WO2006111072A1 - Turbine de machine centrifuge ou helicocentrifuge - Google Patents
Turbine de machine centrifuge ou helicocentrifuge Download PDFInfo
- Publication number
- WO2006111072A1 WO2006111072A1 PCT/CN2006/000675 CN2006000675W WO2006111072A1 WO 2006111072 A1 WO2006111072 A1 WO 2006111072A1 CN 2006000675 W CN2006000675 W CN 2006000675W WO 2006111072 A1 WO2006111072 A1 WO 2006111072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- impeller
- blade
- centrifugal
- mixed flow
- angle
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/04—Blade-carrying members, e.g. rotors for radial-flow machines or engines
- F01D5/043—Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
- F01D5/048—Form or construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/30—Vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/70—Shape
Definitions
- the utility model relates to an impeller, in particular to an impeller of a centrifugal or mixed flow working machine.
- Pumps and compressors are not only general-purpose machines that are widely used, but also key equipment, even called “the heart of industry".
- the power consumption of pumps and compressors accounts for about one-third of the total electricity consumption in the country.
- Pumps and compressors can be divided into centrifugal, mixed flow, axial flow and positive displacement types. Centrifugal accounts for the largest proportion, for example, centrifugal pumps account for about 80% of all pumps.
- the impeller is the heart of centrifugal and mixed-flow pumps and compressors, and the blades are the core technology of the impeller.
- the internal flow of the impeller has not yet been fully grasped by people.
- the design of the blade is still based on semi-experimental and semi-theoretical. There are defects, that is, efficiency and lift need to be improved, and energy consumption needs to be reduced.
- the purpose of the utility model is to provide a new centrifugal and mixed flow working machine impeller.
- the new centrifugal and mixed flow machine impeller including the wheel cover, the blade and the wheel, is characterized in that: from the middle of the blade to the exit edge of the blade, the angle of the back of the blade is larger than the angle of the working face, and the difference between the two corners is 2 degrees _18 degrees.
- the working machine is a centrifugal type pump, a mixed flow type pump, a centrifugal type compressor, and a mixed flow type compressor.
- the placement angle of the blade working surface is the angle between the tangent of the blade working surface and the circumferential direction.
- the angle of the back surface of the blade is the angle between the tangent of the back surface of the blade and the circumferential direction, and the edge of the blade outlet is the edge of the outer diameter of the impeller.
- the known blade design is only to design the blade working surface line or bone line, and then the blade thickness is given according to the manufacturing process, strength, and the like. There is no concept of placing the corners on the back of the blade. In essence, the blade working surface mounting angle 'and the back mounting angle are almost equal across the entire profile. However, through the study of important aspects such as the internal flow of the impeller and the energy conversion degree between the blade and the medium, it is found that the influence of the angle of the back surface of the blade on the efficiency and the lift coefficient is more significant than that of the working face, which is the most important design factor. Therefore, the working face and the back are collectively referred to as the double main face.
- One of the important features in the impeller is that the relative velocity of the medium is increasing from the working surface to the back.
- the design of the utility model increases the head coefficient of the vicinity of the back surface of the blade which accounts for a larger proportion of the total flow, improves the energy conversion degree, and significantly reduces the loss of the vortex around the impeller, thereby improving the efficiency and the head of the total flow rate. Coefficient; efficiency increases by about 3% - 8%, and lift factor increases by about 8% - 30%. At the same time, the pulsation of the impeller is reduced, and the reliability of the operation is improved; the outer diameter of the impeller is reduced, the pump volume is reduced, and the material is saved.
- Figure 1 is a schematic view of the structure of the utility model
- Figure 2 is a cross-sectional view taken along line A-A of Figure 1.
- the new centrifugal, mixed flow machine impeller includes a wheel cover 1, a blade 2 and a wheel disc 3. From the middle of the blade 2 to the exit edge of the blade, the angle of the back of the blade is larger than the angle of the working face, and the difference between the two corners is 2-10 degrees, as shown in Fig. 1 and Fig. 2.
