WO2006109741A1 - Mixed flow generating device and fixed flow generating method - Google Patents

Mixed flow generating device and fixed flow generating method Download PDF

Info

Publication number
WO2006109741A1
WO2006109741A1 PCT/JP2006/307487 JP2006307487W WO2006109741A1 WO 2006109741 A1 WO2006109741 A1 WO 2006109741A1 JP 2006307487 W JP2006307487 W JP 2006307487W WO 2006109741 A1 WO2006109741 A1 WO 2006109741A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
liquid
pipe
mixed flow
rotor
Prior art date
Application number
PCT/JP2006/307487
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Suzumori
Takefumi Kanda
Akinori Muto
Yusaku Sakata
Original Assignee
National University Corporation Okayama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Okayama University filed Critical National University Corporation Okayama University
Priority to JP2007512982A priority Critical patent/JP5176103B2/en
Publication of WO2006109741A1 publication Critical patent/WO2006109741A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/452Magnetic mixers; Mixers with magnetically driven stirrers using independent floating stirring elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/913Vortex flow, i.e. flow spiraling in a tangential direction and moving in an axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00479Means for mixing reactants or products in the reaction vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00925Irradiation
    • B01J2219/0093Electric or magnetic energy

Definitions

  • the present invention relates to a mixed flow generator for mixing two or more liquids to generate a mixed flow, and a mixed flow generation method using the mixed flow generator.
  • Patent Document 1 houses a rotor inside a pipe into which a plurality of types of liquids are introduced, and rotationally drives the rotor.
  • a chemical reaction apparatus for mixing a liquid flowing in a gap between an inner peripheral surface of the pipe and an outer peripheral surface of the rotor.
  • the rotor is connected to a motor provided outside the pipe via a drive shaft, and the rotor is rotationally driven by driving the motor.
  • microreactors are not only capable of saving space and reducing the burden on the environment, but also for the performance of chemical reactors, as described below. It is expected to be put to practical use in the synthetic reaction test and development of new chemical processes.
  • the microreactor (1) can reduce the time required for mixing and extraction due to the small size of the reaction field, and (2) the ratio of the surface area to the volume of liquid flowing in the reaction field. Therefore, the reaction and molecular movement at the interface between liquid and liquid can be performed efficiently, and (3) the heat capacity of the liquid flowing through the reaction field is small and heat exchange is performed quickly. It also has the advantage that easy temperature control can be performed.
  • Patent Document 2 is an apparatus for stirring and mixing two or more substances introduced into a container, wherein the container is formed of a nonmagnetic material, and a magnetic body is attached to a stirrer disposed inside the container.
  • a wire for generating a rotating magnetic field is disposed outside the container.
  • the stirrer housed in the container is rotated by a rotating magnetic field generated from the shoreline, and the substance to be stirred and mixed is supplied with the inlet force provided on the lower surface of the container. It is like that.
  • Patent Document 2 discloses that the stirrer is rotated with the tip provided at the center of the lower surface of the stirrer (in the center of the upstream end) in contact with the lower inner wall surface of the container. It is described.
  • the apparatus of Patent Document 2 has a structure in which the stirrer is supported by its own weight, although the stirrer is rotated by a rotating magnetic field and does not have the disadvantages found in the apparatus of Patent Document 1. It was. For this reason, if the stirrer is lightened, the tip of the stirrer may rise due to the material supplied from the lower side of the container, and the inner wall surface force on the lower side of the container may rise, and the central axis of the stirrer may be shaken. The stirrer was not able to rotate stably. Therefore, it has been difficult to reduce the size of the apparatus by making the stirring bar light and small in size.
  • Patent Document 1 US Patent Application Publication No. 2004Z0013587
  • Patent Document 2 Japanese Patent Laid-Open No. 03-181324
  • Non-Patent Document 1 Yasuo Sonoda and three others, "Control of the flow state in the three-dimensional microreactor and the effect of the flow state on the reaction rate", Proceedings of the 70th Annual Meeting of the Chemical Engineering Society (CD-ROM), Heisei February 2017, lecture number J215
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a mixed flow generator that can rotate a mouth without providing a drive shaft. It is another object of the present invention to provide a mixed flow generator that has a simple structure, is suitable for miniaturization, and can be suitably used as a chemical reaction apparatus. Furthermore, it is an object of the present invention to provide a method for generating a mixed flow that is preferably performed using these mixed flow generators. Means for solving the problem
  • the above-mentioned problem is a mixed flow generation device for mixing two or more liquids to generate a mixed flow, [1] having a plurality of liquid inlets on the upstream side and on the downstream side Has liquid outlet Knoop P, [2] Rotating around the central axis L of the pipe P, arranged on the outer periphery of the pipe P
  • a mixed flow generator comprising a columnar rotor R and [4] a pivot bearing B arranged between a liquid inlet and a liquid outlet and supporting the downstream end of the rotor R is provided. It is solved by doing.
  • the mixed flow refers to a flow in which each liquid is not evenly mixed but has an interface in addition to a flow in which each liquid is uniformly mixed. It is also a concept that includes Among these, the mixed flow generator of the present invention is suitable for adjusting the flow under laminar flow control. Examples of the flow under the laminar flow include an alternating flow in which the interface between the liquids repeatedly appears in the flow direction, and a spiral flow in which the interface between the liquids appears in a spiral shape.
  • Rotating magnetic field may mean a magnetic field that rotates around a certain axis while maintaining a constant strength at a constant rotational speed, but is not limited to this.
  • the concept also includes a magnetic field that rotates with varying strength.
  • a through hole for allowing a liquid introduced into the liquid introduction rocker pipe P to pass therethrough is provided in the pivot bearing B.
  • the liquid flowing inside the pipe P can be cut at the periphery of each through-hole H, and the mixed flow flowing in the flow path connected to the downstream side of the liquid delivery port can be made to be an alternating flow. Is done.
  • the liquid supplied to the plurality of liquid inlets varies depending on the type of the mixed flow generated by the mixed flow generating device and is not particularly limited. It is preferable. In such a case, the situation of the interface formed between the respective liquids can be adjusted in the flow path, and the significance of employing the microreactor of the present invention is also increased.
  • the direction of Neuve P is not particularly limited, but its central axis L is parallel to the vertical direction.
  • the Neuve P it is preferable to arrange the Neuve P so that the side on which the liquid inlet is provided is vertically upward.
  • the inner radius r of the pipe P and the outer radius r of the rotor R depend on the liquid introduced from the liquid inlet and
  • a flow path for flowing a mixed flow generated inside the pipe P is usually connected to the downstream side of the liquid delivery port.
  • the flow path connected to the downstream side of the liquid delivery port can be used as a reaction flow path for advancing chemical reaction and extraction.
  • the cross-sectional area of the flow path connected to the downstream side of the liquid delivery port is not particularly limited, but is usually set to 10 mm 2 or less in order to make the flow in the flow path dominant.
  • the arrangement of the liquid inlet and the liquid outlet is not particularly limited as long as the liquid inlet is positioned upstream of the liquid outlet! /, But at least of the plurality of liquid inlets One liquid inlet is provided at the upstream end of the pipe P, at least one liquid inlet of the remaining liquid inlets is provided at the side periphery of the pipe P, and the liquid outlet is downstream of the pipe P It is preferable to be provided at the end of this.
  • the liquid introduced at the upstream end of the pipe P is introduced into the liquid introduced at the side peripheral part of the pipe P. It becomes possible to make it easy to be entangled spirally inside. Therefore, it becomes easy to generate the alternating flow and spiral flow described later neatly.
  • the liquid inlet provided in the side periphery of the pipe P is formed in a slit shape.
  • the liquid introduction rocker pipe P provided on the side periphery of the pipe P, and it is introduced from the liquid introduction port provided at the upstream end of the pipe P. It becomes even easier to entangle the piped liquid and the liquid introduced from the liquid inlet provided in the side periphery of the Neuve P in a spiral shape inside the pipe P.
  • the magnetic field generating means C is capable of generating a rotating magnetic field around the central axis L of the pipe P.
  • it may be a permanent magnet that mechanically rotates the outer periphery of the pipe P, but a plurality of coils arranged symmetrically about the central axis L.
  • the structure of the magnetic field generating means C can be simplified and the mixed flow generating device can be further miniaturized.
  • the rotor R can be easily controlled because the strength and rotational speed of the rotating magnetic field can be adjusted simply by changing the magnitude and frequency of the alternating current flowing through each coil. It becomes like this.
  • the number of coils used as the magnetic field generating means C is not particularly limited as long as it is 2 or more, but is usually set to 3 or more, more preferably 3n.
  • the rotor R is not particularly limited as long as it rotates due to the generation of the rotating magnetic field, and has a conductor (such as a coil) for flowing an induction current, like a rotor used in an induction motor.
  • a conductor such as a coil
  • the mixed flow generator can be made to easily exert a large torque just by making the rotor R not slippery and easy to control.
  • “the rotor R is magnetized” means either the case where the entire rotor R is magnetically magnetized or the case where the magnetized magnet is fixed to the rotor R. It is assumed that the concept includes cases.
  • the rotor R is normally magnetized so that the magnetic poles appear rotationally symmetric with respect to the central axis.
  • the rotor R can be rotated without providing a drive shaft, and a special seal structure for the drive shaft can be omitted. Can be simplified. Therefore, it is possible to greatly reduce the size of the mixed flow generator as well as to reduce the production cost of the mixed flow generator. Therefore, it is possible to provide a mixed flow generator suitable for incorporation in a small reactor called a microreactor.
  • FIG. 1 The mixed flow generator of the present invention is cut along a vertical plane including the central axis L of the pipe P
  • FIG. 2 Section showing the mixed flow generator of the present invention cut along Y-Y in Fig. 1 FIG.
  • FIG. 3 Cross section showing the mixed flow generator of the present invention cut along Y- ⁇ in Fig. 1
  • FIG. 1 A first figure.
  • FIG. 4 is a cross-sectional view of the mixed flow generator of the present invention cut along the ⁇ - ⁇ in FIG.
  • FIG. 1 A first figure.
  • FIG. 5 A diagram showing liquid F and liquid F flowing in a spiral entanglement inside Neuve
