WO2006109403A1 - Machine with built-in movement guiding device, actuator, and attenuating module for machine with built-in movement guiding device - Google Patents

Machine with built-in movement guiding device, actuator, and attenuating module for machine with built-in movement guiding device Download PDF

Info

Publication number
WO2006109403A1
WO2006109403A1 PCT/JP2006/305217 JP2006305217W WO2006109403A1 WO 2006109403 A1 WO2006109403 A1 WO 2006109403A1 JP 2006305217 W JP2006305217 W JP 2006305217W WO 2006109403 A1 WO2006109403 A1 WO 2006109403A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
motion guide
frame
guide device
rolling element
Prior art date
Application number
PCT/JP2006/305217
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekazu Michioka
Hiroshi Niwa
Yoshio Taki
Original Assignee
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co., Ltd. filed Critical Thk Co., Ltd.
Priority to JP2007512425A priority Critical patent/JPWO2006109403A1/en
Publication of WO2006109403A1 publication Critical patent/WO2006109403A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly

Definitions

  • the present invention relates to a motion guide device-embedded machine in which a motion guide device that performs a guide function by rolling motion of a rolling element is incorporated in a guide portion via a rolling element of balls and rollers.
  • Motion guide devices that guide moving objects that perform linear or curved motions are used in various fields such as robots that carry parts and assemble, semiconductor 'liquid crystal manufacturing devices, and machine tools. ing.
  • a rolling motion guide device performs a guiding function by rolling motion of a rolling element via a ball or roller rolling element at a guide portion.
  • FIG. 1 (A) shows a perspective view of the rail
  • Fig. 1 (B) shows a rolling element rolling portion of the rail in which the fretting corrosion phenomenon has occurred.
  • the darker areas in Fig. 1 (B) are areas where wear has occurred.
  • FIG. 2 is a graph showing the relationship between the longitudinal position of the rolling element rolling part and the amount of wear in the depth direction of the rolling element rolling part of FIG. 1 (B). From Fig. 1 and Fig. 2, it can be seen that there is a deep dent due to wear in the rolling element rolling groove. Wear occurs at a constant rolling element pitch.
  • Block 1 which should not move normally, vibrates at an amplitude of 10 m or less and at a high frequency.
  • Block 1 which should not move normally, vibrates at an amplitude of 10 m or less and at a high frequency.
  • the rail when the rail is reciprocated, the block vibrates at high frequency.
  • the amplitude of the vibration increased, and it was found that high-frequency vibration with a large amplitude causes fretting collision phenomenon.
  • the invention according to claim 1 includes a raceway member (12) that extends linearly or in a curved line and has a rolling element rolling part (12a) formed along a longitudinal direction, and the rolling element rolling.
  • a rolling member rolling portion (29) facing the portion (12a) is formed, and the moving member (10) is slidably assembled along the race member (12), the race member (12), and A motion guide device (9) having a plurality of rolling elements (28) interposed between the rolling elements (12a, 29) of the moving member (10) so as to allow rolling motion; and the motion guide A frame (8) to which either one of the track member (12) or the moving member (10) of the device (9) is fixed, attached to the frame (8), or at least of the frame (8)
  • a motion comprising: a damping module (13, 17, 20, 24) that forms a part and damps free vibration of the frame (8)
  • the inner device built machine for solving the above problems.
  • the invention according to claim 2 is the motion guide device built-in machine according to claim 1, wherein the damping module (13) includes a metal structure (14) having a hollow portion (14a), A vibration absorber (15) made of a ceramic material filled in the hollow portion (14a) is provided.
  • the invention according to claim 3 is the motion guide device-embedded machine according to claim 1, wherein the damping module (17) includes a metal shaft-like structure (18) and the structure ( And a vibration absorber (19) made of a ceramic material wound around the periphery of 18).
  • the invention according to claim 4 includes a raceway member (12) extending linearly or curvedly and having a rolling element rolling part (12a) formed along a longitudinal direction, and the rolling element rolling part.
  • a rolling member rolling part (29) opposite to (12a) is formed, and the moving member (10) is slidably assembled along the track member (12), the track member (12), and the moving A motion guide device (9) having a plurality of rolling elements (28) interposed between the rolling element rolling portions (12a, 29) of the member (10) so as to allow rolling motion; and the motion guide device (9 ) Of the track member (12) or the moving member (10) is fixed, a base (36) having a hollow portion (36c), and the track member (12) with respect to the base (36).
  • the driving member (40) for moving either the moving member (10) and the hollow portion (36c) of the base (36), and the free vibration of the base (36) is filled.
  • an actuator characterized by comprising a vibration absorber (37) for damping motion.
  • the invention described in claim 5 is the actuator according to claim 4, wherein the base (36) is made of metal, and the vibration absorber (37) is made of a ceramic material. .
  • the invention according to claim 6 includes a raceway member (12) extending linearly or curvedly and having a rolling element rolling part (12a) formed along a longitudinal direction, and the rolling element rolling part.
  • a rolling member rolling part (29) opposite to (12a) is formed, and the moving member (10) is slidably assembled along the track member (12), the track member (12), and the moving A motion guide device (9) having a plurality of rolling elements (28) interposed between the rolling element rolling portions (12a, 29) of the member (10) so as to allow rolling motion; and the motion guide device (9 ) Of the track member (12) or the frame (8) to which one of the moving members (10) is fixed, and a damping module (13, 17, 20, 24) attached to the machine incorporating the motion guide device The damping module (13, 17, 20, 24) is attached to the frame (8) to reduce the free vibration of the frame (8).
  • the motion guide device built machinery attenuation module characterized in that to, for solving the above problems. As described in claim 6, the attenuation module may be traded alone
  • vibration of a high frequency such as a machine frame can be effectively damped by the damping module.
  • the vibration of the high frequency such as the base of the machine is performed.
  • FIG. 1 Diagram showing rail wear (Fig. 1 (A) is a perspective view of the rail, and Fig. 1 (B) is a photograph of the rolling element rolling part of the rail).
  • FIG. 2 is a graph showing the relationship between the longitudinal position of the rolling element rolling part and the amount of wear in the depth direction.
  • FIG. 3 is a schematic diagram showing a load durability tester.
  • FIG. 5 is a schematic view of a machine incorporating a motion guide device according to an embodiment of the present invention.
  • FIG. 6 is a perspective view of the attenuation module.
  • FIG. 7 is a perspective view showing another example of the attenuation module.
  • FIG. 8 is a perspective view showing another example of the attenuation module.
  • FIG. 9 is a perspective view showing another example of the attenuation module.
  • FIG. 10 is a perspective view showing a motion guide device incorporated in a machine.
  • FIG. 11 is a sectional view along the rail of the motion guide device.
  • FIG. 12 is a perspective view showing an actuator according to an embodiment of the present invention.
  • FIG. 13 is a sectional view showing an actuator according to an embodiment of the present invention.
  • FIG. 5 shows a schematic diagram of a machine incorporating a motion guide device.
  • the motion guide device 9 is supported on the frame 8 of the machine incorporating the motion guide device.
  • the frame 8 has a structure in which a frame 8a is formed of, for example, a shape steel or an aluminum extruded material, and a surface plate 8b is mounted on the upper surface of the frame 8a.
  • a motion guide device 9 is attached to the surface plate 8b.
  • a table 11 is attached to the upper surface of the block 10 of the motion guide device 9, and a moving object such as a tool is attached to the upper surface of the table 11.
  • the motion guide device 9 guides the linear motion of the moving object.
  • the moving object is driven by, for example, a linear motor or a ball screw and reciprocates.
  • Applications of the motion guide device built-in machine shown in Fig. 5 include semiconductor bonder manufacturing equipment such as wire bonders and dicers, machine tools, and robots that carry and assemble things (for example, each axis of the robot, Component mounting machines that attach components to circuit boards, ski 'snowboard tune-up machines, and robots that transport robots).
  • the semiconductor 'liquid crystal manufacturing apparatus' has improved the performance of the manufactured semiconductor' liquid crystal product, so that it is required to move the tool with high accuracy and high speed.
  • the frame 8 of the semiconductor / liquid crystal manufacturing apparatus has lower rigidity than the frame of a machine tool that is often made by welding metal members. For this reason, when the moving object is moved at a high acceleration, the frame vibrates freely due to the inertia of the moving object.
  • the free vibration of the frame 8 causes a fretting corrosion phenomenon in the motion guide device 9 as described above. That is, the free vibration of the frame 8 causes the rail 12 to vibrate at a relatively large amplitude with respect to the block 10, and the high-frequency vibration of the rail 12 causes a fretting corrosion phenomenon.
  • a damping module 13 is attached to the frame 8.
  • the damping module 13 can be attached in various forms such as braces, beams, and struts to the frame 8 that responds to various and various vibrations that occur depending on the machine. .
  • the damping module 13 may also form part of the frame 8 instead of the post. Since the fretting corrosion phenomenon is caused by the rail 12 vibrating in the moving direction of the block 10, it is effective to attenuate the free vibration of the frame 8 in the moving direction of the block 10.
  • the free vibration of the frame 8 has a high frequency and a small amplitude.
  • the frequency is, for example, 40 to 70 Hz, and the amplitude is, for example, 10 ⁇ m to 40 ⁇ m.
  • the reciprocating motion of a microstroke that generates a fretting corrosion which has been conventionally considered, has a frequency of 3 to 5 Hz and an amplitude of about 2 to 3 mm.
  • the attenuation module 13 of the present embodiment is devised so as to effectively attenuate a minute amplitude at a high frequency.
  • FIG. 6 shows a perspective view of the attenuation module 13.
