WO2006106826A1 - Organic el display, organic transistor, and methods for manufacturing those - Google Patents

Organic el display, organic transistor, and methods for manufacturing those Download PDF

Info

Publication number
WO2006106826A1
WO2006106826A1 PCT/JP2006/306664 JP2006306664W WO2006106826A1 WO 2006106826 A1 WO2006106826 A1 WO 2006106826A1 JP 2006306664 W JP2006306664 W JP 2006306664W WO 2006106826 A1 WO2006106826 A1 WO 2006106826A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
display device
organic transistor
transistor
Prior art date
Application number
PCT/JP2006/306664
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Chuman
Satoru Ohta
Chihiro Harada
Atsushi Yoshizawa
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007512855A priority Critical patent/JPWO2006106826A1/en
Publication of WO2006106826A1 publication Critical patent/WO2006106826A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/80Constructional details
    • H10K10/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/125Active-matrix OLED [AMOLED] displays including organic TFTs [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors

Definitions

  • Organic EL display device organic transistor, and manufacturing method thereof
  • the present invention relates to an organic EL display device, a method for manufacturing an organic EL display device, an organic transistor, and a method for manufacturing an organic transistor.
  • Organic transistors are used in various applications. For example, it is used as a means for driving an organic EL element in an organic EL display device.
  • An organic EL device includes an electrode and an organic solid layer having at least a light-emitting layer between the electrodes, and injects electrons and holes into the light-emitting layer in the organic solid layer from both the electrode caps. It is an element that causes light emission in the organic light emitting layer, and can emit light with high brightness. In addition, since it uses the luminescence of organic compounds, it has a feature such as a wide selection range of luminescent colors, and is expected as a light source and organic EL display device. In particular, the organic EL display device is generally expected as a flat panel display having a wide field of view, high contrast, high speed response and visibility, thin and light, and low power consumption.
  • An organic EL display device includes a pixel composed of an organic EL element including at least an anode, an organic light emitting layer, and a cathode, and an organic transistor that lights and controls the organic EL element.
  • organic EL display devices a passive matrix method in which organic EL elements arranged in a matrix are driven externally by stripe-shaped scanning electrodes and data electrodes (signal electrodes) orthogonal to each other, and a thin film transistor (hereinafter also referred to as TFT) for each pixel.
  • TFT thin film transistor
  • the active matrix method in which organic EL elements are driven by TFTs (Thin Film Transistors), is generally superior to the passive matrix method as the number of pixels increases.
  • the passive matrix method the organic EL element of each pixel is lit only during the period when the scanning electrode is selected, and the average luminance decreases as the lighting period of the organic EL element becomes shorter as the number of pixels increases. While it tends to In the active matrix method, each pixel is equipped with a switching element and a memory element consisting of TFTs, so that the organic EL elements remain lit, and can operate with high brightness, high efficiency, and long life. The reason is that it tends to be advantageous for refinement and enlargement.
  • organic EL elements and organic TFTs are subject to erosion due to moisture, oxygen, etc. in the air, and in the presence of these, deterioration such as dark spots or short-circuiting of the elements may occur. .
  • deterioration such as dark spots or short-circuiting of the elements may occur.
  • the entire element is covered with a cover glass or can package in an atmosphere of dry nitrogen or argon gas. The sealing method is used.
  • FIG. 1 shows an organic EL display device PA according to the background art.
  • the organic EL display device PA covers the substrate 10, the barrier film 12 formed on the substrate 10, the organic EL element 100 and the organic TFT 50 formed on the barrier film 12, and the organic EL element 100 and the organic TFT 50. And a protective film (passivation film) 20.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-255857
  • a plasma generated at the time of film formation such as electromagnetic waves, particle beams such as alpha rays, beta rays, ultraviolet rays
  • particle beams such as alpha rays, beta rays, ultraviolet rays
  • light with a wavelength shorter than visible light, sometimes visible light, and infrared light may damage the organic layer that constitutes the organic TFT, resulting in deterioration of the performance of the organic TFT.
  • electromagnetic waves emitted in manufacturing processes using other plasmas, particle beams, and organic layers constituting organic TFTs are damaged by electromagnetic waves when used by consumers. The performance of organic TFT may deteriorate.
  • the present invention has been made in view of the above problems, and provides an organic EL display device, a method for manufacturing the organic EL display device, a method for manufacturing the organic transistor, and a method for manufacturing the organic transistor, in which the performance deterioration of the organic transistor is less.
  • the main purpose is to provide.
  • the invention according to claim 1 is an organic EL display device including an organic EL element including at least an anode, an organic light emitting layer, and a cathode, and an organic transistor that drives the organic EL element. And a protective layer that protects at least one of electromagnetic waves and particle beams between the protective film and the surface of the organic transistor. Is formed.
  • the invention according to claim 7 is a method of manufacturing an organic EL display device including an organic EL element including at least an anode, an organic light emitting layer, and a cathode, and an organic transistor for driving the organic EL element, Forming a protective layer for protecting the organic transistor from at least one of electromagnetic waves and particle beams on the surface of the organic transistor; and forming a protective film for protecting the organic transistor on the protective layer. And a protective film forming step.
  • the invention according to claim 13 is an organic transistor comprising a protective film that covers the organic transistor and protects at least the organic transistor, and is provided between the protective film and the surface of the organic transistor.
  • a protective layer for protecting the organic transistor is formed from at least one of electromagnetic waves and particle beams.
  • the invention according to claim 19 is a method of manufacturing an organic transistor, wherein a protective layer that protects the organic transistor with at least one of electromagnetic force and particle beam is formed on the surface of the organic transistor.
  • FIG. 1 is a schematic cross-sectional view of an organic EL display device in the prior art.
  • FIG. 2 is a schematic cross-sectional view of an organic EL display device in the present embodiment.
  • FIG. 3 is a schematic enlarged view of the vicinity of the organic EL element of the organic EL display device in the present embodiment.
  • FIG. 4 is a schematic enlarged view of the vicinity of the organic TFT of the organic EL display device in the present embodiment.
  • FIG. 5 is a schematic cross-sectional view of an organic EL display device in the present embodiment.
  • FIG. 6 is a schematic cross-sectional view of an organic EL display device in the present embodiment.
  • FIG. 2 shows a schematic cross-sectional view of the organic EL display device P1 according to the present embodiment.
  • the EL display device P1 includes a film substrate 10, a barrier film 12 formed on the substrate 10, an organic EL element 100 and an organic TFT 50 formed on the noria film 12, and an interlayer insulating film 72 covering the organic TFT 50,
  • the protective film 20 covers the surface of the interlayer insulating film 72 and protects the organic EL element 100 and the organic TFT 50 from erosion from the outside.
  • a barrier film 12 is formed on the substrate 10.
  • Organic EL element 100 on Noria film 12 Machine TFT50 is placed in parallel.
  • An interlayer insulating film 74 that insulates the anode 14 and the cathode 18 from the top of the anode 14 of the organic EL element 100 to a portion in contact with the cathode 18 is formed on the right side of the organic EL element 100 described later.
  • At least the interlayer insulating film 72 is a protective layer that protects the organic TFT 50 with at least one of electromagnetic waves and particle beams.
  • the organic EL element 100 and the organic TFT 50 are covered with a protective film 20 that protects the erosion power of external force so as to cover the interlayer insulating film 72 and the cathode 18.
  • the substrate 10 may be formed by appropriately selecting the constituent materials.
  • the resin thermoplastic resin, thermosetting resin, polycarbonate, polymethyl methacrylate, polyarylate, polyether sulfone, polysulfone, polyethylene terephthalate polyester, polypropylene, cellophane, polycarbonate, cellulose acetate, polyethylene, Poly (vinyl chloride), polystyrene, polyamide, polyimide, poly (vinyl chloride), polyvinyl alcohol, saponified ethylene butyl acetate copolymer, fluorine resin, salt rubber, ionomer, ethylene / acrylic acid copolymer Various substrates can be used as ethylene / acrylic acid ester copolymers.
  • a glass substrate or a glass-plastic bonded substrate may be used instead of a substrate containing rosin as a main component, and an alkali barrier film or a gas barrier film may be coated on the substrate surface.
  • the substrate 10 is not necessarily transparent.
  • the noria film 12 does not necessarily have to be formed, but it is preferable because it can protect the erosion force by moisture or oxygen from the substrate side.
  • the barrier film 12 is formed, the material can be appropriately selected and used.
  • the noria film 12 may be a multilayer structure, a single layer structure, an inorganic film, or an organic film, but if an inorganic film is included, moisture, oxygen, etc. This is preferable because the noria property from erosion due to ashing is improved.
  • a nitride film, an oxide film, a carbon film, a silicon film, or the like can be used. More specifically, a silicon nitride film, a silicon oxide film, a silicon oxide film, or the like can be used.
  • Nitride film, or Examples include diamond-like carbon (DLC) films and amorphous carbon films. That is, nitrides such as SiN, A1N, and GaN, oxides such as SiO, Al 2 O, Ta 2 O, ZnO, and GeO
  • Oxynitrides such as SiON, carbonitrides such as SiCN, metal fluorine compounds, metal films, and the like.
  • Examples of the organic film include a furan film, a pyrrole film, a thiophene film, or a polyparaxylene film, an epoxy resin, an acrylic resin, a polyparaxylene, and a fluorine-based polymer (perfluoroolefin, perfluoroolefin ether, tetrafanol). Fluoroethylene, chlorotrifluoroethylene, dichlorodifluoroethylene, etc.), metal alkoxides (CHOM, CHOM, etc.),
  • Polymerized films such as lyimide precursors and perylene compounds can be used.
  • the noria film 12 has a laminated structure having two or more kinds of material strength, an inorganic protective film, a silane coupling layer, a laminated structure made of a resin sealing film, a barrier layer made of an inorganic material, and an organic material cover.
  • FIG. 3 shows an enlarged view of the vicinity of the organic EL element 100 of the organic EL display device P1.
  • the organic EL element 100 is configured by laminating the barrier film 12 side force from the anode 14Z organic solid layer 16Z cathode 18 as well.
  • a transparent electrode such as ITO (Indium tin oxide) may be used as long as it uses a layer having an energy level at which holes can be easily injected.
  • a general electrode may be used instead of the transparent electrode.
  • a transparent conductive material such as ITO is formed to a thickness of, for example, 150 nm by sputtering or the like.
  • ITO an oxide zinc (ZnO) film, IZO (indium zinc oxide alloy), gold, copper iodide, or the like may be employed instead.
  • the organic solid layer 16 includes a hole injection layer 162 / a hole transport layer 164 / a light emitting layer 166 / an electron transport layer 167 / an electron injection layer 168 from the anode 14 side.
  • the hole injection layer 162 is provided between the anode 14 and the hole transport layer 164. It is a layer that promotes the injection of holes. Due to the hole injection layer 162, the driving voltage of the organic EL element 100 can be lowered. Also, if it plays a role such as stabilizing hole injection and extending the life of the device, or covering uneven surfaces such as protrusions formed on the surface of the anode 14 to reduce device defects There is also.
  • the material of the hole injection layer 162 may be selected as appropriate so that the ionization energy is between the work function of the anode 14 and the ion energy of the hole transport layer 164.
  • TPTE triphenylamine tetramer
  • copper phthalocyanine and the like can be used.
  • the hole transport layer 164 is a layer provided between the hole injection layer 162 and the light emitting layer 166 to promote hole transport, and has a function of appropriately transporting holes to the light emitting layer 166. .
  • the material of the hole transport layer 164 may be appropriately selected so that the ionization energy is between the hole injection layer 162 and the light emitting layer 166.
  • TPD triphenylamine derivative
  • NPB N, N-di (naphthalene-1-yl) -N, N-diphenyl-benzidene
  • TPD triphenylamine derivative
  • NPB N, N-di (naphthalene-1-yl) -N, N-diphenyl-benzidene
  • the light-emitting layer 166 is a layer that recombines the transported holes and the transported electrons, which will be described later, to emit fluorescence or phosphorescence.
  • the material of the light-emitting layer 166 may be selected as appropriate so as to satisfy the properties corresponding to the above light-emitting modes.
  • Alq 8-quinolinolato aluminum complex
  • Be Bq bis (benzoquinolinolato) beryllium complex
  • Ditoluyl birubbe (DTVBi) Ditoluyl birubbe
  • poly (p-phenolene) p-phenolene
  • ⁇ -conjugated polymers such as polyalkylthioph
  • a phosphorescent device when electrons and holes are injected from the cathode 18 and the anode 14 respectively into the phosphorescent light emitting layer 166 and recombined there, the recombination energy is doped through the host material. When supplied to the material, this dopant emits phosphorescence.
  • this phosphorescent organic EL device can emit red light due to the dopant.
  • the host material according to the present invention having a light emitting function also emits light, and the emission color of the host material and the emission color of the dopant material are different. Additive light is obtained. For example, when a compound that emits light blue is used, the dopant emits red light. Therefore, in this organic EL element, white light in which light blue and red are synthesized can be emitted to the outside.
  • the electron transport layer 167 is provided between the electron injection layer 168 and the light emitting layer 166, and has a function of transporting electrons to the light emitting layer 166.
  • an aluminum quinolinol complex Alq
  • Alq aluminum quinolinol complex
  • the electron injection layer 168 is provided between the electron transport layer 167 and the cathode 18 and has a function of promoting the injection of electrons from the cathode 18.
  • the material of the electron transport layer 168 may be appropriately selected so as to be between the work function of the cathode 18 and the electron affinity of the light emitting layer 166.
  • the electron transport layer 168 may be a thin film (for example, 0.5 nm) such as LiF (lithium fluoride) or Li 0 (lithium oxide).
  • Each layer constituting the organic solid layer 16 is usually made of an organic material, and further, it may be made of a high molecular weight organic material when it is made of a low molecular weight organic material.
  • Organic solid layers with low molecular organic strength are generally produced by dry processes (vacuum processes) such as vapor deposition.
  • Organic solid layers made of high molecular organic materials are generally spin coated, blade coated, dipped, sprayed, and printed. Each can be formed by a wet process.
  • organic material used for each layer constituting the organic solid layer 16 for example, as a polymer material, PEDOT, polyarine, polyparaphenylene-biylene derivative, polythiophene derivative, polyparaphenylene derivative, polyalkylphenol, And polyacetylene derivatives.
  • PEDOT polymer material
  • polyarine polyparaphenylene-biylene derivative
  • polythiophene derivative polyparaphenylene derivative
  • polyalkylphenol polyacetylene derivatives.
  • the organic solid layer 16 includes a hole injection layer 162, a hole transport layer 164, a light emitting layer 166, an electron transport layer 167, and an electron injection layer 168.
  • the present invention is not limited to this configuration as long as it includes at least the light emitting layer 166.
  • the hole transport layer Z light emitting layer, the light emitting layer Z electron transport layer and other two layer structures hole transport Layer Z Light-emitting layer Z Three-layer structure of Z electron transport layer and multilayer structure with charge (hole, electron) injection layer etc. Can be made.
  • a hole blocking layer may be provided between the light emitting layer 166 and the electron transport layer 168 in the organic solid layer 16. Holes may pass through the light emitting layer 166 and reach the cathode 18. For example, when Alq or the like is used for the electron transport layer 168, holes may flow into the electron transport layer.
  • the Alq emits light, and holes cannot be trapped in the light emitting layer, resulting in low luminous efficiency.
  • a hole blocking layer may be provided to prevent holes from flowing out from the light emitting layer 166 to the electron transporting layer 168.
  • a material having a small work function or electron affinity may be selected in order to improve electron injection into the organic solid layer 16.
  • an alloy type such as an Mg: Ag alloy or an Al: Li alloy can be suitably used.
  • the cathode 18 can be formed of a metal material such as A1, Mg, and Ag by vacuum deposition or the like to a thickness of 150 nm, for example.
  • FIG. 4 shows an enlarged view of the vicinity of the organic TFT 50 of the organic EL display device P1.
  • the organic TFT 50 includes a gate electrode 52 formed on the barrier film 12 from the noria film 12 side, and a gate insulating film 54 formed so as to cover the surface of the gate electrode 52.
  • an organic semiconductor layer 56 On the gate insulating film 54, an organic semiconductor layer 56, a source electrode 58 on the left edge side, and a drain electrode 60 on the right edge side are formed.
  • the drain electrode 60 is electrically connected to the anode 14 of the organic EL element 100. That is, in the organic TFT 50, the source electrode 58 and the drain electrode 60 are provided separately from each other, the organic semiconductor layer 56 is interposed between the source electrode 58 and the drain electrode 60, and the source electrode is interposed through the gate insulating film 54. 58, a drain electrode 60, and a gate electrode 52 disposed to face the organic semiconductor layer 56.
  • the gate electrode 52 may be any metal that can be anodized as the gate electrode material.
  • a single substance such as Al, Mg, Ti, Nb, Zr, or an alloy thereof may be used, but the material is not limited thereto. No.
  • the gate electrode only needs to have sufficient conductivity.
  • metal oxides such as ⁇ , ⁇ , polyaniline, polythiophene, polypyrrole
  • An organic conductive material containing a conjugated polymer compound such as rutile may also be used.
  • the manufacturing method of the gate electrode 52 may be any general method for forming the wiring pattern of the gate electrode 52 on the substrate 10. Power that can be used for sputtering, CVD, etc. There is no particular limitation and an appropriate one may be used. For example, general thin film forming methods such as vacuum deposition, ion plating, sol-gel method, spin coating method, spray method, and CVD are also possible.
  • the gate insulating film 54 may be formed into a gate insulating film 54 by subjecting the surface of the material used as the material of the gate electrode 52 to a positive oxidation.
  • the present invention is not limited to this, and any insulating material such as inorganic material or organic material can be used.
  • metal oxides include LiOx, LiNx, NaOx, KOx, RbOx, CsOx, BeOx, MgOx, MgNx, CaOx, CaNx, SrOx, BaOx, ScOx, YOx, YNx, LaOx, La Nx, CeOx, PrOx, NdOx, SmOx, EuOx, GdOx, TbOx, DyOx, HoOx, ErO x, TmOx, YbOx, LuOx, TiOx, TiNx, ZrOx, ZrNx, HfOx, HfNx, ThOx, V Ox, VNx, Nb GrOx, CrNx, MoOx, MoNx, WOx, WNx, MnOx, ReOx, FeOx, FeNx, RuOx, OsOx, CoOx, RhOx, IrOx, Ni
  • GeO Li GeO, Na GeO: BiSnO, MgSnO, SrSnO, PbSiO, PbMoO
  • Examples thereof include metal composite oxides such as Na TeO and Na TeO.
  • metal oxides such as FeS, Al S, MgS, ZnS, LiF, MgF
  • Fluoride such as SmF
  • chloride such as HgCl, FeCl, CrCl, AgBr, CuBr, MnB
  • bromides such as r
  • iodides such as Pbl, Cul, Fel
  • metal oxides such as SiAlON
  • It may be a nitride and is not particularly limited. Also, not limited to metals and metal compounds, organic materials such as polymer materials such as polyimide, polyamide, polyester, polyacrylate, epoxy resin, phenol resin, and polyvinyl alcohol may be used.
  • organic materials such as polymer materials such as polyimide, polyamide, polyester, polyacrylate, epoxy resin, phenol resin, and polyvinyl alcohol may be used.
  • a method for forming the gate insulating film 54 is not particularly limited, and an appropriate one may be used as appropriate.
  • general thin film forming methods such as vacuum deposition, ion plating, sol-gel method, spin coating method, spray method, CVD, etc., which include sputtering method and CVD method.
  • it is an organic film, it may be formed by a spin coating method, a printing method, a vapor deposition method, or the like.
  • the source electrode 58 and the Z or drain electrode 60 are applicable as long as they have sufficient conductivity, and are not particularly limited.
  • the source electrode 58 and the drain electrode 60 may be manufactured by a general method.
  • a sputtering method, a CVD method, and the like can be mentioned, but an appropriate method may be used as long as it is not particularly limited.
  • general thin film forming methods such as vacuum deposition, ion plating, sol-gel method, spray method, spin coating method, CVD, lift-off, etc. are also possible.
  • the organic semiconductor 56 is not particularly limited as long as it is an organic material exhibiting semiconductor characteristics such as pentacene.
  • phthalocyanine derivatives for example, phthalocyanine derivatives, naphthalocyanine derivatives, azo compound derivatives, perylene derivatives, indigo Derivatives, quinacridone derivatives, polycyclic quinone derivatives such as anthraquinones, cyanine derivatives, fullerene derivatives, or indole, carbazole, oxazole, inoxazole, thiazole, imidazole, pyrazole, oxadiazole, pyrazoline Nitrogen-containing cyclic compound derivatives such as thiothiazole and triazole, hydrazine derivatives, triphenylamine derivatives, triphenylmethane derivatives, stilbenes, quinone compound derivatives such as anthraquinone diphenoquinone, anthracene, and bire Polycyclic aromatic compound derivatives such as polyethylene, phenanthrene, coronene, etc., whose structure is used in the main chain of poly
  • an aromatic conjugated polymer such as polyparaphenylene, an aliphatic conjugated polymer such as polyacetylene, or a heterocyclic having a polypinol or polythiophene ratio.
  • Conjugated polymers heteroatom-conjugated polymers such as polyarines and polyphenylene sulfide, poly (phenylene vinylene), poly (anilenylene vinylene), poly (cellene vinylene), etc.
  • a carbon-based conjugated polymer such as a composite conjugated polymer having a structure in which structural units of the conjugated polymer are alternately bonded is used.
  • oligosilanes such as disila-lene carbon-based conjugated polymer structures such as polysilanes, disila-lenarylene polymers, (disila-lene) etylene polymers, and (disila-diylene) ethylene polymers. Polymers in which carbon and conjugated structures are alternately linked are used.
  • polymer chains composed of inorganic elements such as phosphorus and nitrogen may be used, and polymers with aromatic ligands of polymer chains such as phthalocyanate polysiloxane, perylene tetracarboxylic acid Organic compounds such as polymers obtained by heat-treating perylenes such as polyacrylamide, ladder-type polymers obtained by heat-treating polyethylene derivatives having a cyano group such as polyacrylo-tolyl, and mouth-bumite.
  • aromatic ligands of polymer chains such as phthalocyanate polysiloxane, perylene tetracarboxylic acid Organic compounds such as polymers obtained by heat-treating perylenes such as polyacrylamide, ladder-type polymers obtained by heat-treating polyethylene derivatives having a cyano group such as polyacrylo-tolyl, and mouth-bumite.
  • a method for forming the organic semiconductor 56 includes a vapor deposition method and the like, but is not particularly limited and may be appropriately selected. For example, ion plating, sol-gel method, It is also possible to use a general thin film forming method such as a spray method or a spin coating method.
  • the interlayer insulating film 72 is a protective layer that protects the organic transistor 50 with at least one of electromagnetic waves and particle beams.
  • the electromagnetic wave is an electromagnetic wave that damages the layer constituting the organic TFT, and examples thereof include infrared light, visible light, ultraviolet light, and light having a shorter wavelength than visible light.
  • the particle beam is a particle beam that damages the layers constituting the organic TFT, and examples thereof include alpha rays, beta rays, and neutron rays.
  • to protect at least one of the electromagnetic wave and the particle beam is to protect the organic TFT by shielding at least one of the electromagnetic wave and the particle beam by at least one form of absorption and reflection. It is a concept that includes.
  • the protective layer is not particularly limited as long as it has a protective action of at least one of electromagnetic waves and particle beams.
  • the electromagnetic wave to be protected is at least one of an electron beam, visible light, and light having a shorter wavelength than visible light as in this embodiment because these are easy to damage the organic TFT 50. More preferably, the shorter the wavelength, such as blue light, violet light, ultraviolet light, and X-ray, the more easily the organic TFT 50 is damaged. Therefore, it is preferable to protect the organic TFT 50 from these short wavelength light. Sometimes infrared light can also damage the organic TFT50.
  • the protective layer is preferably a colored transparent layer or an opaque layer having translucency equal to or less than translucent because it is easy to protect the organic TFT 50 such as an electromagnetic wave, but is not limited thereto.
  • the color is particularly preferably black as darker colors having higher electromagnetic wave absorbability are preferred.
  • a coloring agent is contained in the resin in order to obtain a colored transparent layer or an opaque layer having a translucent or lower transparency.
  • the resin used as a dispersion medium includes polyolefin resin, acrylic resin, cellulose resin, melamine resin, polyester resin, polyamide resin, acrylic resin, and styrene resin.
  • examples thereof include thermoplastic elastomers such as fat, polyamide, ethylene monoacetate butyl copolymer, vinyl chloride-vinyl acetate copolymer, and styrene-butadiene rubber.
  • Colorants such as dyes and pigments in general can be used without being limited. Organic, Various materials can be used regardless of inorganic. For example, bright pigments such as aluminum, brass, evaporated powder, pearl pigment (white, gold, etc.), rhodamine lake B, insoluble azo red pigment (naphthol) (eg, Brilliant Carmel BS, Lake Carmel FB, Lake Credo) 4B, Fast Red FGR, Lake Bold 5B, Tolutre Marlon), Insoluble azo red pigment (alide) (eg, pyrazole red), Soluble azo red pigment (eg, Rei Qurange, Brilliant Carmel 3B, Red pigments such as Brilliant Carmel 6B, Brilliant Scarlet G, Lake Red C, Lake Red D, Lake Red R, Lake Bold 10B, Bonmarlon L, Bonmarlon M), Heise Yellow A, inert azo yellow pigment (a-lid type) (E.g., First Yellow G, First Yellow 10G, Gazo Orange) Yellow pigment
  • These colorants can be selected from carbon black, organic colorants, inorganic colorants, and the like, depending on the required color tone, and can be used alone or in combination of two or more. It can also be used by adjusting the above to the desired hue.
  • the protective layer may be colorless and transparent as long as it is a layer containing a light absorber such as an ultraviolet absorber or a particle beam absorber. If the coloring and the ultraviolet absorber are used in combination, it is more effective. For example, it is preferable to contain an ultraviolet absorber.
  • Ultraviolet absorbers such as cinnamic acid, para-aminobenzoic acid (PABA), camphor derivatives, Bennophenone, Bunzoylmeyhane, etc.
  • PABA para-aminobenzoic acid
  • camphor derivatives Bennophenone
  • Bunzoylmeyhane etc.
  • Other examples include acid titanium, zinc oxide, iron oxide, acid cerium, acid zirconium, my strength, kaolin, cerite, benzotriazol and cyanoacrylate. It is done.
  • Examples of the above-mentioned Benzophenone type include 2,3'-dihydroxy-4,4 ' Mention may be made of methoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone and 2,2 ', 4,4'-tetrahydroxybenzophenone.
  • benzotriazole-based compounds examples include 2- (2'-hydroxy-5'methylphenol) benzotriazole, 2- (2'-hydroxy-5'methylphenol)-5, 6 Dichlorbenzotriazole), 2— (2 ′ —Hydroxyl 5 ′ —t—Butylphenol), Benzotriazole, 2— (2 ′ —Hydroxyl 3 ′ —Methyl-5 ′ — t—Butylphenol ) Benzotriazole, 2— (2 ′ —hydroxyl 3 ′, 5 ′ —di-t-butylphenol) —5 chloro-benzotriazole and 2— (2 ′ —hydroxy—5 ′ —phenol 1) Chlorbenzotriazol, 2— (2 '— Hydroxy 1 3', 5 '— Di-t-butylphenol) 1 5 Chlorobenzotriazole, 2 — (2' — Hydroxy 1 3 '— T — Butyl 5' — Meth
  • the protective layer is preferably a reflective layer having a metallic luster such as metal, a specularity and a reflection property, but is not limited thereto. Moreover, even if it is not a metal, a metallic luster may be imparted with a metallic printing ink such as silver or gold to which a metal pigment such as aluminum paste powder is added.
  • the protective layer is LiOx, LiNx, NaOx, KOx, RbOx, CsOx, BeOx, MgOx, MgNx, CaOx, CaNx, SrOx, BaOx, ScOx, YOx, YNx, LaOx, LaNx, CeOx , PrOx, NdOx, SmOx, EuOx, GdOx, TbOx, DyOx, HoOx, ErOx, TmOx, YbOx, LuOx, TiOx, TiNx, ZrOx, ZrNx, HfOx, HfNx, ThO x, VOx, VNx, NbOx, TaOx, TaNx, CrOx, CrNx, MoOx, MoNx, WOx, W Nx, MnOx, ReOx, FeOx, FeNx, RuOx,
  • metal complex oxides such as O, Na TeO, Na TeO, FeS, Al S, MgS, ZnS
  • Bromides such as AgBr, CuBr, MnBr, iodides such as Pbl, Cul, Fel, or S
  • the organic material may be a material obtained by coloring polyimide, polyamide, polyester, polyacrylate, epoxy resin, phenol resin, polybulal alcohol, or the like or mixing an ultraviolet absorber.
  • the method of forming the protective layer is to avoid damaging the organic TFT 50 as much as possible. It is preferable to manufacture by a method that does not emit a light beam having a wavelength shorter than that of a strand, electromagnetic wave, particularly visible light. For example, it can be formed by a method using a general thin film forming method such as a sol-gel method, a spray, or a spin coating method.
  • a general thin film forming method such as a sol-gel method, a spray, or a spin coating method.
  • the interlayer insulating film 74 may be formed at the same time as the interlayer insulating film 74 at the right end of the organic EL element 100 or may be formed individually.
  • the material for forming each interlayer insulating film is not particularly limited, and the type thereof may be different between the interlayer insulating film 72 on the organic TFT and the interlayer insulating film 74 at the right end of the organic EL element. Further, the interlayer insulating film 74 can be omitted as appropriate.
  • the material for forming the interlayer insulating film 74 is not particularly limited, but any insulating material such as an inorganic material or an organic material can be used.
  • any insulating material such as an inorganic material or an organic material can be used.
  • Metal complex oxides such as O, K TeO, Na TeO, Na TeO, FeS ⁇ Al S, Mg
  • Sulfides such as S and ZnS, fluorides such as LiF, MgF, and SmF, HgCl, FeCl, CrCl
  • metal oxynitrides such as SiAlON.
  • Polymer materials such as polyimide, polyamide, polyester, polyacrylate, epoxy resin, phenol resin, and polybulal alcohol may also be used! /.
  • the protective film 20 may have a multilayer structure, a single-layer structure, an inorganic film, or an organic film. However, if an inorganic film is included, the protective film 20 is caused by moisture, oxygen, or the like. This is preferable because the barrier property against erosion is improved.
  • a nitride film, an oxide film, a carbon film, a silicon film, or the like can be employed. More specifically, a silicon nitride film, a silicon oxide film, a silicon oxide film, or the like can be used. Examples include nitride films, diamond-like carbon (DLC) films, and amorphous carbon films. That is, nitrides such as SiN, A1N, and GaN, oxides such as SiO, Al 2 O, Ta 2 O, ZnO, and GeO
  • Oxynitrides such as SiON, carbonitrides such as SiCN, metal fluorine compounds, metal films, and the like.
  • Examples of the organic film include a furan film, a pyrrole film, a thiophene film, or a polyparaxylene film, an epoxy resin, an acrylic resin, a polyparaxylene, a fluorine-based polymer (perfluoroolefin, perfluoronole ether, tetrafanol). Fluoroethylene, chlorotrifluoroethylene, dichlorodifluoroethylene, etc.), metal alkoxides (CHOM, CHOM, etc.),
  • Polymerized films such as lyimide precursors and perylene compounds can be used.
  • the protective film 20 has a laminated structure composed of two or more kinds of substances, an inorganic protective film, a silane coupling layer, a laminated structure composed of a resin sealing film, a barrier layer composed of an inorganic material cover, an organic material cover.
  • a laminated structure composed of two or more kinds of substances
  • an inorganic protective film a silane coupling layer
  • a laminated structure composed of a resin sealing film
  • a barrier layer composed of an inorganic material cover
  • an organic material cover an organic material cover.
  • the nolia film 12 and the protective film 20 fill the surface irregularities of the pinholes in which the organic film is formed on the inorganic film and flatten the surface. It may also play a role in relieving the film stress of the inorganic film.
  • a method for manufacturing the protective film 20 includes a sputtering method, a CVD method, and the like, but is not particularly limited, and an appropriate one may be used as appropriate.
  • general thin film forming methods such as vacuum deposition, ion plating, sol-gel method, spray method, spin coating method, and CVD are also possible.
  • the insulating film 72 and the protective film 20 do not prevent other layers from being formed therebetween.
  • the term “formed on the layer and on the surface of the layer” is a concept including both forming directly on the surface as long as it is the upper layer of the layer or indirectly through another layer. is there.
  • the light emission mode of the organic EL display device P1 will be described.
  • Holes are supplied from the source electrode 58 to the drain electrode 60 through the gate insulating film 54. Holes are transferred to the anode 14 of the organic EL element 100 through the drain electrode 60.
  • holes are transported from the anode 14 to the hole injection layer 162 in the organic solid layer 16.
  • the transported holes are injected into the hole transport layer 164.
  • the holes injected into the hole transport layer 164 are transported to the light emitting layer 166.
  • the interface between the cathode layer 18 and the electron transport layer 168 becomes a reflection surface, is reflected at this interface, travels to the anode 14 side, and passes through the substrate 10. And injected outside. Therefore, when the organic EL element having the above configuration is used for a display or the like, the substrate 10 side becomes the display observation surface.
  • a method of manufacturing organic EL elements that emit RGB colors by painting painting
  • a white light emitting monochromatic light emitting organic A combination of an EL element and a color filter (color filter method)
  • color filter method a combination of a single color emission organic EL element such as blue light emission or white emission and a color conversion layer (color conversion method)
  • a method (photo bleaching method) for realizing a plurality of light emission by irradiating the organic light emitting layer with an electromagnetic wave or the like can be mentioned, but it is not particularly limited.
  • the protective layer since the protective layer is provided, it is possible to protect the organic TFT by at least one of the electromagnetic wave and the particle beam that cause damage to the organic TFT. Therefore, the reliability can be ensured even if the organic EL display device P1 uses electromagnetic waves that damage organic TFTs, other manufacturing processes that use particle beams, and long-term use by consumers.
  • a method for manufacturing the organic EL display device P1 shown in FIG. 2 will be described.
  • a barrier film 12 is formed on the substrate 10, and a portion excluding the cathode 18 of the organic EL element 100 and the organic TFT 50 are formed on the noria film 12.
  • the drain electrode 60 of the organic TFT 50 and the anode 14 of the organic EL element 100 are fabricated so as to be in electrical contact with each other.
  • a layer is formed so as to cover the surface of the organic TFT 50, which is the left edge of the organic EL element 100 in the drawing.
  • An inter-layer insulating film 72 is formed.
  • an interlayer insulating film 74 is formed so as to include the anode 14 at the right edge of the organic EL element 100 in the drawing.
  • the cathode 18 of the organic EL element 100 is formed. This formation is performed by extending the film to cover the interlayer insulating film 74.
  • the protective film 2 is formed so as to cover the surfaces of the cathode 18 and the interlayer insulating film 72.
  • O is formed to manufacture the organic EL display device P1.
  • the protective film 20 is formed particularly when the protective film 20 generates a particle beam such as light having a shorter wavelength than visible light such as ultraviolet rays or secondary electrons such as a vacuum process such as CVD. Since the interlayer insulating film 72, which is a layer, protects against at least one of the electromagnetic wave and the particle beam that damage the organic TFT 50, it is possible to provide an organic EL display device P1 including the organic TFT 50 with little damage. it can.
  • Each layer is added with additives such as waxes, antioxidants, heat stabilizers, leveling agents, coupling agents, etc., and modifiers as necessary, so long as the properties of the layers to be added are not impaired. It ’s a lot.
  • each layer includes, for example, gravure coating, gravure reverse coating, comma coating, die coating, lip coating, cast coating, roll coating, air knife coating, Mayer bar coating, extrusion coating, and offset. , UV curing offset, flexo, stencil, silk, curtain flow coating, wire bar coating, reverse coating, gravure coating, kiss coating, blade coating, smooth coating, spray coating, flow coating, brush coating, etc. Applicable.
  • two layers of the lower layer and the upper layer can be applied in a wet state and force-dried.
  • FIG. 5 shows an organic EL display device P2 of another embodiment 1 according to this embodiment.
  • the same reference numerals are assumed to be the same as those in the above embodiment, and the description thereof is omitted.
  • the organic EL element 100 is disposed on the organic TFT 50 at a position that is not in series with the organic TFT 50, and the organic EL element 100 and the organic TFT 50 are covered with the protective film 20.
  • the drain electrode 60 and the anode 14 are formed by transporting holes provided in the interlayer insulating film 72. It is electrically connected by a through hole 80 which is a road.
  • the protective layer is the interlayer insulating film 72.
  • the interlayer insulating film 72 having the action of protecting the organic transistor 50 by at least one of the electromagnetic wave and the particle beam, the organic TFT can be protected from the electromagnetic wave damage to the organic TFT. Therefore, the reliability can be ensured even if the organic EL display device P2 uses electromagnetic waves that cause damage to the organic TFT, or is used for a long time by consumers.
  • a method for manufacturing the organic EL display device P2 will be described.
  • a barrier film 12 is formed on the substrate 10 to produce an organic TFT 50.
  • An interlayer insulating film 72 is formed so as to cover the surface of the organic TFT 50, and a through hole 80 is formed.
  • the anode 14 is formed, and the organic EL element 100 is formed thereon.
  • a through hole 80 is provided so that the drain electrode 60 of the organic TFT 50 and the anode 14 of the organic EL element 100 are electrically connected.
  • the protective film 20 is formed so as to cover the surfaces of the organic EL element 100 and the interlayer insulating film 72, and the organic EL display device P2 is manufactured.
  • the method for forming the protective film 20 is likely to generate a particle beam such as light having a shorter wavelength than visible light such as ultraviolet rays or secondary electrons such as a vacuum process such as CVD.
  • the protective interlayer 72 protects the organic TFT50 from at least one of the electromagnetic wave and particle beam that damages the organic TFT50, so there is little damage! / Provides the organic EL display device P2 including the organic TFT50 be able to.
  • FIG. 6 shows an organic EL display device P3 of another embodiment 2 according to this embodiment.
  • the driving transistor 59 is disposed on the organic TFT 50 at a position that is not in series, and the organic EL element 100 is disposed on the driving transistor 59.
  • the organic EL element 100 and the organic TFT 50 are covered with the protective film 20.
  • the driving transistor 59 is not particularly limited, but is preferably an electrostatic induction transistor (SIT) as in this embodiment.
  • the driving transistor 59 includes a lower layer side source electrode 57 / gate electrode 51Z drain electrode (the anode 14 of the organic EL element 100).
  • the drain electrode 60 and the source electrode 57 of the driving transistor 59 are in the interlayer insulating film 72. Are electrically connected by through-holes 80, which are hole transport routes provided in.
  • the protective layer is the interlayer insulating film 72. Therefore, the provision of the interlayer insulating film 72 makes the organic EL display device P3 more reliable even in other manufacturing processes and long-term use by consumers that use electromagnetic waves that damage organic TFTs. It can be secured.
  • a method for producing the organic EL display device P3 will be described.
  • a barrier film 12 is formed on the substrate 10 to produce an organic TFT 50.
  • An interlayer insulating film 72 is formed so as to cover the surface of the organic TFT 50, and a through hole 80 is formed.
  • a driving transistor 59 is formed.
  • a through hole 80 is provided so that the drain electrode 60 of the organic TFT 50 and the source electrode 57 of the driving transistor 59 are electrically connected.
  • An organic EL element 100 is formed on the driving transistor 59.
  • a protective film 20 is formed so as to cover the organic EL element 100, the driving transistor 59, and the interlayer insulating film 72, and the organic EL display device P3 is manufactured.
  • the protective film 20 is formed by a method such as a vacuum process such as CVD, which tends to generate light beams having a shorter wavelength than visible light such as ultraviolet rays and particle beams such as secondary electrons.
  • the protective interlayer 72 protects the organic TFT50 from at least one of the electromagnetic waves and particle beams that damage the organic TFT50. Therefore, there is little damage! / Provides the organic EL display device P3 including the organic TFT50 be able to.
  • the organic EL display device including the organic EL element is shown.
  • the organic transistor that drives other than the organic EL element is not limited to this, and the organic transistor is protected by the protective layer according to the present embodiment. Structure is applicable. That is, in the above embodiment, the organic EL element may be replaced by a driving element such as an organic EL element which may be replaced with a driving element driven by another organic transistor. It is only necessary that a protective film is formed on the protective layer on the surface layer, whether directly or indirectly.
  • Such organic transistors are generally used in displays, such as liquid crystal displays and electrical displays. It can also be applied to electrophoretic displays, electronic paper, toner displays, and the like.
  • An organic EL display device P1 as an example was manufactured and compared with a conventional organic EL display device.
  • Source Z drain electrode CrZAu
  • Gate electrode Ta
  • Gate insulating film Ta O
  • Interlayer insulation film Black polymer with UV absorber
  • Organic EL organic solid layer hole injection layer (CuPc)
  • Electron injection layer (Li 2 O)
  • the manufacturing method of an Example is as follows. On the cleaned plastic film substrate, a gate electrode Ta film was patterned with a thickness of 2000 A and a width of 20 m. A Ta O film was formed by applying a positive acid to the Ta wiring film, and a gate insulating film Ta O (relative dielectric constant: 24) was formed.
  • an Au film with Cr as an adhesive layer was patterned as the source Z drain electrode.
  • the organic EL anode ITO was patterned so as to be connected to the drain electrode of the organic transistor.
  • a black polymer was formed as an interlayer insulating film so as to completely cover the organic transistor.
  • this black polymer containing an ultraviolet absorber was also patterned around the anode of the organic EL device to form a short-circuit prevention film between the cathode and the anode of the organic EL device.
  • the organic EL element organic layer and the cathode were sequentially formed, and finally SiNx was formed by plasma CVD as a protective film.
  • an interlayer insulating film is formed on an organic TFT, but an ultraviolet absorber is added.
  • an ultraviolet absorber is added.
  • Table 1 shows the results of comparing the semiconductor characteristics (mobility, on / off characteristics) of the organic TFT fabricated in the examples with those of the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

