WO2006111676A2 - Perles de polymeres destinees a etre expansees pour fabriquer un modele de fonderie, modele et procede de fabrication d'une piece metallique par modele perdu - Google Patents
Perles de polymeres destinees a etre expansees pour fabriquer un modele de fonderie, modele et procede de fabrication d'une piece metallique par modele perdu Download PDFInfo
- Publication number
- WO2006111676A2 WO2006111676A2 PCT/FR2006/050344 FR2006050344W WO2006111676A2 WO 2006111676 A2 WO2006111676 A2 WO 2006111676A2 FR 2006050344 W FR2006050344 W FR 2006050344W WO 2006111676 A2 WO2006111676 A2 WO 2006111676A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- model
- beads
- expanded
- polymer
- polystyrene
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C7/00—Patterns; Manufacture thereof so far as not provided for in other classes
- B22C7/02—Lost patterns
- B22C7/023—Patterns made from expanded plastic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/3461—Making or treating expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
- C08J9/232—Forming foamed products by sintering expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
- C08J2325/06—Polystyrene
Definitions
- the present invention primarily relates to polymer beads for expansion to make a foundry model.
- the invention also relates to expanded polymer beads made from such beads and to an expanded polymer model comprising such beads.
- the invention relates to a lost model foundry method using such a model.
- a foundry process is a method of casting a metal alloy directly into one or more expanded polymer models until the alloy replaces the cellular model.
- the models used in this PMP process are expanded polystyrene.
- This PMP process generally comprises the following steps: production of polystyrene beads obtained by polymerization in water of a liquid styrene monomer emulsion containing liquid pentane, pentane being the blowing agent and having a density of between 550 and 650 g / L, production of beads by a first expansion of the polystyrene beads caused by the boiling of pentane under the effect of the heat brought by the water vapor, the pentane becoming, after this stage, liquid to allow the molding of the model, injection of the balls obtained in a mold where these beads undergo a second expansion which ensures the welding of these beads together, constitution of the model by assembling several blocks of balls soldered by gluing or welding, making a cluster by assembling several models, covering the cluster with a thin layer of refractory a few tenths of a millimeter, - sanding the cluster in a tank by vibrating the sand, pouring the metal alloy into the cluster in polystyren
- the present invention makes it possible to overcome the above-mentioned drawbacks and is essentially characterized in that the polymer beads have a mean diameter of less than 0.35 mm.
- the beads are embedded in a pyrolyzable material with a minimum of energy at a coating rate between 0.3 and 0.5% of the polymer weight.
- the coating material is selected from stearate, zinc palmitate, calcium and glycerol.
- the beads contain a pentane expandable gas and the level of said gas is between 5.5 and 6.5% by weight of pentane relative to the initial mass of polymer.
- the polymer is polystyrene and the weight average molecular weight of the polystyrene is: 153,000 g ⁇ Mw ⁇ 205,000 g.
- This low molecular weight makes it possible to reduce the enthalpy decomposition of expanded polystyrene by at least 50 J / g, to stabilize the pyrolysis products and to lower the transformation temperature of the polystyrene.
- the beads of the invention may comprise a residual styrene monomer content of between 0.1 and 0.5% by weight of the polystyrene, which allows better plasticization of the polystyrene and therefore a better transformation of the beads and balls. lowering the glass transition temperature of polystyrene by a few degrees.
- the invention also relates to the beads obtained by expansion of the beads described above which have an average diameter of less than 1 mm to allow the realization of fine-geometry models with a smooth surface.
- the invention also relates to an expanded polymer foundry model which comprises balls welded together made from the above beads and whose density is between
- This density value reduces the amount of pyrolysis products and thus the inclusion phenomena in the metal parts manufactured.
- the breaking stress of the model is between 0.18 and 0.35 MPa, which makes it possible to have sufficient mechanical strength but also a rate of advance of the controlled liquid alloy.
- the invention also relates to a method of manufacturing a metal alloy part as described above and comprising at least one step during which the metal alloy is cast in the model described above until the alloy replaces the said model.
- the beads of the invention are made from a polystyrene having a molar mass of 40% less than the molar mass of a packaging polystyrene conventionally used.
- the polystyrene of the invention thus has a weight average molecular weight of approximately 153,000 g ⁇ Mw ⁇ 205,000 g.
