WO2006106842A1 - 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2006106842A1
WO2006106842A1 PCT/JP2006/306697 JP2006306697W WO2006106842A1 WO 2006106842 A1 WO2006106842 A1 WO 2006106842A1 JP 2006306697 W JP2006306697 W JP 2006306697W WO 2006106842 A1 WO2006106842 A1 WO 2006106842A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
carbon atoms
atom
bond
Prior art date
Application number
PCT/JP2006/306697
Other languages
English (en)
French (fr)
Inventor
Masami Watanabe
Masahide Matsuura
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Publication of WO2006106842A1 publication Critical patent/WO2006106842A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2291Olefins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/186Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a transition metal complex compound, an organic electoluminescence device using the same, and a method for producing an organic compound or a polymer compound, and in particular, has a high luminous efficiency, a long lifetime, and an organic elect
  • the present invention relates to an oral luminescence device, a novel transition metal complex compound that realizes the same, and a method for producing an organic compound or a polymer compound. Background art
  • Organic electoluminescence (EL) devices use the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field. Self-luminous element. Report of low-voltage driven organic EL devices using stacked devices by Eastman Kodak's CW Tang et al. (CW Tang, SA Vanslyke, Applied Physics Letters, 51 ⁇ , 913, 1987, etc.) ) Since then, research on organic EL devices using organic materials as constituent materials has been actively conducted. Tang et al. Used tris (8-hydroxyquinolinol aluminum) for the light-emitting layer and triphenyldiamine derivative for the hole-transporting layer.
  • the advantages of the stacked structure are that it increases the efficiency of hole injection into the light-emitting layer, blocks the electrons injected from the cathode, and increases the generation efficiency of excitons generated by recombination. For example, confining excitons.
  • the device structure of the organic EL device includes a hole transport (injection) layer, a two-layer type of an electron transport luminescent layer, or a hole transport (injection) layer, a luminescent layer, and an electron transport (injection)
  • the three-layer type is well known.
  • the structure of the element and the formation method have been devised.
  • the light-emitting material of the organic EL element is a tris (8-quinolinolato) aluminum complex.
  • Luminescent materials such as chelate complexes, coumarin derivatives, tetraphenylbutadiene derivatives, distyrylarylene derivatives, oxadiazole derivatives, etc. are known, and it has been reported that they can emit light in the visible region from blue to red.
  • the color display element Realization is expected (see, for example, Patent Document 1, Patent Document 2, Patent Document 3, etc.).
  • the triplet excited state or triplet exciton is not sequentially quenched so that the anode, the hole transport layer, the organic light emitting layer, the electron transport layer (hole blocking layer),
  • a structure in which layers are stacked such as an electron transport layer and a cathode has been used, and a host compound and a phosphorescent compound have been used for an organic light emitting layer (see, for example, Patent Document 4 and Patent Document 5).
  • These patent documents are technologies related to phosphorescent materials that emit red to green light.
  • a technique related to a light emitting material having a blue emission color is also disclosed (see, for example, Patent Document 6, Patent Document 7, and Patent Document 8).
  • Patent Documents 7 and 8 describe a ligand skeleton in which an Ir metal and a phosphorus atom are bonded, and these emit light blue but have weak bonds. The heat resistance is extremely poor.
  • Patent Document 9 describes a complex in which an oxygen atom and a nitrogen atom are bonded to the central metal, but there is no description about the specific effect of the group bonded to the oxygen atom, and it is unclear.
  • Patent Document 10 discloses a complex in which nitrogen atoms contained in different ring structures are bonded to the central metal one by one, and a device using the same emits blue light, but the external quantum efficiency is 5%. Before and after and low, it becomes a thing.
  • complexes having a carbene iridium bond include the following non-patent document 12 (tris (carbene) iridium complex that also has a non-heterocyclic carbene ligand force) and non-patent document 13 (monodentate coordination type mono-). Carbene iridium complex), but the application to the organic EL device field is described.
  • Patent Document 1 JP-A-8-239655
  • Patent Document 2 JP-A-7-183561
  • Patent Document 3 Japanese Patent Laid-Open No. 3-200289
  • Patent Document 4 U.S. Patent No. 6,097,147
  • Patent Document 5 International Publication WO01Z41512
  • Patent Document 6 US2001Z0025108 Publication
  • Patent Document 7 US 2002/0182441 Publication
  • Patent Document 8 Japanese Patent Laid-Open No. 2002-170684
  • Patent Document 9 Japanese Unexamined Patent Publication No. 2003-123982
  • Patent Document 10 Japanese Unexamined Patent Publication No. 2003-133074
  • Non-Patent Document 1 DF OBrien and MA Baldo et al "lmproved energy tr ansferin electrophosphorescent devices" Vol. 74 No. 3, pp 442-444, Januaryl8, 1999
  • Non-Patent Document 2 M. A. Baldo et al "Very high-efficiency green organic light- emitting devices based on electrophosphorescence" Applied Phys ics letters Vol. 75 No. 1, pp4-6, July 5, 1999
  • Non-Patent Document 3 Chem. Rev. 2000, 100, p39
  • Non-Patent Document 4 Am. Chem. Soc., 1991, 113, p361
  • Non-Patent Document 5 Angew. Chem. Int. Ed., 2002, 41, pi 290
  • Non-Patent Document 6 Am. Chem. Soc., 1999, 121, p2674
  • Non-Patent Document 7 Organometallics, 1999, 18, p2370
  • Non-Patent Document 8 Angew. Chem. Int. Ed., 2002, 41, pl363
  • Non-Patent Document 9 Angew. Chem. Int. Ed., 2002, 41, pi 745
  • Non-Patent Document 10 Organometallics, 2000, 19, p3459
  • Non-patent literature ll TetrahedronAymmetry, 2003, 14, p951
  • Non-Patent Document 12 Organomet. Chem., 1982, 239, C26-C30
  • Non-Patent Document 13 Chem. Commun., 2002, ⁇ 2518
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an organic EL device having high luminous efficiency and a long lifetime and a novel transition metal complex compound that realizes the organic EL device. .
  • the present inventors can obtain a long-life organic EL device with high luminous efficiency when a transition metal complex compound having a metal carbene bond is used. As a result, the present invention has been completed.
  • the present invention provides a transition metal complex compound having a metal carbene bond represented by the following general formulas (1) and (6) to (8).
  • L 2 ⁇ M represents a metal carbene bond, the bond indicated by a solid line (1) represents a covalent bond, and the bond indicated by an arrow ( ⁇ ) represents a coordinate bond.
  • M represents a metal atom of iridium), platinum (Pt), rhodium (Rh) or palladium (Pd).
  • L 1 L 2 represents a cross-linking bidentate ligand, L 3 and L 4 are each independently monodentate ligand or, L 3 and L 4 are bridged crosslinked bidentate ligand (L 3 —L 4 )
  • k is an integer from 1 to 3
  • i is an integer from 0 to 2
  • k + i represents the valence of metal M.
  • j represents an integer of 0 to 4.
  • L 1 to L 4 may be the same or different and may be cross-linked with each other adjacent to each other.
  • L 1 is a divalent aromatic hydrocarbon group having 6 to 30 nuclear carbon atoms that may have a substituent, a divalent heterocyclic group having 6 to 30 nuclear atoms that may have a substituent, A divalent carboxyl-containing group having 1 to 30 carbon atoms which may have a substituent, a substituent! /, A divalent amino group or a hydroxyl group-containing hydrocarbon group, a substituent Or a cycloalkylene group having 3 to 50 nuclear carbon atoms, a substituent, an alkylene group having 1 to 30 carbon atoms, or a substituent. 30 alkylene groups and substituents, but they are aralkylene groups having 7 to 40 carbon atoms.
  • L 2 is a monovalent aromatic hydrocarbon group having 6 to 30 nuclear carbon atoms and having a carbene carbon which may have a substituent
  • L 3 is a monovalent aromatic hydrocarbon group having 6 to 30 nuclear carbon atoms which may have a substituent, or a monovalent heterocyclic group having 6 to 30 nuclear atoms which may have a substituent.
  • a monovalent amino group or a hydroxyl group-containing hydrocarbon group may have a substituent, may have an alkyl group having 1 to 30 carbon atoms, and may have a substituent !, carbon number
  • L 4 is a coordination composed of the aromatic hydrocarbon, alkane, alkene and a compound in which the carbon atom of each group represented by L 1 is replaced with any of a nitrogen atom, a sulfur atom, an oxygen atom and a phosphorus atom. Child. ]
  • C (carbon atom) ⁇ Ir represents a metal carbene bond
  • the bond indicated by a solid line ( ⁇ ) is a covalent bond
  • the bond indicated by an arrow ( ⁇ ) is a coordinate bond.
  • Y 1 and Y 2 are each independently a nitrogen-containing group (—NR 1 ! ⁇ ), A phosphorus-containing group (—PR 1 ), an oxygen-containing group (one OR 1 ), or a sulfur-containing group (one SR 1 ). Yes, Y 1 and Y 2 may be bridged to form a ring structure.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, or a halogenated alkyl group having 1 to 30 carbon atoms which may have a substituent.
  • the aromatic hydrocarbon group having 6 to 30 carbon atoms and the substituent may be substituted!
  • the cycloalkyl group having 3 to 50 carbon atoms and the substituent may have an aralkyl group having 7 to 40 carbon atoms or a substituent, may have an alkaryl group or substituent having 2 to 30 carbon atoms, and has 3 to 30 nuclear atoms.
  • a heterocyclic group an alkoxy group having 1 to 30 carbon atoms that may have a substituent, a substituent, an aryloxy group having 6 to 30 carbon atoms, or a substituent; C3-C30 alkylamino group, C6-C30 arylamino group which may have a substituent, Substituent group, C3-C30 alkylsilyl group, Substituent group
  • carbon An arylylsilyl group having 6 to 30 carbon atoms, a carboxyl-containing group having 1 to 30 carbon atoms which may have a substituent, and R 1 and R 2 may be cross-linked.
  • L 5 and L 6 each independently represent a monodentate ligand or a bridged bidentate ligand (L 5 —L 6 ) in which L 5 and L 6 are bridged.
  • n is an integer of 0-4. When n is multiple, multiple L 6 Each may be the same or different and may be cross-linked.
  • Y 1 , Y 2 , L 5 and L 6 may be bridged by adjacent ones.
  • L 5 may have an aromatic hydrocarbon group having 6-30 nuclear carbon atoms, which may have a substituent, or may have a substituent, a heterocyclic group having 3-30 nuclear atoms, or a substituent.
  • the carbon atom of the aralkyl group may be replaced with a nitrogen atom, a sulfur atom, an oxygen atom or a key atom, respectively.
  • L 6 is a group in which a carbon atom of the heterocyclic group or the alkyl group, the alkenyl group, and the aralkyl group is replaced with a nitrogen atom, a sulfur atom, an oxygen atom, or a silicon atom, respectively.
  • C (carbon atom) ⁇ Ir represents a metal carbene bond
  • the bond indicated by a solid line ( ⁇ ) is a covalent bond
  • the bond indicated by an arrow ( ⁇ ) is a coordinate bond.
  • Y 3 and Y 4 are each independently a nitrogen-containing group (—NR 1 ! ⁇ ), A phosphorus-containing group (—PRiR 2 ), an oxygen-containing group (one OR 1 ), a sulfur-containing group (one SR 1 ), or a boron-containing group.
  • a group (one BR 2 ), and Y 3 and Y 4 may be bridged to form a ring structure.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, or a halogenated alkyl group having 1 to 30 carbon atoms which may have a substituent.
  • the aromatic hydrocarbon group having 6 to 30 carbon atoms and the substituent may be substituted!
  • It may have an aryl group of 6 to 30 carbon atoms, may have a substituent, may have an alkylsilyl group of 3 to 30 carbon atoms, or may have a substituent !, an arylaryl group of 6 to 30 carbon atoms , An optionally substituted carboxyl-containing group having 1 to 30 carbon atoms, and R 1 and R 2 may be cross-linked. )
  • L 7 and L 8 are each independently represent a bridge with a monodentate ligand or L 7 is bridged bidentate ligand of the (L 7 -L 8).
  • n is an integer of 0-4.
  • a plurality of L 8 may be the same or different and may be cross-linked.
  • L 7 and L 8 may be cross-linked between adjacent ones.
  • L 7 is a super strong acid, carboxylic acid, aldehyde, ketone, alcohol, thioalcohol, phenol, amine, amide, aromatic or alkane having a pKa value of -10 or less.
  • L 8 is a group in which a carbon atom of the heterocyclic group or the alkyl group, the alkyl group, and the aralkyl group is replaced with a nitrogen atom, a sulfur atom, an oxygen atom, or a key atom, respectively. . ]
  • L 2 ⁇ Ir represents a metal carbene bond
  • the bond indicated by a solid line (one) represents a covalent bond
  • the bond indicated by an arrow ( ⁇ ) represents a coordinate bond.
  • L 1 -L 2 represents a bridged bidentate ligand.
  • L 1 is a divalent aromatic hydrocarbon group having 6 to 30 nuclear carbon atoms which may have a substituent.
  • L 2 is a monovalent aromatic hydrocarbon group having 6 to 30 nuclear carbon atoms and having a carbene carbon which may have a substituent.
  • L 7 and L 8 each independently represent a monodentate ligand or a bridged bidentate ligand (L 7 —L 8 ) in which L 7 and L 8 are bridged.
  • n is an integer of 0-4.
  • the plural L 8 s may be the same or different and may be cross-linked! /, may! /.
  • L 7 is a conjugate of super strong acids, carboxylic acids, aldehydes, ketones, alcohols, thioalcohols, phenols, amines, amides, aromatics, alkanes, etc., whose pKa value is -10 or less.
  • Base hydrogen ion or halide ion.
  • L 8 is a group in which a carbon atom of the heterocyclic group or the alkyl group, the alkenyl group, and the aralkyl group is replaced with a nitrogen atom, a sulfur atom, an oxygen atom, or a silicon atom, respectively.
  • the present invention also provides a method for producing an organic compound or a polymer compound using the transition metal complex compound of the general formula (7) or (8) as a catalyst.
  • the present invention provides an organic EL device in which an organic thin film layer comprising at least one light emitting layer or a plurality of light emitting layers is sandwiched between an anode and a cathode, wherein at least one of the organic thin film layers is the transition metal complex compound.
  • the present invention provides an organic EL device that contains. The invention's effect
  • An organic EL device using the transition metal complex compound of the present invention has a long lifetime with high luminous efficiency.
  • FIG. 1 is a diagram showing an iH-NMR spectrum of transition metal complex compound 1 obtained in Synthesis Example 1.
  • FIG. 2 is a graph showing an emission spectrum of transition metal complex compound 1 obtained in Synthesis Example 1.
  • FIG. 3 is a diagram showing an iH-NMR spectrum of transition metal complex compound 2 obtained in Synthesis Example 2.
  • FIG. 4 is a graph showing an emission spectrum of transition metal complex compound 2 obtained in Synthesis Example 2.
  • FIG. 5 is a graph showing an iH-NMR spectrum of transition metal complex compound 3 obtained in Synthesis Example 3.
  • FIG. 6 is a graph showing an emission spectrum of transition metal complex compound 3 obtained in Synthesis Example 3.
  • FIG. 7 is a diagram showing an —NMR ⁇ vector of compound F obtained in Synthesis Example 4.
  • FIG. 8 is a diagram showing an X-ray crystal structure analysis of compound F obtained in Synthesis Example 4.
  • FIG. 9 is a diagram showing a —NMR spectrum of compound G obtained in Synthesis Example 4.
  • FIG. 10 is a diagram showing an —NMR spectrum of compound H obtained in Synthesis Example 4.
  • FIG. 11 is a graph showing an emission spectrum of transition metal complex compound 4 obtained in Synthesis Example 4.
  • FIG. 12 is a diagram showing a 1 H-NMR spectrum of transition metal complex compound 5 obtained in Synthesis Example 5.
  • FIG. 13 is a diagram showing a 3D-NMR spectrum of transition metal complex compound 6 obtained in Synthesis Example 6.
  • FIG. 14 is a graph showing an emission spectrum of transition metal complex compound 6 obtained in Synthesis Example 6.
  • the transition metal complex compound of the present invention is a transition metal complex compound having a metal carbene bond represented by the following general formulas (1) and (6).
  • general formula (1) will be described first.
  • L 2 ⁇ M represents a metal carbene bond
  • a bond indicated by a solid line (1) indicates a covalent bond
  • a bond indicated by an arrow ( ⁇ ) indicates a coordinate bond
  • M represents a metal atom of iridium (Ir), platinum (Pt), rhodium (Rh) or palladium (Pd), and Ir is preferred! /.
  • L 1 -L 2 represents a bridged bidentate ligand
  • L 3 and L 4 each independently represent a monodentate ligand or a bridged bidentate in which L 3 and 4 are bridged Ligand (L 3 -L 4 ) is shown.
  • k is an integer from 1 to 3
  • i is an integer from 0 to 2
  • k + i represents the valence of metal M.
  • j represents an integer of 0-4.
  • L 1 is a divalent aromatic hydrocarbon group having 6-30 nuclear carbon atoms which may have a substituent, and 6-30 nuclear atoms optionally having a substituent. It may have a divalent heterocyclic group or a substituent, or it may have a divalent carboxyl-containing group having 1 to 30 carbon atoms or a substituent! /!
  • a divalent amino group or a hydroxyl group-containing hydrocarbon group , A cycloalkylene group having 3 to 50 nuclear carbon atoms, an alkylene group having 1 to 30 carbon atoms which may have a substituent, a substituent, and a alkalkylene group having 2 to 30 carbon atoms, substituted A group having 7 to 40 carbon atoms,
  • L 2 is a monovalent aromatic hydrocarbon group having 6 to 30 nuclear carbon atoms and having a carbene carbon which may have a substituent
  • L 3 is a monovalent aromatic hydrocarbon group having 6 to 30 nuclear carbon atoms which may have a substituent, or a monovalent heterocyclic group having 6 to 30 nuclear atoms which may have a substituent. It may have a substituent, a monovalent carboxyl-containing group having 1 to 30 carbon atoms, a substituent! /, A monovalent amino group or a hydroxyl group.
  • the aromatic hydrocarbon group is preferably one having a nuclear carbon number of 6 to 18, for example, a phenol group, 1 naphthyl group, 2 naphthyl group, 1 anthryl group, 2 anthryl group, 9-a Enthryl group, 1 phenanthryl group, 2 phenanthryl group, 3 phenanthryl group, 4 phenanthryl group, 9 phenanthryl group, 1 naphthacene group, 2 naphthacetyl group, 9-naphthaphthal group, 1-pyrole group , 2 pyreyl group, 4 pyreyl group, 2 biphenyl group, 3—biphenyl group, 4-biphenyl group, p terferyl group 4 —yl group, p terferlu group 3— P-group, p-Terfer-Lu 2-yl group, m-Ter-Fel-Lu 4-Yel group, m-Ter-Fel-Lu 3-
  • a phenyl group 1 naphthyl group, 2 naphthyl group, 9 phenanthryl group, 2 biphenylyl group, 3 biphenylyl group, 4 biphenylyl group, p-tolyl group, 3, 4 Xylylenyl group and the like and divalent groups thereof.
  • the heterocyclic group preferably has 3 to 18 nuclear atoms.
  • 2-pyridyl group 1-indolidyl group, 2-indolidyl group, 3-indolidyl group, 5-indolidyl group, 6-indolidyl group, 7 —Indolizyl group, 8 Indolizyl group, 2 Imidazopyridyl group, 3 Imidazopyridinyl group, 5 Imidazopyridinyl group, 6—Imidazopyridyl group, 7—Imidazopyridyl group, 8—Imidazopyridyl group Group, 3-pyridyl group, 4 pyridyl group, 1 indolyl group, 2 indolyl group, 3—indolyl group, 4 indolyl group, 5—indolyl group, 6—indolyl group, 7—indolyl group, 1-isoindolyl group, 2-isoindolyl group, 3-isoind
  • Examples of the cycloalkyl and cycloalkylene groups include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, a 1 norbornyl group, and 2- And norborol groups and the like and divalent groups thereof.
  • alkyl group and alkylene group include those having 110 carbon atoms, such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sbutyl group, isobutyl group, t Butyl group, n pentyl group, n xyl group, n ptyl group, n-octyl group, n nonyl group, n decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n pentadecyl group , N xadecyl group, n ptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group, 1 pentylhexyl group
  • methyl, ethyl, propyl, isopropyl, n-butyl, sbutyl, isobutyl, tbutyl, n-pentyl, n-hexyl, and n- are preferred.
  • the alkenyl group and the alkellene group are preferably those having 2 to 16 carbon atoms.
  • bur group, aralkyl group, 1-butenyl group, 2 butenyl group, 3 butenyl group, 1, 3 Butane gel group 1-methyl beryl group, styryl group, 2,2 diphenyl beryl group, 1,2-diphenyl beryl group, 1-methyl allyl group, 1,1-dimethyl allyl group, 2-methyl beryl group 1-furaryl group, 2-phenylaryl group, 3-phenylaryl group, 3,3-diphenyl-laryl group, 1,2-dimethylaryl group, 1-fluoro-l-buturyl group, 3-phenyl-2-butenyl group And those having these as a divalent group, preferably a styryl group, a 2,2-diphenyl-vinyl group, a 1,2-diphenyl-vinyl group, and a divalent group. It is a thing.
  • Preferred examples of the aralkyl group and the aralkylene group include those having 7 to 18 carbon atoms, such as benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2 —Phenol isopropyl group, Phenol t-Butyl group, ⁇ -Naphthylme Tyl group, 1 ⁇ naphthylethyl group, 2-a naphthylethyl group, 1-a naphthylisopropyl group, 2-a naphthylisopropyl group, 13 naphthylmethyl group, 1 ⁇ -naphthylethyl group, 2- ⁇ naphthylethyl group, 1- ⁇ naphthylisopropyl group Group, 2- ⁇ naphthylisopropyl group, 1 pyrrolylmethyl group, 2- (1 pyrrolyl) ethyl group,
  • L 4 represents the aromatic hydrocarbon represented by L 1 , alkane, alkene, and the carbon atom of each group is any of a nitrogen atom, a sulfur atom, an oxygen atom, and a phosphorus atom. It is a ligand composed of a substituted compound, and the aromatic hydrocarbon, alkane, and alkene are each independently, as described above, the number of nuclear carbon atoms that may have a substituent represented by L 1 6-30 A divalent aromatic hydrocarbon group, a substituent, a divalent heterocyclic group having 6-30 nuclear atoms, or a divalent, 1-30 carbon atom that may have a substituent. Carboxyl-containing group, having a substituent! / ⁇ ! /!
  • Divalent amino group or hydroxyl group-containing hydrocarbon group may have a substituent, cycloalkylene group having 3 to 50 nuclear carbon atoms A C 1-30 alkyl group, a C 2-30 alkyl group, a substituent, which may have a substituent.
  • a substituent which may have a substituent.
  • Have Examples similar to the specific examples of the aralkylene group having 7 to 40 carbon atoms may be mentioned.
  • the transition metal compound represented by the general formula (1) of the present invention is preferably a transition metal complex compound having a metal carbene bond represented by the following general formula (2).
  • L 2 ⁇ M represents a metal carbene bond, a bond indicated by a solid line (one) indicates a covalent bond, and a bond indicated by an arrow ( ⁇ ) indicates a coordinate bond.
  • L 1 -L 2 represents a bridged bidentate ligand, and L 3 and L 4 are each independently a monodentate ligand or a bridged bidentate ligand in which L 3 and 4 are bridged ( L 3 —L 4 ).
  • m is an integer of 0 to 2 (preferably 1 to 2), and k + m represents the atomic value of the metal M.
  • k and m are plural, Li to L 4 may be the same or different from each other, and adjacent ones may be cross-linked.
  • the transition metal compound represented by the general formulas (1) and (2) of the present invention is preferably a transition metal complex compound having a metal carbene bond represented by the following general formula (3).
  • C (carbon atom) ⁇ M represents a metal carbene bond.
  • M, L 3 ⁇ ! : , K and m are the same as defined above.
  • X is a nitrogen-containing group (NR 1 —), phosphorus-containing notation (PR 1 —), oxygen (—0-) or sulfur (—S—), and Y is a nitrogen-containing group.
  • NR 2 phosphorus-containing group
  • PR oxygen-containing group
  • one OR 1 oxygen-containing group
  • sulfur-containing group one SR 1
  • X and Y may be bridged to form a ring structure.
  • R 1 and R 2 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, or an optionally substituted halogenated alkyl group having 1 to 30 carbon atoms. May have an aromatic hydrocarbon group with 6 to 30 carbon atoms, or may have a substituent! Has a cycloalkyl group with 3 to 50 carbon atoms and a substituent. However, an aralkyl group having 7 to 40 carbon atoms, an alkenyl group having 2 to 30 carbon atoms which may have a substituent, and a heterocyclic group having 3 to 30 nuclear atoms which may have a substituent.
  • alkyl group examples include those having 1 to L0 carbon atoms, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n Pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n tridecyl group, n- tetradecyl group, n Pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group, 1 pentylhexyl group,
  • methyl, ethyl, propyl, isopropyl, n-butyl, sbutyl, isobutyl, tbutyl, n-pentyl, n-hexyl, and n- are preferred.
  • Ptyl group Ptyl group, n-octyl group, n-nor group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n —Heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 1 pentylhexyl group, 1-butylpentyl group, 1-heptyloctyl group, cyclohexyl group, cyclooctyl group, 3,5-tetramethylcyclo Hexyl group.
  • halogenated alkyl group those having 1 to 10 carbon atoms are preferred, for example, chloromethyl group, 1-chloroethyl ethyl group, 2-chlorodiethyl group, 2-chlorodiisobutyl group, 1,2-dichloro.
  • fluoromethyl group trifluoromethyl group, pentafluoroethyl group, perfluoroisopropyl group, perfluorobutyl group, perfluorocyclo group.
  • Xyl group preferred are fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, perfluoroisopropyl group, perfluorobutyl group, perfluorocyclo group.
  • the aromatic hydrocarbon group is preferably one having a nuclear carbon number of 6 to 18, for example, a phenol group, 1 naphthyl group, 2 naphthyl group, 1 anthryl group, 2 anthryl group, 9-a Enthryl group, 1 phenanthryl group, 2 phenanthryl group, 3 phenanthryl group, 4 phenanthryl group, 9 phenanthryl group, 1 naphthacene group, 2 naphthacetyl group, 9-naphthaphthal group, 1-pyrole group , 2 pyreyl group, 4 pyreyl group, 2 biphenyl group, 3—biphenyl group, 4-biphenyl group, p terferyl group 4 —yl group, p terferlu group 3— P-group, p-Terfer-Lu 2-yl group, m-Ter-Fel-Lu 4-Yel group, m-Ter-Fel-Lu 3-
  • a phenyl group 1 naphthyl group, 2 naphthyl group, 9 phenanthryl group, 2 biphenylyl group, 3 biphenylyl group, 4 biphenylyl group, p-tolyl group, 3, 4-Xylylenyl group.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, a 1-norbornyl group, and 2- And a norbornyl group.
  • aralkyl group those having 7 to 18 carbon atoms are preferred, for example, a benzyl group,
  • the alkenyl group is preferably one having 2 to 16 carbon atoms.
  • a bur group a allyl group, a 1-butur group, a 2 butur group, a 3 butur group, a 1, 3 butane angel group.