  • FIG. 6 is a diagram showing a liquid F and a liquid F flowing in a spiral manner in the flow path connected to the downstream side of the liquid delivery port OUT.
  • FIG. 7 is a diagram showing liquid F and liquid F flowing alternately at a short pitch in the flow path connected to the downstream side of the liquid delivery port OUT.
  • FIG. 8 is a diagram showing liquid F and liquid F that alternately flow at a long pitch in the flow path connected to the downstream side of the liquid delivery port OUT.
  • Fig. 1 shows the mixed flow generator of the present invention cut along a vertical plane including the central axis L of the pipe P.
  • FIG. 2 is a cross-sectional view showing a state in which the mixed flow generator of the present invention is cut at Y Y in FIG. Fig. 3 shows the mixed flow generator of the present invention as shown in Fig. 1.
  • FIG. 22 is a cross-sectional view showing a state cut by 2 2.
  • Fig. 4 shows the mixed flow generator of the present invention as shown in Fig. 1.
  • FIG. 3 is a cross-sectional view showing a state cut by 3 3.
  • the mixed flow generator of the present invention includes a pipe P for flowing a liquid, a magnetic field generating means C for generating a rotating magnetic field, and a rotor R for adjusting the flow of the liquid. It is equipped with.
  • Neuve P has a pipe upstream P having liquid inlets IN and IN, and a liquid P
  • the part P and the pipe downstream part P having the liquid outlet OUT are formed separately.
  • Pipe upstream part P and pipe downstream part P are large diameter opening and small diameter opening.
  • Each is connected to each opening of the pipe midstream part P.
  • the material of the Neuve P is not particularly limited, but if it is a ferromagnetic material such as iron, the rotor R is in a state of being magnetically shielded by the pipe P, and the magnetic field generated by the magnetic field generating means C is Usually, nonmagnetic materials such as glass, ceramics, plastic, aluminum, copper, and stainless steel are selected because they may be weakened internally. The specific material to be selected is appropriately determined in consideration of the compatibility with the liquids F and F. Of this example
  • liquid inlets IN and IN for introducing liquids F and F are provided in the nozzle upstream part P. It is. If the liquid inlets IN and IN are provided at a total of two or more locations, their arrangement is sufficient.
  • the liquid F introduced from the liquid inlet IN and the liquid F introduced from the liquid inlet IN are used.
  • the liquid inlet IN is provided in the side periphery of the pipe upstream P
  • the Liquid inlet at the upstream part P of the pipe The inner peripheral surface near the IN smoothly guides the liquid F
  • liquid inlets IN and IN are not perpendicular to each other.
  • the liquid inlet IN is provided in the pipe P.
  • the flow of the liquid F introduced into the upstream part P is formed in a band shape.
  • the width along the short direction of the port IN is the inner radius r of the pipe P (upstream part P) and the rotor R.
  • the liquid inlet IN In order to make it easy to generate a spiral flow inside the pipe upstream portion P, it is usually set to ⁇ ⁇ : or less.
  • the liquid inlet IN In the mixed flow generator of this embodiment, the liquid inlet IN
  • the width along the longitudinal direction of 2 is 3mm! /
  • one surface constituting the inner wall of the liquid inlet IN is connected so as to be in contact with the inner peripheral surface of the pipe upstream portion P.
  • Liquid F is introduced from the liquid inlet IN in the tangential direction of the inner peripheral surface of the pipe upstream P.
  • the inner radius r of the pipe midstream part P (pipe P) is the outer radius r of the rotor R and the flow of liquids F and F.
  • the mixed flow at Neuve middle P In general, the difference between the inner radius r and the outer radius r should be 2mm or less.
  • the difference between the inner radius r and the outer radius r is preferably less than 1.5mm lmm
  • the inner radius 1 ⁇ is set to 4 mm
  • the outer radius r force ⁇ mm is set to lmm.
  • the length of the pipe midstream portion P varies depending on the length of the rotor R and is particularly limited.
  • the liquid feed for sending the liquid F mixed with the liquids F and F is sent.
  • An outlet OUT is provided.
  • the arrangement of the liquid outlet OUT is not particularly limited as long as it is provided at one or more locations, but in the mixed flow generator of this embodiment,
  • the liquid outlet OUT is connected to the pipe so that the liquids F and F flowing in an annular shape through the gap between the inner peripheral surface of the pipe P and the outer peripheral surface of the rotor R can be sent straight out of the noise P.
  • a B 1 It is provided in the small diameter opening of the flow part P. Liquid outlet in pipe downstream part P Near OUT
  • the inner peripheral surface near 3 3 1 is formed in a tapered shape so that the liquids F and F can be smoothly guided.
  • the magnetic field generating means C is arranged on the outer periphery of the pipe midstream portion P.
  • the magnetic field generating means C uses three coils C to C arranged in a rotational symmetry of 120 ° about the central axis L of the pipe P.
  • This magnetic field generation means C rotates at a constant speed around the central axis L of the pipe P when a sinusoidal three-phase alternating current with a phase delay of 120 ° is applied to the coils C to C.
  • a rotating magnetic field that rotates while maintaining a constant strength at a speed is generated.
  • the rotational speed of the rotating magnetic field can be easily adjusted by changing the frequency of the alternating current I ⁇ 1.
  • the strength of the rotating magnetic field can be determined by changing the magnitude of the alternating currents I to ⁇ .
  • the attachment structure of the coils C to C is not particularly limited.
  • the sheet S with coils C to C fixed at equal intervals is placed outside the pipe midstream part P.
  • the mixed flow generator can be further miniaturized.
  • the sheet S is usually wound with the surface on which the coils c to c are fixed being inward. Sea
  • the material of G is not particularly limited, but the magnetic field generated by each of the coils C to C is transmitted through the sheet S.
  • a non-magnetic material is selected. Inside the coils c to c, there is a ferromagnetic force such as iron
  • the strength of the rotating magnetic field generated inside the pipe P can be secured.
  • the rotor R is cylindrical.
  • the downstream end of the rotor R is tapered and is supported by a pivot bearing B described later.
  • the upstream end of the rotor R is also tapered, and the liquid inlet IN
  • the tapered surfaces that form the upstream end and the downstream end of the rotor R are V, and the deviation of the tapered surface is 30 ° with respect to the center axis of the rotor scale. It is formed to make.
  • the length of the rotor R is not particularly limited, but in the rotor R of this embodiment, the length from the upstream end to the downstream end is about 40 mm! /.
  • the material of the rotor R is not particularly limited as long as it is rotated by the rotating magnetic field generated by the magnetic field generating means C, but in the mixed flow generating device of the present embodiment, it is formed by a permanent magnet.
  • permanent magnets used for the rotor R include compound magnets such as samarium cobalt magnets and bright magnets, and alloy magnets such as KS magnet steel and MK magnet steel.
  • a rotor R is formed by forming a samarium correto magnet excellent in corrosion resistance into a cylindrical shape.
  • the rotor R in this embodiment is formed integrally as a whole, and the magnet R is arranged so that one side divided by a plane passing through the central axis is N pole and the opposite side is S pole. Deceived force It is not limited to this.
  • the number of magnetic poles can be three or more.
  • the pivot bearing B is for supporting a downstream end (pivot) formed in a tapered shape of the rotor R.
  • the pivot bearing B of this embodiment is a disk-like one, and a pivot hole is provided at the center of one surface thereof.
  • the pivot hole has an opening diameter of 0.5 mm and a depth of about 0.4 mm, and its inner wall surface is formed in a tapered shape.
  • the tapered surface that forms the inner wall surface of the pivot hole is formed so that its generatrix is at an angle of 32.5 ° with respect to the central axis of the pivot bearing B. It is a one-point support.
  • the pivot bearing B has a through hole H through which the liquids F and F pass.
  • a plurality of through-holes H can be rotated around the central axis L of the pipe P.
  • the mixed flow F can be an alternating flow with a uniform pitch.
  • the four through holes H to H are arranged with the pivot hole in the middle.
  • the total opening area of the through holes H to H is the liquid F, F
  • the mixed flow generation method of the present invention is suitable for generating a mixed flow such as an alternating flow or a spiral flow. In this case, supply to the liquid inlets IN and IN.
  • liquids F 1 and F 2 it is preferable to select liquids that are not compatible with each other. This makes the liquid
  • alternating flow which is a particularly preferable example
  • the pitch of the alternating flow to be generated is not necessarily uniform, but is preferably substantially uniform. This makes it possible to improve the reproducibility of the chemical reaction and extraction performed in the flow path connected to the downstream side of the liquid outlet OUT.
  • alternate flow pitch means the distance from the tip of one droplet flowing through the flow path connected to the downstream side of the liquid outlet OUT to the tip of the same type of droplet that flows next. I mean.
  • the pitch of the alternating flow varies the cross-sectional area of the flow path P connected to the downstream side of the liquid outlet OUT and the flow rate of liquid F and liquid F.
  • the specific flow pitch is determined by the flow path P connected to the downstream side of the liquid outlet OUT.
  • the alternating flow pitch is preferably 0.05 mm or more, more preferably 0.2 mm or more. However, if the pitch of the alternating flow is too long, the flow path P
  • the alternate flow pitch is preferably 20 mm or less, more preferably 10 mm or less.
  • the cross-sectional area of the flow path P connected to the downstream side of the liquid outlet OUT is not particularly limited.
  • cross-sectional area of channel P is 1 X 10 _3 mm 2 or more
  • 4 is preferably 5 mm 2 or less, more preferably 3 mm 2 or less.
  • the flow ratio of the liquids F and F is not particularly limited, but in order to stabilize the flow state, 1
  • Z9-9Zl is preferred. 2Z8-8Z2 is more preferred.
  • Liquid F Silicone oil, viscosity lOcst, flow rate 50mLZ min
  • the interface between the liquid F and the liquid F is also spiraled inside the flow path P connected to the downstream side of the liquid delivery port OUT.
  • the mixed flow generator of the present invention can generate a mixed flow preferable for chemical reaction and extraction such as spiral flow and alternating flow under the control of laminar flow by changing each condition. It was divided that it was a thing.
  • the mixed flow generator of the present invention can be used for various applications, but can be suitably used for generating a mixed flow for extracting a chemical reaction. Among them, it is suitable for generating a mixed flow such as an alternating flow or a spiral flow under the control of a laminar flow, and particularly suitable for generating an alternating flow. In addition, since it can be easily miniaturized, it can be put to practical use as a microreactor. In particular, microreactors used in synthetic reaction tests for chemical screening and microreactors used in research and development of new chemical processes are expected. In addition, research and development in some fine chemical fields is also expected for practical use as a microreactor for industrial production of products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