Disclosed is an organic EL display wherein deterioration in performance of an organic transistor is suppressed. Also disclosed is a method for manufacturing such an organic EL display, an organic transistor and a method for manufacturing an organic transistor. Specifically disclosed is an organic EL display (P1) comprising a protective film (20) which covers an organic transistor (50) for protecting the organic transistor (50). An interlayer insulating film (72) is formed between the protective film (20) and the organic transistor (50) as a protective layer for protecting the organic transistor from at least either electromagnetic waves or particle beams.

Description

有機 EL表示装置、有機トランジスタ、これらの製造方法  Organic EL display device, organic transistor, and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、有機 EL表示装置、有機 EL表示装置の製造方法、有機トランジスタ、有 機トランジスタの製造方法に関する。  The present invention relates to an organic EL display device, a method for manufacturing an organic EL display device, an organic transistor, and a method for manufacturing an organic transistor.
背景技術  Background art
[0002] 有機トランジスタは様々な用途に用いられている。例えば、有機 EL表示装置にお ける有機 EL素子を駆動する手段として用いられて 、る。  [0002] Organic transistors are used in various applications. For example, it is used as a means for driving an organic EL element in an organic EL display device.
[0003] 有機 EL素子は、基板上に、電極及び電極間に少なくとも発光層を備えた有機固体 層を備え、両側の電極カゝら有機固体層中の発光層に電子と正孔を注入し、有機発 光層で発光を起こさせる素子であり、高輝度発光が可能である。また有機化合物の 発光を利用しているため発光色の選択範囲が広いなどの特徴を有し、光源や有機 E L表示装置などとして期待されている。特に有機 EL表示装置は、一般に、広視野、 高コントラスト、高速応答性および視認性に優れ、薄型'軽量で、低消費電力のフラッ トパネルディスプレイなどとして期待されている。  [0003] An organic EL device includes an electrode and an organic solid layer having at least a light-emitting layer between the electrodes, and injects electrons and holes into the light-emitting layer in the organic solid layer from both the electrode caps. It is an element that causes light emission in the organic light emitting layer, and can emit light with high brightness. In addition, since it uses the luminescence of organic compounds, it has a feature such as a wide selection range of luminescent colors, and is expected as a light source and organic EL display device. In particular, the organic EL display device is generally expected as a flat panel display having a wide field of view, high contrast, high speed response and visibility, thin and light, and low power consumption.
[0004] 有機 EL表示装置は、少なくとも陽極、有機発光層、陰極を備える有機 EL素子から なる画素と前記有機 EL素子を点灯 ·制御する有機トランジスタが備えられるものであ る。有機 EL表示装置において、マトリクス状に配置した有機 EL素子を、互いに直交 したストライプ状の走査電極およびデータ電極 (信号電極)により外部から駆動するパ ッシブマトリクス方式と、画素ごとに薄膜トランジスタ(以下、 TFTともいう)からなるスィ ツチング素子、駆動素子、メモリ素子を備え、有機 EL素子を点灯させるアクティブマト リクス方式とがある。  [0004] An organic EL display device includes a pixel composed of an organic EL element including at least an anode, an organic light emitting layer, and a cathode, and an organic transistor that lights and controls the organic EL element. In organic EL display devices, a passive matrix method in which organic EL elements arranged in a matrix are driven externally by stripe-shaped scanning electrodes and data electrodes (signal electrodes) orthogonal to each other, and a thin film transistor (hereinafter also referred to as TFT) for each pixel. There is a switching element, a driving element, and a memory element, and an active matrix system that turns on the organic EL element.
[0005] 有機 EL表示装置においては、一般に、画素数の増大に伴いパッシブマトリックス方 式に比べ、 TFT(Thin Film Transistors)により有機 EL素子が駆動されるァクテ イブマトリクス方式のほうが優位とされている。これは、パッシブマトリクス方式は、走査 電極が選択された期間のみ各画素の有機 EL素子が点灯し、画素数が多くなるに従 い、有機 EL素子の点灯期間が短くなつて平均輝度が低下する傾向にあるのに対し、 アクティブマトリクス方式は、画素ごとに TFTからなるスイッチング素子とメモリ素子を 備えているため有機 EL素子の点灯状態が保持され、高輝度、高効率で長寿命の動 作が可能であり、ディスプレイの高精細化や大型化に有利である傾向にあるなどの理 由による。 [0005] In organic EL display devices, the active matrix method, in which organic EL elements are driven by TFTs (Thin Film Transistors), is generally superior to the passive matrix method as the number of pixels increases. . In the passive matrix method, the organic EL element of each pixel is lit only during the period when the scanning electrode is selected, and the average luminance decreases as the lighting period of the organic EL element becomes shorter as the number of pixels increases. While it tends to In the active matrix method, each pixel is equipped with a switching element and a memory element consisting of TFTs, so that the organic EL elements remain lit, and can operate with high brightness, high efficiency, and long life. The reason is that it tends to be advantageous for refinement and enlargement.
[0006] また、上記 TFTに有機 TFTを採用することによりコスト減や環境負荷低減またはフ レキシブルディスプレイの実現が期待されて!、る。  [0006] In addition, by adopting organic TFTs as the TFTs described above, it is expected to reduce costs, reduce environmental impact, or realize flexible displays!
[0007] ところで、有機 EL素子、有機 TFTは、空気中の水分や酸素などによる浸食を受け やすぐこれらの存在下では、ダークスポットが生じたり、素子が短絡する等の劣化が 起こる場合がある。このような劣化を防ぐためには、素子を空気中の水分や酸素など による浸食力 保護する手段が必要であり、現在、素子全体を乾燥窒素や、アルゴン ガスなどの雰囲気中でカバーガラスや缶パッケージなどで封止する手法が用いられ ている。  [0007] By the way, organic EL elements and organic TFTs are subject to erosion due to moisture, oxygen, etc. in the air, and in the presence of these, deterioration such as dark spots or short-circuiting of the elements may occur. . In order to prevent such deterioration, it is necessary to protect the element from erosion by moisture and oxygen in the air. Currently, the entire element is covered with a cover glass or can package in an atmosphere of dry nitrogen or argon gas. The sealing method is used.
[0008] しかし、このようなガラス、缶などを用いた封止方法は製造コストが高ぐまた素子の 薄型化に限界がある場合がある。そこで、ガラスや缶パッケージなどを用いず、有機 ELEL素子、有機 TFTを防湿機能が備えられた保護膜で覆う構造が下記特許文献 1に示されるように提案されて 、る。  [0008] However, such a sealing method using glass, cans, etc. has a high manufacturing cost, and there are cases where there is a limit to thinning the element. Therefore, a structure in which an organic ELEL element and an organic TFT are covered with a protective film having a moisture-proof function without using glass or a can package has been proposed as shown in Patent Document 1 below.
[0009] 図 1には、背景技術に係る有機 EL表示装置 PAが示される。有機 EL表示装置 PA は、基板 10と、基板 10上に形成されたバリア膜 12と、バリア膜 12上に形成された有 機 EL素子 100および有機 TFT50と、有機 EL素子 100および有機 TFT50を覆う保 護膜 (パッシベーシヨン膜) 20とを有する。  FIG. 1 shows an organic EL display device PA according to the background art. The organic EL display device PA covers the substrate 10, the barrier film 12 formed on the substrate 10, the organic EL element 100 and the organic TFT 50 formed on the barrier film 12, and the organic EL element 100 and the organic TFT 50. And a protective film (passivation film) 20.
特許文献 1:特開 2003 - 255857号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-255857
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] し力しながら、例えば、保護膜を CVD法などの真空プロセスで成膜する場合、成膜 時に発生するプラズマなど力 発生する電磁波、粒子線、例えば、アルファ線、ベー タ線、紫外線などの可視光よりも短波長の光、時には可視光、赤外光によっても、有 機 TFTを構成する有機層などがダメージを受け、有機 TFTの性能が劣化してしまう 場合がある。 [0011] また、保護膜、製造後においても、他のプラズマを用いる製造工程で発する電磁波 や粒子線、消費者が使用する際に電磁波によって、有機 TFTを構成する有機層な どがダメージを受け、有機 TFTの性能が劣化してしまう場合がある。 [0010] However, when the protective film is formed by a vacuum process such as a CVD method, for example, a plasma generated at the time of film formation, such as electromagnetic waves, particle beams such as alpha rays, beta rays, ultraviolet rays Such as light with a wavelength shorter than visible light, sometimes visible light, and infrared light may damage the organic layer that constitutes the organic TFT, resulting in deterioration of the performance of the organic TFT. [0011] In addition, even after manufacturing the protective film, electromagnetic waves emitted in manufacturing processes using other plasmas, particle beams, and organic layers constituting organic TFTs are damaged by electromagnetic waves when used by consumers. The performance of organic TFT may deteriorate.
[0012] 本発明は、上記課題に鑑みてなされたものであり、有機トランジスタの性能劣化がよ り少ない有機 EL表示装置、有機 EL表示装置の製造方法、有機トランジスタ、有機ト ランジスタの製造方法を提供することを主な目的とする。  The present invention has been made in view of the above problems, and provides an organic EL display device, a method for manufacturing the organic EL display device, a method for manufacturing the organic transistor, and a method for manufacturing the organic transistor, in which the performance deterioration of the organic transistor is less. The main purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0013] 請求項 1に記載の発明は、少なくとも陽極、有機発光層、陰極を備える有機 EL素 子と前記有機 EL素子を駆動する有機トランジスタを含む有機 EL表示装置であって、 前記有機トランジスタを覆い、少なくとも前記有機トランジスタを保護する保護膜を備 え、前記保護膜と前記有機トランジスタの表面との間には、電磁波と粒子線とのうち 少なくとも一方カゝら前記有機トランジスタを防護する防護層が形成されることを特徴と する。 [0013] The invention according to claim 1 is an organic EL display device including an organic EL element including at least an anode, an organic light emitting layer, and a cathode, and an organic transistor that drives the organic EL element. And a protective layer that protects at least one of electromagnetic waves and particle beams between the protective film and the surface of the organic transistor. Is formed.
[0014] 請求項 7に記載の発明は、少なくとも陽極、有機発光層、陰極を備える有機 EL素 子と前記有機 EL素子を駆動する有機トランジスタを含む有機 EL表示装置の製造方 法であって、前記有機トランジスタ表面上に電磁波と粒子線とのうち少なくとも一方か ら前記有機トランジスタを防護する防護層を形成する防護層形成工程と、前記防護 層上に前記有機トランジスタを保護する保護膜を形成する保護膜形成工程と、を含 むことを特徴とする。  [0014] The invention according to claim 7 is a method of manufacturing an organic EL display device including an organic EL element including at least an anode, an organic light emitting layer, and a cathode, and an organic transistor for driving the organic EL element, Forming a protective layer for protecting the organic transistor from at least one of electromagnetic waves and particle beams on the surface of the organic transistor; and forming a protective film for protecting the organic transistor on the protective layer. And a protective film forming step.
[0015] 請求項 13に記載の発明は、有機トランジスタであって、前記有機トランジスタを覆い 、少なくとも前記有機トランジスタを保護する保護膜を備え、前記保護膜と前記有機ト ランジスタの表面との間には、電磁波と粒子線とのうち少なくとも一方から前記有機ト ランジスタを防護する防護層が形成されることを特徴とする。  [0015] The invention according to claim 13 is an organic transistor comprising a protective film that covers the organic transistor and protects at least the organic transistor, and is provided between the protective film and the surface of the organic transistor. Is characterized in that a protective layer for protecting the organic transistor is formed from at least one of electromagnetic waves and particle beams.
[0016] 請求項 19に記載の発明は、有機トランジスタの製造方法であって、前記有機トラン ジスタ表面上に電磁波と粒子線とのうち少なくとも一方力も前記有機トランジスタを防 護する防護層を形成する防護層形成工程と、前記防護層上に前記有機トランジスタ を保護する保護膜を形成する保護膜形成工程と、を含むことを特徴とする。  [0016] The invention according to claim 19 is a method of manufacturing an organic transistor, wherein a protective layer that protects the organic transistor with at least one of electromagnetic force and particle beam is formed on the surface of the organic transistor. A protective layer forming step; and a protective film forming step of forming a protective film for protecting the organic transistor on the protective layer.
図面の簡単な説明 [0017] [図 1]従来技術における有機 EL表示装置の模式的な断面図である。 Brief Description of Drawings FIG. 1 is a schematic cross-sectional view of an organic EL display device in the prior art.
[図 2]本実施形態における有機 EL表示装置の模式的な断面図である。  FIG. 2 is a schematic cross-sectional view of an organic EL display device in the present embodiment.
[図 3]本実施形態における有機 EL表示装置の有機 EL素子付近の模式的な拡大図 である。  FIG. 3 is a schematic enlarged view of the vicinity of the organic EL element of the organic EL display device in the present embodiment.
[図 4]本実施形態における有機 EL表示装置の有機 TFT付近の模式的な拡大図であ る。  FIG. 4 is a schematic enlarged view of the vicinity of the organic TFT of the organic EL display device in the present embodiment.
[図 5]本実施形態における有機 EL表示装置の模式的な断面図である。  FIG. 5 is a schematic cross-sectional view of an organic EL display device in the present embodiment.
[図 6]本実施形態における有機 EL表示装置の模式的な断面図である。  FIG. 6 is a schematic cross-sectional view of an organic EL display device in the present embodiment.
符号の説明  Explanation of symbols
[0018] 10 基板 [0018] 10 substrates
16 有機固体層  16 Organic solid layer
18 陰極  18 Cathode
20 保護膜  20 Protective film
50 有機 TFT  50 organic TFT
72, 74, 76 絶縁膜  72, 74, 76 Insulating film
100 有機 EL素子  100 organic EL elements
PI, P2, P3, PA 有機 EL表示装置  PI, P2, P3, PA OLED display
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明の実施の形態を図面に基づいて説明する。なお、本実施形態につい ては、本発明を実施するための一形態に過ぎず、本発明は本実施形態によって限定 されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present embodiment is only one form for carrying out the present invention, and the present invention is not limited to the present embodiment.
[0020] 「有機 EL表示装置」 [0020] "Organic EL display device"
図 2には、本実施形態に係る有機 EL表示装置 P1の概略断面図が示される。有機 FIG. 2 shows a schematic cross-sectional view of the organic EL display device P1 according to the present embodiment. Organic
EL表示装置 P1は、フィルム基板 10と、基板 10上に形成されたバリア膜 12と、ノリア 膜 12上に形成された有機 EL素子 100および有機 TFT50と、有機 TFT50を覆う層 間絶縁膜 72、層間絶縁膜 72の表面を覆い、有機 EL素子 100および有機 TFT50を 外部からの浸食から保護する保護膜 20とを有する。 The EL display device P1 includes a film substrate 10, a barrier film 12 formed on the substrate 10, an organic EL element 100 and an organic TFT 50 formed on the noria film 12, and an interlayer insulating film 72 covering the organic TFT 50, The protective film 20 covers the surface of the interlayer insulating film 72 and protects the organic EL element 100 and the organic TFT 50 from erosion from the outside.
[0021] 基板 10上にバリア膜 12が形成されている。ノリア膜 12上に有機 EL素子 100、有 機 TFT50が並列して載置されて 、る。後述の有機 EL素子 100の紙面右側であって 、有機 EL素子 100の陽極 14上から陰極 18と接する部分まで陽極 14と陰極 18とを 絶縁する層間絶縁膜 74が形成される。少なくとも層間絶縁膜 72は、有機 TFT50を 電磁波と粒子線のうち少なくとも一方力も防護する防護層である。 A barrier film 12 is formed on the substrate 10. Organic EL element 100 on Noria film 12 Machine TFT50 is placed in parallel. An interlayer insulating film 74 that insulates the anode 14 and the cathode 18 from the top of the anode 14 of the organic EL element 100 to a portion in contact with the cathode 18 is formed on the right side of the organic EL element 100 described later. At least the interlayer insulating film 72 is a protective layer that protects the organic TFT 50 with at least one of electromagnetic waves and particle beams.
層間絶縁膜 72、陰極 18を覆うようにして、有機 EL素子 100および有機 TFT50を 外部力もの浸食力も保護する保護膜 20が覆って 、る。  The organic EL element 100 and the organic TFT 50 are covered with a protective film 20 that protects the erosion power of external force so as to cover the interlayer insulating film 72 and the cathode 18.
[0022] く基板〉 [0022] <Substrate>
基板 10は、その構成する材料は適宜選択して用いればよい。例えば、榭脂として は、熱可塑性榭脂、熱硬化性榭脂、ポリカーボネート、ポリメタクリル酸メチル、ポリア リレート、ポリエーテルスルフォン、ポリサルフォン、ポリエチレンテレフタレートポリエス テル、ポリプロピレン、セロファン、ポリカーボネート、酢酸セルロース、ポリエチレン、 ポリ塩ィ匕ビニル、ポリスチレン、ポリアミド、ポリイミド、ポリ塩ィ匕ビニリデン、ポリビニルァ ルコール、エチレン '酢酸ビュル共重合体けん化物、フッ素榭脂、塩ィ匕ゴム、アイオノ マー、エチレン ·アクリル酸共重合体、エチレン ·アクリル酸エステル共重合体等として 様々な基板を用いることができる。また、榭脂を主成分とする基板ではなぐガラス基 板や、ガラスとブラスティックの貼り合せ基板でもよぐまた基板表面にアルカリバリア 膜や、ガスノ リア膜がコートされていてもよい。また、これら透明基板に反対側から光 を射出するトップェミッション型である場合などには、基板 10は必ずしも透明でなくと ちょい。  The substrate 10 may be formed by appropriately selecting the constituent materials. For example, as the resin, thermoplastic resin, thermosetting resin, polycarbonate, polymethyl methacrylate, polyarylate, polyether sulfone, polysulfone, polyethylene terephthalate polyester, polypropylene, cellophane, polycarbonate, cellulose acetate, polyethylene, Poly (vinyl chloride), polystyrene, polyamide, polyimide, poly (vinyl chloride), polyvinyl alcohol, saponified ethylene butyl acetate copolymer, fluorine resin, salt rubber, ionomer, ethylene / acrylic acid copolymer Various substrates can be used as ethylene / acrylic acid ester copolymers. In addition, a glass substrate or a glass-plastic bonded substrate may be used instead of a substrate containing rosin as a main component, and an alkali barrier film or a gas barrier film may be coated on the substrate surface. In addition, in the case of a top emission type in which light is emitted from the opposite side to these transparent substrates, the substrate 10 is not necessarily transparent.
[0023] <バリア膜 >  [0023] <Barrier film>
ノ リア膜 12は必ずしも形成しなくともよいが、形成すると基板側からの水分や酸素 などによる浸食力 保護することができるので好適である。バリア膜 12を形成する場 合には、材料は適宜選択して用いることができる。  The noria film 12 does not necessarily have to be formed, but it is preferable because it can protect the erosion force by moisture or oxygen from the substrate side. When the barrier film 12 is formed, the material can be appropriately selected and used.