  • the damping module 13 includes a metal structure 14 having a hollow portion 14a and a vibration absorber 15 made of a ceramic material filled in the hollow portion 14a. There is no gap between the structure 14 and the vibration absorber 15. The vibration absorber 15 is in close contact with the structure 14.
  • the structure 14 shown in FIG. 6 is made of a metal such as iron or aluminum, and is formed in a hollow shaft shape.
  • the ceramic material is obtained by heat-curing a non-metallic inorganic material, and includes cement.
  • the vibration absorber 15 may be integrally formed by press-fitting a cylindrical shape into the hollow portion 14a of the structure 14, or may be filled in the hollow portion 14a in a granular or fluid state,
  • the hollow portion 14a may be formed into a shape that matches the hollow portion 14a.
  • a hydraulic composition (trade name: Zima, manufactured by Sumitomo Cement Co., Ltd.) mainly composed of hydraulic powder and non-hydraulic powder is pressure-filled into the hollow portion 14a of the structure 14.
  • the vibration absorber 15 made of a ceramic material is integrated with the structure 14.
  • the hydraulic powder means a powder that is hardened by water, such as calcium silicate compound powder, calcium aluminate compound powder, calcium fluoroaluminate compound powder, Calcium sulfa aluminate compound powder, calcium aluminoferrite compound powder, calcium phosphate compound powder, semi-water or anhydrous gypsum powder, self-hardening quick lime powder, two or more kinds of these powders
  • a mixed powder can be exemplified, and a representative example thereof is a cement such as Portland cement.
  • the non-hydraulic powder means a powder that does not harden even when in contact with water. However, it also includes powders that elute in an alkaline or acidic state or in a high-pressure steam atmosphere and react with other already-eluting components to form products. By adding such a non-hydraulic powder, it becomes possible to increase the filling rate at the time of molding of the molded body and to decrease the porosity of the molded body to be obtained, thereby improving the dimensional stability of the molded body. be able to.
  • Representative examples of non-hydraulic powders include calcium hydroxide powder, dihydrate gypsum powder, calcium carbonate powder, slag powder, fly ash powder, silica stone powder, clay powder, silica fume powder, and the like. .
  • the blending amount of the non-hydraulic powder is 10 to 50% by mass, preferably 25 to 35% by mass, based on the composition ratio of the mixed powder composed of the hydraulic powder and the non-hydraulic powder. If the blending amount is less than 10% by mass, the filling rate will be low, and if it exceeds 50% by mass, the strength and filling rate will be low. For this reason, it is desirable to adjust the blending amount of the non-hydraulic powder so that the filling rate does not become too low.
  • a hydraulic powder such as Portland cement, a non-hydraulic powder such as silica fume, and other additives. Molded into a mixed powder consisting of a product containing 30 parts by mass or less of water or less than the theoretical amount of hydration with respect to 100 parts by mass of a mixed powder of hydraulic powder and non-hydraulic powder. Adjust the mixture. For mixing, it is preferable to use a mixing method or a mixing machine that can apply a strong shearing force to the molding mixture.
  • the molding mixture thus obtained is pressure-filled into the hollow portion 14a of the structure 14, and when the filling is completed, it is cured for curing. Curing is performed at room temperature or at high temperature and pressure, and the curing time varies depending on the curing temperature.
  • the hollow portion 14a of the structure 14 can be filled with the vibration absorber having a ceramic material force without any gap.
  • the ceramic material filled in the hollow portion 14a can freely adjust the porosity and hardness by appropriately changing the blending amount of the non-hydraulic powder and the applied pressure at the time of filling.
  • a damping performance corresponding to the vibration of the frame 8 can be imparted to the damping module 13.
  • the structure 14 of the damping module 13 includes a vibration absorber with high damping Since 15 is in close contact, the vibration absorber 15 converts the vibration energy of the damping module 13 into heat energy, and exhibits a vibration damping effect. As a result, the vibration of the frame 8 is damped by the damping module 13.
  • the free vibration of the frame 8 becomes a wide variety of vibrations that vary depending on the structure of the frame 8 itself, the mass of the moving body, the acceleration, and the like. If modularity of the damping member causes the frame 8 to vibrate in a certain vibration mode, it may be effective for damping. If not, install a further damping module 13. Such adjustment is possible.
  • FIG. 7 shows another example of the attenuation module.
  • a vibration absorber 19 is wound around an axial structure 18.
  • the vibration absorber 19 is made of a hydraulic composition (trade name: Zima, manufactured by Sumitomo Cement) mainly composed of hydraulic powder and non-hydraulic powder around the structure 18. It is integrated with the structure 18 by winding and hydrothermal synthesis. If the structure 18 and the vibration absorber 19 are in close contact with each other, the vibration absorber 19 may be wound around the structure 18 as shown in FIG.
  • FIG. 8 shows still another example of the attenuation module.
  • the damping module 20 in this example is formed in a block shape, and is formed by connecting several sections 23 at the intersection of the frame 8 frame.
  • the structure 22 is filled with a vibration absorber 21, and the vibration absorber 21 is in close contact with the structural steel 23.
  • FIG. 9 shows yet another example of an attenuation module.
  • the damping module 24 in this example also serves as a structural material for frame 8.
  • the aluminum extruded material as the structure 25 is provided with a hollow portion 25a, and the vibration absorber is filled in the hollow portion 25a.
  • FIG. 10 shows a motion guide device 9 incorporated in a machine.
  • the motion guide device 9 includes a rail 12 as a track member extending linearly, and a block 10 as a moving member that is movably assembled to the rail 12 via a number of rolling elements. When the moving object moves in a curved line, the rail extends in a curved line.
  • the block 10 includes a central portion 10a that faces the upper surface of the rail 12, and side wall portions 10b that hang downward from the left and right sides of the central portion 10a and face the left and right side surfaces of the rail 12. .
  • a plurality of rolling element rolling portions 29 (see FIG. 11) facing the rolling element rolling portions 12a of the rail 12 are formed in the central portion 10a and the side wall portion 10b of the block 10. Further, the block 10 is formed with a no-load return passage 30 extending in parallel with the rolling element rolling part 29.
  • the block 10 has side lids 31 at both ends in the traveling direction, and a U-shaped direction change path 32 that connects the rolling element rolling part 29 and the no-load return path 30 is formed in the side cover 31.
  • a circuit-like rolling element circulation path is formed by the linear rolling element rolling part 29, the no-load return path 30 parallel to the rolling element rolling part 29, and the U-shaped direction changing path 32.
  • a plurality of balls 28 are arranged in the rolling element circulation path.
  • a spacer 33 may be interposed between the balls.
  • the ball 28 rolled to one end of the rolling element rolling part 29 of the block 10 changes direction via a U-shaped direction change path 32 provided in the side lid 31. After that, it enters an unloaded return passage 30 extending in parallel with the rolling element rolling part 29.
  • the ball 28 that has passed through the no-load return passage 30 passes through the direction change passage 32 of the opposite side lid 31 and then enters the rolling element rolling section 29 again.
  • FIG. 12 and FIG. 13 show an actuator according to an embodiment of the present invention. 12 shows a perspective view of the actuator, and FIG. 13 shows a cross-sectional view.
  • This actuator uses a linear motor 40 as a drive source and moves the table 35 at a high acceleration.
  • the actuator is a compact assembly of a guide mechanism and a drive mechanism. It is used on the top of the frame 8 shown in Fig. 5 and used as each axis of the robot.
  • the base 36 is made of an extruded aluminum material, and has a bottom portion 36a and a side wall 36b, and is elongated. A hollow portion 36 c is formed inside the base 36. The hollow portion 36c is filled with the vibration absorber 37.
  • the rail 12 of the motion guide device 9 is attached to the upper surface of the side wall 36b of the base 36. A block 10 is slidably mounted on the rail 12. Since the structure of the motion guide device 9 is the same as that shown in FIG. 10, the same reference numerals are given and the description thereof is omitted.
  • the table 35 is driven by a linear motor 40.
  • the linear motor 40 has a stator 38 and a secondary conductor 39.
  • the stator 38 is a stator core equipped with a two-phase or three-phase primary winding, and generates a moving magnetic field when excited.
  • Secondary conductor 39 is a rotary motor It corresponds to a rotor, and sheet-like conductors such as steel plates and copper plates are used.
  • the base 36 vibrates freely due to the inertia of the moving object. Since the vibration absorber 37 is filled in the hollow portion of the base 36, the vibration absorber 37 converts the vibration energy into heat energy to attenuate the vibration of the base 36. Therefore, it is possible to prevent the fretting collision phenomenon from occurring in the motion guide device 9 even if the base 36 vibrates freely.
  • the present invention is not limited to the above-described embodiment, and can be embodied in other embodiments without departing from the scope of the present invention.
  • the use of motion guidance device built-in machines is not limited to semiconductors and liquid crystal display devices.
  • a ball spline mechanism can be used for the motion guide device, and a roller can be used for the rolling element instead of the ball.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Machine Tool Units (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

A machine with a built-in movement guiding device capable of relieving fretting corrosion phenomenon when a moving object is moved at a high acceleration. An attenuating module (13) for attenuating the free vibration of a frame (8) is installed on the frame (8) to which either of the rails (12) and the blocks (10) of the movement guiding device (9) are fixed. A high-frequency vibration generating the fretting corrosion phenomenon is caused by the free vibration of the frame (8) of the machine on which the movement guiding device (9) is installed. Thus, if the free vibration of the frame (8) is attenuated, the high-frequency vibration can be attenuated and, accordingly, the fretting corrosion phenomenon can be relieved.