  • examples include a ruaryl group, a 2-furaryl group, a 3-furaryl group, a 3,3 diphenyl-ruaryl group, a 1,2 dimethylaryl group, a 1-fluoro 1-butur group, and a 3-fluoro 1-butenyl group.
  • they are a styryl group, a 2,2-divinylvinyl group, and a 1,2-diphenylvinyl group.
  • the heterocyclic group is preferably one having 3 to 18 nuclear atoms, for example, 1 pyrrolyl group, 2 pyrrolyl group, 3 pyrrolyl group, birazinyl group, 2 pyridyl group, 1 imidazolyl group, 2 —Imidazolyl group, 1-pyrazolyl group, 1-indolidyl group, 2-indolidyl group, 3 indolidyl group, 5-indolidyl group, 6-indolidyl group, 7-indolidyl group, 8 Indolizyl group, 2 Imidazopyridyl group, 3 Imidazopyridyl group, 5 Imidazopyridyl group, 6-Imidazopyridyl group, 7-Imidazopyridyl group, 8—Imidazopyridyl group, 3 Pyridyl group Group, 4-pyridyl group, 1—indolyl group, 2—indolyl group, 3
  • 2-pyridyl group 1-indolidyl group, 2-indolidyl group, 3-indolidyl group, 5-indolidyl group, 6-indolidyl group, 7 —Indorigi Group, 8 indolizyl group, 2 imidazopyridyl group, 3 imidazopyridinyl group, 5 imidazopyridinyl group, 6-imidazolidyl group, 7-imidazopyridyl group, 8-imidazopyridyl group Group, 3 pyridyl group, 4 pyridyl group, 1 indolyl group, 2 indolyl group, 3—indolyl group, 4 indolyl group, 5—indolyl group, 6—indolyl group, 7—indolyl group, 1— Isoindolyl group, 2-Isoindolyl group, 3-Isoindolyl group, 4-I
  • the alkoxy group and Ariruokishi group is a group represented by OX 1, is an example of X 1, same examples as those described for the alkyl group and Nono Rogeni spoon alkyl and Ariru group Is mentioned.
  • the alkylamino group and the arylamino group are groups represented by —NX 1 X 2 , and examples of X 1 and X 2 are those described for the alkyl group, the halogenated alkyl group, and the aryl group, respectively. The same example is given.
  • Examples of the carboxyl-containing group include methyl ester, ethyl ester, and butyester.
  • alkylsilyl group examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a butyldimethylsilyl group, and a propyldimethylsilyl group.
  • arylsilyl group examples include a triphenylsilyl group, a phenyldimethylsilyl group, and a t-butyldiphenylsilyl group.
  • Examples of the ring structure formed by crosslinking X and Y include the same examples as those given for the heterocyclic group.
  • the carbene skeleton represented by X—CY usually forms a stable carbene together with a metal, and specifically includes diaryl carbene, cyclic diaminocarbene, Imidazole-2 ylidene, 1, 2, 4 triazole-3 ylidene, 1,3-thiazole-2-ylidene, acyclic diaminocarbene, acyclic aminooxycarbene, acyclic aminothiocarbene, cyclic diborylcarbene, acyclic diborylcarbene, phosphor Examples include sufinosilylcarbene, phosphinophosphinocarbene, sulfur trifluoromethyl carbene, sulferpentafluorothiocarbene, and the like (Reference Chem. Rev. 2000, 100, p39).
  • imidazole-2-ylidene, 1,2,4 triazole-1-ylidene and cyclic diaminocarbene are preferred, and imidazole-2-ylidene and 1,2,4 triazole-3 ylidene are more preferred. Specific structures are listed below.
  • Z is an atom that forms a covalent bond with the metal M, and is a carbon, silicon, nitrogen, or phosphorus atom, and the A ring containing Z has a substituent.
  • Examples of this aromatic hydrocarbon group are the same as those mentioned above, and examples of this aromatic heterocyclic group include those which are aromatic heterocyclic groups among the examples of the heterocyclic group. It is
  • the structure represented by the following is preferable as the A ring.
  • M is a force other than Ir exemplified as Ir.
  • preferred examples of L 3 are the same as the preferred examples of the A ring (however, X is changed to L 4 ).
  • C (carbon atom) ⁇ M represents a metal carbene bond.
  • M, k and m are the same as described above.
  • Good C6-C30 arylamino group may have a substituent, C3-C30 alkyl silyl group, may have a C6-C30 aryl silyl group, have a substituent Even A There carboxyl-containing group having 1 to 30 carbon atoms, R 3 to R 17 may be crosslinked Adjacent.
  • alkyl group halogenated alkyl group, aromatic hydrocarbon group, cycloalkyl group, aralkyl group, alkenyl group, heterocyclic group, alkoxy group, aryloxy group, alkylamino group, arylamino group, alkylsilyl group, arylarylsilyl
  • group and the carboxyl-containing group include the same examples as R 1 and R 2 in the general formula (3).
  • C (carbon atom) ⁇ Ir represents a metal carbene bond.
  • k, m, and R 3 to R 17 are the same as described above.
  • C (carbon atom) ⁇ Ir represents a metal carbene bond
  • a bond indicated by a solid line (-) represents a covalent bond
  • a bond indicated by an arrow ( ⁇ ) represents an arrangement. It means coordinate bond.
  • Y 1 and Y 2 are each independently a nitrogen-containing group (—NRiR 2 ), a phosphorus-containing group (—PR 1 ), an oxygen-containing group (one OR 1 ), and a sulfur-containing group (one SR 1 ), Y 1 and Y 2 may be bridged to form a ring structure.
  • R 1 and R 2 are each independently the same as described above, and the same examples are given.
  • Examples of the ring structure formed by crosslinking Y 1 and Y 2 include the same examples as those given for the heterocyclic group.
  • L 5 and L 6 are each independently a monodentate ligand or a bridged bidentate ligand in which L 5 and L 6 are bridged (L 5 — L 6 ).
  • n is an integer of 0-4.
  • the plurality of L 6 may be the same or different and may be cross-linked.
  • Y 1 , Y 2 , L 5, and L 6 may be bridged by adjacent ones.
  • L 5 may have an aromatic hydrocarbon group having 6-30 nuclear carbon atoms, which may have a substituent, or may have a substituent, a heterocyclic group having 3-30 nuclear atoms, or a substituent.
  • the carbon atom of the aralkyl group may be replaced with a nitrogen atom, a sulfur atom, an oxygen atom or a key atom, respectively.
  • V is a group in which a carbon atom of the heterocyclic group or the alkyl group, the alkenyl group, and the aralkyl group is replaced with a nitrogen atom, a sulfur atom, an oxygen atom, or a silicon atom, respectively.
  • each group shown above include monovalent or divalent groups in the same examples as L 3 in the general formula (1), and preferable examples include the same examples.
  • each group represented by L 6 include monovalent or divalent groups in the same examples as those in General Formula (1) No. 4, and preferred examples include the same examples.
  • the carbene skeleton represented by Y 1 —C—Y 2 usually forms a stable carbene together with a metal.
  • imidazole-2-ylidene, 1,2,4 triazole-1-ylidene and cyclic diaminocarbene are preferred, and imidazole-2-ylidene and 1,2,4 triazole-3 ylidene are more preferred.
  • Specific structures are listed below. In the following, Ph is a phenyl group, and Me is a methyl group.
  • C (carbon atom) ⁇ Ir represents a metal carbene bond
  • a bond indicated by a solid line (-) represents a covalent bond
  • a bond indicated by an arrow ( ⁇ ) represents a coordinate bond.
  • Y 3 and Y 4 are each independently a nitrogen-containing group (—NRiR 2 ), a phosphorus-containing group (PRiR 2 ), an oxygen-containing group (one OR 1 ), a sulfur-containing group (one SR 1 ), a boron-containing group (one BR 2 ), and Y 3 and Y 4 may be bridged to form a ring structure.
  • R 1 and R 2 are each independently the same as described above, and the same examples are given.
  • Examples of the ring structure formed by cross-linking Y 3 and Y 4 include the same examples as those given for the heterocyclic group.
  • L 7 and L 8 are each independently a monodentate ligand or a bridged bidentate ligand in which L 7 and L 8 are bridged (L 7 — L 8 ).
  • n is an integer of 0-4. When n is plural, a plurality of L 8 may be the same or different and may be cross-linked.
  • Y 3 , Y 4 , L 7 and L 8 may be bridged by adjacent ones.
  • L 7 is a super strong acid, carboxylic acid, aldehyde, ketone, alcohol, thioalcohol, phenol, amine, amide, aromatic or alkane having a pKa value of -10 or less.
  • Super strong acids which are conjugated base, hydrogen ion or halide ion and have a pKa value of 10 or less are preferred.
  • the conjugate bases of super strong acids having a pKa value of 10 or less include SbF-, FSO-, RN
  • Conjugated salts of carboxylic acids such as O, ArNO, CIO, ⁇ , RCN, RCOH, TfO—, TfN—
  • conjugate base of aldehydes R—COH, etc.
  • conjugate bases of ketones R 1 — COR 2 etc., as conjugate bases of alcohols, R CT etc., as conjugate bases of thioalcohols, RSO— etc., as conjugate bases of phenols
  • conjugate base of an amine such as ArO—, RiR 2 N— etc.
  • conjugate base of an amide examples of aromatic conjugate bases include (substituted) cyclopentadienyl-one, Ar-, etc.
  • alkane conjugate bases include Me-, tBu-, etc.
  • L 7 -L 8 is cross-linked.
  • Examples of such ligands include (substituted) acetylacetone acetone bases,) conjugated bases of 8 ketimines,) conjugated bases of 8 dimines, (substituted) picolinic acid synergistic bases, (substituted) Examples include conjugate bases of malonic acid diesters, conjugate bases of (substituted) acetoacetate esters, conjugate bases of (substituted) acetoacetamides, conjugate bases of (substituted) amidinates, and the like.
  • L 8 is a group in which a carbon atom of the heterocyclic group or the alkyl group, the alkenyl group, and the aralkyl group is replaced with a nitrogen atom, a sulfur atom, an oxygen atom, or a silicon atom, respectively.
  • each group shown in 8 above include monovalent or divalent groups in the same examples as those in 4 of the general formula (1), and preferred examples include the same examples.
  • L 2 ⁇ Ir represents a metal carbene bond
  • a bond indicated by a solid line () represents a covalent bond
  • a bond indicated by an arrow ( ⁇ ) represents a coordinate bond.
  • L 1 -L 2 represents a bridged bidentate ligand.
  • L 1 and L 2 are each independently the same as in the general formula (1), and the same examples can be given as specific examples and preferred examples of each group.
  • L 7 and L 8 each independently represent a monodentate ligand or a bridged bidentate ligand (L 7 —L 8 ) in which L 7 and L 8 are bridged.
  • n is an integer of 0-4.
  • a plurality of L 8 may be the same or different and may be cross-linked.
  • L 7 and L 8 are the same as those in the general formula (7), and specific examples and preferred examples of each group include the same examples.
  • Examples of the substituent of each group in the general formulas (1) to (8) include a substituted or unsubstituted aryl group having 5 to 50 nuclear carbon atoms, and a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • Substituted or unsubstituted alkoxy groups having 1 to 50 carbon atoms substituted or unsubstituted aralkyl groups having 6 to 50 nuclear carbon atoms, substituted or unsubstituted aryloxy groups having 5 to 50 nuclear carbon atoms, substituted or unsubstituted Examples thereof include aryloxy groups having 5 to 50 nuclear carbon atoms, substituted or unsubstituted alkoxycarbon groups having 1 to 50 carbon atoms, amino groups, halogen atoms, cyano groups, nitro groups, hydroxyl groups, and carboxyl groups. .
  • an alkyl group having 1 to 10 carbon atoms a cycloalkyl group having 5 to 7 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkyl group having 1 to 6 carbon atoms, and 5 to 7 carbon atoms are preferable.
  • Cycloalkyl groups are more preferred methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, cyclopentyl
  • Particularly preferred is the cyclohexyl group.
  • transition metal complex compounds represented by the general formulas (1) to (8) of the present invention include transition metal complex compounds 1 to 6 synthesized in the following synthesis examples. However, it is not limited to these exemplified compounds.
  • the transition metal complex compound of the general formula (1) uses bis (phenylpyridin) iridium salt dimer as a starting material, and in the same manner as in Non-Patent Document 13, Need to be converted to ethoxide.
  • imidazoli a carbene complex precursor It can be obtained by refluxing in 2-ethoxyethanol for about 3 hours using an equivalent amount of um salt Z base (here, metal alkoxide is used).
  • An example of the reaction route is shown below.
  • PPy indicates the structure of PPy in Ir (PPy) shown in Comparative Example 1.
  • Non-patent document 13 describes the synthesis of a monodentate monocarbene iridium complex, The synthesis method of the biscarbene iridium complex (I) (monovalent complex) is not described. Using this reaction as a model, the imidazolium salt Z base (here, the carbene complex precursor)
  • the imidazolium salt (or triazole salt) to be used is not particularly limited, but those having the following structures are used. There are no particular restrictions on the counteranion species, but the following can be used.
  • R 1 to R ° are an alkyl group or an aryl group
  • R 7 to R 1Q are a hydrogen atom, an alkyl group, an aryl group or a condensed ring
  • X is a halogen (F, Cl, Br, I) and weakly basic (a conjugate base of super strong acid), for example, BF-, PF-, OTf, NTf-, etc. are preferred.
  • the reaction solvent is not particularly limited, but a product preferred by alcohols can be easily separated as a solid.
  • the reaction temperature is usually from room temperature to the boiling point of the solvent, and the reaction time is not particularly limited! /, But preferably from 1 hour to 100 hours.
  • organic compounds and polymer compounds suitable for using the transition metal complex compound represented by the general formula (7) or (8) as a catalyst include, for example, benzophenone of Synthesis Example 7 below. Is mentioned.
  • the organic EL device of the present invention is an organic EL device in which an organic thin film layer comprising at least one light-emitting layer or a plurality of layers is sandwiched between a pair of electrodes also having an anode and a cathode force. At least one layer contains the transition metal complex compound represented by any one of the general formulas (1) to (8) of the present invention, and in particular, the transition metal complex compound represented by the general formula (4) or (5) It is preferable to contain ⁇ .
  • the content of the transition metal complex compound of the present invention in the organic thin film layer is usually 0.1 to L00% by weight and 1 to 30% by weight with respect to the total mass of the light emitting layer. And preferred.
  • the light emitting layer preferably contains the transition metal complex compound of the present invention as a light emitting material or a dopant.
  • the light emitting layer can be thinned by vacuum deposition or coating, the production process can be simplified, so that the layer containing the transition metal complex compound of the present invention is formed by coating. This is preferable.
  • the organic thin film layer when the organic thin film layer is of a single layer type, the organic thin film layer is a light emitting layer, and this light emitting layer contains the transition metal complex compound of the present invention.
  • Multi-layer organic EL devices include (Anode Z hole injection layer (Hole transport layer) Z Light emitting layer Z cathode), (Anode Z Light emitting layer Z Electron injection layer (Electron transport layer) Z cathode), (Anode Z hole injection layer (hole transport layer) Z light emitting layer Z electron injection layer (electron transport layer) Z cathode) and the like.
  • the anode of the organic EL device of the present invention supplies holes to a hole injection layer, a hole transport layer, a light emitting layer and the like, and it is effective to have a work function of 4.5 eV or more. is there.
  • a material for the anode a metal, an alloy, a metal oxide, an electrically conductive compound, or a mixture thereof can be used.
  • Specific examples of the material of the anode include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), metals such as gold, silver, chromium, and nickel, and conductive materials thereof. Mixture or laminate of conductive metal oxide and metal
  • Inorganic conductive materials such as copper iodide and copper sulfide, organic conductive materials such as polyarlin, polythiophene and polypyrrole, and laminates of these with ITO, preferably conductive metal oxide
  • ITO inorganic conductive materials
  • the film thickness of the anode can be appropriately selected depending on the material.
  • the cathode of the organic EL device of the present invention supplies electrons to an electron injection layer, an electron transport layer, a light emitting layer, and the like.
  • the cathode material include metals, alloys, metal halides, metal acids. Compound, an electrically conductive compound, or a mixture thereof can be used.
  • Specific examples of cathode materials include alkali metals (eg, Li, Na, K, etc.) and their fluorides or oxides, alkaline earth metals (eg, Mg, Ca, etc.), and their fluorides or oxides.
  • aluminum and lithium-aluminum are preferable.
  • the cathode may have a single layer structure of the material or a laminated structure of layers containing the material.
  • a laminated structure of aluminum Z lithium fluoride and aluminum / lithium oxide is preferable.
  • the film thickness of the cathode can be appropriately selected depending on the material.
  • the hole injection layer and the hole transport layer of the organic EL device of the present invention have a function of injecting holes from the anode, a function of transporting holes, and a barrier from electrons injected from the cathode.
  • Any device having any of the functions may be used. Specific examples thereof include strength rubazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine amines, amino substituted chalcone derivatives, styrylanthracene.
  • the hole injection layer and the hole transport layer may have a single layer structure composed of one or more of the materials, or a multilayer structure having a multi-layer force of the same composition or different compositions. It may be.
  • the electron injection layer and the electron transport layer of the organic EL device of the present invention have any one of a function of injecting electrons from the cathode, a function of transporting electrons, and a function of blocking holes injected from the anode. What is necessary is just to have. Specific examples thereof include triazole derivatives, oxazol derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carpositimide derivatives, fluorenylidenemethane derivatives.
  • Metal complexes of aromatic ring tetracarboxylic acid anhydrides such as distyryl virazine derivatives, naphthalene and perylene, phthalocyanine derivatives, 8-quinolinol derivatives, and metal complexes having metal phthalocyanine, benzoxazole and benzothiazole as ligands.
  • Examples include various metal complexes, organosilane derivatives, and transition metal complex compounds of the present invention.
  • the electron injection layer and the electron transport layer may have a single-layer structure composed of one or more of the materials, or a multilayer structure having a multi-layer force of the same composition or different compositions. Moyo.
  • examples of the electron transport material used for the electron injection layer and the electron transport layer include the following compounds.
  • the electron injection layer and the Z or electron transport layer contain a ⁇ electron deficient nitrogen-containing heterocyclic derivative as a main component.
  • ⁇ electron deficient nitrogen-containing heterocyclic derivatives include benzimidazole ring, benztria Nitrogen-containing 5-membered ring selected from sol ring, pyridinoimidazole ring, pyrimidinoimidazole ring, pyridazinoimidazole ring, and nitrogen-containing nitrogen composed of pyridine ring, pyrimidine ring, pyrazine ring, triazine ring Preferred examples include 6-membered ring derivatives.
  • Preferred examples of the nitrogen-containing 5-membered ring derivative include structures represented by the following general formula B—I.
  • Examples of the nitrogen-containing 6-membered ring derivative include the following general formula C— Preferred examples include structures represented by I, cn, cm, C-IV, Ji and Hide ⁇ , and particularly preferred are structures represented by the general formulas CI and C-II.
  • L D represents a divalent or higher linking group, preferably a linking group formed of carbon, silicon, nitrogen, boron, oxygen, sulfur, metal, metal ion, or the like. More preferably a carbon atom, a nitrogen atom, a carbon atom, a boron atom, an oxygen atom, a sulfur atom, an aromatic hydrocarbon ring or an aromatic heterocycle, and still more preferably a carbon atom, a carbon atom or an aromatic. It is a hydrocarbon ring or an aromatic hetero ring.
  • L B is preferably an alkyl group as Yogu substituent may have a substituent, an alkenyl group, an alkynyl group, an aromatic hydrocarbon group, an amino group, an alkoxy group, Ariruokishi group, ⁇ sill group, an alkoxy Carboxyl group, aryloxycarbol group, acyloxy group, acylamino group, alkoxy carbolumino group, aryloxycarbolumino group, sulfo-lumino group, sulfamoyl group, strong rubamoyl group, alkylthio Group, aryl group, sulfonyl group, halogen atom, cyano group and aromatic heterocyclic group, more preferably alkyl group, aryl group, alkoxy group, aryloxy group, halogen atom, cyan group and aromatic heterocyclic group.
  • an alkyl group, an aryl group, an alkoxy group, an aryloxy group, or an aromatic heterocyclic group More preferably an alkyl group, Ariru group, an alkoxy group, an aromatic heterocyclic group. [0078] include those of the following specific examples of the linking group represented by L B.
  • R B2 represents a hydrogen atom, an aliphatic hydrocarbon group, an aryl group, or a heterocyclic group.
  • the aliphatic hydrocarbon group represented by R B2 is a linear, branched or cyclic alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms).
  • alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms.
  • alkenyl group preferably a alkenyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, such as a vinyl group, an aryl group, or a 2-butenyl group. , 3-pentenyl group, etc.
  • alkyl group preferably an alkynyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, A propargyl group, a 3-pentynyl group, etc.
  • alkyl group preferably an alkynyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, A propargyl group, a 3-pentynyl group, etc.
  • the aryl group represented by R B2 is a monocyclic or condensed aryl group, preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • the heterocyclic group represented by R B2 is a monocyclic or condensed heterocyclic group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and still more preferably 2 to 10 carbon atoms).
  • Ring group preferably an aromatic heterocyclic group containing at least one of a nitrogen atom, an oxygen atom, a sulfur atom, and a selenium atom, such as pyrrolidine, piperidine, piperazine, morpholine, Thiophene, selenophene, furan, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyridazine, pyrimidine, triazole, triazine, indole, indazole, purine, thiazoline, thiazole, thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, isoquinoline, phthalazine , Naphthy
  • Aliphatic hydrocarbon group represented by R B2, Ariru group, heterocyclic group include the same device it may also have a substituent wherein L B.
  • R B is preferably an alkyl group, an aryl group, or an aromatic heterocyclic group, more preferably an aryl group or an aromatic heterocyclic group, and still more preferably an aryl group.
  • Z B2 represents an atomic group necessary for forming an aromatic ring.
  • the aromatic ring formed by z B 2 may further form a condensed ring with another ring or may have a substituent.
  • a substituent preferably an alkyl group, an alkyl group, an alkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, an acyl group, an alkoxycarbonyl group, an arylcarbonyl group, an acyloxy group.
  • acylamino group alkoxy carbo-lumino group, aryloxy carbo-lumino group, sulfo-lumino group, sulfamoyl group, force rubamoyl group, alkylthio group, arylothio group, sulfol group, halogen atom, cyano group
  • a heterocyclic group more preferably an alkyl group, an aryl group, an alkoxy group, an aryloxy group, a halogen atom, a cyano group, or a heterocyclic group, and even more preferably an alkyl group, an aryl group, an alkoxy group, an aryloxy group.
  • aromatic heterocyclic group particularly preferably alkyl group, aryl group, alkoxy group.
  • Ru heterocyclic group der aromatic.
  • n B2 is an integer of 1 to 4, preferably 2 to 3.
  • R B71 , R B72 and R B73 are the same as R B72 in general formula (BI), respectively, and the preferred ranges are also the same.
  • Z B71, Z B72 and Zeta Beta73 are similar to Zeta B2 in the general formula (Beta iota) respectively, also are similar ranges have preferred.
  • L B71, L B72 and L B73 each represent a linking group
  • the general formula (B- I) can be mentioned those divalent examples of L B in, preferably, a single bond, a divalent aromatic hydrocarbon A hydrogen ring group, a divalent aromatic heterocyclic group, and a linking group having a combination force thereof, more preferably a single bond.
  • L m , L B72 and L B73 may have a substituent. Examples of the substituent may be the same as L B in the general formula (BI).
  • Y represents a nitrogen atom, a 1, 3, 5-benzenetriyl group or a 2, 4, 6-triazine triyl group.
  • the 1, 3, 5-benzenetriyl group may have a substituent at the 2, 4, 6-position, and examples thereof include an alkyl group, an aromatic hydrocarbon ring group, and a halogen atom. It is possible.
  • Cz is a substituted or unsubstituted carbazolyl group, aryl carbazolyl group or force rubazolylalkylene group
  • A is a group formed from a site represented by the following general formula (A).
  • n and m are integers from 1 to 3, respectively.
  • M and M ′ are each independently a nitrogen-containing heteroaromatic ring having 2 to 40 carbon atoms to form a ring, and the ring may or may not have a substituent.
  • M and M ′ may be the same or different L is a single bond, an arylene group having 6 to 30 carbon atoms, a cycloalkylene group having 5 to 30 carbon atoms, or a heteroaromatic ring having 2 to 30 carbon atoms. It may or may not have a substituent bonded to the ring, p is an integer of 0 to 2, q is 1 to 2, and r is an integer of 0 to 2, provided that p + r is 1 or more.
  • the bonding mode of the group represented by the general formula (A) depends on the number of parameters p, q, r, specifically, the forms described in (1) to (16) in the following table. It is.
  • Ar to Ar each represent the same group as R B2 in the general formula (B—I), and specific examples thereof are also the same.
  • Ar to Ar represent divalent groups similar to R B2 in the general formula (B—I).
  • the example is similar. )
  • R to R each represent the same group as R B2 in the general formula (B—I), and specific examples thereof are also the same.
  • Ar 4 each represent the same groups as R B2 in the general formula (B- I), specific examples thereof are also the same.
  • an insulator or a semiconductor inorganic compound as a substance constituting the electron injection / transport layer.
  • the electron injection / transport layer is composed of an insulator or a semiconductor, current leakage can be effectively prevented and electron injection can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkali earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides. . If the electron injecting / transporting layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injecting property can be further improved.
  • preferred alkali metal chalcogenides include, for example, Li 0
  • alkaline earth metal chalcogenides include
  • Examples thereof include CaO, BaO, SrO, BeO, BaS, and CaSe.
  • preferred al Examples of potassium metal halides include LiF, NaF, KF, LiCl, KC1, and NaCl.
  • Preferred examples of the alkaline earth metal halide include fluorides such as Ca F, BaF, SrF, MgF and BeF, and halogenated compounds other than fluorides.
  • the electron injection 'transport layer at least one of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn is used.
  • the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
  • the electron injection layer and / or the electron transport layer may contain a reducing dopant having a work function of 2.9 eV or less.
  • the reducing dopant is a compound that increases the electron injection efficiency.
  • reducing dopants include alkali metal, alkaline earth metal oxide, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkali It is at least one compound selected from the group consisting of earth metal halides, rare earth metal oxides or rare earth metal halides, alkali metal complexes, alkaline earth metal complexes, and rare earth metal complexes.
  • preferred reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1 95eV) Force Group Force At least one selected alkali metal, Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV) and Ba (work function: 2.52 eV) Group power of force at least one selected alkaline earth metal with a work function of 2.9 eV is particularly preferred .
  • a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb, and Cs, more preferably Rb or Cs, and most preferably Cs. .
  • These alkali metals can improve emission brightness and extend the life of organic EL devices by adding a relatively small amount to the electron injection region, which has a particularly high reducing ability.
  • alkaline earth metal oxides examples include BaO, SrO, CaO and Ba Sr O (0 ⁇ x ⁇ 1) mixed with these, Ba Ca O (0 ⁇ x ⁇ 1). are listed as preferred
  • alkali oxides or fluorides examples include LiF, Li 0
  • the alkali metal complex, alkaline earth metal complex, and rare earth metal complex are not particularly limited as long as they contain at least one of alkali metal ions, alkaline earth metal ions, and rare earth metal ions as metal ions.