There is provided a mixed flow generating device capable of rotating a rotor without providing a drive shaft. The mixed flow generating device for mixing two or more liquid and generating a mixed flow includes: a pipe (P) having liquid inlets (IN1, IN2) at the upstream side and a liquid outlet (OUT1)at the downstream side; magnetic field generation means (C) arranged around the external circumference of the pipe (P) and generating a rotary magnetic field having a center at the center axis (L0) of the pipe (P); and columnar rotor (R) contained in the pipe (P) and rotated around the center axis (L0) by generation of the rotary magnetic field.

Description

明 細 書  Specification
混合流発生装置および混合流の発生方法  Mixed flow generator and mixed flow generation method
技術分野  Technical field
[0001] 本発明は、 2種以上の液体を混合して混合流を発生させるための混合流発生装置 と、それを用いた混合流の発生方法とに関する。  TECHNICAL FIELD [0001] The present invention relates to a mixed flow generator for mixing two or more liquids to generate a mixed flow, and a mixed flow generation method using the mixed flow generator.
背景技術  Background art
[0002] 従来より、種々の混合流発生装置が提案されており、例えば、特許文献 1には、複 数種の液体が導入されるパイプの内部にロータを収容し、該ロータを回転駆動するこ とによって、前記パイプの内周面と前記ロータの外周面との隙間を流れる液体を混合 する化学反応用の装置が記載されている。この装置では、前記ロータが前記パイプ の外部に設けられたモータに駆動軸を介して連結されており、前記モータを駆動す ることによって前記ロータを回転駆動するものとなっている。  Conventionally, various mixed flow generators have been proposed. For example, Patent Document 1 houses a rotor inside a pipe into which a plurality of types of liquids are introduced, and rotationally drives the rotor. Thus, there is described a chemical reaction apparatus for mixing a liquid flowing in a gap between an inner peripheral surface of the pipe and an outer peripheral surface of the rotor. In this apparatus, the rotor is connected to a motor provided outside the pipe via a drive shaft, and the rotor is rotationally driven by driving the motor.
[0003] しかし、特許文献 1の装置では、駆動軸を軸支するための貫通孔をパイプやパイプ に取り付けられる蓋体などに設ける必要があり、駆動軸と前記貫通孔との隙間には、 パイプの外部に液体が漏れることのないように、何らかのシールを施す必要があった 。ところが、前記シールを液密性の高いものとすると、駆動軸に作用する摩擦力が大 きくなつて、ロータが円滑に回転しなくなるばかりか、シールの磨耗やそれによる発熱 など、新たな不具合が生じるおそれもあった。また、特許文献 1の装置は、駆動軸や シールの存在が支障となるために、寸法の小型化が困難であった。  [0003] However, in the apparatus of Patent Document 1, it is necessary to provide a through hole for pivotally supporting the drive shaft in a pipe or a lid attached to the pipe, and in the gap between the drive shaft and the through hole, It was necessary to provide some kind of seal to prevent liquid from leaking outside the pipe. However, if the seal is highly liquid-tight, the frictional force acting on the drive shaft will increase and the rotor will not rotate smoothly, and there will be new problems such as seal wear and heat generation. There was also a risk of it occurring. In addition, the device of Patent Document 1 is difficult to reduce in size because the presence of a drive shaft and a seal is an obstacle.
[0004] 近年の MEMS (Micro Electro Mechanical System)の進展に伴って、化学 工学や生物工学などの分野においても装置の小型化が積極的に行われるようになつ ており、反応場の寸法が微小化されたマイクロリアクタとよばれる化学反応器が注目 を集めるようになってきている。マイクロリアクタは、単にスペースを節約したり、環境 に対する負荷を軽減したりすることができるというだけでなぐ以下のように、化学反応 器としても優れた性能を発揮するために、化学薬品のスクリーニングのための合成反 応試験や、新しいィ匕学プロセスの開発研究などにおいて、その実用化が期待されて いる。 [0005] すなわち、マイクロリアクタは、(1)反応場の寸法が小さいために、混合や抽出に要 する時間を短縮することができることや、(2)反応場を流れる液体の体積に対する表 面積の割合が高くなるために、液体と液体の界面での反応や分子移動を効率的に 行うことができることや、 (3)反応場を流れる液体の熱容量が小さく熱交換が速やか に行われるために、精密な温度制御を容易に行うことができるなどの利点をも有して いる。 [0004] With the recent progress of MEMS (Micro Electro Mechanical System), miniaturization of devices has been actively carried out in the fields of chemical engineering and biotechnology, and the dimensions of the reaction field have become very small. A chemical reactor called a microreactor has been attracting attention. Microreactors are not only capable of saving space and reducing the burden on the environment, but also for the performance of chemical reactors, as described below. It is expected to be put to practical use in the synthetic reaction test and development of new chemical processes. [0005] That is, the microreactor (1) can reduce the time required for mixing and extraction due to the small size of the reaction field, and (2) the ratio of the surface area to the volume of liquid flowing in the reaction field. Therefore, the reaction and molecular movement at the interface between liquid and liquid can be performed efficiently, and (3) the heat capacity of the liquid flowing through the reaction field is small and heat exchange is performed quickly. It also has the advantage that easy temperature control can be performed.
[0006] し力しながら、反応場の寸法を小さくしていくと、従来のマクロなスケールでの反応と は異なった流動現象が発現するようになる。例えば、反応場を流れる液体のレイノル ズ数が小さくなるために、層流が支配的になることや、反応場を流れる液体の体積に 対する表面積の割合が大きくなるために、表面張力の影響が大きくなることなどが挙 げられる。このように、反応場の寸法が小さくなると、マクロなスケールにおける機械的 撹拌による乱流発生などとは大きく異なった現象が発現することになるので、それをう まく制御することが重要になってくる。  [0006] However, when the reaction field is reduced in size, the flow phenomenon different from the conventional macro scale reaction appears. For example, since the Reynolds number of the liquid flowing through the reaction field decreases, the laminar flow becomes dominant, and the ratio of the surface area to the volume of the liquid flowing through the reaction field increases, so the influence of surface tension is affected. For example, it will grow. In this way, if the reaction field size is reduced, a phenomenon that is significantly different from the generation of turbulent flow due to mechanical stirring at a macro scale will appear. Therefore, it is important to control it well. come.
[0007] マイクロリアクタにおいて、反応場を流れる液体の流動状態を調整する方法は、多 数提案されており、その中には、互いに相溶しない 2種類の液体を反応場である流 路に同時に流して流路内に並行二相流を発生させるものや、互いに相溶しない 2種 類の液体を反応場である流路に交互に流して流路内に交互流を発生させるものなど もある(非特許文献 1を参照。 ) o特に、交互流を発生させる方法は、並行二相流を発 生させる方法と比較して、抽出率を大きくできることが分力つており、この優劣は、交 互流のピッチを流路径よりもはるかに長くした場合においても確認されている。  [0007] In a microreactor, many methods for adjusting the flow state of a liquid flowing in a reaction field have been proposed, and two kinds of liquids that are incompatible with each other are simultaneously flowed into a flow path that is a reaction field. Some of them generate parallel two-phase flow in the flow path, and others generate two flows that are not compatible with each other alternately in the flow path that is the reaction field to generate alternate flow in the flow path ( (See Non-Patent Document 1.) o In particular, the method of generating an alternating flow has the advantage that the extraction rate can be increased compared to the method of generating a parallel two-phase flow. It has been confirmed even when the flow pitch is much longer than the channel diameter.
[0008] このことは、接触する界面までの分子移動の距離を考えれば驚きである力 レイノル ズ数が小さぐ層流が支配的である微細な流路内での交互流において、分子移動に 有利な特別な流動状態が発現していると考えられる。例えば、各相内において循環 流が発生して撹拌と同じような効果が得られ、結果として界面近郷の境膜厚みが減 少して界面における分子移動速度が増加するような現象が生じていると推定すること ができる。  [0008] This is surprising when considering the distance of molecular movement to the contacting interface. In the alternating flow in a fine channel where laminar flow with a small Reynolds number is dominant, It is considered that an advantageous special flow state is developed. For example, if a circulation flow is generated in each phase, the same effect as stirring is obtained, and as a result, the thickness of the boundary membrane at the interface decreases and the molecular transfer rate at the interface increases. Can be estimated.
[0009] また、特許文献 2には、容器に導入される 2以上の物質を攪拌混合する装置であつ て、容器を非磁性材料によって形成し、容器内部に配した攪拌子に磁性体を装着し 、回転磁界を発生するための卷線を容器の外部に配置したものが記載されている。 この装置では、卷線から発生された回転磁界によって容器の内部に収容された攪拌 子を回転させるものとなっており、攪拌混合する物質は、容器の下面に設けられた導 入口力 供給されるようになっている。特許文献 2には、攪拌子の下面中央 (上流側 の端部の中央)に設けた尖頭を容器の下側の内壁面に接触させた状態で攪拌子を 回転することにつ 、ても記載されて 、る。 [0009] Further, Patent Document 2 is an apparatus for stirring and mixing two or more substances introduced into a container, wherein the container is formed of a nonmagnetic material, and a magnetic body is attached to a stirrer disposed inside the container. Shi In this publication, a wire for generating a rotating magnetic field is disposed outside the container. In this device, the stirrer housed in the container is rotated by a rotating magnetic field generated from the shoreline, and the substance to be stirred and mixed is supplied with the inlet force provided on the lower surface of the container. It is like that. Patent Document 2 discloses that the stirrer is rotated with the tip provided at the center of the lower surface of the stirrer (in the center of the upstream end) in contact with the lower inner wall surface of the container. It is described.
[0010] この特許文献 2の装置は、攪拌子が回転磁界によって回転されるので、特許文献 1 の装置に見受けられた欠点を有さないものの、攪拌子が自重によって支持される構 造のものとなっていた。このため、攪拌子を軽くすると、容器の下側から供給された物 質によって攪拌子の尖頭が容器の下側の内壁面力も浮き上がってしまい、攪拌子の 中心軸がぶれるおそれがあるなど、攪拌子を安定して回転させることができるものと はなっていなかった。したがって、攪拌子を軽く寸法の小さいものとして、装置を小型 化することが困難であった。  [0010] The apparatus of Patent Document 2 has a structure in which the stirrer is supported by its own weight, although the stirrer is rotated by a rotating magnetic field and does not have the disadvantages found in the apparatus of Patent Document 1. It was. For this reason, if the stirrer is lightened, the tip of the stirrer may rise due to the material supplied from the lower side of the container, and the inner wall surface force on the lower side of the container may rise, and the central axis of the stirrer may be shaken. The stirrer was not able to rotate stably. Therefore, it has been difficult to reduce the size of the apparatus by making the stirring bar light and small in size.
[0011] 特許文献 1 :米国特許出願公開第 2004Z0013587号明細書  [0011] Patent Document 1: US Patent Application Publication No. 2004Z0013587
特許文献 2:特開平 03— 181324号公報  Patent Document 2: Japanese Patent Laid-Open No. 03-181324
非特許文献 1:園田 康夫、外 3名、 "3次元マイクロリアクター内流動状態の制御と流 動状態が反応速度に及ぼす影響",化学工学会第 70年会予稿集 (CD— ROM) , 平成 17年 2月,講演番号 J215  Non-Patent Document 1: Yasuo Sonoda and three others, "Control of the flow state in the three-dimensional microreactor and the effect of the flow state on the reaction rate", Proceedings of the 70th Annual Meeting of the Chemical Engineering Society (CD-ROM), Heisei February 2017, lecture number J215