Description

明 細 書  Specification
運動案内装置組込み機械、ァクチユエータ、及び運動案内装置組込み 機械用減衰モジュール  Motion guide device built-in machine, actuator, and motion guide device built-in machine damping module
技術分野  Technical field
[0001] 本件発明は、案内部分に玉やころの転動体を介し、転動体の転がり運動によって 案内機能を果たさせる運動案内装置が組み込まれる運動案内装置組込み機械に関 する。  [0001] The present invention relates to a motion guide device-embedded machine in which a motion guide device that performs a guide function by rolling motion of a rolling element is incorporated in a guide portion via a rolling element of balls and rollers.
背景技術  Background art
[0002] 直線又は曲線運動を行なう移動物体を案内する運動案内装置は、部品を運んだり 、組み立てたりの作業をするロボットや、半導体'液晶製造装置、工作機械などの様 々な分野で利用されている。転がり型の運動案内装置は、案内部分に玉やころの転 動体を介し、転動体の転がり運動によって案内機能を果たす。  [0002] Motion guide devices that guide moving objects that perform linear or curved motions are used in various fields such as robots that carry parts and assemble, semiconductor 'liquid crystal manufacturing devices, and machine tools. ing. A rolling motion guide device performs a guiding function by rolling motion of a rolling element via a ball or roller rolling element at a guide portion.
[0003] 移動物体を移動させる駆動源としては、ボールねじ機構やリニアモータが多用され る。近年、リニアモータの出現とともに移動物体を高加速度で移動させることが多くな つてきた。高加速度の要求は、リニアモータのみならずボールねじ機構にも及んでい る。  [0003] As a drive source for moving a moving object, a ball screw mechanism and a linear motor are frequently used. In recent years, with the advent of linear motors, moving objects have been frequently moved with high acceleration. The demand for high acceleration extends not only to linear motors but also to ball screw mechanisms.
[0004] 移動物体を高加速度で移動させると、今まで問題にならないようなことが起こってき た。それは、フレツチングコロージヨンと呼ばれる現象で、運動案内装置のレールに転 動体ピッチで摩耗が発生するという問題である。  [0004] When a moving object is moved at a high acceleration, things that have not been a problem have occurred. It is a phenomenon called fretting corrosion, and it is a problem that the rail of the motion guide device wears at the rolling element pitch.
[0005] 図 1 (A)はレールの斜視図を示し、図 1 (B)はフレツチングコロージヨン現象が発生 したレールの転動体転走部を示す。図 1 (B)中の色の濃い部分は摩耗が発生してい る領域である。図 2は、図 1 (B)の転動体転走部の長手方向の断面をとり、転動体転 走部の長手方向の位置と深さ方向の摩耗量との関係を示したグラフである。図 1及び 図 2から、転動体転走溝に摩耗による深い凹みが発生しているのがわかる。摩耗は 一定の転動体のピッチで発生する。  [0005] Fig. 1 (A) shows a perspective view of the rail, and Fig. 1 (B) shows a rolling element rolling portion of the rail in which the fretting corrosion phenomenon has occurred. The darker areas in Fig. 1 (B) are areas where wear has occurred. FIG. 2 is a graph showing the relationship between the longitudinal position of the rolling element rolling part and the amount of wear in the depth direction of the rolling element rolling part of FIG. 1 (B). From Fig. 1 and Fig. 2, it can be seen that there is a deep dent due to wear in the rolling element rolling groove. Wear occurs at a constant rolling element pitch.
[0006] 従来、フレツチングコロージヨンは、移動物体の微小ストロークの繰り返しにより、潤 滑油が途切れて油膜切れが発生し、転動体とレールとの相対すベりによって生じた 微粉が酸ィ匕し、摩耗を促進させることが原因であると考えられて 、た。 [0006] Conventionally, the fretting corrosion has been caused by the relative sliding between the rolling elements and the rails due to the interruption of the lubricating oil due to repeated fine strokes of the moving object and the oil film breaking. It was thought that this was caused by the fine powder acidifying and promoting wear.
[0007] しかし、移動物体を微小ストロークで往復運動させる場合のみならず、長 、ストロー クで往復運動させる場合にも、移動物体を高加速度で移動させると、同様にフレツチ ングコロージョン現象が発生するのがわ力つてきた。  [0007] However, not only when the moving object is reciprocated with a small stroke, but also when the moving object is reciprocated with a long stroke, if the moving object is moved at a high acceleration, a fretting corrosion phenomenon occurs similarly. Nogawa has been strong.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 発明者は、フレツチングコロージヨン現象が発生する原因を突き止めるために、図 3 に示される荷重耐久試験機にて、レール 3を高加速度で往復運動させてみた。この 試験機では、ブロック 1側が固定され、テーブル 2及びレール 3側が報復運動される。 ブロック 1には、皿ばね 4、ロードセル 5を介して上方から荷重が加えられる。このとき のレールの速度線図は図 4に示される。具体的には、まずレールを略一定の加速度 で加速し、速度が上がったら略一定の速度にした後、減速して止める。この速度線図 でレールを往復運動させる。 [0008] In order to find out the cause of the fretting corrosion phenomenon, the inventor tried to reciprocate the rail 3 at a high acceleration with the load endurance tester shown in FIG. In this testing machine, the block 1 side is fixed and the table 2 and rail 3 sides are retaliated. A load is applied to the block 1 from above through the disc spring 4 and the load cell 5. Figure 4 shows the speed diagram of the rail at this time. Specifically, the rail is first accelerated at a substantially constant acceleration. When the speed increases, the rail is accelerated to a substantially constant speed, and then decelerated and stopped. The rail is reciprocated with this velocity diagram.
[0009] 発明者は、レールを往復運動させている最中に、ブロックの振動を非接触式の変位 計 6で測定してみた。すると、本来ならば動かないはずのブロック 1が、図 4に示される ように、 10 m以下の振幅で且つ高周波で振動していることを発見した。つまり、レ ールを往復運動させると、ブロックが高周波振動することになる。レールを高加速度 で移動させると振動の振幅も大きくなり、振幅の大きな高周波振動がフレツチングコロ 一ジョン現象を発生させることがわ力つた。  The inventor tried to measure the vibration of the block with a non-contact displacement meter 6 while reciprocating the rail. Then, as shown in Fig. 4, we discovered that Block 1, which should not move normally, vibrates at an amplitude of 10 m or less and at a high frequency. In other words, when the rail is reciprocated, the block vibrates at high frequency. When the rail was moved at a high acceleration, the amplitude of the vibration increased, and it was found that high-frequency vibration with a large amplitude causes fretting collision phenomenon.
課題を解決するための手段  Means for solving the problem
[0010] 以下、本発明について説明する。なお、本発明の理解を容易にするために添付図 面の参照番号を括弧書きにて付記するが、それにより本発明が図示の形態に限定さ れるものでない。 [0010] Hereinafter, the present invention will be described. In order to facilitate understanding of the present invention, reference numerals on the attached drawings are appended in parentheses, but the present invention is not limited to the illustrated form.
[0011] 発明者は、フレツチングコロージヨン現象を発生させる高周波振動の発生原因を研 究した。そして、今まで運動案内装置自体が注目されていたが、フレツチングコロー ジョン現象を発生させる高周波振動は、運動案内装置が取り付けられる機械のフレ ームの自由振動が原因であり、このフレームの自由振動を減衰させれば、高周波振 動を減衰でき、ひ ヽてはフレツチングコロージヨン現象を緩和できることを知見した。 [0012] すなわち請求項 1に記載の発明は、直線状又は曲線状に伸び、長手方向に沿って 転動体転走部(12a)が形成される軌道部材(12)と、前記転動体転走部(12a)に対 向する転動体転走部(29)が形成されると共に、前記軌道部材(12)に沿ってスライド 可能に組み付けられる移動部材(10)と、前記軌道部材(12)及び前記移動部材(1 0)の転動体転走部( 12a, 29)との間に転がり運動可能に介在される複数の転動体( 28)とを有する運動案内装置 (9)と、前記運動案内装置 (9)の前記軌道部材 (12)又 は前記移動部材(10)のいずれか一方が固定されるフレーム(8)と、前記フレーム(8 )に取り付けられ、又は前記フレーム(8)の少なくとも一部をなし、前記フレーム(8)の 自由振動を減衰させる減衰モジュール(13, 17, 20, 24)と、を備えることを特徴とす る運動案内装置組込み機械により、上述した課題を解決する。 [0011] The inventor studied the cause of high-frequency vibration that causes the fretting corrosion phenomenon. Until now, the motion guide device itself has attracted attention, but the high-frequency vibration that causes the fretting corrosion phenomenon is caused by the free vibration of the frame of the machine to which the motion guide device is attached. It has been found that if the vibration is attenuated, the high-frequency vibration can be attenuated and the fretting corrosion phenomenon can be mitigated. [0012] That is, the invention according to claim 1 includes a raceway member (12) that extends linearly or in a curved line and has a rolling element rolling part (12a) formed along a longitudinal direction, and the rolling element rolling. A rolling member rolling portion (29) facing the portion (12a) is formed, and the moving member (10) is slidably assembled along the race member (12), the race member (12), and A motion guide device (9) having a plurality of rolling elements (28) interposed between the rolling elements (12a, 29) of the moving member (10) so as to allow rolling motion; and the motion guide A frame (8) to which either one of the track member (12) or the moving member (10) of the device (9) is fixed, attached to the frame (8), or at least of the frame (8) A motion comprising: a damping module (13, 17, 20, 24) that forms a part and damps free vibration of the frame (8) The inner device built machine, for solving the above problems.