- the residual monomer content of the polystyrene of the invention is approximately 0.1%, which makes it possible to better plasticize the polystyrene and thus leads to a better transformation of the beads into balls by lowering the transition temperature by a few degrees. vitreous polystyrene.
- the pearls undergo a surface treatment in which they are coated with a stearate-based composition at a coating rate of less than 0.5%, which makes it possible to avoid the formation of a carbon film between two metallic veins and more generally the formation of "cold-carbon-cold" type defects resulting from the thermal stability of the stearates.
- the number of cells is greater than 2.2 ⁇ 12 12 cells / m 3 in order to stabilize the advance of the metal alloy front in the expanded polystyrene during the production of the metal part.
- the diameter of the cells is less than 0.5 mm 3 mm, which also makes it possible to stabilize the regular advance of the metal front in the expanded polystyrene.
- the average diameter of the beads is less than 0.35 mm, which makes it possible to have good reproducibility on parts of thin-geometry parts and to obtain a sufficiently smooth model surface.
- the expansive gas content in the beads for example pentane, is between 5.5 and 6.5% by weight of pentane relative to the initial mass of polymer makes it possible to obtain sufficient expansion, ie approximately 600 g / 1 for the beads and 20 g / l for the beads.
- the material in addition to this maximum value of 6.5% of the gas content, it is preferable that the material be baked for 4 hours at 45 ° C.
- the manufacture of the beads is carried out batchwise in a chemical reactor of a few cubic meters into which water and an organic liquid comprising a monomer, for example monostyrene at a rate of about 92% by weight, are introduced.
- expander gas such as pentane, about 0.3 to 0.5% by weight of plasticizer such as stearate and palmitate, about 0.2% by weight of nucleating agent such as fine silica and talc and about 0.05% of polymerization catalyst such as cumene peroxide at about 0.05% by weight.
- the radical polymerization reaction converts in about 1 hour liquid monostyrene solid polystyrene.
- the filtration on sieves with different meshes makes it possible to sort the pearls obtained according to their diameter, for example, in the present invention, sort beads of diameter between 0.20 and 0.30 mm.
- beads are then placed in sealed containers to prevent the evaporation of pentane.
- the beads are then placed in a steam autoclave at a pressure of approximately 1.2 to 1.5 bar and at a temperature of approximately 110 to 120 ° C.
- This treatment boils the pentane and plasticizes the beads since the plasticization temperature of the polystyrene is approximately 105 ° C.
- This treatment then causes inflation of the beads which pass from 600 g / 1 to 20 g / 1 becoming beads which will be used to fill the molds or fingerprints.
- beads will also be used to make models obtained by welding the balls together resulting from a second passage of steam within the mold or to make portions of expanded polystyrene models.
- the beads obtained by the expansion of the beads have a diameter of less than 1 mm.
- the model formed has an average density which is less than 23 g / L to reduce the volume of gas and the amount of energy related to pyrolysis of the EPS and greater than 18 g / L to have sufficient mechanical strength during handling for gluing, coating and silting.
- the residual water is present at a rate of less than 0.2% by weight in order to limit the dimensional variations and to avoid the formation of alumina oxide during the pyrolysis of the polystyrene in contact with the liquid metal alloy.
- the proportion of pore-forming agent consisting essentially of pentane is less than 0.3% by weight in order to avoid the evaporation of pentane, which modifies the size of the model and generates the volume of gas in pyrolysis.
- the modulus of elasticity of the model is greater than 3 MPa so that the model is sufficiently rigid during sand silting to avoid that the model deforms during this step.
- the value of breaking stress is greater than 0.2 MPa to not break during handling and less than 0.35 MPa because a too cohesive model slows the progression of the liquid metal in the model while the speed of progression metal alloy front must be fast to avoid loss of energy during casting and obtaining parts not completely finished.
- the dimensional variations resulting in particular from the slow loss of porogen and residual water are less than 1% in order to have good geometric stability over time.
- the coefficient of expansion is less than 6 10 5/0 C to the models to be geometrically stable in function of temperature.
- the pyrolysis step is carried out at a temperature of 75O 0 C.
- the pyrolysis kinetics that is the% decomposition time, is less than 40 seconds.
- the volume of gas is less than 260 cm 3 / g to slow down to a minimum the evacuation time of the pyrolysis gases and therefore the speed of propagation of the liquid metal alloy front in the model.