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明は、上記課題を解決するためになされたものであり、駆動軸を設けなくとも口 ータを回転させることが可能な混合流発生装置を提供することを目的とする。また、 構造が簡素で小型化に適し、化学反応装置として好適に用いることもできる混合流 発生装置を提供することも本発明の目的である。さらに、これらの混合流発生装置を 用いて行うことが好適な混合流の発生方法を提供することも本発明の目的である。 課題を解決するための手段 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a mixed flow generator that can rotate a mouth without providing a drive shaft. It is another object of the present invention to provide a mixed flow generator that has a simple structure, is suitable for miniaturization, and can be suitably used as a chemical reaction apparatus. Furthermore, it is an object of the present invention to provide a method for generating a mixed flow that is preferably performed using these mixed flow generators. Means for solving the problem
[0013] 上記課題は、 2種以上の液体を混合して混合流を発生させるための混合流発生装 置であって、 [1]上流側に複数の液体導入口を有し、下流側に液体送出口を有する ノィプ Pと、 [2]パイプ Pの外周部に配されて、パイプ Pの中心軸 Lを中心とした回転 [0013] The above-mentioned problem is a mixed flow generation device for mixing two or more liquids to generate a mixed flow, [1] having a plurality of liquid inlets on the upstream side and on the downstream side Has liquid outlet Knoop P, [2] Rotating around the central axis L of the pipe P, arranged on the outer periphery of the pipe P
0  0
磁界を発生する磁界発生手段 Cと、 [3]パイプ Pの内部に収容されて、下流側の端部 が先細りに形成され、前記回転磁界の発生によって中心軸 Lを中心に回転する円  A magnetic field generating means C for generating a magnetic field, and [3] a circle that is accommodated in the pipe P, has a downstream end tapered, and rotates about the central axis L by the generation of the rotating magnetic field.
0  0
柱状のロータ Rと、 [4]液体導入口と液体送出口との間に配されて、ロータ Rの下流 側の端部を支持するピボット軸受 Bと、を備えてなる混合流発生装置を提供すること によって解決される。  A mixed flow generator comprising a columnar rotor R and [4] a pivot bearing B arranged between a liquid inlet and a liquid outlet and supporting the downstream end of the rotor R is provided. It is solved by doing.
[0014] これにより、駆動軸を設けなくともロータ Rを回転させることが可能になるだけでなく 、ロータ Rに作用する摩擦力を小さくすることや、ロータ Rの周囲を流れる液体によつ てロータ Rの中心軸を高 、精度でパイプ Pの中心軸 Lに自動的に一致させることも可  [0014] This not only makes it possible to rotate the rotor R without providing a drive shaft, but also reduces the frictional force acting on the rotor R and the liquid flowing around the rotor R. The center axis of the rotor R can be automatically aligned with the center axis L of the pipe P with high accuracy.
0  0
能になる(自動調芯効果)。  (Automatic alignment effect).
[0015] ここで、「混合流」とは、各液体が均一に混合された状態にある流れだけでなぐ各 液体が均一には混合しておらず界面が存在している状態にある流れをも含む概念で あるものとする。なかでも、本発明の混合流発生装置は、層流支配下における流れを 調整するものとして好適である。層流支配下における流れとしては、各液体間の界面 が流れ方向に繰り返し現われる交互流や、各液体間の界面が螺旋状に現われる螺 旋流などが例示される。  [0015] Here, the "mixed flow" refers to a flow in which each liquid is not evenly mixed but has an interface in addition to a flow in which each liquid is uniformly mixed. It is also a concept that includes Among these, the mixed flow generator of the present invention is suitable for adjusting the flow under laminar flow control. Examples of the flow under the laminar flow include an alternating flow in which the interface between the liquids repeatedly appears in the flow direction, and a spiral flow in which the interface between the liquids appears in a spiral shape.
[0016] また、「回転磁界」は、ある軸を中心に一定の回転速度で一定の強さを維持しなが ら回転する磁界を意味することもあるが、これに限定されず、回転速度や強さが変化 しながら回転する磁界をも含む概念であるとする。  [0016] "Rotating magnetic field" may mean a magnetic field that rotates around a certain axis while maintaining a constant strength at a constant rotational speed, but is not limited to this. The concept also includes a magnetic field that rotates with varying strength.
[0017] 上記の混合流発生装置において、液体導入ロカ パイプ Pの内部に導入された液 体を通すための貫通孔をピボット軸受 Bに設けると好ましい。これにより、パイプ Pの 内部を流れる液体を各貫通孔 Hの周辺部で切断して、液体送出口の下流側に接続 された流路を流れる混合流を交互流とすることも可能になると推測される。  [0017] In the mixed flow generating device described above, it is preferable that a through hole for allowing a liquid introduced into the liquid introduction rocker pipe P to pass therethrough is provided in the pivot bearing B. As a result, it is speculated that the liquid flowing inside the pipe P can be cut at the periphery of each through-hole H, and the mixed flow flowing in the flow path connected to the downstream side of the liquid delivery port can be made to be an alternating flow. Is done.
[0018] 複数の液体導入口に供給する液体は、混合流発生装置で発生させる混合流の種 類などによっても異なり、特に限定されないが、それぞれの液体導入ロカゝら互いに相 溶しない液体を導入すると好ましい。このような場合には、流路内において、それぞ れの液体の間で形成される界面の状況を調整することができ、本発明のマイクロリア クタを採用する意義も高まる。 [0019] ノイブ Pの向きは、特に限定されないが、その中心軸 Lが鉛直方向と平行になるよ [0018] The liquid supplied to the plurality of liquid inlets varies depending on the type of the mixed flow generated by the mixed flow generating device and is not particularly limited. It is preferable. In such a case, the situation of the interface formed between the respective liquids can be adjusted in the flow path, and the significance of employing the microreactor of the present invention is also increased. [0019] The direction of Neuve P is not particularly limited, but its central axis L is parallel to the vertical direction.
0  0
うに配されていると好ましい。これにより、重力によるロータ Rの偏心を防止して、ロー タ Rの中心軸をパイプ Pの中心軸 Lに高い精度で一致させることが可能となる。この  It is preferable that they are arranged in such a manner. As a result, the eccentricity of the rotor R due to gravity can be prevented, and the central axis of the rotor R can be aligned with the central axis L of the pipe P with high accuracy. this
0  0
場合には、ノイブ Pを、液体導入口が設けられた側が鉛直上向きとなるように配する と好ましい。  In this case, it is preferable to arrange the Neuve P so that the side on which the liquid inlet is provided is vertically upward.
[0020] パイプ Pの内半径 rやロータ Rの外半径 rは、液体導入口から導入される液体や発  [0020] The inner radius r of the pipe P and the outer radius r of the rotor R depend on the liquid introduced from the liquid inlet and
1 2  1 2
生させる混合流の種類などによって異なり、特に限定されないが、混合流発生装置 で層流支配の混合流を発生する場合には、通常、内半径 rと外半径!:との差が 2m  It varies depending on the type of mixed flow to be generated and is not particularly limited. However, when a mixed flow generating device generates a mixed flow controlled by a laminar flow, the difference between the inner radius r and the outer radius!
1 2  1 2
m以下となるように設定される。  Set to m or less.
[0021] 液体送出口の下流側には、通常、パイプ Pの内部で発生した混合流を流すための 流路が接続される。液体送出口の下流側に接続された流路は、化学反応や抽出を 進行させるための反応流路として利用できる。液体送出口の下流側に接続される流 路の断面積は、特に限定されないが、該流路内の流れを層流支配とするためには、 通常、 10mm2以下に設定される。 [0021] A flow path for flowing a mixed flow generated inside the pipe P is usually connected to the downstream side of the liquid delivery port. The flow path connected to the downstream side of the liquid delivery port can be used as a reaction flow path for advancing chemical reaction and extraction. The cross-sectional area of the flow path connected to the downstream side of the liquid delivery port is not particularly limited, but is usually set to 10 mm 2 or less in order to make the flow in the flow path dominant.
[0022] 液体導入口や液体送出口の配置は、液体導入口が液体送出口よりも上流側に位 置して!/、れば特に限定されな 、が、複数の液体導入口のうち少なくとも 1つの液体導 入口をパイプ Pの上流側の端部に設け、残りの液体導入口のうち少なくとも 1つの液 体導入口をパイプ Pの側周部に設け、液体送出口をパイプ Pの下流側の端部に設け ると好ましい。これにより、パイプ Pの上流側の端部に設けられた液体導入ロカ 導 入された液体と、パイプ Pの側周部に設けられた液体導入ロカゝら導入された液体とを 、 ノイブ Pの内部で螺旋状に絡ませやすくすることが可能になる。従って、後述する 交互流や螺旋流を綺麗に発生させることも容易になる。  [0022] The arrangement of the liquid inlet and the liquid outlet is not particularly limited as long as the liquid inlet is positioned upstream of the liquid outlet! /, But at least of the plurality of liquid inlets One liquid inlet is provided at the upstream end of the pipe P, at least one liquid inlet of the remaining liquid inlets is provided at the side periphery of the pipe P, and the liquid outlet is downstream of the pipe P It is preferable to be provided at the end of this. As a result, the liquid introduced at the upstream end of the pipe P is introduced into the liquid introduced at the side peripheral part of the pipe P. It becomes possible to make it easy to be entangled spirally inside. Therefore, it becomes easy to generate the alternating flow and spiral flow described later neatly.
[0023] このとき、パイプ Pの側周部に設けられた液体導入口をスリット状に形成しておくと好 ましい。これにより、パイプ Pの側周部に設けられた液体導入ロカ パイプ Pの内部に 帯状の流れを導入することが可能になり、パイプ Pの上流側の端部に設けられた液体 導入口から導入された液体と、ノイブ Pの側周部に設けられた液体導入口から導入 された液体とを、パイプ Pの内部で螺旋状に絡ませることがさらに容易になる。  [0023] At this time, it is preferable that the liquid inlet provided in the side periphery of the pipe P is formed in a slit shape. As a result, it becomes possible to introduce a band-like flow into the inside of the liquid introduction rocker pipe P provided on the side periphery of the pipe P, and it is introduced from the liquid introduction port provided at the upstream end of the pipe P. It becomes even easier to entangle the piped liquid and the liquid introduced from the liquid inlet provided in the side periphery of the Neuve P in a spiral shape inside the pipe P.
[0024] 磁界発生手段 Cは、パイプ Pの中心軸 Lを中心とした回転磁界を発生できるもので あれば特に限定されず、例えば、パイプ Pの外周部を機械的に回転する永久磁石の ようなものであってもよいが、中心軸 Lを中心として回転対称に配された複数のコィ [0024] The magnetic field generating means C is capable of generating a rotating magnetic field around the central axis L of the pipe P. For example, it may be a permanent magnet that mechanically rotates the outer periphery of the pipe P, but a plurality of coils arranged symmetrically about the central axis L.
0  0
ルであると好ましい。これにより、磁界発生手段 Cの構造を簡素化して、混合流発生 装置をさらに小型化することが可能になる。また、各コイルに流す交流電流の大きさ や周波数を変化させるだけで、前記回転磁界の強さや回転速度を調整することがで きるようになるために、ロータ Rを容易に制御することもできるようになる。磁界発生手 段 Cとして用いるコイルの本数は、 2本以上であれば特に限定されないが、通常、 3本 以上に設定され、より好ましくは、 3n本に設定される。  Is preferable. As a result, the structure of the magnetic field generating means C can be simplified and the mixed flow generating device can be further miniaturized. In addition, the rotor R can be easily controlled because the strength and rotational speed of the rotating magnetic field can be adjusted simply by changing the magnitude and frequency of the alternating current flowing through each coil. It becomes like this. The number of coils used as the magnetic field generating means C is not particularly limited as long as it is 2 or more, but is usually set to 3 or more, more preferably 3n.
[0025] ロータ Rは、前記回転磁界の発生によって回転するものであれば特に限定されず、 誘導電動機に用いられるロータのように、誘導電流を流すための導体部(コイルなど) を備えたものを用いてもよいが、同期電動機に用いられるロータのように、磁化された ものを用いると好ましい。これにより、混合流発生装置を、ロータ Rのすべりが無く制 御しやすいものとするだけでなぐ大きなトルクを発揮しやすいものとすることもできる 。ただし、「ロータ Rが磁ィ匕されてなる」とは、ロータ R全体が磁ィ匕された磁性体力ゝらな る場合と、磁化された磁性体をロータ Rに固定した場合とのいずれの場合をも含む概 念であるものとする。ロータ Rは、通常、その中心軸に対して磁極が回転対称に現わ れるように磁ィ匕される。 [0025] The rotor R is not particularly limited as long as it rotates due to the generation of the rotating magnetic field, and has a conductor (such as a coil) for flowing an induction current, like a rotor used in an induction motor. However, it is preferable to use a magnetized one such as a rotor used in a synchronous motor. As a result, the mixed flow generator can be made to easily exert a large torque just by making the rotor R not slippery and easy to control. However, “the rotor R is magnetized” means either the case where the entire rotor R is magnetically magnetized or the case where the magnetized magnet is fixed to the rotor R. It is assumed that the concept includes cases. The rotor R is normally magnetized so that the magnetic poles appear rotationally symmetric with respect to the central axis.