[0013] 請求項 2に記載の発明は、請求項 1に記載の運動案内装置組込み機械において、 前記減衰モジュール(13)は、中空部(14a)を有する金属製の構造体(14)と、前記 中空部(14a)に充填されるセラミックス材料製の振動吸収体(15)とを備えることを特 徴とする。  [0013] The invention according to claim 2 is the motion guide device built-in machine according to claim 1, wherein the damping module (13) includes a metal structure (14) having a hollow portion (14a), A vibration absorber (15) made of a ceramic material filled in the hollow portion (14a) is provided.
[0014] 請求項 3に記載の発明は、請求項 1に記載の運動案内装置組込み機械において、 前記減衰モジュール(17)は、金属製の軸状の構造体(18)と、この構造体(18)の周 囲に巻かれるセラミックス材料製の振動吸収体(19)とを備えることを特徴とする。  [0014] The invention according to claim 3 is the motion guide device-embedded machine according to claim 1, wherein the damping module (17) includes a metal shaft-like structure (18) and the structure ( And a vibration absorber (19) made of a ceramic material wound around the periphery of 18).
[0015] 請求項 4に記載の発明は、直線状又は曲線状に伸び、長手方向に沿って転動体 転走部(12a)が形成される軌道部材(12)と、前記転動体転走部(12a)に対向する 転動体転走部(29)が形成されると共に、前記軌道部材(12)に沿ってスライド可能 に組み付けられる移動部材(10)と、前記軌道部材(12)及び前記移動部材(10)の 転動体転走部(12a, 29)との間に転がり運動可能に介在される複数の転動体(28) とを有する運動案内装置 (9)と、前記運動案内装置 (9)の前記軌道部材 (12)又は 前記移動部材(10)の 、ずれか一方が固定され、中空部(36c)を有するベース(36) と、前記ベース(36)に対して前記軌道部材(12)又は前記移動部材(10)のいずれ か一方を移動させる駆動源 (40)と、前記ベース(36)の前記中空部(36c)に充填さ れ、前記ベース(36)の自由振動を減衰させる振動吸収体(37)と、を備えることを特 徴とするァクチユエータにより、上述した課題を解決する。 [0016] 請求項 5に記載の発明は、請求項 4に記載のァクチユエータにおいて、前記ベース (36)は金属製であり、前記振動吸収体 (37)はセラミックス材料製であることを特徴と する。 [0015] The invention according to claim 4 includes a raceway member (12) extending linearly or curvedly and having a rolling element rolling part (12a) formed along a longitudinal direction, and the rolling element rolling part. A rolling member rolling part (29) opposite to (12a) is formed, and the moving member (10) is slidably assembled along the track member (12), the track member (12), and the moving A motion guide device (9) having a plurality of rolling elements (28) interposed between the rolling element rolling portions (12a, 29) of the member (10) so as to allow rolling motion; and the motion guide device (9 ) Of the track member (12) or the moving member (10) is fixed, a base (36) having a hollow portion (36c), and the track member (12) with respect to the base (36). ) Or the driving member (40) for moving either the moving member (10) and the hollow portion (36c) of the base (36), and the free vibration of the base (36) is filled. The above-described problem is solved by an actuator characterized by comprising a vibration absorber (37) for damping motion. [0016] The invention described in claim 5 is the actuator according to claim 4, wherein the base (36) is made of metal, and the vibration absorber (37) is made of a ceramic material. .
[0017] 請求項 6に記載の発明は、直線状又は曲線状に伸び、長手方向に沿って転動体 転走部(12a)が形成される軌道部材(12)と、前記転動体転走部(12a)に対向する 転動体転走部(29)が形成されると共に、前記軌道部材(12)に沿ってスライド可能 に組み付けられる移動部材(10)と、前記軌道部材(12)及び前記移動部材(10)の 転動体転走部(12a, 29)との間に転がり運動可能に介在される複数の転動体(28) とを有する運動案内装置 (9)と、前記運動案内装置 (9)の前記軌道部材 (12)又は 前記移動部材(10)の ヽずれか一方が固定されるフレーム(8)と、を備える運動案内 装置組込み機械に取り付けられる減衰モジュール(13, 17, 20, 24)であって、前記 減衰モジュール(13, 17, 20, 24)は、前記フレーム(8)に取り付けられて、前記フレ ーム(8)の自由振動を減衰させることを特徴とする運動案内装置組込み機械用減衰 モジュールにより、上述した課題を解決する。この請求項 6に記載のように、減衰モジ ユールは単体で取引されることもある。  [0017] The invention according to claim 6 includes a raceway member (12) extending linearly or curvedly and having a rolling element rolling part (12a) formed along a longitudinal direction, and the rolling element rolling part. A rolling member rolling part (29) opposite to (12a) is formed, and the moving member (10) is slidably assembled along the track member (12), the track member (12), and the moving A motion guide device (9) having a plurality of rolling elements (28) interposed between the rolling element rolling portions (12a, 29) of the member (10) so as to allow rolling motion; and the motion guide device (9 ) Of the track member (12) or the frame (8) to which one of the moving members (10) is fixed, and a damping module (13, 17, 20, 24) attached to the machine incorporating the motion guide device The damping module (13, 17, 20, 24) is attached to the frame (8) to reduce the free vibration of the frame (8). The motion guide device built machinery attenuation module, characterized in that to, for solving the above problems. As described in claim 6, the attenuation module may be traded alone.
発明の効果  The invention's effect
[0018] 請求項 1に記載の発明によれば、減衰モジュールでフレームの自由振動を減衰で きるので、移動体を高加速度で移動させた場合に発生するフレツチングコロージヨン 現象を緩和することができる。  [0018] According to the invention of claim 1, since the free vibration of the frame can be damped by the damping module, the fretting corrosion phenomenon that occurs when the moving body is moved at high acceleration can be mitigated. it can.
[0019] 請求項 2又は 3に記載の発明によれば、機械のフレームのような高周波の振動数の 振動を、減衰モジュールにより効果的に減衰させることができる。 [0019] According to the invention of claim 2 or 3, vibration of a high frequency such as a machine frame can be effectively damped by the damping module.
[0020] 請求項 4に記載の発明によれば、振動吸収体でベースの自由振動を減衰できるの で、移動体を高加速度で移動させた場合に発生するフレツチングコロージヨン現象を 緩禾口することができる。 [0020] According to the invention of claim 4, since the free vibration of the base can be damped by the vibration absorber, the fretting corrosion phenomenon that occurs when the moving body is moved at a high acceleration can be achieved. can do.
[0021] 請求項 5に記載の発明によれば、機械のベースのような高周波の振動数の振動を [0021] According to the invention of claim 5, the vibration of the high frequency such as the base of the machine is performed.
、振動吸収体により効果的に減衰させることができる。 It can be effectively damped by the vibration absorber.
[0022] 請求項 6に記載の発明によれば、減衰モジュールでフレームの自由振動を減衰で きるので、移動体を高加速度で移動させた場合に発生するフレツチングコロージヨン 現象を緩和することができる。 [0022] According to the invention of claim 6, since the free vibration of the frame can be damped by the damping module, the fretting corrosion generated when the moving body is moved at a high acceleration. The phenomenon can be alleviated.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]レールの摩耗を示す図(図 1 (A)はレールの斜視図、図 1 (B)はレールの転動 体転走部の写真)。  [0023] [Fig. 1] Diagram showing rail wear (Fig. 1 (A) is a perspective view of the rail, and Fig. 1 (B) is a photograph of the rolling element rolling part of the rail).
[図 2]転動体転走部の長手方向の位置と深さ方向の摩耗量との関係を示したグラフ。  FIG. 2 is a graph showing the relationship between the longitudinal position of the rolling element rolling part and the amount of wear in the depth direction.
[図 3]荷重耐久試験機を示す模式図。  FIG. 3 is a schematic diagram showing a load durability tester.
[図 4]レールの速度線図。  [Figure 4] Rail speed diagram.
[図 5]本発明の一実施形態における運動案内装置組込み機械の模式図。  FIG. 5 is a schematic view of a machine incorporating a motion guide device according to an embodiment of the present invention.
[図 6]減衰モジュールの斜視図。  FIG. 6 is a perspective view of the attenuation module.
[図 7]減衰モジュールの他の例を示す斜視図。  FIG. 7 is a perspective view showing another example of the attenuation module.
