and accurately, and the servo motor can be driven at high speed to increase the responsiveness of the valve opening and closing operations. Since the drive of the motor is transmitted to the valve body by the main shaft on which the ball screw and the spline are formed, an effect that the durability of the drive mechanism portion is high and the life can be extended is obtained.
  • the present invention provides the flow rate control valve according to (1), wherein a support member disposed on the inner peripheral surface side of the substantially cylindrical cover portion, and a substantially cylindrical bracket attached to the support member And a ball screw disposed on the inner peripheral surface side of the bracket, a main shaft disposed on the inner peripheral surface side of the ball screw, and a valve body disposed on the end of the main shaft opposite to the ball screw. Therefore, in addition to the effect described in (1), the flow of fluid can be stabilized because each component is arranged in parallel to the fluid flow direction.
  • the present invention provides the flow rate control valve described in (1) or (2), wherein the servo motor disposed on the outer peripheral surface side of the substantially cylindrical cover portion is integrated with the servo motor. Timing to connect the first pulley arranged on the second port side, the second pulley arranged on the second port side, which is integrated with the ball screw nut constituting the ball screw, and the first pulley and the second pulley.
  • the fluid control valve can be miniaturized by making the mounting of the servo motor compact.
  • the present invention relates to any one of the flow rate control valves described in (1) to (3), wherein when the valve is opened, the valve body is moved to the valve seat by the driving force of the servo motor. Since the servo motor is stopped when the torque value of the servo motor reaches a predetermined value, the load described in (1) to (3) is added to the seal member. Therefore, it is possible to increase the life of the valve mechanism.
  • FIG. 1 is a cross-sectional view (valve closed state) of a vacuum pressure control valve 1 of the present invention.
  • FIG. 2 is a cross-sectional view (valve open state) of the vacuum pressure control valve 1 of the present invention.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is a cross-sectional view (valve closed state) of the flow path opening / closing valve of Patent Document 1.
  • FIG. 5 is a cross-sectional view (valve open state) of the flow path opening / closing valve of Patent Document 1.
  • FIG. 6 is a cross-sectional view of a flow control valve of Patent Document 2.
  • FIG. 7 is an external view of a center flange in the vacuum pressure control valve 1 of the present invention.
  • FIG. 1 is a cross-sectional view of a vacuum pressure control valve 1 of the present invention, showing a valve closed state.
  • the vacuum pressure control valve 1 has a flange body 11
  • the outer shape is formed by the in-line body 12 and the motor flange 13 as a substantially cylindrical cover portion.
  • a flow path 14 is formed on the inner peripheral side of the inline body 12.
  • a flow path 13a is also formed on the inner peripheral side of the motor flange 13 as shown in FIG.
  • FIG. 3 is a cross-sectional view taken along line AA shown in FIG.
  • the internal configuration of the vacuum pressure control valve 1 can be broadly divided into a valve mechanism section and a drive mechanism section.
  • the valve mechanism consists of a flow path inlet port 16, a flow path outlet port 17, a valve body 21, a bellows 22, a ball screw 23, a holder 24, a ball screw spindle 26, a ball screw nut 27, a seal Forces such as member 28 and valve seat 29 are also constructed.
  • the ball screw 23 is disposed on the inner peripheral side of a holder 24 that is a substantially cylindrical bracket, and the holder 24 is coupled by a bolt at a bolt hole 36a of a center flange 36 that is a support member.
  • a flow path 36b is formed in the center flange 36 as shown in FIG.
  • a ball screw main shaft 26 is disposed on the inner peripheral surface side of the ball screw 23.
  • the bellows 22 integrated with the valve body 21 and the holder 24 is arranged so as to cover the outer periphery of the ball screw main shaft 26.
  • the bellows 22 can freely expand and contract in the direction of the axis 15 and insulates the flow path 14 and the ball screw 23, so that outside air does not enter the flow path 14 even when vacuumed.
  • a valve body 21 is coupled to the end of the ball screw main shaft 26 opposite to the ball screw 23.
  • a large pulley 33 described later is coupled to a ball screw nut 27 disposed on the flow path outlet port 17 side of the ball screw 23.
  • a seal member 28 is disposed at the end of the valve body 21. In this manner, each component is disposed between the flow path inlet port 16 and the flow path outlet port 17 in parallel to the fluid flow direction.
  • the drive mechanism section includes a servo motor 31, a timing belt 32, a large pulley 33, a small pulley 34, and the like.
  • the servo motor 31 is disposed on the outer peripheral surface side of the inline body 12 and the motor flange 13.
  • a small pulley 34 is coupled to the flow path outlet port 17 side of the servo motor 31.
  • the large pulley 33 is disposed on the ball screw nut 27 disposed on the flow path outlet port 17 side of the ball screw 23. Are combined.
  • the large pulley 33 and the small pulley 34 are connected by a timing belt 32.
  • the timing belt outlet 25 where the timing belt 32 is disposed is isolated from the flow path 14 by a motor flange 13 having a cross section as shown in FIG.
  • the servo built in the servo motor 31 The position of the valve disc 21 can be grasped by calculating the signal of the reader 35.
  • the vacuum pressure control valve 1 having such a configuration operates as follows.
  • the valve closing state force in Fig. 1 is also set to the valve opening state
  • the servo motor 31 is first rotated.
  • the ball screw nut 27 connected by the timing belt 32 is rotated, and the ball screw main shaft 26 is translated in the direction of the axis 15 toward the drive mechanism.
  • the valve body 21 integrated with the ball screw main shaft 26 is separated from the valve seat 29.
  • the opening area of the flow path inlet port 16 can be adjusted by changing the distance between the valve body 21 and the valve seat 29.
  • the flow rate and pressure of the fluid can be changed and adjusted, and as a result, the pressure in a chamber (not shown) directly connected to the flow path inlet port 16 is controlled.
  • the servo motor 31 is rotated in the opposite direction to the above case. Then, the ball screw nut 27 connected by the timing belt 32 rotates in the opposite direction to the above case, so that the ball screw main shaft 26 moves in the direction of the axis 15 and moves in the opposite direction to the above case. Then, the valve body 21 is pressed against the valve seat 29, and the servo motor 31 is stopped when the torque value of the servo motor 31 reaches a predetermined value. At this time, by using a motor with a brake as the servo motor 31, the torque value by the servo motor 31 can be maintained at a predetermined value.
  • the predetermined value of the torque value by the servo motor 31 is arbitrarily set and corresponds to the degree of vacuum in the flow path inlet port 16 and the flow path 14, and the seal member 28 and the valve. It is a value that can achieve the required sealing force with the seat 29.
  • the valve is opened and closed. Therefore, the responsiveness of the valve opening and valve closing operations can be enhanced by the high-speed driving of the servo motor 31.
  • the valve opening can be set accurately. Therefore, the pressure in the chamber (not shown) directly connected to the flow path inlet port 16 can be accurately controlled with high responsiveness. .
  • the drive torque can be minimized by using the ball screw 23 or the ball screw main shaft 26 with splines formed as the drive transmission mechanism of the servo motor 31, so extra load is applied to the valve mechanism.
  • the durability can be increased without applying force S.
  • the servo motor 31 is disposed on the outer peripheral surface side of the in-line body 12 and the motor flange 13, the flow control valve can be downsized.
  • valve body 21 is located on the same axis between the flow path inlet port 16 and the flow path outlet port 17.
  • each component of the valve mechanism is disposed between the flow path inlet port 16 and the flow path outlet port 17 in parallel with the fluid flow direction. Therefore, when the valve is opened, the fluid flows into the flow path inlet port 16. Then, it passes through the outer peripheral side of the valve body 21 and smoothly flows to the channel outlet port 17 via the channel 14, the channel 36b of the center flange 36, and the channel 13a of the motor flange 13. For this reason, the fluid stays in the vacuum pressure control valve 1 and the fluid easily flows. Since the fluid easily flows in this way, the relationship between the valve opening and the flow rate is stabilized, and the pressure in the chamber (not shown) directly connected to the flow path inlet port 16 can be accurately controlled. It can also be evacuated.
  • the valve body 21 is driven using only the servo motor 31 as a drive source. Therefore, the sealing force applied from the valve body 21 to the sealing member 28 when the valve is closed is only the driving force of the servo motor 31. Therefore, since the sealing force more than necessary is not applied to the seal member 28, there is no possibility that the seal member 28 is permanently deformed even when the valve is closed for a long time. Therefore, the durability of the vacuum pressure control valve 1 can be improved.
  • the present invention transmits the rotational drive of the servo motor 31 in a vacuum pressure control valve in which the flow path inlet port 16, the valve body 21, the linear deformation, and the flow path outlet port 17 are arranged in a straight line.
  • a ball screw nut 27 that converts the rotational drive into a linear drive, and a ball screw main shaft 26 on which a spline for transmitting the linear drive is formed, and a flow inlet port 16 and a flow outlet port. Since it has a ball screw main shaft 26 and an integral valve element 21, the flow path is formed in a straight line, so that the flow of the fluid is reduced by reducing the flow resistance.
  • valve body 21 moves parallel to the fluid flow, the fluid flow can be stabilized, and the drive of the servo motor 31 is accurately driven by the signal of the built-in encoder 35. 21, the valve opening can be changed to an accurate valve opening speed, and the responsiveness of the valve opening and closing operations can be enhanced by the high speed driving of the servo motor 31.
  • the drive is transmitted to the valve body 21 by the ball screw main shaft 26 formed with the ball screw 23 and the spline, so that the durability of the drive mechanism is increased and the life can be extended.
  • the present invention relates to the vacuum pressure control valve described in (1), a center flange 36 disposed on the inner peripheral surface side of the substantially cylindrical inline body 12 and the motor flange 13, and a center flange.
  • the valve body 21 disposed at the end of the opposite main shaft 26 the effect described in (1) is neglected and each component is disposed in parallel with the fluid flow. The flow can be stabilized.
  • the present invention relates to a servo motor 31 arranged on the outer peripheral surface side of the substantially cylindrical inline body 12 and motor flange 13 in the vacuum pressure control valve described in (1) or (2).
  • the small pulley 34 that is integrated with the servo motor 31 and disposed on the flow path outlet port 17 side, and the ball screw nut 27 that constitutes the ball screw 23, and is disposed on the flow path outlet port 17 side. Since it has the large pulley 33 and the timing belt 32 that connects the small pulley 34 and the large pulley 33, the installation of the servo motor 31 is made compact in consideration of the effect described in (1) or (2). By doing so, the fluid control valve can be reduced in size.
  • the present invention is configured so that the valve element 21 is moved to the valve seat 29 by the driving force of the servomotor 31 when the valve is opened to the valve closed state. Hold on Therefore, since the servo motor 31 is stopped when the torque value of the servo motor 31 reaches a predetermined value, the load described in (1) is not applied and an unnecessary load is not applied to the seal member 28. The effect which can lengthen the lifetime of a mechanism part is acquired.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the vacuum pressure control valve has been described, but the present invention can also be applied to a chemical liquid control valve, an air pressure control valve, and the like.
  • a servo motor is used, but a stepping motor may be used.
  • a stepping motor may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Lift Valve (AREA)
  • Details Of Valves (AREA)