- the placement angle of the blade working surface is the angle between the tangent of the blade working surface and the circumferential direction.
- the angle of the back surface of the blade is the angle between the tangent of the back surface of the blade and the circumferential direction, and the edge of the blade outlet is the edge of the outer diameter of the impeller.
- the working machine is a centrifugal pump.
- the angle of the back of the blade is larger than the angle of the working face, and the difference between the two corners is 3-16 degrees, and the same as in the first embodiment.
- the working machine is a mixed flow pump.
- the working machine is a centrifugal compressor.
- the angle of the back of the blade is larger than the angle of the working face, and the difference between the two corners is 2-15 degrees, which is the same as in the first embodiment.
- the working machine is a mixed flow compressor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
离心式或混流式工作机叶轮
技术领域
本实用新型涉及一种叶轮, 具体地说是离心式、 混流式工作机的叶轮。 背景技术
泵、 压缩机不仅是应用极其广泛的通用机械, 而且是关键设备, 甚至被称 为 "工业的心脏"'。 泵、 压缩机的耗电量约占全国总耗电量的三分之一。 泵、 压缩机均可分为离心式、混流式、轴流式和容积式等种类。其中离心式占的比 例最大, 例如离心泵约占所有泵的 80%。
叶轮以是离心式和混流式泵、 压缩机的心脏, 而叶片是叶轮的核心技术所 在。但是, 叶轮内部流动至今尚未完全为人们所掌握, 叶片的设计仍处在半经 验、 半理论的基础之上, 存在缺陷, 即效率、 扬程有待提高, 能耗有待降低。
发明内容
本实用新型的目的是: 提供一种新型离心式、 混流式工作机叶轮。
实现上述发明目的的技术解决方案如下:
. 新型离心式、 混流式工作机叶轮, 包括轮盖、 叶片和轮盘, 其特征在于:. 从叶片中部到叶片出口边之间,叶片背面安放角大于工作面安放角,两角的差 为 2度 _18度。
根据上述的新型离心式、 混流式工作机叶轮, 其特征在于: 所述工作机为 离心式泵、 为混流式泵、 为离心式压缩机、 为混流式压缩机。
叶片工作面安放角是叶片工作表面切线与圆周方向的夹角, 叶片背面安放 角是叶片背面表面切线与圆周方向的夹角, 叶片出口边是叶轮外径处的边缘。
公知的叶片设计只是设计出叶片工作面型线或骨线, 再根据制造工艺、 强 度等, 给定叶片厚度。根本没有叶片背面安放角这一概念。实质上叶片工作面 安放角 '和背面安放角在整个型线上几乎相等。但是,通过对叶轮内部流动及叶 片与介质的能量转换程度等重要方面的研究,发现叶片背面安放角对效率和扬 程系数的影响比工作面安放角更为显著,是最为重要的设计要素。故因将工作 面和背面统称为双主面。
叶轮内的重要特点之一是: 介质的相对运动速度大小是从工作面到背面递 增的。这样决定轴面速度的变化规律也是从工作面到背面递增的。所以背面附 近的流量比工作面的大,且反映扬程系数的圆周分速度是从背面到工作面逐渐 递增的。显然,叶片背面的安放角对叶轮的效率和扬程系数的影响比工作面更 大。
本实用新型的设计使占总流量较大份额的叶片背面附近区域的扬程系数 提高, 能量转换程度提高, 而且, 使叶轮周边的旋涡等损失明显减小, 从而, 提高了总流量的效率和扬程系数; 效率提高约 3%— 8%, 扬程系数提高约 8%— 30%。 同时, 减少了叶轮运行时的脉动, 提高了运行的可靠性; 叶轮外径减小, 泵体积减小, 节省材料。
附图说明
图 1为本实用新型结构示意图,
图 2为图 1的 A— A剖视图。
具体实施方式
下面结合附图, 通过实施例对本实用新型作进一步地说明。
实施例 1 :
该新型离心式、混流式工作机叶轮包括轮盖 1、 叶片 2和轮盘 3。从叶片 2 中部到叶片出口边之间, 叶片背面安放角大于工作面安放角, 两角的差为 2— 10度, 见图 1、 图 2。
叶片工作面安放角是叶片工作表面切线与圆周方向的夹角, 叶片背面安放 角是叶片背面表面切线与圆周方向的夹角, 叶片出口边是叶轮外径处的边缘。
所述工作机为离心式泵。
实施例 2:
从叶片 2中部到叶片出口边之间, 叶片背面安放角大于工作面安放角, 两 角的差为 3— 16度, 其它同实施例 1。
所述工作机为混流式泵。
实施例 3:
从叶片 2中部到叶片出口边之间, 叶片背面安放角大于工作面安放角, 两 角的差为 2— 8度, 其它同实施例 1。
所述工作机为离心式压缩机。
实施例 6:
从叶片 2中部到叶片出口边之间, 叶片背面安放角大于工作面安放角, 两 角的差为 2— 15度, 其它同实施例 1。
所述工作机为混流式压縮机。
Claims
1、 新型离心式、 混流式工作机叶轮, 包括轮盖、 叶片和轮盘, 其特征在 于: 从叶片中部到叶片出口边之间, 叶片背面安放角大于工作面安放角, 两角 的差为 2度一 18度。
2、 根据权利要求 1所述的新型离心式、 混流式工作机叶轮, 其特征在于: 所述工作机为离心式泵、 为混流式泵、 为离心式压缩机、 为混流式压缩机。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200520071066 CN2784587Y (zh) | 2005-04-20 | 2005-04-20 | 新型离心式、混流式工作机叶轮 |
CN200520071066.6 | 2005-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006111072A1 true WO2006111072A1 (fr) | 2006-10-26 |
Family
ID=36771562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2006/000675 WO2006111072A1 (fr) | 2005-04-20 | 2006-04-14 | Turbine de machine centrifuge ou helicocentrifuge |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN2784587Y (zh) |
WO (1) | WO2006111072A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102086885A (zh) * | 2010-04-19 | 2011-06-08 | 江苏大学 | 无过载离心泵叶轮的五工况点设计法 |
CN103775377A (zh) * | 2013-12-31 | 2014-05-07 | 江苏大学 | 一种采用长短叶片旋流泵水力设计方法 |
CN107491567A (zh) * | 2016-06-12 | 2017-12-19 | 上海同瑜环保节能科技有限公司 | 宽效节能型离心泵叶轮设计方法 |
CN113849931A (zh) * | 2021-09-25 | 2021-12-28 | 华北水利水电大学 | 一种水轮机模式液力透平叶片的优化设计方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103047174B (zh) * | 2012-12-26 | 2015-09-30 | 合肥通用机械研究院 | 高效低汽蚀无过载离心泵叶轮设计方法 |
CN106949088A (zh) * | 2017-05-20 | 2017-07-14 | 江苏斯别特制泵有限公司 | 一种特殊改进的大功率潜水混流泵叶轮 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3964841A (en) * | 1974-09-18 | 1976-06-22 | Sigma Lutin, Narodni Podnik | Impeller blades |
CN2143268Y (zh) * | 1993-01-16 | 1993-10-06 | 清华大学 | 低比转数离心泵变角螺线型圆柱叶片 |
CN2345758Y (zh) * | 1998-05-13 | 1999-10-27 | 高歌 | 具有扭曲柳叶型叶片的离心泵叶轮 |
US6340291B1 (en) * | 1998-12-18 | 2002-01-22 | Lothar Reckert | High pressure impeller with high efficiency for small volume flows for radial blowers of different size |
US20040156717A1 (en) * | 2002-12-02 | 2004-08-12 | Volvo Lastvagnar Ab | Centrifugal pump |
-
2005
- 2005-04-20 CN CN 200520071066 patent/CN2784587Y/zh not_active Expired - Fee Related
-
2006
- 2006-04-14 WO PCT/CN2006/000675 patent/WO2006111072A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3964841A (en) * | 1974-09-18 | 1976-06-22 | Sigma Lutin, Narodni Podnik | Impeller blades |
CN2143268Y (zh) * | 1993-01-16 | 1993-10-06 | 清华大学 | 低比转数离心泵变角螺线型圆柱叶片 |
CN2345758Y (zh) * | 1998-05-13 | 1999-10-27 | 高歌 | 具有扭曲柳叶型叶片的离心泵叶轮 |
US6340291B1 (en) * | 1998-12-18 | 2002-01-22 | Lothar Reckert | High pressure impeller with high efficiency for small volume flows for radial blowers of different size |
US20040156717A1 (en) * | 2002-12-02 | 2004-08-12 | Volvo Lastvagnar Ab | Centrifugal pump |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102086885A (zh) * | 2010-04-19 | 2011-06-08 | 江苏大学 | 无过载离心泵叶轮的五工况点设计法 |
CN102086885B (zh) * | 2010-04-19 | 2014-07-30 | 江苏大学 | 无过载离心泵叶轮的五工况点设计法 |
CN103775377A (zh) * | 2013-12-31 | 2014-05-07 | 江苏大学 | 一种采用长短叶片旋流泵水力设计方法 |
CN107491567A (zh) * | 2016-06-12 | 2017-12-19 | 上海同瑜环保节能科技有限公司 | 宽效节能型离心泵叶轮设计方法 |
CN113849931A (zh) * | 2021-09-25 | 2021-12-28 | 华北水利水电大学 | 一种水轮机模式液力透平叶片的优化设计方法 |
Also Published As
Publication number | Publication date |
---|---|
CN2784587Y (zh) | 2006-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006111072A1 (fr) | Turbine de machine centrifuge ou helicocentrifuge | |
EP2198167B2 (en) | Airfoil diffuser for a centrifugal compressor | |
WO2019075777A1 (zh) | 一种射流式自吸离心泵的优化设计方法 | |
CN201507476U (zh) | 风动排沙排污旋流泵用叶轮以及旋流泵 | |
CN115559932B (zh) | 一种带分流叶片的盖板延伸式低噪声泵叶轮 | |
CN109882446A (zh) | 一种低比速离心泵叶轮分流叶片的设计方法 | |
CN219492667U (zh) | 一种节能型离心污水泵 | |
WO2011153824A1 (zh) | 一种离心式水泵 | |
CN109340179B (zh) | 一种适用于吸尘器的高强度离心叶轮及电机 | |
CN205744542U (zh) | 一种低噪声空调冷却轴流风机 | |
CN212225601U (zh) | 高效节能离心泵 | |
CN107035696B (zh) | 一种离心泵 | |
CN110242612A (zh) | 一种带分流叶片的离心叶轮 | |
CN112648230A (zh) | 一种高效抗汽蚀离心泵叶轮 | |
CN103307008A (zh) | 一种核主泵的带长短叶片的诱导轮设计方法 | |
CN110043476A (zh) | 恒压涡流泵 | |
CN116877481A (zh) | 一种高效的超高比转速单级离心泵设计方法 | |
CN102261336B (zh) | 两级悬臂离心泵 | |
CN102808800A (zh) | 一种不锈钢冲压式无堵塞泵叶轮设计方法 | |
CN208348150U (zh) | 一种高效低噪音小型多翼离心排气扇及叶轮 | |
CN212717358U (zh) | 超低比转数下的双吸叶轮和泵 | |
CN116451364A (zh) | 一种液力透平叶轮分流叶片的设计方法 | |
CN207161338U (zh) | 一种离心泵 | |
CN205714857U (zh) | 一种前弯多翼式离心风机 | |
CN212717187U (zh) | 一种单级单吸卧式中开泵 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06722324 Country of ref document: EP Kind code of ref document: A1 |