[図 8]減衰モジュールの他の例を示す斜視図。  FIG. 8 is a perspective view showing another example of the attenuation module.
[図 9]減衰モジュールの他の例を示す斜視図。  FIG. 9 is a perspective view showing another example of the attenuation module.
[図 10]機械に組み込まれる運動案内装置を示す斜視図。  FIG. 10 is a perspective view showing a motion guide device incorporated in a machine.
[図 11]運動案内装置のレールに沿った断面図。  FIG. 11 is a sectional view along the rail of the motion guide device.
[図 12]本発明の一実施形態におけるァクチユエータを示す斜視図。  FIG. 12 is a perspective view showing an actuator according to an embodiment of the present invention.
[図 13]本発明の一実施形態におけるァクチユエータを示す断面図。  FIG. 13 is a sectional view showing an actuator according to an embodiment of the present invention.
符号の説明  Explanation of symbols
[0024] 8…フレーム [0024] 8 ... Frame
9…運動案内装置  9… Exercise guide device
10· · ·ブロック (移動部材)  10 · · · Block (moving member)
12· · ·レール (軌道部材)  12 ··· Rail (Race member)
12a…転動体転走部  12a ... rolling element rolling part
13. 17, 20, 24· · ·減衰モジュール  13. 17, 20, 24
14. 18, 22, 25· · ·構造体  14. 18, 22, 25
14a, 25a, 36c…中空部  14a, 25a, 36c ... hollow part
15. 19, 21, 37…振動吸収体  15. 19, 21, 37… Vibration absorber
29· · ·転動体転走部  29
36· · ·ベース 37· ··振動吸収体 36 · · · Base 37 ··· Vibration absorber
40…リニアモータ(駆動源)  40… Linear motor (drive source)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下添付図面に基づいて、本発明の一実施形態における運動案内装置組込み機 械について説明する。各図において同一の機械要素には同一の符号を附す。  [0025] Hereinafter, a machine incorporating a motion guide apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the drawings, the same machine elements are denoted by the same reference numerals.
[0026] 図 5は運動案内装置組込み機械の模式図を示す。運動案内装置組込み機械のフ レーム 8上に運動案内装置 9が支持される。フレーム 8は、例えば形鋼又はアルミ押 出し材で骨組み 8aが組まれ、骨組み 8aの上面に定盤 8bを載せた構造になって 、る 。定盤 8bには運動案内装置 9が取り付けられる。運動案内装置 9のブロック 10の上 面にはテーブル 11が取り付けられ、該テーブル 11の上面には工具等の移動物体が 取り付けられる。運動案内装置 9は、移動物体の直線運動を案内する。移動物体は、 例えばリニアモータやボールねじで駆動され、往復運動する。  FIG. 5 shows a schematic diagram of a machine incorporating a motion guide device. The motion guide device 9 is supported on the frame 8 of the machine incorporating the motion guide device. The frame 8 has a structure in which a frame 8a is formed of, for example, a shape steel or an aluminum extruded material, and a surface plate 8b is mounted on the upper surface of the frame 8a. A motion guide device 9 is attached to the surface plate 8b. A table 11 is attached to the upper surface of the block 10 of the motion guide device 9, and a moving object such as a tool is attached to the upper surface of the table 11. The motion guide device 9 guides the linear motion of the moving object. The moving object is driven by, for example, a linear motor or a ball screw and reciprocates.
[0027] 図 5に示される運動案内装置組込み機械の用途としては、ワイヤボンダ、ダイサ等 の半導体'液晶製造装置、工作機械、ものを運んだり、組み立てたりなどするロボット (例えばロボットの各軸、電気回路基板に部品を取り付ける部品実装機、スキー'スノ 一ボードチューンナップマシン、ロボットを搬送するロボット)等がある。その中で、半 導体'液晶製造装置は、製造される半導体'液晶製品の性能も向上しているので、ェ 具を高精度、高速度で移動させることが要求されている。他方、半導体 ·液晶製造装 置のフレーム 8は、金属製の部材を溶接して製造されることが多ぐ铸物でできている 工作機械のフレームに比べて、その剛性が低い。このため、移動物体を高加速度で 移動させると、移動物体の慣性によってフレームが自由振動する。  [0027] Applications of the motion guide device built-in machine shown in Fig. 5 include semiconductor bonder manufacturing equipment such as wire bonders and dicers, machine tools, and robots that carry and assemble things (for example, each axis of the robot, Component mounting machines that attach components to circuit boards, ski 'snowboard tune-up machines, and robots that transport robots). Among them, the semiconductor 'liquid crystal manufacturing apparatus' has improved the performance of the manufactured semiconductor' liquid crystal product, so that it is required to move the tool with high accuracy and high speed. On the other hand, the frame 8 of the semiconductor / liquid crystal manufacturing apparatus has lower rigidity than the frame of a machine tool that is often made by welding metal members. For this reason, when the moving object is moved at a high acceleration, the frame vibrates freely due to the inertia of the moving object.
[0028] フレーム 8の自由振動は、上記のように運動案内装置 9にフレツチングコロージヨン 現象を発生させる。すなわちフレーム 8の自由振動により、レール 12がブロック 10に 対して比較的大きな振幅で高周波振動し、このレール 12の高周波振動がフレツチン グコロージヨン現象を発生させる。  [0028] The free vibration of the frame 8 causes a fretting corrosion phenomenon in the motion guide device 9 as described above. That is, the free vibration of the frame 8 causes the rail 12 to vibrate at a relatively large amplitude with respect to the block 10, and the high-frequency vibration of the rail 12 causes a fretting corrosion phenomenon.
[0029] フレーム 8の自由振動を減衰させるために、フレーム 8には減衰モジュール 13が取 り付けられる。減衰モジュール 13は、機械に応じて発生する多種、多用の振動に対 応すべぐフレーム 8に筋交いや、はりや、支柱のように様々な形態で取り付けられる 。また減衰モジュール 13は、支柱やはりの替わりにフレーム 8の一部をなすこともある 。フレツチングコロージヨン現象は、レール 12がブロック 10の移動方向に振動するの が原因なので、ブロック 10の移動方向にフレーム 8が自由振動するのを減衰するの が効果的である。 In order to attenuate the free vibration of the frame 8, a damping module 13 is attached to the frame 8. The damping module 13 can be attached in various forms such as braces, beams, and struts to the frame 8 that responds to various and various vibrations that occur depending on the machine. . The damping module 13 may also form part of the frame 8 instead of the post. Since the fretting corrosion phenomenon is caused by the rail 12 vibrating in the moving direction of the block 10, it is effective to attenuate the free vibration of the frame 8 in the moving direction of the block 10.
[0030] フレーム 8の自由振動は、高周波で且つ微小振幅である。その振動数は例えば 40 〜70Hzで、振幅は例えば 10 μ m〜40 μ mである。他方、従来考えられていた、フ レツチングコロージヨンを発生させる微小ストロークの往復運動は、振動数が 3〜5Hz で、振幅が 2〜3mm程度であった。本実施形態の減衰モジュール 13は、高周波で 且つ微小振幅を効果的に減衰させるように工夫されて 、る。  [0030] The free vibration of the frame 8 has a high frequency and a small amplitude. The frequency is, for example, 40 to 70 Hz, and the amplitude is, for example, 10 μm to 40 μm. On the other hand, the reciprocating motion of a microstroke that generates a fretting corrosion, which has been conventionally considered, has a frequency of 3 to 5 Hz and an amplitude of about 2 to 3 mm. The attenuation module 13 of the present embodiment is devised so as to effectively attenuate a minute amplitude at a high frequency.
[0031] 図 6は減衰モジュール 13の斜視図を示す。減衰モジュール 13は、中空部 14aを有 する金属製の構造体 14と、中空部 14aに充填されるセラミックス材料製の振動吸収 体 15とを備える。構造体 14と振動吸収体 15との間には隙間はなぐ振動吸収体 15 は構造体 14に密着して 、る。  FIG. 6 shows a perspective view of the attenuation module 13. The damping module 13 includes a metal structure 14 having a hollow portion 14a and a vibration absorber 15 made of a ceramic material filled in the hollow portion 14a. There is no gap between the structure 14 and the vibration absorber 15. The vibration absorber 15 is in close contact with the structure 14.
[0032] 図 6に示される構造体 14は、鉄、アルミ等の金属製で、中空の軸状に形成される。  The structure 14 shown in FIG. 6 is made of a metal such as iron or aluminum, and is formed in a hollow shaft shape.
セラミクス材料は、非金属無機材料を熱カ卩ェして得られるものであり、セメントを含む 。振動吸収体 15は、円筒形状に形成されたものを構造体 14の中空部 14aに圧入し て一体ィ匕されてもよいし、粒状体又は流動体の状態で中空部 14a内に充填され、か 力る中空部 14a内で中空部 14aに合致した形状に成形されてもよい。  The ceramic material is obtained by heat-curing a non-metallic inorganic material, and includes cement. The vibration absorber 15 may be integrally formed by press-fitting a cylindrical shape into the hollow portion 14a of the structure 14, or may be filled in the hollow portion 14a in a granular or fluid state, The hollow portion 14a may be formed into a shape that matches the hollow portion 14a.