  • the ligand include quinolinol, benzoquinolinol, attaridinol, phenanthridinol, hydroxyphenyloxazole, hydroxyphenylthiazole, hydroxydiaryloxadiazole, hydroxydiarylthiadiazole, Hydroxyphenyl lysine, hydroxy phenyl benzimidazole, hydroxy benzotriazole, hydroxy fulborane, bipyridyl, phenanthorin, phthalocyanine, porphyrin, cyclopentagen, 13-diketones, azomethines, their derivatives, etc.
  • the powers listed are not limited to these.
  • the reducing dopant is formed in a layer shape or an island shape.
  • the preferred film thickness is 0.05 to 8 nm.
  • an organic substance that is a light-emitting material or an electron injecting material that forms an interface region is simultaneously deposited while a reducing dopant is deposited by resistance heating vapor deposition.
  • a method in which a reducing dopant is dispersed therein is preferred.
  • the dispersion concentration is 100: 1 to 1: 100, preferably 5: 1 to 1: 5, as a molar ratio.
  • the reducing dopant is vapor-deposited by a resistance heating vapor deposition method alone, and preferably has a film thickness of 0.05 to lnm.
  • the light-emitting layer of the organic EL device of the present invention can inject holes from the anode or the hole injection layer when an electric field is applied, and can inject electrons from the cathode or the electron injection layer. It provides a function to move the generated charges (electrons and holes) by the force of an electric field, a field for recombination of electrons and holes, and a function to connect this to light emission.
  • the light emitting layer of the organic EL device of the present invention may contain a host material using the transition metal complex compound as a guest material, which preferably contains at least the transition metal complex compound of the present invention.
  • the host material examples include those having a force rubazole skeleton, those having a diarylamine skeleton, those having a pyridine skeleton, those having a pyrazine skeleton, those having a triazine skeleton, and those having an allylsilane skeleton. . It is preferable that the T1 (minimum triplet excited state energy level) of the host material is larger than the T1 level of the guest material.
  • the host material may be a low molecular compound or a high molecular compound.
  • the light emitting material such as the transition metal complex compound
  • a method for forming each layer is not particularly limited, but a vacuum deposition method, an LB method, a resistance heating deposition method, an electron beam method, a sputtering method, a molecular lamination method, and the like.
  • Various methods such as a coating method (spin coating method, casting method, dip coating method, etc.), an ink jet method, and a printing method can be used.
  • a coating method that is a coating method is preferred.
  • the organic thin film layer containing the transition metal complex compound of the present invention can be prepared by vacuum deposition, molecular beam deposition (MBE), solution dating, solvent coating, spin coating, casting, bar coating. It can be formed by a known method using a coating method such as a method or a roll coating method.
  • MBE molecular beam deposition
  • the coating method can be formed by dissolving the transition metal complex compound of the present invention in a solvent to prepare a coating solution, and coating and drying the coating solution on a desired layer (or electrode). . It is possible to add rosin to the coating solution. Or in a distributed state.
  • a non-conjugated polymer for example, polyvinyl carbazole
  • a conjugated polymer for example, a polyolefin polymer
  • each organic layer of the organic EL element of the present invention is not particularly limited, but generally, if the film thickness is too thin, defects such as pinholes are generated, and conversely, if it is too thick, a high applied voltage is required and efficiency is increased. Usually, the range of several nm to 1 ⁇ m is preferable because of worsening.
  • the following transition metal complex compound 1 was synthesized in the following reaction process.
  • the numerical values shown under the reaction step are those of Compound A, 2-ethoxyethanol, Compound B, and Compound 1 in this order from the left.
  • Mol. Wt. Indicates molecular weight.
  • HX110 manufactured by JEOL Ltd.
  • Luminescence was confirmed, and it was found that Compound 1 is useful as a luminescent material for organic EL devices.
  • the following transition metal complex compound 2 was synthesized in the following reaction process.
  • the following transition metal complex compound 3 was synthesized in the following reaction process.
  • reaction step The numerical values shown below the reaction step are those of Compound D, 2-ethoxyethanol, Compound B, and Compound 3 in this order from the left.
  • the following transition metal complex compound 4 was synthesized in the following reaction process.
  • reaction step The numerical values shown in the reaction step are compound E, 2-ethoxyethanol, compound B, compound F, compound F, methylene chloride, compound G, compound G, compound H, compound H, compound H, 2 ethoxyethanol in order from the upper left. , Of compound 4.
  • Tf represents a trifluoromethane sulfo group.
  • Fig. 7 shows the iH-NMR ⁇ OOMHz) spectrum measurement result of Compound F obtained.
  • Figure 8 shows the X-ray crystal structure analysis results of Compound F.
  • Figure 9 shows the ⁇ H-NMR ⁇ OMHz: solvent CD C1) spectrum measurement result of compound G obtained.
  • the following transition metal complex compound 5 was synthesized in the following reaction process.
  • the carbon at the ⁇ -position of the hydrogen of E was determined to be the carbon of K among the carbons of K and I.
  • the HMBC method determined the hydrogen on the benzene ring in the ⁇ -position and the carbon of ⁇ as ⁇ , J, and the hydrogen on the benzene ring in the ⁇ -position of the I carbon as D, ⁇ .
  • EiJ and F ⁇ J could easily estimate the NMR coupling pattern or coupling constant force.
  • the following transition metal complex compound 6 was synthesized in the following reaction process.
  • Example 1 Manufacture of organic EL elements
  • a glass substrate with a transparent electrode of 25 mm X 75 mm X 0.7 mm thick was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode after cleaning is attached to the substrate holder of the vacuum deposition apparatus, and first, the transparent electrode is covered on the surface on which the transparent electrode is formed so that the film thickness is lOOnm.
  • One screw N, N, one diphenyl one 4-aminophenol
  • One N, N—diphenyl one 4, 4, — diamino-1, 1, -biphenyl membrane (hereinafter referred to as “TPD232 membrane”) was formed by resistance heating vapor deposition.
  • This TPD232 film functions as a hole injection layer.
  • a lOnm hole transport layer (TCTA below) was formed on this film by resistance evaporation and no evaporation. Further, following the formation of the hole transport layer, the transition metal complex compound 1 was co-deposited by resistance heating as a host material (Host No. 1 below) and a dopant on the film at a thickness of 30 nm. The concentration of this dopant was 7.5% by weight. This co-deposited film functions as a light emitting layer. Thereafter, an electron transport layer (ETM1 below) having a thickness of 25 nm was formed on the light emitting layer by resistance heating vapor deposition, and further, the following Alq layer having a thickness of 5 nm was formed thereon.
  • ETM1 electron transport layer
  • LiF was used as an electron injecting electrode (cathode), and a film thickness of 0.1 nm was formed at a film forming rate of lAZmin.
  • Metal A1 was vapor-deposited on this LiF layer, and a metal cathode was formed to a thickness of 130 nm to produce an organic EL device.
  • Table 1 shows the results of conducting an energization test with a DC voltage applied to this device and measuring the CIE chromaticity. Good luminescence was obtained.
  • Example 1 an organic EL device was produced in the same manner except that Compound 3 was used instead of Compound 1 as the transition metal complex compound.
  • Table 1 shows the results of conducting an energization test on the obtained device in the same manner as in Example 1 and measuring the CIE chromaticity.
  • Table 1 shows the results of conducting an energization test on the obtained device in the same manner as in Example 1 and measuring the CIE chromaticity.
  • the organic EL device of Example 1 using the transition metal complex compound of the present invention has high luminous efficiency while being green luminescent and driven at a lower voltage than Comparative Example 1.
  • the organic EL device of Example 2 emits bluish green light and has high luminous efficiency while being driven at a lower voltage than Comparative Example 2.
  • the transition metal complex compound of the present invention can be used as a material for an organic EL device, and the organic EL device using the transition metal complex has a long lifetime with high luminous efficiency. Yes, it can be applied to fields such as various display elements, displays, knock lights, illumination light sources, signs, signboards, interiors, etc., and is particularly suitable as a display element for color displays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 イリジウム等の金属を含む特定構造の金属錯体化合物、並びに、一対の電極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、前記金属錯体化合物を含有する有機エレクトロルミネッセンス素子であり、発光効率が高く、寿命が長い有機EL素子及びそれを実現する新規な金属錯体化合物を提供する。

Description

遷移金属錯体ィ匕合物及びそれを用いた有機エレクト口ルミネッセンス素子 技術分野
[0001] 本発明は、遷移金属錯体ィ匕合物及びそれを用いた有機エレクト口ルミネッセンス素 子並びに有機化合物又は高分子化合物の製造方法に関し、特に、発光効率が高く 、寿命が長 、有機エレクト口ルミネッセンス素子及びそれを実現する新規な遷移金属 錯体ィ匕合物並びに有機化合物又は高分子化合物の製造方法に関するものである。 背景技術
[0002] 有機エレクト口ルミネッセンス (EL)素子は、電界を印加することより、陽極より注入さ れた正孔と陰極より注入された電子の再結合エネルギーにより蛍光性物質が発光す る原理を利用した自発光素子である。イーストマン 'コダック社の C. W. Tangらによ る積層型素子による低電圧駆動有機 EL素子の報告 (C.W. Tang, S.A. Vanslyke,ァ プライドフィジックスレターズ (Applied Physics Letters),51卷, 913頁, 1987年等)力 S なされて以来、有機材料を構成材料とする有機 EL素子に関する研究が盛んに行わ れている。 Tangらは、トリス(8—ヒドロキシキノリノールアルミニウム)を発光層に、トリ フエ二ルジァミン誘導体を正孔輸送層に用いている。積層構造の利点としては、発光 層への正孔の注入効率を高めること、陰極より注入された電子をブロックして再結合 により生成する励起子の生成効率を高めること、発光層内で生成した励起子を閉じ 込めること等が挙げられる。この例のように有機 EL素子の素子構造としては、正孔輸 送 (注入)層、電子輸送発光層の 2層型、又は正孔輸送 (注入)層、発光層、電子輸 送 (注入)層の 3層型等がよく知られている。こうした積層型構造素子では注入された 正孔と電子の再結合効率を高めるため、素子構造や形成方法の工夫がなされている 有機 EL素子の発光材料としてはトリス(8—キノリノラート)アルミニウム錯体等のキ レート錯体、クマリン誘導体、テトラフエ-ルブタジエン誘導体、ジスチリルァリーレン 誘導体、ォキサジァゾール誘導体等の発光材料が知られており、それらからは青色 から赤色までの可視領域の発光が得られることが報告されており、カラー表示素子の 実現が期待されている (例えば、特許文献 1,特許文献 2,特許文献 3等参照)。
[0003] また、近年、有機 EL素子の発光層に蛍光材料の他に、りん光材料を利用すること も提案されている (例えば、非特許文献 1,非特許文献 2参照)。このように有機 EL素 子の発光層においてりん光材料の励起状態の一重項状態と三重項状態とを利用し、 高い発光効率が達成されている。有機 EL素子内で電子と正孔が再結合する際には スピン多重度の違いから一重項励起子と三重項励起子とが 1: 3の割合で生成すると 考えられているので、りん光性の発光材料を用いれば蛍光のみを使った素子に比べ て 3〜4倍の発光効率の達成が考えられる。
このような有機 EL素子においては、 3重項の励起状態又は 3重項の励起子が消光 しないように順次、陽極,正孔輸送層,有機発光層,電子輸送層(正孔阻止層),電 子輸送層,陰極のように層を積層する構成が用いられ、有機発光層にホスト化合物と りん光発光性の化合物が用いられてきた (例えば、特許文献 4,特許文献 5参照)。こ れらの特許文献は赤〜緑色に発光するりん光材料に関する技術である。また、青色 系発光色を有する発光材料に関する技術も公開されている (例えば、特許文献 6,特 許文献 7,特許文献 8参照)。しかし、これらは素子寿命が非常に短ぐ特に特許文献 7及び 8では Ir金属とリン原子が結合した配位子骨格が記載されており、これらは発 光色が青色化するものの結合が弱ぐ耐熱性が著しく乏しい。また、特許文献 9には 、同様に酸素原子と窒素原子が中心金属に結合した錯体に関して記載されているが 、酸素原子に結合する基の具体的な効果について何ら記載が無く不明である。さら に、特許文献 10では異なる環構造に含まれる窒素原子が 1つずつ中心金属に結合 した錯体が開示されており、それを利用した素子は青色発光を示すものの、外部量 子効率は 5%前後と低 、ものとなって 、る。
[0004] 一方、近年、金属カルベン結合を有する遷移金属錯体化合物(以下、カルべン錯 体ということがある)について研究がなされている(例えば、非特許文献 3〜11参照) カルベンとは二配位炭素で、 sp2混成軌道と 2p軌道に二つの電子を有するものを いい、その二つの電子が入る軌道とスピンの向きの組み合わせ力 4種の構造をとり 得るが、通常は一重項カルベンとなり、 sp2混成の被占軌道と空の 2p軌道からなる。 従来、カルベン錯体は短寿命 '不安定であり、有機合成反応の反応中間体又はォ レフインへの付加といった合成変換試剤として利用されてきた力 1991年頃、芳香 族複素環構造カゝらなる安定カルべン錯体や、非芳香族環状構造カゝらなる安定カル ベン錯体が見出され、さらにその後、窒素とリンにより安定ィ匕することで、非環状カル ベン錯体が安定に得られるに至った。また、これを配位子として遷移金属と結合させ ることで触媒性能が向上することから、近年、有機合成における触媒反応では、安定 カルべン錯体への期待が高まって 、る。
特に、ォレフィンメタセシス反応では、安定カルベン錯体を添加又は配位させること で顕著な性能向上が見出されている。また、近年は、鈴木カップリング反応の効率化 やアルカンの酸ィ匕ゃ選択的ヒドロホルミルィ匕反応、また光学活性なカルべン錯体など の研究が展開されており、カルべン錯体の有機合成分野への応用は、注目を集めて いる。
また、具体的にカルベンイリジウム結合を有する錯体例は、以下の非特許文献 12 ( 非複素環型カルベン配位子力もなるトリス (カルベン)イリジウム錯体)及び非特許文 献 13 (単座配位型モノカルベンイリジウム錯体)に記載があるが、有機 EL素子分野 等への応用は記載されて 、な 、。
特許文献 1 :特開平 8— 239655号公報
特許文献 2 :特開平 7— 183561号公報
特許文献 3:特開平 3 - 200289号公報
特許文献 4:米国特許第 6, 097, 147号明細書
特許文献 5 :国際公開 WO01Z41512号公報
特許文献 6 :US2001Z0025108号公開公報
特許文献 7: US 2002/0182441号公開公報
特許文献 8:特開 2002— 170684号公報
特許文献 9:特開 2003— 123982号公報
特許文献 10:特開 2003— 133074号公報
非特許文献 1 : D. F. OBrien and M. A. Baldo et al"lmproved energy tr ansferin electrophosphorescent devices "Vol. 74 No. 3, pp 442-444, Januaryl8, 1999
非特許文献 2 : M. A. Baldo et al "Very high - efficiency green organic li ght- emitting devices based on electrophosphorescence" Applied Phys ics letters Vol. 75 No. 1, pp4-6, July 5, 1999
非特許文献 3 : Chem. Rev. 2000, 100, p39
非特許文献 4 Am. Chem. Soc. , 1991, 113, p361
非特許文献 5 :Angew. Chem. Int. Ed. , 2002, 41, pi 290
非特許文献 6 Am. Chem. Soc. , 1999, 121, p2674
非特許文献 7 : Organometallics, 1999, 18, p2370
非特許文献 8 :Angew. Chem. Int. Ed. , 2002, 41, pl363
非特許文献 9 :Angew. Chem. Int. Ed. , 2002, 41, pi 745
非特許文献 10 : Organometallics, 2000, 19, p3459
非特許文献 ll :TetrahedronAymmetry, 2003, 14, p951
非特許文献 12 : Organomet. Chem. , 1982, 239, C26-C30
非特許文献 13 : Chem. Commun. , 2002, ρ2518
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、前記の課題を解決するためになされたもので、発光効率が高ぐ寿命が 長い有機 EL素子及びそれを実現する新規な遷移金属錯体化合物を提供することを 目的とする。
課題を解決するための手段
[0007] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、金属カルベン 結合を有する遷移金属錯体化合物を用いると、発光効率が高ぐ長寿命の有機 EL 素子が得られることを見出し、本発明を完成するに至った。