- the percentage of condensates is less than 16% to reduce the inclusions of carbon residues in the metal part and the formation of defects as explained above.
- the thermal conductivity is greater than 0.03 W / m at 20 ° C., which makes it possible to promote heat transfer between the liquid alloy and the model.
- the glass transition temperature is less than 0 ° C.
- the decomposition start temperature is less than 39 ° C.
- the pyrolysis energy is less than 295 ° / g.
- the invention applies for example to the manufacture of metal parts in the automotive field and more particularly to the manufacture of cylinder head.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Mold Materials And Core Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
L'invention concerne principalement des perles de polymère destinées à être expansées pour fabriquer un modèle de fonderie qui présentent un diamètre moyen inférieur à 0,35 mm. L'invention s'applique notamment à la fabrication de pièces métalliques, par exemple dans le domaine de l'automobile, par un procédé modèle perdu dans lequel est utilisé un modèle en polymère expansé réalisé à partir de telles perles.
Description
PERLESDEPOLYMEREDESTINEESAETRE EXPANSEESPOURFABRIQUER UN MODELE DE FONDERIE, BILLES, MODELE ETPROCEDEMODELE PERDU DEFABRICATION
D'UNEPIECE METALLIQUE
La présente invention revendique la priorité de la demande française 0503889 déposée le 19/04/2005 dont le contenu (description, revendications) est incorporé ici par référence.
La présente invention concerne principalement des perles de polymère destinées à être expansées pour fabriquer un modèle de fonderie.
L'invention concerne également des billes de polymère expansé obtenues à partir de telles perles ainsi qu'un modèle en polymère expansé comprenant de telles billes.
En outre, l'invention porte sur un procédé modèle perdu de fonderie utilisant un tel modèle.
Un procédé de fonderie dit procédé à modèle perdu (PMP) consiste à couler un alliage métallique directement dans un ou plusieurs modèles en polymère expansé jusqu'à ce que l'alliage se substitue au modèle alvéolaire. Généralement, les modèles utilisés dans ce procédé PMP sont en polystyrène expansé.
Ce procédé PMP comporte généralement les étapes suivantes : réalisation de perles en polystyrène obtenues par polymérisation dans l'eau d'une émulsion de monomère de styrène liquide contenant du pentane liquide, le pentane étant l'agent porogène et présentant une masse volumique comprise entre 550 et 650 g/L, réalisation de billes par une première expansion des perles en polystyrène provoquée par l'ébullition du pentane sous l'effet de la chaleur amenée par la vapeur d'eau, le pentane redevenant, après cette étape, liquide pour permettre le moulage du modèle, injection des billes obtenues dans un moule où ces billes subissent une deuxième expansion qui assure la soudure de ces billes entre elles, constitution du modèle par assemblage de plusieurs blocs de billes soudées par collage ou par soudure,
réalisation d'une grappe par assemblage de plusieurs modèles, recouvrement de la grappe par une fine couche de réfractaire de quelques dixièmes de millimètre, - ensablement de la grappe dans une cuve par vibration du sable, coulage de l'alliage métallique dans la grappe en polystyrène. Pendant cette étape, le polystyrène expansé se pyrolyse et est remplacé par l'alliage liquide. après solidification, obtention d'une grappe de pièces métalliques de forme identique à celle de la grappe en polystyrène expansé .
Cependant, les procédés PMP connus conduisent à l'obtention de pièces métalliques présentant un état de surface non lisse voire des défauts de surface plus importants pouvant être nuisibles selon l'utilisation qui est faite des pièces obtenues .
Par ailleurs, les procédés PMP utilisés ne sont souvent pas suffisamment reproductibles, en particulier lors de la fabrication de pièces à géométrie fine.
La présente invention permet notamment de pallier les inconvénients précités et est essentiellement caractérisée en ce que les perles de polymère présentent un diamètre moyen inférieur à 0,35 mm.
Ceci permet de réaliser des billes fines après expansion et d'obtenir un état de surface suffisamment lisse de la pièce métallique obtenue.
De préférence, les perles sont enrobées dans un matériau pyrolysable avec un minimum d'énergie à raison d'un taux d'enrobage compris entre 0,3 et 0,5% de la masse de polymère.