[0033] 本実施形態では、水硬性粉体及び非水硬性粉体を主成分とする水硬性組成物( 商品名:ジーマ、住友セメント製)を構造体 14の中空部 14aに加圧充填し、これを水 熱合成することで、セラミックス材料カゝらなる振動吸収体 15を構造体 14と一体ィ匕する 。ここで、水硬性粉体とは水により硬化する粉体を意味し、例えば珪酸カルシウム化 合物粉体、カルシウムアルミネートイヒ合物粉体、カルシウムフルォロアルミネートイ匕合 物粉体、カルシウムサルファアルミネートイ匕合物粉体、カルシウムアルミノフェライトイ匕 合物粉体、リン酸カルシウム化合物粉体、半水又は無水石膏粉体、自硬性を有する 生石灰粉体、これら粉体の二種類以上の混合粉体が例示でき、この代表例として、 例えばポルトランドセメントのようなセメントを挙げることができる。  In the present embodiment, a hydraulic composition (trade name: Zima, manufactured by Sumitomo Cement Co., Ltd.) mainly composed of hydraulic powder and non-hydraulic powder is pressure-filled into the hollow portion 14a of the structure 14. By hydrothermally synthesizing this, the vibration absorber 15 made of a ceramic material is integrated with the structure 14. Here, the hydraulic powder means a powder that is hardened by water, such as calcium silicate compound powder, calcium aluminate compound powder, calcium fluoroaluminate compound powder, Calcium sulfa aluminate compound powder, calcium aluminoferrite compound powder, calcium phosphate compound powder, semi-water or anhydrous gypsum powder, self-hardening quick lime powder, two or more kinds of these powders A mixed powder can be exemplified, and a representative example thereof is a cement such as Portland cement.
[0034] また、非水硬性粉体とは、単体では水と接触しても硬化することのな 、粉体を意味 するが、アルカリ性もしくは酸性状態、あるいは高圧蒸気雰囲気において、その成分 が溶出し、他の既溶出成分と反応して生成物を形成する粉体も含む。このような非水 硬性粉体を添加することによって、成形体の成形時の充填率を高め、得られる成形 体の空隙率を減少することが可能になり、成形体の寸法安定性を向上することができ る。非水硬性粉体の代表的なものとしては、例えば、水酸化カルシウム粉末、二水石 膏粉末、炭酸カルシウム粉末、スラグ粉末、フライアッシュ粉末、珪石粉末、粘土粉末 、シリカフューム粉末等を挙げることができる。 [0034] Further, the non-hydraulic powder means a powder that does not harden even when in contact with water. However, it also includes powders that elute in an alkaline or acidic state or in a high-pressure steam atmosphere and react with other already-eluting components to form products. By adding such a non-hydraulic powder, it becomes possible to increase the filling rate at the time of molding of the molded body and to decrease the porosity of the molded body to be obtained, thereby improving the dimensional stability of the molded body. be able to. Representative examples of non-hydraulic powders include calcium hydroxide powder, dihydrate gypsum powder, calcium carbonate powder, slag powder, fly ash powder, silica stone powder, clay powder, silica fume powder, and the like. .
[0035] 非水硬性粉体の配合量は、水硬性粉体と非水硬性粉体とからなる混合粉体の組 成比率で 10〜50質量%、好ましくは 25〜35質量%である。もし、配合量が 10質量 %未満の場合には充填率が低くなり、また 50質量%超の場合には強度及び充填率 が低くなる。このため、充填率が低くなりすぎないように、非水硬性粉体の配合量を調 節するのが望ましい。  [0035] The blending amount of the non-hydraulic powder is 10 to 50% by mass, preferably 25 to 35% by mass, based on the composition ratio of the mixed powder composed of the hydraulic powder and the non-hydraulic powder. If the blending amount is less than 10% by mass, the filling rate will be low, and if it exceeds 50% by mass, the strength and filling rate will be low. For this reason, it is desirable to adjust the blending amount of the non-hydraulic powder so that the filling rate does not become too low.
[0036] 上記構造体 14と振動吸収体 15とを一体ィ匕する具体的な工程としては、まず、ポル トランドセメント等の水硬性粉体、シリカフューム等の非水硬性粉体及びその他の添 加物からなる混合粉体に、水硬性粉体と非水硬性粉体との混合粉体の 100質量部 に対して水を 30質量部以下又は理論水和量未満含有したものを混合して成形用混 合物を調整する。混合には成形用混合物に強力なせん断力を加えることができる混 合方法もしくは混合機械を用いることが好ま 、。  [0036] As a specific process for integrating the structure 14 and the vibration absorber 15, first, a hydraulic powder such as Portland cement, a non-hydraulic powder such as silica fume, and other additives. Molded into a mixed powder consisting of a product containing 30 parts by mass or less of water or less than the theoretical amount of hydration with respect to 100 parts by mass of a mixed powder of hydraulic powder and non-hydraulic powder. Adjust the mixture. For mixing, it is preferable to use a mixing method or a mixing machine that can apply a strong shearing force to the molding mixture.
[0037] 次に、このようにして得られた成形用混合物を構造体 14の中空部 14aに加圧充填 し、充填が完了したならば、硬化させるために養生する。養生は室温又は高温高圧 化において行なわれ、養生時間は養生温度により変化する。以上により、構造体 14 の中空部 14aにセラミックス材料力もなる振動吸収体を隙間なく充填することができる  [0037] Next, the molding mixture thus obtained is pressure-filled into the hollow portion 14a of the structure 14, and when the filling is completed, it is cured for curing. Curing is performed at room temperature or at high temperature and pressure, and the curing time varies depending on the curing temperature. As described above, the hollow portion 14a of the structure 14 can be filled with the vibration absorber having a ceramic material force without any gap.
[0038] 中空部 14aに充填されるセラミックス材料は、非水硬性粉体の配合量や充填時の 加圧力を適宜変更することにより、空隙率や硬さを自由に調整することができるので 、フレーム 8の振動に応じた減衰性能を減衰モジュール 13に付与することができる。 [0038] The ceramic material filled in the hollow portion 14a can freely adjust the porosity and hardness by appropriately changing the blending amount of the non-hydraulic powder and the applied pressure at the time of filling. A damping performance corresponding to the vibration of the frame 8 can be imparted to the damping module 13.
[0039] フレーム 8が振動すると、フレーム 8に取り付けられた減衰モジュール 13にフレーム 8の振動が伝わる。減衰モジュール 13の構造体 14には、減衰性の高い振動吸収体 15が密着しているので、振動吸収体 15が減衰モジュール 13の振動エネルギを熱ェ ネルギに変換して、振動減衰効果を発揮する。以上によりフレーム 8の振動が減衰モ ジュール 13によって減衰される。 When the frame 8 vibrates, the vibration of the frame 8 is transmitted to the attenuation module 13 attached to the frame 8. The structure 14 of the damping module 13 includes a vibration absorber with high damping Since 15 is in close contact, the vibration absorber 15 converts the vibration energy of the damping module 13 into heat energy, and exhibits a vibration damping effect. As a result, the vibration of the frame 8 is damped by the damping module 13.
[0040] フレーム 8の自由振動は、フレーム 8自体の構造、移動体の質量、加速度等によつ て変化する多種多様の振動になる。減衰部材をモジュールィ匕することによって、フレ ーム 8がある振動モードで振動しているのがわ力つたら、減衰に効果的と思われるとこ ろに、後から減衰モジュール 13を取り付けてみて、不十分であれば、さらなる減衰モ ジュール 13を取り付ける。そういった調整が可能になる。  The free vibration of the frame 8 becomes a wide variety of vibrations that vary depending on the structure of the frame 8 itself, the mass of the moving body, the acceleration, and the like. If modularity of the damping member causes the frame 8 to vibrate in a certain vibration mode, it may be effective for damping. If not, install a further damping module 13. Such adjustment is possible.
[0041] 図 7は、減衰モジュールの他の例を示す。この例の減衰モジュール 17では、軸状 の構造体 18の回りに振動吸収体 19が巻かれている。振動吸収体 19は、上記減衰 モジュール 13と同様に、水硬性粉体及び非水硬性粉体を主成分とする水硬性組成 物(商品名:ジーマ、住友セメント製)を構造体 18の回りに巻き付け、これを水熱合成 することで構造体 18と一体化される。構造体 18と振動吸収体 19とが密着していれば 、この図 7に示されるように、振動吸収体 19が構造体 18の回りに巻かれてもよい。  FIG. 7 shows another example of the attenuation module. In the damping module 17 of this example, a vibration absorber 19 is wound around an axial structure 18. As with the damping module 13 described above, the vibration absorber 19 is made of a hydraulic composition (trade name: Zima, manufactured by Sumitomo Cement) mainly composed of hydraulic powder and non-hydraulic powder around the structure 18. It is integrated with the structure 18 by winding and hydrothermal synthesis. If the structure 18 and the vibration absorber 19 are in close contact with each other, the vibration absorber 19 may be wound around the structure 18 as shown in FIG.