[0008] すなわち、本発明は、下記一般式(1)及び (6)〜(8)で表される金属カルベン結合 を有する遷移金属錯体化合物を提供するものである。
[化 1]
Figure imgf000006_0001
[一般式(1)において、 L2→Mは金属カルベン結合を示し、実線(一)で示した結合 は共有結合を、矢印(→)で示した結合は配位結合を意味する。 Mは、イリジウム ) 、白金(Pt)、ロジウム (Rh)又はパラジウム(Pd)の金属原子を示す。 L1 L2は、架 橋二座配位子を示し、 L3及び L4は、それぞれ独立に、単座配位子又は、 L3と L4が 架橋した架橋二座配位子(L3—L4 )を示す。 kは 1〜3、 iは 0〜2の整数で、 k + iは金 属 Mの原子価を示す。 jは 0〜4の整数を示す。 k、 i及び jが複数のときは、 L1〜L4は 、それぞれ同じあっても異なっていてもよぐ隣接するもの同士で架橋していてもよい
L1は、置換基を有してもよい核炭素数 6〜30の 2価の芳香族炭化水素基、置換基 を有してもよい核原子数 6〜30の 2価の複素環基、置換基を有してもよい炭素数 1〜 30の 2価のカルボキシル含有基、置換基を有して!/、てもよ 、2価のアミノ基又は水酸 基含有炭化水素基、置換基を有してもょ 、核炭素数 3〜50のシクロアルキレン基、 置換基を有してもょ 、炭素数 1〜30のアルキレン基、置換基を有してもよ!、炭素数 2 〜30のァルケ-レン基、置換基を有してもょ 、炭素数 7〜40のァラルキレン基であり
L2は、置換基を有してもよいカルベン炭素を核に持つ核炭素数 6〜30の 1価の芳 香族炭化水素基であり、
L3は、置換基を有してもよい核炭素数 6〜30の 1価の芳香族炭化水素基、置換基 を有してもょ ヽ核原子数 6〜30の 1価の複素環基、置換基を有してもょ ヽ炭素数 1〜 30の 1価のカルボキシル含有基、置換基を有して!/、てもよ 、 1価のアミノ基又は水酸 基含有炭化水素基、置換基を有してもよい核炭素数 3〜50のシクロアルキル基、置 換基を有してもょ 、炭素数 1〜30のアルキル基、置換基を有してもよ!、炭素数 2〜3 0のァルケ-ル基、置換基を有してもよい炭素数 7〜40のァラルキル基、及び L3とし4 が架橋した場合には前記各基の 2価の基であり、
L4は、 L1が表す前記芳香族炭化水素、アルカン、アルケン及びこれら各基の炭素 原子が、窒素原子、硫黄原子、酸素原子及びリン原子のいずれかで置き換わった化 合物からなる配位子。 ]
[0010] [化 2]
Figure imgf000007_0001
[0011] [一般式 (6)において、 C (炭素原子)→Irは金属カルベン結合を示し、実線(―)で 示した結合は共有結合を、矢印(→)で示した結合は配位結合を意味する。
Y1及び Y2は、それぞれ独立に、窒素含有基(—NR1!^)、リン含有基(— PR1)、酸 素含有基(一 OR1)、硫黄含有基(一 SR1)であり、 Y1と Y2は、架橋し環構造を形成し ていてもよい。
(R1及び R2は、それぞれ独立に、水素原子、置換基を有してもよい炭素数 1〜30の アルキル基、置換基を有してもよい炭素数 1〜30のハロゲンィ匕アルキル基、置換基 を有してもよ!ヽ核炭素数 6〜30の芳香族炭化水素基、置換基を有してもよ!ヽ核炭素 数 3〜50のシクロアルキル基、置換基を有してもょ 、炭素数 7〜40のァラルキル基、 置換基を有してもょ 、炭素数 2〜30のァルケ-ル基、置換基を有してもよ!、核原子 数 3〜30の複素環基、置換基を有してもよい炭素数 1〜30のアルコキシ基、置換基 を有してもょ 、核炭素数 6〜30のァリールォキシ基、置換基を有してもよ!、炭素数 3 〜30アルキルアミノ基、置換基を有してもよい炭素数 6〜30のァリールアミノ基、置 換基を有してもょ 、炭素数 3〜30アルキルシリル基、置換基を有してもよ!、炭素数 6 〜30のァリールシリル基、置換基を有してもよい炭素数 1〜30のカルボキシル含有 基であり、 R1と R2は架橋していてもよい。 )
L5及び L6は、それぞれ独立に、単座配位子又は、 L5と L6が架橋した架橋二座配 位子 (L5—L6 )を示す。 nは 0〜4の整数である。 nが複数のときは、複数の L6は、そ れぞれ同じあっても異なっていてもよぐ架橋していてもよい。また、 Y1、 Y2、 L5及び L6は、それぞれ隣接するもの同士で架橋していてもよい。
L5は、置換基を有してもよい核炭素数 6〜30の芳香族炭化水素基、置換基を有し てもよ 、核原子数 3〜30の複素環基、置換基を有してもよ!、炭素数 1〜30のカルボ キシル含有基、置換基を有してもよい核炭素数 3〜50のシクロアルキル基、置換基 を有してもょ 、炭素数 1〜30のアルキル基、置換基を有してもょ 、炭素数 2〜30の ァルケ-ル基、置換基を有してもよい炭素数 7〜40のァラルキル基であり、前記アル キル基、前記アルケニル基及び前記ァラルキル基の炭素原子が、それぞれ窒素原 子、硫黄原子、酸素原子又はケィ素原子に置き換わっていてもよい。
L6は、前記複素環基、又は前記アルキル基、前記アルケニル基及び前記ァラルキ ル基の炭素原子が、それぞれ窒素原子、硫黄原子、酸素原子又はケィ素原子に置 き換わった基である。 ]
[0012] [化 3]
Figure imgf000008_0001
[0013] [一般式(7)において、 C (炭素原子)→Irは金属カルベン結合を示し、実線(―)で 示した結合は共有結合を、矢印(→)で示した結合は配位結合を意味する。
Y3及び Y4は、それぞれ独立に、窒素含有基(—NR1!^)、リン含有基(— PRiR2) 酸素含有基(一 OR1)、硫黄含有基(一 SR1)、ホウ素含有基(一 BR 2)、であり、 Y3 と Y4は架橋し環構造を形成して 、てもよ 、。
(R1及び R2は、それぞれ独立に、水素原子、置換基を有してもよい炭素数 1〜30の アルキル基、置換基を有してもよい炭素数 1〜30のハロゲンィ匕アルキル基、置換基 を有してもよ!ヽ核炭素数 6〜30の芳香族炭化水素基、置換基を有してもよ!ヽ核炭素 数 3〜50のシクロアルキル基、置換基を有してもょ 、炭素数 7〜40のァラルキル基、 置換基を有してもょ 、炭素数 2〜30のァルケ-ル基、置換基を有してもよ!、核原子 数 3〜30の複素環基、置換基を有してもよい炭素数 1〜30のアルコキシ基、置換基 を有してもょ 、核炭素数 6〜30のァリールォキシ基、置換基を有してもよ!、炭素数 3 〜30アルキルアミノ基、置換基を有してもよい炭素数 6〜30のァリールアミノ基、置 換基を有してもょ 、炭素数 3〜30アルキルシリル基、置換基を有してもよ!、炭素数 6 〜30のァリールシリル基、置換基を有してもよい炭素数 1〜30のカルボキシル含有 基であり、 R1と R2は架橋していてもよい。 )
L7及び L8は、それぞれ独立に、単座配位子又は L7と が架橋した架橋二座配位 子 (L7—L8 )を示す。 nは 0〜4の整数である。 nが複数のときは、複数ある L8は、それ ぞれ同じあっても異なっていてもよぐ架橋していてもよい。また、
Figure imgf000009_0001
L7及び L8 は、それぞれ隣接するもの同士で架橋していてもよい。
L7は、 pKa値が— 10以下である超強酸類、カルボン酸類、アルデヒド類、ケトン類 、アルコール類、チォアルコール類、フエノール類、アミン類、アミド類、芳香族類もし くはアルカン類の共役塩基、水素イオン又はハロゲンィ匕物イオンを示す。
L8は、前記複素環基、又は前記アルキル基、前記ァルケ-ル基及び前記ァラルキ ル基の炭素原子が、それぞれ窒素原子、硫黄原子、酸素原子又はケィ素原子に置 き換わった基である。 ]
[0014] [化 4]
Figure imgf000009_0002
[0015] [一般式 (8)において、 L2→Irは金属カルベン結合を示し、実線(一)で示した結合 は共有結合を、矢印 (→)で示した結合は配位結合を意味する。 L1 -L2は、架橋二 座配位子を示す。
L1は、置換基を有してもよい核炭素数 6〜30の 2価の芳香族炭化水素基、置換基 を有してもよい核原子数 6〜30の 2価の複素環基、置換基を有してもよい炭素数 1〜 30の 2価のカルボキシル含有基、置換基を有して!/、てもよ 、2価のアミノ基又は水酸 基含有炭化水素基、置換基を有してもょ 、核炭素数 3〜50のシクロアルキレン基、 置換基を有してもょ 、炭素数 1〜30のアルキレン基、置換基を有してもよ!、炭素数 2 〜30のァルケ-レン基、置換基を有してもょ 、炭素数 7〜40のァラルキレン基であり
L2は、置換基を有してもよいカルベン炭素を核に持つ核炭素数 6〜30の 1価の芳 香族炭化水素基である。
L7及び L8は、それぞれ独立に、単座配位子又は L7と L8が架橋した架橋二座配位 子 (L7—L8 )を示す。 nは 0〜4の整数である。 nが複数のときは、複数ある L8は、それ ぞれ同じあっても異なって 、てもよく、架橋して!/、てもよ!/、。
L7は、 pKa値が— 10以下である超強酸類、カルボン酸類、アルデヒド類、ケトン類 、アルコール類、チォアルコール類、フエノール類、アミン類、アミド類、芳香族類、ァ ルカン等の共役塩基、水素イオン又はハロゲンィ匕物イオンを示す。
L8は、前記複素環基、又は前記アルキル基、前記アルケニル基及び前記ァラルキ ル基の炭素原子が、それぞれ窒素原子、硫黄原子、酸素原子又はケィ素原子に置 き換わった基である。 ]
[0016] また、本発明は、前記一般式 (7)又は (8)の遷移金属錯体ィ匕合物を触媒として用 いる有機化合物又は高分子化合物の製造方法を提供するものである。
さらに、本発明は、陽極と陰極間に少なくとも発光層を有する一層又は複数層から なる有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少なくとも 1層が、前記遷移金属錯体化合物を含有する有機 EL素子を提供するものである。 発明の効果
[0017] 本発明の遷移金属錯体化合物を用いた有機 EL素子は、発光効率が高ぐ長寿命 である。
図面の簡単な説明
[0018] [図 1]合成実施例 1において得られた遷移金属錯体化合物 1の iH—NMRスペクトル を示す図である。 [図 2]合成実施例 1にお ヽて得られた遷移金属錯体化合物 1の発光スペクトルを示す 図である。
[図 3]合成実施例 2にお 、て得られた遷移金属錯体化合物 2の iH—NMRスペクトル を示す図である。
[図 4]合成実施例 2において得られた遷移金属錯体化合物 2の発光スペクトルを示す 図である。
[図 5]合成実施例 3にお 、て得られた遷移金属錯体化合物 3の iH—NMRスペクトル を示す図である。
[図 6]合成実施例 3において得られた遷移金属錯体化合物 3の発光スペクトルを示す 図である。
[図 7]合成実施例 4において得られた化合物 Fの — NMR ^ベクトルを示す図であ る。
[図 8]合成実施例 4において得られた化合物 Fの X線結晶構造解析を示す図である。
[図 9]合成実施例 4にお 、て得られた化合物 Gの — NMRスペクトルを示す図であ る。
[図 10]合成実施例 4において得られた化合物 Hの — NMRスペクトルを示す図で ある。
[図 11]合成実施例 4において得られた遷移金属錯体化合物 4の発光スペクトルを示 す図である。
[図 12]合成実施例 5において得られた遷移金属錯体ィ匕合物 5の1 H— NMRスぺタト ルを示す図である。
[図 13]合成実施例 6にお 、て得られた遷移金属錯体化合物 6の ¾ - NMRスぺタト ルを示す図である。
[図 14]合成実施例 6において得られた遷移金属錯体化合物 6の発光スペクトルを示 す図である。
発明を実施するための最良の形態
本発明の遷移金属錯体化合物は、下記一般式(1)及び (6)で表される金属カルべ ン結合を有する遷移金属錯体化合物である。 以下、まず一般式(1)について説明する。
[化 5]
Figure imgf000012_0001
一般式(1)において、 L2→Mは金属カルベン結合を示し、実線(一)で示した結合 は共有結合を、矢印 (→)で示した結合は配位結合を意味する。
一般式(1)において、 Mは、イリジウム (Ir)、白金(Pt)、ロジウム (Rh)又はパラジゥ ム(Pd)の金属原子を示し、 Irが好まし!/、。
一般式(1)において、 L1 -L2は、架橋二座配位子を示し、 L3及び L4は、それぞれ 独立に、単座配位子又は、 L3とし4が架橋した架橋二座配位子 (L3 -L4 )を示す。 k は 1〜3、 iは 0〜2の整数で、 k+iは金属 Mの原子価を示す。 jは 0〜4の整数を示す 。 k、 i及び jが複数のときは、 I^〜L4は、それぞれ同じあっても異なっていてもよぐ隣 接するもの同士で架橋して 、てもよ 、。
一般式(1)において、 L1は、置換基を有してもよい核炭素数 6〜30の 2価の芳香族 炭化水素基、置換基を有してもよい核原子数 6〜30の 2価の複素環基、置換基を有 してもょ 、炭素数 1〜30の 2価のカルボキシル含有基、置換基を有して!/、てもよ!/、2 価のアミノ基又は水酸基含有炭化水素基、
Figure imgf000012_0002
、核炭素数 3〜50の シクロアルキレン基、置換基を有してもよい炭素数 1〜30のアルキレン基、置換基を 有してもょ 、炭素数 2〜30のァルケ-レン基、置換基を有してもょ 、炭素数 7〜40の ァラルキレン基であり、
L2は、置換基を有してもよいカルベン炭素を核に持つ核炭素数 6〜30の 1価の芳 香族炭化水素基であり、
L3は、置換基を有してもよい核炭素数 6〜30の 1価の芳香族炭化水素基、置換基 を有してもょ ヽ核原子数 6〜30の 1価の複素環基、置換基を有してもょ ヽ炭素数 1〜 30の 1価のカルボキシル含有基、置換基を有して!/、てもよ 、 1価のアミノ基又は水酸 基含有炭化水素基、置換基を有してもよい核炭素数 3〜50のシクロアルキル基、置 換基を有してもょ 、炭素数 1〜30のアルキル基、置換基を有してもよ!、炭素数 2〜3 0のァルケ-ル基、置換基を有してもよい炭素数 7〜40のァラルキル基、及び L3とし4 が架橋した場合には前記各基の 2価の基である。
[0021] 前記芳香族炭化水素基としては、核炭素数 6〜18のものが好ましぐ例えば、フエ -ル基、 1 ナフチル基、 2 ナフチル基、 1 アントリル基、 2 アントリル基、 9ーァ ントリル基、 1 フエナントリル基、 2 フエナントリル基、 3 フエナントリル基、 4 フエ ナントリル基、 9 フエナントリル基、 1 ナフタセ-ル基、 2 ナフタセ-ル基、 9ーナ フタセ-ル基、 1—ピレ-ル基、 2 ピレ-ル基、 4 ピレ-ル基、 2 ビフエ-ルイル 基、 3—ビフエ-ルイル基、 4—ビフエ-ルイル基、 p ターフェ-ルー 4—ィル基、 p ターフェ-ルー 3—ィル基、 p ターフェ-ルー 2—ィル基、 m ターフェ-ルー 4 ーィル基、 m—ターフェ-ルー 3—ィル基、 m—ターフェ-ルー 2—ィル基、 o トリル 基、 m—トリル基、 ρ トリル基、 p— t—ブチルフエ-ル基、 p— (2—フエ-ルプロピル )フエ-ル基、 3—メチルー 2 ナフチル基、 4ーメチルー 1 ナフチル基、 4 メチル 1 アントリル基、 4,ーメチルビフエ-ルイル基、 4"—tーブチルー p—ターフェ- ルー 4ーィル基、 o—タメ-ル基、 m—タメ-ル基、 p タメ-ル基、 2, 3 キシリレニ ル基、 3, 4 キシリレ-ル基、 2, 5 キシリレ-ル基、メシチレ-ル基、パーフルォロ フ 二ル基等及びこれらを 2価の基としたものが挙げられる。
これらの中で好ましくは、フエ-ル基、 1 ナフチル基、 2 ナフチル基、 9 フエナ ントリル基、 2 ビフエ-ルイル基、 3 ビフエ-ルイル基、 4 ビフエ-ルイル基、 p— トリル基、 3, 4 キシリレニル基等及びこれらを 2価の基としたものである。
[0022] 前記複素環基としては、核原子数 3〜18のものが好ましぐ例えば、 1 ピロリル基 、 2 ピロリル基、 3 ピロリル基、ビラジニル基、 2 ピリジ-ル基、 1 イミダゾリル基 、 2—イミダゾリル基、 1—ピラゾリル基、 1—インドリジ-ル基、 2—インドリジ-ル基、 3 インドリジ-ル基、 5—インドリジ-ル基、 6—インドリジ-ル基、 7—インドリジ-ル基 、 8 インドリジ-ル基、 2 イミダゾピリジ-ル基、 3 イミダゾピリジ-ル基、 5 イミ ダゾピリジ-ル基、 6—イミダゾピリジ-ル基、 7—イミダゾピリジ-ル基、 8—イミダゾピ リジ-ル基、 3 ピリジ-ル基、 4 ピリジ-ル基、 1—インドリル基、 2—インドリル基、 3—インドリル基、 4 インドリル基、 5—インドリル基、 6—インドリル基、 7—インドリル 基、 1—イソインドリル基、 2—イソインドリル基、 3—イソインドリル基、 4—イソインドリ ル基、 5—イソインドリル基、 6—イソインドリル基、 7—イソインドリル基、 2 フリル基、 3 フリル基、 2 べンゾフラ-ル基、 3 べンゾフラ-ル基、 4一べンゾフラ-ル基、 5 一べンゾフラ-ル基、 6 べンゾフラ-ル基、 7 べンゾフラ-ル基、 1 イソべンゾフ ラ-ル基、 3—イソべンゾフラ-ル基、 4 イソべンゾフラ-ル基、 5—イソべンゾフラ- ル基、 6 イソべンゾフラ-ル基、 7 イソべンゾフラ-ル基、 2 キノリル基、 3 キノ リル基、 4 キノリル基、 5—キノリル基、 6—キノリル基、 7—キノリル基、 8—キノリル基 、 1 イソキノリル基、 3 イソキノリル基、 4 イソキノリル基、 5 イソキノリル基、 6— イソキノリル基、 7 イソキノリル基、 8 イソキノリル基、 2 キノキサリニル基、 5 キノ キサリ-ル基、 6 キノキサリニル基、 1一力ルバゾリル基、 2—力ルバゾリル基、 3—力 ルバゾリル基、 4一力ルバゾリル基、 9一力ルバゾリル基、 13 カルボリン 1 ィル, j8—カルボリン— 3—ィル, j8—カルボリン— 4—ィル, j8—カルボリン— 5—ィル, 13 カルボリン 6—ィル, j8—カルボリン 7—ィル, j8—カルボリン 6—ィル, 13— カルボリンー9 ィル, 1 フエナンスリジ-ル基、 2 フエナンスリジ-ル基、 3 フエ ナンスリジ-ル基、 4 フエナンスリジ-ル基、 6—フエナンスリジ-ル基、 7—フエナン スリジ-ル基、 8 フエナンスリジ-ル基、 9 フエナンスリジ-ル基、 10 フエナンス リジ-ル基、 1—アタリジ-ル基、 2—アタリジ-ル基、 3—アタリジ-ル基、 4—アタリジ -ル基、 9—アタリジ-ル基、 1, 7 フエナンスロリン— 2—ィル基、 1, 7 フエナンス 口リン— 3—ィル基、 1, 7 フエナンスロリン— 4—ィル基、 1, 7 フエナンスロリン— 5 —ィル基、 1, 7 フエナンスロリン— 6—ィル基、 1, 7 フエナンスロリン— 8—ィル基 、 1, 7 フエナンスロリン— 9—ィル基、 1, 7 フエナンスロリン— 10—ィル基、 1, 8 —フエナンスロリン一 2—ィル基、 1, 8 フエナンスロリン一 3—ィル基、 1, 8 フエナ ンスロリン一 4—ィル基、 1, 8 フエナンスロリン一 5—ィル基、 1, 8 フエナンスロリン —6—ィル基、 1, 8 フエナンスロリン— 7—ィル基、 1, 8 フエナンスロリン— 9—ィ ル基、 1, 8 フエナンスロリン 10—ィル基、 1, 9 フエナンスロリンー2—ィル基、 1 , 9 フエナンスロリン— 3—ィル基、 1, 9 フエナンスロリン— 4—ィル基、 1, 9 フエ ナンスロリン— 5—ィル基、 1, 9 フエナンスロリン— 6—ィル基、 1, 9 フエナンスロ リン— 7—ィル基、 1, 9 フエナンスロリン— 8—ィル基、 1, 9 フエナンスロリン— 10 —ィル基、 1, 10 フエナンスロリン— 2—ィル基、 1, 10 フエナンスロリン— 3—ィ ル基、 1, 10—フエナンスロリン— 4—ィル基、 1, 10—フエナンスロリン— 5—ィル基、 2, 9 フエナンスロリン一 1—ィル基、 2, 9 フエナンスロリン一 3—ィル基、 2, 9 フ ェナンスロリン— 4—ィル基、 2, 9 フエナンスロリン— 5—ィル基、 2, 9 フエナンス 口リン一 6—ィル基、 2, 9 フエナンスロリン一 7—ィル基、 2, 9 フエナンスロリン一 8 —ィル基、 2, 9 フエナンスロリン— 10—ィル基、 2, 8 フエナンスロリン— 1—ィル 基、 2, 8 フエナンスロリンー3—ィル基、 2, 8 フエナンスロリンー4ーィル基、 2, 8 —フエナンスロリン一 5—ィル基、 2, 8 フエナンスロリン一 6—ィル基、 2, 8 フエナ ンスロリン一 7—ィル基、 2, 8 フエナンスロリン一 9—ィル基、 2, 8 フエナンスロリン — 10—ィル基、 2, 7 フエナンスロリン一 1—ィル基、 2, 7 フエナンスロリン一 3— ィル基、 2, 7 フエナンスロリン一 4—ィル基、 2, 7 フエナンスロリン一 5—ィル基、 2, 7 フエナンスロリン一 6—ィル基、 2, 7 フエナンスロリン一 8—ィル基、 2, 7 フ ェナンスロリン 9ーィル基、 2, 7 フエナンスロリン 10—ィル基、 1 フエナジ-ル 基、 2 フエナジ-ル基、 1 フエノチアジ-ル基、 2 フエノチアジ-ル基、 3 フエノ チアジ-ル基、 4 フエノチアジ-ル基、 10 フエノチアジ-ル基、 1ーフエノキサジ ニル基、 2 フエノキサジ-ル基、 3 フエノキサジ-ル基、 4 フエノキサジ-ル基、 10 フエノキサジ-ル基、 2—ォキサゾリル基、 4ーォキサゾリル基、 5—ォキサゾリル 基、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザニル基、 2 チェ- ル基、 3 チェ-ル基、 2 メチルピロ一ルー 1ーィル基、 2 メチルピロ一ルー 3—ィ ル基、 2 メチルピロ一ルー 4ーィル基、 2 メチルピロ一ルー 5—ィル基、 3 メチル ピロ一ルー 1ーィル基、 3 メチルピロ一ルー 2—ィル基、 3 メチルピロ一ルー 4ーィ ル基、 3 メチルピロ一ルー 5—ィル基、 2 t ブチルピロ一ルー 4ーィル基、 3—(2 フエ-ルプロピル)ピロ一ルー 1ーィル基、 2—メチルー 1 インドリル基、 4 メチル 1 インドリル基、 2—メチルー 3 インドリル基、 4ーメチルー 3 インドリル基、 2— t ブチル 1 インドリル基、 4 t ブチル 1 インドリル基、 2 t ブチル 3 インド リル基、 4 t—ブチル 3—インドリル基、ピロリジン、ビラゾリジン、ピペラリジン等及び これらをを 2価の基としたものが挙げられる。 これらの中で好ましくは、 2—ピリジ-ル基、 1—インドリジ-ル基、 2—インドリジ-ル 基、 3—インドリジ-ル基、 5—インドリジ-ル基、 6—インドリジ-ル基、 7—インドリジ -ル基、 8 インドリジ-ル基、 2 イミダゾピリジ-ル基、 3 イミダゾピリジニル基、 5 イミダゾピリジニル基、 6—イミダゾピリジ-ル基、 7—イミダゾピリジ-ル基、 8—イミ ダゾピリジ-ル基、 3 ピリジ-ル基、 4 ピリジ-ル基、 1 インドリル基、 2 インドリ ル基、 3—インドリル基、 4 インドリル基、 5—インドリル基、 6—インドリル基、 7—イン ドリル基、 1—イソインドリル基、 2—イソインドリル基、 3—イソインドリル基、 4—イソィ ンドリル基、 5 イソインドリル基、 6 イソインドリル基、 7 イソインドリル基、 1 カル バゾリル基、 2—力ルバゾリル基、 3—力ルバゾリル基、 4一力ルバゾリル基、 9 カル バゾリル基及びこれらを 2価の基としたものである。
[0023] 前記カルボキシル含有基としては、例えば、エステル結合(-C ( = 0) 0-)、メチ ルエステル、ェチルエステル、ブチルエステル等及びこれらを 2価の基としたものが 挙げられる。
前記シクロアルキル及びシクロアルキレン基としては、例えば、シクロプロピル基、シ クロブチル基、シクロペンチル基、シクロへキシル基、 4ーメチルシクロへキシル基、 1 —ァダマンチル基、 2—ァダマンチル基、 1 ノルボルニル基、 2—ノルボル-ル基等 及びこれらを 2価の基としたものが挙げられる。
[0024] 前記アルキル基及びアルキレン基としては、炭素数 1 10のものが好ましぐ例え ば、メチル基、ェチル基、プロピル基、イソプロピル基、 n—ブチル基、 s ブチル基、 イソブチル基、 t ブチル基、 n ペンチル基、 n キシル基、 n プチル基、 n ーォクチル基、 n ノニル基, n デシル基, n—ゥンデシル基, n—ドデシル基, n— トリデシル基, n—テトラデシル基, n ペンタデシル基, n キサデシル基, n プタデシル基, n—ォクタデシル基,ネオペンチル基, 1ーメチルペンチル基, 2—メ チルペンチル基, 1 ペンチルへキシル基, 1ーブチルペンチル基, 1 プチルォ クチル基, 3—メチルペンチル基,ヒドロキシメチル基、 1ーヒドロキシェチル基、 2 ヒ ドロキシェチル基、 2 ヒドロキシイソブチル基、 1, 2 ジヒドロキシェチル基、 1, 3— ジヒドロキシイソプロピル基、 2, 3 ジヒドロキシ一 t—ブチル基、 1, 2, 3 トリヒドロキ シプロピル基、アミノメチル基、 1 アミノエチル基、 2—アミノエチル基、 2—ァミノイソ ブチル基、 1, 2 ジアミノエチル基、 1, 3 ジァミノイソプロピル基、 2, 3 ジアミノー t ブチル基、 1, 2, 3 トリァミノプロピル基、シァノメチル基、 1—シァノエチル基、 2 ーシァノエチル基、 2 シァノイソブチル基、 1, 2 ジシァノエチル基、 1, 3 ジシァ ノイソプロピル基、 2, 3 ジシァノー t—ブチル基、 1, 2, 3 トリシアノプロピル基、二 トロメチル基、 1 -トロェチル基、 2— -トロェチル基、 1, 2—ジニトロェチル基、 2, 3 ジ-トロー t—ブチル基、 1, 2, 3 トリ-トロプロピル基、シクロペンチル基、シク 口へキシル基、シクロォクチル基、 3, 5—テトラメチルシクロへキシル基等及びこれら を 2価の基としたものが挙げられる。
これらの中で好ましくは、メチル基、ェチル基、プロピル基、イソプロピル基、 n—ブ チル基、 s ブチル基、イソブチル基、 t ブチル基、 n—ペンチル基、 n—へキシル 基、 n—へプチル基、 n—ォクチル基、 n ノ-ル基、 n デシル基、 n—ゥンデシル基 、 n—ドデシル基、 n—トリデシル基、 n—テトラデシル基、 n—ペンタデシル基、 n—へ キサデシル基、 n—へプタデシル基、 n—ォクタデシル基、ネオペンチル基、 1ーメチ ルペンチル基、 1 ペンチルへキシル基、 1ーブチルペンチル基、 1一へプチルォク チル基、シクロへキシル基、シクロォクチル基、 3, 5—テトラメチルシクロへキシル基 及びこれらを 2価の基としたものである。
[0025] 前記ァルケ-ル基及びァルケ-レン基としては、炭素数 2〜16のものが好ましぐ 例えば、ビュル基、ァリル基、 1ーブテニル基、 2 ブテニル基、 3 ブテニル基、 1, 3 ブタンジェ-ル基、 1ーメチルビ-ル基、スチリル基、 2, 2 ジフヱ-ルビ-ル基 、 1, 2—ジフヱ-ルビ-ル基、 1ーメチルァリル基、 1, 1ージメチルァリル基、 2—メチ ルァリル基、 1ーフヱ-ルァリル基、 2—フエ-ルァリル基、 3—フエ-ルァリル基、 3, 3 ージフヱ-ルァリル基、 1, 2 ジメチルァリル基、 1ーフヱ-ルー 1ーブテュル基、 3— フエ二ルー 1 ブテニル基等及びこれらを 2価の基としたものが挙げられ、好ましくは スチリル基、 2, 2—ジフヱ-ルビ-ル基、 1, 2—ジフヱ-ルビ-ル基及びこれらを 2価 の基としたものである。
[0026] 前記ァラルキル基及びァラルキレン基としては、炭素数 7〜18のものが好ましぐ例 えば、ベンジル基、 1 フエ-ルェチル基、 2—フエ-ルェチル基、 1 フエ-ルイソ プロピル基、 2—フエ-ルイソプロピル基、フエ-ルー t ブチル基、 α ナフチルメ チル基、 1 α ナフチルェチル基、 2 - a ナフチルェチル基、 1 - a ナフチル イソプロピル基、 2— a ナフチルイソプロピル基、 13 ナフチルメチル基、 1 β— ナフチルェチル基、 2 - β ナフチルェチル基、 1— β ナフチルイソプロピル基、 2 - β ナフチルイソプロピル基、 1 ピロリルメチル基、 2—(1 ピロリル)ェチル基 、 ρ—メチノレべンジノレ基、 m—メチノレべンジノレ基、 o—メチノレべンジノレ基、 p クロ口べ ンジル基、 m—クロ口べンジル基、 o クロ口べンジル基、 p ブロモベンジル基、 m— ブロモベンジル基、 o ブロモベンジル基、 p ョードベンジル基、 m—ョードベンジ ル基、 o ョードベンジル基、 p ヒドロキシベンジル基、 m—ヒドロキシベンジル基、 o —ヒドロキシベンジル基、 p ァミノべンジル基、 m—ァミノべンジル基、 o ァミノベン ジノレ基、 p 二トロべンジノレ基、 m—二トロべンジノレ基、 o 二トロべンジノレ基、 p シ ァノベンジル基、 m—シァノベンジル基、 o シァノベンジル基、 1—ヒドロキシ一 2— フエ-ルイソプロピル基、 1—クロ口一 2—フエ-ルイソプロピル基等を 2価の基とした ものが挙げられ、好ましくは、ベンジル基、 p シァノベンジル基、 m—シァノベンジル 基、 o シァノベンジル基, 1—フエ-ルェチル基、 2—フエ-ルェチル基、 1—フエ- ルイソプロピル基、 2—フエ-ルイソプロピル基及びこれらを 2価の基としたものである 前記アミノ基又は水酸基含有炭化水素基としては、前記 L1及び L3の示す各炭化 水素基を有するアミノ基、及び前記炭化水素基の水素原子が水酸基で置き換わった ものが挙げられる。
一般式(1)において、 L4は、 L1が表す前記芳香族炭化水素、アルカン、アルケン 及びこれら各基の炭素原子が、窒素原子、硫黄原子、酸素原子及びリン原子のいず れかで置き換わったィ匕合物からなる配位子であり、前記芳香族炭化水素、アルカン、 アルケンとしては、それぞれ独立に、前記 L1が示す、置換基を有してもよい核炭素数 6〜30の 2価の芳香族炭化水素基、置換基を有してもょ 、核原子数 6〜30の 2価の 複素環基、置換基を有してもよい炭素数 1〜30の 2価のカルボキシル含有基、置換 基を有して!/ヽてもよ!/ヽ 2価のアミノ基又は水酸基含有炭化水素基、置換基を有しても ょ 、核炭素数 3〜50のシクロアルキレン基、置換基を有してもょ 、炭素数 1〜30のァ ルキレン基、置換基を有してもよい炭素数 2〜30のァルケ-レン基、置換基を有して もよい炭素数 7〜40のァラルキレン基の具体例と同様の例が挙げられる。