Ce taux d'enrobage permet d'éviter la formation d'un film carboné entre deux veines métalliques et plus généralement la formation de défauts de type « replis froids carbonés » résultant de la stabilité thermique des produits d'enrobages utilisés.
Avantageusement, le matériau d'enrobage est choisi parmi le stéarate, le palmitate de zinc, le calcium et le glycérol .
Préférentiellement , les perles renferment un gaz expanseur à base de pentane et le taux du dit gaz est compris entre 5,5 et 6,5% en masse de pentane par rapport à la masse initiale de polymère.
Cette valeur minimale de 5,5% permet d'obtenir une expansion suffisante de la matière à chaud et la valeur maximale de 6,5% permet d'éviter qu'il reste trop de gaz expanseur dans la matière expansée ce qui conduirait à une instabilité dimensionnelle de la matière.
De façon avantageuse, le polymère est du polystyrène et la masse moléculaire moyenne en poids du polystyrène est de : 153 000 g < Mw < 205 000 g.
Cette faible masse moléculaire permet de diminuer d'au moins 50 J/g l'enthalpie décomposition du polystyrène expansé, de stabiliser les produits de pyrolyse et d'abaisser la température de transformation du polystyrène.
En outre, les perles de l'invention peuvent comporter un taux résiduel de styrène monomère compris entre 0,1 et 0,5 % en masse du polystyrène ce qui permet une meilleure plastification du polystyrène et donc une meilleure transformation des perles et des billes en abaissant de quelques degrés la température de transition vitreuse du polystyrène.
L'invention porte également sur les billes obtenues par expansion des perles décrites ci-dessus qui présentent un diamètre moyen inférieur à 1 mm pour permettre la réalisation de modèles à géométrie fine à surface lisse.
L'invention porte en outre sur un modèle de fonderie en polymère expansé qui comprend des billes soudées entre elles réalisées à partir des billes ci-dessus et dont la masse volumique est comprise entre
18 et 23 g/L.
Cette valeur de masse volumique réduit la quantité de produits de pyrolyse et donc les phénomènes d'inclusion dans les pièces métalliques fabriquées.
De préférence, la contrainte de rupture du modèle est comprise entre 0,18 et 0,35 MPa, ce qui permet d'avoir une tenue mécanique suffisante mais également une vitesse d'avancée de l'alliage liquide contrôlée.
Enfin, l'invention porte également sur un procédé de fabrication d'une pièce en alliage métallique tel que décrit plus haut et comprenant au moins une étape durant laquelle l'alliage métallique est coulé dans le modèle décrit ci-dessus jusqu'à ce que l'alliage se substitue au dit modèle.
L'invention sera mieux comprise et d'autres buts, avantages et caractéristiques de celle-ci apparaîtront plus clairement à la lecture de la description qui suit.
Les perles de l'invention sont réalisées à partir d'un polystyrène présentant une masse molaire inférieure de 40% par rapport à la masse molaire d'un polystyrène d'emballage classiquement utilisé.
Le polystyrène de l'invention présente ainsi une masse moléculaire moyenne en poids d' approximativement 153 000 g < Mw < 205 000 g.
Cette faible masse moléculaire permet de réduire la dispersion mais également les produits de pyrolyse en volume de gaz et les condensats carbonés évitant ainsi la formation de défauts lors de la solidification de l'alliage métallique, tels que des inclusions et/ou des porosités . Le Tableau I ci-dessous montre cette réduction par rapport à un polystyrène standard.
Tableau I
Par ailleurs, le taux de monomère résiduel du polystyrène de l'invention est d'environ 0,1%, ce qui permet de mieux plastifier le polystyrène et entraîne ainsi une meilleure transformation des perles en billes en abaissant de quelques degrés la température de transition vitreuse du polystyrène. Les perles subissent un traitement de surface au cours duquel elles sont enrobées par une composition à base de stéarates à raison d'un taux d'enrobage inférieur à 0,5%, ce qui permet d'éviter la formation d'un film carboné entre deux veines métalliques et plus généralement la formation de défauts de type « replis froids carbonés » résultant de la stabilité thermique des stéarates .
Après avoir subi la première expansion, le nombre d'alvéoles est supérieur à 2,2 1012 alvéoles/m3 afin de stabiliser l'avance du front d'alliage métallique dans le polystyrène expansé pendant la réalisation de la pièce métallique.