[0042] 図 8は、減衰モジュールのさらに他の例を示す。この例の減衰モジュール 20は、ブ ロック状に形成され、フレーム 8の骨組みの交差部分で数本の形鋼 23を連結して ヽ る。構造体 22の内部には振動吸収体 21が充填され、この振動吸収体 21が形鋼 23 に密着している。  [0042] FIG. 8 shows still another example of the attenuation module. The damping module 20 in this example is formed in a block shape, and is formed by connecting several sections 23 at the intersection of the frame 8 frame. The structure 22 is filled with a vibration absorber 21, and the vibration absorber 21 is in close contact with the structural steel 23.
[0043] 図 9は、減衰モジュールのさらに他の例を示す。この例の減衰モジュール 24は、フ レーム 8の構造材としての役割も兼用している。構造体 25としてのアルミ押出し材に は、中空部 25aが設けられ、該中空部 25aに上記の振動吸収体が充填される。  [0043] FIG. 9 shows yet another example of an attenuation module. The damping module 24 in this example also serves as a structural material for frame 8. The aluminum extruded material as the structure 25 is provided with a hollow portion 25a, and the vibration absorber is filled in the hollow portion 25a.
[0044] 図 10は、機械に組み込まれる運動案内装置 9を示す。運動案内装置 9は、直線状 に延びる軌道部材としてのレール 12と、このレール 12に多数の転動体を介して移動 自在に組み付けられた移動部材としてのブロック 10と、を備えている。なお、移動物 体が曲線状に移動するときは、レールは曲線状に伸びる。  [0044] FIG. 10 shows a motion guide device 9 incorporated in a machine. The motion guide device 9 includes a rail 12 as a track member extending linearly, and a block 10 as a moving member that is movably assembled to the rail 12 via a number of rolling elements. When the moving object moves in a curved line, the rail extends in a curved line.
[0045] レール 12の左右側面には、長手方向に沿って伸びる複数条の転動体転走部 12a が形成される。ブロック 10は、レール 12の上面に対向する中央部 10aと、中央部 10a の左右両側から下方に垂れ下がってレール 12の左右側面に対向する側壁部 10bと 、を備える。ブロック 10の中央部 10a及び側壁部 10bには、レール 12の転動体転走 部 12aに対向する複数条の転動体転走部 29 (図 11参照)が形成される。また、ブロッ ク 10には、転動体転走部 29と平行に伸びる無負荷戻し通路 30が形成される。ブロッ ク 10はその進行方向の両端部に側蓋 31を有し、該側蓋 31に転動体転走部 29と無 負荷戻し通路 30を連結する U字状の方向転換路 32が形成される。これら直線状の 転動体転走部 29、転動体転走部 29に平行な無負荷戻し通路 30、及び U字状の方 向転換路 32によって、サーキット状の転動体循環経路が形成される。 [0045] On the left and right side surfaces of the rail 12, a plurality of rolling element rolling portions 12a extending along the longitudinal direction are formed. The block 10 includes a central portion 10a that faces the upper surface of the rail 12, and side wall portions 10b that hang downward from the left and right sides of the central portion 10a and face the left and right side surfaces of the rail 12. . A plurality of rolling element rolling portions 29 (see FIG. 11) facing the rolling element rolling portions 12a of the rail 12 are formed in the central portion 10a and the side wall portion 10b of the block 10. Further, the block 10 is formed with a no-load return passage 30 extending in parallel with the rolling element rolling part 29. The block 10 has side lids 31 at both ends in the traveling direction, and a U-shaped direction change path 32 that connects the rolling element rolling part 29 and the no-load return path 30 is formed in the side cover 31. . A circuit-like rolling element circulation path is formed by the linear rolling element rolling part 29, the no-load return path 30 parallel to the rolling element rolling part 29, and the U-shaped direction changing path 32.
[0046] 転動体循環経路には複数のボール 28が配列される。ボール 28同士の接触を防止 できるように、ボール間にはスぺーサ 33が介在されることもある。  [0046] A plurality of balls 28 are arranged in the rolling element circulation path. In order to prevent contact between the balls 28, a spacer 33 may be interposed between the balls.
[0047] 図 11に示されるように、ブロック 10の転動体転走部 29の一端まで転がったボール 28は、側蓋 31に設けられた U字状の方向転換路 32を経由して方向転換した後、転 動体転走部 29と平行に伸びる無負荷戻し通路 30に入る。無負荷戻し通路 30を通 過したボール 28は、反対側の側蓋 31の方向転換路 32を経由した後、再び転動体 転走部 29に入る。  As shown in FIG. 11, the ball 28 rolled to one end of the rolling element rolling part 29 of the block 10 changes direction via a U-shaped direction change path 32 provided in the side lid 31. After that, it enters an unloaded return passage 30 extending in parallel with the rolling element rolling part 29. The ball 28 that has passed through the no-load return passage 30 passes through the direction change passage 32 of the opposite side lid 31 and then enters the rolling element rolling section 29 again.
[0048] 図 12及び図 13は、本発明の一実施形態におけるァクチユエータを示す。図 12は ァクチユエータの斜視図を示し、図 13は断面図を示す。このァクチユエータは駆動源 としてリニアモータ 40を使用し、テーブル 35を高加速度で移動させる。ァクチユエ一 タはコンパクトに案内機構と駆動機構とをまとめたもので、図 5に示されるフレーム 8の 上部に載せられて使用されるほか、ロボットの各軸として用いられる。  FIG. 12 and FIG. 13 show an actuator according to an embodiment of the present invention. 12 shows a perspective view of the actuator, and FIG. 13 shows a cross-sectional view. This actuator uses a linear motor 40 as a drive source and moves the table 35 at a high acceleration. The actuator is a compact assembly of a guide mechanism and a drive mechanism. It is used on the top of the frame 8 shown in Fig. 5 and used as each axis of the robot.
[0049] ベース 36はアルミ押出し材からなり、底部 36aと側壁 36bを有して細長く伸びる。ベ ース 36の内部には中空部 36cが形成される。この中空部 36cに上記の振動吸収体 3 7が充填される。ベース 36の側壁 36bの上面には、運動案内装置 9のレール 12が取 り付けられる。レール 12上にはスライド可能にブロック 10が取り付けられる。運動案内 装置 9の構造は図 10に示されるものと同様なので、同一の符号を附してその説明を 省略する。  [0049] The base 36 is made of an extruded aluminum material, and has a bottom portion 36a and a side wall 36b, and is elongated. A hollow portion 36 c is formed inside the base 36. The hollow portion 36c is filled with the vibration absorber 37. The rail 12 of the motion guide device 9 is attached to the upper surface of the side wall 36b of the base 36. A block 10 is slidably mounted on the rail 12. Since the structure of the motion guide device 9 is the same as that shown in FIG. 10, the same reference numerals are given and the description thereof is omitted.
[0050] テーブル 35はリニアモータ 40で駆動される。リニアモータ 40は、固定子 38と二次 導体 39とを有する。固定子 38は固定子鉄心に二相又は三相の一次卷線を装備した ものであり、励磁することにより移動磁界を発生する。二次導体 39は回転形電動機の 回転子に相当するもので、鋼板、銅板等のシート状導体等が利用される。 [0050] The table 35 is driven by a linear motor 40. The linear motor 40 has a stator 38 and a secondary conductor 39. The stator 38 is a stator core equipped with a two-phase or three-phase primary winding, and generates a moving magnetic field when excited. Secondary conductor 39 is a rotary motor It corresponds to a rotor, and sheet-like conductors such as steel plates and copper plates are used.
[0051] リニアモータ 40でテーブル 35を高加速度で移動させると、移動物体の慣性によつ てベース 36が自由振動する。ベース 36の中空部には振動吸収体 37が充填される ので、振動吸収体 37が振動エネルギを熱エネルギに変換してベース 36の振動を減 衰する。したがって、ベース 36が自由振動しても、運動案内装置 9にフレツチングコロ 一ジョン現象が発生するのを防止することができる。  [0051] When the table 35 is moved at a high acceleration by the linear motor 40, the base 36 vibrates freely due to the inertia of the moving object. Since the vibration absorber 37 is filled in the hollow portion of the base 36, the vibration absorber 37 converts the vibration energy into heat energy to attenuate the vibration of the base 36. Therefore, it is possible to prevent the fretting collision phenomenon from occurring in the motion guide device 9 even if the base 36 vibrates freely.
[0052] なお本発明は上記実施形態に限られることなぐ本発明の要旨を変更しない範囲 で他の実施形態に具現ィ匕できる。例えば、運動案内装置組込み機械の用途は、半 導体 ·液晶表示装置に限られることはない。また、運動案内装置にはボールスプライ ン機構を用いることもできるし、転動体にはボールの替わりにローラを使用することも できる。  Note that the present invention is not limited to the above-described embodiment, and can be embodied in other embodiments without departing from the scope of the present invention. For example, the use of motion guidance device built-in machines is not limited to semiconductors and liquid crystal display devices. In addition, a ball spline mechanism can be used for the motion guide device, and a roller can be used for the rolling element instead of the ball.
[0053] 本明糸田書 ίま、 2005年 3月 30日出願の特願 2005— 096688に基づく。この内容【ま すべてここに含めておく。  [0053] Based on Japanese Patent Application 2005-096688 filed on Mar. 30, 2005. This content [all included here.