本発明の一般式(1)で表される遷移金属化合物は、下記一般式 (2)で表される金 属カルベン結合を有する遷移金属錯体化合物であると好まし ヽ。
[化 6]
Figure imgf000019_0001
[0029] 一般式(2)において、 L2→Mは金属カルベン結合を示し、実線(一)で示した結合 は共有結合を、矢印(→)で示した結合は配位結合を意味する。 M、 1^〜1^及ひ は 、それぞれ前記と同じである。 L1 -L2は、架橋二座配位子を示し、 L3及び L4は、そ れぞれ独立に、単座配位子又は、 L3とし4が架橋した架橋二座配位子 (L3—L4 )を示 す。
一般式(2)において、 mは 0〜2 (好ましくは 1〜2)の整数で、 k+mは金属 Mの原 子価を示す。 k及び mが複数のときは、 Li〜L4は、それぞれ同じあっても異なってい てもよく、隣接するもの同士で架橋していてもよい。
[0030] 本発明の一般式(1)、 (2)で表される遷移金属化合物は、下記一般式 (3)で表され る金属カルベン結合を有する遷移金属錯体化合物であると好まし ヽ。
[化 7]
Figure imgf000019_0002
[0031] 一般式(3)にお!/、て、 C (炭素原子)→Mは金属カルベン結合を示す。 M、 L3〜!: 、 k及び mは、それぞれ前記と同じである。
一般式 (3)において、 Xは、窒素含有基( NR1—)、リン含有記( PR1—)、酸素 (― 0-)又は硫黄(-S -)であり、 Yは、窒素含有基( NR 2)、リン含有基( PR 、酸素含有基(一 OR1)、硫黄含有基(一 SR1)であり、 Xと Yは、架橋し環構造を形 成していてもよい。
前記 R1及び R2は、それぞれ独立に、水素原子、置換基を有してもよい炭素数 1〜3 0のアルキル基、置換基を有してもよい炭素数 1〜30のハロゲン化アルキル基、置換 基を有してもよ!ヽ核炭素数 6〜30の芳香族炭化水素基、置換基を有してもよ!ヽ核炭 素数 3〜50のシクロアルキル基、置換基を有してもょ 、炭素数 7〜40のァラルキル 基、置換基を有してもよい炭素数 2〜30のアルケニル基、置換基を有してもよい核原 子数 3〜30の複素環基、置換基を有してもよい炭素数 1〜30のアルコキシ基、置換 基を有してもょ 、核炭素数 6〜30のァリールォキシ基、置換基を有してもよ!、炭素数 3〜30アルキルアミノ基、置換基を有してもよい炭素数 6〜30のァリールアミノ基、置 換基を有してもょ 、炭素数 3〜30アルキルシリル基、置換基を有してもよ!、炭素数 6 〜30のァリールシリル基、置換基を有してもよい炭素数 1〜30のカルボキシル含有 基であり、 R1と R2は架橋していてもよい。
前記アルキル基としては、炭素数 1〜: L0のものが好ましぐ例えば、メチル基、ェチ ル基、プロピル基、イソプロピル基、 n ブチル基、 s ブチル基、イソブチル基、 t ブチル基、 n ペンチル基、 n—へキシル基、 n—へプチル基、 n—ォクチル基、 n— ノニル基, n—デシル基, n—ゥンデシル基, n—ドデシル基, n トリデシル基, n— テトラデシル基, n ペンタデシル基, n—へキサデシル基, n—へプタデシル基, n ーォクタデシル基,ネオペンチル基, 1ーメチルペンチル基, 2—メチルペンチル基, 1 ペンチルへキシル基, 1ーブチルペンチル基, 1一へプチルォクチル基, 3—メチ ルペンチル基,ヒドロキシメチル基、 1ーヒドロキシェチル基、 2—ヒドロキシェチル基、 2 ヒドロキシイソブチル基、 1, 2 ジヒドロキシェチル基、 1, 3 ジヒドロキシイソプロ ピル基、 2, 3 ジヒドロキシ一 t—ブチル基、 1, 2, 3 トリヒドロキシプロピル基、ァミノ メチル基、 1 アミノエチル基、 2—アミノエチル基、 2—ァミノイソブチル基、 1, 2—ジ アミノエチル基、 1, 3 ジァミノイソプロピル基、 2, 3 ジアミノー t—ブチル基、 1, 2 , 3 トリァミノプロピル基、シァノメチル基、 1—シァノエチル基、 2 シァノエチル基 、 2 シァノイソブチル基、 1, 2 ジシァノエチル基、 1, 3 ジシァノイソプロピル基、 2, 3 ジシァノ— t ブチル基、 1, 2, 3 トリシアノプロピル基、ニトロメチル基、 1— ニトロェチル基、 2 -トロェチル基、 1, 2 ジニトロェチル基、 2, 3 ジ-トロー t— ブチル基、 1, 2, 3 トリ-トロプロピル基、シクロペンチル基、シクロへキシル基、シク ロォクチル基、 3, 5—テトラメチルシクロへキシル基等が挙げられる。
これらの中で好ましくは、メチル基、ェチル基、プロピル基、イソプロピル基、 n—ブ チル基、 s ブチル基、イソブチル基、 t ブチル基、 n—ペンチル基、 n—へキシル 基、 n—へプチル基、 n—ォクチル基、 n ノ-ル基、 n デシル基、 n—ゥンデシル基 、 n—ドデシル基、 n—トリデシル基、 n—テトラデシル基、 n—ペンタデシル基、 n—へ キサデシル基、 n—へプタデシル基、 n—ォクタデシル基、ネオペンチル基、 1ーメチ ルペンチル基、 1 ペンチルへキシル基、 1ーブチルペンチル基、 1一へプチルォク チル基、シクロへキシル基、シクロォクチル基、 3, 5—テトラメチルシクロへキシル基 である。
前記ハロゲン化アルキル基としては、炭素数 1〜10のものが好ましぐ例えば、クロ ロメチル基、 1—クロ口ェチル基、 2—クロ口ェチル基、 2—クロ口イソブチル基、 1, 2 ージクロ口ェチル基、 1, 3 ジクロ口イソプロピル基、 2, 3 ジクロロー t—ブチル基、 1, 2, 3 トリクロ口プロピル基、ブロモメチル基、 1 ブロモェチル基、 2 ブロモェチ ル基、 2 ブロモイソブチル基、 1, 2 ジブロモェチル基、 1, 3 ジブロモイソプロピ ル基、 2, 3 ジブ口モー t ブチル基、 1, 2, 3 トリブロモプロピル基、ョードメチル 基、 1ーョードエチル基、 2—ョードエチル基、 2—ョードイソブチル基、 1, 2—ジョー ドエチル基、 1, 3 ジョードイソプロピル基、 2, 3 ジョードー t ブチル基、 1, 2, 3 トリョードプロピル基、フルォロメチル基、 1 フルォロメチル基, 2—フルォロメチル 基、 2—フルォロイソブチル基、 1, 2—ジフロロェチル基、ジフルォロメチル基、トリフ ルォロメチル基、ペンタフルォロェチル基、パーフルォロイソプロピル基、パーフルォ ロブチル基、パーフルォロシクロへキシル基等が挙げられる。
これらの中で好ましくは、フルォロメチル基、トリフルォロメチル基、ペンタフルォロェ チル基、パーフルォロイソプロピル基、パーフルォロブチル基、パーフルォロシクロへ キシル基である。
[0034] 前記芳香族炭化水素基としては、核炭素数 6〜18のものが好ましぐ例えば、フエ -ル基、 1 ナフチル基、 2 ナフチル基、 1 アントリル基、 2 アントリル基、 9ーァ ントリル基、 1 フエナントリル基、 2 フエナントリル基、 3 フエナントリル基、 4 フエ ナントリル基、 9 フエナントリル基、 1 ナフタセ-ル基、 2 ナフタセ-ル基、 9ーナ フタセ-ル基、 1—ピレ-ル基、 2 ピレ-ル基、 4 ピレ-ル基、 2 ビフエ-ルイル 基、 3—ビフエ-ルイル基、 4—ビフエ-ルイル基、 p ターフェ-ルー 4—ィル基、 p ターフェ-ルー 3—ィル基、 p ターフェ-ルー 2—ィル基、 m ターフェ-ルー 4 ーィル基、 m—ターフェ-ルー 3—ィル基、 m—ターフェ-ルー 2—ィル基、 o トリル 基、 m—トリル基、 ρ トリル基、 p— t—ブチルフエ-ル基、 p— (2—フエ-ルプロピル )フエ-ル基、 3—メチルー 2 ナフチル基、 4ーメチルー 1 ナフチル基、 4 メチル 1 アントリル基、 4,ーメチルビフエ-ルイル基、 4"—tーブチルー p—ターフェ- ルー 4ーィル基、 o—タメ-ル基、 m—タメ-ル基、 p タメ-ル基、 2, 3 キシリレニ ル基、 3, 4 キシリレ-ル基、 2, 5 キシリレ-ル基、メシチレ-ル基、パーフルォロ フエニル基等が挙げられる。
これらの中で好ましくは、フエ-ル基、 1 ナフチル基、 2 ナフチル基、 9 フエナ ントリル基、 2 ビフエ-ルイル基、 3 ビフエ-ルイル基、 4 ビフエ-ルイル基、 p— トリル基、 3, 4—キシリレニル基である。
[0035] 前記シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロ ペンチル基、シクロへキシル基、 4ーメチルシクロへキシル基、 1ーァダマンチル基、 2 ーァダマンチル基、 1 ノルボル-ル基、 2—ノルボル-ル基等が挙げられる。
前記ァラルキル基としては、炭素数 7〜18のものが好ましぐ例えば、ベンジル基、
1—フエ-ルェチル基、 2—フエ-ルェチル基、 1—フエ-ルイソプロピル基、 2—フエ -ルイソプロピル基、フエ-ルー t ブチル基、 α ナフチルメチル基、 1 α ナフ チルェチル基、 2— a ナフチルェチル基、 1 - a ナフチルイソプロピル基、 2— a ナフチノレイソプロピノレ基、 β ナフチノレメチノレ基、 1— β ナフチノレエチノレ基、
2 - β ナフチルェチル基、 1 - β ナフチルイソプロピル基、 2— β ナフチルイ ソプロピル基、 1 ピロリルメチル基、 2—(1 ピロリル)ェチル基、 ρ メチルベンジ ル基、 m—メチルベンジル基、 o—メチルベンジル基、 p クロ口べンジル基、 m—クロ 口べンジル基、 o クロ口べンジル基、 p ブロモベンジル基、 m ブロモベンジル基 、 o ブロモベンジル基、 p ョードベンジル基、 m—ョードベンジル基、 o ョードベ ンジル基、 p ヒドロキシベンジル基、 m—ヒドロキシベンジル基、 o ヒドロキシベンジ ル基、 ρ ァミノべンジル基、 m—ァミノべンジル基、 o ァミノべンジル基、 p -トロ ベンジル基、 m—-トロベンジル基、 o -トロベンジル基、 p シァノベンジル基、 m —シァノベンジル基、 o シァノベンジル基、 1—ヒドロキシ一 2—フエ-ルイソプロピ ル基、 1 クロロー 2—フエ-ルイソプロピル基等が挙げられ、好ましくは、ベンジル基 ゝ ρ シァノベンジル基、 m—シァノベンジル基、 o シァノベンジル基, 1—フエ-ル ェチル基、 2—フエ-ルェチル基、 1—フエ-ルイソプロピル基、 2—フエ-ルイソプロ ピル基である。
[0036] 前記ァルケ-ル基としては、炭素数 2〜16のものが好ましぐ例えば、ビュル基、ァ リル基、 1ーブテュル基、 2 ブテュル基、 3 ブテュル基、 1, 3 ブタンジェ -ル基 、 1ーメチルビ-ル基、スチリル基、 2, 2—ジフヱ-ルビ-ル基、 1, 2—ジフヱ-ルビ -ル基、 1ーメチルァリル基、 1, 1ージメチルァリル基、 2—メチルァリル基、 1 フエ -ルァリル基、 2 フ -ルァリル基、 3 フ -ルァリル基、 3, 3 ジフヱ-ルァリル 基、 1, 2 ジメチルァリル基、 1 フエ-ルー 1ーブテュル基、 3 フエ-ルー 1ーブ テニル基等が挙げられ、好ましくはスチリル基、 2, 2—ジフヱ二ルビニル基、 1, 2—ジ フエ-ルビ-ル基である。
[0037] 前記複素環基としては、核原子数 3〜18のものが好ましぐ例えば、 1 ピロリル基 、 2 ピロリル基、 3 ピロリル基、ビラジニル基、 2 ピリジ-ル基、 1 イミダゾリル基 、 2—イミダゾリル基、 1—ピラゾリル基、 1—インドリジ-ル基、 2—インドリジ-ル基、 3 インドリジ-ル基、 5—インドリジ-ル基、 6—インドリジ-ル基、 7—インドリジ-ル基 、 8 インドリジ-ル基、 2 イミダゾピリジ-ル基、 3 イミダゾピリジ-ル基、 5 イミ ダゾピリジ-ル基、 6—イミダゾピリジ-ル基、 7—イミダゾピリジ-ル基、 8—イミダゾピ リジ-ル基、 3 ピリジ-ル基、 4 ピリジ-ル基、 1—インドリル基、 2—インドリル基、 3—インドリル基、 4 インドリル基、 5—インドリル基、 6—インドリル基、 7—インドリル 基、 1—イソインドリル基、 2—イソインドリル基、 3—イソインドリル基、 4—イソインドリ ル基、 5—イソインドリル基、 6—イソインドリル基、 7—イソインドリル基、 2 フリル基、 3 フリル基、 2 べンゾフラ-ル基、 3 べンゾフラ-ル基、 4一べンゾフラ-ル基、 5 一べンゾフラ-ル基、 6 べンゾフラ-ル基、 7 べンゾフラ-ル基、 1 イソべンゾフ ラ-ル基、 3—イソべンゾフラ-ル基、 4 イソべンゾフラ-ル基、 5—イソべンゾフラ- ル基、 6 イソべンゾフラ-ル基、 7 イソべンゾフラ-ル基、 2 キノリル基、 3 キノ リル基、 4 キノリル基、 5—キノリル基、 6—キノリル基、 7—キノリル基、 8—キノリル基 、 1 イソキノリル基、 3 イソキノリル基、 4 イソキノリル基、 5 イソキノリル基、 6— イソキノリル基、 7 イソキノリル基、 8 イソキノリル基、 2 キノキサリニル基、 5 キノ キサリ-ル基、 6 キノキサリニル基、 1一力ルバゾリル基、 2—力ルバゾリル基、 3—力 ルバゾリル基、 4一力ルバゾリル基、 9一力ルバゾリル基、 13 カルボリン 1 ィル, j8—カルボリン— 3—ィル, j8—カルボリン— 4—ィル, j8—カルボリン— 5—ィル, 13 カルボリン 6—ィル, j8—カルボリン 7—ィル, j8—カルボリン 6—ィル, 13— カルボリンー9 ィル, 1 フエナンスリジ-ル基、 2 フエナンスリジ-ル基、 3 フエ ナンスリジ-ル基、 4 フエナンスリジ-ル基、 6—フエナンスリジ-ル基、 7—フエナン スリジ-ル基、 8 フエナンスリジ-ル基、 9 フエナンスリジ-ル基、 10 フエナンス リジ-ル基、 1—アタリジ-ル基、 2—アタリジ-ル基、 3—アタリジ-ル基、 4—アタリジ -ル基、 9—アタリジ-ル基、 1, 7 フエナンスロリン— 2—ィル基、 1, 7 フエナンス 口リン— 3—ィル基、 1, 7 フエナンスロリン— 4—ィル基、 1, 7 フエナンスロリン— 5 —ィル基、 1, 7 フエナンスロリン— 6—ィル基、 1, 7 フエナンスロリン— 8—ィル基 、 1, 7 フエナンスロリン— 9—ィル基、 1, 7 フエナンスロリン— 10—ィル基、 1, 8 —フエナンスロリン一 2—ィル基、 1, 8 フエナンスロリン一 3—ィル基、 1, 8 フエナ ンスロリン一 4—ィル基、 1, 8 フエナンスロリン一 5—ィル基、 1, 8 フエナンスロリン —6—ィル基、 1, 8 フエナンスロリン— 7—ィル基、 1, 8 フエナンスロリン— 9—ィ ル基、 1, 8 フエナンスロリン 10—ィル基、 1, 9 フエナンスロリンー2—ィル基、 1 , 9 フエナンスロリン— 3—ィル基、 1, 9 フエナンスロリン— 4—ィル基、 1, 9 フエ ナンスロリン— 5—ィル基、 1, 9 フエナンスロリン— 6—ィル基、 1, 9 フエナンスロ リン— 7—ィル基、 1, 9 フエナンスロリン— 8—ィル基、 1, 9 フエナンスロリン— 10 —ィル基、 1, 10 フエナンスロリン— 2—ィル基、 1, 10 フエナンスロリン— 3—ィ ル基、 1, 10—フエナンスロリン— 4—ィル基、 1, 10—フエナンスロリン— 5—ィル基、 2, 9 フエナンスロリン一 1—ィル基、 2, 9 フエナンスロリン一 3—ィル基、 2, 9 フ ェナンスロリン— 4—ィル基、 2, 9 フエナンスロリン— 5—ィル基、 2, 9 フエナンス 口リン一 6—ィル基、 2, 9 フエナンスロリン一 7—ィル基、 2, 9 フエナンスロリン一 8 —ィル基、 2, 9 フエナンスロリン— 10—ィル基、 2, 8 フエナンスロリン— 1—ィル 基、 2, 8 フエナンスロリンー3—ィル基、 2, 8 フエナンスロリンー4ーィル基、 2, 8 —フエナンスロリン一 5—ィル基、 2, 8 フエナンスロリン一 6—ィル基、 2, 8 フエナ ンスロリン一 7—ィル基、 2, 8 フエナンスロリン一 9—ィル基、 2, 8 フエナンスロリン — 10—ィル基、 2, 7 フエナンスロリン一 1—ィル基、 2, 7 フエナンスロリン一 3— ィル基、 2, 7 フエナンスロリン一 4—ィル基、 2, 7 フエナンスロリン一 5—ィル基、 2, 7 フエナンスロリン一 6—ィル基、 2, 7 フエナンスロリン一 8—ィル基、 2, 7 フ ェナンスロリン 9ーィル基、 2, 7 フエナンスロリン 10—ィル基、 1 フエナジ-ル 基、 2 フエナジ-ル基、 1 フエノチアジ-ル基、 2 フエノチアジ-ル基、 3 フエノ チアジ-ル基、 4 フエノチアジ-ル基、 10 フエノチアジ-ル基、 1ーフエノキサジ ニル基、 2 フエノキサジ-ル基、 3 フエノキサジ-ル基、 4 フエノキサジ-ル基、 10 フエノキサジ-ル基、 2—ォキサゾリル基、 4ーォキサゾリル基、 5—ォキサゾリル 基、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザニル基、 2 チェ- ル基、 3 チェ-ル基、 2 メチルピロ一ルー 1ーィル基、 2 メチルピロ一ルー 3—ィ ル基、 2 メチルピロ一ルー 4ーィル基、 2 メチルピロ一ルー 5—ィル基、 3 メチル ピロ一ルー 1ーィル基、 3 メチルピロ一ルー 2—ィル基、 3 メチルピロ一ルー 4ーィ ル基、 3 メチルピロ一ルー 5—ィル基、 2 t ブチルピロ一ルー 4ーィル基、 3—(2 フエ-ルプロピル)ピロ一ルー 1ーィル基、 2—メチルー 1 インドリル基、 4 メチル 1 インドリル基、 2—メチルー 3 インドリル基、 4ーメチルー 3 インドリル基、 2— t ブチル 1 インドリル基、 4 t ブチル 1 インドリル基、 2 t ブチル 3 インド リル基、 4 t—ブチル 3—インドリル基、ピロリジン、ビラゾリジン、ピペラリジン等が挙 げられる。
これらの中で好ましくは、 2—ピリジ-ル基、 1—インドリジ-ル基、 2—インドリジ-ル 基、 3—インドリジ-ル基、 5—インドリジ-ル基、 6—インドリジ-ル基、 7—インドリジ -ル基、 8 インドリジ-ル基、 2 イミダゾピリジ-ル基、 3 イミダゾピリジニル基、 5 イミダゾピリジニル基、 6—イミダゾピリジ-ル基、 7—イミダゾピリジ-ル基、 8—イミ ダゾピリジ-ル基、 3 ピリジ-ル基、 4 ピリジ-ル基、 1 インドリル基、 2 インドリ ル基、 3—インドリル基、 4 インドリル基、 5—インドリル基、 6—インドリル基、 7—イン ドリル基、 1—イソインドリル基、 2—イソインドリル基、 3—イソインドリル基、 4—イソィ ンドリル基、 5 イソインドリル基、 6 イソインドリル基、 7 イソインドリル基、 1 カル バゾリル基、 2—力ルバゾリル基、 3—力ルバゾリル基、 4一力ルバゾリル基、 9 カル バゾリル基である。
[0038] 前記アルコキシ基及びァリールォキシ基は、 OX1で表される基であり、 X1の例と しては、前記アルキル基及びノヽロゲンィ匕アルキル基及びァリール基で説明したものと 同様の例が挙げられる。
前記アルキルアミノ基及びァリールアミノ基は、—NX1 X2で表される基であり、 X1及 び X2の例としては、それぞれ前記アルキル基及びハロゲン化アルキル基及びァリー ル基で説明したものと同様の例が挙げられる。
前記カルボキシル含有基としては、例えば、メチルエステル、ェチルエステル、ブチ ルエステル等が挙げられる。
前記アルキルシリル基としては、例えば、トリメチルシリル基、トリェチルシリル基、 t ーブチルジメチルシリル基、ビュルジメチルシリル基、プロピルジメチルシリル基等が 挙げられる。
前記ァリールシリル基としては、例えば、トリフエ-ルシリル基、フエ-ルジメチルシリ ル基、 tーブチルジフエニルシリル基等が挙げられる。
また、前記 Xと Yが架橋して形成する環構造としては、前記複素環基で挙げたものと 同様の例が挙げられる。
[0039] 一般式(3)において、 X— C Yで表されるカルベン骨格としては、通常、金属と ともに安定カルベンを形成するものであり、具体的には、ジァリールカルベン、環状ジ ァミノカルベン、イミダゾールー 2 イリデン、 1, 2, 4 トリァゾールー 3 イリデン、 1 , 3—チアゾール—2—イリデン、非環状ジァミノカルベン、非環状アミノォキシカルべ ン、非環状アミノチォカルベン、環状ジボリルカルベン、非環状ジボリルカルベン、ホ スフイノシリルカルベン、ホスフイノホスフイノカルベン、スルフエ-ルトリフルォロメチル カルベン、スルフエ-ルペンタフルォロチォカルベン等を挙げることができる(参考文 献 Chem. Rev. 2000, 100, p39)。
これらのうち、好ましくはイミダゾール一 2—イリデン、 1, 2, 4 トリァゾール一 3—ィ リデン及び環状ジァミノカルベンであり、より好ましくはイミダゾールー 2—イリデン及 び 1, 2, 4 トリァゾールー 3 イリデンであり、その具体的な構造を以下に列挙する
[0040] [化 8]
Figure imgf000027_0001
[0041] 一般式 (3)にお 、て、 Zは、金属 Mと共有結合を形成する原子で、炭素、ケィ素、 窒素又はリン原子であり、 Zを含む A環は、置換基を有してもよい核炭素数 3〜40の 芳香族炭化水素基又は置換基を有してもよい核炭素数 3〜40の芳香族複素環基で ある。
この芳香族炭化水素基は前記で挙げたものと同様の例が挙げられ、この芳香族複 素環基の例としては、前記複素環基の例のうち芳香族複素環基であるものが挙げら れる。
それらの中でも、 A環としては、以下で表される構造が好ましい。下記例では、 Mが Irとして例示する力 Ir以外の場合も同様の例が挙げられる。
[0042] [化 9]
Figure imgf000028_0001
Figure imgf000028_0002
一般式(3)にお 、て、 k及び mが複数のときは、 X、 Y、 Z、 L3及び L4は、それぞれ 同じあっても異なって!/、てもよく、隣接するもの同士で架橋して 、てもよ 、。
また、一般式(1)〜(3)において、 L3の好ましい例としては、前記 A環における好ま しい例と同様である(ただし、 Xを L4に変更)。
L4としては、 R18 N、 R19 P、 C = N— R2。、 R21 0、 R22 S、 R23=R24 (R18〜R24は、そ れぞれ独立に、前記 R1及び R2と同様の例が挙げられ、それぞれ同じでも異なってい てもよく、架橋していてもよい。)の構造を有するものが好ましぐ下記のいずれかの構 造であるとさらに好ましい。
[化 10]
Figure imgf000029_0001
[0046] 一般式 (4)にお!/、て、 C (炭素原子)→Mは金属カルベン結合を示す。 M、 k及び m は、それぞれ前記と同じである。
一般式 (4)において、 R3〜R17は、それぞれ独立に、水素原子、ハロゲン原子、チ オシァノ基、シァノ基、ニトロ基、— S ( = 0) — S ( = 0)Ri (R1は前記と同じ)、置
Figure imgf000030_0001
換基を有してもょ 、炭素数 1〜30のアルキル基、置換基を有してもよ!、炭素数 1〜3 0のハロゲンィ匕アルキル基、置換基を有してもょ 、核炭素数 6〜30の芳香族炭化水 素基、置換基を有してもよい核炭素数 3〜50のシクロアルキル基、置換基を有しても ょ 、炭素数 7〜40のァラルキル基、置換基を有してもょ 、炭素数 2〜30のァルケ- ル基、置換基を有してもよい核原子数 3〜30の複素環基、置換基を有してもよい炭 素数 1〜30のアルコキシ基、置換基を有してもょ 、核炭素数 6〜30のァリールォキ シ基、置換基を有してもよい炭素数 3〜30アルキルアミノ基、置換基を有してもよい 炭素数 6〜30のァリールアミノ基、置換基を有してもょ 、炭素数 3〜30アルキルシリ ル基、置換基を有してもよい炭素数 6〜30のァリールシリル基、置換基を有してもよ い炭素数 1〜30のカルボキシル含有基であり、 R3〜R17は隣接するもの同士で架橋 していてもよい。
[0047] 前記アルキル基、ハロゲン化アルキル基、芳香族炭化水素基、シクロアルキル基、 ァラルキル基、アルケニル基、複素環基、アルコキシ基、ァリールォキシ基、アルキル アミノ基、ァリールアミノ基、アルキルシリル基、ァリールシリル基及びカルボキシル含 有基の具体例としては、前記一般式(3)の R1及び R2と同様の例が挙げられる。
[0048] 前記一般式 (4)にお 、て、特に、前記 Mが Irである下記一般式(5)で表される遷移 金属錯体化合物であると好まし ヽ。
[化 12]
Figure imgf000030_0002
一般式(5)において、 C (炭素原子)→Irは金属カルベン結合を示す。 k、 m及び R3 〜R17は、それぞれ前記と同じである。
[0049] 次に、下記一般式 (6)で表される本発明の遷移金属錯体ィ匕合物について説明する
[化 13]
Figure imgf000031_0001
[0050] 一般式 (6)にお 、て、 C (炭素原子)→Irは金属カルベン結合を示し、実線(―)で 示した結合は共有結合を、矢印(→)で示した結合は配位結合を意味する。
Y1及び Y2は、それぞれ独立に、窒素含有基(—NRiR2)、リン含有基(— PR1)、酸 素含有基(一 OR1)、硫黄含有基(一 SR1)であり、 Y1と Y2は、架橋し環構造を形成し ていてもよい。
前記 R1及び R2は、それぞれ独立に、前記と同じであり、同様の例が挙げられる。 前記 Y1と Y2が架橋して形成する環構造としては、前記複素環基で挙げたものと同 様の例が挙げられる。
[0051] 一般式 (6)にお 、て、 L5及び L6は、それぞれ独立に、単座配位子又は、 L5と L6が 架橋した架橋二座配位子 (L5— L6 )を示す。 nは 0〜4の整数である。 nが複数のとき は、複数の L6は、それぞれ同じあっても異なっていてもよぐ架橋していてもよい。ま た、 Y1、 Y2、 L5及び L6は、それぞれ隣接するもの同士で架橋していてもよい。
L5は、置換基を有してもよい核炭素数 6〜30の芳香族炭化水素基、置換基を有し てもよ 、核原子数 3〜30の複素環基、置換基を有してもよ!、炭素数 1〜30のカルボ キシル含有基、置換基を有してもよい核炭素数 3〜50のシクロアルキル基、置換基 を有してもょ 、炭素数 1〜30のアルキル基、置換基を有してもょ 、炭素数 2〜30の ァルケ-ル基、置換基を有してもよい炭素数 7〜40のァラルキル基であり、前記アル キル基、前記アルケニル基及び前記ァラルキル基の炭素原子が、それぞれ窒素原 子、硫黄原子、酸素原子又はケィ素原子に置き換わっていてもよい。 Vは、前記複素環基、又は前記アルキル基、前記アルケニル基及び前記ァラルキ ル基の炭素原子が、それぞれ窒素原子、硫黄原子、酸素原子又はケィ素原子に置 き換わった基である。
前記 の示す各基の具体例としては、前記一般式(1)の L3と同様の例における 1 価又は 2価の基が挙げられ、好ましい例としても同様の例が挙げられる。
前記 L6の示す各基の具体例としては、前記一般式(1)のし4と同様の例における 1 価又は 2価の基が挙げられ、好ましい例としても同様の例が挙げられる。
[0052] 一般式(6)において、 Y1—C—Y2で表されるカルベン骨格としては、通常、金属と ともに安定カルベンを形成するものであり、具体的には、ジァリールカルベン、環状ジ ァミノカルベン、イミダゾールー 2 イリデン、 1, 2, 4 トリァゾールー 3 イリデン、 1 , 3—チアゾール—2—イリデン、非環状ジァミノカルベン、非環状アミノォキシカルべ ン、非環状アミノチォカルベン、環状ジボリルカルベン、非環状ジボリルカルベン、ホ スフイノシリルカルベン、ホスフイノホスフイノカルベン、スルフエ-ルトリフルォロメチル カルベン、スルフエ-ルペンタフルォロチォカルベン等を挙げることができる(参考文 献 Chem. Rev. 2000, 100, p39)。
これらのうち、好ましくはイミダゾール一 2—イリデン、 1, 2, 4 トリァゾール一 3—ィ リデン及び環状ジァミノカルベンであり、より好ましくはイミダゾールー 2—イリデン及 び 1, 2, 4 トリァゾールー 3 イリデンであり、その具体的な構造を以下に列挙する 。下記において、 Phはフエ-ル基、 Meはメチル基である。
[0053] [化 14]
Figure imgf000032_0001
M< P F3 [0054] 次に、下記一般式 (7)で表される本発明の遷移金属錯体ィ匕合物について説明する
[化 15]
Figure imgf000033_0001
[0055] 一般式(7)において、 C (炭素原子)→Irは金属カルベン結合を示し、実線(―)で 示した結合は共有結合を、矢印(→)で示した結合は配位結合を意味する。
Y3及び Y4は、それぞれ独立に、窒素含有基(—NRiR2)、リン含有基( PRiR2) 酸素含有基(一 OR1)、硫黄含有基(一 SR1)、ホウ素含有基(一 BR 2)、であり、 Y3 と Y4は架橋し環構造を形成して 、てもよ 、。
前記 R1及び R2は、それぞれ独立に、前記と同じであり、同様の例が挙げられる。 前記 Y3と Y4が架橋して形成する環構造としては、前記複素環基で挙げたものと同 様の例が挙げられる。
[0056] 一般式(7)にお 、て、 L7及び L8は、それぞれ独立に、単座配位子又は L7と L8が 架橋した架橋二座配位子 (L7— L8 )を示す。 nは 0〜4の整数である。 nが複数のとき は、複数ある L8は、それぞれ同じあっても異なっていてもよぐ架橋していてもよい。 また、 Y3、 Y4、 L7及び L8は、それぞれ隣接するもの同士で架橋していてもよい。
L7は、 pKa値が— 10以下である超強酸類、カルボン酸類、アルデヒド類、ケトン類 、アルコール類、チォアルコール類、フエノール類、アミン類、アミド類、芳香族類もし くはアルカン類の共役塩基、水素イオン又はハロゲン化物イオンを示し、 pKa値が 10以下である超強酸類が好ま 、。
前記 pKa値が 10以下である超強酸類の共役塩基としては、 SbF―、 FSO―、 RN
6 3
O 、 ArNO 、 CIO 、 Γ、 RCN、 RCOH、 TfO—、 Tf N—等、カルボン酸類の共役塩
2 2 4 2
基としては、 RCOO—、 ArCOO—等、アルデヒド類の共役塩基としては、 R— COH等、 ケトン類の共役塩基としては、 R1— COR2等、アルコール類類の共役塩基としては、 R CT等、チォアルコール類類の共役塩基としては、 RSO—等、フエノール類の共役塩 基としては、 ArO—等、ァミン類の共役塩基としては、 RiR2N—等、アミド類の共役塩基 としては、