Le diamètre des alvéoles est inférieur à 0,5 103 mm ce qui permet également de stabiliser l'avance régulière du front métallique dans le polystyrène expansé.
Selon l'invention, le diamètre moyen des perles est inférieur à 0,35 mm, ce qui permet d'avoir une bonne reproductibilité sur des parties de pièces à géométrie fine et d'obtenir une surface de modèle suffisamment lisse.
De plus, le taux de gaz expanseur dans les perles, par exemple le pentane, est compris entre 5,5 et 6,5% en masse de pentane par rapport à la masse initiale de polymère permet d'obtenir un expansion suffisante à savoir d'environ 600 g/1 pour les perles et 20g/l pour les billes.
Par ailleurs, pour stabiliser dimensionnellement le matière, outre cette valeur maximale de 6,5% du taux de gaz, il est préférable que la matière soit étuvée 4 heures à 450C .
Plus précisément, la fabrication des perles est réalisée en discontinu dans un réacteur chimique de quelques mètres cubes dans lequel sont introduits de l'eau et un liquide organique comprenant un monomère, par exemple du monostyrène à raison d'environ 92% en masse, un gaz expanseur tel que du pentane, environ 0,3 à 0,5% en masse de plastifiant tel que du stéarate et du palmitate, environ 0,2% en masse d'agent de nucléation tel que de la silice fine et du talc et environ 0,05% de catalyseur de polymérisation tel que du peroxyde de cumène à raison d'environ 0,05% en masse.
L'agitation vigoureuse du mélange des deux phases liquides permet d'obtenir une dispersion de fines gouttelettes de liquide organique dans l'eau de diamètre moyen d'environ 0,3 mm.
Puis, la réaction de polymérisation radicalaire transforme en environ 1 heure le monostyrène liquide en polystyrène solide.
Par ailleurs, la filtration sur des tamis à différentes mailles permet de trier les perles obtenues selon leur diamètre, par exemple, dans la présente
invention, de trier les perles de diamètre compris entre 0,20 et 0,30 mm.
Ces perles sont alors placées dans des récipients étanches afin d'éviter l' évaporation du pentane. Puis, les perles sont mises dans une autoclave à vapeur sous une pression d'environ 1,2 à 1,5 Bars et à une température d'environ 110 à 12O0C.
Ce traitement met le pentane en ébullition et plastifie les perles puisque la température de plastification du polystyrène est approximativement de 1050C.
Ce traitement provoque alors un gonflage des perles qui passent de 600 g/1 à 20 g/1 devenant des billes qui seront utilisées pour remplir les moules ou les empreintes.
Ces billes seront également utilisées pour réaliser des modèles obtenus par soudage des billes entre elles résultant d'un deuxième passage de vapeur au sein du moule ou pour réaliser des parties de modèles en polystyrène expansé.
Les billes obtenues par l'expansion des perles présentent un diamètre inférieur à 1 mm.
Le modèle constitué présente une masse volumique moyenne qui est inférieure à 23 g/L pour réduire le volume de gaz et la quantité d'énergie liés à la pyrolyse du PSE et supérieure à 18 g/L pour avoir suffisamment de tenue mécanique lors des manipulations pour le collage, l'enduction et l'ensablement.
L'eau résiduelle est présente à raison de moins de 0,2% en masse afin de limiter les variations dimensionnelles et d'éviter la formation d'oxyde d'alumine lors de la pyrolyse du polystyrène en contact avec l'alliage métallique liquide.
Le taux d'agent porogène constitué essentiellement de pentane est inférieur à 0,3% en masse pour éviter 1 ' évaporation du pentane qui modifie la dimension du modèle et génère du volume de gaz en pyrolyse.
Le module d'élasticité du modèle est supérieur à 3 Mpa afin que le modèle soit suffisamment rigide lors de l'ensablement par vibration du sable pour éviter que le modèle ne se déforme pendant cette étape. De plus, la valeur de contrainte de rupture est supérieure à 0,2 MPa pour ne pas rompre lors des manipulations et inférieure à 0,35 MPa car un modèle trop cohésif ralentit la progression du métal liquide dans le modèle alors que la vitesse de progression du front d'alliage métallique doit être rapide pour éviter la perte d'énergie lors du coulage et l'obtention de pièces non complètement finies.