Claims

請求の範囲 The scope of the claims
[1] 直線状又は曲線状に伸び、長手方向に沿って転動体転走部が形成される軌道部 材と、前記転動体転走部に対向する転動体転走部が形成されると共に、前記軌道部 材に沿ってスライド可能に組み付けられる移動部材と、前記軌道部材及び前記移動 部材の転動体転走部との間に転がり運動可能に介在される複数の転動体とを有する 運動案内装置と、  [1] A raceway member that extends linearly or in a curved line and forms a rolling element rolling part along the longitudinal direction, and a rolling element rolling part that faces the rolling element rolling part are formed. A motion guide device comprising: a moving member slidably assembled along the track member; and a plurality of rolling elements interposed between the track member and a rolling element rolling portion of the moving member so as to allow rolling motion. When,
前記運動案内装置の前記軌道部材又は前記移動部材のいずれか一方が固定さ れるフレームと、  A frame to which either the track member or the moving member of the motion guide device is fixed;
前記フレームに取り付けられ、又は前記フレームの少なくとも一部をなし、前記フレ ームの自由振動を減衰させる減衰モジュールと、を備えることを特徴とする運動案内 装置組込み機械。  A motion guide apparatus-embedded machine comprising: a damping module attached to the frame or constituting at least a part of the frame and dampening free vibration of the frame.
[2] 前記減衰モジュールは、中空部を有する金属製の構造体と、前記中空部に充填さ れるセラミックス材料製の振動吸収体と、を備えることを特徴とする請求項 1に記載の 運動案内装置組込み機械。  2. The motion guide according to claim 1, wherein the damping module includes a metal structure having a hollow portion and a vibration absorber made of a ceramic material filled in the hollow portion. Equipment embedded machine.
[3] 前記減衰モジュールは、金属製の軸状の構造体と、この構造体の周囲に巻かれる セラミックス材料製の振動吸収体とを備えることを特徴とする請求項 1に記載の運動 案内装置組込み機械。 [3] The motion guide device according to claim 1, wherein the damping module includes a metal shaft-like structure and a vibration absorber made of a ceramic material wound around the structure. Embedded machine.
[4] 直線状又は曲線状に伸び、長手方向に沿って転動体転走部が形成される軌道部 材と、前記転動体転走部に対向する転動体転走部が形成されると共に、前記軌道部 材に沿ってスライド可能に組み付けられる移動部材と、前記軌道部材及び前記移動 部材の転動体転走部との間に転がり運動可能に介在される複数の転動体とを有する 運動案内装置と、  [4] A raceway member that extends linearly or in a curved line and forms a rolling element rolling part along the longitudinal direction, and a rolling element rolling part that faces the rolling element rolling part are formed, A motion guide device comprising: a moving member slidably assembled along the track member; and a plurality of rolling elements interposed between the track member and a rolling element rolling portion of the moving member so as to allow rolling motion. When,
前記運動案内装置の前記軌道部材又は前記移動部材のいずれか一方が固定さ れ、中空部を有するベースと、  Either one of the track member or the moving member of the motion guide device is fixed, and a base having a hollow portion;
前記ベースに対して前記軌道部材又は前記移動部材のいずれか一方を移動させ る駆動源と、  A drive source for moving either the track member or the moving member with respect to the base;
前記ベースの前記中空部に充填され、前記ベースの自由振動を減衰させる振動吸 収体と、を備えることを特徴とするァクチユエータ。 An actuator comprising: a vibration absorber that fills the hollow portion of the base and attenuates the free vibration of the base.
[5] 前記ベースは金属製であり、前記振動吸収体はセラミックス材料製であることを特 徴とする請求項 4に記載のァクチユエータ。 5. The actuator according to claim 4, wherein the base is made of metal and the vibration absorber is made of a ceramic material.
[6] 直線状又は曲線状に伸び、長手方向に沿って転動体転走部が形成される軌道部 材と、前記転動体転走部に対向する転動体転走部が形成されると共に、前記軌道部 材に沿ってスライド可能に組み付けられる移動部材と、前記軌道部材及び前記移動 部材の転動体転走部との間に転がり運動可能に介在される複数の転動体とを有する 運動案内装置と、前記運動案内装置の前記軌道部材又は前記移動部材のいずれ か一方が固定されるフレームと、を備える運動案内装置組込み機械に取り付けられる 減衰モジュールであって、  [6] A raceway member that extends linearly or in a curved line and forms a rolling element rolling part along the longitudinal direction, and a rolling element rolling part that faces the rolling element rolling part are formed, A motion guide device comprising: a moving member slidably assembled along the track member; and a plurality of rolling elements interposed between the track member and a rolling element rolling portion of the moving member so as to allow rolling motion. A damping module attached to a motion guide device built-in machine comprising: a frame on which either the track member or the moving member of the motion guide device is fixed,
前記減衰モジュールは、前記フレームに取り付けられて、前記フレームの自由振動 を減衰させることを特徴とする運動案内装置組込み機械用減衰モジュール。  The damping module for a machine incorporating a motion guide device, wherein the damping module is attached to the frame to dampen free vibration of the frame.
PCT/JP2006/305217 2005-03-30 2006-03-16 Machine with built-in movement guiding device, actuator, and attenuating module for machine with built-in movement guiding device WO2006109403A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007512425A JPWO2006109403A1 (en) 2005-03-30 2006-03-16 Motion guide device embedded machine, actuator, and damping module for motion guide device embedded machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-096688 2005-03-30
JP2005096688 2005-03-30

Publications (1)

Publication Number Publication Date
WO2006109403A1 true WO2006109403A1 (en) 2006-10-19

Family

ID=37086694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305217 WO2006109403A1 (en) 2005-03-30 2006-03-16 Machine with built-in movement guiding device, actuator, and attenuating module for machine with built-in movement guiding device

Country Status (2)

Country Link
JP (1) JPWO2006109403A1 (en)
WO (1) WO2006109403A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078034A (en) * 1983-10-03 1985-05-02 三菱重工業株式会社 Steel enclosure
JPS62292922A (en) * 1986-06-13 1987-12-19 Hitachi Seiko Ltd Installing device for straight guide apparatus
JP2000097309A (en) * 1998-07-21 2000-04-04 Nsk Ltd Linear motion guide device
JP2001227537A (en) * 2000-02-18 2001-08-24 Nsk Ltd Linear guide device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078034A (en) * 1983-10-03 1985-05-02 三菱重工業株式会社 Steel enclosure
JPS62292922A (en) * 1986-06-13 1987-12-19 Hitachi Seiko Ltd Installing device for straight guide apparatus
JP2000097309A (en) * 1998-07-21 2000-04-04 Nsk Ltd Linear motion guide device
JP2001227537A (en) * 2000-02-18 2001-08-24 Nsk Ltd Linear guide device

Also Published As

Publication number Publication date
JPWO2006109403A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
CN105729231B (en) A kind of resilient support frictional damping oscillation damping method and structure for rolling linear guide clamp
US20050255927A1 (en) Shaft member with vibration damping function
CN102345333B (en) Variable-rigidity and variable-damping tuned mass damper
US5042162A (en) Coordinate measuring machine with vibration dampening system
US8348217B2 (en) Base isolation table with damping mechanism and base isolation table unit using the same
JP2002507489A (en) Impulse decoupling type direct drive
TWI641746B (en) Vibration suppressing apparatus
CN106286666B (en) Reluctance type electromagnetism active vibration absorber
KR101864718B1 (en) A vibration decreasing apparatus with flexure mechanism device for reducing load of machine and a method for decreasing vibration
KR101789673B1 (en) A vibration decreasing apparatus for multi-articulated robot and a method for decreasing vibration
CN209503113U (en) A kind of adaptive controllable type vibration metal cutting apparatus based on ultra-magnetic telescopic
WO2003029842A3 (en) Active floor vibration control system
WO2006109403A1 (en) Machine with built-in movement guiding device, actuator, and attenuating module for machine with built-in movement guiding device
JP2008248629A (en) Active damper for building structure
JP2002283174A (en) Linear drive
JP2005256954A (en) Linear guide and feeding screw friction reducing method
CN204221489U (en) Linear electric motors are the grand micro-integration high speed precise motion two-dimensional stage of the many drivings of stator altogether
RU2399475C2 (en) Metal-cutting lathe with automatic control
KR102169907B1 (en) Apparatus of anti-vibration for air conditioner outdoor unit
CN109465651B (en) Friction type rigidity switching device, rigid-flexible coupling motion platform using same and method
CN112460188A (en) Base structure for suppressing vibration of high-speed equipment
CN219421201U (en) Balanced mass damping system of high-precision chip mounter
JP6191538B2 (en) Vibration test equipment
JP2002081492A (en) Vibration damping device
CN220539239U (en) Vibrating equipment for concrete construction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512425

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729214

Country of ref document: EP

Kind code of ref document: A1