Abstract

A flow rate control valve where flow path resistance is reduced to facilitate a flow of fluid, that cab stabilize the flow of the fluid, where valve opening can be varied at high-speed to an accurate degree of valve opening, where response of valve opening and closing can be improved, and whose life can be extended. In the flow rate control valve, a flow path entry port (16), a valve body (21), a linear conversion mechanism, and a flow path exit port (17) are arranged on a straight line. The linear conversion mechanism has a ball screw nut (27) for transmitting rotational drive of a servomotor (31), a ball screw (23) for converting the rotational drive into linear drive, and a ball screw main shaft (26) where splines for transmitting the linear drive are formed. The valve body (21) parallelly moves in the direction of the center axis of the flow path entry port (16) and the flow path exit port (17) and is integral with the ball screw main shaft (26).

Description

明 細 書  Specification
流量制御弁  Flow control valve
技術分野  Technical field
[0001] 本発明は、例えば真空の圧力などを制御する流量制御弁に関するものである。  The present invention relates to a flow control valve that controls, for example, a vacuum pressure.
背景技術  Background art
[0002] 背景技術として、特許文献 1の発明として以下のような流量制御用バルブが存在す る。図 4は特許文献 1の発明の流路開閉バルブ 101の断面図であり、弁閉状態を示 している。この流路開閉バルブ 101は、バルブノヽウジング 111によりその外形が形成 されており、バルブハウジング 111には両端にフランジ部 112, 113を有し、このフラ ンジ部 112, 113の間で流体流路 114が形成されている。そして、図 4に示す弁閉状 態力も駆動軸 115を L方向に回転させると、パネ 116の引張力により弁体 117が弁座 118から離れるように浮き上がる。そしてさらに、駆動軸 115を L方向に回転させると、 弁体 117が連結点 Aを中心にして旋回し、図 5に示すように、弁体円盤部 119がパイ プ部中心線軸 120とほぼ重なる位置となり流路開閉バルブ 101の弁開度が最大とな る。  [0002] As a background art, the following flow control valve exists as an invention of Patent Document 1. FIG. 4 is a cross-sectional view of the flow path opening / closing valve 101 of the invention of Patent Document 1, and shows the valve closed state. The flow path opening / closing valve 101 has an outer shape formed by valve nosing 111. The valve housing 111 has flange portions 112, 113 at both ends, and a fluid flow path is provided between the flange portions 112, 113. 114 is formed. When the drive shaft 115 is rotated in the L direction as shown in FIG. 4, the valve element 117 is lifted away from the valve seat 118 by the tensile force of the panel 116. Further, when the drive shaft 115 is rotated in the L direction, the valve body 117 pivots about the connection point A, and the valve body disk portion 119 substantially overlaps the pipe portion centerline shaft 120 as shown in FIG. The valve opening degree of the flow path opening / closing valve 101 becomes the maximum.
[0003] 図 6は特許文献 2の発明の流量制御用バルブ 201の断面図を示す。この流量制御 用ノ ノレブ 201で ίま、ノ ノレブボディ 211【こお! ヽて流路ポート 212、弁座 213の穴 214、 弁室 215、流路ポート 212が連通されて流路 216が形成されている。また、駆動系に はステッピングモータ 221が配置され、このステッピングモータ 221の回転駆動力は 偏心カム 222により直線方向の駆動力に変換され、弁体作動部材 223を介して弁体 217を制御することにより、弁開および弁閉の動作がなされる。  FIG. 6 shows a cross-sectional view of the flow control valve 201 of the invention of Patent Document 2. This non-reflow body 201 is connected to the non-reflex body 211, and the non-reb body 211 is connected to the flow passage port 212, the valve seat 213 hole 214, the valve chamber 215, and the flow passage port 212 to form a flow passage 216. ing. In addition, a stepping motor 221 is disposed in the drive system, and the rotational driving force of the stepping motor 221 is converted into a linear driving force by the eccentric cam 222, and the valve body 217 is controlled via the valve body operating member 223. Thus, valve opening and valve closing operations are performed.
[0004] また、従来より存在するエアシリンダ式の直動弁では、弁開および弁閉の動作を行 なうためにエアシリンダにより弁体に駆動力を与えている。  [0004] Furthermore, in the conventional air cylinder type direct acting valve, a driving force is applied to the valve body by the air cylinder in order to perform valve opening and valve closing operations.
特許文献 1 :特開平 10— 196806  Patent Document 1: JP-A-10-196806
特許文献 2 :特開 2002— 168361  Patent Document 2: JP 2002-168361
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0005] しかし、特許文献 1の流路開閉バルブ 101では、第 1リンク 121、第 2リンク 122、第 3リンク 123を回動させることにより弁の開閉動作を行なうため、弁の開閉動作に時間 を要すると共に、弁開度を正確に設定することができない。また、フランジ部 112, 11 3の間で形成される流体流路 114に沿って流体が流れる力 弁体円盤部 119の回転 動作が流体の流れに逆らって行なわれるので、流体に滞留部などが生じて流体の流 れが不安定になるおそれがある。 Problems to be solved by the invention However, in the flow path opening / closing valve 101 of Patent Document 1, the opening / closing operation of the valve is performed by rotating the first link 121, the second link 122, and the third link 123. And the valve opening cannot be set accurately. In addition, the force of the fluid flowing along the fluid flow path 114 formed between the flange portions 112 and 113, and the rotation of the disc disc portion 119 is performed against the flow of the fluid. This may cause the fluid flow to become unstable.
[0006] また、特許文献 2の流量制御用バルブ 201や従来力 存在するエアシリンダ式の直 動弁では、流路ポート 212と流路ポート 218の間の流路が直角状に形成されている。 そのため、流体の滞留部分が生じやすく流路抵抗が高くなり流体が流れにくくなつて しまう。  [0006] In addition, in the flow control valve 201 of Patent Document 2 and the air cylinder type direct acting valve in which the conventional force exists, the flow path between the flow path port 212 and the flow path port 218 is formed in a right angle. . For this reason, a portion where the fluid stays is likely to be generated, and the flow path resistance becomes high and the fluid is difficult to flow.
[0007] さらに、特許文献 2の流量制御用バルブ 201では、ステッピングモータ 221の回転 駆動力は偏心カム 222により直線方向の駆動力に変換されている。しかし、駆動力 の変換において偏心カム 222の滑りが発生しやすいため正確な位置決めをするため には多くの時間を要してしまい、高速で正確に弁開度を可変することが難しい。また 、ステッピングモータ 221の取り付け部が大きくなり、流量制御弁が大きくなつてしまう  Furthermore, in the flow rate control valve 201 of Patent Document 2, the rotational driving force of the stepping motor 221 is converted into a linear driving force by the eccentric cam 222. However, since the eccentric cam 222 is likely to slip during conversion of the driving force, it takes a lot of time to perform accurate positioning, and it is difficult to accurately vary the valve opening at high speed. In addition, the mounting part of the stepping motor 221 becomes large and the flow control valve becomes large.
[0008] そして、従来力 存在するエアシリンダ式の直動弁では、弁開および弁閉の動作を 行なうためにエアシリンダにより弁体に駆動力を与えている。そのため、モータにより 駆動する場合に比べて弁開および弁閉の動作の応答性が低くなつてしまう。また、シ リンダピストン部のシール部材が常時接触しながら作動しているので寿命が短くなつ てしまう。 [0008] And, in an air cylinder type direct acting valve in which a conventional force exists, a driving force is applied to the valve body by the air cylinder in order to perform valve opening and valve closing operations. As a result, the responsiveness of the valve opening and closing operations is lower than when driven by a motor. In addition, since the seal member of the cylinder piston part operates while being in constant contact, the service life is shortened.
[0009] ここで、半導体製造ラインなどで使用される真空チャンバに接続される真空制御弁 について考える。半導体製造ラインなどで使用される真空チャンバに接続される真空 制御弁においては、真空チャンバ内を確実に真空にするために真空制御弁内に流 体の滞留部分を生じないことが望まれている。また、流路入口ポートに直結されるチ ヤンバ内の圧力を高い応答性で正確に制御するために、真空制御弁は高速で正確 に弁開度を可変することが望まれている。さらに、弁開閉動作の頻度の多さから、真 空制御弁の耐久性を高くしてその寿命を長くすることが望まれている。 [0010] そこで本発明は、流路抵抗を小さくして流体を流れやすくすることができ、流体の流 れを安定させることができ、高速で正確な弁開度へ変更することができ、弁開および 弁閉の動作の応答性を高くすることができ、寿命を長くすることができる流量制御弁 を提供することを目的とする。 [0009] Here, consider a vacuum control valve connected to a vacuum chamber used in a semiconductor production line or the like. In a vacuum control valve connected to a vacuum chamber used in a semiconductor production line or the like, it is desired that no fluid stays in the vacuum control valve in order to ensure a vacuum in the vacuum chamber. . In addition, in order to accurately control the pressure in the chamber directly connected to the flow path inlet port with high responsiveness, it is desired that the valve opening of the vacuum control valve be accurately varied at high speed. Furthermore, due to the frequent frequency of valve opening and closing operations, it is desired to increase the durability of the vacuum control valve and extend its life. [0010] Therefore, the present invention can reduce the flow path resistance to facilitate the flow of the fluid, can stabilize the flow of the fluid, can be changed to a fast and accurate valve opening, An object of the present invention is to provide a flow control valve that can increase the responsiveness of the opening and closing operations and can prolong the service life.
課題を解決するための手段  Means for solving the problem
[0011] 前記目的を達成するために、本発明は以下のような特徴を有する。  In order to achieve the above object, the present invention has the following features.
(1)本発明は、第 1ポートと弁体と直線変 構と第 2ポートが直線上に配置される 流量制御弁において、サーボモータの回転駆動を伝達するナットと回転駆動を直線 駆動に変換するボールねじと直線駆動を伝達するスプラインが形成される主軸とを 備える直線変 構と、第 1ポートおよび第 2ポートの中心軸方向に平行移動するも のであって主軸と一体の弁体とを有することを特徴とする。  (1) In the flow control valve in which the first port, the valve body, the linear structure, and the second port are arranged on a straight line, the present invention converts the nut that transmits the rotational drive of the servo motor and the rotational drive to linear drive. A linear transformation comprising a ball screw that rotates and a main shaft on which a spline that transmits linear driving is formed, and a valve body that is translated in the direction of the central axis of the first port and the second port and that is integral with the main shaft. It is characterized by having.
[0012] (2)本発明は、(1)に記載する流量制御弁において、略円筒形のカバー部の内周面 側に配置される支持部材と、支持部材に取り付けられる略円筒形のブラケットと、ブラ ケットの内周面側に配置されるボールねじと、ボールねじの内周面側に配置される主 軸と、ボールねじと反対側の主軸の端部に配置される弁体とを有することを特徴とす る。  [0012] (2) The present invention provides the flow rate control valve according to (1), wherein a support member disposed on the inner peripheral surface side of the substantially cylindrical cover portion, and a substantially cylindrical bracket attached to the support member And a ball screw disposed on the inner peripheral surface side of the bracket, a main shaft disposed on the inner peripheral surface side of the ball screw, and a valve body disposed on the end of the main shaft opposite to the ball screw. It is characterized by having.
[0013] (3)本発明は、(1)または(2)に記載する流量制御弁において、略円筒形のカバー 部の外周面側に配置されるサーボモータと、サーボモータと一体であって第 2ポート 側に配置される第 1プーリと、ボールねじを構成するボールねじナットと一体であって 第 2ポート側に配置される第 2プーリと、第 1プーリと第 2プーリとを繋げるタイミングべ ルトとを有することを特徴とする。  [0013] (3) The present invention is the flow control valve according to (1) or (2), wherein the servo motor disposed on the outer peripheral surface side of the substantially cylindrical cover portion is integrated with the servo motor. Timing to connect the first pulley arranged on the second port side, the second pulley arranged on the second port side, which is integrated with the ball screw nut constituting the ball screw, and the first pulley and the second pulley It is characterized by having a belt.
[0014] (4)本発明は、(1)乃至(3)に記載するいずれか一つの流量制御弁において、弁開 状態力も弁閉状態にするときにはモータの駆動力により弁体を弁座に押さえつけ、サ ーボモータのトルク値が所定値になった時点でサーボモータを停止させることを特徴 とする。  [0014] (4) In the present invention, in any one of the flow control valves described in (1) to (3), when the valve open state force is also set to the valve closed state, the valve body is moved to the valve seat by the driving force of the motor. The servo motor is stopped when the torque value of the servo motor reaches a predetermined value.
発明の効果  The invention's effect
[0015] このような特徴を有する本発明は、以下のような作用'効果を有する。  [0015] The present invention having such characteristics has the following effects.
(1)本発明は、第 1ポートと弁体と直線変 構と第 2ポートが直線上に配置される 流量制御弁において、サーボモータの回転駆動を伝達するナットと回転駆動を直線 駆動に変換するボールねじと直線駆動を伝達するスプラインが形成される主軸とを 備える直線変 構と、第 1ポートおよび第 2ポートの中心軸方向に平行移動するも のであって主軸と一体の弁体とを有するので、流路が直線状に形成されて!、ることか ら流路抵抗を小さくして流体を流れやすくすることができ、弁体が流体の流れに平行 に移動すること力も流体の流れを安定させることができ、内蔵されて 、るエンコーダの 信号によりサーボモータの駆動 (1) In the present invention, the first port, the valve body, the linear deformation, and the second port are arranged on a straight line. In the flow control valve, a linear structure comprising a nut for transmitting the rotational drive of the servo motor, a ball screw for converting the rotational drive to a linear drive, and a main shaft on which a spline for transmitting the linear drive is formed, and a first port and a second The parallel movement in the direction of the center axis of the 2 ports has a valve body integrated with the main shaft, so the flow path is formed in a straight line! Therefore, the flow resistance is reduced and the fluid flows. The valve body moves parallel to the fluid flow, and the fluid flow can be stabilized, and the servo motor is driven by the built-in encoder signal.
は正確に弁体に伝達されることから高速で正確な弁開度へ変更することができ、サー ボモータの高速な駆動により弁開および弁閉の動作の応答性を高くすることができ、 サーボモータの駆動はボールねじとスプラインが形成される主軸により弁体に伝達さ れることから駆動機構部の耐久性が高く寿命を長くすることができる効果が得られる。  Is accurately transmitted to the valve body, so the valve opening can be changed at high speed and accurately, and the servo motor can be driven at high speed to increase the responsiveness of the valve opening and closing operations. Since the drive of the motor is transmitted to the valve body by the main shaft on which the ball screw and the spline are formed, an effect that the durability of the drive mechanism portion is high and the life can be extended is obtained.
[0016] (2)本発明は、(1)に記載する流量制御弁において、略円筒形のカバー部の内周面 側に配置される支持部材と、支持部材に取り付けられる略円筒形のブラケットと、ブラ ケットの内周面側に配置されるボールねじと、ボールねじの内周面側に配置される主 軸と、ボールねじと反対側の主軸の端部に配置される弁体とを有するので、 (1)に記 載する効果に加えて、各構成部品が流体の流れ方向に平行に配置されていることか ら流体の流れを安定させることができる。  (2) The present invention provides the flow rate control valve according to (1), wherein a support member disposed on the inner peripheral surface side of the substantially cylindrical cover portion, and a substantially cylindrical bracket attached to the support member And a ball screw disposed on the inner peripheral surface side of the bracket, a main shaft disposed on the inner peripheral surface side of the ball screw, and a valve body disposed on the end of the main shaft opposite to the ball screw. Therefore, in addition to the effect described in (1), the flow of fluid can be stabilized because each component is arranged in parallel to the fluid flow direction.
[0017] (3)本発明は、(1)または(2)に記載する流量制御弁において、略円筒形のカバー 部の外周面側に配置されるサーボモータと、サーボモータと一体であって第 2ポート 側に配置される第 1プーリと、ボールねじを構成するボールねじナットと一体であって 第 2ポート側に配置される第 2プーリと、第 1プーリと第 2プーリとを繋げるタイミングべ ルトとを有するので、 (1)または(2)に記載する効果に加えて、サーボモータの取り付 けをコンパクトにすることにより流体制御弁を小型化することができる。  [0017] (3) The present invention provides the flow rate control valve described in (1) or (2), wherein the servo motor disposed on the outer peripheral surface side of the substantially cylindrical cover portion is integrated with the servo motor. Timing to connect the first pulley arranged on the second port side, the second pulley arranged on the second port side, which is integrated with the ball screw nut constituting the ball screw, and the first pulley and the second pulley In addition to the effects described in (1) or (2), the fluid control valve can be miniaturized by making the mounting of the servo motor compact.
[0018] (4)本発明は、(1)乃至(3)に記載するいずれか一つの流量制御弁において、弁開 状態力 弁閉状態にするときにはサーボモータの駆動力により弁体を弁座に押さえ つけ、サーボモータのトルク値が所定値になった時点でサーボモータを停止させるの で、(1)乃至(3)に記載する効果にカ卩えて、シール部材に必要以上の負荷がかから ず弁機構部の寿命を長くすることができる効果が得られる。 図面の簡単な説明 [0018] (4) The present invention relates to any one of the flow rate control valves described in (1) to (3), wherein when the valve is opened, the valve body is moved to the valve seat by the driving force of the servo motor. Since the servo motor is stopped when the torque value of the servo motor reaches a predetermined value, the load described in (1) to (3) is added to the seal member. Therefore, it is possible to increase the life of the valve mechanism. Brief Description of Drawings
[0019] [図 1]本発明の真空圧力制御弁 1の断面図 (弁閉状態)である。  FIG. 1 is a cross-sectional view (valve closed state) of a vacuum pressure control valve 1 of the present invention.
[図 2]本発明の真空圧力制御弁 1の断面図 (弁開状態)である。  FIG. 2 is a cross-sectional view (valve open state) of the vacuum pressure control valve 1 of the present invention.
[図 3]図 1における A— A断面図である。  FIG. 3 is a cross-sectional view taken along line AA in FIG.
圆 4]特許文献 1の流路開閉バルブの断面図 (弁閉状態)である。  FIG. 4 is a cross-sectional view (valve closed state) of the flow path opening / closing valve of Patent Document 1.
[図 5]特許文献 1の流路開閉バルブの断面図 (弁開状態)である。  FIG. 5 is a cross-sectional view (valve open state) of the flow path opening / closing valve of Patent Document 1.
[図 6]特許文献 2の流量制御用バルブの断面図である。  FIG. 6 is a cross-sectional view of a flow control valve of Patent Document 2.
[図 7]本発明の真空圧力制御弁 1におけるセンタフランジの外観図である。  FIG. 7 is an external view of a center flange in the vacuum pressure control valve 1 of the present invention.
符号の説明  Explanation of symbols
1 真空圧力制御弁  1 Vacuum pressure control valve
11 フランジボディ  11 Flange body
12 インラインボディ  12 Inline body
13 モータフランジ  13 Motor flange
21 弁体  21 Disc
22 ベローズ  22 Bellows
23 ボーノレねじ  23 Bonore screw
24 ホノレダ  24 Honoreda
26 ボーノレねじ主軸  26 Bonore screw spindle
27 ボールねじナット  27 Ball screw nut
31 サーボモータ  31 Servo motor
32 タイミングベルト  32 Timing belt
33 大プーリ  33 Large pulley
34 小プーリ  34 Small pulley
35 エンコーダ 発明を実施するための最良の形態  35 ENCODER BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明の実施例について説明する。本実施例では、流体制御弁のうち真空 圧力制御弁について説明する。図 1は、本発明の真空圧力制御弁 1の断面図であつ て弁閉状態を示している。図 1に示すように、真空圧力制御弁 1は、フランジボディ 11 や、略円筒形のカバー部としてのインラインボディ 12およびモータフランジ 13により その外形が形成されている。インラインボディ 12の内周側には流路 14が形成されて いる。そして、モータフランジ 13の内周側にも図 3のように流路 13aが形成されている 。ここで、図 3は図 1に示す A— A断面図である。 [0021] Examples of the present invention will be described below. In this embodiment, a vacuum pressure control valve will be described among the fluid control valves. FIG. 1 is a cross-sectional view of a vacuum pressure control valve 1 of the present invention, showing a valve closed state. As shown in Figure 1, the vacuum pressure control valve 1 has a flange body 11 The outer shape is formed by the in-line body 12 and the motor flange 13 as a substantially cylindrical cover portion. A flow path 14 is formed on the inner peripheral side of the inline body 12. A flow path 13a is also formed on the inner peripheral side of the motor flange 13 as shown in FIG. Here, FIG. 3 is a cross-sectional view taken along line AA shown in FIG.
[0022] 真空圧力制御弁 1の内部構成は、弁機構部と駆動機構部とに大きく分けることがで きる。弁機構部は、図 1に示すように、流路入口ポート 16、流路出口ポート 17、弁体 2 1、ベローズ 22、ボールねじ 23、ホルダ 24、ボールねじ主軸 26、ボールねじナット 27 、シール部材 28、弁座 29など力も構成される。ボールねじ 23は略円筒形のブラケッ トであるホルダ 24の内周側に配置され、ホルダ 24は支持部材であるセンタフランジ 3 6のボルト穴 36aにてボルトで結合されている。センタフランジ 36には図 7のように流 路 36bが形成され、インラインボディ 12とモータフランジ 13との間に挟まれて堅持さ れている。ボールねじ 23の内周面側にはボールねじ主軸 26が配置されている。弁 体 21やホルダ 24と一体のベローズ 22は、ボールねじ主軸 26の外周を覆う形で配置 されている。ベローズ 22は軸線 15方向に自由に伸縮でき、流路 14とボールねじ 23 とを絶縁しており、真空で引かれたときであっても外気が流路 14に進入することがな い。ボールねじ主軸 26におけるボールねじ 23と反対側の端部には弁体 21が結合さ れている。また、ボールねじ 23の流路出口ポート 17側に配置されるボールねじナット 27には、後で述べる大プーリ 33が結合されている。さらに、弁体 21の端部にはシー ル部材 28が配置される。このように、各構成部品は流路入口ポート 16と流路出口ポ ート 17との間を流体の流れ方向に平行に配置されている。  [0022] The internal configuration of the vacuum pressure control valve 1 can be broadly divided into a valve mechanism section and a drive mechanism section. As shown in Fig. 1, the valve mechanism consists of a flow path inlet port 16, a flow path outlet port 17, a valve body 21, a bellows 22, a ball screw 23, a holder 24, a ball screw spindle 26, a ball screw nut 27, a seal Forces such as member 28 and valve seat 29 are also constructed. The ball screw 23 is disposed on the inner peripheral side of a holder 24 that is a substantially cylindrical bracket, and the holder 24 is coupled by a bolt at a bolt hole 36a of a center flange 36 that is a support member. A flow path 36b is formed in the center flange 36 as shown in FIG. 7, and is sandwiched and held between the in-line body 12 and the motor flange 13. A ball screw main shaft 26 is disposed on the inner peripheral surface side of the ball screw 23. The bellows 22 integrated with the valve body 21 and the holder 24 is arranged so as to cover the outer periphery of the ball screw main shaft 26. The bellows 22 can freely expand and contract in the direction of the axis 15 and insulates the flow path 14 and the ball screw 23, so that outside air does not enter the flow path 14 even when vacuumed. A valve body 21 is coupled to the end of the ball screw main shaft 26 opposite to the ball screw 23. A large pulley 33 described later is coupled to a ball screw nut 27 disposed on the flow path outlet port 17 side of the ball screw 23. Further, a seal member 28 is disposed at the end of the valve body 21. In this manner, each component is disposed between the flow path inlet port 16 and the flow path outlet port 17 in parallel to the fluid flow direction.
[0023] 一方、駆動機構部は、図 1に示すように、サーボモータ 31、タイミングベルト 32、大 プーリ 33、小プーリ 34などにより構成されている。サーボモータ 31はインラインボディ 12およびモータフランジ 13の外周面側に配置されている。サーボモータ 31の流路 出口ポート 17側には小プーリ 34が結合され、前記のように、ボールねじ 23の流路出 口ポート 17側に配置されるボールねじナット 27には、大プーリ 33が結合されている。 大プーリ 33と小プーリ 34はタイミングベルト 32で繋がれている。タイミングベルト 32が 配置されるタイミングベルト引出口 25は、図 3に示すような断面を有するモータフラン ジ 13により流路 14と隔離されている。なお、サーボモータ 31に内蔵されているェンコ ーダ 35の信号を演算することにより、弁体 21の位置を把握することが出来る。 On the other hand, as shown in FIG. 1, the drive mechanism section includes a servo motor 31, a timing belt 32, a large pulley 33, a small pulley 34, and the like. The servo motor 31 is disposed on the outer peripheral surface side of the inline body 12 and the motor flange 13. A small pulley 34 is coupled to the flow path outlet port 17 side of the servo motor 31.As described above, the large pulley 33 is disposed on the ball screw nut 27 disposed on the flow path outlet port 17 side of the ball screw 23. Are combined. The large pulley 33 and the small pulley 34 are connected by a timing belt 32. The timing belt outlet 25 where the timing belt 32 is disposed is isolated from the flow path 14 by a motor flange 13 having a cross section as shown in FIG. The servo built in the servo motor 31 The position of the valve disc 21 can be grasped by calculating the signal of the reader 35.
[0024] このような構成を有する真空圧力制御弁 1は、次のように作用する。図 1の弁閉状態 力も弁開状態にする場合には、まずサーボモータ 31を回転させる。すると、タイミング ベルト 32でつながれたボールねじナット 27が回転してボールねじ主軸 26が軸線 15 方向に駆動機構部側へ平行移動する。そして、ボールねじ主軸 26と一体の弁体 21 が弁座 29から離間する。そしてこのとき、弁体 21と弁座 29の距離を変化させることに より流路入口ポート 16の開口面積を調整することができる。これにより、流体の流量 や圧力を変化させて調整することができ、結果的に流路入口ポート 16に直結される チャンバ (不図示)内の圧力が制御される。 The vacuum pressure control valve 1 having such a configuration operates as follows. When the valve closing state force in Fig. 1 is also set to the valve opening state, the servo motor 31 is first rotated. Then, the ball screw nut 27 connected by the timing belt 32 is rotated, and the ball screw main shaft 26 is translated in the direction of the axis 15 toward the drive mechanism. Then, the valve body 21 integrated with the ball screw main shaft 26 is separated from the valve seat 29. At this time, the opening area of the flow path inlet port 16 can be adjusted by changing the distance between the valve body 21 and the valve seat 29. As a result, the flow rate and pressure of the fluid can be changed and adjusted, and as a result, the pressure in a chamber (not shown) directly connected to the flow path inlet port 16 is controlled.
[0025] 一方、弁開状態力も弁閉状態にする場合は、サーボモータ 31を上記の場合とは反 対方向に回転させる。すると、タイミングベルト 32でつながれたボールねじナット 27が 上記の場合とは反対方向に回転して、ボールねじ主軸 26が軸線 15方向にぉ 、て上 記の場合とは反対方向に移動する。そして、弁体 21を弁座 29に押さえつけ、サーボ モータ 31のトルク値が所定の値になった時点でサーボモータ 31を停止する。このと き、サーボモータ 31としてブレーキ付きモータを使用することによって、サーボモータ 31によるトルク値は所定の値を保持することができる。また、ブレーキが付いていない モータを使用する場合であっても、サーボモータ 31から任意のトルク値を出力させる ことによって、サーボモータ 31によるトルク値は所定の値を保持することができる。な お、ここでいうサーボモータ 31によるトルク値の所定の値とは、任意に設定するもの であって、流路入口ポート 16ゃ流路 14内の真空度に対応しつつシール部材 28と弁 座 29との間で必要なシール力を実現することができる値である。 [0025] On the other hand, when the valve open state force is also set to the valve closed state, the servo motor 31 is rotated in the opposite direction to the above case. Then, the ball screw nut 27 connected by the timing belt 32 rotates in the opposite direction to the above case, so that the ball screw main shaft 26 moves in the direction of the axis 15 and moves in the opposite direction to the above case. Then, the valve body 21 is pressed against the valve seat 29, and the servo motor 31 is stopped when the torque value of the servo motor 31 reaches a predetermined value. At this time, by using a motor with a brake as the servo motor 31, the torque value by the servo motor 31 can be maintained at a predetermined value. Even when a motor without a brake is used, by outputting an arbitrary torque value from the servo motor 31, the torque value by the servo motor 31 can be maintained at a predetermined value. The predetermined value of the torque value by the servo motor 31 here is arbitrarily set and corresponds to the degree of vacuum in the flow path inlet port 16 and the flow path 14, and the seal member 28 and the valve. It is a value that can achieve the required sealing force with the seat 29.
[0026] このように、本発明の真空圧力制御弁 1では、サーボモータ 31を駆動源としてボー ルねじナット 27を回転させて、ボールねじ 23を介してスプラインが形成されるボール ねじ主軸 26を駆動することにより、弁開および弁閉動作を行なう。そのため、サーボ モータ 31の高速な駆動により弁開および弁閉動作の応答性を高くすることができる。 また、弁体 21の移動量はサーボモータ 31に内蔵されるエンコーダ 35により正確に調 整できるので、弁開度を正確に設定することができる。従って、流路入口ポート 16に 直結されるチャンバ(不図示)内の圧力を高い応答性で正確に制御することができる 。さらに、サーボモータ 31の駆動の伝達機構として、ボールねじ 23やスプラインが形 成されるボールねじ主軸 26などを使用して駆動トルクを最小限に抑えることができる ので、弁機構部に余分な負荷力 Sかからずその耐久性を高くすることができる。また、 サーボモータ 31はインラインボディ 12およびモータフランジ 13の外周面側にコンパ タトに配置されていることから、流量制御弁の小型化が図れる。 As described above, in the vacuum pressure control valve 1 of the present invention, the ball screw main shaft 26 in which a spline is formed via the ball screw 23 by rotating the ball screw nut 27 using the servo motor 31 as a drive source. By driving, the valve is opened and closed. Therefore, the responsiveness of the valve opening and valve closing operations can be enhanced by the high-speed driving of the servo motor 31. Further, since the moving amount of the valve body 21 can be accurately adjusted by the encoder 35 incorporated in the servo motor 31, the valve opening can be set accurately. Therefore, the pressure in the chamber (not shown) directly connected to the flow path inlet port 16 can be accurately controlled with high responsiveness. . Furthermore, the drive torque can be minimized by using the ball screw 23 or the ball screw main shaft 26 with splines formed as the drive transmission mechanism of the servo motor 31, so extra load is applied to the valve mechanism. The durability can be increased without applying force S. In addition, since the servo motor 31 is disposed on the outer peripheral surface side of the in-line body 12 and the motor flange 13, the flow control valve can be downsized.
[0027] また、図 1や図 2に示すように、流路入口ポート 16と流路出口ポート 17は同一軸線 上にあることから、流体の滞留部が少なくなり流路抵抗が小さくなつて流体が流れや すくなる。また、弁体 21は流路入口ポート 16と流路出口ポート 17との間の同一軸線 上を In addition, as shown in FIG. 1 and FIG. 2, since the flow path inlet port 16 and the flow path outlet port 17 are on the same axis, the fluid staying portion is reduced and the flow resistance is reduced. Makes it easier to flow. In addition, the valve body 21 is located on the same axis between the flow path inlet port 16 and the flow path outlet port 17.