Figure imgf000034_0001
芳香族類の共役塩基としては、(置換)シクロペンタジェ 二ルァ-オン、 Ar—等、アルカン類の共役塩基としては、 Me―、 tBu—等が挙げられる また、 L7 -L8が架橋した配位子としては、例えば、(置換)ァセチルアセトン類の共 役塩基、 )8ケトイミン類の共役塩基、 )8ジィミン類の共役塩基、(置換)ピコリン酸の共 役塩基、(置換)マロン酸ジエステル類の共役塩基、(置換)ァセト酢酸エステル類の 共役塩基、(置換)ァセト酢酸アミド類の共役塩基、(置換)アミジナート類の共役塩基 等が挙げられる。
L8は、前記複素環基、又は前記アルキル基、前記アルケニル基及び前記ァラルキ ル基の炭素原子が、それぞれ窒素原子、硫黄原子、酸素原子又はケィ素原子に置 き換わった基である。
前記し8の示す各基の具体例としては、前記一般式(1)のし4と同様の例における 1 価又は 2価の基が挙げられ、好ましい例としても同様の例が挙げられる。
[0057] 次に、下記一般式 (8)で表される本発明の遷移金属錯体ィ匕合物について説明する
[化 16]
Figure imgf000034_0002
[0058] 一般式(8)にお 、て、 L2→Irは金属カルベン結合を示し、実線 ( )で示した結合 は共有結合を、矢印 (→)で示した結合は配位結合を意味する。 L1 -L2は、架橋二 座配位子を示す。 L1及び L2は、それぞれ独立に、前記一般式(1)と同じであり、各基の具体例及び 好ましい例としても同様の例が挙げられる。
一般式 (8)において、 L7及び L8は、それぞれ独立に、単座配位子又は L7と L8が 架橋した架橋二座配位子 (L7—L8 )を示す。 nは 0〜4の整数である。 nが複数のとき は、複数ある L8は、それぞれ同じあっても異なっていてもよぐ架橋していてもよい。
L7及び L8は、一般式 (7)と同じであり、各基の具体例及び好ましい例としても同様 の例が挙げられる。
[0059] 前記一般式(1)〜(8)における各基の置換基としては、置換もしくは無置換の核炭 素数 5〜50のァリール基、置換もしくは無置換の炭素数 1〜50のアルキル基、置換 もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の核炭素数 6〜 50のァラルキル基、置換もしくは無置換の核炭素数 5〜50のァリールォキシ基、置 換もしくは無置換の核炭素数 5〜50のァリールチオ基、置換もしくは無置換の炭素 数 1〜50のアルコキシカルボ-ル基、アミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒ ドロキシル基、カルボキシル基等が挙げられる。
これらの中でも、炭素数 1〜10のアルキル基、炭素数 5〜7のシクロアルキル基、炭 素数 1〜10のアルコキシ基が好ましぐ炭素数 1〜6のアルキル基、炭素数 5〜7のシ クロアルキル基がより好ましぐメチル基、ェチル基、 n—プロピル基、イソプロピル基、 n—ブチル基、 sec—ブチル基、 tert—ブチル基、 n—ペンチル基、 n—へキシル基、 シクロペンチル基、シクロへキシル基が特に好まし 、。
本発明の一般式(1)〜(8)で表される遷移金属錯体ィ匕合物の具体例としては、以 下の合成実施例で合成した遷移金属錯体ィ匕合物 1〜6等が挙げられるが、これら例 示化合物に限定されるものではない。
[0060] 次に、本発明の一般式( 1)及び (6)の遷移金属錯体化合物の製造方法につ!、て 説明する。
<一般式 (1)の遷移金属錯体化合物の合成方法 >
一般式(1)の遷移金属錯体ィ匕合物は、 kが 1の場合、例えば、ビス (フエニルピリジ ン)イリジウム塩ィ匕物ダイマーを出発原料として用い、非特許文献 13と同じ要領で塩 素をエトキシドに変換する必要がある。これに、カルべン錯体前駆体であるイミダゾリ ゥム塩 Z塩基(ここでは、金属アルコキシドを用いている)を当量用い、 2—エトキシェ タノール中で 3時間程度還流させることで得ることができる。その反応経路の例を以 下に示す。なお、 PPyは、比較例 1に示す Ir(PPy) における PPyの構造を示す。
3
[化 17]
NaOEt
1 /2 [(PPy)2IrCl]2 ~~ PPy)2Ir(OEt)
Et0H
Figure imgf000036_0001
[0061] また、 kが 2以上の場合、ヨウ化物をそのまま 2—エトキシエタノール中で還流させる と、オルトメタレーシヨン反応が進行せず、分解反応が優先する。そこで、オルトメタレ ーシヨン反応を行なうためには、一度、非配位性 (弱塩基性)配位子に置き換える必 要があり、例えば、 AgOTf (銀トリフラート)などを用いる必要がある。トリフラート体を 2—エトキシエタノール中で還流させることで、オルトメタレーシヨン反応に成功した。 次に、トリフラート基カも種々変換反応を行なうことで、一般式(1) (k= 2又は 3)の遷 移金属錯体化合物を合成できる。なお、 CODは 1, 5—シクロォクタジェンである。
[0062] [化 18]
Figure imgf000037_0001
<一般式 (6)の遷移金属錯体化合物の合成方法 >
非特許文献 13では、単座配位型モノカルベンイリジウム錯体の合成が記されて 、 る力 ビスカルベンイリジウム錯体 (I) (1価の錯体)の合成方法は記載されていない。 この反応をモデルとし、カルべン錯体前駆体であるイミダゾリゥム塩 Z塩基 (ここでは
、金属アルコキシドを用いている)を過剰量(2当量以上)用いることで、カルベン配位 子を 2個同時に金属に配位させることができた。
用いるイミダリゥム塩 (又はトリァゾール塩)としては、特に制限はないが、以下のよう な構造のものが用いられる。また、カウンターァニオン種も特に制限はないが、以下 のようなものが用いられる。
[化 19]
Figure imgf000038_0001
[0064] (式中、 R1〜R°は、アルキル基又はァリール基等、 R7〜R1Qは、水素原子、アルキル 基、ァリール基又は縮合環等、 Xは、ハロゲン (F、 Cl、 Br、 I)であり、弱塩基性 (超強 酸の共役塩基)、例えば、 BF―、 PF―、 OTf、 NTf―等が好まし 、。 )
4 6 2
反応溶媒は、特に制限はないが、アルコール類が好ましぐ生成物を容易に固体と して分離できる。反応温度は、通常室温から溶媒の沸点程度、反応時間は、特に制 限はな!/、が、 1時間から 100時間程度が好ま 、。
その反応経路の例を以下に示す
[0065] [化 20]
\ 2L
Figure imgf000039_0001
本発明の一般式 (7)又は (8)の遷移金属錯体化合物を触媒として用いる有機化合 物又は高分子化合物の製造方法にっレ、て説明する。
この製造方法にぉ 、て、一般式 (7)又は (8)の遷移金属錯体化合物を触媒として 用いるのに適した有機化合物及び高分子化合物としては、例えば、下記合成実施例 7のべンゾフエノン等が挙げられる。 [0067] 本発明の有機 EL素子は、陽極と陰極力もなる一対の電極間に少なくとも発光層を 有する一層又は複数層からなる有機薄膜層が挟持されている有機 EL素子において 、該有機薄膜層の少なくとも 1層が、本発明の一般式(1)〜(8)のいずれかで表され る遷移金属錯体化合物を含有するものであり、特に一般式 (4)又は(5)の遷移金属 錯体化合物を含有すると好まし ヽ。
前記有機薄膜層中の本発明の遷移金属錯体ィ匕合物の含有量としては、発光層全 体の質量に対し、通常 0. 1〜: L00重量%であり、 1〜30重量%であると好ましい。 本発明の有機 EL素子は、前記発光層が、本発明の遷移金属錯体化合物を発光 材料又はドーパントとして含有すると好ましい。また、通常、前記発光層は真空蒸着 又は塗布により薄膜ィ匕する力 塗布の方が製造プロセスが簡略ィ匕できることから、本 発明の遷移金属錯体化合物を含有する層が、塗布により成膜されてなると好ましい。 本発明の有機 EL素子において、有機薄膜層が単層型のものとしては有機薄膜層 が発光層であり、この発光層が本発明の遷移金属錯体化合物を含有する。また、多 層型の有機 EL素子としては、(陽極 Z正孔注入層(正孔輸送層) Z発光層 Z陰極) 、(陽極 Z発光層 Z電子注入層(電子輸送層) Z陰極)、(陽極 Z正孔注入層(正孔 輸送層) Z発光層 Z電子注入層(電子輸送層) Z陰極)等が挙げられる。
[0068] 本発明の有機 EL素子の陽極は、正孔注入層、正孔輸送層、発光層などに正孔を 供給するものであり、 4. 5eV以上の仕事関数を有することが効果的である。陽極の 材料としては、金属、合金、金属酸化物、電気伝導性化合物、又はこれらの混合物 などを用いることができる。陽極の材料の具体例としては、酸化スズ、酸化亜鉛、酸ィ匕 インジウム、酸化インジウムスズ (ITO)等の導電性金属酸化物、又は金、銀、クロム、 ニッケル等の金属、さらにこれらの導電性金属酸化物と金属との混合物又は積層物
、ヨウ化銅、硫化銅などの無機導電性物質、ポリア-リン、ポリチォフェン、ポリピロ一 ルなどの有機導電性材料、及びこれらと ITOとの積層物などが挙げられ、好ましくは 、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点カゝら ITOを用 V、ることが好ま 、。陽極の膜厚は材料により適宜選択可能である。
[0069] 本発明の有機 EL素子の陰極は、電子注入層、電子輸送層、発光層などに電子を 供給するものであり、陰極の材料としては、金属、合金、金属ハロゲン化物、金属酸 化物、電気伝導性化合物、又はこれらの混合物を用いることができる。陰極の材料の 具体例としては、アルカリ金属(例えば、 Li、 Na、 K等)及びそのフッ化物もしくは酸 化物、アルカリ土類金属(例えば、 Mg、 Ca等)及びそのフッ化物もしくは酸ィ匕物、金 、銀、鉛、アルミニウム、ナトリウム—カリウム合金もしくはナトリウム—カリウム混合金属 、リチウム一アルミニウム合金もしくはリチウム一アルミニウム混合金属、マグネシウム —銀合金もしくはマグネシウム—銀混合金属、又はインジウム、イッテルビウム等の希 土類金属等が挙げられる。これらの中でも好ましくは、アルミニウム、リチウム一アルミ
-ゥム合金もしくはリチウム一アルミニウム混合金属、マグネシウム一銀合金もしくは マグネシウム—銀混合金属等である。陰極は、前記材料の単層構造であってもよい し、前記材料を含む層の積層構造であってもよい。例えば、アルミニウム Zフッ化リチ ゥム、アルミニウム/酸化リチウムの積層構造が好ましい。陰極の膜厚は材料により 適宜選択可能である。
[0070] 本発明の有機 EL素子の正孔注入層及び正孔輸送層は、陽極カゝら正孔を注入する 機能、正孔を輸送する機能、陰極カゝら注入された電子を障壁する機能のいずれかを 有しているものであればよい。その具体例としては、力ルバゾール誘導体、トリァゾー ル誘導体、ォキサゾール誘導体、ォキサジァゾール誘導体、イミダゾール誘導体、ポ リアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フエ-レンジァミン 誘導体、ァリールァミン誘導体、ァミノ置換カルコン誘導体、スチリルアントラセン誘導 体、フルォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳 香族第三級ァミン化合物、スチリルァミン化合物、芳香族ジメチリディン系化合物、ポ ルフィリン系化合物、ポリシラン系化合物、ポリ(N—ビュルカルバゾール)誘導体、ァ 二リン系共重合体、チォフェンオリゴマー、ポリチォフェン等の導電性高分子オリゴマ 一、有機シラン誘導体、本発明の遷移金属錯体化合物等が挙げられる。また、前記 正孔注入層及び前記正孔輸送層は、前記材料の 1種又は 2種以上からなる単層構 造であってもよ 、し、同一組成又は異種組成の複数層力もなる多層構造であってもよ い。
[0071] 本発明の有機 EL素子の電子注入層及び電子輸送層は、陰極から電子を注入する 機能、電子を輸送する機能、陽極カゝら注入された正孔を障壁する機能のいずれかを 有しているものであればよい。その具体例としては、トリァゾール誘導体、ォキサゾー ル誘導体、ォキサジァゾール誘導体、イミダゾール誘導体、フルォレノン誘導体、ァ ントラキノジメタン誘導体、アントロン誘導体、ジフヱ二ルキノン誘導体、チォピランジ ォキシド誘導体、カルポジイミド誘導体、フルォレニリデンメタン誘導体、ジスチリルビ ラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシア ニン誘導体、 8—キノリノール誘導体の金属錯体ゃメタルフタロシアニン、ベンゾォキ サゾールやべンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、 有機シラン誘導体、本発明の遷移金属錯体化合物等が挙げられる。また、前記電子 注入層及び前記電子輸送層は、前記材料の 1種または 2種以上からなる単層構造で あってもょ 、し、同一組成又は異種組成の複数層力もなる多層構造であってもよ 、。 さらに、電子注入層及び電子輸送層に用いる電子輸送材料としては、下記化合物 が挙げられる。
[化 21]
Figure imgf000043_0001
[0073] [化 22]
Figure imgf000044_0001
[0074] [化 23]
Figure imgf000045_0001
本発明の有機 EL素子において、該電子注入層及び Z又は電子輸送層が π電子 欠乏性含窒素へテロ環誘導体を主成分として含有すると好ましい。
π電子欠乏性含窒素へテロ環誘導体としては、ベンツイミダゾール環、ベンズトリア ゾール環、ピリジノイミダゾール環、ピリミジノイミダゾール環、ピリダジノイミダゾール環 から選ばれた含窒素 5員環の誘導体や、ピリジン環、ピリミジン環、ピラジン環、トリア ジン環で構成される含窒素 6員環誘導体が好ま 、例として挙げられ、含窒素 5員環 誘導体として下記一般式 B— I式で表される構造が好ましく挙げられ、含窒素 6員環 誘導体としては、下記一般式 C—I、 c— n、 c— m、 C— IV、じー 及ひでー^で表さ れる構造が好ましく挙げられ、特に好ましくは、一般式 C-I及び C- IIで表される構 造である。
[0076] [化 24]
( B— I )
Figure imgf000046_0001
一般式 (B— I)において、 LDは二価以上の連結基を表し、好ましくは、炭素、ケィ素 、窒素、ホウ素、酸素、硫黄、金属、金属イオンなどで形成される連結基であり、より 好ましくは炭素原子、窒素原子、ケィ素原子、ホウ素原子、酸素原子、硫黄原子、芳 香族炭化水素環、芳香族へテロ環であり、さらに好ましくは炭素原子、ケィ素原子、 芳香族炭化水素環、芳香族へテロ環である。
[0077] LBは置換基を有していてもよぐ置換基として好ましくはアルキル基、アルケニル基 、アルキニル基、芳香族炭化水素基、アミノ基、アルコキシ基、ァリールォキシ基、ァ シル基、アルコキシカルボ-ル基、ァリールォキシカルボ-ル基、ァシルォキシ基、ァ シルァミノ基、アルコキシカルボ-ルァミノ基、ァリールォキシカルボ-ルァミノ基、ス ルホ -ルァミノ基、スルファモイル基、力ルバモイル基、アルキルチオ基、ァリールチ ォ基、スルホニル基、ハロゲン原子、シァノ基、芳香族複素環基であり、より好ましく はアルキル基、ァリール基、アルコキシ基、ァリールォキシ基、ハロゲン原子、シァノ 基、芳香族複素環基であり、さらに好ましくはアルキル基、ァリール基、アルコキシ基 、ァリールォキシ基、芳香族複素環基であり、特に好ましくはアルキル基、ァリール基 、アルコキシ基、芳香族複素環基である。 [0078] LBで表される連結基の具体例としては以下のものが挙げられる。
[化 25]
Figure imgf000047_0001
[0079] 一般式 (B— I)において、 X82は、一 Ο—、 一 S—又は =N— RB2を表す。 RB2は、水 素原子、脂肪族炭化水素基、ァリール基、ヘテロ環基を表す。
RB2の表す脂肪族炭化水素基は、直鎖、分岐又は環状のアルキル基 (好ましくは、 炭素数 1〜20、より好ましくは炭素数 1〜12、特に好ましくは炭素数 1〜8のアルキル 基であり、例えば、メチル、ェチル、 iso—プロピル、 tert—ブチル、 n—ォクチル、 n— デシル、 n—へキサデシル、シクロプロピル、シクロペンチル、シクロへキシル等が挙 げられる。)、アルケニル基 (好ましくは、炭素数 2〜20、より好ましくは炭素数 2〜12 、特に好ましくは炭素数 2〜8のァルケ-ル基であり、例えばビニル基、ァリル基、 2— ブテニル基、 3—ペンテニル基等が挙げられる。)、アルキ-ル基 (好ましくは炭素数 2 〜20、より好ましくは炭素数 2〜 12、特に好ましくは炭素数 2〜8のアルキニル基であ り、例えばプロパルギル基、 3—ペンチニル基等が挙げられる。)であり、より好ましく はアルキル基である。
RB2の表すァリール基は、単環又は縮環のァリール基であり、好ましくは炭素数 6〜 30、より好ましくは炭素数 6〜20、さらに好ましくは炭素数 6〜12のァリール基であり 、例えば、フエ-ル、 2—メチルフエ-ル、 3—メチルフエ-ル、 4—メチルフエ-ル、 2 ーメトキシフエニル、 3—トリフルォロメチルフエニル、ペンタフルオロフェニル、 1ーナ フチル、 2—ナフチル等が挙げられる。
RB2の表すへテロ環基は、単環又は縮環のへテロ環基 (好ましくは炭素数 1〜20、よ り好ましくは炭素数 1〜12、更に好ましくは炭素数 2〜10のへテロ環基)であり、好ま しくは窒素原子、酸素原子、硫黄原子、セレン原子の少なくとも一つを含む芳香族へ テロ環基であり、例えば、ピロリジン、ピぺリジン、ピぺラジン、モルフォリン、チォフエ ン、セレノフェン、フラン、ピロール、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリ ダジン、ピリミジン、トリァゾール、トリアジン、インドール、インダゾール、プリン、チアゾ リン、チアゾール、チアジアゾール、ォキサゾリン、ォキサゾール、ォキサジァゾール、 キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、 プテリジン、アタリジン、フエナント口リン、フエナジン、テトラゾール、ベンゾイミダゾー ル、ベンゾォキサゾール、ベンゾチアゾール、ベンゾトリァゾール、テトラザインデン、 カルバゾール、ァゼピン等が挙げられ、好ましくは、フラン、チォフェン、ピリジン、ビラ ジン、ピリミジン、ピリダジン、トリアジン、キノリン、フタラジン、ナフチリジン、キノキサリ ン、キナゾリンであり、より好ましくはフラン、チォフェン、ピリジン、キノリンであり、さら に好ましくはキノリンである。
RB2の表す脂肪族炭化水素基、ァリール基、ヘテロ環基は置換基を有していてもよ ぐ前記 LBと同様のものが挙げられる。 RBとして好ましくは、アルキル基、ァリール基、芳香族へテロ環基であり、より好まし くはァリール基、芳香族へテロ環基であり、さらに好ましくはァリール基である。
[0081] X82として好ましくは、 Ο—、 =Ν— RB2であり、より好ましくは =N— RB2であり、特 に好ましくは =N— ArB2 (ArB2は、ァリール基 (好ましくは炭素数 6〜30、より好ましく は炭素数 6〜20、更に好ましくは炭素数 6〜12のァリール基)、芳香族へテロ環基( 好ましくは炭素数 1〜20、より好ましくは炭素数 1〜12、更に好ましくは炭素数 2〜10 の芳香族へテロ環基)であり、好ましくはァリール基である。)である。
[0082] ZB2は芳香族環を形成するに必要な原子群を表す。 ZB2で形成される芳香族環は芳 香族炭化水素環、芳香族へテロ環のいずれでもよぐ具体例としては、例えばべンゼ ン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、ピロール環、 フラン環、チォフェン環、セレノフェン環、テル口フェン環、イミダゾール環、チアゾー ル環、セレナゾール環、テルラゾール環、チアジアゾール環、ォキサジァゾール環、 ピラゾール環などが挙げられ、好ましくはベンゼン環、ピリジン環、ピラジン環、ピリミ ジン環、ピリダジン環であり、より好ましくはベンゼン環、ピリジン環、ピラジン環であり 、さらに好ましくはベンゼン環、ピリジン環であり、特に好ましくはピリジン環である。 zB 2で形成される芳香族環はさらに他の環と縮合環を形成してもよぐまた置換基を有し ていてもよい。置換基として、好ましくはアルキル基、ァルケ-ル基、アルキ-ル基、 ァリール基、アミノ基、アルコキシ基、ァリールォキシ基、ァシル基、アルコキシカルボ -ル基、ァリールォキシカルボ-ル基、ァシルォキシ基、ァシルァミノ基、アルコキシ カルボ-ルァミノ基、ァリールォキシカルボ-ルァミノ基、スルホ -ルァミノ基、スルフ ァモイル基、力ルバモイル基、アルキルチオ基、ァリールチオ基、スルホ-ル基、ハロ ゲン原子、シァノ基、ヘテロ環基であり、より好ましくはアルキル基、ァリール基、アル コキシ基、ァリールォキシ基、ハロゲン原子、シァノ基、ヘテロ環基であり、更に好まし くはアルキル基、ァリール基、アルコキシ基、ァリールォキシ基、芳香族へテロ環基で あり、特に好ましくはアルキル基、ァリール基、アルコキシ基、芳香族へテロ環基であ る。
nB2は、 1〜4の整数であり、 2〜3であると好ましい。
[0083] 前記一般式 (B— I)で表される化合物のうち、さらに好ましくは下記一般式 (B— II)
Figure imgf000050_0001
[0084] 一般式 (B— II)中、 RB71、 RB72及び RB73は、それぞれ一般式 (B— I)における RB72と同 義であり、また好ましい範囲も同様である。
ZB71、 ZB72及び ΖΒ73は、それぞれ一般式 (Β— Ι)における ΖΒ2と同様であり、また好まし い範囲も同様である。
LB71、 LB72及び LB73は、それぞれ連結基を表し、一般式 (B— I)における LBの例を二 価としたものが挙げられ、好ましくは、単結合、二価の芳香族炭化水素環基、二価の 芳香族へテロ環基、およびこれらの組み合わせ力 なる連結基であり、より好ましくは 単結合である。 Lm、 LB72及び LB73は置換基を有していてもよぐ置換基としては一般 式(B— I)の LBと同様のものか挙げられる。
Yは、窒素原子、 1, 3, 5—ベンゼントリィル基又は 2, 4, 6—トリアジントリイル基を 表す。 1, 3, 5—ベンゼントリィル基は 2, 4, 6—位に置換基を有していてもよぐ置換 基としては、例えばアルキル基、芳香族炭化水素環基、ハロゲン原子などが挙げられ る。
[0085] 一般式 (B— I)又は(B— II)で表される含窒素 5員環誘導体の具体例を以下に示す 力 これら例示化合物に限定されるものではない。
[化 27] //: O /-6990ε900ί1£AV 09
g I
CO
Figure imgf000051_0001
[SZ^ [9800] .6990C/900Zdf/X3d 1-9 ひ 890Ϊ/900Ζ OAV //: O /-6990ε900ί1£AV 39
Figure imgf000053_0001
[0087] (Cz-) nA (C I)
Cz (-A) m (C-II)
[式中、 Czは置換もしくは無置換のカルバゾリル基、ァリールカルバゾリル基又は力 ルバゾリルアルキレン基、 Aは下記一般式 (A)で表される部位より形成される基であ る。 n, mはそれぞれ 1〜3の整数である。
(M) p- (L) q- (M')r (A)
(M及び M'は、それぞれ独立に、環を形成する炭素数が 2〜40の窒素含有へテロ 芳香族環であり、環に置換基を有していても有していなくても良い。また Mおよび M' は、同一でも異なっていても良い。 Lは単結合、炭素数 6〜30のァリーレン基、炭素 数 5〜30のシクロアルキレン基又は炭素数 2〜30のへテロ芳香族環であり、環に結 合する置換基を有していても有していなくても良い。 pは 0〜2、 qは 1〜2、 rは 0〜2の 整数である。ただし、 p+rは 1以上である。 ) ]
[0088] 前記一般式 (C I)及び (C II)の結合様式はパラメータ n, mの数により、具体的 には以下の表中記載のように表される。
[表 1]
Figure imgf000054_0001
[0089] また、一般式 (A)で表される基の結合様式は、パラメータ p, q, rの数により、具体 的には以下の表中 (1)から (16)に記載された形である。
[表 2] No P q r 結 合 様 式
(1) 0 1 1 L— M '
(2) 0 1 2 L - M ' — M, , M ' 一 L一 M,
(3) 0 2 1 L - L - M ' , L -M ' - L
(4) 0 2 2
(5) 1 1 0 (1)に同じ (Μ ' を Mと読み替える)
(6) 1 1 1 M - L - M '
1
(7) 1 1 2
1
(8) 1 2 0 (3)に同じ (Μ' を Μと読み替える)
J一
(9) 1 2 1 Μ - L - L - Μ ' , L 一 Μ - L一 M ' , Μ - L -Μ ' - L
[表 3]
M - L - L -M ' -M ' , M - L -M-L -M' ,
M ' 一 M' - L -M- L,
(10) 1 2 2 M'
M— L— L M— L— L— M' L— L— -1— M' L— I\ -L— M' I
I I , 1 , 1 , I ,M— L— L M' M, M' M M' J, ,
M'
(11) 2 1 0 (2)に同じ (Μ' を Mと読み替える)
(12) 2 1 1 (7)に同じ (Μ' を Μと読み替える)
Μ - M— L— M' - Μ, , γ M
(13) 2 1 2 Μ— L— Μ I
J Μrt,· ώ
(14) 2 2 0 (4)に同じ (Μ' を Μと読み替える)
(15) 2 2 1 (10)に同じ (Μ' を Μと読み替える)
M— M— L - L— Μ — Μ
Μ
Μ ]^L— Μ Μ Μ— Lr— L— Μ*— Μ' 1
J ' 1 Μ— L— L,
L M / \
(16) 2 2 2 ' M M
Figure imgf000056_0001
[0090] 前記一般式 (C— I)及び(C— II)において、 Czが、 Aと結合している場合、 Aを表す M, L, M'のどの部分に結合してもよい。例えば、 m=n=lである Cz— Aでは p = q =r=l(表中 (6))の場合、 Aは M— L— M,となり Cz— M— L— M' M— L (— Cz)— M' , M— L M'— Czの 3つの結合様式として表される。また同様に、例えば一般式 (C - 1)にお!/、て n= 2である Cz—A— Czでは、 p = q= l, r=2 (表中 (7》の場合 Aは M-L-M'—M'もしくは M— L(— M')—M,となり、下記の結合様式として表され る。
[0091] [化 29] Cz-M-L-M'-M* Cz-M-L-M'- ' Cz-M-L-M'-M' Cz Cz Cz
Cz
Cz-M-L-M'-M'-Cz , M-L-M'-M1 , M - L一 M'— M,
Cz Cz Cz
Cz
M-L-M'-M'-Cz M-L-M'-M' M-L-M'-M'-Cz
Cz Cz Cz
Cz
M-L-M'-M'-Cz Cz-M-L-M' Cz-M-L-M' , Cz-M-L-M'
Cz Cz M' M, M'
Cz Cz Cz Cz
M-L-M' , M-L-M'-Cz , M-L-M' M-L-M'-Cz
M' M' Cz-M'-Cz M'-Cz 前記一般式 (C I)及び (C II)で表される具体例としては下記のような構造が挙 げられる力 この例に限定されるものではない。
[化 30]
Figure imgf000058_0001
(ΙΙΙ
(式中、 Ar 〜Ar は、それぞれ一般式 (B— I)の RB2と同様の基を示し、具体例も同
11 13
様であり、 Ar〜Arは、一般式 (B—I)の RB2と同様の基を 2価にしたものを示し、具体
1 3
例も同様である。 )
一般式 (C— III)の具体例を以下に示すが、これに限定されない。
[化 32]
Figure imgf000059_0001
[化 33]
(C- IV)
Figure imgf000059_0002
(式中、 R 〜R は、それぞれ一般式 (B— I)の RB2と同様の基を示し、具体例も同様
11 14
である。 )
一般式 (C— IV)の具体例を以下に示すが、これらに限定されない。
[化 34]
Figure imgf000060_0001
[化 35]
(C-V)
Figure imgf000060_0002
(式中、 Ai:1〜 Ar3は、それぞれ一般式 (B— I)の RB2と同様の基を示し、具体例も同様 である。 )
一般式 (C—V)の具体例を以下に示すが、これに限定されない。
[化 36]
Figure imgf000060_0003
[化 37]
(C-VI)
Figure imgf000061_0001
(式中、 Ai:1〜 Ar4は、それぞれ一般式 (B— I)の RB2と同様の基を示し、具体例も同様 である。 )
一般式 (C VI)の具体例を以下に示すが、これに限定されない。
[化 38]
Figure imgf000061_0002
また、本発明の有機 EL素子において、電子注入'輸送層を構成する物質として、 絶縁体又は半導体の無機化合物を使用することが好ましい。電子注入'輸送層が絶 縁体や半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を 向上させることができる。このような絶縁体としては、アルカリ金属カルコゲナイド、ァ ルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属 のハロゲンィ匕物力 なる群力 選択される少なくとも一つの金属化合物を使用するの が好ましい。電子注入'輸送層がこれらのアルカリ金属カルコゲナイド等で構成され ていれば、電子注入性をさらに向上させることができる点で好ましい。
具体的に、好ましいアルカリ金属カルコゲナイドとしては、例えば、 Li 0
2 、 LiO、 Na
2
S、 Na Se及び NaOが挙げられ、好ましいアルカリ土類金属カルコゲナイドとしては、
2