ノ リア膜 12は、多層構造であってもよく単層構造であってもよぐ無機膜であっても よぐ有機膜であってもよいが無機膜が含まれていると水分や酸素などによる浸食か らのノ リア性が向上するので好適である。  The noria film 12 may be a multilayer structure, a single layer structure, an inorganic film, or an organic film, but if an inorganic film is included, moisture, oxygen, etc. This is preferable because the noria property from erosion due to ashing is improved.
[0024] 無機膜としては、例えば、窒化膜、酸ィ匕膜又は炭素膜又はシリコン膜等が採用可能 であり、より具体的には、シリコン窒化膜、シリコン酸ィ匕膜、シリコン酸ィ匕窒化膜、又は ダイヤモンド状カーボン (DLC)膜、アモルファスカーボン膜などが挙げられる。すな わち、 SiN、 A1N、 GaN等の窒化物、 SiO、 Al O、 Ta O、 ZnO、 GeO等の酸化物 As the inorganic film, for example, a nitride film, an oxide film, a carbon film, a silicon film, or the like can be used. More specifically, a silicon nitride film, a silicon oxide film, a silicon oxide film, or the like can be used. Nitride film, or Examples include diamond-like carbon (DLC) films and amorphous carbon films. That is, nitrides such as SiN, A1N, and GaN, oxides such as SiO, Al 2 O, Ta 2 O, ZnO, and GeO
2 3 2 5  2 3 2 5
、 SiON等の酸ィ匕窒化物、 SiCN等の炭化窒化物、金属フッ素化合物、金属膜、等 があげられる。  Oxynitrides such as SiON, carbonitrides such as SiCN, metal fluorine compounds, metal films, and the like.
[0025] 有機膜としては、例えば、フラン膜、ピロール膜、チオフ ン膜或いは、ポリパラキシ レン膜エポキシ榭脂、アクリル榭脂、ポリパラキシレン、フッ素系高分子 (パーフルォロ ォレフィン、パーフノレオ口エーテル、テトラフノレォロエチレン、クロロトリフノレォロェチレ ン、ジクロロジフルォロエチレン等)、金属アルコキシド(CH OM、 C H OM等)、ポ  [0025] Examples of the organic film include a furan film, a pyrrole film, a thiophene film, or a polyparaxylene film, an epoxy resin, an acrylic resin, a polyparaxylene, and a fluorine-based polymer (perfluoroolefin, perfluoroolefin ether, tetrafanol). Fluoroethylene, chlorotrifluoroethylene, dichlorodifluoroethylene, etc.), metal alkoxides (CHOM, CHOM, etc.),
3 2 5  3 2 5
リイミド前駆体、ペリレン系化合物などの重合膜等があげられる。  Polymerized films such as lyimide precursors and perylene compounds can be used.
[0026] ノリア膜 12は、 2種類以上の物質力 なる積層構造、無機保護膜、シランカップリン グ層、榭脂封止膜からなる積層構造、無機材料カゝらなるバリア層、有機材料カゝらなる カバー層力もなる積層構造、 Si— CXHY等の金属または半導体と有機物との化合 物、無機物カゝらなる積層構造、無機膜と有機膜を交互に積層した構造、 Si層上に Si Oまたは Si Nを積層した構造等の積層構造としたものなどが挙げられる。  [0026] The noria film 12 has a laminated structure having two or more kinds of material strength, an inorganic protective film, a silane coupling layer, a laminated structure made of a resin sealing film, a barrier layer made of an inorganic material, and an organic material cover. Laminated structure that also has cover layer strength, Si-CXHY or other metal or compound of semiconductor and organic material, laminated structure of inorganic material, structure in which inorganic film and organic film are laminated alternately, Si on Si layer Examples thereof include a laminated structure such as a structure in which O or SiN is laminated.
2 3 4  2 3 4
[0027] <有機 EL素子 >  [0027] <Organic EL device>
図 3には有機 EL表示装置 P1の有機 EL素子 100付近の拡大図が示される。有機 E L素子 100は、バリア膜 12側力も陽極 14Z有機固体層 16Z陰極 18とから積層され て構成されている。  FIG. 3 shows an enlarged view of the vicinity of the organic EL element 100 of the organic EL display device P1. The organic EL element 100 is configured by laminating the barrier film 12 side force from the anode 14Z organic solid layer 16Z cathode 18 as well.
[0028] 陽極 14は、正孔を注入しやすいエネルギーレベルを持つ層を用いればよぐ ITO ( Indium tin oxide :酸化インジウム錫膜)などの透明電極を用いることができるが、 有機 EL表示装置がトップェミッション型である場合には透明電極でなくとも一般的な 電極を用いればよい。  [0028] As the anode 14, a transparent electrode such as ITO (Indium tin oxide) may be used as long as it uses a layer having an energy level at which holes can be easily injected. In the case of the top emission type, a general electrode may be used instead of the transparent electrode.
[0029] ITOなどの透明導電性材料を例えば 150nmの厚さにスパッタリングなどによって形 成する。 ITOに限らず、代わりに酸ィ匕亜鉛 (ZnO)膜、 IZO (酸化インジウム亜鉛合金 )、金、よう化銅等を採用することもできる。  [0029] A transparent conductive material such as ITO is formed to a thickness of, for example, 150 nm by sputtering or the like. Instead of ITO, an oxide zinc (ZnO) film, IZO (indium zinc oxide alloy), gold, copper iodide, or the like may be employed instead.
[0030] 有機固体層 16は、陽極 14側から正孔注入層 162/正孔輸送層 164/発光層 16 6/電子輸送層 167/電子注入層 168とから構成されて 、る。  [0030] The organic solid layer 16 includes a hole injection layer 162 / a hole transport layer 164 / a light emitting layer 166 / an electron transport layer 167 / an electron injection layer 168 from the anode 14 side.
[0031] 正孔注入層 162は、陽極 14と正孔輸送層 164との間に設けられ、陽極 14からの正 孔の注入を促進させる層である。正孔注入層 162により、有機 EL素子 100の駆動電 圧は低電圧化することができる。また、正孔注入を安定化し素子を長寿命化するなど の役割を担ったり、陽極 14の表面に形成された突起などの凹凸面を被覆し素子欠 陥を減少させる、などの役割を担う場合もある。 [0031] The hole injection layer 162 is provided between the anode 14 and the hole transport layer 164. It is a layer that promotes the injection of holes. Due to the hole injection layer 162, the driving voltage of the organic EL element 100 can be lowered. Also, if it plays a role such as stabilizing hole injection and extending the life of the device, or covering uneven surfaces such as protrusions formed on the surface of the anode 14 to reduce device defects There is also.
[0032] 正孔注入層 162の材質については、そのイオン化エネルギーが陽極 14の仕事関 数と正孔輸送層 164のイオンィ匕エネルギーの間になるように適宜選択すればよい。 例えば、トリフエ-ルァミン 4量体 (TPTE)、銅フタロシアニンなどを用いることができ る。 The material of the hole injection layer 162 may be selected as appropriate so that the ionization energy is between the work function of the anode 14 and the ion energy of the hole transport layer 164. For example, triphenylamine tetramer (TPTE), copper phthalocyanine and the like can be used.
[0033] 正孔輸送層 164は、正孔注入層 162と発光層 166の間に設けられ、正孔の輸送を 促進させる層であり、正孔を発光層 166まで適切に輸送する働きを持つ。  [0033] The hole transport layer 164 is a layer provided between the hole injection layer 162 and the light emitting layer 166 to promote hole transport, and has a function of appropriately transporting holes to the light emitting layer 166. .
[0034] 正孔輸送層 164の材質については、そのイオン化エネルギーが正孔注入層 162と 発光層 166の間になるように適宜選択すればよい。例えば、 TPD (トリフエ-ルァミン 誘 体)、 NPB (N, N— di (naphthalene— 1— yl)— N, N― diphenyl― benzide ne)を採用することができる。  The material of the hole transport layer 164 may be appropriately selected so that the ionization energy is between the hole injection layer 162 and the light emitting layer 166. For example, TPD (triphenylamine derivative), NPB (N, N-di (naphthalene-1-yl) -N, N-diphenyl-benzidene) can be employed.
[0035] 発光層 166は、輸送された正孔と同じく輸送された後述の電子とを再結合させ、蛍 光発光または燐光発光させる層のことである。発光層 166は上記発光態様に対応で きる性質を満たすものになるようにその材料を適宜選択すればよい。例えば、トリス(8 —キノリノラト)アルミニウム錯体 (Alq)や、ビス (ベンゾキノリノラト)ベリリウム錯体 (Be Bq)、トリ(ジベンゾィルメチル)フエナント口リンユーロピウム錯体(Eu (DBM) 3 (Phe n) )、ジトルイルビ-ルビフエ-ル(DTVBi)、ポリ(p—フエ-レンビ-レン)や、ポリア ルキルチオフェンのような π共役高分子などを用いることができる。例えば緑色に発 光させたければアルミキノリノール錯体 (Alq )を用いることができる。  [0035] The light-emitting layer 166 is a layer that recombines the transported holes and the transported electrons, which will be described later, to emit fluorescence or phosphorescence. The material of the light-emitting layer 166 may be selected as appropriate so as to satisfy the properties corresponding to the above light-emitting modes. For example, tris (8-quinolinolato) aluminum complex (Alq), bis (benzoquinolinolato) beryllium complex (Be Bq), tri (dibenzoylmethyl) phenantorporin europium complex (Eu (DBM) 3 (Phen n )), Ditoluyl birubbe (DTVBi), poly (p-phenolene), and π-conjugated polymers such as polyalkylthiophene. For example, aluminum quinolinol complex (Alq) can be used to emit green light.
3  Three
[0036] 例えば、燐光発光型素子においては、陰極 18と陽極 14からそれぞれ電子と正孔 を燐光発光層 166に注入してここで再結合させると、ホスト材料を介して再結合エネ ルギがドーパント材料に供給され、このドーパントが燐光を発光する。ここで、注入電 流密度が低い条件下では、この燐光発光型の有機 EL素子は、ドーパントに起因した 赤色発光が得られる。また、注入電流密度の高い条件下では、発光機能を備える本 発明にカゝかるホスト材料も発光し、ホスト材料の発光色とドーパント材料の発光色の 加色光が得られる。例えば、水色に発光する化合物を用いると、ドーパントは、赤色 に発光するため、この有機 EL素子では、水色と赤色が合成された白色光を外部に 射出することができる。 [0036] For example, in a phosphorescent device, when electrons and holes are injected from the cathode 18 and the anode 14 respectively into the phosphorescent light emitting layer 166 and recombined there, the recombination energy is doped through the host material. When supplied to the material, this dopant emits phosphorescence. Here, under conditions where the injection current density is low, this phosphorescent organic EL device can emit red light due to the dopant. In addition, under conditions where the injection current density is high, the host material according to the present invention having a light emitting function also emits light, and the emission color of the host material and the emission color of the dopant material are different. Additive light is obtained. For example, when a compound that emits light blue is used, the dopant emits red light. Therefore, in this organic EL element, white light in which light blue and red are synthesized can be emitted to the outside.
[0037] 電子輸送層 167は、電子注入層 168と発光層 166との間に設けられ、発光層 166 まで電子を輸送する働きを持つ。電子輸送層 167は、例えば、アルミキノリノール錯 体 (Alq )などを用いることができる。  The electron transport layer 167 is provided between the electron injection layer 168 and the light emitting layer 166, and has a function of transporting electrons to the light emitting layer 166. For the electron transport layer 167, for example, an aluminum quinolinol complex (Alq) can be used.
3  Three
[0038] 電子注入層 168は、電子輸送層 167と陰極 18との間に設けられ陰極 18からの電 子の注入を促進する機能を有する。  The electron injection layer 168 is provided between the electron transport layer 167 and the cathode 18 and has a function of promoting the injection of electrons from the cathode 18.
[0039] 電子輸送層 168の材質にっ 、ては、陰極 18の仕事関数と発光層 166の電子親和 力の間になるように適宜選択すればよい。例えば、電子輸送層 168は LiF (フッ化リ チウム)、 Li 0 (酸化リチウム)などの薄膜 (例えば 0. 5nm)などが採用できる。  The material of the electron transport layer 168 may be appropriately selected so as to be between the work function of the cathode 18 and the electron affinity of the light emitting layer 166. For example, the electron transport layer 168 may be a thin film (for example, 0.5 nm) such as LiF (lithium fluoride) or Li 0 (lithium oxide).
2  2
[0040] これら有機固体層 16を構成する各層は通常、有機物カゝらなり、更に、低分子の有 機物からなる場合、高分子の有機物からなる場合がある。低分子の有機物力もなる 有機固体層は一般に蒸着法等のドライプロセス (真空プロセス)によって、高分子の 有機物からなる有機固体層は一般にスピンコート法、ブレードコート法、ディップ法、 スプレー法そして印刷法等のウエットプロセスによって、それぞれ形成するなどするこ とがでさる。  [0040] Each layer constituting the organic solid layer 16 is usually made of an organic material, and further, it may be made of a high molecular weight organic material when it is made of a low molecular weight organic material. Organic solid layers with low molecular organic strength are generally produced by dry processes (vacuum processes) such as vapor deposition. Organic solid layers made of high molecular organic materials are generally spin coated, blade coated, dipped, sprayed, and printed. Each can be formed by a wet process.
[0041] 有機固体層 16を構成する各層に用いる有機材料として、例えば高分子材料として 、 PEDOT、ポリア-リン、ポリパラフエ-レンビ-レン誘導体、ポリチォフェン誘導体、 ポリパラフエ-レン誘導体、ポリアルキルフエ-レン、ポリアセチレン誘導体、などが挙 げられる。  [0041] As an organic material used for each layer constituting the organic solid layer 16, for example, as a polymer material, PEDOT, polyarine, polyparaphenylene-biylene derivative, polythiophene derivative, polyparaphenylene derivative, polyalkylphenol, And polyacetylene derivatives.
[0042] なお、本実施形態において、有機固体層 16は、正孔注入層 162、正孔輸送層 16 4、発光層 166、電子輸送層 167、電子注入層 168から構成されるものを挙げたがこ の構成に限定されることはなぐ少なくとも発光層 166を含んで構成されていればよ い。  In the present embodiment, the organic solid layer 16 includes a hole injection layer 162, a hole transport layer 164, a light emitting layer 166, an electron transport layer 167, and an electron injection layer 168. However, the present invention is not limited to this configuration as long as it includes at least the light emitting layer 166.
[0043] 例えば、採用する有機材料等の特性に応じて、発光層の単層構造等の他、正孔輸 送層 Z発光層、発光層 Z電子輸送層等の 2層構造、正孔輸送層 Z発光層 Z電子輸 送層の 3層構造や、更に電荷 (正孔、電子)注入層などを備える多層構造など力ゝら構 成することができる。 [0043] For example, depending on the characteristics of the organic material used, etc., in addition to the single layer structure of the light emitting layer, etc., the hole transport layer Z light emitting layer, the light emitting layer Z electron transport layer and other two layer structures, hole transport Layer Z Light-emitting layer Z Three-layer structure of Z electron transport layer and multilayer structure with charge (hole, electron) injection layer etc. Can be made.
[0044] さらに有機固体層 16には発光層 166と電子輸送層 168の間に正孔ブロック層を設 けてもよい。正孔は発光層 166を通り抜け、陰極 18へ到達する可能性がある。例え ば、電子輸送層 168に Alq等を用いている場合、電子輸送層に正孔が流れ込むこ  Furthermore, a hole blocking layer may be provided between the light emitting layer 166 and the electron transport layer 168 in the organic solid layer 16. Holes may pass through the light emitting layer 166 and reach the cathode 18. For example, when Alq or the like is used for the electron transport layer 168, holes may flow into the electron transport layer.
3  Three
とでこの Alqが発光したり、正孔を発光層に閉じこめることができずに発光効率が低  The Alq emits light, and holes cannot be trapped in the light emitting layer, resulting in low luminous efficiency.
3  Three
下する可能性がある。そこで、正孔ブロック層を設け、発光層 166から電子輸送層 16 8に正孔が流れ出てしまうことを防止してもよい。  There is a possibility of lowering. Therefore, a hole blocking layer may be provided to prevent holes from flowing out from the light emitting layer 166 to the electron transporting layer 168.
[0045] 陰極 18は、有機固体層 16への電子注入を良好にするため、仕事関数又は電子親 和力の小さな材料を選定すればよい。例えば、 Mg :Ag合金、 Al:Li合金などの合金 型 (混合金属)等を好適に用いることができる。陰極 18は、 A1や Mg、 Agなどの金属 材料を例えば 150nmの厚さに真空蒸着などで形成することができる。  For the cathode 18, a material having a small work function or electron affinity may be selected in order to improve electron injection into the organic solid layer 16. For example, an alloy type (mixed metal) such as an Mg: Ag alloy or an Al: Li alloy can be suitably used. The cathode 18 can be formed of a metal material such as A1, Mg, and Ag by vacuum deposition or the like to a thickness of 150 nm, for example.
[0046] <有機トランジスタ(有機 TFT) >  [0046] <Organic transistor (organic TFT)>
図 4には、有機 EL表示装置 P1の有機 TFT50付近の拡大図が示される。有機 TF T50は、ノリア膜 12側からバリア膜 12上に形成されたゲート電極 52と、ゲート電極 5 2の表面を覆うように形成されたゲート絶縁膜 54とを有して 、る。  FIG. 4 shows an enlarged view of the vicinity of the organic TFT 50 of the organic EL display device P1. The organic TFT 50 includes a gate electrode 52 formed on the barrier film 12 from the noria film 12 side, and a gate insulating film 54 formed so as to cover the surface of the gate electrode 52.
[0047] ゲート絶縁膜 54上には有機半導体層 56、左端縁側にソース電極 58、右端縁側に ドレイン電極 60が形成されている。ここで、ドレイン電極 60は、有機 EL素子 100の陽 極 14に電気的に接続される。すなわち、有機 TFT50は、ソース電極 58及びドレイン 電極 60は、互いに分離して設けられ、ソース電極 58とドレイン電極 60の間に有機半 導体層 56を介在させ、ゲート絶縁膜 54を介してソース電極 58、ドレイン電極 60、有 機半導体層 56と対向されて配置されたゲート電極 52を有する構造である。  [0047] On the gate insulating film 54, an organic semiconductor layer 56, a source electrode 58 on the left edge side, and a drain electrode 60 on the right edge side are formed. Here, the drain electrode 60 is electrically connected to the anode 14 of the organic EL element 100. That is, in the organic TFT 50, the source electrode 58 and the drain electrode 60 are provided separately from each other, the organic semiconductor layer 56 is interposed between the source electrode 58 and the drain electrode 60, and the source electrode is interposed through the gate insulating film 54. 58, a drain electrode 60, and a gate electrode 52 disposed to face the organic semiconductor layer 56.
[0048] ゲート電極 52は、ゲート電極材料としては陽極酸ィ匕可能な金属であれば良ぐ Al、 Mg、 Ti、 Nb、 Zr等の単体もしくはそれらの合金を用いることができるがこれに限定さ れない。ゲート電極としては、十分な導電性があればよぐ例えば、 Pt、 Au、 W、 Ru、 Ir、 Al、 Sc、 Ti、 V、 Mn、 Fe、 Co、 Ni、 Zn、 Ga、 Y、 Zr、 Nb、 Mo、 Tc、 Rh、 Pd、 Ag 、 Cd、 Ln、 Sn、 Ta、 Re、 Os、 Tl、 Pb、 La、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 D y、 Ho、 Er、 Tm、 Yb、 Lu等の金属単体もしくは積層もしくはその化合物でも良い。ま た、 ΙΤΟ、 ΙΖΟのような金属酸化物類、ポリア二リン類、ポリチォフェン類、ポリピロ一 ル類などの共役性高分子化合物を含む有機導電材料でもよい。 [0048] The gate electrode 52 may be any metal that can be anodized as the gate electrode material. A single substance such as Al, Mg, Ti, Nb, Zr, or an alloy thereof may be used, but the material is not limited thereto. No. The gate electrode only needs to have sufficient conductivity.For example, Pt, Au, W, Ru, Ir, Al, Sc, Ti, V, Mn, Fe, Co, Ni, Zn, Ga, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Ln, Sn, Ta, Re, Os, Tl, Pb, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho , Er, Tm, Yb, Lu, etc. Also, metal oxides such as ΙΤΟ, ΙΖΟ, polyaniline, polythiophene, polypyrrole An organic conductive material containing a conjugated polymer compound such as rutile may also be used.
[0049] ゲート電極 52の製造方法は、基板 10上に、ゲート電極 52の配線パターンを形成 する一般的な方法であればよい。スパッタリング法や CVD法等があげられる力 特に 限定されることはなぐ適宜適切なものを用いればよい。例えば、真空蒸着、イオンプ レーティング、ゾルゲル法、スピンコート法、スプレー法、 CVD等の一般的な薄膜作 成方法にても可能である。  The manufacturing method of the gate electrode 52 may be any general method for forming the wiring pattern of the gate electrode 52 on the substrate 10. Power that can be used for sputtering, CVD, etc. There is no particular limitation and an appropriate one may be used. For example, general thin film forming methods such as vacuum deposition, ion plating, sol-gel method, spin coating method, spray method, and CVD are also possible.
[0050] ゲート絶縁膜 54は、好適には、ゲート電極 52の材料として用いた材料の表面を陽 極酸ィ匕してゲート絶縁膜 54としても良い。これに限られず、無機材料、有機材料のい ずれの絶縁物も使用できる。  [0050] Preferably, the gate insulating film 54 may be formed into a gate insulating film 54 by subjecting the surface of the material used as the material of the gate electrode 52 to a positive oxidation. However, the present invention is not limited to this, and any insulating material such as inorganic material or organic material can be used.
[0051] 例えば、金属酸化物としては、 LiOx、 LiNx、 NaOx、 KOx、 RbOx、 CsOx、 BeOx 、 MgOx、 MgNx、 CaOx、 CaNx、 SrOx、 BaOx、 ScOx、 YOx、 YNx、 LaOx、 La Nx、 CeOx、 PrOx、 NdOx、 SmOx、 EuOx、 GdOx、 TbOx、 DyOx、 HoOx、 ErO x、 TmOx、 YbOx、 LuOx、 TiOx、 TiNx、 ZrOx、 ZrNx、 HfOx、 HfNx、 ThOx、 V Ox、 VNx、 NbOx、 TaOx、 TaNx、 GrOx、 CrNx, MoOx、 MoNx、 WOx、 WNx、 MnOx、 ReOx、 FeOx、 FeNx、 RuOx、 OsOx、 CoOx、 RhOx、 IrOx、 NiOx、 Pd Ox、 PtOx、 CuOx、 CuNx、 AgOx、 AuOx、 ZnOx、 CdOx、 HgOx、 BOx、 BNx、 A10x、 AlNx、 GaOx、 GaNx、 InOx、 TiOx、 TiNx、 SiNx、 GeOx、 SnOx、 PbOx 、 POx、 PNx、 AsOx、 SbOx、 SeOx、 TeOxなどの金属酸化物や、 LiAlO、 Li Si  [0051] For example, metal oxides include LiOx, LiNx, NaOx, KOx, RbOx, CsOx, BeOx, MgOx, MgNx, CaOx, CaNx, SrOx, BaOx, ScOx, YOx, YNx, LaOx, La Nx, CeOx, PrOx, NdOx, SmOx, EuOx, GdOx, TbOx, DyOx, HoOx, ErO x, TmOx, YbOx, LuOx, TiOx, TiNx, ZrOx, ZrNx, HfOx, HfNx, ThOx, V Ox, VNx, Nb GrOx, CrNx, MoOx, MoNx, WOx, WNx, MnOx, ReOx, FeOx, FeNx, RuOx, OsOx, CoOx, RhOx, IrOx, NiOx, Pd Ox, PtOx, CuOx, CuNx, AgOx, AuOx, ZnOg, C , BOx, BNx, A10x, AlNx, GaOx, GaNx, InOx, TiOx, TiNx, SiNx, GeOx, SnOx, PbOx, POx, PNx, AsOx, SbOx, SeOx, TeOx and other metal oxides, LiAlO, Li Si
2 2 twenty two
O、 Li TiO、 Na Al O 、 NaFeO、 Na SiO、 K SiO、 K TiO、 K WO、 RbO, Li TiO, Na Al O, NaFeO, Na SiO, K SiO, K TiO, K WO, Rb
3 2 3 2 22 34 2 4 4 2 3 2 3 2 4 23 2 3 2 22 34 2 4 4 2 3 2 3 2 4 2
CrO、 Cs CrO、 MgAl O、 MgFe O、 MgTiO、 CaTiO、 CaWO、 CaZrO、CrO, Cs CrO, MgAl O, MgFe O, MgTiO, CaTiO, CaWO, CaZrO,
4 2 4 2 4 2 4 3 3 4 34 2 4 2 4 2 4 3 3 4 3
SrFe O 、 SrTiO、 SrZrO、 BaAl O、 BaFe O 、 BaTiO、 Y A O 、 Y FeSrFe O, SrTiO, SrZrO, BaAl O, BaFe O, BaTiO, Y A O, Y Fe
12 19 3 3 2 4 12 19 3 3 15 12 3 512 19 3 3 2 4 12 19 3 3 15 12 3 5
O 、 LaFeO , La Fe O 、: La Ti O、 CeSnO、 CeTiO、 Sm Fe O 、 EuFeOO, LaFeO, LaFeO, LaTiO, CeSnO, CeTiO, SmFeO, EuFeO
12 3 3 5 12 2 2 7 4 4 3 5 12 312 3 3 5 12 2 2 7 4 4 3 5 12 3
、 Eu Fe O 、 GdFeO、 Gd Fe O 、 DyFeO、 Dy Fe O 、 HoFeO、 Ho Fe O, Eu Fe O, GdFeO, Gd Fe O, DyFeO, Dy Fe O, HoFeO, Ho Fe O
3 5 12 3 3 5 12 3 3 5 12 3 3 53 5 12 3 3 5 12 3 3 5 12 3 3 5
、 ErFeO、 Er Fe O 、 Tm Fe O 、 LuFeO , Lu Fe O 、 NiTiO、 Al TiO、, ErFeO, Er Fe O, Tm Fe O, LuFeO, Lu Fe O, NiTiO, Al TiO,
12 3 3 5 12 3 5 12 3 3 5 12 3 2 312 3 3 5 12 3 5 12 3 3 5 12 3 2 3
FeTiO、 BaZrO、 LiZrO、 MgZrO、 HfTiO、 NH VO、 AgVO、 LiVO、 BaFeTiO, BaZrO, LiZrO, MgZrO, HfTiO, NH VO, AgVO, LiVO, Ba
3 3 3 3 4 4 3 3 33 3 3 3 4 4 3 3 3
Nb O、 NaNbO、 SrNb O、 KTaO、 NaTaO、 SrTa O、 CuCr O、 Ag CrONb O, NaNbO, SrNb O, KTaO, NaTaO, SrTa O, CuCr O, Ag CrO
2 6 3 2 6 3 3 2 6 2 4 2 42 6 3 2 6 3 3 2 6 2 4 2 4
、 BaCrO、 K MoO、 Na MoO、 NiMoO、 BaWO、 Na WO、 SrWO、 MnCr , BaCrO, K MoO, Na MoO, NiMoO, BaWO, Na WO, SrWO, MnCr
4 2 4 2 4 4 4 2 4 4  4 2 4 2 4 4 4 2 4 4
O、 MnFe O、 MnTiO、 MnWO、 CoFe O、 ZnFe O、 FeWO、 CoMoO、 O, MnFe O, MnTiO, MnWO, CoFe O, ZnFe O, FeWO, CoMoO,
2 4 2 4 3 4 2 4 2 4 4 4 CuTiO、 CuWO、 Ag MoO、 Ag WO、 ZnAl O、 ZnMoO、 ZnWO、 CdSn2 4 2 4 3 4 2 4 2 4 4 4 CuTiO, CuWO, Ag MoO, Ag WO, ZnAl O, ZnMoO, ZnWO, CdSn
3 4 2 4 2 4 2 4 4 4 3 4 2 4 2 4 2 4 4 4
O、 CdTiO、 CdMoO、 CdWO、 NaAlO、 MgAl O、 SrAl O、 Gd Ga O 、1 O, CdTiO, CdMoO, CdWO, NaAlO, MgAl O, SrAl O, Gd Ga O, 1
3 3 4 4 2 2 4 2 4 3 5 12 nFeO、 Mgln O、 Al TiO、 FeTiO、 MgTiO、 Na SiO、 CaSiO、 ZrSiO、 K3 3 4 4 2 2 4 2 4 3 5 12 nFeO, Mgln O, Al TiO, FeTiO, MgTiO, Na SiO, CaSiO, ZrSiO, K
3 2 4 2 5 3 3 2 3 3 43 2 4 2 5 3 3 2 3 3 4
GeO、 Li GeO、 Na GeO、: Bi Sn O、 MgSnO、 SrSnO、 PbSiO、 PbMoOGeO, Li GeO, Na GeO: BiSnO, MgSnO, SrSnO, PbSiO, PbMoO
2 3 2 3 2 3 2 3 9 3 3 32 3 2 3 2 3 2 3 9 3 3 3
、 PbTiO、 SnO Sb O、 CuSeO、 Na SeO、 ZnSeO、 K TeO、 K TeO、, PbTiO, SnO Sb O, CuSeO, Na SeO, ZnSeO, K TeO, K TeO,
4 3 2 2 3 4 2 3 3 2 3 2 44 3 2 2 3 4 2 3 3 2 3 2 4
Na TeO、 Na TeOなどの金属複合酸化物などが挙げられる。 Examples thereof include metal composite oxides such as Na TeO and Na TeO.
2 3 2 4  2 3 2 4
[0052] また、金属酸化物に限られず、 FeS、 Al S、 MgS、 ZnSなどの硫化物、 LiF、 MgF  [0052] Further, not limited to metal oxides, sulfides such as FeS, Al S, MgS, ZnS, LiF, MgF
2 3  twenty three
、 SmFなどのフッ化物、 HgCl、 FeCl、 CrClなどの塩化物、 AgBr、 CuBr、 MnB , Fluoride such as SmF, chloride such as HgCl, FeCl, CrCl, AgBr, CuBr, MnB
2 3 2 3 2 3 2 3
rなどの臭化物、 Pbl、 Cul、 Felなどのヨウ化物、または SiAlONなどの金属酸化 bromides such as r, iodides such as Pbl, Cul, Fel, or metal oxides such as SiAlON
2 2 2 2 2 2
窒化物であってもよく特に限定されない。また、金属や金属化合物に限られず、ポリ イミド、ポリアミド、ポリエステル、ポリアタリレート、エポキシ榭脂、フエノール榭脂、ポリ ビニルアルコールなどポリマー系材料などの有機材料を用いてもょ 、。  It may be a nitride and is not particularly limited. Also, not limited to metals and metal compounds, organic materials such as polymer materials such as polyimide, polyamide, polyester, polyacrylate, epoxy resin, phenol resin, and polyvinyl alcohol may be used.
[0053] ゲート絶縁膜 54の形成方法は、特に限定されるものではなく適宜適切なものを用 いればよいが。例えばスパッタリング法や CVD法等があげられる力 真空蒸着、ィォ ンプレーティング、ゾルゲル法、スピンコート法、スプレー法、 CVD等の一般的な薄 膜作成方法にても可能である。有機膜であればスピンコート法、印刷方式による方法 、蒸着法などで形成してもよい。  [0053] A method for forming the gate insulating film 54 is not particularly limited, and an appropriate one may be used as appropriate. For example, it is possible to use general thin film forming methods such as vacuum deposition, ion plating, sol-gel method, spin coating method, spray method, CVD, etc., which include sputtering method and CVD method. As long as it is an organic film, it may be formed by a spin coating method, a printing method, a vapor deposition method, or the like.
[0054] ソース電極 58および Zまたはドレイン電極 60は、十分な導電性があれば適用でき 、特に限定されることはないが、例えば、 Pt、 Au、 W、 Ru、 Ir、 Al、 Sc、 Ti、 V、 Mn、 Fe、 Co、 Ni、 Zn、 Ga、 Y、 Zr、 Nb、 Mo、 Tc、 Rh、 Pd、 Ag、 Cd、 Ln、 Sn、 Ta、 Re、 Os、 Tl、 Pb、 La、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 L u等の金属単体もしくは積層もしくはその化合物、あるいは、 ΙΤΟ、 ΙΖΟのような金属 酸化物類、ポリア-リン類、ポリチォフェン類、ポリピロール類などの共役性高分子化 合物を含む有機導電材料などを用いることができる。  [0054] The source electrode 58 and the Z or drain electrode 60 are applicable as long as they have sufficient conductivity, and are not particularly limited. For example, Pt, Au, W, Ru, Ir, Al, Sc, Ti , V, Mn, Fe, Co, Ni, Zn, Ga, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Ln, Sn, Ta, Re, Os, Tl, Pb, La, Ce , Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc., or a metal or a compound thereof, or metal oxides such as 、, ΙΖΟ, Organic conductive materials containing conjugated polymer compounds such as polyarines, polythiophenes, and polypyrroles can be used.
[0055] ソース電極 58、ドレイン電極 60は一般的な方法により製造すればよい。スパッタリ ング法や CVD法等があげられるが、特に限定されることはなぐ適宜適切なものを用 いればよい。例えば、真空蒸着、イオンプレーティング、ゾルゲル法、スプレー法、ス ピンコート法、 CVD、リフトオフ、等の一般的な薄膜作成方法にても可能である。 [0056] 有機半導体 56としては、ペンタセンなど半導体特性を示す有機材料であれば良く 、特に限定されないが、例えば、フタロシアニン系誘導体、ナフタロシアニン系誘導 体、ァゾ化合物系誘導体、ペリレン系誘導体、インジゴ系誘導体、キナクリドン系誘導 体、アントラキノン類などの多環キノン系誘導体、シァニン系誘導体、フラーレン類誘 導体、あるいはインドール、カルバゾール、ォキサゾール、インォキサゾール、チアゾ ール、イミダゾール、ピラゾール、ォキサアジアゾール、ピラゾリン、チアチアゾール、ト リアゾールなどの含窒素環式化合物誘導体、ヒドラジン誘導体、トリフエニルァミン誘 導体、トリフエ-ルメタン誘導体、スチルベン類、アントラキノンジフエノキノン等のキノ ン化合物誘導体、アントラセン、ビレン、フエナントレン、コロネンなどの多環芳香族化 合物誘導体などでその構造がポリエチレン鎖、ポリシロキサン鎖、ポリエーテル鎖、ポ リエステル鎖、ポリアミド鎖、ポリイミド鎖等の高分子の主鎖中に用いられた物あるい は側鎖としてペンダント状に結合したもの、もしくはポリパラフエ-レン等の芳香族系 共役性高分子、ポリアセチレン等の脂肪族系共役性高分子、ポリピノールやポリチォ フェン率の複素環式共役性高分子、ポリア-リン類やポリフエ-レンサルファイド等の 含へテロ原子共役性高分子、ポリ(フエ-レンビ-レン)やポリ(ァニーレンビ-レン) やポリ(チェ-レンビ-レン)等の共役性高分子の構成単位が交互に結合した構造を 有する複合型共役系高分子等の炭素系共役高分子が用いられる。また、ポリシラン 類ゃジシラ-レンァリレンポリマー類、(ジシラ-レン)エテュレンポリマー類、(ジシラ 二レン)ェチ-レンポリマー類のようなジシラ-レン炭素系共役性ポリマー構造などの オリゴシラン類と炭素系共役性構造が交互に連鎖した高分子類などが用いられる。 他にもリン系、窒素系等の無機元素からなる高分子鎖でも良ぐさらにフタロシアナー トポリシロキサンのような高分子鎖の芳香族系配位子が配位した高分子類、ペリレン テトラカルボン酸のようなペリレン類を熱処理して縮環させた高分子類、ポリアクリロ- トリルなどのシァノ基を有するポリエチレン誘導体を熱処理して得られるラダー型高分 子類、さらにべ口ブスカイト類に有機化合物がインター力レートした複合材料を用いて ちょい。 [0055] The source electrode 58 and the drain electrode 60 may be manufactured by a general method. A sputtering method, a CVD method, and the like can be mentioned, but an appropriate method may be used as long as it is not particularly limited. For example, general thin film forming methods such as vacuum deposition, ion plating, sol-gel method, spray method, spin coating method, CVD, lift-off, etc. are also possible. [0056] The organic semiconductor 56 is not particularly limited as long as it is an organic material exhibiting semiconductor characteristics such as pentacene. For example, phthalocyanine derivatives, naphthalocyanine derivatives, azo compound derivatives, perylene derivatives, indigo Derivatives, quinacridone derivatives, polycyclic quinone derivatives such as anthraquinones, cyanine derivatives, fullerene derivatives, or indole, carbazole, oxazole, inoxazole, thiazole, imidazole, pyrazole, oxadiazole, pyrazoline Nitrogen-containing cyclic compound derivatives such as thiothiazole and triazole, hydrazine derivatives, triphenylamine derivatives, triphenylmethane derivatives, stilbenes, quinone compound derivatives such as anthraquinone diphenoquinone, anthracene, and bire Polycyclic aromatic compound derivatives such as polyethylene, phenanthrene, coronene, etc., whose structure is used in the main chain of polymers such as polyethylene chain, polysiloxane chain, polyether chain, polyester chain, polyamide chain, polyimide chain, etc. Or an aromatic conjugated polymer such as polyparaphenylene, an aliphatic conjugated polymer such as polyacetylene, or a heterocyclic having a polypinol or polythiophene ratio. Conjugated polymers, heteroatom-conjugated polymers such as polyarines and polyphenylene sulfide, poly (phenylene vinylene), poly (anilenylene vinylene), poly (cellene vinylene), etc. A carbon-based conjugated polymer such as a composite conjugated polymer having a structure in which structural units of the conjugated polymer are alternately bonded is used. Also, oligosilanes such as disila-lene carbon-based conjugated polymer structures such as polysilanes, disila-lenarylene polymers, (disila-lene) etylene polymers, and (disila-diylene) ethylene polymers. Polymers in which carbon and conjugated structures are alternately linked are used. In addition, polymer chains composed of inorganic elements such as phosphorus and nitrogen may be used, and polymers with aromatic ligands of polymer chains such as phthalocyanate polysiloxane, perylene tetracarboxylic acid Organic compounds such as polymers obtained by heat-treating perylenes such as polyacrylamide, ladder-type polymers obtained by heat-treating polyethylene derivatives having a cyano group such as polyacrylo-tolyl, and mouth-bumite. Use an inter-forced composite material.
[0057] 有機半導体 56の形成方法としては、蒸着法等があげられるが、特に限定されること はなぐ適宜適切なものを用いればよい。例えばイオンプレーティング、ゾルゲル法、 スプレー法、スピンコート法等の一般的な薄膜作成方法にても可能である。 [0057] A method for forming the organic semiconductor 56 includes a vapor deposition method and the like, but is not particularly limited and may be appropriately selected. For example, ion plating, sol-gel method, It is also possible to use a general thin film forming method such as a spray method or a spin coating method.
[0058] <層間絶縁膜 >  [0058] <Interlayer insulating film>
(層間絶縁膜 72)  (Interlayer insulation film 72)
層間絶縁膜 72は、電磁波と粒子線とのうち少なくとも一方力も有機トランジスタ 50を 防護する防護層である。なお、電磁波とは、有機 TFTを構成する層に対してダメージ を与える電磁波であり、例えば、赤外光、可視光、紫外光、可視光よりも短波長光な どが挙げられる。また、粒子線とは、有機 TFTを構成する層に対してダメージを与え る粒子線であり、例えば、アルファ線、ベータ線、中性子線などが挙げられる。また、 電磁波と粒子線とのうち少なくとも一方カゝら有機 TFTを防護するとは、電磁波と粒子 線とのうち少なくとも一方を遮蔽、吸収、反射のうち少なくとも 1形態によって有機 TF Tを防護することを含む概念である。  The interlayer insulating film 72 is a protective layer that protects the organic transistor 50 with at least one of electromagnetic waves and particle beams. The electromagnetic wave is an electromagnetic wave that damages the layer constituting the organic TFT, and examples thereof include infrared light, visible light, ultraviolet light, and light having a shorter wavelength than visible light. The particle beam is a particle beam that damages the layers constituting the organic TFT, and examples thereof include alpha rays, beta rays, and neutron rays. In addition, to protect at least one of the electromagnetic wave and the particle beam is to protect the organic TFT by shielding at least one of the electromagnetic wave and the particle beam by at least one form of absorption and reflection. It is a concept that includes.
[0059] 防護層は電磁波と粒子線とのうち少なくとも一方力もの防護作用を有するものであ れば特に限られない。本実施形態のように防護する電磁波が電子線と可視光、可視 光よりも短波長光のうち少なくと一方であると、これらは有機 TFT50にダメージを与え やすいので好適である。さらに好ましくは青色光、紫色光、紫外線、 X線など短波長 になるほど有機 TFT50にダメージを与えやすいのでこれら短波長光から有機 TFT5 0を防護することが好適である。時には赤外光も有機 TFT50にダメージを与える場 合がある。 [0059] The protective layer is not particularly limited as long as it has a protective action of at least one of electromagnetic waves and particle beams. It is preferable that the electromagnetic wave to be protected is at least one of an electron beam, visible light, and light having a shorter wavelength than visible light as in this embodiment because these are easy to damage the organic TFT 50. More preferably, the shorter the wavelength, such as blue light, violet light, ultraviolet light, and X-ray, the more easily the organic TFT 50 is damaged. Therefore, it is preferable to protect the organic TFT 50 from these short wavelength light. Sometimes infrared light can also damage the organic TFT50.
[0060] 防護層としては、有色透明層または半透明以下の透明度を有する不透明層である と、電磁波カゝら有機 TFT50を防護しやすいので好適であるが、これに限られない。 色は、電磁波吸収性が高い濃い色ほど好ましぐ特に好ましくは黒色である。防護層 としては、有色透明層または半透明以下の透明度を有する不透明層にするには、着 色剤を榭脂中に含有させることが好適である。  [0060] The protective layer is preferably a colored transparent layer or an opaque layer having translucency equal to or less than translucent because it is easy to protect the organic TFT 50 such as an electromagnetic wave, but is not limited thereto. The color is particularly preferably black as darker colors having higher electromagnetic wave absorbability are preferred. As the protective layer, it is preferable that a coloring agent is contained in the resin in order to obtain a colored transparent layer or an opaque layer having a translucent or lower transparency.
[0061] 分散媒となる榭脂は、ポリオレフイン系榭脂、アクリル系榭脂、セルロース系榭脂、メ ラミン系榭脂、ポリエステル系榭脂、ポリアミド系榭脂、アクリル系榭脂、スチレン系榭 脂、ポリアミド、エチレン一酢酸ビュル共重合体、塩化ビニルー酢酸ビニル共重合体 、スチレン ブタジエンゴム等の熱可塑性エラストマ一などが挙げられる。  [0061] The resin used as a dispersion medium includes polyolefin resin, acrylic resin, cellulose resin, melamine resin, polyester resin, polyamide resin, acrylic resin, and styrene resin. Examples thereof include thermoplastic elastomers such as fat, polyamide, ethylene monoacetate butyl copolymer, vinyl chloride-vinyl acetate copolymer, and styrene-butadiene rubber.
[0062] 着色剤は限られることなぐ染料、顔料の着色剤一般を用いることができる。有機、 無機を問わず各種のものが使用できる。例えばアルミニウム、真鍮、蒸着粉、パール 顔料 (ホワイト、ゴールド等各色)等の光輝性顔料、ローダミンレーキ B、不溶性ァゾ系 赤色顔料(ナフトール系)(例、ブリリアントカーメル BS、レイクカーメル FB、レイクレツ ド 4B、ファーストレッド FGR、レイクボルド 5B、トルィジンマーロン)、不溶性ァゾ系赤 色顔料 (ァ-ライド系)(例、ピラゾールレッド)、溶性ァゾ系赤色顔料 (例、レイクォレ ンジ、ブリリアントカーメル 3B、ブリリアントカーメル 6B、ブリリアントスカーレット G、レイ クレッド C、レイクレッド D、レイクレッド R、レイクボルド 10B、ボンマーロン L、ボンマー ロン M)などの赤色顔料、ハイザイェロー A、不活性ァゾ系黄色顔料 (ァ -リド系)(例 、ファーストイェロー G、ファーストイェロー 10G、ジァゾオレンジ)、染料レーキ系黄色 顔料 (例、イェローレイク)などの顔料などの黄色顔料、フタロシアニン系青色顔料( 例、フタロシアニンブルー、ファーストスカイブルー)、染色レーキ系青色顔料(例、ノ ィォレットレイク、ブルーレイク)、その他の顔料(例、アルカリブルー)などの青色顔料 、カーボンブラック、アセチレンブラック、ランプブラック、ァニリンブラックなどの黒色 顔料、ルチル型酸ィ匕チタンとアナターゼ型酸ィ匕チタンの 、ずれでもよ 、酸ィ匕チタン、 シリカ、アルミナ、クレイ、タルク、炭酸カルシウム、硫酸バリウム等の無機充填剤、酸 化亜鉛等の白色顔料などを挙げることができる。 [0062] Colorants such as dyes and pigments in general can be used without being limited. Organic, Various materials can be used regardless of inorganic. For example, bright pigments such as aluminum, brass, evaporated powder, pearl pigment (white, gold, etc.), rhodamine lake B, insoluble azo red pigment (naphthol) (eg, Brilliant Carmel BS, Lake Carmel FB, Lake Credo) 4B, Fast Red FGR, Lake Bold 5B, Toluzimmer Marlon), Insoluble azo red pigment (alide) (eg, pyrazole red), Soluble azo red pigment (eg, Rei Qurange, Brilliant Carmel 3B, Red pigments such as Brilliant Carmel 6B, Brilliant Scarlet G, Lake Red C, Lake Red D, Lake Red R, Lake Bold 10B, Bonmarlon L, Bonmarlon M), Heise Yellow A, inert azo yellow pigment (a-lid type) (E.g., First Yellow G, First Yellow 10G, Gazo Orange) Yellow pigments such as pigment lake yellow pigments (eg yellow lake), phthalocyanine blue pigments (eg phthalocyanine blue, fast sky blue), dye lake blue pigments (eg nano lake, blue lake), Blue pigments such as other pigments (for example, alkali blue), black pigments such as carbon black, acetylene black, lamp black, and aniline black, rutile type acid titanium and anatase type acid titanium may be misaligned. Examples thereof include inorganic fillers such as titanium oxide, silica, alumina, clay, talc, calcium carbonate and barium sulfate, and white pigments such as zinc oxide.
[0063] これらの着色剤は、要求される色調に応じて、カーボンブラック、有機系着色剤、無 機系着色剤など力も適当なものを選択して用いることができ、単独、あるいは二種以 上を混合して所望の色相に調整して使用することもできる。  [0063] These colorants can be selected from carbon black, organic colorants, inorganic colorants, and the like, depending on the required color tone, and can be used alone or in combination of two or more. It can also be used by adjusting the above to the desired hue.
[0064] 防護層は、紫外線吸収剤などの光吸収剤や粒子線吸収剤を含む層であれば、無 色透明であってもよい。上記着色と紫外線吸収剤とを併用すればさらに効果がある。 例えば紫外線吸収剤を含有させると好適である。紫外線吸収剤は桂皮酸系(Cinna mic acid)、パラアミノ安息香酸系(Para— aminobenzoic acid: PABA)、カンフ ノレ糸 (Camphor derivatives)、ベンンノエノン系 (Benzophenone 、ベンンィノレメ タン系(Bunzoylmeyhane)などの紫外線吸収剤を用いることができる。他にも酸ィ匕 チタン、酸化亜鉛、酸化鉄、酸ィ匕セリウム、酸ィ匕ジルコニウム、マイ力、カオリン、セリ サイト、ベンゾトリアゾ一ル系及びシァノアクリレ一ト系などが挙げられる。  [0064] The protective layer may be colorless and transparent as long as it is a layer containing a light absorber such as an ultraviolet absorber or a particle beam absorber. If the coloring and the ultraviolet absorber are used in combination, it is more effective. For example, it is preferable to contain an ultraviolet absorber. Ultraviolet absorbers such as cinnamic acid, para-aminobenzoic acid (PABA), camphor derivatives, Bennophenone, Bunzoylmeyhane, etc. Other examples include acid titanium, zinc oxide, iron oxide, acid cerium, acid zirconium, my strength, kaolin, cerite, benzotriazol and cyanoacrylate. It is done.
[0065] 上記べンゾフエノン系のものとしては、例えば、 2, 3' —ジヒドロキシー 4, 4' ージ メトキシベンゾフエノン、 2, 2' ージヒドロキシー4ーメトキシベンゾフエノン及び 2, 2' , 4, 4' ーテトラヒドロキシベンゾフエノンを挙げることができる。 [0065] Examples of the above-mentioned Benzophenone type include 2,3'-dihydroxy-4,4 ' Mention may be made of methoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone and 2,2 ', 4,4'-tetrahydroxybenzophenone.
[0066] また上記べンゾトリアゾール系のものとしては、例えば、 2—(2' —ヒドロキシ 5' メチルフエ-ル)ベンゾトリアゾール、 2—(2' —ヒドロキシ 5' メチルフエ-ル) —5, 6 ジクロルべンゾトリァゾ一ル)、 2— (2' —ヒドロキシ一 5' —t—ブチルフエ -ル)、ベンゾトリァゾ一ル、 2— (2' —ヒドロキシ一 3' —メチルー 5' — t—ブチル フエ-ル)ベンゾトリァゾ一ル、 2— (2' —ヒドロキシ一 3' , 5' —ジ一 t—ブチルフエ -ル)—5 クロル—ベンゾトリアゾ―ル及び 2— (2' —ヒドロキシ— 5' —フエ-ルフ ェ-ル)一5 クロルべンゾトリァゾ一ル、 2— (2' —ヒドロキシ一 3' , 5' —ジ一 t— ブチルフエ-ル)一 5 クロロロべンゾトリァゾ一ル、 2— (2' —ヒドロキシ一 3' — t— ブチル 5' —メチルフエ-ル)一 5 クロ口べンゾトリァゾ一ル、 2— (2' —ヒドロキ シ一 3' , 5' —ジ一 t—ァミルフエ-ル)ベンゾトリァゾ一ル、 2— (2' —ヒドロキシ一 3' , 5' —ジ— t—ブチルフエ-ル)ベンゾトリァゾ—ル、 2— (2' —ヒドロキシ— 5' —t—ォクチルフエ-ル)ベンゾトリァゾ一ル、 2— { 2' —ヒドロキシ一 3' —(3グ , 4 " , 5,, , 6,, —テトラヒドロフタルイミドメチル) 5, —メチルフエ-ル}ベンゾトリァゾ —ル、 2— { 2 ヒドロキシ— 3, 5 ビス(α , ' —ジメチルベンジル)フエ-ル} 2 —ヒドロキシベンゾトリァゾ一ル、 2 - (2—ヒドロキシ一 4—ォクチルォキシフエニル) 2H—ベンゾトリアゾール等を挙げることができる。上記シァノアクリレ一ト系のものとし ては、例えば、ェチルー 2 シァノー 3, 3 ジフエ-ルアタリレート、 2 ェチルへキ シル 2 シァノ 3, 3 ジフエ-ルアタリレ ト等を挙げることができる。  [0066] Examples of the above benzotriazole-based compounds include 2- (2'-hydroxy-5'methylphenol) benzotriazole, 2- (2'-hydroxy-5'methylphenol)-5, 6 Dichlorbenzotriazole), 2— (2 ′ —Hydroxyl 5 ′ —t—Butylphenol), Benzotriazole, 2— (2 ′ —Hydroxyl 3 ′ —Methyl-5 ′ — t—Butylphenol ) Benzotriazole, 2— (2 ′ —hydroxyl 3 ′, 5 ′ —di-t-butylphenol) —5 chloro-benzotriazole and 2— (2 ′ —hydroxy—5 ′ —phenol 1) Chlorbenzotriazol, 2— (2 '— Hydroxy 1 3', 5 '— Di-t-butylphenol) 1 5 Chlorobenzotriazole, 2 — (2' — Hydroxy 1 3 '— T — Butyl 5' — Methyl phenol) 1 5 Black Benzotriazole, 2 — (2 '— Hydro 3 ′, 5 ′ —di-tert-amylphenol) benzotriazole, 2— (2 ′ —hydroxyl 3 ′, 5 ′ —di-t-butylphenol) benzotriazole, 2— (2 '—Hydroxy— 5' —t—Octylphenol) benzotriazole, 2— {2 '—Hydroxy 1 3 ′ — (3 g, 4 ", 5 ,,, 6 ,, —tetrahydrophthalimidomethyl) 5, — Methylphenol} benzotriazole, 2— {2 Hydroxy-3,5 bis (α, '—dimethylbenzyl) phenol} 2 —Hydroxybenzotriazole, 2- (2-hydroxy-1-octyl) Oxyphenyl) 2H-benzotriazole, etc. Examples of the above-mentioned cyanoacrylates include, for example, ethyl-2-cyanol 3,3 diphenyl acrylate, 2 ethylhexyl 2ciano 3, 3 Diphenyl atrelate.
[0067] 防護層は、金属などの金属光沢、鏡面性を有し反射性を有する反射性層であると 好適であるがこれに限られない。また、金属以外であってもアルミニウムペーストゃァ ルミ-ゥム粉等の金属顔料を添加した、シルバーまたはゴールド等のメタリック調の印 刷インキにより金属光沢を付与するなどすればよい。  [0067] The protective layer is preferably a reflective layer having a metallic luster such as metal, a specularity and a reflection property, but is not limited thereto. Moreover, even if it is not a metal, a metallic luster may be imparted with a metallic printing ink such as silver or gold to which a metal pigment such as aluminum paste powder is added.
[0068] 防護層は、例えば無機材料では、 LiOx、 LiNx、 NaOx、 KOx、 RbOx、 CsOx、 B eOx、 MgOx、 MgNx、 CaOx、 CaNx、 SrOx、 BaOx、 ScOx、 YOx、 YNx、 LaOx 、 LaNx、 CeOx、 PrOx、 NdOx、 SmOx、 EuOx、 GdOx、 TbOx、 DyOx、 HoOx、 ErOx、 TmOx、 YbOx、 LuOx、 TiOx、 TiNx、 ZrOx、 ZrNx、 HfOx、 HfNx、 ThO x、 VOx、 VNx、 NbOx、 TaOx、 TaNx、 CrOx、 CrNx、 MoOx、 MoNx、 WOx、 W Nx、 MnOx、 ReOx、 FeOx、 FeNx、 RuOx、 OsOx、 CoOx、 RhOx、 IrOx、 NiOx 、 PdOx、 PtOx、 CuOx、 CuNx、 AgOx、 AuOx、 ZnOx、 CdOx、 HgOx、 BOx、 B Nx、 A10x、 AlNx、 GaOx、 GaNx、 InOx、 TiOx、 TiNx、 SiNx、 GeOx、 SnOx、 P bOx、 POx、 PNx、 AsOx、 SbOx、 SeOx、 TeOxなどの金属酸化物や、 LiAlO、 L [0068] For example, for inorganic materials, the protective layer is LiOx, LiNx, NaOx, KOx, RbOx, CsOx, BeOx, MgOx, MgNx, CaOx, CaNx, SrOx, BaOx, ScOx, YOx, YNx, LaOx, LaNx, CeOx , PrOx, NdOx, SmOx, EuOx, GdOx, TbOx, DyOx, HoOx, ErOx, TmOx, YbOx, LuOx, TiOx, TiNx, ZrOx, ZrNx, HfOx, HfNx, ThO x, VOx, VNx, NbOx, TaOx, TaNx, CrOx, CrNx, MoOx, MoNx, WOx, W Nx, MnOx, ReOx, FeOx, FeNx, RuOx, OsOx, CoOx, RhOx, IrOx, NiOx, PdOx, Pt , CuNx, AgOx, AuOx, ZnOx, CdOx, HgOx, BOx, B Nx, A10x, AlNx, GaOx, GaNx, InOx, TiOx, TiNx, SiNx, GeOx, SnOx, P bOx, POx, PNx, AsOx, Sbx , Metal oxides such as TeOx, LiAlO, L
2 i SiO、 Li TiO、 Na Al O 、 NaFeO、 Na SiO、 K SiO、 K TiO、 K WO、 2 i SiO, Li TiO, Na Al O, NaFeO, Na SiO, K SiO, K TiO, K WO,
2 3 2 3 2 22 34 2 4 4 2 3 2 3 2 42 3 2 3 2 22 34 2 4 4 2 3 2 3 2 4
Rb CrO、 Cs CrO、 MgAl O、 MgFe O、 MgTiO、 CaTiO、 CaWO、 CaZrRb CrO, Cs CrO, MgAl O, MgFe O, MgTiO, CaTiO, CaWO, CaZr
2 4 2 4 2 4 2 4 3 3 4 2 4 2 4 2 4 2 4 3 3 4
O、 SrFe O 、 SrTiO、 SrZrO、 BaAl O、 BaFe O 、 BaTiO、 Y A O 、 Y O, SrFeO, SrTiO, SrZrO, BaAlO, BaFeO, BaTiO, YAO, Y
3 12 19 3 3 2 4 12 19 3 3 15 123 12 19 3 3 2 4 12 19 3 3 15 12
Fe O 、 LaFeO , La Fe O 、: La Ti O、 CeSnO、 CeTiO、 Sm Fe O 、 EuFe O, LaFeO, La Fe O, La Ti O, CeSnO, CeTiO, Sm Fe O, Eu
3 5 12 3 3 5 12 2 2 7 4 4 3 5 123 5 12 3 3 5 12 2 2 7 4 4 3 5 12
FeO、 Eu Fe O 、 GdFeO、 Gd Fe O 、 DyFeO、 Dy Fe O 、 HoFeO、 HoFeO, Eu Fe O, GdFeO, Gd Fe O, DyFeO, Dy Fe O, HoFeO, Ho
3 3 5 12 3 3 5 12 3 3 5 12 3 33 3 5 12 3 3 5 12 3 3 5 12 3 3
Fe O 、 ErFeO、 Er Fe O 、 Tm Fe O 、 LuFeO , Lu Fe O 、 NiTiO、 AlFe O, ErFeO, Er Fe O, Tm Fe O, LuFeO, Lu Fe O, NiTiO, Al
5 12 3 3 5 12 3 5 12 3 3 5 12 3 25 12 3 3 5 12 3 5 12 3 3 5 12 3 2
TiO、 FeTiO、 BaZrO、 LiZrO、 MgZrO、 HfTiO、 NH VO、 AgVO、 LiVOTiO, FeTiO, BaZrO, LiZrO, MgZrO, HfTiO, NH VO, AgVO, LiVO
3 3 3 3 3 4 4 3 33 3 3 3 3 4 4 3 3
、 BaNb O、 NaNbO、 SrNb O、 KTaO、 NaTaO、 SrTa O、 CuCr O、 Ag, BaNb O, NaNbO, SrNb O, KTaO, NaTaO, SrTa O, CuCr O, Ag
3 2 6 3 2 6 3 3 2 6 2 4 23 2 6 3 2 6 3 3 2 6 2 4 2
CrO、 BaCrO、 K MoO、 Na MoO、 NiMoO、 BaWO、 Na WO、 SrWO、CrO, BaCrO, K MoO, Na MoO, NiMoO, BaWO, Na WO, SrWO,
4 4 2 4 2 4 4 4 2 4 44 4 2 4 2 4 4 4 2 4 4
MnCr O、 MnFe O、 MnTiO、 MnWO、 CoFe O、 ZnFe O、 FeWO、 CoMMnCr O, MnFe O, MnTiO, MnWO, CoFe O, ZnFe O, FeWO, CoM
2 4 2 4 3 4 2 4 2 4 4 oO、 CuTiO、 CuWO、 Ag MoO、 Ag WO、 ZnAl O、 ZnMoO、 ZnWO、 C2 4 2 4 3 4 2 4 2 4 4 oO, CuTiO, CuWO, Ag MoO, Ag WO, ZnAl O, ZnMoO, ZnWO, C
4 3 4 2 4 2 4 2 4 4 4 dSnO、 CdTiO、 CdMoO、 CdWO、 NaAlO、 MgAl O、 SrAl O、 Gd Ga O4 3 4 2 4 2 4 2 4 4 4 dSnO, CdTiO, CdMoO, CdWO, NaAlO, MgAl O, SrAl O, Gd Ga O
3 3 4 4 2 2 4 2 4 3 53 3 4 4 2 2 4 2 4 3 5
、 InFeO、 Mgln O、 Al TiO、 FeTiO、 MgTiO、 Na SiO、 CaSiO、 ZrSiO, InFeO, Mgln O, Al TiO, FeTiO, MgTiO, Na SiO, CaSiO, ZrSiO
12 3 2 4 2 5 3 3 2 3 312 3 2 4 2 5 3 3 2 3 3
、 K GeO、 Li GeO、 Na GeO、: Bi Sn O、 MgSnO、 SrSnO、 PbSiO、 Pb, K GeO, Li GeO, Na GeO ,: Bi Sn O, MgSnO, SrSnO, PbSiO, Pb
4 2 3 2 3 2 3 2 3 9 3 3 34 2 3 2 3 2 3 2 3 9 3 3 3
MoO、 PbTiO、 SnO— Sb O、 CuSeO、 Na SeO、 ZnSeO、 K TeO、 K TeMoO, PbTiO, SnO— SbO, CuSeO, Na SeO, ZnSeO, K TeO, K Te
4 3 2 2 3 4 2 3 3 2 3 24 3 2 2 3 4 2 3 3 2 3 2
O、 Na TeO、 Na TeOなどの金属複合酸化物でも、 FeS、 Al S、 MgS、 ZnSなEven metal complex oxides such as O, Na TeO, Na TeO, FeS, Al S, MgS, ZnS
4 2 3 2 4 2 3 4 2 3 2 4 2 3
どの硫化物、 LiF、 MgF、 SmFなどのフッ化物、 HgCl、 FeCl、 CrClなどの塩ィ匕 Which sulfide, fluoride such as LiF, MgF, SmF, salt such as HgCl, FeCl, CrCl
2 3 2 3  2 3 2 3
物、 AgBr、 CuBr、 MnBrなどの臭化物、 Pbl、 Cul、 Felなどのヨウ化物、または S , Bromides such as AgBr, CuBr, MnBr, iodides such as Pbl, Cul, Fel, or S
2 2 2  2 2 2
iAIONなどの金属酸ィ匕窒化物に着色材料を混入した材料でもでも有効である。また 、有機材料ではポリイミド、ポリアミド、ポリエステル、ポリアタリレート、エポキシ榭脂、 フエノール榭脂、ポリビュルアルコールなどを着色したり紫外線吸収材を混入したりし た材料であってもよい。 Even materials such as iAION mixed with colored materials in metal oxynitrides are also effective. In addition, the organic material may be a material obtained by coloring polyimide, polyamide, polyester, polyacrylate, epoxy resin, phenol resin, polybulal alcohol, or the like or mixing an ultraviolet absorber.
防護層を形成する方法は、できるだけ有機 TFT50にダメージを与えな ヽように粒 子線、電磁波、特に可視光線よりも短波長であるほどの光線を出さない方法で製造 することが好ましい。例えば、ゾルゲル法、スプレー、スピンコート法等の一般的な薄 膜作成方法による方法で作成可能である。 The method of forming the protective layer is to avoid damaging the organic TFT 50 as much as possible. It is preferable to manufacture by a method that does not emit a light beam having a wavelength shorter than that of a strand, electromagnetic wave, particularly visible light. For example, it can be formed by a method using a general thin film forming method such as a sol-gel method, a spray, or a spin coating method.
[0070] (層間絶縁膜 74)  [0070] (Interlayer insulating film 74)
層間絶縁膜 74は、有機 EL素子 100の右端部の層間絶縁膜 74を同時に形成して も、個々に形成しても良い。それぞれの層間絶縁膜を形成する材料は特に限定され ず、その種類も有機 TFT上の層間絶縁膜 72と、有機 EL素子右端部の層間絶縁膜 7 4とで異なっていてもよい。また、適宜層層間絶縁膜 74を省略することも可能である。  The interlayer insulating film 74 may be formed at the same time as the interlayer insulating film 74 at the right end of the organic EL element 100 or may be formed individually. The material for forming each interlayer insulating film is not particularly limited, and the type thereof may be different between the interlayer insulating film 72 on the organic TFT and the interlayer insulating film 74 at the right end of the organic EL element. Further, the interlayer insulating film 74 can be omitted as appropriate.
[0071] 層間絶縁膜 74を形成する材料としては、特に限定されないが、無機材料、有機材 料のいずれの絶縁物も使用できる。例えば LiOx、 LiNx、 NaOx、 KOx、 RbOx、 Cs Ox、 BeOx、 MgOx、 MgNx、 CaOx、 CaNx、 SrOx、 BaOx、 ScOx、 YOx、 YNx、 LaOx、 LaNx、 CeOx、 PrOx、 NdOx、 SmOx、 EuOx、 GdOx、 TbOx、 DyOx、 H oOx、 ErOx、 TmOx、 YbOx、 LuOx、 TiOx、 TiNx、 ZrOx、 ZrNx, HfOx、 HfNx 、 ThOx、 VOx、 VNx、 NbOx、 TaOx, TaNx、 CrOx、 CrNx、 MoOx、 MoNx、 W Ox、 WNx、 MnOx、 ReOx、 FeOx、 FeNx、 RuOx、 OsOx、 CoOx、 RhOx、 IrOx 、 NiOx、 PdOx、 PtOx、 CuOx、 CuNx、 AgOx、 AuOx、 ZnOx、 CdOx、 HgOx、 BOx、 BNx、 A10x、 AlNx、 GaOx、 GaNx、 InOx、 TiOx、 TiNx、 SiNx、 GeOx、 SnOx、 PbOx、 POx、 PNx、 AsOx、 SbOx、 SeOx、 TeOxなどの金属酸化物でも、 LiAlO、 Li SiO、 Li TiO、 Na Al O 、 NaFeO、 Na SiO、 K SiO、 K TiO [0071] The material for forming the interlayer insulating film 74 is not particularly limited, but any insulating material such as an inorganic material or an organic material can be used. For example, LiOx, LiNx, NaOx, KOx, RbOx, Cs Ox, BeOx, MgOx, MgNx, CaOx, CaNx, SrOx, BaOx, ScOx, YOx, YNx, LaOx, LaNx, CeOx, PrOx, NdOx, SmOx, G TbOx, DyOx, HoOx, ErOx, TmOx, YbOx, LuOx, TiOx, TiNx, ZrOx, ZrNx, HfOx, HfNx, ThOx, VOx, VNx, NbOx, TaOx, TaNx, Ox, CrNx, MoO, WNx, MnOx, ReOx, FeOx, FeNx, RuOx, OsOx, CoOx, RhOx, IrOx, NiOx, PdOx, PtOx, CuOx, CuNx, AgOx, AuOx, ZnOx, CdOx, HgOx, BOx, BNx, Ax Metal oxides such as GaNx, InOx, TiOx, TiNx, SiNx, GeOx, SnOx, PbOx, POx, PNx, AsOx, SbOx, SeOx, TeOx, LiAlO, Li SiO, Li TiO, Na Al O, NaFeO, Na SiO , K SiO, K TiO
2 2 3 2 3 2 22 34 2 4 4 2 3 2 32 2 3 2 3 2 22 34 2 4 4 2 3 2 3
、 K WO、 Rb CrO、 Cs CrO、 MgAl O、 MgFe O、 MgTiO、 CaTiO、 CaW, K WO, Rb CrO, Cs CrO, MgAl O, MgFe O, MgTiO, CaTiO, CaW
2 4 2 4 2 4 2 4 2 4 3 32 4 2 4 2 4 2 4 2 4 3 3
O、 CaZrO、 SrFe O 、 SrTiO、 SrZrO、 BaAl O、 BaFe O 、 BaTiO、 YO, CaZrO, SrFe O, SrTiO, SrZrO, BaAl O, BaFe O, BaTiO, Y
4 3 12 19 3 3 2 4 12 19 3 34 3 12 19 3 3 2 4 12 19 3 3
A O 、 Y Fe O 、 LaFeO , La Fe O 、: La Ti O、 CeSnO、 CeTiO、 Sm FeA O, Y Fe O, LaFeO, La Fe O, La Ti O, CeSnO, CeTiO, Sm Fe
15 12 3 5 12 3 3 5 12 2 2 7 4 4 315 12 3 5 12 3 3 5 12 2 2 7 4 4 3
O 、 EuFeO、 Eu Fe O 、 GdFeO、 Gd Fe O 、 DyFeO、 Dy Fe O 、 HoFO, EuFeO, EuFeO, GdFeO, GdFeO, DyFeO, DyFeO, HoF
5 12 3 3 5 12 3 3 5 12 3 3 5 12 eO、 Ho Fe O 、 ErFeO、 Er Fe O 、 Tm Fe O 、 LuFeO , Lu Fe O 、 Ni5 12 3 3 5 12 3 3 5 12 3 3 5 12 eO, Ho Fe O, ErFeO, Er Fe O, Tm Fe O, LuFeO, Lu Fe O, Ni
3 3 5 12 3 3 5 12 3 5 12 3 3 5 123 3 5 12 3 3 5 12 3 5 12 3 3 5 12
TiO、 Al TiO、 FeTiO、 BaZrO、 LiZrO、 MgZrO、 HfTiO、 NH VO、 AgVTiO, Al TiO, FeTiO, BaZrO, LiZrO, MgZrO, HfTiO, NH VO, AgV
3 2 3 3 3 3 3 4 4 33 2 3 3 3 3 3 4 4 3
O、 LiVO、 BaNb O、 NaNbO、 SrNb O、 KTaO、 NaTaO、 SrTa O、 CuCO, LiVO, BaNb O, NaNbO, SrNb O, KTaO, NaTaO, SrTa O, CuC
3 3 2 6 3 2 6 3 3 2 6 r O、 Ag CrO、 BaCrO、 K MoO、 Na MoO、 NiMoO、 BaWO、 Na WO、3 3 2 6 3 2 6 3 3 2 6 r O, Ag CrO, BaCrO, K MoO, Na MoO, NiMoO, BaWO, Na WO,
2 4 2 4 4 2 4 2 4 4 4 2 42 4 2 4 4 2 4 2 4 4 4 2 4
SrWO、 MnCr O、 MnFe O、 MnTiO、 MnWO、 CoFe O、 ZnFe O、 FeWSrWO, MnCr O, MnFe O, MnTiO, MnWO, CoFe O, ZnFe O, FeW
4 2 4 2 4 3 4 2 4 2 4 O、 CoMoO、 CuTiO、 CuWO、 Ag MoO、 Ag WO、 ZnAl O、 ZnMoO、 Z4 2 4 2 4 3 4 2 4 2 4 O, CoMoO, CuTiO, CuWO, Ag MoO, Ag WO, ZnAl O, ZnMoO, Z
4 4 3 4 2 4 2 4 2 4 4 nWO、 CdSnO、 CdTiO、 CdMoO、 CdWO、 NaAlO、 MgAl O、 SrAl O、4 4 3 4 2 4 2 4 2 4 4 nWO, CdSnO, CdTiO, CdMoO, CdWO, NaAlO, MgAl O, SrAl O,
4 3 3 4 4 2 2 4 2 44 3 3 4 4 2 2 4 2 4
Gd Ga O 、 InFeO、 Mgln O、 Al TiO、 FeTiO、 MgTiO、 Na SiO、 CaSiGd Ga O, InFeO, Mgln O, Al TiO, FeTiO, MgTiO, Na SiO, CaSi
3 5 12 3 2 4 2 5 3 3 2 33 5 12 3 2 4 2 5 3 3 2 3
O、 ZrSiO、 K GeO、 Li GeO、 Na GeO、: Bi Sn O、 MgSnO、 SrSnO、 PbO, ZrSiO, K GeO, Li GeO, Na GeO ,: Bi Sn O, MgSnO, SrSnO, Pb
3 4 2 3 2 3 2 3 2 3 9 3 33 4 2 3 2 3 2 3 2 3 9 3 3
SiO、 PbMoO、 PbTiO、 SnO— Sb O、 CuSeO、 Na SeO、 ZnSeO、 K TeSiO, PbMoO, PbTiO, SnO—SbO, CuSeO, Na SeO, ZnSeO, K Te
3 4 3 2 2 3 4 2 3 3 23 4 3 2 2 3 4 2 3 3 2
O、 K TeO、 Na TeO、 Na TeOなどの金属複合酸化物でも、 FeSゝ Al S、 MgMetal complex oxides such as O, K TeO, Na TeO, Na TeO, FeS ゝ Al S, Mg
3 2 4 2 3 2 4 2 33 2 4 2 3 2 4 2 3
S、 ZnSなどの硫化物、 LiF、 MgF、 SmFなどのフッ化物、 HgCl、 FeCl、 CrClな Sulfides such as S and ZnS, fluorides such as LiF, MgF, and SmF, HgCl, FeCl, CrCl
2 3 2 3 どの塩化物、 AgBr、 CuBr、 MnBrなどの臭化物、 Pbl、 Cul、 Felなどのヨウ化物  2 3 2 3 Which chloride, bromide such as AgBr, CuBr, MnBr, iodide such as Pbl, Cul, Fel
2 2 2  2 2 2
、または SiAlONなどの金属酸ィ匕窒化物でも有効である。また、ポリイミド、ポリアミド、 ポリエステル、ポリアタリレート、エポキシ榭脂、フエノール榭脂、ポリビュルアルコール などポリマー系材料であってもよ!/、。  It is also effective with metal oxynitrides such as SiAlON. Polymer materials such as polyimide, polyamide, polyester, polyacrylate, epoxy resin, phenol resin, and polybulal alcohol may also be used! /.
[0072] <保護膜 >  [0072] <Protective film>
保護膜 20は、多層構造であってもよく単層構造であってもよぐ無機膜であってもよ ぐ有機膜であってもよいが無機膜が含まれていると水分や酸素などによる浸食から のバリア性が向上するので好適である。  The protective film 20 may have a multilayer structure, a single-layer structure, an inorganic film, or an organic film. However, if an inorganic film is included, the protective film 20 is caused by moisture, oxygen, or the like. This is preferable because the barrier property against erosion is improved.
[0073] 無機膜としては、例えば、窒化膜、酸ィ匕膜又は炭素膜又はシリコン膜等が採用可能 であり、より具体的には、シリコン窒化膜、シリコン酸ィ匕膜、シリコン酸ィ匕窒化膜、又は ダイヤモンド状カーボン (DLC)膜、アモルファスカーボン膜などが挙げられる。すな わち、 SiN、 A1N、 GaN等の窒化物、 SiO、 Al O、 Ta O、 ZnO、 GeO等の酸化物  [0073] As the inorganic film, for example, a nitride film, an oxide film, a carbon film, a silicon film, or the like can be employed. More specifically, a silicon nitride film, a silicon oxide film, a silicon oxide film, or the like can be used. Examples include nitride films, diamond-like carbon (DLC) films, and amorphous carbon films. That is, nitrides such as SiN, A1N, and GaN, oxides such as SiO, Al 2 O, Ta 2 O, ZnO, and GeO
2 3 2 5  2 3 2 5
、 SiON等の酸ィ匕窒化物、 SiCN等の炭化窒化物、金属フッ素化合物、金属膜、等 があげられる。  Oxynitrides such as SiON, carbonitrides such as SiCN, metal fluorine compounds, metal films, and the like.
[0074] 有機膜としては、例えば、フラン膜、ピロール膜、チオフ ン膜或いは、ポリパラキシ レン膜エポキシ榭脂、アクリル榭脂、ポリパラキシレン、フッ素系高分子 (パーフルォロ ォレフィン、パーフノレオ口エーテル、テトラフノレォロエチレン、クロロトリフノレォロェチレ ン、ジクロロジフルォロエチレン等)、金属アルコキシド(CH OM、 C H OM等)、ポ  [0074] Examples of the organic film include a furan film, a pyrrole film, a thiophene film, or a polyparaxylene film, an epoxy resin, an acrylic resin, a polyparaxylene, a fluorine-based polymer (perfluoroolefin, perfluoronole ether, tetrafanol). Fluoroethylene, chlorotrifluoroethylene, dichlorodifluoroethylene, etc.), metal alkoxides (CHOM, CHOM, etc.),
3 2 5  3 2 5
リイミド前駆体、ペリレン系化合物などの重合膜等があげられる。  Polymerized films such as lyimide precursors and perylene compounds can be used.
[0075] 保護膜 20は、 2種類以上の物質からなる積層構造、無機保護膜、シランカップリン グ層、榭脂封止膜からなる積層構造、無機材料カゝらなるバリア層、有機材料カゝらなる カバー層力もなる積層構造、 Si— CXHY等の金属または半導体と有機物との化合 物、無機物カゝらなる積層構造、無機膜と有機膜を交互に積層した構造、 Si層上に Si Oまたは Si Nを積層した構造等の積層構造としたものなどが挙げられる。 [0075] The protective film 20 has a laminated structure composed of two or more kinds of substances, an inorganic protective film, a silane coupling layer, a laminated structure composed of a resin sealing film, a barrier layer composed of an inorganic material cover, an organic material cover. Be angry Laminated structure with cover layer force, Si-CXHY or other metal or compound of semiconductor and organic material, laminated structure of inorganic material, structure of alternately laminated inorganic film and organic film, Si O or Si on Si layer Examples thereof include a laminated structure such as a structure in which N is laminated.
2 3 4  2 3 4
[0076] ノリア膜 12、保護膜 20は、その構成される有機膜が無機膜に形成されたピンホー ルゃ表面凹凸を埋め、表面を平坦化させる。また、無機膜の膜応力を緩和させたり する役割を担う場合もある。  The nolia film 12 and the protective film 20 fill the surface irregularities of the pinholes in which the organic film is formed on the inorganic film and flatten the surface. It may also play a role in relieving the film stress of the inorganic film.
[0077] 保護膜 20の製造方法は、スパッタリング法や CVD法等があげられるが、特に限定 されることはなく、適宜適切なものを用いればよい。例えば、真空蒸着、イオンプレー ティング、ゾルゲル法、スプレー法、スピンコート法、 CVD等の一般的な薄膜作成方 法にても可能である。  [0077] A method for manufacturing the protective film 20 includes a sputtering method, a CVD method, and the like, but is not particularly limited, and an appropriate one may be used as appropriate. For example, general thin film forming methods such as vacuum deposition, ion plating, sol-gel method, spray method, spin coating method, and CVD are also possible.
[0078] 絶縁膜 72、保護膜 20はそれぞれ間に他の層が形成されることを妨げない。なお、 層の上および層の表面上に形成されるとは、層の上層で有ればよぐ表面に直接的 、または他の層を介して間接的に形成されること両方を含む概念である。  The insulating film 72 and the protective film 20 do not prevent other layers from being formed therebetween. The term “formed on the layer and on the surface of the layer” is a concept including both forming directly on the surface as long as it is the upper layer of the layer or indirectly through another layer. is there.
[0079] <有機 EL表示装置の発光態様 >  [0079] <Light emitting mode of organic EL display device>
上述の有機 EL表示装置 P1の発光態様について説明する。  The light emission mode of the organic EL display device P1 will be described.
[0080] ゲート電極 52とソース電極 58の間に電圧が印加されると、有機半導体 56とゲート 絶縁膜 54との界面 (数 nm程度の領域)に正孔が生成する。正孔が生成後、ソース電 極 58とドレイン電極 60間に電圧をかけると正孔を輸送させることができる。一方で、 ゲート電極 52とソース電極 58の間に電圧が印加されないと正孔は輸送されない。こ のように非導通状態 (スィッチがオフの状態)と導通状態 (スィッチがオン状態)を利用 して、スイッチングを行うことができる。  When a voltage is applied between the gate electrode 52 and the source electrode 58, holes are generated at the interface between the organic semiconductor 56 and the gate insulating film 54 (region of about several nm). When holes are generated and a voltage is applied between the source electrode 58 and the drain electrode 60, the holes can be transported. On the other hand, holes are not transported unless a voltage is applied between the gate electrode 52 and the source electrode 58. In this way, switching can be performed using the non-conduction state (the switch is off) and the conduction state (the switch is on).
[0081] ソース電極 58からホール(正孔)がゲート絶縁膜 54を通じて、ドレイン電極 60へ供 給される。ドレイン電極 60を通じて正孔は、有機 EL素子 100の陽極 14へ伝えられる  Holes (holes) are supplied from the source electrode 58 to the drain electrode 60 through the gate insulating film 54. Holes are transferred to the anode 14 of the organic EL element 100 through the drain electrode 60.
[0082] 有機 EL素子 100において、陽極 14から正孔が有機固体層 16中の正孔注入層 16 2へと輸送される。輸送された正孔は、正孔輸送層 164へと注入される。正孔輸送層 164へ注入された正孔は、発光層 166へと輸送される。 In the organic EL element 100, holes are transported from the anode 14 to the hole injection layer 162 in the organic solid layer 16. The transported holes are injected into the hole transport layer 164. The holes injected into the hole transport layer 164 are transported to the light emitting layer 166.
[0083] また、有機 EL素子 100において、陰極 18力も電子が有機固体層 16中の電子注入 168へと輸送される。輸送された電子は、電子輸送層 167へと注入される。輸送され た電子は、発光層 166へと輸送される。 [0083] In the organic EL element 100, electrons are injected into the organic solid layer 16 even when the cathode has 18 forces. Transported to 168. The transported electrons are injected into the electron transport layer 167. The transported electrons are transported to the light emitting layer 166.
[0084] 輸送された正孔および電子は、発光層 166中で再結合する。再結合の際、発せら れるエネルギーにより、 ELによる発光が発生する。この発光は、順に正孔輸送層 16 4、正孔注入層 162、陽極 14、 ノ リア膜 12、基板 10を通じて外部へと導出され、その 発光を視認することができる。  [0084] The transported holes and electrons recombine in the light-emitting layer 166. During recombination, EL emits light due to the energy generated. This light emission is led out to the outside through the hole transport layer 164, the hole injection layer 162, the anode 14, the noria film 12, and the substrate 10 in this order, and the light emission can be visually recognized.
[0085] 陰極 18に A1が用いられている場合などは、陰極層 18と電子輸送層 168との界面 が反射面となり、この界面で反射され、陽極 14側へと進み、基板 10を透過して外部 へと射出される。したがって、以上のような構成の有機 EL素子をディスプレイなどに 採用した場合、基板 10側が表示の観察面となる。  [0085] In the case where A1 is used for the cathode 18, the interface between the cathode layer 18 and the electron transport layer 168 becomes a reflection surface, is reflected at this interface, travels to the anode 14 side, and passes through the substrate 10. And injected outside. Therefore, when the organic EL element having the above configuration is used for a display or the like, the substrate 10 side becomes the display observation surface.
[0086] 例えば、有機 ELパネルで、フルカラーディスプレイを実現しょうとする場合、例えば 、 RGB各色を発光する有機 EL素子を塗り分けにより製造する方式 (塗り分け法)、白 色発光の単色発光の有機 EL素子とカラーフィルタを組み合わせた方式 (カラーフィ ルタ法)、青色発光若しくは白色発光等の単色発光の有機 EL素子と色変換層とを組 み合わせた方式 (色変換法)、単色の有機 EL素子であって、有機発光層に電磁波を 照射する等して複数発光を実現する方式 (フォトブリーチング方式)などが挙げられる が特に限定されない。  [0086] For example, when a full color display is to be realized with an organic EL panel, for example, a method of manufacturing organic EL elements that emit RGB colors by painting (painting method), a white light emitting monochromatic light emitting organic A combination of an EL element and a color filter (color filter method), a combination of a single color emission organic EL element such as blue light emission or white emission and a color conversion layer (color conversion method), a single color organic EL element In addition, a method (photo bleaching method) for realizing a plurality of light emission by irradiating the organic light emitting layer with an electromagnetic wave or the like can be mentioned, but it is not particularly limited.
[0087] 本実施形態では、防護層を有したので、より有機 TFTに対してダメージを与える電 磁波と粒子線のうち少なくとも一方力 有機 TFTを防護することができる。したがって 、有機 EL表示装置 P1が有機 TFTに対してダメージを与える電磁波、粒子線を使用 する他の製造工程や消費者による長期の使用であってもより信頼性を確保すること ができる。  In this embodiment, since the protective layer is provided, it is possible to protect the organic TFT by at least one of the electromagnetic wave and the particle beam that cause damage to the organic TFT. Therefore, the reliability can be ensured even if the organic EL display device P1 uses electromagnetic waves that damage organic TFTs, other manufacturing processes that use particle beams, and long-term use by consumers.
[0088] 「有機 EL表示装置の製造方法」  [0088] "Method for manufacturing organic EL display device"
図 2に示される有機 EL表示装置 P1の製造方法を説明する。基板 10上にバリア膜 12を形成し、ノリア膜 12上に有機 EL素子 100の陰極 18を除く部分および有機 TF T50を作製する。有機 TFT50のドレイン電極 60と有機 EL素子 100の陽極 14とは電 気的に導通するように、接触させて作製する。  A method for manufacturing the organic EL display device P1 shown in FIG. 2 will be described. A barrier film 12 is formed on the substrate 10, and a portion excluding the cathode 18 of the organic EL element 100 and the organic TFT 50 are formed on the noria film 12. The drain electrode 60 of the organic TFT 50 and the anode 14 of the organic EL element 100 are fabricated so as to be in electrical contact with each other.
[0089] 次に、有機 EL素子 100の紙面左端縁であって、有機 TFT50の表面を覆うように層 間絶縁膜 72を形成する。また、有機 EL素子 100の紙面右端縁であって、陽極 14上 を含むように層間絶縁膜 74を形成する。 Next, a layer is formed so as to cover the surface of the organic TFT 50, which is the left edge of the organic EL element 100 in the drawing. An inter-layer insulating film 72 is formed. Further, an interlayer insulating film 74 is formed so as to include the anode 14 at the right edge of the organic EL element 100 in the drawing.
[0090] これら層間絶縁膜を形成した後、有機 EL素子 100の陰極 18を形成する。この形成 は、層間絶縁膜 74を覆う以上まで延伸して形成する。 [0090] After these interlayer insulating films are formed, the cathode 18 of the organic EL element 100 is formed. This formation is performed by extending the film to cover the interlayer insulating film 74.
[0091] 陰極 18が形成された後、陰極 18および層間絶縁膜 72の表面を覆うように保護膜 2[0091] After the cathode 18 is formed, the protective film 2 is formed so as to cover the surfaces of the cathode 18 and the interlayer insulating film 72.
0を形成して有機 EL表示装置 P1を製造する。 O is formed to manufacture the organic EL display device P1.
[0092] 本実施形態では、特に保護膜 20の形成方法が CVDなどの真空プロセス等、紫外 線などの可視光よりも短波長光、二次電子などの粒子線を発生する場合には、防護 層でである層間絶縁膜 72がこれら有機 TFT50にダメージを与える電磁波と粒子線 とのうち少なくとも一方から防護するので、ダメージの少な 、有機 TFT50を含んだ有 機 EL表示装置 P1を提供することができる。 [0092] In the present embodiment, the protective film 20 is formed particularly when the protective film 20 generates a particle beam such as light having a shorter wavelength than visible light such as ultraviolet rays or secondary electrons such as a vacuum process such as CVD. Since the interlayer insulating film 72, which is a layer, protects against at least one of the electromagnetic wave and the particle beam that damage the organic TFT 50, it is possible to provide an organic EL display device P1 including the organic TFT 50 with little damage. it can.
[0093] なお、各層はワックス、酸化防止剤、熱安定剤、レべリング剤、カップリング剤等の 添加剤、改質剤を必要に応じ、添加する層の特性を損なわない範囲で添加すること ちでさる。 [0093] Each layer is added with additives such as waxes, antioxidants, heat stabilizers, leveling agents, coupling agents, etc., and modifiers as necessary, so long as the properties of the layers to be added are not impaired. It ’s a lot.
[0094] 各層の製造方法は、例えば、印刷方式としては、グラビアコート、グラビアリバースコ ート、コンマコート、ダイコート、リップコート、キャストコート、ロールコート、エアーナイ フコート、メイヤーバーコート、押し出しコート、オフセット、紫外線硬化オフセット、フレ キソ、孔版、シルク、カーテンフローコート、ワイヤーバーコート、リバースコート、グラ ビアコート、キスコート、ブレードコート、スムーズコート、スプレーコート、かけ流しコー ト、刷毛塗り等の各種印刷方式が適用できる。下層を乾燥被膜としてから、その上に コートを行う他、下層とその上層とをウエット状態で 2層重ねて力 乾燥させることもで きる。  [0094] The manufacturing method of each layer includes, for example, gravure coating, gravure reverse coating, comma coating, die coating, lip coating, cast coating, roll coating, air knife coating, Mayer bar coating, extrusion coating, and offset. , UV curing offset, flexo, stencil, silk, curtain flow coating, wire bar coating, reverse coating, gravure coating, kiss coating, blade coating, smooth coating, spray coating, flow coating, brush coating, etc. Applicable. In addition to coating the lower layer as a dry film, two layers of the lower layer and the upper layer can be applied in a wet state and force-dried.
[0095] 「他の実施形態 1」  [0095] “Other embodiment 1”
図 5には、本実施形態に係る他の実施形態 1の有機 EL表示装置 P2が示される。 以下、同符号については、上記実施形態と同様であるとし、説明を省略する。  FIG. 5 shows an organic EL display device P2 of another embodiment 1 according to this embodiment. Hereinafter, the same reference numerals are assumed to be the same as those in the above embodiment, and the description thereof is omitted.
[0096] 有機 TFT50上であって、有機 TFT50上とは直列とならない位置に有機 EL素子 1 00が配置され、有機 EL素子 100および有機 TFT50は、保護膜 20によって覆われ ている。ドレイン電極 60と陽極 14とは層間絶縁膜 72中に設けられた正孔の輸送経 路であるスルーホール 80によって電気的に接続されている。 The organic EL element 100 is disposed on the organic TFT 50 at a position that is not in series with the organic TFT 50, and the organic EL element 100 and the organic TFT 50 are covered with the protective film 20. The drain electrode 60 and the anode 14 are formed by transporting holes provided in the interlayer insulating film 72. It is electrically connected by a through hole 80 which is a road.
[0097] 上記実施形態と同様に防護層は、層間絶縁膜 72である。この電磁波と粒子線との うち少なくとも一方力も有機トランジスタ 50を防護する作用を有する層間絶縁膜 72を 設けたことにより有機 TFTに対してダメージを与える電磁波カゝら有機 TFTを防護する ことができる。したがって、有機 EL表示装置 P2が有機 TFTに対してダメージを与え る電磁波を使用する他の製造工程や消費者による長期の使用であってもより信頼性 を確保することができる。  As in the above embodiment, the protective layer is the interlayer insulating film 72. By providing the interlayer insulating film 72 having the action of protecting the organic transistor 50 by at least one of the electromagnetic wave and the particle beam, the organic TFT can be protected from the electromagnetic wave damage to the organic TFT. Therefore, the reliability can be ensured even if the organic EL display device P2 uses electromagnetic waves that cause damage to the organic TFT, or is used for a long time by consumers.
[0098] 有機 EL表示装置 P2の製造方法について説明する。基板 10上にバリア膜 12を形 成し、有機 TFT50を作製する。有機 TFT50表面を覆うように層間絶縁膜 72を形成 し、スルーホール 80を作製する。次に陽極 14を形成し、その上に有機 EL素子 100 を形成する。ここで有機 TFT50のドレイン電極 60と有機 EL素子 100の陽極 14とは 電気的に導通するように、スルーホール 80を設ける。  A method for manufacturing the organic EL display device P2 will be described. A barrier film 12 is formed on the substrate 10 to produce an organic TFT 50. An interlayer insulating film 72 is formed so as to cover the surface of the organic TFT 50, and a through hole 80 is formed. Next, the anode 14 is formed, and the organic EL element 100 is formed thereon. Here, a through hole 80 is provided so that the drain electrode 60 of the organic TFT 50 and the anode 14 of the organic EL element 100 are electrically connected.
[0099] 有機 EL素子 100、層間絶縁膜 72の表面を覆うように保護膜 20を形成し、有機 EL 表示装置 P2を製造する。  [0099] The protective film 20 is formed so as to cover the surfaces of the organic EL element 100 and the interlayer insulating film 72, and the organic EL display device P2 is manufactured.
[0100] 本実施形態では、特に保護膜 20の形成方法が CVDなどの真空プロセス等、紫外 線などの可視光よりも短波長光、二次電子などの粒子線を発生しやす 、場合には、 防護層である層間絶縁膜 72がこれら有機 TFT50にダメージを与える電磁波と粒子 線とのうち少なくとも一方から防護するので、ダメージの少な!/、有機 TFT50を含んだ 有機 EL表示装置 P2を提供することができる。  [0100] In the present embodiment, in particular, the method for forming the protective film 20 is likely to generate a particle beam such as light having a shorter wavelength than visible light such as ultraviolet rays or secondary electrons such as a vacuum process such as CVD. The protective interlayer 72 protects the organic TFT50 from at least one of the electromagnetic wave and particle beam that damages the organic TFT50, so there is little damage! / Provides the organic EL display device P2 including the organic TFT50 be able to.
[0101] 「他の実施形態 2」  [0101] "Other embodiment 2"
図 6には、本実施形態に係る他の実施形態 2の有機 EL表示装置 P3が示される。  FIG. 6 shows an organic EL display device P3 of another embodiment 2 according to this embodiment.
[0102] 有機 TFT50上であって、直列とならない位置にドライビングトランジスタ 59、ドライ ビングトランジスタ 59上に有機 EL素子 100が配置され、有機 EL素子 100および有 機 TFT50は、保護膜 20によって覆われている。なお、ドライビングトランジスタ 59は 特に限られるものではな ヽが、本実施形態のように静電誘導トランジスタ(SIT)であ ると好適である。ドライビングトランジスタ 59は下層側カゝらソース電極 57/ゲート電極 51Zドレイン電極 (有機 EL素子 100の陽極 14)から構成されている。  [0102] The driving transistor 59 is disposed on the organic TFT 50 at a position that is not in series, and the organic EL element 100 is disposed on the driving transistor 59. The organic EL element 100 and the organic TFT 50 are covered with the protective film 20. Yes. The driving transistor 59 is not particularly limited, but is preferably an electrostatic induction transistor (SIT) as in this embodiment. The driving transistor 59 includes a lower layer side source electrode 57 / gate electrode 51Z drain electrode (the anode 14 of the organic EL element 100).
[0103] ドレイン電極 60とドライビングトランジスタ 59のソース電極 57とは層間絶縁膜 72中 に設けられた正孔の輸送経路であるスルーホール 80によって電気的に接続されて いる。 [0103] The drain electrode 60 and the source electrode 57 of the driving transistor 59 are in the interlayer insulating film 72. Are electrically connected by through-holes 80, which are hole transport routes provided in.
[0104] 他の実施形態 2では、防護層は層間絶縁膜 72である。したがって、層間絶縁膜 72 を設けたことにより、有機 EL表示装置 P3が有機 TFTに対してダメージを与える電磁 波を使用する他の製造工程や消費者による長期の使用であってもより信頼性を確保 することができる。  In another embodiment 2, the protective layer is the interlayer insulating film 72. Therefore, the provision of the interlayer insulating film 72 makes the organic EL display device P3 more reliable even in other manufacturing processes and long-term use by consumers that use electromagnetic waves that damage organic TFTs. It can be secured.
[0105] 有機 EL表示装置 P3の製造方法について説明する。基板 10上にバリア膜 12を形 成し、有機 TFT50を作製する。有機 TFT50表面を覆うように層間絶縁膜 72を形成 し、スルーホール 80を作製する。次にドライビングトランジスタ 59を形成する。ここで 有機 TFT50のドレイン電極 60とドライビングトランジスタ 59のソース電極 57とは電気 的に導通するように、スルーホール 80を設ける。ドライビングトランジスタ 59上に有機 EL素子 100を形成する。  [0105] A method for producing the organic EL display device P3 will be described. A barrier film 12 is formed on the substrate 10 to produce an organic TFT 50. An interlayer insulating film 72 is formed so as to cover the surface of the organic TFT 50, and a through hole 80 is formed. Next, a driving transistor 59 is formed. Here, a through hole 80 is provided so that the drain electrode 60 of the organic TFT 50 and the source electrode 57 of the driving transistor 59 are electrically connected. An organic EL element 100 is formed on the driving transistor 59.
[0106] 有機 EL素子 100、ドライビングトランジスタ 59、層間絶縁膜 72を覆うように保護膜 2 0を形成し、有機 EL表示装置 P3を製造する。  A protective film 20 is formed so as to cover the organic EL element 100, the driving transistor 59, and the interlayer insulating film 72, and the organic EL display device P3 is manufactured.
[0107] 本実施形態では、特に保護膜 20の形成方法が CVDなどの真空プロセス等、紫外 線などの可視光よりも短波長光、二次電子などの粒子線を発生しやす 、場合には、 防護層である層間絶縁膜 72がこれら有機 TFT50にダメージを与える電磁波と粒子 線とのうち少なくとも一方から防護するので、ダメージの少な!/、有機 TFT50を含んだ 有機 EL表示装置 P3を提供することができる。  In the present embodiment, in particular, the protective film 20 is formed by a method such as a vacuum process such as CVD, which tends to generate light beams having a shorter wavelength than visible light such as ultraviolet rays and particle beams such as secondary electrons. The protective interlayer 72 protects the organic TFT50 from at least one of the electromagnetic waves and particle beams that damage the organic TFT50. Therefore, there is little damage! / Provides the organic EL display device P3 including the organic TFT50 be able to.
[0108] 「有機トランジスタ」  [0108] "Organic transistor"
上記実施形態では、有機 EL素子を備える有機 EL表示装置を示したが、これに限 られることなぐ有機 EL素子以外を駆動する有機トランジスタであっても本実施形態 による防護層による有機トランジスタを防護する構造は適用できる。すなわち、上記 実施形態において、有機 EL素子を他の有機トランジスタによって駆動される駆動素 子に置き換えてもよぐ有機 EL素子などの駆動素子を省略して有機トランジスタ単独 としてもよい。直接的、間接的に拘わらずそれらの表面上層に防護層上に保護膜が 形成されていればよい。  In the above embodiment, the organic EL display device including the organic EL element is shown. However, the organic transistor that drives other than the organic EL element is not limited to this, and the organic transistor is protected by the protective layer according to the present embodiment. Structure is applicable. That is, in the above embodiment, the organic EL element may be replaced by a driving element such as an organic EL element which may be replaced with a driving element driven by another organic transistor. It is only necessary that a protective film is formed on the protective layer on the surface layer, whether directly or indirectly.
[0109] このような有機トランジスタは、ディスプレイ一般、例えば、液晶ディスプレイ、電気 泳動型ディスプレイ、電子ペーパー、トナーディスプレイなどにも適用できる。 [0109] Such organic transistors are generally used in displays, such as liquid crystal displays and electrical displays. It can also be applied to electrophoretic displays, electronic paper, toner displays, and the like.
実施例  Example
[0110] 実施例となる有機 EL表示装置 P1を製造し、従来の有機 EL表示装置と比較した。  [0110] An organic EL display device P1 as an example was manufactured and compared with a conventional organic EL display device.
[0111] 「製造方法」 [0111] "Production method"
実施例の材質は以下の通りである。  The materials of the examples are as follows.
[0112] ソース Zドレイン電極: CrZAu [0112] Source Z drain electrode: CrZAu
ゲート電極: Ta、ゲート絶縁膜: Ta O  Gate electrode: Ta, Gate insulating film: Ta O
2 5  twenty five
層間絶縁膜:紫外線吸収剤入り黒色ポリマー  Interlayer insulation film: Black polymer with UV absorber
有機半導体:ペンタセン  Organic semiconductor: Pentacene
有機 EL陽極: ITO  Organic EL anode: ITO
有機 EL有機固体層:ホール注入層 (CuPc)  Organic EL organic solid layer: hole injection layer (CuPc)
:ホール輸送層 (NPB)  : Hole transport layer (NPB)
:発光層 (Alq )  : Light emitting layer (Alq)
3  Three
:電子輸送層 (Alq )  : Electron transport layer (Alq)
3  Three
:電子注入層 (Li O)  : Electron injection layer (Li 2 O)
2  2
有機 EL陰極: A1  Organic EL cathode: A1
保護膜: SiNx  Protective film: SiNx
実施例の製造方法は、以下の通りである。洗浄したブラスティックフィルム基板上に ゲート電極 Ta膜を厚さ 2000 A、幅 20 mでパターユングした。この Ta配線膜に陽 極酸ィ匕を行うことにより Ta O膜を形成し、ゲート絶縁膜 Ta O (比誘電率: 24)とした  The manufacturing method of an Example is as follows. On the cleaned plastic film substrate, a gate electrode Ta film was patterned with a thickness of 2000 A and a width of 20 m. A Ta O film was formed by applying a positive acid to the Ta wiring film, and a gate insulating film Ta O (relative dielectric constant: 24) was formed.
2 5 2 5  2 5 2 5
。その後、ソース Zドレイン電極として Crを接着層とした Au膜をパターユングした。そ の後、有機 EL陽極 ITOを有機トランジスタのドレイン電極と接続するようにパター- ングした。この後で層間絶縁膜として黒色ポリマーを、有機トランジスタを完全に覆う ように成膜した。同時にこの紫外線吸収剤入り黒色ポリマーを有機 EL素子の陽極周 辺にもパター-ングし、有機 EL素子の陰極と陽極との短絡防止膜とした。有機 EL素 子の有機層と陰極を順次成膜し、最後に保護膜として SiNxをプラズマ CVDで成膜 して製造した。  . After that, an Au film with Cr as an adhesive layer was patterned as the source Z drain electrode. After that, the organic EL anode ITO was patterned so as to be connected to the drain electrode of the organic transistor. Thereafter, a black polymer was formed as an interlayer insulating film so as to completely cover the organic transistor. At the same time, this black polymer containing an ultraviolet absorber was also patterned around the anode of the organic EL device to form a short-circuit prevention film between the cathode and the anode of the organic EL device. The organic EL element organic layer and the cathode were sequentially formed, and finally SiNx was formed by plasma CVD as a protective film.
[0113] 比較例の製造方法は、有機 TFT上に層間絶縁膜を形成するが紫外線吸収剤を入 れな 、無色透明の層間絶縁膜であり、その他は実施例と同様である。 [0113] In the manufacturing method of the comparative example, an interlayer insulating film is formed on an organic TFT, but an ultraviolet absorber is added. These are colorless and transparent interlayer insulating films, and the others are the same as in the examples.
[0114] 「評価」  [0114] "Evaluation"
実施例で作製した有機 TFTの半導体特性 (移動度、オンオフ特性)を比較例と比 較した結果を、以下の表 1に示す。  Table 1 below shows the results of comparing the semiconductor characteristics (mobility, on / off characteristics) of the organic TFT fabricated in the examples with those of the comparative example.
[0115] [表 1] [0115] [Table 1]
Figure imgf000027_0001
Figure imgf000027_0001
「考察」  "Discussion"
実施例の有機 EL表示装置では、比較例と比較して、良好な半導体特性 (移動度、 オンオフ特性)を得ることができた。  In the organic EL display device of the example, better semiconductor characteristics (mobility and on / off characteristics) were obtained compared to the comparative example.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも陽極、有機発光層、陰極を備える有機 EL素子と前記有機 EL素子を駆動 する有機トランジスタを含む有機 EL表示装置であって、  [1] An organic EL display device including an organic EL element including at least an anode, an organic light emitting layer, and a cathode, and an organic transistor that drives the organic EL element,
前記有機トランジスタを覆い、少なくとも前記有機トランジスタを保護する保護膜を 備え、  A protective film that covers the organic transistor and protects at least the organic transistor;
前記保護膜と前記有機トランジスタの表面との間には、電磁波と粒子線とのうち少 なくとも一方カゝら前記有機トランジスタを防護する防護層が形成される有機 EL表示装 置。  An organic EL display device in which a protective layer for protecting the organic transistor is formed between the protective film and the surface of the organic transistor, at least one of electromagnetic waves and particle beams.
[2] 請求項 1に記載の有機 EL表示装置であって、  [2] The organic EL display device according to claim 1,
前記電磁波は、赤外光、可視光、紫外光のうち少なくとも一種である有機 EL表示 装置。  The organic EL display device, wherein the electromagnetic wave is at least one of infrared light, visible light, and ultraviolet light.
[3] 請求項 1または 2に記載の有機 EL表示装置であって、  [3] The organic EL display device according to claim 1 or 2,
前記粒子線は、アルファ線、ベータ線、中性子線のうち少なくとも一種である有機 E L表示装置。  The organic EL display device, wherein the particle beam is at least one of alpha rays, beta rays, and neutron rays.
[4] 請求項 1から 3のいずれ力 1つに記載の有機 EL表示装置であって、  [4] The organic EL display device according to any one of claims 1 to 3,
前記防護層は、有色透明層または不透明層である有機 EL表示装置。  The organic EL display device, wherein the protective layer is a colored transparent layer or an opaque layer.
[5] 請求項 1から 4のいずれ力 1つに記載の有機 EL表示装置であって、  [5] The organic EL display device according to any one of claims 1 to 4,
前記防護層は、電磁波と粒子線とのうち少なくとも一方を吸収する吸収性層である 有機 EL表示装置。  The organic EL display device, wherein the protective layer is an absorptive layer that absorbs at least one of electromagnetic waves and particle beams.
[6] 請求項 1から 5のいずれ力 1つに記載の有機 EL表示装置であって、  [6] The organic EL display device according to any one of claims 1 to 5,
前記防護層は、電磁波と粒子線とのうち少なくとも一方に対する反射性を有する反 射性層である有機 EL表示装置。  The organic EL display device, wherein the protective layer is a reflective layer having reflectivity for at least one of electromagnetic waves and particle beams.
[7] 少なくとも陽極、有機発光層、陰極を備える有機 EL素子と前記有機 EL素子を駆動 する有機トランジスタを含む有機 EL表示装置の製造方法であって、 [7] A method of manufacturing an organic EL display device including an organic EL element including at least an anode, an organic light emitting layer, and a cathode, and an organic transistor that drives the organic EL element,
前記有機トランジスタ表面上に電磁波と粒子線とのうち少なくとも一方力 前記有機 トランジスタを防護する防護層を形成する防護層形成工程と、  A protective layer forming step of forming a protective layer for protecting the organic transistor on at least one of electromagnetic wave and particle beam on the surface of the organic transistor;
前記防護層上に前記有機トランジスタを保護する保護膜を形成する保護膜形成ェ 程と、を含む有機 EL表示装置の製造方法。 A protective film forming step of forming a protective film for protecting the organic transistor on the protective layer.
[8] 請求項 7に記載の有機 EL表示装置の製造方法であって、 [8] The method of manufacturing an organic EL display device according to claim 7,
前記電磁波は、赤外光、可視光、紫外光のうち少なくとも一種である有機 EL表示 装置の製造方法。  The method for manufacturing an organic EL display device, wherein the electromagnetic wave is at least one of infrared light, visible light, and ultraviolet light.
[9] 請求項 7または 8に記載の有機 EL表示装置の製造方法であって、  [9] The method of manufacturing an organic EL display device according to claim 7 or 8,
前記粒子線は、アルファ線、ベータ線、中性子線のうち少なくとも一種である有機 E L表示装置の製造方法。  The method of manufacturing an organic EL display device, wherein the particle beam is at least one of alpha rays, beta rays, and neutron rays.
[10] 請求項 7から 9のいずれ力 1つに記載の有機 EL表示装置の製造方法であって、 前記防護層は、有色透明層または不透明層である有機 EL表示装置の製造方法。 10. The method for manufacturing an organic EL display device according to any one of claims 7 to 9, wherein the protective layer is a colored transparent layer or an opaque layer.
[11] 請求項 7から 10のいずれ力 1つに記載の有機 EL表示装置の製造方法であって、 前記防護層は、電磁波と粒子線とのうち少なくとも一方を吸収する吸収性層である 有機 EL表示装置の製造方法。 [11] The method of manufacturing an organic EL display device according to any one of claims 7 to 10, wherein the protective layer is an absorptive layer that absorbs at least one of electromagnetic waves and particle beams. Manufacturing method of EL display device.
[12] 請求項 7から 11のいずれ力 1つに記載の有機 EL表示装置の製造方法であって、 前記防護層は、電磁波と粒子線とのうち少なくとも一方に対する反射性を有する反 射性層である有機 EL表示装置の製造方法。 [12] The method of manufacturing an organic EL display device according to any one of claims 7 to 11, wherein the protective layer is a reflective layer having reflectivity for at least one of electromagnetic waves and particle beams. A method for manufacturing an organic EL display device.
[13] 有機トランジスタであって、 [13] An organic transistor,
前記有機トランジスタを覆 、、前記有機トランジスタを保護する保護膜を備え、 前記保護膜と前記有機トランジスタの表面との間には、電磁波から前記有機トラン ジスタを防護する防護層が形成される有機トランジスタ。  An organic transistor that covers the organic transistor and includes a protective film that protects the organic transistor, and a protective layer that protects the organic transistor from electromagnetic waves is formed between the protective film and the surface of the organic transistor. .
[14] 請求項 13に記載の有機トランジスタであって、 [14] The organic transistor according to claim 13,
前記電磁波は、赤外光、可視光、紫外光のうち少なくとも一種である有機トランジス タ。  The electromagnetic wave is an organic transistor that is at least one of infrared light, visible light, and ultraviolet light.
[15] 請求項 13または 14に記載の有機トランジスタであって、  [15] The organic transistor according to claim 13 or 14,
前記粒子線は、アルファ線、ベータ線、中性子線のうち少なくとも一種である有機ト ランジスタ。  The particle beam is an organic transistor that is at least one of alpha rays, beta rays, and neutron rays.
[16] 請求項 13から 15のいずれか 1つに記載の有機トランジスタであって、  [16] The organic transistor according to any one of claims 13 to 15,
前記防護層は、有色透明層または不透明層である有機トランジスタ。  The protective layer is an organic transistor that is a colored transparent layer or an opaque layer.
[17] 請求項 13から 16のいずれか 1つに記載の有機トランジスタであって、  [17] An organic transistor according to any one of claims 13 to 16,
前記防護層は、電磁波と粒子線とのうち少なくとも一方を吸収する吸収性層である 有機トランジスタ。 The protective layer is an absorptive layer that absorbs at least one of electromagnetic waves and particle beams. Organic transistor.
[18] 請求項 13から 17のいずれか 1つに記載の有機 EL表示装置であって、  [18] The organic EL display device according to any one of claims 13 to 17,
前記防護層は、電磁波と粒子線とのうち少なくとも一方に対する反射性を有する反 射性層である有機トランジスタ。  The organic transistor, wherein the protective layer is a reflective layer having reflectivity for at least one of electromagnetic waves and particle beams.
[19] 有機トランジスタの製造方法であって、 [19] A method for producing an organic transistor comprising:
前記有機トランジスタ表面上に電磁波カゝら前記有機トランジスタを防護する防護層 を形成する防護層形成工程と、  A protective layer forming step for forming a protective layer for protecting the organic transistor from the electromagnetic wave on the surface of the organic transistor;
前記防護層上に前記有機トランジスタを保護する保護膜を形成する保護膜形成ェ 程と、を含む有機トランジスタの製造方法。  A protective film forming step of forming a protective film for protecting the organic transistor on the protective layer.
[20] 請求項 19に記載の有機トランジスタの製造方法であって、 [20] The method for producing an organic transistor according to claim 19,
前記電磁波は、赤外光、可視光、紫外光のうち少なくとも一種である有機トランジス タの製造方法。  The method for producing an organic transistor, wherein the electromagnetic wave is at least one of infrared light, visible light, and ultraviolet light.
[21] 請求項 19または 20に記載の有機トランジスタの製造方法であって、  [21] The method for producing an organic transistor according to claim 19 or 20,
前記粒子線は、アルファ線、ベータ線、中性子線のうち少なくとも一種である有機ト ランジスタの製造方法。  The method for producing an organic transistor, wherein the particle beam is at least one of alpha rays, beta rays, and neutron rays.
[22] 請求項 19から 21のいずれか 1つに記載の有機トランジスタの製造方法であって、 前記防護層は、有色透明層または不透明層である有機トランジスタの製造方法。 [22] The method for producing an organic transistor according to any one of claims 19 to 21, wherein the protective layer is a colored transparent layer or an opaque layer.
[23] 請求項 19から 22のいずれか 1つに記載の有機トランジスタの製造方法であって、 前記防護層は、電磁波と粒子線とのうち少なくとも一方を吸収する吸収性層である 有機トランジスタの製造方法。 [23] The method for producing an organic transistor according to any one of claims 19 to 22, wherein the protective layer is an absorptive layer that absorbs at least one of electromagnetic waves and particle beams. Production method.
[24] 請求項 19から 23のいずれか 1つに記載の有機トランジスタの製造方法であって、 前記防護層は、電磁波と粒子線とのうち少なくとも一方に対する反射性を有する反 射性層である有機トランジスタの製造方法。 [24] The method for producing an organic transistor according to any one of claims 19 to 23, wherein the protective layer is a reflective layer having reflectivity for at least one of electromagnetic waves and particle beams. Manufacturing method of organic transistor.
PCT/JP2006/306664 2005-03-30 2006-03-30 Organic el display, organic transistor, and methods for manufacturing those WO2006106826A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007512855A JPWO2006106826A1 (en) 2005-03-30 2006-03-30 Organic EL display device, organic transistor, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-096766 2005-03-30
JP2005096766 2005-03-30

Publications (1)

Publication Number Publication Date
WO2006106826A1 true WO2006106826A1 (en) 2006-10-12

Family

ID=37073382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306664 WO2006106826A1 (en) 2005-03-30 2006-03-30 Organic el display, organic transistor, and methods for manufacturing those

Country Status (2)

Country Link
JP (1) JPWO2006106826A1 (en)
WO (1) WO2006106826A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135615A (en) * 2006-11-29 2008-06-12 Sony Corp Organic semiconductor element, and display device
WO2008139940A1 (en) * 2007-04-27 2008-11-20 Canon Kabushiki Kaisha Light emitting apparatus and method of manufacturing the same
WO2009069760A1 (en) * 2007-11-29 2009-06-04 Dai Nippon Printing Co., Ltd. Organic el device, color filter, and organic el display
WO2009069761A1 (en) * 2007-11-29 2009-06-04 Dai Nippon Printing Co., Ltd. Organic el device, color filter, and organic el display
JP2010186860A (en) * 2009-02-12 2010-08-26 Fujifilm Corp Field effect transistor, and method of manufacturing the same
JP2016004908A (en) * 2014-06-17 2016-01-12 凸版印刷株式会社 Thin-film transistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644065B2 (en) * 2009-06-19 2014-12-24 三菱化学株式会社 Field effect transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002108250A (en) * 2000-09-29 2002-04-10 Sharp Corp Active matrix driven self-luminous display device and manufacturing method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002108250A (en) * 2000-09-29 2002-04-10 Sharp Corp Active matrix driven self-luminous display device and manufacturing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135615A (en) * 2006-11-29 2008-06-12 Sony Corp Organic semiconductor element, and display device
WO2008139940A1 (en) * 2007-04-27 2008-11-20 Canon Kabushiki Kaisha Light emitting apparatus and method of manufacturing the same
TWI387104B (en) * 2007-04-27 2013-02-21 Canon Kk Light emitting apparatus and method of manufacturing the same
WO2009069760A1 (en) * 2007-11-29 2009-06-04 Dai Nippon Printing Co., Ltd. Organic el device, color filter, and organic el display
WO2009069761A1 (en) * 2007-11-29 2009-06-04 Dai Nippon Printing Co., Ltd. Organic el device, color filter, and organic el display
US8946681B2 (en) 2007-11-29 2015-02-03 Dai Nippon Printing Co., Ltd. Organic el device with color filter, and organic EL display
US8962156B2 (en) 2007-11-29 2015-02-24 Dai Nippon Printing Co., Ltd. Organic EL device, color filter, and organic EL display
JP2010186860A (en) * 2009-02-12 2010-08-26 Fujifilm Corp Field effect transistor, and method of manufacturing the same
JP2016004908A (en) * 2014-06-17 2016-01-12 凸版印刷株式会社 Thin-film transistor

Also Published As

Publication number Publication date
JPWO2006106826A1 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP4511595B2 (en) Organic EL display device, organic transistor, and manufacturing method thereof
JP5267246B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ITS MANUFACTURING METHOD, AND ORGANIC ELECTROLUMINESCENT DISPLAY
WO2006106826A1 (en) Organic el display, organic transistor, and methods for manufacturing those
US20080038584A1 (en) Organic electroluminescence element
TWI481022B (en) Organic el display unit and electronic device
US20160028035A1 (en) Display panel and display device
JP4531850B2 (en) Organic transistor and manufacturing method thereof
JP5141325B2 (en) Manufacturing method of organic EL display panel
US20100090204A1 (en) Organic semiconductor element and manufacture method thereof
US20090026443A1 (en) Organic thin-film transistor and method of manufacture thereof
JP2008140786A (en) Methods of manufacturing gate insulating film, organic transistor, and organic electroluminescent display device, and display
JP4671201B2 (en) Protective film manufacturing method, inorganic film manufacturing method
JP2016143658A (en) Light emitting element and display device
JP4567092B2 (en) Organic EL display device and manufacturing method thereof
US8049404B2 (en) Organic electroluminescent display panel and manufacturing method thereof
JP2007073504A (en) Element body
JP4004255B2 (en) Manufacturing method of organic LED display panel
JP2007165606A (en) Organic electroluminescence element
TW201403905A (en) Organic electroluminescence device, manufacturing method thereof, and electronic equipment
JP4916102B2 (en) Organic EL device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007512855

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730612

Country of ref document: EP

Kind code of ref document: A1