発明の効果  The invention's effect
[0026] 以上のように、本発明によって、駆動軸を設けなくともロータ Rを回転させることが可 能になり、駆動軸のための特別なシール構造を省略できるなど、混合流発生装置の 構造を簡素化することができる。したがって、混合流発生装置の生産コストを低減で きるだけでなぐ混合流発生装置を大幅に小型化することも可能となる。ゆえに、マイ クロリアクタと呼ばれる小型の反応装置に組み込むものとして好適な混合流発生装置 を提供することも可能となる。  [0026] As described above, according to the present invention, the rotor R can be rotated without providing a drive shaft, and a special seal structure for the drive shaft can be omitted. Can be simplified. Therefore, it is possible to greatly reduce the size of the mixed flow generator as well as to reduce the production cost of the mixed flow generator. Therefore, it is possible to provide a mixed flow generator suitable for incorporation in a small reactor called a microreactor.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]本発明の混合流発生装置をパイプ Pの中心軸 Lを含む鉛直面で切断した状態  [0027] [FIG. 1] The mixed flow generator of the present invention is cut along a vertical plane including the central axis L of the pipe P
0  0
を示した断面図である。  It is sectional drawing which showed.
[図 2]本発明の混合流発生装置を図 1における Y— Yで切断した状態を示した断面 図である。 [Fig. 2] Section showing the mixed flow generator of the present invention cut along Y-Y in Fig. 1 FIG.
[図 3]本発明の混合流発生装置を図 1における Y— Υで切断した状態を示した断面  [Fig. 3] Cross section showing the mixed flow generator of the present invention cut along Y-Υ in Fig. 1
2 2  twenty two
図である。 FIG.
[図 4]本発明の混合流発生装置を図 1における Υ— Υで切断した状態を示した断面  FIG. 4 is a cross-sectional view of the mixed flow generator of the present invention cut along the Υ-Υ in FIG.
3 3  3 3
図である。 FIG.
[図 5]ノイブ Ρの内部を螺旋状に絡み合って流れる液体 Fと液体 Fとを示した図であ  [Fig. 5] A diagram showing liquid F and liquid F flowing in a spiral entanglement inside Neuve
A B  A B
る。 The
[図 6]液体送出口 OUTの下流側に接続された流路の内部を螺旋状に絡み合って 流れる液体 Fと液体 Fとを示した図である。  FIG. 6 is a diagram showing a liquid F and a liquid F flowing in a spiral manner in the flow path connected to the downstream side of the liquid delivery port OUT.
A B  A B
[図 7]液体送出口 OUTの下流側に接続された流路の内部を短いピッチで交互に流 れる液体 Fと液体 Fとを示した図である。  FIG. 7 is a diagram showing liquid F and liquid F flowing alternately at a short pitch in the flow path connected to the downstream side of the liquid delivery port OUT.
A B  A B
[図 8]液体送出口 OUTの下流側に接続された流路の内部を長いピッチで交互に流 れる液体 Fと液体 Fとを示した図である。  FIG. 8 is a diagram showing liquid F and liquid F that alternately flow at a long pitch in the flow path connected to the downstream side of the liquid delivery port OUT.
A B  A B
符号の説明 Explanation of symbols
B ピボット軸受  B Pivot bearing
C 磁界発生手段  C Magnetic field generation means
c〜c コイル  c ~ c coil
1 3  13
F , F , F 液体  F, F, F liquid
A B AB  A B AB
H 貫通孔  H Through hole
L パイプ Pの中心軸  Center axis of L pipe P
0  0
P パイプ  P pipe
P パイプ上流部  P pipe upstream
P パイプ中流部  Middle part of P pipe
2  2
P  P
3 パイプ下流部  3 Pipe downstream
P 液体送出口 OUTの下流側に接続された流路  P Fluid flow outlet Connected downstream of OUT
4 1  4 1
R ロータ  R rotor
IN , IN 液体導入口  IN, IN Liquid inlet
1 2  1 2
OUT 液体送出口 発明を実施するための最良の形態 OUT Liquid outlet BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 本発明の混合流発生装置の好適な実施態様を、図面を用いてより具体的に説明 する。図 1は、本発明の混合流発生装置をパイプ Pの中心軸 Lを含む鉛直面で切断  [0029] A preferred embodiment of the mixed flow generator of the present invention will be described more specifically with reference to the drawings. Fig. 1 shows the mixed flow generator of the present invention cut along a vertical plane including the central axis L of the pipe P.
0  0
した状態を示した断面図である。図 2は、本発明の混合流発生装置を図 1における Y Yで切断した状態を示した断面図である。図 3は、本発明の混合流発生装置を 図 1における Y -Y  It is sectional drawing which showed the state which carried out. FIG. 2 is a cross-sectional view showing a state in which the mixed flow generator of the present invention is cut at Y Y in FIG. Fig. 3 shows the mixed flow generator of the present invention as shown in Fig. 1.
2 2で切断した状態を示した断面図である。図 4は、本発明の混合 流発生装置を図 1における Y— Y  FIG. 22 is a cross-sectional view showing a state cut by 2 2. Fig. 4 shows the mixed flow generator of the present invention as shown in Fig. 1.
3 3で切断した状態を示した断面図である。本発明の 混合流発生装置は、図 1に示すように、液体を流すためのパイプ Pと、回転磁界を発 生するための磁界発生手段 Cと、前記液体の流れを調整するためのロータ Rと、を備 えたものとなっている。  FIG. 3 is a cross-sectional view showing a state cut by 3 3. As shown in FIG. 1, the mixed flow generator of the present invention includes a pipe P for flowing a liquid, a magnetic field generating means C for generating a rotating magnetic field, and a rotor R for adjusting the flow of the liquid. It is equipped with.
[0030] [パイプ P] [0030] [Pipe P]
ノイブ Pは、図 1に示すように、液体導入口 IN , INを有するパイプ上流部 Pと、液  As shown in Fig. 1, Neuve P has a pipe upstream P having liquid inlets IN and IN, and a liquid P
1 2 1 体導入口 IN , INから導入された液体 F , Fの流れを調整するためのノィプ中流  1 2 1 body inlet IN, the middle flow of the nozzle for adjusting the flow of liquid F, F introduced from IN
1 2 A B  1 2 A B
部 Pと、液体送出口 OUTを有するパイプ下流部 Pと、がそれぞれ別個に成形され The part P and the pipe downstream part P having the liquid outlet OUT are formed separately.
2 1 3 2 1 3
たものとなっている。パイプ上流部 Pとパイプ下流部 Pは、大径開口部と小径開口部  It has become. Pipe upstream part P and pipe downstream part P are large diameter opening and small diameter opening.
1 3  13
とを両端に有する漏斗状のものとなっており、ノイブ中流部 P  In the middle of the Neub middle part P
2は、径の等しい開口部 を両端に有する円筒状のものとなっている。パイプ上流部 P P  2 has a cylindrical shape having openings of equal diameter at both ends. Upstream part of pipe P P
1とパイプ下流部 3の大 径開口部は、パイプ中流部 Pの両端に設けられた各開口部と略同一の寸法となって  1 and the large-diameter opening of the downstream part 3 of the pipe have substantially the same dimensions as the openings provided at both ends of the pipe midstream part P.
2  2
おり、それぞれがパイプ中流部 Pの各開口部に接続されている。  Each is connected to each opening of the pipe midstream part P.
2  2
[0031] ノイブ Pの素材は、特に限定されないが、鉄などの強磁性体であると、ロータ Rがパ イブ Pによって磁気遮蔽された状態となり、磁界発生手段 Cによって発生した磁界が パイプ Pの内部で著しく弱まるおそれがあるために、通常、ガラス、セラミックス、プラス チック、アルミニウム、銅、ステンレス鋼などの非磁性体が選択される。具体的にどの 素材を選択するかは、液体 F , F との相性などを考慮して適宜決定される。本例の  [0031] The material of the Neuve P is not particularly limited, but if it is a ferromagnetic material such as iron, the rotor R is in a state of being magnetically shielded by the pipe P, and the magnetic field generated by the magnetic field generating means C is Usually, nonmagnetic materials such as glass, ceramics, plastic, aluminum, copper, and stainless steel are selected because they may be weakened internally. The specific material to be selected is appropriately determined in consideration of the compatibility with the liquids F and F. Of this example
A B  A B
混合流発生装置では、パイプ上流部 P  In the mixed flow generator, P
1とパイプ下流部 Pの  1 and downstream of pipe P
3 素材にオーステナイト系 のステンレス鋼を採用し、ノイブ中流部 Pの素材に石英ガラスを採用している。  3 Austenitic stainless steel is used as the material, and quartz glass is used as the material for Neuve Middle P.
2  2
[0032] [パイプ上流部 P ]  [0032] [Pipe upstream part P]
ノィプ上流部 Pには、液体 F , Fを導入するための液体導入口 IN , INが設けら れている。液体導入口 IN , INは、合計 2箇所以上に設けられていればよぐその配 In the nozzle upstream part P, liquid inlets IN and IN for introducing liquids F and F are provided. It is. If the liquid inlets IN and IN are provided at a total of two or more locations, their arrangement is sufficient.
1 2  1 2
置も特に限定されないが、本実施態様の混合流発生装置においては、図 1に示すよ うに、液体導入口 INから導入された液体 Fと液体導入口 INから導入された液体 F  However, in the mixed flow generator of this embodiment, as shown in FIG. 1, the liquid F introduced from the liquid inlet IN and the liquid F introduced from the liquid inlet IN are used.
1 A 2  1 A 2
とがパイプ上流部 Pの内部で垂直に交わるように、液体導入口 INをパイプ上流部 And the liquid inlet IN in the upstream part of the pipe
B 1 1 B 1 1
Pの小径開口部に設けて、液体導入口 INをパイプ上流部 Pの側周部に設けてい Provided in the small-diameter opening of P, the liquid inlet IN is provided in the side periphery of the pipe upstream P
1 2 1 1 2 1
る。パイプ上流部 Pにおける液体導入口 IN近傍の内周面は、液体 Fを円滑に案内  The Liquid inlet at the upstream part P of the pipe The inner peripheral surface near the IN smoothly guides the liquid F
1 1 A  1 1 A
できるように、テーパ状に形成されている。液体導入口 IN , INは、互いに垂直でな  It is formed in a tapered shape so that it can be made. The liquid inlets IN and IN are not perpendicular to each other.
1 2  1 2
く傾けて配置してもよい。  It may be arranged at a slight angle.
[0033] また、本実施態様の混合流発生装置においては、液体導入口 INを、パイプ Pの中 [0033] Further, in the mixed flow generating device of the present embodiment, the liquid inlet IN is provided in the pipe P.
2  2
心軸 Lと平行な方向に細長いスリット状に形成しており、液体導入口 IN力もパイプ It is formed into a long and narrow slit in the direction parallel to the center axis L, and the liquid inlet IN force is also piped
0 2 0 2
上流部 Pの内部に導入された液体 Fの流れが帯状となるようにしている。液体導入  The flow of the liquid F introduced into the upstream part P is formed in a band shape. Liquid introduction
1 B  1 B
口 INの短手方向に沿った幅は、パイプ P (パイプ上流部 P )の内半径 rとロータ Rの The width along the short direction of the port IN is the inner radius r of the pipe P (upstream part P) and the rotor R.
2 1 1 外半径 rとの差 δ ι:や、液体 Fと液体 Fとの流量比などによって適宜調整され、特に2 1 1 The difference from the outer radius r δ ι: and the flow rate ratio between liquid F and liquid F, etc.
2 A B 2 A B
限定されないが、パイプ上流部 Pの内部で螺旋流を生じやすくするためには、通常 、 δ ι:以下に設定される。本実施態様の混合流発生装置において、液体導入口 IN  Although not limited, in order to make it easy to generate a spiral flow inside the pipe upstream portion P, it is usually set to δ ι: or less. In the mixed flow generator of this embodiment, the liquid inlet IN
2 の短手方向に沿った幅は、 S rZ2( = 0. 5mm)となっている。また、液体導入口 IN  The width along the short direction of 2 is S rZ2 (= 0.5 mm). Also, liquid inlet IN
2 の長手方向に沿った幅は 3mmとなって!/、る。  The width along the longitudinal direction of 2 is 3mm! /
[0034] さらに、本実施態様の混合流発生装置においては、図 2に示すように、液体導入口 INの内壁を構成する一の面をパイプ上流部 Pの内周面と接するように接続しており[0034] Further, in the mixed flow generator of this embodiment, as shown in FIG. 2, one surface constituting the inner wall of the liquid inlet IN is connected so as to be in contact with the inner peripheral surface of the pipe upstream portion P. And
2 1 twenty one
、液体 Fを液体導入口 INからパイプ上流部 Pの内周面の接線方向に導入すること Liquid F is introduced from the liquid inlet IN in the tangential direction of the inner peripheral surface of the pipe upstream P.
B 2 1 B 2 1
ができるようになつている。これにより、液体導入口 IN力も導入されてパイプ上流部 P の内周面とロータ Rの外周面との隙間で環状になって流れている液体 Fの外周部 Has become possible. As a result, the liquid inlet IN force is also introduced and the outer peripheral portion of the liquid F flowing in an annular shape in the gap between the inner peripheral surface of the pipe upstream portion P and the outer peripheral surface of the rotor R
1 A に、液体 Fを滑らかな角度で当てることが可能になり、パイプ Pの内部で螺旋流を容 It is possible to apply liquid F to 1 A at a smooth angle, and the spiral flow is contained inside pipe P.
B  B
易に発生させることができるようになる。図 2においては、ロータ Rは矢印 Aの向きに回 転している。  It can be generated easily. In FIG. 2, the rotor R rotates in the direction of arrow A.
[0035] [パイプ中流部 P ] [0035] [Pipe midstream part P]
2  2
パイプ中流部 P (パイプ P)の内半径 rは、ロータ Rの外半径 rや、液体 F, Fの流  The inner radius r of the pipe midstream part P (pipe P) is the outer radius r of the rotor R and the flow of liquids F and F.
2 1 2 A B 量などによって異なり、特に限定されないが、ノイブ中流部 P の混合流を層流支配と するために、通常、内半径 rと外半径 rとの差が 2mm以下となるように設定すること 2 1 2 Depending on the amount of AB, etc., there is no particular limitation, but the mixed flow at Neuve middle P In general, the difference between the inner radius r and the outer radius r should be 2mm or less.
1 2  1 2
が好ましい。内半径 rと外半径 rとの差は、 1. 5mm以下であるとより好ましぐ lmm  Is preferred. The difference between the inner radius r and the outer radius r is preferably less than 1.5mm lmm
1 2  1 2
以下であるとさらに好ましい。本実施態様の混合流発生装置においては、内半径 1^ が 4mm、外半径 r力^ mmで内半径 rと外半径 rとの差が lmmとなるように設定され  More preferably, it is as follows. In the mixed flow generator of this embodiment, the inner radius 1 ^ is set to 4 mm, the outer radius r force ^ mm, and the difference between the inner radius r and the outer radius r is set to lmm.
2 1 2  2 1 2
ている。パイプ中流部 Pの長さは、ロータ Rの長さなどによっても異なり、特に限定さ  ing. The length of the pipe midstream portion P varies depending on the length of the rotor R and is particularly limited.
2  2
れないが、本実施態様のパイプ Pにおいては 26mmとなっている。パイプ Pの厚さは lmmとなっている。  However, it is 26 mm in the pipe P of this embodiment. The thickness of pipe P is lmm.
[0036] [パイプ下流部 P ] [0036] [Pipe downstream part P]
3  Three
ノイブ下流部 Pには、液体 F , Fが混合された液体 F を送出するための液体送  In the Neuve downstream part P, the liquid feed for sending the liquid F mixed with the liquids F and F is sent.
3 A B AB  3 A B AB
出口 OUTが設けられている。液体送出口 OUTは、 1箇所以上に設けられていれ ばよぐその配置も特に限定されないが、本実施態様の混合流発生装置においては An outlet OUT is provided. The arrangement of the liquid outlet OUT is not particularly limited as long as it is provided at one or more locations, but in the mixed flow generator of this embodiment,
、図 1に示すように、パイプ Pの内周面とロータ Rの外周面との隙間を環状に流れる液 体 F , Fを真直ぐノイブ Pの外部へ送出できるように、液体送出口 OUTをパイプ下As shown in Fig. 1, the liquid outlet OUT is connected to the pipe so that the liquids F and F flowing in an annular shape through the gap between the inner peripheral surface of the pipe P and the outer peripheral surface of the rotor R can be sent straight out of the noise P. under
A B 1 流部 Pの小径開口部に設けている。パイプ下流部 Pにおける液体送出口 OUT近A B 1 It is provided in the small diameter opening of the flow part P. Liquid outlet in pipe downstream part P Near OUT
3 3 1 傍の内周面は、液体 F , Fを円滑に案内できるように、テーパ状に形成されている。 The inner peripheral surface near 3 3 1 is formed in a tapered shape so that the liquids F and F can be smoothly guided.
A B  A B
[0037] [磁界発生手段 C]  [0037] [Magnetic field generating means C]
磁界発生手段 Cは、図 3に示すように、パイプ中流部 Pの外周部に配されており、  As shown in FIG. 3, the magnetic field generating means C is arranged on the outer periphery of the pipe midstream portion P.
2  2
パイプ中流部 Pの中心軸 Lを中心とした回転磁界を発生するためのものとなってい  It is intended to generate a rotating magnetic field around the central axis L of the pipe midstream P.
2 0  2 0
る。本実施態様の混合流発生装置においては、磁界発生手段 Cとして、パイプ Pの 中心軸 Lを中心として 120° の回転対称に配された 3本のコイル C〜Cを用いてい The In the mixed flow generator of this embodiment, the magnetic field generating means C uses three coils C to C arranged in a rotational symmetry of 120 ° about the central axis L of the pipe P.
0 1 3 る。各コイル C〜Cの中心軸 L〜Lは、パイプ中流部 Pの中心軸 Lに対して垂直 0 1 3 The central axes L to L of each coil C to C are perpendicular to the central axis L of the pipe midstream P
1 3 1 3 2 0  1 3 1 3 2 0
となっている。この磁界発生手段 Cは、位相が 120° ずつ遅れた正弦波状の三相交 流電流がコイル C〜Cに流されると、パイプ Pの中心軸 Lを中心として一定の回転  It has become. This magnetic field generation means C rotates at a constant speed around the central axis L of the pipe P when a sinusoidal three-phase alternating current with a phase delay of 120 ° is applied to the coils C to C.
1 3 0  1 3 0
速度で一定の強さを維持しながら回転する回転磁界を発生するものとなっている。前 記回転磁界の回転速度は、交流電流 I〜1の周波数を変えることによって容易に調  A rotating magnetic field that rotates while maintaining a constant strength at a speed is generated. The rotational speed of the rotating magnetic field can be easily adjusted by changing the frequency of the alternating current I ~ 1.
1 3  13
節することができ、前記回転磁界の強さは、交流電流 I〜ιの大きさを変えることによ  The strength of the rotating magnetic field can be determined by changing the magnitude of the alternating currents I to ι.
1 3  13
つて容易に調節することができる。  Can be easily adjusted.
[0038] コイル C〜Cの取り付け構造は、特に限定されないが、本実施態様の磁界発生手 段 Cにおいては、コイル C〜Cを等間隔に固着したシート Sをパイプ中流部 Pの外 [0038] The attachment structure of the coils C to C is not particularly limited. In stage C, the sheet S with coils C to C fixed at equal intervals is placed outside the pipe midstream part P.
1 3 2 周部に卷回することによって取り付けている。これにより、コイル c〜  1 3 2 Installed by winding around the circumference. As a result, the coil c ~
1 cを狭いスぺー 3  1 c narrow space 3
スで密に配することが可能になり、混合流発生装置をさらに小型化することができる。 シート Sは、通常、コイル c〜cが固着された側の面を内側にして卷回される。シー  The mixed flow generator can be further miniaturized. The sheet S is usually wound with the surface on which the coils c to c are fixed being inward. Sea
1 3  13
ト Sの素材は、特に限定されないが、各コイル C〜Cで発生した磁界がシート Sを伝  The material of G is not particularly limited, but the magnetic field generated by each of the coils C to C is transmitted through the sheet S.
1 3  13
搬して他のコイル c〜  Carry other coils c ~
1 cで発生する磁界に影響を及ぼすのを防止するために、通 3  1 To prevent the magnetic field generated in c from being affected,
常、非磁性体が選択される。コイル c〜cの内部には、鉄などの強磁性体力 なる  Usually, a non-magnetic material is selected. Inside the coils c to c, there is a ferromagnetic force such as iron
1 3  13
芯材を設けておくと、パイプ Pの内部に発生する回転磁界の強さを大きく確保するこ とがでさる。  If the core material is provided, the strength of the rotating magnetic field generated inside the pipe P can be secured.
[0039] [ロータ R]  [0039] [Rotor R]
ロータ Rは、円柱状のものとなっている。ロータ Rの下流側の端部は、先細りに形成 されており、後述するピボット軸受 Bに支持されるようになっている。また、ロータ Rの 上流側の端部も、先細りに形成されており、液体導入口 IN  The rotor R is cylindrical. The downstream end of the rotor R is tapered and is supported by a pivot bearing B described later. The upstream end of the rotor R is also tapered, and the liquid inlet IN
1から導入された液体 F  Liquid F introduced from 1
Aの 流れが乱されないようになつている。本実施態様のロータ Rにおいて、ロータ Rの上流 側の端部と下流側の端部を形成するテーパ面は、 V、ずれもその母線がロータ尺の中 心軸に対して 30° の角度をなすように形成されている。ロータ Rの長さは、特に限定 されないが、本実施態様のロータ Rにおいては、上流側の端部から下流側の端部ま での長さが約 40mmとなって!/、る。  A's flow is not disturbed. In the rotor R of this embodiment, the tapered surfaces that form the upstream end and the downstream end of the rotor R are V, and the deviation of the tapered surface is 30 ° with respect to the center axis of the rotor scale. It is formed to make. The length of the rotor R is not particularly limited, but in the rotor R of this embodiment, the length from the upstream end to the downstream end is about 40 mm! /.
[0040] ロータ Rの素材は、磁界発生手段 Cによって発生した回転磁界によって回転するも のであれば特に限定されないが、本実施態様の混合流発生装置においては、永久 磁石によって形成している。ロータ Rに用いる永久磁石としては、サマリウムコバルト 磁石やフ ライト磁石などの化合物磁石や、 KS磁石鋼や MK磁石鋼などの合金磁 石が例示される。本実施態様の混合流発生装置においては、耐腐食性に優れてい るサマリウムコノ レト磁石を円柱状に成形したものをロータ Rとして用いている。本実 施態様のロータ Rは、全体が一体的に成形されたものとなっており、その中心軸を通 る平面で分けた片側が N極で、その反対側が S極となるように磁ィ匕されている力 これ に限定されない。例えば、複数の永久磁石を貼り合わせてロータ Rを形成するような 場合には、磁極の数を 3極以上とすることもできる。 [0041] [ピボット軸受 B] [0040] The material of the rotor R is not particularly limited as long as it is rotated by the rotating magnetic field generated by the magnetic field generating means C, but in the mixed flow generating device of the present embodiment, it is formed by a permanent magnet. Examples of permanent magnets used for the rotor R include compound magnets such as samarium cobalt magnets and bright magnets, and alloy magnets such as KS magnet steel and MK magnet steel. In the mixed flow generator of this embodiment, a rotor R is formed by forming a samarium correto magnet excellent in corrosion resistance into a cylindrical shape. The rotor R in this embodiment is formed integrally as a whole, and the magnet R is arranged so that one side divided by a plane passing through the central axis is N pole and the opposite side is S pole. Deceived force It is not limited to this. For example, when the rotor R is formed by bonding a plurality of permanent magnets, the number of magnetic poles can be three or more. [0041] [Pivot bearing B]
ピボット軸受 Bは、ロータ Rの先細りに形成された下流側の端部(ピボット)を支持す るためのものとなっている。本実施態様のピボット軸受 Bは、図 1と図 4に示すように、 円盤状のものとなっており、その片面の中心にピボット穴を設けている。本実施態様 のピボット軸受において、ピボット穴は、その開口径が 0. 5mmで深さが約 0. 4mmと なっており、その内壁面はテーパ状に形成されている。ピボット穴の内壁面を形成す るテーパ面は、その母線がピボット軸受 Bの中心軸に対して 32. 5° の角度をなすよ うに形成されており、ロータ Rの下流側の端部を略 1点で支持するものとなっている。  The pivot bearing B is for supporting a downstream end (pivot) formed in a tapered shape of the rotor R. As shown in FIGS. 1 and 4, the pivot bearing B of this embodiment is a disk-like one, and a pivot hole is provided at the center of one surface thereof. In the pivot bearing of this embodiment, the pivot hole has an opening diameter of 0.5 mm and a depth of about 0.4 mm, and its inner wall surface is formed in a tapered shape. The tapered surface that forms the inner wall surface of the pivot hole is formed so that its generatrix is at an angle of 32.5 ° with respect to the central axis of the pivot bearing B. It is a one-point support.
[0042] また、ピボット軸受 Bには、図 4に示すように、液体 F , Fを通すための貫通孔 Hを  [0042] Further, as shown in Fig. 4, the pivot bearing B has a through hole H through which the liquids F and F pass.
A B  A B
設けている。このような構成を採用することで、パイプ Pの内部を流れる液体 F , Fを  Provided. By adopting such a configuration, the liquids F and F flowing inside the pipe P
A B  A B
各貫通孔 Hの周辺部で切断して、パイプ下流部 Pの液体送出口 OUTから流れる  Cut at the periphery of each through hole H and flow from the liquid delivery outlet OUT of the pipe downstream part P
3 1  3 1
混合流 F を交互流とすることも可能になると推測される。貫通孔 Hの数や配置は、  It is presumed that the mixed flow F can be alternated. The number and arrangement of through holes H
AB  AB
特に限定されないが、複数個の貫通孔 Hをパイプ Pの中心軸 Lを中心として回転対  Although not particularly limited, a plurality of through-holes H can be rotated around the central axis L of the pipe P.
0  0
称に設けた方が好ましい。これにより、パイプ Pの内部を流れる液体 F , Fを各貫通  It is preferable to provide the name. As a result, the liquids F and F flowing inside the pipe P pass through each
A B  A B
孔 Hの周辺部で規則正しく切断して、パイプ下流部 Pの液体送出口 OUTから流れ  Cut regularly around the periphery of the hole H and flow from the liquid outlet OUT of the pipe downstream P
3 1 る混合流 F をピッチの揃った交互流とすることも可能であると推測されるためである  This is because it is assumed that the mixed flow F can be an alternating flow with a uniform pitch.
AB  AB
。本実施態様のピボット軸受 Bにおいては、 4個の貫通孔 H〜Hを、ピボット穴を中  . In the pivot bearing B of this embodiment, the four through holes H to H are arranged with the pivot hole in the middle.
1 4  14
心として回転対称に設けている。貫通孔 H〜Hの合計の開口面積は、液体 F , F  It is provided as a rotationally symmetrical center. The total opening area of the through holes H to H is the liquid F, F
1 4 A B の流量などによっても異なり、特に限定されないが、本実施態様のピボット軸受 Bに おいては、約 21mm2となっている。 Although it varies depending on the flow rate of 14 AB and is not particularly limited, in the pivot bearing B of this embodiment, it is about 21 mm 2 .
[0043] [混合流の発生方法] [0043] [Method of generating mixed flow]
次に、本発明の混合流発生装置を用いて行うのに好適な混合流の発生方法につ いて説明する。本発明の混合流の発生方法は、交互流や螺旋流などの混合流を発 生させるためのものとして好適である。この場合には、液体導入口 IN , INに供給す  Next, a method for generating a mixed flow suitable for use with the mixed flow generator of the present invention will be described. The mixed flow generation method of the present invention is suitable for generating a mixed flow such as an alternating flow or a spiral flow. In this case, supply to the liquid inlets IN and IN.
1 2  1 2
る液体 F , Fとして、互いに相溶しない液体を選択すると好ましい。これにより、液体 As the liquids F 1 and F 2, it is preferable to select liquids that are not compatible with each other. This makes the liquid
A B A B
Fと液体 Fとの間に形成される界面の状況を容易に調整することができるようになる The situation of the interface formed between F and liquid F can be easily adjusted
A B A B
ためである。以下においては、特に好適な例である交互流を発生させる場合を例に 挙げて説明する。 [0044] 生じさせる交互流のピッチは、必ずしも均一でなくてもよいが、略均一であることが 好ましい。これにより、液体送出口 OUTの下流側に接続された流路で行う化学反応 や抽出の再現性を高めることが可能になる。ここで、「交互流のピッチ」とは、液体送 出口 OUTの下流側に接続された流路を流れる一の液滴の先端から、次に流れてく る同じ種類の液滴の先端までの距離のことをいう。交互流のピッチは、液体送出口 O UTの下流側に接続された流路 Pの断面積や、液体 Fや液体 Fの流量を変えるこBecause. In the following, a case where alternating flow, which is a particularly preferable example, is generated will be described as an example. [0044] The pitch of the alternating flow to be generated is not necessarily uniform, but is preferably substantially uniform. This makes it possible to improve the reproducibility of the chemical reaction and extraction performed in the flow path connected to the downstream side of the liquid outlet OUT. Here, “alternate flow pitch” means the distance from the tip of one droplet flowing through the flow path connected to the downstream side of the liquid outlet OUT to the tip of the same type of droplet that flows next. I mean. The pitch of the alternating flow varies the cross-sectional area of the flow path P connected to the downstream side of the liquid outlet OUT and the flow rate of liquid F and liquid F.
1 4 A B 1 4 A B
とによって調整することができる。  And can be adjusted by.
[0045] 具体的に交互流のピッチをいくらに設定するかは、液体送出口 OUTの下流側に 接続された流路 P [0045] The specific flow pitch is determined by the flow path P connected to the downstream side of the liquid outlet OUT.
4の断面積や、化学反応や抽出の種類などによって異なるが、短く 設定しすぎると、流路 Pを流れる液体 F の分離回収が困難になるおそれがあるた  Depending on the cross-sectional area of Fig. 4, the chemical reaction and the type of extraction, etc., if it is set too short, it may be difficult to separate and recover the liquid F flowing in the flow path P.
4 AB  4 AB
めに、通常、 0. 01mm以上となるように設定する。交互流のピッチは、 0. 05mm以 上であると好ましぐ 0. 2mm以上であるとより好ましい。ところが、交互流のピッチが 長すぎると、流路 P  Therefore, it is usually set to be 0.01 mm or more. The alternating flow pitch is preferably 0.05 mm or more, more preferably 0.2 mm or more. However, if the pitch of the alternating flow is too long, the flow path P
4で行う化学反応や抽出の速度がそれ程速くならず、交互流を発 生させる意義が低下するために、通常、 30mm以下に設定される。交互流のピッチ は、 20mm以下であると好ましぐ 10mm以下であるとより好ましい。  Usually, it is set to 30 mm or less because the chemical reaction and extraction performed in 4 are not so fast and the significance of generating an alternating flow is reduced. The alternate flow pitch is preferably 20 mm or less, more preferably 10 mm or less.
[0046] 液体送出口 OUTの下流側に接続された流路 Pの断面積も、特に限定されな 、が [0046] The cross-sectional area of the flow path P connected to the downstream side of the liquid outlet OUT is not particularly limited.
1 4  14
、小さすぎると、流路 Pを流れる液体 F の分離回収が困難になるおそれがあるため  If it is too small, it may be difficult to separate and recover the liquid F flowing through the flow path P.
4 AB  4 AB
に、通常、 1 X 10_4mm2以上に設定される。流路 Pの断面積は、 1 X 10_3mm2以上 Usually, it is set to 1 X 10 _4 mm 2 or more. Cross-sectional area of channel P is 1 X 10 _3 mm 2 or more
4  Four
であると好ましぐ l X 10_2mm2以上であるとより好ましぐ 5 X 10_2mm2であるとさら に好ましい。ところが、流路 Pの断面積が大きすぎると、流路 Pで行う化学反応ゃ抽 It is more preferable that it is l X 10 _2 mm 2 or more, and 5 X 10 _2 mm 2 is more preferable. However, if the cross-sectional area of the flow path P is too large, the chemical reaction performed in the flow path P will be extracted.
4 4  4 4
出の速度がそれ程速くならないばかりか、そもそも液体 F が乱流となって交互流が  Not only does the output speed become so fast, but the liquid F becomes turbulent in the first place and the alternating flow is
AB  AB
発生しないおそれもあるために、通常、 10mm2以下に設定される。流路 Pの断面積 Since it may not occur, it is usually set to 10 mm 2 or less. Cross section of flow path P
4 は、 5mm2以下であることが好ましぐ 3mm2以下であるとより好ましい。 4 is preferably 5 mm 2 or less, more preferably 3 mm 2 or less.
[0047] 液体 F , Fの流量比も、特に限定されないが、流動状態を安定させるためには、 1 [0047] The flow ratio of the liquids F and F is not particularly limited, but in order to stabilize the flow state, 1
A B  A B
Z9〜9Zlであること好ましぐ 2Z8〜8Z2であるとより好ましい。  Z9-9Zl is preferred. 2Z8-8Z2 is more preferred.
[0048] [実験結果] [0048] [Experimental results]
次に、本発明の混合流発生装置の動作を確認するために、下記初期条件で実験 を行った。 液体 F :シリコーンオイル,粘度 lOcst,流量 50mLZ分 Next, in order to confirm the operation of the mixed flow generator of the present invention, an experiment was performed under the following initial conditions. Liquid F: Silicone oil, viscosity lOcst, flow rate 50mLZ min
B  B
ロータ Rの回転速度: 300rpm  Speed of rotor R: 300rpm
[0049] その結果、図 5に示すように、パイプ Pの内部で、液体 Fと液体 Fの界面が螺旋状 As a result, as shown in FIG. 5, the interface between the liquid F and the liquid F is spiral inside the pipe P.
A B  A B
に形成されて流れているのが確認できた。このとき、図 6に示すように、液体送出口 O UTの下流側に接続された流路 Pの内部でも、液体 Fと液体 Fの界面が螺旋状に  It was confirmed that it was formed and flowing. At this time, as shown in FIG. 6, the interface between the liquid F and the liquid F is also spiraled inside the flow path P connected to the downstream side of the liquid delivery port OUT.
1 4 A B  1 4 A B
形成されて流れているのが確認できた。このように、パイプ Pの内部や液体送出口 o UTの下流側に接続された流路で螺旋流を生じさせることによって、並行二相流の 場合と比較して、液体 Fと液体 Fの界面の面積を増大させることができるので、反応  It was confirmed that it was formed and flowing. In this way, by generating a spiral flow in the pipe P or in the flow path connected to the downstream side of the liquid delivery port oUT, the interface between the liquid F and the liquid F is compared with the case of the parallel two-phase flow. Can increase the area of the reaction
A B  A B
効率を向上することができると考えられる。  It is thought that efficiency can be improved.
[0050] 続、て、液体送出口 OUTの下流側に接続された流路の先端部 (液体送出口 OU Tに接続されていない側の端部)を押し潰して、該流路の内部圧力を高めてみると、 図 7に示すように、螺旋状に形成されていた界面が途切れて、液体 Fと液体 Fとが [0050] Next, by crushing the tip of the channel connected to the downstream side of the liquid outlet OUT (the end on the side not connected to the liquid outlet OU T), the internal pressure of the channel As shown in Fig. 7, the spirally formed interface is interrupted and liquid F and liquid F are separated.
A B  A B
繰り返し現われる交互流が発生しているのが確認できた。さらに、液体 F  It was confirmed that the alternating flow that appeared repeatedly occurred. In addition, liquid F
Aの流量を大 きくすると、図 8に示すように、液体 Fの容積比が高くなつた交互流が発生しているの  When the flow rate of A is increased, an alternating flow with a high volume ratio of liquid F occurs as shown in Fig. 8.
A  A
が確認できた。このように、液体送出口 OUTの下流側に接続された流路で交互流 を生じさせることによって、既述の分子移動に有利な特別な流動状態を発現させ、並 行二相流の場合と比較して、液体 Fと液体 Fとの反応効率を向上することができると  Was confirmed. In this way, by generating an alternating flow in the flow path connected to the downstream side of the liquid outlet OUT, a special flow state advantageous for the molecular movement described above is developed, and in the case of the parallel two-phase flow, In comparison, the reaction efficiency between liquid F and liquid F can be improved.
A B  A B
考えられる。  Conceivable.
[0051] 以上の実験結果から、本発明の混合流発生装置は、各条件を変化させることで、 層流支配下において、螺旋流や交互流など、化学反応や抽出に好ましい混合流を 発生できるものであることが分力つた。  [0051] From the above experimental results, the mixed flow generator of the present invention can generate a mixed flow preferable for chemical reaction and extraction such as spiral flow and alternating flow under the control of laminar flow by changing each condition. It was divided that it was a thing.
[0052] [用途]  [0052] [Usage]
本発明の混合流発生装置は、様々な用途に用いることができるが、化学反応ゃ抽 出を行わせるための混合流を発生させるためのものとして好適に用いることができる 。中でも、層流支配下において、交互流や螺旋流などの混合流を発生させるための ものとして好適であり、特に、交互流を発生させるためのものとして好適なものである 。また、小型化が容易であることから、マイクロリアクタとして実用化することもできる。 中でも、化学薬品のスクリーニングのための合成反応試験に用いられるマイクロリアク タゃ、新しい化学プロセスの開発研究などに用いられるマイクロリアクタとしての実用 化が期待される。また、一部のファインケミカルの分野で研究開発が進められている、 製品を工業的に製造するためのマイクロリアクタとしての実用ィ匕も期待される。 The mixed flow generator of the present invention can be used for various applications, but can be suitably used for generating a mixed flow for extracting a chemical reaction. Among them, it is suitable for generating a mixed flow such as an alternating flow or a spiral flow under the control of a laminar flow, and particularly suitable for generating an alternating flow. In addition, since it can be easily miniaturized, it can be put to practical use as a microreactor. In particular, microreactors used in synthetic reaction tests for chemical screening and microreactors used in research and development of new chemical processes are expected. In addition, research and development in some fine chemical fields is also expected for practical use as a microreactor for industrial production of products.

Claims

請求の範囲 [1] 2種以上の液体を混合して混合流を発生させるための混合流発生装置であって、 Claims [1] A mixed flow generator for mixing two or more liquids to generate a mixed flow,
[1]上流側に複数の液体導入口を有し、下流側に液体送出口を有するパイプ Pと、 [2]パイプ Pの外周部に配されて、ノイブ Pの中心軸 Lを中心とした回転磁界を発生  [1] A pipe P having a plurality of liquid inlets on the upstream side and a liquid outlet on the downstream side, and [2] arranged on the outer periphery of the pipe P and centering on the central axis L of the Neuve P Generate rotating magnetic field
0  0
する磁界発生手段 Cと、  Magnetic field generating means C to
[3]パイプ Pの内部に収容されて、下流側の端部が先細りに形成され、前記回転磁 界の発生によって中心軸 Lを中心に回転する円柱状のロータ Rと、  [3] A cylindrical rotor R housed in the pipe P and having a downstream end tapered to rotate about the central axis L by the generation of the rotating magnetic field;
0  0
[4]液体導入口と液体送出口との間に配されて、ロータ Rの下流側の端部を支持す るピボット軸受 Bと、  [4] Pivot bearing B disposed between the liquid inlet and the liquid outlet and supporting the downstream end of the rotor R;
を備えてなる混合流発生装置。  A mixed flow generator comprising:
[2] 液体導入ロカもパイプ Pの内部に導入された液体を通すための貫通孔がピボット 軸受 Bに設けられた請求項 1記載の混合流発生装置。 [2] The mixed flow generating device according to claim 1, wherein the pivot bearing B is provided with a through hole through which the liquid introduced into the pipe P is also passed.
[3] 複数の液体導入口のうち少なくとも 1つの液体導入口がパイプ Pの上流側の端部に 設けられ、残りの液体導入口のうち少なくとも 1つの液体導入口がパイプ Pの側周部 に設けられ、液体送出口がパイプ Pの下流側の端部に設けられてなる請求項 1又は 2 記載の混合流発生装置。 [3] At least one liquid inlet among the plurality of liquid inlets is provided at the upstream end of the pipe P, and at least one liquid inlet among the remaining liquid inlets is provided at the side periphery of the pipe P. The mixed flow generating device according to claim 1 or 2, wherein the liquid delivery port is provided at an end portion on the downstream side of the pipe P.
[4] ノイブ Pの側周部に設けられた液体導入口がスリット状に形成されてなる請求項 3 記載の混合流発生装置。 4. The mixed flow generating device according to claim 3, wherein the liquid inlet provided in the side periphery of Neuve P is formed in a slit shape.
[5] 磁界発生手段 Cが中心軸 Lを中心として回転対称に配された複数のコイル力 な [5] Magnetic field generating means C is a plurality of coil forces arranged in rotational symmetry about the central axis L.
0  0
る請求項 1〜4いずれか記載の混合流発生装置。  The mixed flow generator according to any one of claims 1 to 4.
[6] ロータ Rが磁化されてなる請求項 1〜5いずれか記載の混合流発生装置。 6. The mixed flow generator according to any one of claims 1 to 5, wherein the rotor R is magnetized.
[7] パイプ Pの中心軸 Lが鉛直方向に配されてなる請求項 1〜6いずれか記載の混合  [7] The mixing according to any one of claims 1 to 6, wherein the central axis L of the pipe P is arranged in a vertical direction.
0  0
流発生装置。  Flow generator.
[8] パイプ Pの内半径 rとロータ Rの外半径 rとの差が 2mm以下である請求項 1〜7い  [8] The difference between the inner radius r of the pipe P and the outer radius r of the rotor R is 2 mm or less.
1 2  1 2
ずれか記載の混合流発生装置。  A mixed flow generator according to any of the above.
[9] 液体送出口の下流側に断面積が 10mm2以下の流路が接続されてなる請求項 1〜[9] a cross-sectional area on the downstream side of the liquid delivery port, which are connected to 10 mm 2 or less of a flow path according to claim 1
8 ヽずれか記載の混合流発生装置。 8 Mixed flow generator as described above.
[10] 請求項 1〜9いずれか記載の混合流発生装置を用いて混合流を発生させる混合流 の発生方法。 [10] A mixed flow for generating a mixed flow by using the mixed flow generator according to any one of claims 1 to 9. How it occurs.
[11] 複数の液体導入口から互いに相溶しな!ヽ液体を導入する請求項 10記載の混合流 の発生方法。  [11] Incompatible with multiple liquid inlets! 11. The method for generating a mixed flow according to claim 10, wherein a liquid is introduced.
[12] パイプ Pの内周面とローラ Rの外周面との隙間で各液体間の界面が螺旋状に現わ れる螺旋流を発生させ、該螺旋流を液体送出口の下流側に接続された流路に流す 請求項 11記載の混合流の発生方法。  [12] A spiral flow in which the interface between the liquids appears spirally in the gap between the inner peripheral surface of the pipe P and the outer peripheral surface of the roller R is connected to the downstream side of the liquid delivery port. The method for generating a mixed flow according to claim 11, wherein the mixed flow is caused to flow in a flow path.
[13] パイプ Pの内周面とローラ Rの外周面との隙間で各液体間の界面が螺旋状に現わ れる螺旋流を発生させ、該螺旋流を各液体間の界面が流れ方向に繰り返し現われる 交互流に変換して液体送出口の下流側に接続された流路に流す請求項 11記載の 混合流の発生方法。  [13] A spiral flow in which the interface between the liquids appears spirally in the gap between the inner peripheral surface of the pipe P and the outer peripheral surface of the roller R is generated in the flow direction. 12. The method of generating a mixed flow according to claim 11, wherein the mixed flow is converted into an alternating flow that repeatedly appears and flows in a flow path connected to the downstream side of the liquid delivery port.
[14] 請求項 12又は 13記載の混合流の発生方法によって交互流又は螺旋流を発生さ せ、液体送出口の下流側に接続された流路で化学反応を進行させる化学反応方法 請求項 12又は 13記載の混合流の発生方法によって交互流又は螺旋流を発生さ せ、液体送出口の下流側に接続された流路で抽出を進行させる抽出方法。  [14] A chemical reaction method in which an alternating flow or a spiral flow is generated by the mixed flow generation method according to claim 12 or 13, and the chemical reaction is advanced in a flow path connected to the downstream side of the liquid delivery port. Alternatively, an extraction method in which an alternating flow or a spiral flow is generated by the mixed flow generation method described in 13, and the extraction proceeds in a flow path connected to the downstream side of the liquid delivery port.
PCT/JP2006/307487 2005-04-08 2006-04-07 Mixed flow generating device and fixed flow generating method WO2006109741A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007512982A JP5176103B2 (en) 2005-04-08 2006-04-07 Mixed flow generator and mixed flow generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005111760 2005-04-08
JP2005-111760 2005-04-08

Publications (1)

Publication Number Publication Date
WO2006109741A1 true WO2006109741A1 (en) 2006-10-19

Family

ID=37087014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307487 WO2006109741A1 (en) 2005-04-08 2006-04-07 Mixed flow generating device and fixed flow generating method

Country Status (2)

Country Link
JP (1) JP5176103B2 (en)
WO (1) WO2006109741A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021465A1 (en) * 2014-08-04 2016-02-11 国立大学法人信州大学 Fluid flow vessel and photochemical reactor
JP2019063791A (en) * 2017-09-28 2019-04-25 佐竹化学機械工業株式会社 Dispersing machine
US11808370B2 (en) 2019-07-15 2023-11-07 Agilent Technologies, Inc. Mixing fluid by combined axial motion and rotation of mixing body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451131A (en) * 1987-08-21 1989-02-27 Fuji Denki Seisakusho Kk Method and apparatus for stirring and mixing fluids
JPH03181324A (en) * 1989-12-08 1991-08-07 Bando Chem Ind Ltd Continuous mixing agitation device
JPH06114254A (en) * 1992-09-30 1994-04-26 Asada Tekko Kk Dispersing mixer
JPH06226178A (en) * 1993-04-06 1994-08-16 Kenwood Corp Bonding agent dispenser
JP2004121963A (en) * 2002-10-01 2004-04-22 Sharp Corp Agitation apparatus and agitating member used therein
JP3593578B1 (en) * 2003-10-30 2004-11-24 株式会社福島製作所 Fuel conditioner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2625617A1 (en) * 1975-06-09 1976-12-30 Massachusetts Inst Technology MIXING DEVICE FOR MIXING AT LEAST TWO MEDIA COMPONENTS
JPS5762630U (en) * 1980-09-30 1982-04-14
JPS62221427A (en) * 1986-03-24 1987-09-29 Seiko Instr & Electronics Ltd Liquid flowing and stirring device
CH674317A5 (en) * 1988-01-29 1990-05-31 Applied Biosystems
JPH01199637A (en) * 1988-02-04 1989-08-11 Nordson Kk Method and device for rotating agitation blade in short pipe
JPH07190906A (en) * 1993-12-27 1995-07-28 Hitachi Ltd Stirrer/mixer
JP3676412B2 (en) * 1995-01-25 2005-07-27 株式会社Neomax Continuous mixing stirrer
JP2001009254A (en) * 1999-06-29 2001-01-16 Shimadzu Corp Mixer
JP3345641B2 (en) * 2000-03-10 2002-11-18 学校法人立命館 Micro analysis chip and method for manufacturing the same
US7098360B2 (en) * 2002-07-16 2006-08-29 Kreido Laboratories Processes employing multiple successive chemical reaction process steps and apparatus therefore

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451131A (en) * 1987-08-21 1989-02-27 Fuji Denki Seisakusho Kk Method and apparatus for stirring and mixing fluids
JPH03181324A (en) * 1989-12-08 1991-08-07 Bando Chem Ind Ltd Continuous mixing agitation device
JPH06114254A (en) * 1992-09-30 1994-04-26 Asada Tekko Kk Dispersing mixer
JPH06226178A (en) * 1993-04-06 1994-08-16 Kenwood Corp Bonding agent dispenser
JP2004121963A (en) * 2002-10-01 2004-04-22 Sharp Corp Agitation apparatus and agitating member used therein
JP3593578B1 (en) * 2003-10-30 2004-11-24 株式会社福島製作所 Fuel conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021465A1 (en) * 2014-08-04 2016-02-11 国立大学法人信州大学 Fluid flow vessel and photochemical reactor
CN106470757A (en) * 2014-08-04 2017-03-01 国立大学法人信州大学 Fluid circulation device and photochemical reactor
JPWO2016021465A1 (en) * 2014-08-04 2017-04-27 国立大学法人信州大学 Fluid distributor and photochemical reactor
JP2019063791A (en) * 2017-09-28 2019-04-25 佐竹化学機械工業株式会社 Dispersing machine
JP7166119B2 (en) 2017-09-28 2022-11-07 佐竹マルチミクス株式会社 Disperser
US11808370B2 (en) 2019-07-15 2023-11-07 Agilent Technologies, Inc. Mixing fluid by combined axial motion and rotation of mixing body

Also Published As

Publication number Publication date
JP5176103B2 (en) 2013-04-03
JPWO2006109741A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
Campbell et al. Microfluidic mixers: from microfabricated to self-assembling devices
JP4252993B2 (en) Mixer and reactor
CN103328092B (en) Vibration fluid micro-reactor
EP2555861B1 (en) Improved tubular apparatus and process
JP5470989B2 (en) Reaction test method
EP2814773B1 (en) Centrifugal microfluidic mixing apparatus and method
EP2920117B1 (en) Method for treating a fluid
WO2006109741A1 (en) Mixed flow generating device and fixed flow generating method
WO2006088120A1 (en) Flow adjusting device, micro-reactor and use thereof
WO2018100553A1 (en) Apparatus and method for producing and dispersing nano-sized structures
KR20030059123A (en) Device for mixing a flowable or pourable medium especially a highly viscous medium
JP2004136284A (en) Device for mixing fluid
JP2007098226A (en) Fluid device
JPH04338228A (en) Method and device for subdividing, dispersing, humidifying and mixing nonmagnetic multiphase mixture that is transportable by pump
US7396515B2 (en) Reactor for the treatment of a sample medium
US11434882B2 (en) Device and method for circulating liquids
RU2653021C1 (en) Method for centrifugal whirling of raw material and centrifugal whirling apparatus
JP2020535013A (en) Improved mixer for flow system
JP2005054023A (en) Method for producing polymer particle
KR100769306B1 (en) Quasi-active micromixer with micro-structured rotors in microchannel
Waldschik et al. Fabrication of internally driven micro centrifugal force pumps based on synchronous micro motors
NL2017029B1 (en) Spinning disc reactor
Chen et al. Platelet concentrates preparation using a rotating membrane with Taylor vortices and axial flow
CN116116470A (en) Microfluidic chip box
KR101864490B1 (en) Nano-bubble generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512982

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731434

Country of ref document: EP

Kind code of ref document: A1