例えば、 CaO、 BaO、 SrO、 BeO、 BaS及び CaSeが挙げられる。また、好ましいアル カリ金属のハロゲン化物としては、例えば、 LiF、 NaF、 KF、 LiCl、 KC1及び NaCl等 が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、 Ca F 、 BaF、 SrF、 MgF及び BeFといったフッ化物や、フッ化物以外のハロゲンィ匕
2 2 2 2 2
物が挙げられる。
[0098] また、電子注入'輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In 、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sb及び Znの少なくとも一つの元素を含む酸化物、窒 化物または酸ィ匕窒化物等の一種単独又は二種以上の組み合わせが挙げられる。ま た、電子輸送層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜である ことが好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な 薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。な お、このような無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土 類金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロ ゲンィ匕物等が挙げられる。
さらに、本発明の有機 EL素子において、電子注入層及び/又は電子輸送層は、 仕事関数が 2. 9eV以下の還元性ドーパントを含有していてもよい。本発明において 、還元性ドーパントは電子注入効率を上昇させる化合物である。
[0099] また、本発明においては、陰極と有機薄膜層との界面領域に還元性ドーパントが添 カロされていると好ましぐ界面領域に含有される有機層の少なくとも一部を還元しァ- オン化する。好ましい還元性ドーパントとしては、アルカリ金属、アルカリ土類金属の 酸化物、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハ ロゲン化物、アルカリ土類金属の酸ィ匕物、アルカリ土類金属のハロゲンィ匕物、希土類 金属の酸化物または希土類金属のハロゲン化物、アルカリ金属錯体、アルカリ土類 金属錯体、希土類金属錯体の群から選ばれる少なくとも一つの化合物である。より具 体的に、好ましい還元性ドーパントとしては、 Na (仕事関数: 2. 36eV)、 K (仕事関 数: 2. 28eV)、Rb (仕事関数: 2. 16eV)及び Cs (仕事関数: 1. 95eV)力 なる群 力 選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV)、 Sr (仕事 関数: 2. 0〜2. 5eV)及び Ba (仕事関数: 2. 52eV)力 なる群力 選択される少なく とも一つのアルカリ土類金属が挙げられ、仕事関数が 2. 9eVのものが特に好ましい 。これらのうち、より好ましい還元性ドーパントは、 K、 Rb及び Csからなる群から選択さ れる少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rb又は Csであり、最も好 ましくは、 Csである。これらのアルカリ金属は、特に還元能力が高ぐ電子注入域へ の比較的少量の添加により、有機 EL素子における発光輝度の向上や長寿命化が図 られる。
[0100] 前記アルカリ土類金属酸ィ匕物としては、例えば、 BaO、 SrO、 CaO及びこれらを混 合した Ba Sr O (0<x < 1)や、 Ba Ca O (0<x < 1)を好ましいものとして挙げる
1 1
ことができる。アルカリ酸化物又はアルカリフッ化物としては、 LiF、 Li 0
2 、 NaF等が 挙げられる。アルカリ金属錯体、アルカリ土類金属錯体、希土類金属錯体としては金 属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少 なくとも一つ含有するものであれば特に限定はない。また配位子としては、例えば、キ ノリノール、ベンゾキノリノール、アタリジノール、フエナントリジノール、ヒドロキシフエ二 ルォキサゾール、ヒドロキシフエ二ルチアゾール、ヒドロキシジァリールォキサジァゾ一 ル、ヒドロキシジァリールチアジアゾール、ヒドロキシフエ二ルビリジン、ヒドロキシフエ二 ルベンゾイミダゾール、ヒドロキシベンゾトリァゾール、ヒドロキシフルボラン、ビピリジル 、フエナント口リン、フタロシア-ン、ポルフィリン、シクロペンタジェン、 13ージケトン類 、ァゾメチン類、およびそれらの誘導体等が挙げられる力 これらに限定されるもので はない。
[0101] また、還元性ドーパントの好ましい形態としては、層状または島状に形成する。層状 に用いる際の好まし 、膜厚としては 0. 05〜8nmである。
還元性ドーパントを含む電子注入'輸送層の形成手法としては、抵抗加熱蒸着法 により還元性ドーパントを蒸着しながら、界面領域を形成する発光材料または電子注 入材料である有機物を同時に蒸着させ、有機物中に還元性ドーパントを分散する方 法が好ましい。分散濃度としてはモル比として 100 : 1〜1: 100、好ましくは 5 : 1〜1 : 5で ある。還元性ドーパントを層状に形成する際は、界面の有機層である発光材料また は電子注入材料を層状に形成した後に、還元性ドーパントを単独で抵抗加熱蒸着 法により蒸着し、好ましくは膜厚 0.5ηπ!〜 15nmで形成する。還元性ドーパントを島状 に形成する際は、界面の有機層である発光材料又は電子注入材料を形成した後に 、還元性ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは膜厚 0.05〜ln mで形成する。
[0102] 本発明の有機 EL素子の発光層は、電界印加時に陽極又は正孔注入層より正孔を 注入することができ、陰極又は電子注入層より電子を注入することができる機能、注 入した電荷 (電子と正孔)を電界の力で移動させる機能、電子と正孔の再結合の場を 提供し、これを発光につなげる機能を有するものである。本発明の有機 EL素子の発 光層は、少なくとも本発明の遷移金属錯体化合物を含有すると好ましぐこの遷移金 属錯体ィ匕合物をゲスト材料とするホスト材料を含有させてもょ ヽ。前記ホスト材料とし ては、例えば、力ルバゾール骨格を有するもの、ジァリールァミン骨格を有するもの、 ピリジン骨格を有するもの、ピラジン骨格を有するもの、トリァジン骨格を有するもの及 びァリールシラン骨格を有するもの等が挙げられる。前記ホスト材料の T1 (最低三重 項励起状態のエネルギーレベル)は、ゲスト材料の T1レベルより大きいことが好まし い。前記ホスト材料は低分子化合物であっても、高分子化合物であってもよい。また 、前記ホスト材料と前記遷移金属錯体化合物等の発光材料とを共蒸着等すること〖こ よって、前記発光材料が前記ホスト材料にドープされた発光層を形成することができ る。
[0103] 本発明の有機 EL素子において、前記各層の形成方法としては、特に限定されるも のではないが、真空蒸着法、 LB法、抵抗加熱蒸着法、電子ビーム法、スパッタリング 法、分子積層法、コーティング法 (スピンコート法、キャスト法、ディップコート法など)、 インクジェット法、印刷法などの種々の方法を利用することができ、本発明においては 塗布法であるコーティング法が好ま 、。
また、本発明の遷移金属錯体化合物を含有する有機薄膜層は、真空蒸着法、分子 線蒸着法 (MBE法)あるいは溶媒に解力した溶液のデイツビング法、スピンコーティン グ法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法 で形成することができる。
前記コーティング法では、本発明の遷移金属錯体化合物を溶媒に溶解して塗布液 を調製し、該塗布液を所望の層(あるいは電極)上に、塗布 ·乾燥することによって形 成することができる。塗布液中には榭脂を含有させてもよぐ榭脂は溶媒に溶解状態 とすることも、分散状態とすることもできる。前記榭脂としては、非共役系高分子 (例え ば、ポリビニルカルバゾール)、共役系高分子 (例えば、ポリオレフイン系高分子)を使 用することができる。より具体的には、例えば、ポリ塩ィ匕ビニル、ポリカーボネート、ポリ スチレン、ポリメチルメタタリレート、ポリブチルメタタリレート、ポリエステル、ポリスルホ ン、ポリフエ-レンォキシド、ポリブタジエン、ポリ(N—ビュルカルバゾール)、炭化水 素榭脂、ケトン樹脂、フエノキシ榭脂、ポリアミド、ェチルセルロース、酢酸ビュル、 AB S榭脂、ポリウレタン、メラミン榭脂、不飽和ポリエステル榭脂、アルキド榭脂、ェポキ シ榭脂、シリコン榭脂等が挙げられる。
また、本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、一般に膜 厚が薄すぎるとピンホール等の欠陥が生じやすぐ逆に厚すぎると高い印加電圧が 必要となり効率が悪くなるため、通常は数 nmから 1 μ mの範囲が好ましい。
実施例
[0104] 次に、実施例を用いて本発明をさらに詳しく説明する。
合成実施例 1 (遷移金属錯体化合物 1の合成)
以下の反応工程にて、下記遷移金属錯体化合物 1を合成した。
反応工程の下に示す数値は、左から順に、化合物 A、 2—エトキシエタノール、化 合物 B、化合物 1のものである。なお、 Mol. Wt.は分子量を示す。
[化 39]
Figure imgf000065_0001
)
Mol. Wt. 1072.09 68.05 286.11 657J8
Amounts(g) 1.42 0.537 1 51
mol 1.32 103 7.92 x 10"3 5.28 x lO'3
[0105] 反応はすべてアルゴン気流下で行なった。化合物 Aに溶媒 2—エトキシエタノール を 60mlカ卩え、これにナトリウムエトキシド 3当量をカ卩え、室温にて 5時間反応させた。こ れにイミダゾリゥム塩 (ィ匕合物 B)を 2当量加え、 4時間還流させた。真空減圧下にて得 られた反応液から溶媒 2—エトキシエタノールを加熱留去し、冷却後塩化メチレンを 約 10ml加え、固体をろ別することで、化合物 1を粗生成物として得た。これをシリカゲ ルカラムクロマトグラフィー(展開溶媒:塩化メチレン、 Rf値約 0. 7)により精製し、化 合物 1を 0. 90g (収率 52%)得た。
得られたィ匕合物について、下記(1)〜(3)を測定した。
<各種スペクトル測定結果 >
(1) FD— MS測定:最大ピーク値は 658で計算値と一致した (計算値 M+ (分子ィォ ンピーク) =658)。
FD— MS測定 (電界脱離イオンィ匕質量分析法)の測定条件は以下のようにした。 以下の合成実施例についても全て同じである。
装置: HX110 (日本電子社製)
条件:加速電圧 8kV
キャンレンジ mZz = 50〜1500
ェミッタ種 カーボン
ェミッタ電流 0mA→2mAZ分→40mA (10分保持)
(2) 'H-NMRCSOOMHz,溶媒 CD C1、基準 5. 32ppm)スペクトル測定:図 1参
2 2
上記(1)及び (2)の結果から、化合物 1の構造が同定された。
(3)発光スペクトルの測定 (室温):図 2参照
発光が確認され、この化合物 1は有機 EL素子の発光材料として有用であることが 分かった。
合成実施例 2 (遷移金属錯体化合物 2の合成)
以下の反応工程にて、下記遷移金属錯体化合物 2を合成した。
反応工程の下に示す数値は、左から順に、化合物 C、 2—エトキシエタノール、化合 物 B、化合物 2のものである。
[化 40]
Figure imgf000067_0001
収率 71 % ( 3.10 g )
Mol. Wt. 1216.02 68.05 286.11 729.75 Amounts 3.6o g 1.225 g 3.43 g
mol 3.0 103 1.80 x W' 1.20 x lO"2
[0107] 反応はすべてアルゴン気流下で行なった。化合物 Cに溶媒 2 エトキシエタノール を 100mlカ卩え、これにナトリウムエトキシド 3当量をカ卩え、室温にて 5時間反応させた。 これにイミダゾリゥム塩 (ィ匕合物 B)を 2当量加え、 4時間還流させた。真空減圧下にて 得られた反応液力 溶媒 2—エトキシエタノールを加熱留去し、冷却後塩化メチレン を約 25mlカ卩ぇ固体をろ別することで、化合物 2を粗生成物として得た。これをシリカ ゲルカラムクロマトグラフィー(展開溶媒:塩化メチレン、 Rf値約 0. 7)により精製し、ィ匕 合物 2を 3. 10g (収率 71%)得た。
<各種スペクトル測定結果 >
(1) FD— MS測定:最大ピーク値は 729で計算値 (M+— 1)と一致した (計算値 M+ = 730)。
(2) NMR(500MHz)スペクトル測定:図 3参照
上記(1)および (2)の結果から、化合物 2の構造が同定された。
(3)発光スペクトルの測定 (室温):図 4参照
発光が確認され、この化合物 2は有機 EL素子の発光材料として有用であることが 分かった。
[0108] 合成実施例 3 (遷移金属錯体化合物 3の合成)
以下の反応工程にて、下記遷移金属錯体化合物 3を合成した。
反応工程の下に示す数値は、左から順に、化合物 D、 2—エトキシエタノール、化 合物 B、化合物 3のものである。
[化 41]
Figure imgf000068_0001
Mol. Wt. 1616.08 68.05 286.11 929.78
Amounts 5.00 g 1.263 g 3.54 g
mol 3.09 10 3 1.86 x iO"2 1.24 x lO 2
[0109] 反応はすべてアルゴン気流下で行なった。化合物 Dに溶媒 2 エトキシエタノール を lOOmlカ卩え、これにナトリウムエトキシド 3当量をカ卩え、室温にて 5時間反応させた。 これにイミダゾリゥム塩 (ィ匕合物 B)を 2当量加え、 4時間還流させた。真空減圧下にて 得られた反応液力 溶媒 2—エトキシエタノールを加熱留去し、冷却後塩化メチレン を約 25mlカ卩ぇ固体をろ別することで、化合物 3を粗生成物として得た。これをシリカ ゲルカラムクロマトグラフィー(展開溶媒:塩化メチレン、 Rf値約 0. 7)により精製し、化 合物 3を 1. 10g (収率 19%)得た。
<各種スペクトル測定結果 >
(1) FD— MS測定:最大ピーク値は 930で計算値と一致した (計算値 M+ = 930)。
(2) NMR(500MHz)スペクトル測定:図 5参照
上記(1)および (2)の結果から、化合物 3の構造が同定された。
(3)発光スペクトルの測定 (室温):図 6参照
発光が確認され、この化合物 3は有機 EL素子の発光材料として有用であることが 分かった。
[0110] 合成実施例 4 (遷移金属錯体化合物 4の合成)
以下の反応工程にて、下記遷移金属錯体化合物 4を合成した。
反応工程の下に示す数値は、左上から順に、化合物 E、 2—エトキシエタノール、化 合物 B、化合物 F、化合物 F、塩化メチレン、化合物 G、化合物 G、化合物 H、化合物 H、 2 エトキシエタノール、化合物 4のものである。なお、 Tfは、トリフルォロメタンス ルホ-ル基を示す。 [化 42]
1/2
Figure imgf000069_0001
化合物 E 室温、 5時間 室温、 2時間 17.50g (収率 79%)
Mol. Wt. 671.70 68.05 286.11 743.70
Amounts 10 g 6.08 g 17.05 g
mol 1.49X10·: 8.93 x It)-2 5.96 10— 2
化合物 E
Figure imgf000069_0002
化合物 G
Mol. Wt. 743.70 256.94 765.87
Amounts 5g 1.73 g
mol 6.72x10-3 6.72 x IO-3
[化 43]
化合物 G
Figure imgf000070_0001
化合物 ti
0.32 g (収率 74%)
Mol. Wt. 765.87 655.67
Amounts 0.50 g
mol 6.53 X 10 4
Figure imgf000070_0002
化合物 H 化合物 4
0.020 g (収率 23%)
Mol. Wt. 655.67 167.21 660.79
Amounts 0.086 g 0.044 g
mol 1.31 x lO"4 2.62 x lO-4 (i)化合物 Fの合成
反応はすべてアルゴン気流下で行なった。化合物 Eに溶媒エタノールを 149mlカロ え、次にナトリウムエトキシド 3当量をカ卩え、室温にて 5時間攪拌させた。これにイミダ ゾリゥム塩 (ィ匕合物 B)を 2当量加え、 2時間反応させた。得られた反応液から固体成 分をろ別し、溶媒を減圧下留去し、さらに真空減圧下にて乾燥させ、化合物 Fを 17. 50g (収率 79%)得た (赤橙色の固体)。
得られた化合物 Fの iH— NMR ^OOMHz)スペクトル測定結果を図 7に示す。ま た、化合物 Fの X線結晶構造解析結果を図 8に示す。
(ii)化合物 Gの合成 反応はすべてアルゴン気流下で行なった。化合物 Fに溶媒塩化メチレンを 100ml 加え、室温にて 2時間反応させた(固体が AgOTfから Aglへと変化する)。固体成分 をろ別し、これを大量のへキサンに入れ固体を析出させることで、化合物 Gを 4. 38g (収率は 85%)得た。
得られた化合物 Gの ^H— NMR^OMHz :溶媒 CD C1 )スペクトル測定結果を図 9
2 2
に示す。
(iii)化合物 Hの合成
反応はすべてアルゴン気流下で行なった。化合物 Gに溶媒 2—エトキシエタノール を 20mlカ卩え、 2時間還流させた (反応液の色が赤褐色力も黄褐色へと変化する)。溶 媒 2—エトキシエタノールを減圧下留去し、塩化メチレンを少量カ卩え、さらにへキサン を大量に加えることで固体を析出させた。この固体をろ別し真空減圧下にて乾燥させ 、化合物 Hを 0. 32g (収率 74%)得た。
<各種スペクトル測定結果 >
(1) FD— MS測定:最大ピーク値は 656で計算値と一致した (計算値 M+ =656)。
(2) NMR(90MHz :溶媒 CD C1 )スペクトル測定:図 10参照
2 2
上記(1)および (2)の結果から、化合物 Hの構造が同定された。
(iv)化合物 4の合成
反応はすべてアルゴン気流下で行なった。化合物 Hに溶媒 2—エトキシエタノール を 20mlカ卩え、 2時間還流させた。溶媒 2—エトキシエタノールを減圧下留去し、塩ィ匕 メチレンを少量加え、さらにへキサンを大量にカ卩えることで固体を析出させた。これを シリカゲルカラムクロマトグラフィー(展開溶媒:塩化メチレン、 Rf値約 0. 7)により精製 し、化合物 4を 0. 020g (収率 23%)得た。
<各種スペクトル測定結果 >
(1) FD-MS :最大ピーク値は 661で計算値と一致した (計算値 M+ =661)。
上記(1)の結果から、化合物 4の構造が同定された。
(2)発光スペクトルの測定 (室温):図 11参照
発光( λ : 499nm)が確認され、この化合物 4は有機 EL素子の発光材料として max
有用であることが分力つた。また、下記 Ir (PPy) (比較例 1参照、 λ : 510nm)に 比べ発光が短波長化した。
[0113] 合成実施例 5 (遷移金属錯体化合物 5の合成)
以下の反応工程にて、下記遷移金属錯体化合物 5を合成した。
反応工程の下に示す数値は、左から順に、化合物 F、塩化メチレン、炭酸ナトリウム
、ァセチルアセトン、化合物 5のものである。
[化 44]
化合物
Figure imgf000072_0001
743.70 256.94 105.99 100.12 605.71 Amounts 0.5 g 0.208 g 0.142 g 0.135g
mol 6.72 10'4 8.06 x 10 - 1.34 10"31.34 10 3
[0114] 反応はすべてアルゴン気流下で行なった。化合物 Fに溶媒塩化メチレンを 10ml加 え、室温にて 2時間反応させた(固体が AgOTfから Aglへと変化する)。反応液から 固体成分をろ別し、塩化メチレンを減圧下留去し、溶媒 2—エトキシエタノールを 20 ml加え、 2時間還流させた (赤橙色力 黄褐色に変化する)。室温に戻した後、これ に炭酸ナトリウム 2当量、続いてァセチルアセトン 2当量をカ卩え、 2時間還流させた。得 られた反応液から真空減圧下にて溶媒を加熱留去し、冷却後塩化メチレンを約 20m 1加え固体をろ別することで、化合物 5を粗生成物として得た。これをシリカゲルカラム クロマトグラフィー(展開溶媒:塩化メチレン、 Rf値約 0. 2)により精製し、化合物 5を 0 . 10g (収率 25%)得た。
[0115] <各種スペクトル測定結果 >
(1) FD— MS測定:最大ピーク値は 605で計算値 (M+— 1)と一致した (計算値 M+ = 606)。
(2) NMR(500MHz)スペクトル測定:図 12参照
上記(1)および (2)の結果から、化合物 5の構造が同定された。
(3)発光スペクトルの測定(室温):化合物 5の低温発光(温度 77Κ、 λ : 511nm) を観測され、この化合物 5は有機 EL素子の発光材料として有用であることが分かつ た。
(4)化合物 5におけるカルベン炭素の確認
C H二次元 NMRから、それぞれの帰属対応を決定した。また、 13C— NMRにお ける DEPT法により、 4級炭素とカルベン炭素(計 4種、 I、 K、 L、 M)を決定した。さら に、 13C— NMRにおげる各々のピークのカップリング定数を比較し、二重結合部を定 め、さらに Bの水素をデカップルすることでピーク形状の変化が観測されたことから、 G、 E、 Lを決定した。
以上より、カルベン炭素の存在と帰属が明確となった。
(5) HMBC法(異種核二次元 NMR法)〖こより、 Kの炭素と Iの炭素のうち、 Eの水素 の γ位にある炭素を Kの炭素と決定した。また、同様に HMBC法により Κの炭素と γ 位にあるベンゼン環上の水素を Ε, Jとし、 Iの炭素と γ位にあるベンゼン環上の水素 を D, Ηと決定した。 EiJ、また、 F^Jは、 NMRのカップリングパターンあるいは カップリング定数力も容易に推定できた。
[化 45]
Figure imgf000073_0001
Figure imgf000073_0002
合成実施例 6 (遷移金属錯体化合物 6の合成)
以下の反応工程にて、下記遷移金属錯体化合物 6を合成した。
反応工程の下に示す数値は、左から順に、化合物 G、ナトリウムエトキシド、化合物
B、化合物 6のものである。
[化 46] 化合物 s
Figure imgf000074_0001
還流、 2時間室温、 3時間還流、 2時間
Mol. Wt. 765.87 68.05 286.11
Amounts 0.757g 0.204g 0.572g
mol l x id-3 3 X 10"3 2 X 10"3
[0118] 反応はすべてアルゴン気流下で行なった。化合物 Gに溶媒 2 エトキシエタノール を 30mlカ卩え、 2時間還流させた (赤橙色力も黄褐色に変化する)。室温に戻した後、 これにナトリウムエトキシド 3当量をカロえ、室温にて 3時間攪拌させた。これにイミダゾリ ゥム塩 (ィ匕合物 B)を 2当量加え、 2時間還流させた。得られた反応液から真空減圧下 にて溶媒を加熱留去し、冷却後塩化メチレンを約 20ml加え固体をろ別ことで、化合 物 6を粗生成物として得た。これをシリカゲルカラムクロマトグラフィー(展開溶媒:塩 ィ匕メチレン、 Rf値約 0. 6)により精製し、化合物 6を 0. 50g (収率 75%)得た。
<各種スペクトル測定結果 >
(1) FD-MS :最大ピーク値は 664で計算値と一致した (計算値 M+ = 664)。
(2) NMR(500MHz)スペクトル測定:図 13参照
上記(1)および (2)の結果から、化合物 6の構造が同定された。
(3)発光スペクトルの測定 (室温):図 14参照
室温発光(λ :407nm)が観測され、この化合物 6は有機 EL素子の発光材料と
max
して有用であることが分力つた。
[0119] 合成実施例 7 (ベンゾフエノンの合成)
アルゴンガス気流下、 100ml二口ナス型フラスコに、溶媒として脱水アセトン 16ml を人れ、これに、ベンズヒドローノレ(3. 69g, 20. Ommol)、ィ匕合物 G 153mg (0. 2 Ommol)及び炭酸カリウム 27. 6mg (0. 20mmol)を順次加え、 40°Cにて 6時間反 応を行なった。シリカゲルカラムクロマトグラフィー(展開溶媒:へキサン/塩化メチレ ン 1 : 1)により、この反応生成物を分離し、ベンゾフエノン (分子量 182. 22)を 0. 38 3g (2. 10 mmol,収率 11%)得た。
[0120] 実施例 1 (有機 EL素子の製造)
25mm X 75mm X 0. 7mm厚の ITO透明電極付きガラス基板をイソプロピルアル コール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 30分間行なった。洗 浄後の透明電極付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透 明電極が形成されている側の面上に前記透明電極を覆うようにして膜厚 lOOnmで Ν , N,一ビス(N, N,一ジフエ-ル一 4—ァミノフエ-ル)一 N, N—ジフエ-ル一 4, 4, —ジァミノ— 1, 1,—ビフエ-ル膜 (以下「TPD232膜」)を抵抗加熱蒸着により 100η m成膜した。この TPD232膜は正孔注入層として機能する。続けて、この膜上に膜厚 lOnm正孔輸送層(下記 TCTA)を抵抗加無蒸着により成膜した。さらに、正孔輸送 層の成膜に続けて、この膜上に膜厚 30nmで、ホスト材料(下記 HostNo. 1)とドー パントとして上記遷移金属錯体化合物 1を抵抗加熱により共蒸着成膜した。このドー パントの濃度は 7. 5重量%であった。この共蒸着膜は発光層として機能する。その後 、この発光層上に膜厚 25nmの電子輸送層(下記 ETM1)を抵抗加熱蒸着により成 膜した、さらに、この上に膜厚 5nmの下記 Alq層を成膜した。その後、 LiFを電子注 入性電極 (陰極)として成膜速度 lAZminで膜厚 0. lnm形成した。この LiF層上に 金属 A1を蒸着させ、金属陰極を膜厚 130nm形成し有機 EL素子を作製した。
この素子に、直流電圧を印可して通電試験を行い、 CIE色度を測定した結果を第 1 表に示す。良好な発光を得た。
[0121] [化 47]
Figure imgf000076_0001
Figure imgf000076_0002
[0122] 実施例 2
実施例 1にお ヽて、遷移金属錯体化合物として化合物 1の代わりに化合物 3を用い た以外は同様にして有機 EL素子を作製した。
得られた素子について、実施例 1と同様に通電試験を行い、 CIE色度を測定した結 果を第 1表に示す。
[0123] 比較例 1〜2
実施例 1にお!ヽて、遷移金属錯体化合物として化合物 1の代わりに下記化合物 Ir ( PPy) (比較例 1)、下記化合物 HI (比較例 2)を用いた以外は同様にして有機 EL素
3
子を作製した。
得られた素子について、実施例 1と同様に通電試験を行い、 CIE色度を測定した結 果を第 1表に示す。
[化 48]
Figure imgf000077_0001
I r ( p p y ) 3 H 1
[0124] [表 4]
m 1 表
Figure imgf000077_0002
第 1表に記載したように、本発明の遷移金属錯体ィ匕合物を用いた実施例 1の有機 E L素子は、緑色発光で比較例 1に対して低電圧駆動でありながら、高発光効率であり 、実施例 2の有機 EL素子は、青味緑色発光で比較例 2に対して低電圧駆動でありな がら、高発光効率である。
産業上の利用可能性
[0125] 以上詳細に説明したように、本発明の遷移金属錯体ィ匕合物は有機 EL素子用材料 として使用可能であり、それを用いた有機 EL素子は、発光効率が高ぐ長寿命であり 、各種表示素子、ディスプレイ、ノ ックライト、照明光源、標識、看板、インテリア等の 分野に適用でき、特にカラーディスプレイの表示素子として適している。

Claims

請求の範囲
下記一般式(1)で表される金属カルベン結合を有する遷移金属錯体ィヒ合物。
Figure imgf000078_0001
[一般式(1)において、 L2→Mは金属カルベン結合を示し、実線(一)で示した結合 は共有結合を、矢印(→)で示した結合は配位結合を意味する。 Mは、イリジウム ) 、白金(Pt)、ロジウム (Rh)又はパラジウム(Pd)の金属原子を示す。 L1 L2は、架 橋二座配位子を示し、 L3及び L4は、それぞれ独立に、単座配位子又は、 L3と L4が 架橋した架橋二座配位子(L3—L4 )を示す。 kは 1〜3、 iは 0〜2の整数で、 k + iは金 属 Mの原子価を示す。 jは 0〜4の整数を示す。 k、 i及び jが複数のときは、 L1〜L4は 、それぞれ同じあっても異なっていてもよぐ隣接するもの同士で架橋していてもよい
L1は、置換基を有してもよい核炭素数 6〜30の 2価の芳香族炭化水素基、置換基 を有してもよい核原子数 6〜30の 2価の複素環基、置換基を有してもよい炭素数 1〜 30の 2価のカルボキシル含有基、置換基を有して!/、てもよ 、2価のアミノ基又は水酸 基含有炭化水素基、置換基を有してもょ 、核炭素数 3〜50のシクロアルキレン基、 置換基を有してもょ 、炭素数 1〜30のアルキレン基、置換基を有してもよ!、炭素数 2 〜30のァルケ-レン基、置換基を有してもょ 、炭素数 7〜40のァラルキレン基であり
L2は、置換基を有してもよいカルベン炭素を核に持つ核炭素数 6〜30の 1価の芳 香族炭化水素基であり、
L3は、置換基を有してもよい核炭素数 6〜30の 1価の芳香族炭化水素基、置換基 を有してもょ ヽ核原子数 6〜30の 1価の複素環基、置換基を有してもょ ヽ炭素数 1〜 30の 1価のカルボキシル含有基、置換基を有して!/、てもよ 、 1価のアミノ基又は水酸 基含有炭化水素基、置換基を有してもよい核炭素数 3〜50のシクロアルキル基、置 換基を有してもょ 、炭素数 1〜30のアルキル基、置換基を有してもよ!、炭素数 2〜3 0のァルケ-ル基、置換基を有してもよい炭素数 7〜40のァラルキル基、及び L3とし4 が架橋した場合には前記各基の 2価の基であり、