前後して動作するので、流体の流れの向きに沿って動作することになる。そのため、 流体の流れを阻止することがなく流体の滞留部が生じな 、ので、流体が流れやすく なる。さらに、弁機構部の各構成部品は流路入口ポート 16と流路出口ポート 17との 間を流体の流れ方向に平行に配置されているので、弁開時においては流体は流路 入口ポート 16から弁体 21の外周側を通り流路 14、センタフランジ 36の流路 36b、モ 一タフランジ 13の流路 13aを経由してスムーズに流路出口ポート 17へと流れる。その ため、真空圧力制御弁 1内は流体の滞留部が生じることがなく流体が流れやすくなる 。このように流体が流れやすくなるため、弁開度と流量の関係が安定し、流路入口ポ ート 16に直結されるチャンバ(不図示)内の圧力を正確に制御することができ、確実 に真空にすることもできる。  Since it moves back and forth, it moves along the direction of fluid flow. For this reason, the fluid flow is not hindered and the fluid staying portion is not generated, so that the fluid easily flows. Furthermore, each component of the valve mechanism is disposed between the flow path inlet port 16 and the flow path outlet port 17 in parallel with the fluid flow direction. Therefore, when the valve is opened, the fluid flows into the flow path inlet port 16. Then, it passes through the outer peripheral side of the valve body 21 and smoothly flows to the channel outlet port 17 via the channel 14, the channel 36b of the center flange 36, and the channel 13a of the motor flange 13. For this reason, the fluid stays in the vacuum pressure control valve 1 and the fluid easily flows. Since the fluid easily flows in this way, the relationship between the valve opening and the flow rate is stabilized, and the pressure in the chamber (not shown) directly connected to the flow path inlet port 16 can be accurately controlled. It can also be evacuated.
[0028] さらに、本発明の真空圧力制御弁 1では、弁体 21の駆動はサーボモータ 31のみを 駆動源として行なう。そのため、弁閉時において弁体 21からシール部材 28に加わる シール力はサーボモータ 31の駆動力のみとなる。そのため、シール部材 28に必要 以上のシール力が加わらないので、長時間にわたって弁閉状態が続いた場合であつ てもシール部材 28が永久変形するおそれがない。従って、真空圧力制御弁 1の耐久 性を向上させることができる。  Furthermore, in the vacuum pressure control valve 1 of the present invention, the valve body 21 is driven using only the servo motor 31 as a drive source. Therefore, the sealing force applied from the valve body 21 to the sealing member 28 when the valve is closed is only the driving force of the servo motor 31. Therefore, since the sealing force more than necessary is not applied to the seal member 28, there is no possibility that the seal member 28 is permanently deformed even when the valve is closed for a long time. Therefore, the durability of the vacuum pressure control valve 1 can be improved.
[0029] 以上のような実施例により以下のような効果が得られる。  [0029] The following effects can be obtained by the embodiment described above.
(1)本発明は、流路入口ポート 16と弁体 21と直線変 構と流路出口ポート 17が 直線上に配置される真空圧力制御弁において、サーボモータ 31の回転駆動を伝達 するボールねじナット 27と回転駆動を直線駆動に変換するボールねじ 23と直線駆動 を伝達するスプラインが形成されるボールねじ主軸 26とを備える直線変 構と、流 路入口ポート 16および流路出口ポート 17の中心軸方向に平行移動するものであつ てボールねじ主軸 26と一体の弁体 21とを有するので、流路が直線状に形成されて いることから流路抵抗を小さくして流体を流れやすくすることができ、弁体 21が流体 の流れに平行に移動することから流体の流れを安定させることができ、内蔵されて 、 るエンコーダ 35の信号によりサーボモータ 31の駆動は正確に弁体 21に伝達される ことから高速で正確な弁開度へ変更することができ、サーボモータ 31の高速な駆動 により弁開および弁閉の動作の応答性を高くすることができ、サーボモータ 31の駆動 はボールねじ 23とスプラインが形成されるボールねじ主軸 26により弁体 21に伝達さ れることから駆動機構部の耐久性が高くなり寿命を長くすることができる効果が得られ る。 (1) The present invention transmits the rotational drive of the servo motor 31 in a vacuum pressure control valve in which the flow path inlet port 16, the valve body 21, the linear deformation, and the flow path outlet port 17 are arranged in a straight line. A ball screw nut 27 that converts the rotational drive into a linear drive, and a ball screw main shaft 26 on which a spline for transmitting the linear drive is formed, and a flow inlet port 16 and a flow outlet port. Since it has a ball screw main shaft 26 and an integral valve element 21, the flow path is formed in a straight line, so that the flow of the fluid is reduced by reducing the flow resistance. Since the valve body 21 moves parallel to the fluid flow, the fluid flow can be stabilized, and the drive of the servo motor 31 is accurately driven by the signal of the built-in encoder 35. 21, the valve opening can be changed to an accurate valve opening speed, and the responsiveness of the valve opening and closing operations can be enhanced by the high speed driving of the servo motor 31. The drive is transmitted to the valve body 21 by the ball screw main shaft 26 formed with the ball screw 23 and the spline, so that the durability of the drive mechanism is increased and the life can be extended.
[0030] (2)本発明は、 (1)に記載する真空圧力制御弁において、略円筒形のインラインボ ディ 12、モータフランジ 13の内周面側に配置されるセンタフランジ 36と、センタフラン ジ 36に取り付けられる略円筒形のホルダ 24と、ホルダ 24の内周面側に配置されるボ ールねじ 23と、ボールねじ 23の内周面側に配置される主軸 26と、ボールねじ 23と反 対側の主軸 26の端部に配置される弁体 21とを有するので、(1)に記載する効果に カロえて、各構成部品が流体の流れに平行に配置されていることから流体の流れを安 定させることができる。  [0030] (2) The present invention relates to the vacuum pressure control valve described in (1), a center flange 36 disposed on the inner peripheral surface side of the substantially cylindrical inline body 12 and the motor flange 13, and a center flange. A substantially cylindrical holder 24 attached to the screw 36, a ball screw 23 disposed on the inner peripheral surface side of the holder 24, a main shaft 26 disposed on the inner peripheral surface side of the ball screw 23, and a ball screw 23 And the valve body 21 disposed at the end of the opposite main shaft 26, the effect described in (1) is neglected and each component is disposed in parallel with the fluid flow. The flow can be stabilized.
[0031] (3)本発明は、(1)または(2)に記載する真空圧力制御弁において、略円筒形のィ ンラインボディ 12、モータフランジ 13の外周面側に配置されるサーボモータ 31と、サ ーボモータ 31と一体であって流路出口ポート 17側に配置される小プーリ 34と、ボー ルねじ 23を構成するボールねじナット 27と一体であって流路出口ポート 17側に配置 される大プーリ 33と、小プーリ 34と大プーリ 33とを繋げるタイミングベルト 32とを有す るので、(1)または(2)に記載する効果にカ卩えて、サーボモータ 31の取り付けをコン パクトにすることにより流体制御弁を小型化することができる。  [0031] (3) The present invention relates to a servo motor 31 arranged on the outer peripheral surface side of the substantially cylindrical inline body 12 and motor flange 13 in the vacuum pressure control valve described in (1) or (2). The small pulley 34 that is integrated with the servo motor 31 and disposed on the flow path outlet port 17 side, and the ball screw nut 27 that constitutes the ball screw 23, and is disposed on the flow path outlet port 17 side. Since it has the large pulley 33 and the timing belt 32 that connects the small pulley 34 and the large pulley 33, the installation of the servo motor 31 is made compact in consideration of the effect described in (1) or (2). By doing so, the fluid control valve can be reduced in size.
[0032] (4)本発明は、(1)乃至(3)に記載する真空圧力制御弁において、弁開状態から弁 閉状態にするときにはサーボモータ 31の駆動力により弁体 21を弁座 29に押さえつ け、サーボモータ 31のトルク値が所定値になった時点でサーボモータ 31を停止させ るので、(1)に記載する効果にカ卩えて、シール部材 28に必要以上の負荷がかからず 弁機構部の寿命を長くすることができる効果が得られる。 (4) In the vacuum pressure control valve described in (1) to (3), the present invention is configured so that the valve element 21 is moved to the valve seat 29 by the driving force of the servomotor 31 when the valve is opened to the valve closed state. Hold on Therefore, since the servo motor 31 is stopped when the torque value of the servo motor 31 reaches a predetermined value, the load described in (1) is not applied and an unnecessary load is not applied to the seal member 28. The effect which can lengthen the lifetime of a mechanism part is acquired.
尚、本発明は前記実施形態に限定されるものではなぐその趣旨を逸脱しない範囲 で様々な変更が可能である。本実施例では、真空圧力制御弁について説明したが、 薬液制御弁や空気圧力制御弁などにも応用が可能である。また、本実施例では、サ ーボモータを使用したがステッピングモータを使用してもよい。さらに、本実施例では The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. In this embodiment, the vacuum pressure control valve has been described, but the present invention can also be applied to a chemical liquid control valve, an air pressure control valve, and the like. In this embodiment, a servo motor is used, but a stepping motor may be used. Furthermore, in this embodiment
、タイミングベルトを使用したがギアトレインを使用してもょ 、。 I used a timing belt, but I used a gear train.

Claims

請求の範囲 The scope of the claims
[1] 第 1ポートと弁体と直線変換機構と第 2ポートが直線上に配置される流量制御弁に おいて、  [1] In the flow control valve in which the first port, valve body, linear conversion mechanism, and second port are arranged in a straight line,
サーボモータの回転駆動を伝達するナットと前記回転駆動を直線駆動に変換する ボールねじと前記直線駆動を伝達するスプラインが形成される主軸とを備える直線変 棚構と、  A linear shelf structure comprising a nut for transmitting the rotational drive of a servo motor, a ball screw for converting the rotational drive into a linear drive, and a main shaft on which a spline for transmitting the linear drive is formed;
第 1ポートおよび第 2ポートの中心軸方向に平行移動するものであって前記主軸と 一体の弁体と、  A valve body that is translated in the direction of the central axis of the first port and the second port and is integral with the main shaft;
を有することを特徴とする流量制御弁。  A flow control valve characterized by comprising:
[2] 請求項 1に記載する流量制御弁において、 [2] In the flow control valve according to claim 1,
略円筒形のカバー部の内周面側に配置される支持部材と、前記支持部材に取り付 けられる略円筒形のブラケットと、前記ブラケットの内周面側に配置される前記ボール ねじと、前記ボールねじの内周面側に配置される前記主軸と、前記ボールねじと反 対側の前記主軸の端部に配置される弁体とを有することを特徴とする流量制御弁。  A support member disposed on the inner peripheral surface side of the substantially cylindrical cover portion, a substantially cylindrical bracket attached to the support member, and the ball screw disposed on the inner peripheral surface side of the bracket; A flow rate control valve comprising: the main shaft disposed on the inner peripheral surface side of the ball screw; and a valve body disposed on an end portion of the main shaft opposite to the ball screw.
[3] 請求項 1または請求項 2に記載する流量制御弁にお 、て、 [3] In the flow control valve according to claim 1 or claim 2,
略円筒形のカバー部の外周面側に配置されるサーボモータと、前記サーボモータ と一体であって前記第 2ポート側に配置される第 1プーリと、前記ボールねじを構成 するボールねじナットと一体であって前記第 2ポート側に配置される第 2プーリと、前 記第 1プーリと前記第 2プーリとを繋げるタイミングベルトとを有することを特徴とする 流量制御弁。  A servo motor disposed on the outer peripheral surface side of the substantially cylindrical cover portion, a first pulley integral with the servo motor and disposed on the second port side, and a ball screw nut constituting the ball screw; A flow rate control valve comprising: a second pulley that is integral and disposed on the second port side; and a timing belt that connects the first pulley and the second pulley.
[4] 請求項 1乃至請求項 3に記載するいずれか一つの流量制御弁において、  [4] In any one of the flow control valves according to claims 1 to 3,
弁開状態力 弁閉状態にするときにはモータの駆動力により弁体を弁座に押さえ つけ、前記サーボモータのトルク値が所定値になった時点で前記サーボモータを停 止させることを特徴とする流量制御弁。  Valve opening force When the valve is closed, the valve body is pressed against the valve seat by the driving force of the motor, and the servo motor is stopped when the torque value of the servo motor reaches a predetermined value. Flow control valve.
PCT/JP2006/306141 2005-04-14 2006-03-27 Flow rate control valve WO2006112236A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005116751A JP2006292137A (en) 2005-04-14 2005-04-14 Flow control valve
JP2005-116751 2005-04-14

Publications (1)

Publication Number Publication Date
WO2006112236A1 true WO2006112236A1 (en) 2006-10-26

Family

ID=37114967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306141 WO2006112236A1 (en) 2005-04-14 2006-03-27 Flow rate control valve

Country Status (4)

Country Link
JP (1) JP2006292137A (en)
KR (1) KR20070114317A (en)
CN (1) CN101160486A (en)
WO (1) WO2006112236A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2172651A1 (en) * 2008-10-02 2010-04-07 Hoerbiger Kompressortechnik Holding GmbH Reciprocating piston compressor
US9466695B2 (en) 2013-12-18 2016-10-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives Valve for fluid circulation
EP2511526B1 (en) 2011-04-14 2019-08-21 Hoerbiger Wien GmbH Reciprocating piston compressor with transport volume control

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820745B2 (en) * 2006-12-27 2011-11-24 株式会社フジキン Small flow control valve
JP5066724B2 (en) * 2007-01-17 2012-11-07 Smc株式会社 High vacuum valve
JP5653676B2 (en) * 2010-07-30 2015-01-14 Ckd株式会社 Fluid control valve
JP5665793B2 (en) * 2012-04-26 2015-02-04 株式会社フジキン Variable orifice type pressure control flow controller
EP2898246B1 (en) 2012-09-24 2019-05-22 Binder GmbH Three-dimensional flow optimised control valve system with linear control characteristics
JP6768427B2 (en) * 2016-06-01 2020-10-14 愛三工業株式会社 Double eccentric valve
CN106438386A (en) * 2016-11-09 2017-02-22 四川农业大学 Centrifugal farmland automatic drainage device
CN109114425A (en) * 2018-08-23 2019-01-01 北京鑫广进燃气设备研究所 A kind of pressure regulator control device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2266485A (en) * 1940-02-07 1941-12-16 Frank J Williams Balanced throttling valve
US2527851A (en) * 1944-11-30 1950-10-31 Gen Controls Co Fluid control valve
JPS59501377A (en) * 1982-07-26 1984-08-02 マ−チン・マリエッタ・コ−ポレ−ション magnetically operated valve
JPS59212579A (en) * 1984-04-24 1984-12-01 Fujikin:Kk Control valve
JPH02292583A (en) * 1989-02-17 1990-12-04 Yaskawa Electric Mfg Co Ltd Electrically driven control valve
JPH0512864U (en) * 1991-02-21 1993-02-19 株式会社荏原製作所 Emergency opening / closing device for electric discharge valve
JPH07301345A (en) * 1994-04-30 1995-11-14 Horiba Ltd Variable type critical flow venturi
JPH11325264A (en) * 1998-05-19 1999-11-26 Toshimitsu Araki Variable flow control valve
JP2002139165A (en) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd Motor-driven valve
JP2004116673A (en) * 2002-09-26 2004-04-15 Aisin Seiki Co Ltd Control valve
JP2006046415A (en) * 2004-08-02 2006-02-16 Smc Corp Vacuum pressure regulating valve

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2266485A (en) * 1940-02-07 1941-12-16 Frank J Williams Balanced throttling valve
US2527851A (en) * 1944-11-30 1950-10-31 Gen Controls Co Fluid control valve
JPS59501377A (en) * 1982-07-26 1984-08-02 マ−チン・マリエッタ・コ−ポレ−ション magnetically operated valve
JPS59212579A (en) * 1984-04-24 1984-12-01 Fujikin:Kk Control valve
JPH02292583A (en) * 1989-02-17 1990-12-04 Yaskawa Electric Mfg Co Ltd Electrically driven control valve
JPH0512864U (en) * 1991-02-21 1993-02-19 株式会社荏原製作所 Emergency opening / closing device for electric discharge valve
JPH07301345A (en) * 1994-04-30 1995-11-14 Horiba Ltd Variable type critical flow venturi
JPH11325264A (en) * 1998-05-19 1999-11-26 Toshimitsu Araki Variable flow control valve
JP2002139165A (en) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd Motor-driven valve
JP2004116673A (en) * 2002-09-26 2004-04-15 Aisin Seiki Co Ltd Control valve
JP2006046415A (en) * 2004-08-02 2006-02-16 Smc Corp Vacuum pressure regulating valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2172651A1 (en) * 2008-10-02 2010-04-07 Hoerbiger Kompressortechnik Holding GmbH Reciprocating piston compressor
EP2511526B1 (en) 2011-04-14 2019-08-21 Hoerbiger Wien GmbH Reciprocating piston compressor with transport volume control
US9466695B2 (en) 2013-12-18 2016-10-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives Valve for fluid circulation

Also Published As

Publication number Publication date
JP2006292137A (en) 2006-10-26
KR20070114317A (en) 2007-11-30
CN101160486A (en) 2008-04-09

Similar Documents

Publication Publication Date Title
WO2006112236A1 (en) Flow rate control valve
US11067181B2 (en) Valve device
JP4979429B2 (en) Vacuum valve
KR101278700B1 (en) Actuator with integrated drive mechanism
JP2009534007A (en) Integrated actuator with drive mechanism
JP4694124B2 (en) Valve drive device
JP2003148642A (en) Electric valve
WO2008035670A1 (en) Valve assembly
US6918408B2 (en) Valve driving device
JP4442898B2 (en) Intake device
WO2020008626A1 (en) Check valve, oil control valve, and valve timing adjustment device
JP2008038700A (en) Valve actuating mechanism
JP2000320711A (en) Electric control valve
JP3972340B2 (en) Flow control device
JP2002349396A (en) Bypass intake air amount control device
JP4113003B2 (en) Flow control device
JP7390745B2 (en) electric valve
JP7438565B2 (en) electric valve
JP3753228B2 (en) Flow control valve with water stop function
JP2007178066A (en) Expansion valve
JP2000356278A (en) Motor-driven flow control valve
US11739852B2 (en) Air valve and fuel cell system using air valve
JPH0255871A (en) Idling speed control valve for internal combustion engine
CN214662034U (en) Stop valve structure and tap
US20230150586A1 (en) Passively activated flow control device for a vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680012433.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077023703

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730089

Country of ref document: EP

Kind code of ref document: A1