Les variations dimensionnelles provenant notamment de la perte lente d'agent porogène et d'eau résiduelle sont inférieures à 1% afin d'avoir une bonne stabilité géométrique dans le temps .
Le coefficient de dilatation est inférieur à 6 105 /0C pour que les modèles soient stables géométriquement en fonction de la température. L'étape de pyrolyse est mise en oeuvre à une température de 75O0C.
La cinétique de pyrolyse, c'est-à-dire le temps de % décomposition, est inférieure à 40 secondes.
Le volume de gaz est inférieur à 260 cm3/g pour ralentir au minimum le temps d'évacuation des gaz de pyrolyse et donc la vitesse de propagation du front d'alliage métallique liquide dans le modèle.
Le pourcentage de condensats est inférieur à 16 % pour réduire les inclusions de résidus carbonés dans la pièce métallique et la formation de défauts comme expliqué plus haut.
On cherche à minimiser l'énergie nécessaire à la pyrolyse et provenant de l'alliage liquide.
Pour cela, la conductivité thermique est supérieure à 0,03 W/m à 2O0C, ce qui permet de favoriser les transferts thermiques entre l'alliage liquide et le modèle.
La température de transition vitreuse est inférieure à HO0C, la température de début de décomposition est inférieure à 39O0C et l'énergie de pyrolyse inférieure à 295J/g. L'invention s'applique par exemple à la fabrication de pièces métalliques dans le domaine automobile et plus particulièrement à la fabrication de culasse.
Toutes les caractéristiques et données décrites ci-dessus sont facilement réalisables par l'homme du métier.
Claims
1. Perles de polymère destinées à être expansées pour fabriquer un modèle de fonderie, caractérisées en ce qu'elles présentent un diamètre moyen inférieur à 0,35 mm et en ce qu'elles sont enrobées dans un matériau pyrolysable avec un minimum d'énergie à raison d'un taux d'enrobage compris entre 0,3 et 0,5% de la masse de polymère .
2. Perles selon la revendication 1, caractérisées en ce que le matériau d'enrobage est choisi parmi le stéarate, le palmitate de zinc, le calcium et le glycérol .
3. Perles selon l'une quelconque des revendications précédentes, caractérisées en ce qu'elle renferment un gaz expanseur à base de pentane et en ce que le taux du dit gaz est compris entre 5,5 et 6,5% en masse de pentane par rapport à la masse initiale de polymère.
4. Perles selon l'une quelconque des revendications précédentes, caractérisées en ce que le polymère est du polystyrène et en ce que la masse moléculaire moyenne en poids du polystyrène est de : 153 000 g < Mw < 205 000 g.
5. Perles selon la revendication 4, caractérisées en ce qu'elles comprennent un taux résiduel de styrène monomère compris entre 0,1 et 0,5 % en masse du polystyrène .
6. Billes de polymère expansé, caractérisées en ce qu'elles sont obtenues par expansion des perles selon l'une quelconque des revendications 1 à 5 et en ce qu'elles présentent un diamètre moyen inférieur à 1 mm.
7. Modèle de fonderie en polymère expansé, caractérisé en ce qu'il comprend des billes soudées entre elles réalisées à partir des billes selon la revendication 6 et en ce que la masse volumique du dit modèle est comprise entre 18 et 23 g/L.
8. Modèle selon la revendication 7, caractérisé en ce que sa contrainte de rupture est comprise entre 0,18 et 0,35 MPa.
9. Procédé de fabrication d'une pièce en alliage métallique, caractérisé en ce qu'il comprend au moins une étape durant laquelle l'alliage métallique est coulé dans le modèle selon l'une quelconque des revendications 7 et 8 jusqu'à ce que l'alliage se substitue au dit modèle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0503889A FR2884444B1 (fr) | 2005-04-19 | 2005-04-19 | Perles de polymere destinees a etre expansees pour fabriquer un modele de fonderie, billes, modele et procede modele perdu de fabrication d'une piece metallique. |
FR0503889 | 2005-04-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006111676A2 true WO2006111676A2 (fr) | 2006-10-26 |
WO2006111676A3 WO2006111676A3 (fr) | 2007-03-22 |
Family
ID=35464089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2006/050344 WO2006111676A2 (fr) | 2005-04-19 | 2006-04-12 | Perles de polymeres destinees a etre expansees pour fabriquer un modele de fonderie, modele et procede de fabrication d'une piece metallique par modele perdu |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2884444B1 (fr) |
WO (1) | WO2006111676A2 (fr) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5385698A (en) * | 1992-04-23 | 1995-01-31 | Saturn Corporation | Dimensionally accurate expanded foam casting pattern |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5041465A (en) * | 1990-09-17 | 1991-08-20 | Arco Chemical Technology, Inc. | Reducing lustrous carbon in the lost foam process |
US20020028292A1 (en) * | 1999-10-29 | 2002-03-07 | Fred Sonnenberg | Treatment for the reduction of carbon defects in the lost foam process |
-
2005
- 2005-04-19 FR FR0503889A patent/FR2884444B1/fr not_active Expired - Fee Related
-
2006
- 2006-04-12 WO PCT/FR2006/050344 patent/WO2006111676A2/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5385698A (en) * | 1992-04-23 | 1995-01-31 | Saturn Corporation | Dimensionally accurate expanded foam casting pattern |
Also Published As
Publication number | Publication date |
---|---|
WO2006111676A3 (fr) | 2007-03-22 |
FR2884444A1 (fr) | 2006-10-20 |
FR2884444B1 (fr) | 2008-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CH618361A5 (fr) | ||
Banhart et al. | Production methods for metallic foams | |
BE1010959A3 (fr) | Procede de fabrication de manchons exothermiques et de coulee de pieces metalliques, et manchons et pieces metalliques ainsi obtenus. | |
CA2431580C (fr) | Materiau dense autolubrifiant a sec; piece mecanique en ledit materiau; procede d'elaboration dudit materiau | |
EP2658665B1 (fr) | Preforme pour la realisation d'une mousse metallique | |
US4929645A (en) | Expandable and expanded plastic materials and methods for casting metal castings employing such expanded cellular plastic materials | |
FR2550526A1 (fr) | ||
CA2041682C (fr) | Procede de moulage a mousse perdue et sous basse pression de pieces en alliage d'aluminium | |
EP0024984B1 (fr) | Procédé de fabrication de pièces en alliage à base de titane par métallurgie des poudres | |
CA2876132A1 (fr) | Procede de fabrication par moulage d'une mousse en alliage d'aluminium. | |
WO2006111676A2 (fr) | Perles de polymeres destinees a etre expansees pour fabriquer un modele de fonderie, modele et procede de fabrication d'une piece metallique par modele perdu | |
EP2456582B1 (fr) | Procédé d'obtention d'un corps formé à partir d'un mélange granulaire | |
EP0472478A1 (fr) | Procédé d'obtention par moulage de pièces bimatériaux | |
CA2056857A1 (fr) | Procede de fabrication de materiaux refractaires et leurs applications en fonderie d'alliages corrosifs | |
EP0246936B1 (fr) | Pièces moulées en fonte, notamment moules de verrerie, à structure de fonte variable dans l'épaisseur des pièces | |
EP3645191B1 (fr) | Procede de fonderie avec coulee en moule chaud | |
CA1335689C (fr) | Procede de moulage a mousse perdue et sous pression de pieces metalliques | |
EP0005668B1 (fr) | Procédé de fabrication de pièces en alliage par métallurgie des poudres | |
US5053437A (en) | Expandable and expanded plastic materials and methods for casting metal castings employing such expanded cellular plastic materials | |
US4983640A (en) | Methods for preparing a formed cellular plastic material pattern employed in metal casting | |
US5051451A (en) | Expandable and expanded plastic materials and methods for casting metal castings employing such expanded cellular plastic materials | |
EP0804304B1 (fr) | Matiere plastique expansee ou expansible pour la fabrication de modeles de fonderie perdus et modeles perdus composes d'une telle matiere | |
EP0317042A1 (fr) | Compositions pour mousses plastiques et procédé de coulée de métaux en utilisant ces compositions sous forme d'articles moulés | |
JP2004043932A (ja) | 多孔質焼結体の製造方法 | |
FR2556623A1 (fr) | Procede de moulage a modele perdu de metaux, moules pour la mise en oeuvre de ce procede et procede de fabrication de ces moules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06755541 Country of ref document: EP Kind code of ref document: A2 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06755541 Country of ref document: EP Kind code of ref document: A2 |