L4は、 L1が表す前記芳香族炭化水素、アルカン、アルケン及びこれら各基の炭素 原子が、窒素原子、硫黄原子、酸素原子及びリン原子のいずれかで置き換わった化 合物からなる配位子。 ]
[2] 下記一般式(2)で表される請求項 1に記載の金属カルベン結合を有する遷移金属 錯体化合物。
[化 2]
Figure imgf000079_0001
[一般式(2)において、 L2→Mは金属カルベン結合を示し、実線(一)で示した結合 は共有結合を、矢印(→)で示した結合は配位結合を意味する。 M、 1^〜1^及ひ は 、それぞれ前記と同じである。 L1 -L2は、架橋二座配位子を示し、 L3及び L4は、そ れぞれ独立に、単座配位子又は、 L3とし4が架橋した架橋二座配位子 (L3—L4 )を示 す。 mは 0〜2の整数で、 k+mは金属 Mの原子価を示す。 k及び mが複数のときは、 Li〜L4は、それぞれ同じあっても異なっていてもよぐ隣接するもの同士で架橋して いてちよい。 ]
[3] 下記一般式(3)で表される請求項 1に記載の金属カルベン結合を有する遷移金属 錯体化合物。
[化 3]
Figure imgf000080_0001
[一般式(3)において、 C (炭素原子)→Μは金属カルベン結合を示し、 L3 -L4は、 架橋二座配位子を示す。 M、 L3〜! k及び mは、それぞれ前記と同じである。
Xは、窒素含有基(一 NR1—)、リン含有記(一 PR1—)、酸素(一 O )又は硫黄( S—)であり、 Yは、窒素含有基( NR1!^)、リン含有基( PR1)、酸素含有基(ー0 R1)、硫黄含有基(-SR1)であり、 Xと Yは、架橋し環構造を形成していてもよい。 (R1及び R2は、それぞれ独立に、水素原子、置換基を有してもよい炭素数 1〜30の アルキル基、置換基を有してもよい炭素数 1〜30のハロゲンィ匕アルキル基、置換基 を有してもよ!ヽ核炭素数 6〜30の芳香族炭化水素基、置換基を有してもよ!ヽ核炭素 数 3〜50のシクロアルキル基、置換基を有してもょ 、炭素数 7〜40のァラルキル基、 置換基を有してもょ 、炭素数 2〜30のァルケ-ル基、置換基を有してもよ!、核原子 数 3〜30の複素環基、置換基を有してもよい炭素数 1〜30のアルコキシ基、置換基 を有してもょ 、核炭素数 6〜30のァリールォキシ基、置換基を有してもよ!、炭素数 3 〜30アルキルアミノ基、置換基を有してもよい炭素数 6〜30のァリールアミノ基、置 換基を有してもょ 、炭素数 3〜30アルキルシリル基、置換基を有してもよ!、炭素数 6 〜30のァリールシリル基、置換基を有してもよい炭素数 1〜30のカルボキシル含有 基であり、 R1と R2は架橋していてもよい。 )
Zは、金属 Mと共有結合を形成する原子で、炭素、ケィ素、窒素又はリン原子であり 、 Zを含む A環は、置換基を有してもよい核炭素数 3〜40の芳香族炭化水素基又は 置換基を有してもよい核炭素数 3〜40の芳香族複素環基である。
k及び mが複数のときは、 X、 Y、 Z、 L3及び L4は、それぞれ同じあっても異なってい てもよく、隣接するもの同士で架橋していてもよい。 ] [4] 前記 Mが Irである請求項 1に記載の金属カルベン結合を有する遷移金属錯体化合 物。
[5] 前記 Mが Irである請求項 2に記載の金属カルベン結合を有する遷移金属錯体化合 物。
[6] 前記 Mが Irである請求項 3に記載の金属カルベン結合を有する遷移金属錯体化合 物。
[7] 下記一般式 (4)で表される請求項 1に記載の金属カルベン結合を有する遷移金属 錯体化合物。
[化 4]
Figure imgf000081_0001
[一般式 (4)において、 C (炭素原子)→Mは金属カルベン結合を示す。 M、 k及び m は、それぞれ前記と同じである。
R3〜R17は、それぞれ独立に、水素原子、ハロゲン原子、チオシァノ基、シァノ基、 ニトロ基、— S ( = 0) — S ( = 0)Ri (R1は前記と同じ)、置換基を有してもよい炭
Figure imgf000081_0002
素数 1〜30のアルキル基、置換基を有してもょ 、炭素数 1〜30のハロゲン化アルキ ル基、置換基を有してもよい核炭素数 6〜30の芳香族炭化水素基、置換基を有して もよ 、核炭素数 3〜50のシクロアルキル基、置換基を有してもょ 、炭素数 7〜40のァ ラルキル基、置換基を有してもよい炭素数 2〜30のァルケ-ル基、置換基を有しても ょ 、核原子数 3〜30の複素環基、置換基を有してもよ!、炭素数 1〜30のアルコキシ 基、置換基を有してもよい核炭素数 6〜30のァリールォキシ基、置換基を有してもよ V、炭素数 3〜30アルキルアミノ基、置換基を有してもょ 、炭素数 6〜30のァリールァ ミノ基、置換基を有してもよい炭素数 3〜30アルキルシリル基、置換基を有してもよい 炭素数 6〜30のァリールシリル基、置換基を有してもよい炭素数 1〜30のカルボキシ ル含有基であり、 R3〜R17は隣接するもの同士で架橋していてもよい。 ]
前記 Mが Irである下記一般式(5)で表される請求項 7に記載の金属カルベン結合 を有する遷移金属錯体化合物。
[化 5]
Figure imgf000082_0001
[一般式(5)において、 C (炭素原子)→Irは金属カルベン結合を示す。 k、 m及び R' 〜R17は、それぞれ前記と同じである。 ]
下記一般式 (6)で表される金属カルベン結合を有する遷移金属錯体化合物。
[化 6]
Figure imgf000082_0002
2
[一般式 (6)において、 C (炭素原子)→Irは金属カルベン結合を示し、実線(―)で 示した結合は共有結合を、矢印(→)で示した結合は配位結合を意味する。
Y1及び Y2は、それぞれ独立に、窒素含有基(—NR1!^)、リン含有基(— PR1)、酸 素含有基(一 OR1)、硫黄含有基(一 SR1)であり、 Y1と Y2は、架橋し環構造を形成し ていてもよい。 (R1及び R2は、それぞれ独立に、水素原子、置換基を有してもよい炭素数 1〜30の アルキル基、置換基を有してもよい炭素数 1〜30のハロゲンィ匕アルキル基、置換基 を有してもよ!ヽ核炭素数 6〜30の芳香族炭化水素基、置換基を有してもよ!ヽ核炭素 数 3〜50のシクロアルキル基、置換基を有してもょ 、炭素数 7〜40のァラルキル基、 置換基を有してもょ 、炭素数 2〜30のァルケ-ル基、置換基を有してもよ!、核原子 数 3〜30の複素環基、置換基を有してもよい炭素数 1〜30のアルコキシ基、置換基 を有してもょ 、核炭素数 6〜30のァリールォキシ基、置換基を有してもよ!、炭素数 3 〜30アルキルアミノ基、置換基を有してもよい炭素数 6〜30のァリールアミノ基、置 換基を有してもょ 、炭素数 3〜30アルキルシリル基、置換基を有してもよ!、炭素数 6 〜30のァリールシリル基、置換基を有してもよい炭素数 1〜30のカルボキシル含有 基であり、 R1と R2は架橋していてもよい。 )
L5及び L6は、それぞれ独立に、単座配位子又は、 L5と L6が架橋した架橋二座配 位子 (L5—L6 )を示す。 nは 0〜4の整数である。 nが複数のときは、複数の L6は、そ れぞれ同じあっても異なっていてもよぐ架橋していてもよい。また、 Y1、 Y2、 L5及び L6は、それぞれ隣接するもの同士で架橋していてもよい。
L5は、置換基を有してもよい核炭素数 6〜30の芳香族炭化水素基、置換基を有し てもよ 、核原子数 3〜30の複素環基、置換基を有してもよ!、炭素数 1〜30のカルボ キシル含有基、置換基を有してもよい核炭素数 3〜50のシクロアルキル基、置換基 を有してもょ 、炭素数 1〜30のアルキル基、置換基を有してもょ 、炭素数 2〜30の ァルケ-ル基、置換基を有してもよい炭素数 7〜40のァラルキル基であり、前記アル キル基、前記アルケニル基及び前記ァラルキル基の炭素原子が、それぞれ窒素原 子、硫黄原子、酸素原子又はケィ素原子に置き換わっていてもよい。
L6は、前記複素環基、又は前記アルキル基、前記アルケニル基及び前記ァラルキ ル基の炭素原子が、それぞれ窒素原子、硫黄原子、酸素原子又はケィ素原子に置 き換わった基である。 ]
下記一般式 (7)で表される金属カルベン結合を有する遷移金属錯体化合物。
[化 7]
Figure imgf000084_0001
[一般式(7)において、 C (炭素原子)→Irは金属カルベン結合を示し、実線(―)で 示した結合は共有結合を、矢印(→)で示した結合は配位結合を意味する。
Y3及び Y4は、それぞれ独立に、窒素含有基( NRiR2)、リン含有基( PRiR2) 酸素含有基(一 OR1)、硫黄含有基(一 SR1)、ホウ素含有基(一 BR 2)、であり、 Y3 と Y4は架橋し環構造を形成して 、てもよ 、。
(R1及び R2は、それぞれ独立に、水素原子、置換基を有してもよい炭素数 1〜30の アルキル基、置換基を有してもよい炭素数 1〜30のハロゲンィ匕アルキル基、置換基 を有してもよ!ヽ核炭素数 6〜30の芳香族炭化水素基、置換基を有してもよ!ヽ核炭素 数 3〜50のシクロアルキル基、置換基を有してもょ 、炭素数 7〜40のァラルキル基、 置換基を有してもょ 、炭素数 2〜30のァルケ-ル基、置換基を有してもよ!、核原子 数 3〜30の複素環基、置換基を有してもよい炭素数 1〜30のアルコキシ基、置換基 を有してもょ 、核炭素数 6〜30のァリールォキシ基、置換基を有してもよ!、炭素数 3 〜30アルキルアミノ基、置換基を有してもよい炭素数 6〜30のァリールアミノ基、置 換基を有してもょ 、炭素数 3〜30アルキルシリル基、置換基を有してもよ!、炭素数 6 〜30のァリールシリル基、置換基を有してもよい炭素数 1〜30のカルボキシル含有 基であり、 R1と R2は架橋していてもよい。 )
L7及び L8は、それぞれ独立に、単座配位子又は L7と L8が架橋した架橋二座配位 子 (L7—L8 )を示す。 nは 0〜4の整数である。 nが複数のときは、複数ある L8は、それ ぞれ同じあっても異なっていてもよぐ架橋していてもよい。また、
Figure imgf000084_0002
L7及び L8 は、それぞれ隣接するもの同士で架橋していてもよい。
L7は、 pKa値が 10以下である超強酸類、カルボン酸類、アルデヒド類、ケトン類 、アルコール類、チォアルコール類、フエノール類、アミン類、アミド類、芳香族類もし くはアルカン類の共役塩基、水素イオン又はハロゲンィ匕物イオンを示す。
L8は、前記複素環基、又は前記アルキル基、前記アルケニル基及び前記ァラルキ ル基の炭素原子が、それぞれ窒素原子、硫黄原子、酸素原子又はケィ素原子に置 き換わった基である。 ]
下記一般式 (8)で表される金属カルベン結合を有する遷移金属錯体化合物。
[化 8]
Figure imgf000085_0001
[一般式 (8)において、 L2→Irは金属カルベン結合を示し、実線(一)で示した結合 は共有結合を、矢印 (→)で示した結合は配位結合を意味する。 L1 -L2は、架橋二 座配位子を示す。
L1は、置換基を有してもよい核炭素数 6〜30の 2価の芳香族炭化水素基、置換基 を有してもよい核原子数 6〜30の 2価の複素環基、置換基を有してもよい炭素数 1〜 30の 2価のカルボキシル含有基、置換基を有して!/、てもよ 、2価のアミノ基又は水酸 基含有炭化水素基、置換基を有してもょ 、核炭素数 3〜50のシクロアルキレン基、 置換基を有してもょ 、炭素数 1〜30のアルキレン基、置換基を有してもよ!、炭素数 2 〜30のァルケ-レン基、置換基を有してもょ 、炭素数 7〜40のァラルキレン基であり
L2は、置換基を有してもよいカルベン炭素を核に持つ核炭素数 6〜30の 1価の芳 香族炭化水素基である。
L7及び L8は、それぞれ独立に、単座配位子又は L7と L8が架橋した架橋二座配位 子 (L7— L8 )を示す。 nは 0〜4の整数である。 nが複数のときは、複数ある L8は、それ ぞれ同じあっても異なって 、てもよく、架橋して!/、てもよ!/、。 L7は、 pKa値が 10以下である超強酸類、カルボン酸類、アルデヒド類、ケトン類 、アルコール類、チォアルコール類、フエノール類、アミン類、アミド類、芳香族類、ァ ルカン等の共役塩基、水素イオン又はハロゲンィ匕物イオンを示す。
L8は、前記複素環基、又は前記アルキル基、前記アルケニル基及び前記ァラルキ ル基の炭素原子が、それぞれ窒素原子、硫黄原子、酸素原子又はケィ素原子に置 き換わった基である。 ]
[12] 請求項 15又は請求項 16に記載の遷移金属錯体ィ匕合物を触媒として用いる有機 化合物又は高分子化合物の製造方法。
[13] 陽極と陰極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が 挟持されている有機エレクト口ルミネッセンス素子において、該有機薄膜層の少なくと も 1層力 請求項 1〜: L 1のいずれかに記載の金属カルベン結合を有する遷移金属錯 体ィ匕合物を含有する有機エレクト口ルミネッセンス素子。
[14] 前記発光層が、前記金属カルベン結合を有する遷移金属錯体化合物を発光材料 として含有する請求項 13に記載の有機エレクト口ルミネッセンス素子。
[15] 前記発光層が、請求項 1〜: L 1のいずれかに記載の金属カルベン結合を有する遷 移金属錯体ィ匕合物をドーパントとして含有する請求項 13に記載の有機エレクト口ルミ ネッセンス素子。
[16] 前記発光層と陰極との間に電子注入層及び Z又は電子輸送層を有し、該電子注 入層及び Z又は電子輸送層が π電子欠乏性含窒素へテロ環誘導体を主成分として 含有する請求項 13に記載の有機エレクト口ルミネッセンス素子。
[17] 陰極と前記有機薄膜層との界面領域に、還元性ドーパントが添加されている請求 項 13に記載の有機エレクト口ルミネッセンス素子。
PCT/JP2006/306697 2005-03-31 2006-03-30 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子 WO2006106842A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-103004 2005-03-31
JP2005103004 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006106842A1 true WO2006106842A1 (ja) 2006-10-12

Family

ID=37073398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306697 WO2006106842A1 (ja) 2005-03-31 2006-03-30 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (2)

Country Link
TW (1) TW200702334A (ja)
WO (1) WO2006106842A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096609A1 (ja) * 2007-02-05 2008-08-14 Idemitsu Kosan Co., Ltd. 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
US20090054657A1 (en) * 2006-04-04 2009-02-26 Basf Se Transition Metal Complexes Comprising One Noncarbene Ligand and One or Two Carbene Ligands and their Use in Oleds
JP2010171155A (ja) * 2009-01-22 2010-08-05 Ube Ind Ltd 有機エレクトロルミネッセンス素子
JP2012531473A (ja) * 2009-07-03 2012-12-10 オスラム アクチエンゲゼルシャフト 燐光を発する金属錯体化合物、その製造方法及び放射線を発するデバイス
US8377332B2 (en) 2008-06-10 2013-02-19 Basf Se Transition metal complexes and use thereof in organic light emitting diodes—III
US8410270B2 (en) 2008-06-10 2013-04-02 Basf Se Transition metal complexes and use thereof in organic light-emitting diodes V
JP2014099538A (ja) * 2012-11-15 2014-05-29 Konica Minolta Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8859110B2 (en) 2008-06-20 2014-10-14 Basf Se Cyclic phosphazene compounds and use thereof in organic light emitting diodes
JP2015526427A (ja) * 2012-08-02 2015-09-10 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Ecl用の新規イリジウムベース錯体
US9905784B2 (en) 2013-11-15 2018-02-27 Universal Display Corporation Organic electroluminescent materials and devices
CN107868110A (zh) * 2016-09-27 2018-04-03 三星显示有限公司 有机金属化合物和包括其的有机发光装置
US10457864B2 (en) 2016-02-09 2019-10-29 Universal Display Corporation Organic electroluminescent materials and devices

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104370974B (zh) * 2014-12-04 2018-01-23 南京大学 一类以含氮杂环卡宾为第二主配体的铱配合物及其制备方法
KR102488916B1 (ko) * 2016-05-06 2023-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231571A (ja) * 1994-12-29 1996-09-10 Hoechst Ag 複素環式カルベンとの金属錯体
WO2002002714A2 (en) * 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
JP2004277571A (ja) * 2003-03-17 2004-10-07 National Institute Of Advanced Industrial & Technology 高分子炭酸エステル製造用触媒及び高分子炭酸エステルの製造方法
WO2005019373A2 (de) * 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
WO2005113704A2 (en) * 2004-05-18 2005-12-01 The University Of Southern California Luminescent compounds with carbene ligands
WO2006018292A2 (de) * 2004-08-18 2006-02-23 Basf Aktiengesellschaft In polymermatrices eingebettete übergansmetallcarbenkomplexe zur verwendung in oleds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231571A (ja) * 1994-12-29 1996-09-10 Hoechst Ag 複素環式カルベンとの金属錯体
WO2002002714A2 (en) * 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
JP2004277571A (ja) * 2003-03-17 2004-10-07 National Institute Of Advanced Industrial & Technology 高分子炭酸エステル製造用触媒及び高分子炭酸エステルの製造方法
WO2005019373A2 (de) * 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
WO2005113704A2 (en) * 2004-05-18 2005-12-01 The University Of Southern California Luminescent compounds with carbene ligands
WO2006018292A2 (de) * 2004-08-18 2006-02-23 Basf Aktiengesellschaft In polymermatrices eingebettete übergansmetallcarbenkomplexe zur verwendung in oleds

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090054657A1 (en) * 2006-04-04 2009-02-26 Basf Se Transition Metal Complexes Comprising One Noncarbene Ligand and One or Two Carbene Ligands and their Use in Oleds
JP2009532549A (ja) * 2006-04-04 2009-09-10 ビーエーエスエフ ソシエタス・ヨーロピア 1つの非カルベン配位子と1もしくは2つのカルベン配位子を有する遷移金属錯体並びにoledにおけるその使用
US8383828B2 (en) * 2006-04-04 2013-02-26 Basf Aktiengesellschaft Transition metal complexes comprising one noncarbene ligand and one or two carbene ligands and their use in OLEDs
WO2008096609A1 (ja) * 2007-02-05 2008-08-14 Idemitsu Kosan Co., Ltd. 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
US8377332B2 (en) 2008-06-10 2013-02-19 Basf Se Transition metal complexes and use thereof in organic light emitting diodes—III
US8410270B2 (en) 2008-06-10 2013-04-02 Basf Se Transition metal complexes and use thereof in organic light-emitting diodes V
US8592586B2 (en) 2008-06-10 2013-11-26 Basf Se Transition metal complexes and use thereof in organic light-emitting diodes V
US8859110B2 (en) 2008-06-20 2014-10-14 Basf Se Cyclic phosphazene compounds and use thereof in organic light emitting diodes
JP2010171155A (ja) * 2009-01-22 2010-08-05 Ube Ind Ltd 有機エレクトロルミネッセンス素子
JP2012531473A (ja) * 2009-07-03 2012-12-10 オスラム アクチエンゲゼルシャフト 燐光を発する金属錯体化合物、その製造方法及び放射線を発するデバイス
JP2015526427A (ja) * 2012-08-02 2015-09-10 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Ecl用の新規イリジウムベース錯体
JP2014099538A (ja) * 2012-11-15 2014-05-29 Konica Minolta Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US9905784B2 (en) 2013-11-15 2018-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US10033000B2 (en) 2013-11-15 2018-07-24 Universal Display Corporation Organic electroluminescent materials and devices
US10457864B2 (en) 2016-02-09 2019-10-29 Universal Display Corporation Organic electroluminescent materials and devices
US11098245B2 (en) 2016-02-09 2021-08-24 Universal Display Corporation Organic electroluminescent materials and devices
US11692132B2 (en) 2016-02-09 2023-07-04 Universal Display Corporation Organic electroluminescent materials and devices
CN107868110A (zh) * 2016-09-27 2018-04-03 三星显示有限公司 有机金属化合物和包括其的有机发光装置

Also Published As

Publication number Publication date
TW200702334A (en) 2007-01-16

Similar Documents

Publication Publication Date Title
JP6316351B2 (ja) ピリジルカルベンリン光発光体
WO2006106842A1 (ja) 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
US7709100B2 (en) Electroluminescent efficiency
US8247086B2 (en) Organometallic complex and light-emitting element, light-emitting device and electronic device using the same
EP2429997B1 (en) 2-azatriphenylene materials for organic light emitting diodes
JP4790298B2 (ja) 良溶解性イリジウム錯体及び有機el素子
EP2703405B1 (en) New materials with aza-dibenzothiophene or aza-dibenzofuran core for pholed
WO2007018067A1 (ja) 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007069542A1 (ja) 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
EP3081617A1 (en) Blue emitter with high efficiency based on imidazo [1,2-f] phenanthridine iridium complexes
WO2007111176A1 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2007086505A1 (ja) 遷移金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2005063920A1 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2007058104A1 (ja) 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2006073112A1 (ja) 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
EP2197980A1 (en) Complexes with tridentate ligands
WO2007058080A1 (ja) 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007069569A1 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2007069533A1 (ja) 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2014139147A (ja) 有機金属錯体及びこれを用いた有機発光素子
WO2007058255A1 (ja) 遷移金属錯体化合物
WO2007055187A1 (ja) 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2006028224A1 (ja) 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2006093069A1 (ja) 発光性金属錯体及びその製造方法ならびにそれを用いた有機エレクトロルミネッセンス発光素子
US7429662B2 (en) Red-emitting electrophosphorescent devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP