WO2006103974A1 - Base fabric for chemical lace and process for production thereof - Google Patents

Base fabric for chemical lace and process for production thereof Download PDF

Info

Publication number
WO2006103974A1
WO2006103974A1 PCT/JP2006/305534 JP2006305534W WO2006103974A1 WO 2006103974 A1 WO2006103974 A1 WO 2006103974A1 JP 2006305534 W JP2006305534 W JP 2006305534W WO 2006103974 A1 WO2006103974 A1 WO 2006103974A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
water
fabric
base fabric
fiber
Prior art date
Application number
PCT/JP2006/305534
Other languages
French (fr)
Japanese (ja)
Inventor
Suguru Mizuki
Satoru Kobayashi
Keisuke Takishima
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to CN2006800053943A priority Critical patent/CN101124361B/en
Priority to EP06729502A priority patent/EP1862585B1/en
Priority to JP2007510402A priority patent/JP4796571B2/en
Publication of WO2006103974A1 publication Critical patent/WO2006103974A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • D04H1/68Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions the bonding agent being applied in the form of foam
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06QDECORATING TEXTILES
    • D06Q1/00Decorating textiles
    • D06Q1/005Producing embroidered textiles by chemical means; Transferring embroidered products to textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06QDECORATING TEXTILES
    • D06Q1/00Decorating textiles
    • D06Q1/02Producing patterns by locally destroying or modifying the fibres of a web by chemical actions, e.g. making translucent

Definitions

  • the present invention relates to a chemical lace base fabric that is soft, has high dimensional stability, has a low melting temperature, and is inexpensive.
  • a woven fabric made of water-soluble polyvinyl alcohol (hereinafter referred to as PVA) long fibers has been mainly used as a base fabric for chemical lace.
  • PVA water-soluble polyvinyl alcohol
  • This woven fabric has the advantage of being able to dissolve and remove the base fabric at a relatively low temperature, which has high dimensional stability and is unlikely to cause deviation of the embroidery pattern, but on the other hand, the long fiber itself is expensive and special weaving. Since a process was required, there was a problem when it became extremely expensive. In addition, since it is a woven fabric, there is a drawback in that needle breakage tends to occur during embroidery when the fabric is hard.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-217759
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-279568
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-129383
  • Patent Document 4 JP-A-7-054257
  • Patent Document 5 Japanese Patent Laid-Open No. 018182 Disclosure of the invention
  • An object of the present invention is to provide an inexpensive chemical lace base fabric having a low melting temperature and a method for producing the same, which is soft and has good workability and high dimensional stability and is unlikely to cause embroidery pattern displacement.
  • a binder (hereinafter, referred to as a foam) in which an aqueous solution containing a PVA resin is formed on a random web composed of water-soluble PVA fibers. It is found that a base fabric for chemical lace can be obtained by impregnating and drying a foam-like binder aqueous solution), and cheap, soft, high in dimensional stability and low in melting temperature. It was.
  • This processing method for applying the aqueous binder solution is simple and versatile, and can reduce the amount of moisture adhering compared to conventional spraying and impregnation methods.
  • this processing method which provides a foam-like binder, concentrates the binder resin in the binder aqueous solution at the fiber entangled part compared to the conventional method, so it has a relatively small amount of binder resin adhesion and high dimensions and dimensions.
  • the present inventors have found that there are advantages that stability is obtained and the softness of the base fabric is not impaired, and the present invention has been completed.
  • the present invention is a chemical lace base fabric comprising a random web nonwoven fabric of water-soluble PVA fibers and a pre-dyed embroidery thread and satisfying all of the following conditions.
  • the binder to be attached to the nonwoven fabric is a foamed aqueous solution containing a PVA resin, and the amount of the binder attached to the total nonwoven fabric weight is 2 to 20% by mass,
  • the nonwoven fabric has a 10% modulus strength in the horizontal direction of 15 to 80 N / 50 mm width
  • the bending resistance of the nonwoven fabric is 40 to 150 mm.
  • the water-soluble dissolution temperature of the water-soluble vinyl alcohol fiber constituting the nonwoven fabric is A ° C
  • the water dissolution temperature of the polyvinyl alcohol fiber random web nonwoven fabric is B ° C.
  • the above-mentioned chemical lace base fabric is preferably characterized in that the PVA fiber constituting the nonwoven fabric has a dissolution temperature in water of 50 to 80 ° C.
  • the present invention is characterized in that a foam-like aqueous solution containing a PVA-based resin is attached to a base fabric made of a random web nonwoven fabric of water-soluble PVA-based fibers and dyed embroidery yarn, and then subjected to a dry heat treatment. It is the manufacturing method of said base fabric for chemical laces.
  • an inexpensive chemical lace base fabric that is soft, has good workability, has high dimensional stability, is less likely to cause embroidery pattern displacement, and has a low melting temperature, and a method for producing the same. That power S.
  • a water-soluble PVA polymer as the resin constituting the fiber.
  • the unit other than the bull alcohol unit is an acetic acid bull unit as the water-soluble PVA polymer used in the present invention
  • the preferred water dissolution temperature of 50 to 80 ° C. of the present invention Les, Shi preferred that Ken I ⁇ of partial saponification PVA is 95 to 99. 95 mole 0/0. Crystallization progresses exceeds 99. 95 mole 0/0 at the time and dry heat shrinkage hot drawing, there is a case where the temperature of dissolution in water exceeds 80 ° C.
  • modified PVA containing a unit other than a bial alcohol unit and a vinyl acetate unit when the modified unit is a unit having a large crystallization inhibitory effect, the modified unit is about 0.5 mol%.
  • the modified PVA polymer may be suitably used in the present invention, but in general, it is preferable to use a modified PVA polymer having a modified unit of 1 mol% or more.
  • the modifying unit exceeds 20 mol%, the crystallinity is significantly lowered, and not only the fiber physical properties are lowered but also the spinnability is lowered. Les.
  • Monomers that form the modified unit include carbon such as ethylene, allylic alcohol, itaconic acid, acrylic acid, vinylamine, maleic anhydride and its ring-opened product, sulfonic acid-containing bur compound, and pivalate bur. Examples thereof include fatty acid bule esters having a number of 4 or more, bull pyrrolidone, and compounds obtained by neutralizing a part or all of the ionic groups.
  • the method for introducing the modification unit may be a copolymerization method or a post-reaction introduction method.
  • the distribution of the modified units in the polymer chain is not particularly limited, whether it is random, block or graft.
  • the degree of polymerization of the polymer is not particularly limited, but from the viewpoint of fiber mechanical performance and versatility, the degree of polymerization is preferably 1000 or more, particularly preferably 1500 or less from the viewpoint of fiber spinnability. Is preferred.
  • a fiber excellent in mechanical performance and water solubility can be efficiently obtained by producing a fiber using a spinning stock solution in which a water-soluble PVA polymer is dissolved in water or an organic solvent.
  • the spinning dope may contain additives or polymers other than those described above.
  • the solvent constituting the spinning dope include water, polar solvents such as dimethyl sulfoxide (DMSO), dimethylacetamide, dimethylformamide, and N-methylpyrrolidone, polyhydric alcohols such as glycerin and ethylene glycol, and these solvents.
  • a mixture of swellable metal salts such as rhodan salts, lithium chloride, calcium chloride, and zinc chloride, and also a mixture of these solvents, or a mixture of these solvents and water.
  • DMSO is most suitable in terms of low-temperature solubility, low toxicity, low corrosivity, and the like.
  • the polymer concentration in the spinning dope varies depending on the composition, degree of polymerization, and solvent, but is preferably in the range of 8 to 40% by mass.
  • the liquid temperature at the time of discharging the spinning stock solution is in a range where the spinning stock solution is not gelled, decomposed, or colored, and is preferably in the range of 50 to 150 ° C.
  • the PV A polymer may be discharged into a solidified solution having a solidifying ability. Especially when discharging the spinning dope from multiple holes, it is dry and wet from the standpoint of preventing the fibers from sticking together.
  • the wet spinning method is preferable to the spinning method.
  • the wet spinning method is a method in which a spinning stock solution is discharged directly from a spinneret into a solidification bath, while the dry and wet spinning method is a method in which a spinning stock solution is temporarily discharged from a spinneret into air or an inert gas. And then it is introduced into the solidification bath.
  • the solidification bath differs depending on whether the stock solution is an organic solvent or water.
  • a solidified solvent and a mixed solution having a stock solvent power are preferred from the viewpoint of fiber strength and the like.
  • the solidified solvent include alcohols such as methanol and ethanol, acetone, and methyl ethyl ketone.
  • Organic solvents with solidification ability for PVA polymers such as ketones such as methanol, especially organic solvents consisting of methanol and DMSO are preferred, and the mass ratio of solidification solvent / stock solvent in the solidification bath is 25/75 to 95 / 5, preferably 55/45 to 80/20 is preferable from the viewpoint of spinning processability and solvent recovery.
  • the temperature of the solidification bath is preferably 30 ° C or less, and in particular for uniform cooling gelation, it is 20 ° C or less, more preferably 15 ° C or less.
  • the solidifying solvent constituting the solidifying solution is preferably an aqueous solution of an inorganic salt having a solidifying ability with respect to a PVA polymer, such as sodium sulfate, sodium chloride, and sodium carbonate.
  • the solidification bath may be either acidic or alkaline.
  • the solvent of the spinning dope is extracted and removed from the solidified yarn.
  • the ability to wet-draw the shinoshino during extraction is preferable from the standpoint of suppressing inter-fiber sticking during drying and further increasing the strength of the resulting fiber.
  • the wet draw ratio is preferably 1.5 to 6 times.
  • Extraction is usually performed by passing through multiple extraction baths.
  • As the extraction bath a solidified solvent alone or a mixed solution of a solidified solvent and a stock solvent is used, and the temperature of the extraction bath is usually in the range of 0 to 50 ° C.
  • an oil agent or the like may be applied and dried.
  • the drying temperature is preferably 210 ° C or lower, and in particular, multistage drying in which drying is performed at a low temperature of 160 ° C or lower in the initial stage of drying and at a high temperature in the latter half of drying is preferable.
  • dry heat stretching and, if necessary, dry heat shrinkage are performed to align and crystallize the PVA molecular chains, thereby adjusting the strength, water resistance and heat resistance of the fiber.
  • the total draw ratio under the temperature condition of 150-250 ° C It is preferable to perform dry heat stretching so that the ratio is 3 times or more, particularly 5 times or more.
  • the total draw ratio is a ratio represented by the product of the wet heat draw ratio and the dry heat draw ratio.
  • an oil agent or the like is applied and crimped.
  • Conventionally known methods are used as the crimping method.
  • dry heat pre-heat treatment is performed in advance and introduced into a mechanical crimper to impart crimp.
  • a method of firmly cooling the crimped form by cooling to below the glass transition temperature is suitable.
  • the fineness of the fiber of the present invention thus produced is preferably 0.5 to 5 dtex. If it is less than 5 dtex, the fiber strength is insufficient and damage to the needle during embroidery increases. If it exceeds 5 dtex, the texture of the nonwoven fabric will deteriorate, causing the embroidery pattern to jump and shift, making it difficult to achieve good embroidery. More preferably, it is 1 to 3 dtex.
  • the dissolution temperature in water of the PVA fiber used in the present invention is preferably 50 to 80 ° C.
  • the dissolution temperature in water is less than 50 ° C, swelling and shrinkage due to water occur immediately and the shrinkage in the drying process after application of the resin binder aqueous solution becomes large, and a nonwoven fabric with good texture cannot be obtained.
  • This drying shrinkage can be suppressed entirely by using a pin tenter or sandwich net, but it is difficult to prevent local formation of spots.
  • the fiber dissolution temperature in water exceeds 80 ° C, it becomes difficult to completely dissolve and remove the base fabric after embroidery. More preferably, it is 55 to 75 ° C.
  • the random web nonwoven fabric of the present invention a web prepared by a conventionally known card method, air raid method or the like in which a dry nonwoven fabric in which the orientation of fibers constituting the nonwoven fabric is random is preferred is used.
  • a method of randomizing the fiber orientation a force chemical lace base fabric using a conventionally known cross wrap method or a criss-cross method is applied. In order to suppress the jumping and deviation of the embroidery pattern, it is preferable that the fiber orientation is random.
  • basis weight of the nonwoven fabric of the present invention produced by the manufacturing method described above 15 to 50 g / m 2 der Rukoto are preferred. If the basis weight is less than 15 g / m 2 , the number of fibers will decrease and the formation will be reduced. It becomes non-uniform and the embroidery pattern is likely to fly or shift. In addition, since the strength of the base fabric itself is insufficient, the processability during embroidery is extremely reduced. If the basis weight exceeds 50 g / m 2, since the soft power of nonwoven not Chikarari If price is high is impaired, stretched work of the base fabric to tie crowded work and embroidery machine base cloths using a sewing Sometimes workability is reduced. In addition, since the mass of the base fabric to be dissolved and removed increases, the costs for dissolution and wastewater treatment increase, which is not preferable. More preferably from 20 to 40 g / m 2.
  • the nonwoven fabric obtained by the production method described above is impregnated with a foam-like binder and then subjected to a dry heat treatment to obtain a flexible nonwoven fabric with good dimensional stability.
  • the type of the dyed embroidery thread is not particularly limited, but polyester-based or rayon-based embroidery threads are preferably used.
  • a foamed aqueous solution containing a PVA resin is used as the binder to be adhered to the nonwoven fabric of the present invention.
  • the foam-like binder aqueous solution having the above composition is prepared by, for example, dissolving a PVA resin in water while stirring in a dissolver to prepare a PVA aqueous solution having a predetermined concentration, and then adding an auxiliary agent and a penetrating agent as necessary. It can be prepared by foaming by blowing air into the aqueous solution in the dissolver.
  • the prepared foam binder aqueous solution can be applied by letting the foam binder aqueous solution flow down from a nozzle onto a web made by the card method, or by feeding the web onto a roller with a foam binder aqueous solution on the surface. Impregnation and application by contact.
  • the binder resin in the aqueous binder solution concentrates and concentrates on the entangled portion of the fiber when the foam aqueous binder solution breaks, and conventional spraying is performed. Compared to the method and impregnation method, the same adhesion can be obtained with a relatively small amount of resin adhesion.
  • the softness of the nonwoven fabric that is, the bending resistance described later can be easily ensured as compared with the conventional method in which the resin adheres other than the entangled portion of the fiber.
  • the energy required for drying can be saved.
  • the amount of moisture attached can be reduced, so swelling and shrinkage can be suppressed, and there is no need for special devices such as pin tenters, sandwich nets, etc. Can be obtained.
  • the base fabric can obtain high strength even at low elongation without impairing the strength and elongation properties of the fibers constituting the base fabric. % Modular strength is easy to obtain.
  • the amount of the aqueous binder solution of the present invention needs to be 2 to 20% by mass with respect to the total mass of the nonwoven fabric. If it is less than 2% by mass, the adhesive strength with the non-woven fabric is insufficient and the strength required for the base fabric cannot be obtained. If the amount exceeds 20% by mass, the amount of resin attached to the fiber other than the entangled part will increase, the softness of the non-woven fabric will be impaired, and at the same time, the non-woven fabric will reach its peak, and the binder resin concentration will increase. Wrapping trouble is likely to occur. Preferably it is 3 ⁇ : 17 mass%, More preferably, it is 4 ⁇ : 15 mass%.
  • the aqueous binder solution preferably contains a surfactant having a foaming and penetrating action.
  • a surfactant having a foaming and penetrating action.
  • examples of the surfactant include alkyl ether sulfonic acid type, dodecino benzene sulfonic acid type, and castor oil sulfate.
  • a softening agent, a pH adjuster, etc. may be added.
  • drying treatment conditions by dry heat there are no particular limitations on the drying treatment conditions by dry heat, and it is preferably carried out in a hot air oven with a force of 100 ° C. or higher, such as hot air drying and cylinder drying.
  • One of the most important qualities required for a chemical lace fabric is a 10% modulus strength in the horizontal direction.
  • embroidery is performed by holding the base fabric with clips etc. and stretching it in the horizontal direction by several percent.
  • the base fabric is required to be strong at breakage.
  • the modulus strength is high. In the nonwoven fabric of the present invention, it is 10 in the horizontal direction. /.
  • the modulus must be 15 to 80NZ50mm wide. If the 10% modulus strength in the horizontal direction is lower than 15N / 50mm width, the base fabric will be stretched by the tension at the time of embroidery. Since embroidery cannot be obtained, it is not preferable.
  • a preferable range of 10% modulus strength in the horizontal direction is 20 to 70 NZ50 mm width, and a more preferable range is 25 to 60 N / 50 mm width.
  • the 10% modulus strength of the nonwoven fabric in the vertical direction is as important as the horizontal direction, but the 10% modulus strength is preferably 10N / 50mm width or more. If the 10% modulus strength in the warp direction is too low, the fabric will be cut in the warp direction during embroidery extension, and problems may occur during the shirring process after embroidery.
  • the bending resistance of the nonwoven fabric of the present invention should be 40 to 150 mm. If it is less than 40mm, the base fabric will be too soft and embroidery patterns will be skipped or misaligned. In addition, if it exceeds 150 mm, the base fabric becomes rugged, and work that requires softness of the base fabric, for example, bonding between the base fabric and the sewing machine, guiding cloth or base fabric with the sewing machine between the base fabrics If workability such as spreading on an embroidery machine is remarkably reduced, wrinkles are easily generated when the original fabric is wound after embroidering by force, and continuous preparation of the original fabric becomes difficult.
  • the bending resistance of the nonwoven fabric is preferably 50 to 140 mm, more preferably 60 to 130 mm. The bending resistance of the nonwoven fabric is measured by the method described later.
  • B_A ⁇ 5 ° C. can be achieved by applying an aqueous solution of foamed water-soluble PVA resin as a binder to the nonwoven fabric.
  • B_A ⁇ 5 ° C energy can be saved in the melting process, and it is easy to obtain a fabric for chemical lace with a soft texture.
  • the conventional spraying method and the impregnation method are not preferable because the B—A force exceeds 3 ⁇ 4 ° C, and the dye is detached from the pre-dyed embroidery thread and reattached.
  • the present invention also provides a dry heat treatment after a foam-like aqueous solution containing a polybulualcohol resin is adhered to a base fabric made of a random tube nonwoven fabric of water-soluble polybulcoalcohol fibers and a pre-dyed embroidery thread.
  • the method for producing a base fabric for chemical lace according to the present invention is also provided.
  • the dissolution temperature of the fiber or the nonwoven fabric in water is 10. /.
  • the modulus strength, bending resistance, and fiber strength were determined by the following methods.
  • the nonwoven fabric is cut into 50 mm x 170 mm in the vertical and horizontal directions, respectively, and the tensile strength is measured using an Instron tensile tester under the conditions of a sample gripping interval of 100 mm, a gripping width of 25 mm, and a tensile speed of 100 mm / min. The intensity at 10% elongation was read.
  • Spinning is carried out in the same manner as in Example 1 except that PVA with a polymerization degree of 1750 and a Kenya degree of 96 mol% is used. Fineness is 850,000 dtex, strength is 6.2 cN / dtex, and the dissolution temperature in water is 65 ° C. Of PVA crimped fibers were obtained. The performance of the fiber is shown in Table 1. In addition, a nonwoven fabric was produced using the fibers under the same conditions as in Example 1. As shown in Table 2, the performance of the nonwoven fabric is as soft as 86 mm and has good workability. Further, the 10% modulus strength is as high as 19.4 (N / 50 mm).
  • PVA with a degree of polymerization of 1750 and a chain degree of 98.5 mol% was added to water as a fiber raw material, and dissolved by stirring at 240 rpm for 10 hours at 90 ° C to obtain a spinning stock solution with a polymer concentration of 17% by mass. Obtained.
  • the obtained spinning solution was spun into a 40 ° C acidic coagulation bath made of a saturated sodium sulfate aqueous solution through a spinneret having a hole number of 15,000 holes and a hole diameter of 0.16 mm for coagulation.
  • the obtained shinoshino was wet-heat-stretched with a roller draft of 3.0 times, washed with water, further dried at 130 ° C, and then dry-heated at 170 ° C with a draw ratio of 2.0 times. , Crimping and cutting, fineness 3.
  • Example 2 Further, a nonwoven fabric was produced under the same conditions as in Example 1. As shown in Table 2, the performance of the non-woven fabric was as soft as 139 mm in bending resistance and good in workability, and further as high as 10% modulus strength was 35.3 (N / 50 mm).
  • Example 2 As a nonwoven material, a random web similar to that in Example 1 was prepared, and the random web was impregnated with a 1% by mass aqueous solution made of the same PV A as the fiber material, squeezed, and dried at 70 ° C. Obtained. As shown in Table 2, the performance of the nonwoven fabric is as high as 10% modulus strength is 54.8 (N / 50mm width), but the softness is too high at 162mm, so the texture is hard. Thus, although embroidery was attempted using the same embroidery thread as in Example 1, it was not suitable as a chemical lace base fabric with poor workability such as a needle breaking during embroidery.
  • Comparative Example 2 A random web similar to that in Example 1 was prepared as a nonwoven material, and a 1% by mass aqueous solution composed of the same PV A as the fiber material was foamed, impregnated into the random web, and dried at 70 ° C to obtain a nonwoven fabric. It was. As shown in Table 2, the nonwoven fabric has a low 10% modulus strength of 7.8 (NZ 50 mm width). Therefore, when the embroidery is applied using the same embroidery thread as in Example 1, the embroidery pattern jumps. As a result, it was suitable as a base material for chemical lace.
  • a random web similar to that of Example 1 was prepared as a nonwoven material, and a nonwoven fabric was obtained by passing between a heated embossing tool and a steel roll.
  • the embossing conditions at this time were a bonding area ratio of 12%, a temperature of 195 ° C, a linear pressure of 329 N / cm, and a processing speed of 5 m / min.
  • the performance of the non-woven fabric is the force S that the embroidery property was reasonable, the water dissolution temperature of the base fabric after embroidery was 86.5 ° C, and the difference from the fiber dissolution temperature in water was 14.5. Since the temperature reached ° C, the dye was dropped and reattached when the base fabric after embroidery was dissolved and removed, making it unsuitable for a chemical lace base.
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 im 40. 2 39. 7 40. 3 40. 4 40. 0 39. 8 ⁇ p ffQ
  • ADVANTAGE OF THE INVENTION it is possible to provide an inexpensive chemical lace base fabric that is soft, has good workability, has high dimensional stability, is less prone to embroidery pattern displacement, and has a low melting temperature, and a method for producing the same. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Automatic Embroidering For Embroidered Or Tufted Products (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Decoration Of Textiles (AREA)

Abstract

A base fabric for chemical lace which is composed of a random-web nonwoven fabric made of a water-soluble polyvinyl alcohol fiber and dyed stitch yarn and which satisfies the following requirements: (1) the binder to be added to the nonwoven fabric is a foam made from an aqueous solution containing a polyvinyl alcohol resin and the quantity of the binder adhering to the nonwoven fabric is 2 to 20 % by mass based on the mass of the whole nonwoven fabric, (2) the widthwise strength of the nonwoven fabric at 10% modulus is 15-80 N/50mm width, and (3) the bending resistance of the nonwoven fabric is 40 to 150 mm. The base fabric is inexpensive and excellent in softness, workability, and dimensional stability, little suffers from omission or deviation in embroidered patterns, and permits low dissolution temperature.

Description

明 細 書  Specification
ケミカルレース用基布及びその製造方法  Chemical lace base fabric and method for producing the same
技術分野  Technical field
[0001] 本発明は、柔らかで、寸法安定性が高ぐかつ溶解温度が低い上、安価なケミカル レース用基布に関する。  The present invention relates to a chemical lace base fabric that is soft, has high dimensional stability, has a low melting temperature, and is inexpensive.
背景技術  Background art
[0002] 従来、ケミカルレース用の基布としては、水溶性ポリビエルアルコール(以下、 PVA と称す)系の長繊維からなる織布が主に用いられてきた。この織布は寸法安定性が 高ぐ刺繍柄のずれが生じ難ぐ基布の溶解除去が比較的低温で行えるという利点 があるが、その反面、長繊維そのものの価格が高ぐかつ特殊な製織工程を必要とす ることから、極めて高価となるといつた問題点があった。また、織布であるため布が硬 ぐ刺繍時に針折れが生じやすいという欠点もあった。  Conventionally, a woven fabric made of water-soluble polyvinyl alcohol (hereinafter referred to as PVA) long fibers has been mainly used as a base fabric for chemical lace. This woven fabric has the advantage of being able to dissolve and remove the base fabric at a relatively low temperature, which has high dimensional stability and is unlikely to cause deviation of the embroidery pattern, but on the other hand, the long fiber itself is expensive and special weaving. Since a process was required, there was a problem when it became extremely expensive. In addition, since it is a woven fabric, there is a drawback in that needle breakage tends to occur during embroidery when the fabric is hard.
近年、ケミカルレースの市場はアジアを中心とする諸外国の需要拡大に伴い、着実 に成長を続けている。その需要傾向は、後染め刺繍糸が主体のものから、カラフルな 先染めレーヨンや先染めポリエステル等の先染め刺繍糸へと移行している。中でも分 散染料を使用した先染めポリエステル刺繍糸は、再生ポリエステルが使用できること 力 環境に優しぐまた光沢、耐久性、洗濯耐久性が優れることから、その使用が増 カロのィ頃向にある。  In recent years, the chemical race market has continued to grow steadily as demand in other countries, particularly in Asia, expands. The demand trend is shifting from those mainly made of post-dyed embroidery threads to those made of colorful dyed rayon and pre-dyed polyester. In particular, pre-dyed polyester embroidery yarns that use disperse dyes can be used with recycled polyester. The use of these polyesters is likely to increase because they are environmentally friendly and have excellent gloss, durability, and washing durability.
今後は先染めポリエステル刺繍糸からの移染防止として 80°C以下の温度で溶解除 去でき、かつ安価で作業性がよぐ柔らかで寸法安定性が高ぐ刺繍柄がずれ難い 基布の需要が益々高まると予想される。  In the future, it is possible to dissolve and remove from pre-dyed polyester embroidery thread at a temperature of 80 ° C or less, and it is cheap, soft and easy to work with, and has high dimensional stability. Is expected to increase.
[0003] 上記したような、高価な水溶性織布に代替される基布としては水溶性不織布があり 、これまで、係る不織布を用いた種々の試みがなされてきている。例えば水中溶解温 度が 10°C以下で熱融着性のある PVA系繊維からなる不織布が提案されている(例 えば、特許文献 1参照。)。し力しながら、このような特殊な繊維は生産性が低いため 高価である。また、不織布のエンボス接着面積率を大きくすれば刺繍時の寸法安定 性を確保することはできるが、その反面柔らかさを損ね、刺繍時に針折れを起こすこ とになる。そのため、比較的高目付にすることで刺繍時の寸法安定性を確保するが、 品質の優れた基布の提供は困難である。 [0003] As a base fabric that can be substituted for the expensive water-soluble woven fabric as described above, there is a water-soluble nonwoven fabric, and various attempts using such a nonwoven fabric have been made so far. For example, a non-woven fabric made of PVA-based fibers having a melting temperature in water of 10 ° C or less and heat-fusible has been proposed (for example, see Patent Document 1). However, such special fibers are expensive because of their low productivity. In addition, dimensional stability during embroidery can be ensured by increasing the embossed adhesive area ratio of the nonwoven fabric, but on the other hand, the softness is impaired and needle breakage may occur during embroidery. It becomes. Therefore, a relatively high basis weight ensures dimensional stability during embroidery, but it is difficult to provide a high-quality base fabric.
[0004] また、 PVA系スパンボンドウェブのエンボス不織布が提案されてレ、る(例えば、特許 文献 2参照。)。この製法は大量生産に適したものであるが、紡糸の安定性のために 原料樹脂の重合度を低くせざるを得ず、また熱処理による配向結晶化を十分に行う ことが難しく寸法安定性の良好な基布を得ることは困難であった。  [0004] Also, an embossed nonwoven fabric of PVA-based spunbond web has been proposed (see, for example, Patent Document 2). Although this production method is suitable for mass production, it is necessary to reduce the degree of polymerization of the raw material resin for spinning stability, and it is difficult to sufficiently perform orientation crystallization by heat treatment, so that the dimensional stability is low. It was difficult to obtain a good base fabric.
[0005] さらに、ランダムウェブ不織布と布状物を水溶性接着剤等で接合したものが提案さ れている(例えば、特許文献 3参照。)。し力、しながら、このような布状物を得るには特 殊な設備の導入が必要であり、汎用的かつ安価な基布の提供は困難であった。  [0005] Further, there has been proposed one in which a random web nonwoven fabric and a cloth-like material are joined with a water-soluble adhesive or the like (see, for example, Patent Document 3). However, in order to obtain such a cloth-like material, it was necessary to introduce special equipment, and it was difficult to provide a general-purpose and inexpensive base fabric.
[0006] 一方、寸法安定性の良好な基布として、 PVA系繊維からなるランダムウェブを水溶 性樹脂を含むバインダー水溶液で接着したものも多くみられ、例えば、 PVA系長繊 維のウェブを該バインダー水溶液で接着した不織布が提案されている(例えば、特許 文献 4参照。)。し力しながら、 PVA系の長繊維を用いて不織布を製造するには製造 工程を非連続にせざるを得ず、汎用的かつ安価な基布の供給は困難であった。さら に、水溶性樹脂を含むバインダー水溶液で接着させた基布に熱処理を施すと、収縮 が大きくなるという問題点があった。  [0006] On the other hand, as a base fabric having good dimensional stability, there are many cases where a random web made of PVA fibers is bonded with a binder aqueous solution containing a water-soluble resin. For example, a web of PVA long fibers is used. A nonwoven fabric bonded with an aqueous binder solution has been proposed (see, for example, Patent Document 4). However, in order to manufacture a nonwoven fabric using PVA-based long fibers, the manufacturing process must be discontinuous, and it was difficult to supply a general-purpose and inexpensive base fabric. In addition, when the base fabric bonded with an aqueous binder solution containing a water-soluble resin is heat-treated, there is a problem that shrinkage increases.
[0007] 上記以外の方法として、 PVA系繊維の流体絡合シートにバインダー水溶液を噴霧 または含浸させ、乾燥時に幅方向への緊張処理を行うことが提案されている(例えば 、特許文献 5参照。)。し力しながら、この方法では比較的多量のバインダー樹脂を付 着させなければならないので、寸法安定性と柔らかさを同時に満足させることは困難 であった。さらに移染の起こりやすい先染めポリエステル刺繍糸を使用できる低温溶 解タイプの PVA系繊維に適用すると、水による膨潤 ·収縮が起こり、地合いの良好な 基布を得ることが困難であった。  [0007] As a method other than the above, it has been proposed to spray or impregnate a PVA fiber entangled sheet with an aqueous binder solution and perform tension treatment in the width direction during drying (see, for example, Patent Document 5). ). However, in this method, since a relatively large amount of binder resin has to be attached, it has been difficult to satisfy dimensional stability and softness at the same time. Furthermore, when applied to low-temperature-melting type PVA fibers that can use pre-dyed polyester embroidery threads that are susceptible to transfer, swelling and shrinkage due to water occurred, making it difficult to obtain a base fabric with good texture.
[0008] 特許文献 1 :特開平 11一 217759号公報  [0008] Patent Document 1: Japanese Patent Laid-Open No. 11-217759
特許文献 2:特開 2001— 279568公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-279568
特許文献 3 :特開 2003— 129383公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-129383
特許文献 4 :特開平 7— 054257号公報  Patent Document 4: JP-A-7-054257
特許文献 5 :特開平 1一 018182号公報 発明の開示 Patent Document 5: Japanese Patent Laid-Open No. 018182 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 上記したように、柔らかで、寸法安定性が高ぐし力も溶解温度が低レ、、安価なケミ カルレース用基布を得るにあたっては、実用化への障害が多ぐこれらの諸問題が解 決されたケミカルレース用基布の開発が望まれていた。  [0009] As described above, in order to obtain an inexpensive chemical lace base fabric that is soft, has high dimensional stability, has a low squeeze temperature, and a low melting temperature, these problems have many obstacles to practical use. The development of a dissolved chemical lace fabric was desired.
本発明は、柔らかで作業性がよぐ寸法安定性が高ぐ刺繍柄の飛び'ズレが生じ 難ぐ溶解温度が低い、安価なケミカルレース用基布及びその製造方法を提供する ことである。  An object of the present invention is to provide an inexpensive chemical lace base fabric having a low melting temperature and a method for producing the same, which is soft and has good workability and high dimensional stability and is unlikely to cause embroidery pattern displacement.
課題を解決するための手段  Means for solving the problem
[0010] 上記の課題を達成すベぐ本発明者等は鋭意検討を重ねた結果、水溶性 PVA系 繊維からなるランダムウェブに、 PVA系樹脂を含む水溶液をフォーム状にしたバイン ダー(以下、単に、フォーム状のバインダー水溶液ということがある)を、含浸し、乾燥 することで、安価で、柔らかで、寸法安定性が高ぐ溶解温度が低いケミカルレース用 基布を得ることができることを見出した。該バインダー水溶液を付与する本加工方式 は、プロセスが簡素で汎用性があり、従来の噴霧や含浸などの方式に比べて水分付 着量を少なくすることができることから、 S彭潤 ·収縮による地合い不良を調整でき、乾 燥に要するエネルギーも節約できるので、本発明の課題に合致するものである。更に はフォーム状のバインダーを付与する本加工方式は、従来方式に比べて繊維の交 絡部にバインダー水溶液中のバインダー樹脂が集中するため、比較的少量のバイン ダー樹脂付着量で高レ、寸法安定性が得られ基布の柔らかさが損なわれなレ、とレ、う利 点があることを見出し、本発明を完成させた。 [0010] As a result of intensive investigations by the present inventors who have achieved the above-mentioned problems, a binder (hereinafter, referred to as a foam) in which an aqueous solution containing a PVA resin is formed on a random web composed of water-soluble PVA fibers. It is found that a base fabric for chemical lace can be obtained by impregnating and drying a foam-like binder aqueous solution), and cheap, soft, high in dimensional stability and low in melting temperature. It was. This processing method for applying the aqueous binder solution is simple and versatile, and can reduce the amount of moisture adhering compared to conventional spraying and impregnation methods. Since the defect can be adjusted and the energy required for drying can be saved, it is consistent with the problem of the present invention. Furthermore, this processing method, which provides a foam-like binder, concentrates the binder resin in the binder aqueous solution at the fiber entangled part compared to the conventional method, so it has a relatively small amount of binder resin adhesion and high dimensions and dimensions. The present inventors have found that there are advantages that stability is obtained and the softness of the base fabric is not impaired, and the present invention has been completed.
[0011] すなわち、本発明は、水溶性 PVA系繊維のランダムウェブ不織布と先染め刺繍糸 からなり、以下の条件を全て満足することを特徴とするケミカルレース用基布である。 [0011] That is, the present invention is a chemical lace base fabric comprising a random web nonwoven fabric of water-soluble PVA fibers and a pre-dyed embroidery thread and satisfying all of the following conditions.
(1)不織布に付着させるバインダーが PVA系樹脂を含む水溶液をフォーム状とした ものであり、かつ全不織布質量に対する該バインダーの付着量が 2〜20質量%であ ること、  (1) The binder to be attached to the nonwoven fabric is a foamed aqueous solution containing a PVA resin, and the amount of the binder attached to the total nonwoven fabric weight is 2 to 20% by mass,
(2)不織布のョコ方向の 10%モジュラス強度が 15〜80N/50mm幅であること、 (2) The nonwoven fabric has a 10% modulus strength in the horizontal direction of 15 to 80 N / 50 mm width,
(3)不織布の剛軟度が 40〜 150mmであること。 [0012] また、本発明は、好ましくは、不織布を構成する水溶性ビニルアルコール系繊維の 水中溶解温度を A°C、ポリビニルアルコール系繊維のランダムウェブ不織布の水中 溶解温度を B°Cとするとき、 B— A≤5°Cであることを特徴とする上記のケミカルレース 用基布である。 (3) The bending resistance of the nonwoven fabric is 40 to 150 mm. [0012] Further, in the present invention, preferably, the water-soluble dissolution temperature of the water-soluble vinyl alcohol fiber constituting the nonwoven fabric is A ° C, and the water dissolution temperature of the polyvinyl alcohol fiber random web nonwoven fabric is B ° C. B—A base fabric for chemical lace as described above, characterized in that A ≦ 5 ° C.
[0013] さらに、好ましくは不織布を構成する PVA系繊維の水中溶解温度が 50〜80°Cで あることを特徴とする上記のケミカルレース用基布である。  [0013] Furthermore, the above-mentioned chemical lace base fabric is preferably characterized in that the PVA fiber constituting the nonwoven fabric has a dissolution temperature in water of 50 to 80 ° C.
[0014] また、本発明は水溶性 PVA系繊維のランダムウェブ不織布と先染め刺繍糸からな る基布に PVA系樹脂を含むフォーム状の水溶液を付着させた後、乾熱処理を施す ことを特徴とする上記のケミカルレース用基布の製造方法である。 [0014] In addition, the present invention is characterized in that a foam-like aqueous solution containing a PVA-based resin is attached to a base fabric made of a random web nonwoven fabric of water-soluble PVA-based fibers and dyed embroidery yarn, and then subjected to a dry heat treatment. It is the manufacturing method of said base fabric for chemical laces.
発明の効果  The invention's effect
[0015] 本発明によれば、柔らかで作業性がよぐ寸法安定性が高く刺繍柄の飛び'ズレが 生じ難ぐ溶解温度が低い、安価なケミカルレース用基布及びその製造方法を提供 すること力 Sできる。  [0015] According to the present invention, there is provided an inexpensive chemical lace base fabric that is soft, has good workability, has high dimensional stability, is less likely to cause embroidery pattern displacement, and has a low melting temperature, and a method for producing the same. That power S.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明において、繊維を構成する樹脂としては水溶性の PVA系ポリマーを用いる 必要がある。本発明に用いられる水溶性 PVA系ポリマーとして、ビュルアルコールュ ニット以外のユニットが酢酸ビュルユニットからなる、いわゆる部分ケン化 PVAの場合 、本発明の好ましい水中溶解温度 50〜80°Cを得るには、該部分ケン化 PVAのケン ィ匕度は 95〜99. 95モル0 /0であることが好ましレ、。 99. 95モル0 /0を越えると乾熱延伸 時や乾熱収縮時に結晶化が進行して、水中溶解温度が 80°Cを越える場合がある。 [0016] In the present invention, it is necessary to use a water-soluble PVA polymer as the resin constituting the fiber. In the case of a so-called partially saponified PVA in which the unit other than the bull alcohol unit is an acetic acid bull unit as the water-soluble PVA polymer used in the present invention, in order to obtain the preferred water dissolution temperature of 50 to 80 ° C. of the present invention , Les, Shi preferred that Ken I匕度of partial saponification PVA is 95 to 99. 95 mole 0/0. Crystallization progresses exceeds 99. 95 mole 0/0 at the time and dry heat shrinkage hot drawing, there is a case where the temperature of dissolution in water exceeds 80 ° C.
[0017] ビエルアルコールユニットと酢酸ビエルユニット以外のユニットを含有する、いわゆる 変性 PVAを使用する場合、変性ユニットが結晶化阻害効果の大きいユニットである 場合には、変性ユニットが 0. 5モル%程度の変性 PVA系ポリマーであっても本発明 に好適に使用できる場合もあるが、一般的には変性ユニットが 1モル%以上の変性 P VA系ポリマーを用いることが好ましレ、。変性 PVA系ポリマーの場合、未変性の PVA 系ポリマーに比べてケン化度は高めでもその結晶阻害効果のために低い水中溶解 温度にすることができる。一方で、変性ユニットが 20モル%を超えると結晶性の低下 が顕著となり、繊維物性の低下が生じるばかりか、紡糸性も低下するため好ましくな レ、。 [0017] When a so-called modified PVA containing a unit other than a bial alcohol unit and a vinyl acetate unit is used, when the modified unit is a unit having a large crystallization inhibitory effect, the modified unit is about 0.5 mol%. The modified PVA polymer may be suitably used in the present invention, but in general, it is preferable to use a modified PVA polymer having a modified unit of 1 mol% or more. In the case of a modified PVA polymer, even if the degree of saponification is higher than that of an unmodified PVA polymer, the dissolution temperature in water can be lowered due to its crystal inhibition effect. On the other hand, if the modifying unit exceeds 20 mol%, the crystallinity is significantly lowered, and not only the fiber physical properties are lowered but also the spinnability is lowered. Les.
[0018] 変性ユニットを形成する単量体としては、エチレン、ァリルアルコール、ィタコン酸、 アクリル酸、ビニルァミン、無水マレイン酸とその開環物、スルホン酸含有ビュル化合 物、ピバリン酸ビュルの如く炭素数が 4以上の脂肪酸ビュルエステル、ビュルピロリド ンおよび上記イオン性基の一部または全量を中和した化合物などが例示できる。変 性ユニットの導入法は共重合による方法でも、後反応による導入方法でもよい。また 変性ユニットのポリマー鎖内での分布はランダム状でもブロック状でもグラフト状でも 特に限定はない。また該ポリマーの重合度は特に限定されないが、繊維の機械的性 能、汎用性の点から、重合度 1000以上、特に 1500以上とするのが好ましぐ繊維の 紡糸性の点からは 4000以下であるのが好ましい。  [0018] Monomers that form the modified unit include carbon such as ethylene, allylic alcohol, itaconic acid, acrylic acid, vinylamine, maleic anhydride and its ring-opened product, sulfonic acid-containing bur compound, and pivalate bur. Examples thereof include fatty acid bule esters having a number of 4 or more, bull pyrrolidone, and compounds obtained by neutralizing a part or all of the ionic groups. The method for introducing the modification unit may be a copolymerization method or a post-reaction introduction method. The distribution of the modified units in the polymer chain is not particularly limited, whether it is random, block or graft. The degree of polymerization of the polymer is not particularly limited, but from the viewpoint of fiber mechanical performance and versatility, the degree of polymerization is preferably 1000 or more, particularly preferably 1500 or less from the viewpoint of fiber spinnability. Is preferred.
[0019] 次に本発明の PVA系繊維の製造方法について説明する。 Next, a method for producing the PVA fiber of the present invention will be described.
本発明においては水溶性の PVA系ポリマーを水もしくは有機溶剤に溶解した紡糸 原液を用いて繊維を製造することにより、機械的性能および水溶性に優れた繊維を 効率的に得ることができる。もちろん、本発明の効果を損なわない範囲であれば、紡 糸原液中に上記以外の添加剤やポリマーが含まれていても力まわない。紡糸原液を 構成する溶媒としては、例えば、水や、ジメチルスルホキシド(DMSO)、ジメチルァ セトアミド、ジメチルホルムアミド、 N—メチルピロリドンなどの極性溶媒、グリセリン、ェ チレングリコールなどの多価アルコール類およびこれら溶媒とロダン塩、塩化リチウム 、塩化カルシウム、塩ィ匕亜鉛などの膨潤性金属塩の混合物、さらにはこれら溶媒どう しの混合物、又はこれら溶媒と水との混合物などが挙げられる力 これらの中では水 や DMSOが低温溶解性、低毒性、低腐食性などの点で最も好適である。  In the present invention, a fiber excellent in mechanical performance and water solubility can be efficiently obtained by producing a fiber using a spinning stock solution in which a water-soluble PVA polymer is dissolved in water or an organic solvent. Of course, as long as the effects of the present invention are not impaired, the spinning dope may contain additives or polymers other than those described above. Examples of the solvent constituting the spinning dope include water, polar solvents such as dimethyl sulfoxide (DMSO), dimethylacetamide, dimethylformamide, and N-methylpyrrolidone, polyhydric alcohols such as glycerin and ethylene glycol, and these solvents. A mixture of swellable metal salts such as rhodan salts, lithium chloride, calcium chloride, and zinc chloride, and also a mixture of these solvents, or a mixture of these solvents and water. DMSO is most suitable in terms of low-temperature solubility, low toxicity, low corrosivity, and the like.
紡糸原液中のポリマー濃度は、組成、重合度、溶媒によって異なるが、 8〜40質量 %の範囲であることが好ましい。紡糸原液の吐出時の液温は、紡糸原液がゲル化し たり、分解、着色したりしない範囲であり、具体的には 50〜: 150°Cの範囲とすることが 好ましい。  The polymer concentration in the spinning dope varies depending on the composition, degree of polymerization, and solvent, but is preferably in the range of 8 to 40% by mass. The liquid temperature at the time of discharging the spinning stock solution is in a range where the spinning stock solution is not gelled, decomposed, or colored, and is preferably in the range of 50 to 150 ° C.
[0020] 力、かる紡糸原液をノズルから吐出して湿式紡糸又は乾湿式紡糸を行えばよぐ PV Aポリマーに対して固化能を有する固化液中に吐出すればよい。特に多ホールから 紡糸原液を吐出する場合には、吐出時の繊維同士の膠着を防止する点から乾湿式 紡糸法よりも湿式紡糸法の方が好ましい。なお、湿式紡糸法とは、紡糸口金から直接 固化浴に紡糸原液を吐出する方法のことであり、一方乾湿式紡糸法とは、紡糸口金 から一旦、空気や不活性ガス中に紡糸原液を吐出し、それから固化浴に導入する方 法のことである。 [0020] It is only necessary to discharge the raw, spinning solution from the nozzle and perform wet spinning or dry-wet spinning. The PV A polymer may be discharged into a solidified solution having a solidifying ability. Especially when discharging the spinning dope from multiple holes, it is dry and wet from the standpoint of preventing the fibers from sticking together. The wet spinning method is preferable to the spinning method. The wet spinning method is a method in which a spinning stock solution is discharged directly from a spinneret into a solidification bath, while the dry and wet spinning method is a method in which a spinning stock solution is temporarily discharged from a spinneret into air or an inert gas. And then it is introduced into the solidification bath.
[0021] 固化浴は、原液溶媒が有機溶媒の場合と水の場合では異なる。有機溶媒を用いた 原液の場合は、得られる繊維強度等の点から固化溶媒と原液溶媒力 なる混合液が 好ましぐ固化溶媒としてはメタノール、エタノールなどのアルコール類や、アセトン、 メチルェチルケトンなどのケトン類などの PVAポリマーに対して固化能を有する有機 溶媒、特にメタノールと DMSOからなる有機溶媒が好ましぐかつ固化浴中での固化 溶媒/原液溶媒の質量比が 25/75〜95/5、好ましくは 55/45〜80/20である 混合液が、紡糸工程性および溶剤回収の点で好ましい。また固化浴の温度は 30°C 以下が好ましぐ特に均一な冷却ゲル化のためには 20°C以下、より好ましくは 15°C 以下である。  [0021] The solidification bath differs depending on whether the stock solution is an organic solvent or water. In the case of a stock solution using an organic solvent, a solidified solvent and a mixed solution having a stock solvent power are preferred from the viewpoint of fiber strength and the like. Examples of the solidified solvent include alcohols such as methanol and ethanol, acetone, and methyl ethyl ketone. Organic solvents with solidification ability for PVA polymers such as ketones such as methanol, especially organic solvents consisting of methanol and DMSO are preferred, and the mass ratio of solidification solvent / stock solvent in the solidification bath is 25/75 to 95 / 5, preferably 55/45 to 80/20 is preferable from the viewpoint of spinning processability and solvent recovery. The temperature of the solidification bath is preferably 30 ° C or less, and in particular for uniform cooling gelation, it is 20 ° C or less, more preferably 15 ° C or less.
一方、紡糸原液が水溶液の場合には、固化液を構成する固化溶媒としては、芒硝 、塩化ナトリウム、炭酸ソーダなどの、 PVA系ポリマーに対して固化能を有する無機 塩類の水溶液が好適に挙げられる。本固化浴は当然、酸性、アルカリ性のいずれで あってもかまわない。  On the other hand, when the spinning dope is an aqueous solution, the solidifying solvent constituting the solidifying solution is preferably an aqueous solution of an inorganic salt having a solidifying ability with respect to a PVA polymer, such as sodium sulfate, sodium chloride, and sodium carbonate. . Naturally, the solidification bath may be either acidic or alkaline.
[0022] 次に固化された糸篠から紡糸原液の溶媒を抽出除去する。抽出の際に糸篠を湿 延伸すること力 乾燥時の繊維間膠着を抑制する上でも、さらに得られる繊維の強度 を高める上でも好ましい。湿延伸倍率としては 1. 5〜6倍であることが好ましい。抽出 は、通常は複数の抽出浴を通すことにより行われる。抽出浴としては、固化溶媒単独 又は固化溶媒と原液溶媒の混合液が用いられ、また抽出浴の温度は通常、 0〜50 °Cの範囲が採用される。  Next, the solvent of the spinning dope is extracted and removed from the solidified yarn. The ability to wet-draw the shinoshino during extraction is preferable from the standpoint of suppressing inter-fiber sticking during drying and further increasing the strength of the resulting fiber. The wet draw ratio is preferably 1.5 to 6 times. Extraction is usually performed by passing through multiple extraction baths. As the extraction bath, a solidified solvent alone or a mixed solution of a solidified solvent and a stock solvent is used, and the temperature of the extraction bath is usually in the range of 0 to 50 ° C.
[0023] 次いで、必要に応じて油剤などを付与して乾燥すればよい。乾燥温度は 210°C以 下とするのが好ましぐ特に乾燥初期は 160°C以下の低温で乾燥し、乾燥後半は高 温で乾燥する多段乾燥が好ましい。さらに乾熱延伸および必要に応じて乾熱収縮を 施し、 PVA分子鎖を配向、結晶化させ、繊維の強度や耐水性、耐熱性を調整する。 繊維の機械的性能を高めるためには、 150〜250°Cの温度条件下で、全延伸倍率 を 3倍以上、特に 5倍以上となるような乾熱延伸を行うのが好ましい。全延伸倍率を 3 倍以上とすることにより、強度 1. 5〜4. OcN/dtex,さらに全延伸倍率を 5倍以上と することにより強度 4cN/dtex以上の繊維を得ることが可能となる。なお、本発明で レ、う全延伸倍率とは、湿熱延伸倍率と乾熱延伸倍率との積で表される倍率である。 [0023] Then, if necessary, an oil agent or the like may be applied and dried. The drying temperature is preferably 210 ° C or lower, and in particular, multistage drying in which drying is performed at a low temperature of 160 ° C or lower in the initial stage of drying and at a high temperature in the latter half of drying is preferable. Further, dry heat stretching and, if necessary, dry heat shrinkage are performed to align and crystallize the PVA molecular chains, thereby adjusting the strength, water resistance and heat resistance of the fiber. In order to improve the mechanical performance of the fiber, the total draw ratio under the temperature condition of 150-250 ° C It is preferable to perform dry heat stretching so that the ratio is 3 times or more, particularly 5 times or more. By setting the total draw ratio to 3 times or more, it becomes possible to obtain fibers having a strength of 1.5 to 4. OcN / dtex, and by setting the total draw ratio to 5 times or more, a fiber having a strength of 4 cN / dtex or more. In the present invention, the total draw ratio is a ratio represented by the product of the wet heat draw ratio and the dry heat draw ratio.
[0024] さらに、必要に応じて油剤などを付与して捲縮を施す。捲縮付与方法としては従来 公知の方法が用いられるが、 PVA系繊維に十分な捲縮を付与するには予め乾熱予 熱処理を施して、機械捲縮機に導入し捲縮を付与し、次いでガラス転移温度未満に 冷却して捲縮形態を強固に保持する方法が好適である。  [0024] Further, if necessary, an oil agent or the like is applied and crimped. Conventionally known methods are used as the crimping method. In order to impart sufficient crimp to the PVA fiber, dry heat pre-heat treatment is performed in advance and introduced into a mechanical crimper to impart crimp. Next, a method of firmly cooling the crimped form by cooling to below the glass transition temperature is suitable.
[0025] このようにして製造される本発明の繊維の繊度は 0. 5〜5dtexであることが好まし レ、。 0. 5dtex未満では繊維強力が不足し刺繍時に針での損傷が大きくなる。 5dtex を越えると不織布地合が悪くなり、刺繍柄の飛びやズレを引き起こし良好な刺繍が困 難になる。より好ましくは l〜3dtexである。  [0025] The fineness of the fiber of the present invention thus produced is preferably 0.5 to 5 dtex. If it is less than 5 dtex, the fiber strength is insufficient and damage to the needle during embroidery increases. If it exceeds 5 dtex, the texture of the nonwoven fabric will deteriorate, causing the embroidery pattern to jump and shift, making it difficult to achieve good embroidery. More preferably, it is 1 to 3 dtex.
[0026] 本発明で用いる PVA系繊維の水中溶解温度は、 50〜80°Cであることが好ましレ、。  [0026] The dissolution temperature in water of the PVA fiber used in the present invention is preferably 50 to 80 ° C.
水中溶解温度が 50°C未満では水による膨潤、収縮が起こりやすぐ樹脂バインダー 水溶液付与後の乾燥工程での収縮が大きくなり地合のよい不織布を得ることができ なレ、。この乾燥での収縮はピンテンターやサンドイッチ 'ネットを用いることで全体的 な抑制は可能であるが、局所的な地合斑を防ぐことは困難である。一方、繊維の水 中溶解温度が 80°Cを越えると刺繍後に基布を完全に溶解除去することが困難になり 好ましくなレ、。より好ましくは 55〜75°Cである。  If the dissolution temperature in water is less than 50 ° C, swelling and shrinkage due to water occur immediately and the shrinkage in the drying process after application of the resin binder aqueous solution becomes large, and a nonwoven fabric with good texture cannot be obtained. This drying shrinkage can be suppressed entirely by using a pin tenter or sandwich net, but it is difficult to prevent local formation of spots. On the other hand, if the fiber dissolution temperature in water exceeds 80 ° C, it becomes difficult to completely dissolve and remove the base fabric after embroidery. More preferably, it is 55 to 75 ° C.
[0027] 次に本発明の PVA系繊維からなる不織布の製造方法について説明する。  [0027] Next, a method for producing a nonwoven fabric comprising the PVA fibers of the present invention will be described.
本発明のランダムウェブ不織布としては、不織布を構成する繊維の配向がランダム である乾式不織布が好ましぐ従来公知のカード法やエアーレイド法などで作成され たウェブが用いられる。また、繊維配向をランダムにする方法としては、従来公知のク ロスラップ法やクリスクロス法などが用いられる力 ケミカルレース基布の場合、特に刺 繍時にョコ方向への張力が掛カ、るため、刺繍柄の飛びやズレを抑制するためにも繊 維配向がランダムであることが好適である。  As the random web nonwoven fabric of the present invention, a web prepared by a conventionally known card method, air raid method or the like in which a dry nonwoven fabric in which the orientation of fibers constituting the nonwoven fabric is random is preferred is used. In addition, as a method of randomizing the fiber orientation, a force chemical lace base fabric using a conventionally known cross wrap method or a criss-cross method is applied. In order to suppress the jumping and deviation of the embroidery pattern, it is preferable that the fiber orientation is random.
[0028] 上記した製造方法により製造される本発明の不織布の目付は、 15〜50g/m2であ ることが好ましい。 目付が 15g/m2未満であると、繊維の構成本数が減少して地合が 不均一になり、刺繍柄の飛びやズレを生じやすくなる。また、基布自体の強力が不足 するため、刺繍時の工程通過性が極端に低下する。 目付が 50g/m2を越えると、価 格が高くなるば力りでなく不織布の柔ら力さが損なわれるため、ミシンでの基布同士 の繋ぎこみ作業や刺繍機への基布の展張作業時に作業性が低下する。また、溶解 除去する基布の質量が増加するため溶解や排水処理コストが高くなり好ましくない。 より好ましくは 20〜40g/m2である。 [0028] basis weight of the nonwoven fabric of the present invention produced by the manufacturing method described above, 15 to 50 g / m 2 der Rukoto are preferred. If the basis weight is less than 15 g / m 2 , the number of fibers will decrease and the formation will be reduced. It becomes non-uniform and the embroidery pattern is likely to fly or shift. In addition, since the strength of the base fabric itself is insufficient, the processability during embroidery is extremely reduced. If the basis weight exceeds 50 g / m 2, since the soft power of nonwoven not Chikarari If price is high is impaired, stretched work of the base fabric to tie crowded work and embroidery machine base cloths using a sewing Sometimes workability is reduced. In addition, since the mass of the base fabric to be dissolved and removed increases, the costs for dissolution and wastewater treatment increase, which is not preferable. More preferably from 20 to 40 g / m 2.
[0029] 本発明において、前記製造方法で得られた不織布にフォーム状のバインダーを含 浸'付与させ、その後乾熱処理を行うことにより、柔軟かつ寸法安定性が良好な不織 布が得られる。 In the present invention, the nonwoven fabric obtained by the production method described above is impregnated with a foam-like binder and then subjected to a dry heat treatment to obtain a flexible nonwoven fabric with good dimensional stability.
さらに前記フォーム状のバインダーにて処理した不織布に先染め刺繍糸を用いて 刺繍を施した時に、刺繍柄の飛び、ズレが少ないケミカルレース用基布を得ることが できる。  Furthermore, when embroidering is performed on the nonwoven fabric treated with the foam-like binder using a pre-dyed embroidery thread, it is possible to obtain a chemical lace base fabric with less embroidery pattern jumping and displacement.
ここで、先染め刺繍糸の種類は特に限定はなレ、が、ポリエステル系、レーヨン系の 刺繍糸などが好適に用いられる。  Here, the type of the dyed embroidery thread is not particularly limited, but polyester-based or rayon-based embroidery threads are preferably used.
[0030] 本発明の不織布に付着させるバインダーとしては、 PVA系樹脂を含む水溶液をフ オーム状としたものを用いる。前記組成のフォーム状のバインダー水溶液は、例えば 溶解機中で攪拌しながら PVA系樹脂を水に溶解し所定濃度の PVA水溶液を調製 した後、必要に応じて助剤および浸透剤を添加し、攪拌下で溶解機内の水溶液にェ ァーを吹き込むことで発泡させて調製することができる。調製したフォーム状のバイン ダー水溶液の付与方法は、例えばカード法で作成されたウェブ上にフォーム状のバ インダー水溶液をノズルから流下させたり、フォーム状のバインダー水溶液が表面に 付いたローラーにウェブを接触させて含浸、付与する。本発明においては、含浸、付 与後に乾熱処理を行うことにより、フォーム状のバインダー水溶液が破泡する際に繊 維の交絡部にバインダー水溶液中のバインダー樹脂が集中しゃすくなり、従来の噴 霧法や含浸法に比べて比較的少量の樹脂付着量で同等の接着力を得ることができ る。そのため、繊維の交絡部以外に樹脂が付着する従来法に比べると不織布の柔ら 力、さ、すなわち後述する剛軟度が確保しやすいという利点がある。また、不織布に付 着する水分量が減少するので乾燥に要するエネルギーを節約できる。更には、水に より膨潤、収縮しやすい低温溶解タイプの PVA系繊維を用いる場合には、水分付着 量を減少することができるので膨潤 ·収縮を抑制し、ピンテンターやサンドイッチ ·ネッ トなどの特別な装置がなくても地合の良好な基布が得られる。 [0030] As the binder to be adhered to the nonwoven fabric of the present invention, a foamed aqueous solution containing a PVA resin is used. The foam-like binder aqueous solution having the above composition is prepared by, for example, dissolving a PVA resin in water while stirring in a dissolver to prepare a PVA aqueous solution having a predetermined concentration, and then adding an auxiliary agent and a penetrating agent as necessary. It can be prepared by foaming by blowing air into the aqueous solution in the dissolver. For example, the prepared foam binder aqueous solution can be applied by letting the foam binder aqueous solution flow down from a nozzle onto a web made by the card method, or by feeding the web onto a roller with a foam binder aqueous solution on the surface. Impregnation and application by contact. In the present invention, by performing a dry heat treatment after impregnation and application, the binder resin in the aqueous binder solution concentrates and concentrates on the entangled portion of the fiber when the foam aqueous binder solution breaks, and conventional spraying is performed. Compared to the method and impregnation method, the same adhesion can be obtained with a relatively small amount of resin adhesion. Therefore, there is an advantage that the softness of the nonwoven fabric, that is, the bending resistance described later can be easily ensured as compared with the conventional method in which the resin adheres other than the entangled portion of the fiber. In addition, since the amount of moisture attached to the nonwoven fabric is reduced, the energy required for drying can be saved. Furthermore, in the water When using low-melting-type PVA fibers that are more likely to swell and shrink, the amount of moisture attached can be reduced, so swelling and shrinkage can be suppressed, and there is no need for special devices such as pin tenters, sandwich nets, etc. Can be obtained.
また、基布の膨潤 ·収縮が抑制されることにより、基布を構成する繊維の強伸度物 性を損なわず、基布は低伸度でも高強力を得ることができるため、後述する 10%モ ジュラス強度が得やすくなる。  Further, since the swelling / shrinkage of the base fabric is suppressed, the base fabric can obtain high strength even at low elongation without impairing the strength and elongation properties of the fibers constituting the base fabric. % Modular strength is easy to obtain.
[0031] 本発明のフォーム状のバインダー水溶液の付着量は、全不織布質量に対して 2〜 20質量%であることが必要である。 2質量%未満では不織布との接着力が不足し基 布に必要な強力が得られなレ、。 20質量%を越えると繊維の交絡部以外への樹脂付 着量が増加し、不織布の柔らかさが損なわれると同時に不織布強力が頭打ちになり 、またバインダー樹脂濃度が上がるため、増粘によるローラー等への巻き付きトラブ ルが起こりやすくなる。好ましくは 3〜: 17質量%であり、より好ましくは 4〜: 15質量% である。なお、バインダー水溶液には発泡'浸透作用を有する界面活性剤が含有さ れていることが好ましい。界面活性剤としてはアルキルエーテルスルホン酸系、ドデ シノレベンゼンスルホン酸系、ヒマシ油硫酸化物などが挙げられる。また前記界面活性 剤以外にも柔軟剤、 pH調整剤などを添加してもかまわない。  [0031] The amount of the aqueous binder solution of the present invention needs to be 2 to 20% by mass with respect to the total mass of the nonwoven fabric. If it is less than 2% by mass, the adhesive strength with the non-woven fabric is insufficient and the strength required for the base fabric cannot be obtained. If the amount exceeds 20% by mass, the amount of resin attached to the fiber other than the entangled part will increase, the softness of the non-woven fabric will be impaired, and at the same time, the non-woven fabric will reach its peak, and the binder resin concentration will increase. Wrapping trouble is likely to occur. Preferably it is 3 ~: 17 mass%, More preferably, it is 4 ~: 15 mass%. The aqueous binder solution preferably contains a surfactant having a foaming and penetrating action. Examples of the surfactant include alkyl ether sulfonic acid type, dodecino benzene sulfonic acid type, and castor oil sulfate. In addition to the surfactant, a softening agent, a pH adjuster, etc. may be added.
[0032] 次いで、乾熱による乾燥処理を行う。乾熱による乾燥処理条件には特に限定がなく 、熱風乾燥、シリンダー乾燥等が挙げられる力 100°C以上の熱風炉中にて行うこと が好ましい。  [0032] Next, a drying process by dry heat is performed. There are no particular limitations on the drying treatment conditions by dry heat, and it is preferably carried out in a hot air oven with a force of 100 ° C. or higher, such as hot air drying and cylinder drying.
このような乾熱処理を行うことにより、柔軟かつ寸法安定性が良好で、色彩の鮮ゃ 力な、高級感のある刺繍柄を有するケミカルレース用基布を得ることができる。  By performing such a dry heat treatment, it is possible to obtain a base fabric for chemical lace having a high-quality embroidery pattern that is flexible and has good dimensional stability, vivid color, and high quality.
[0033] ケミカルレース用基布に要求される品質の中で、最重要なものの一つにョコ方向の 10%モジュラス強度がある。一般に刺繍は基布をクリップ等で挟みョコ方向に数%展 張しながら行われる力 このとき基布に要求されるのは破断強力でなぐ刺繍途中で 基布が伸びないことすなわちョコ方向のモジュラス強度が高いことである。本発明の 不織布においては、ョコ方向の 10。 /。モジュラス強度が 15〜80NZ50mm幅でなけ ればならなレ、。ョコ方向の 10%モジュラス強度が 15N/50mm幅より低い場合、刺 繍時の張力によって基布に伸びが起こり、刺繍柄の飛びやズレを助長し、精緻な刺 繍が得られなくなるので好ましくない。一方、ョコ方向の 10%モジュラス強度が 80N /50mm幅を越えると、刺繍柄の飛びやズレの問題はなくなる力 不織布の柔軟性 が失われ、基布同士のミシンでの導布や刺繍機台への基布の展張などの作業効率 が極端に低下する。ョコ方向の 10%モジュラス強度の好ましい範囲は 20〜70NZ5 0mm幅であり、より好ましい範囲は 25〜60N/50mm幅である。 [0033] One of the most important qualities required for a chemical lace fabric is a 10% modulus strength in the horizontal direction. In general, embroidery is performed by holding the base fabric with clips etc. and stretching it in the horizontal direction by several percent. At this time, the base fabric is required to be strong at breakage. The modulus strength is high. In the nonwoven fabric of the present invention, it is 10 in the horizontal direction. /. The modulus must be 15 to 80NZ50mm wide. If the 10% modulus strength in the horizontal direction is lower than 15N / 50mm width, the base fabric will be stretched by the tension at the time of embroidery. Since embroidery cannot be obtained, it is not preferable. On the other hand, if the 10% modulus strength in the horizontal direction exceeds 80N / 50mm width, there will be no problem of skipping or shifting of the embroidery pattern. Work efficiency such as spreading the base fabric on the table is extremely reduced. A preferable range of 10% modulus strength in the horizontal direction is 20 to 70 NZ50 mm width, and a more preferable range is 25 to 60 N / 50 mm width.
不織布のタテ方向の 10%モジュラス強度はョコ方向ほど重要でなレ、が、 10%モジ ュラス強度が 10N/50mm幅以上であることが好ましレ、。タテ方向の 10%モジュラス 強度が低すぎると、刺繍展張時にタテ方向に断布したり、刺繍後のシャーリング工程 でトラブルが起こったりしゃすくなる。  The 10% modulus strength of the nonwoven fabric in the vertical direction is as important as the horizontal direction, but the 10% modulus strength is preferably 10N / 50mm width or more. If the 10% modulus strength in the warp direction is too low, the fabric will be cut in the warp direction during embroidery extension, and problems may occur during the shirring process after embroidery.
[0034] さらに、本発明の不織布の剛軟度は 40〜150mmでなければならなレ、。 40mm未 満では基布が柔ら力べなりすぎ、刺繍時に刺繍柄の飛びやズレを起こす。また、 150 mmを越えると、基布がゴヮゴヮになり、基布の柔らかさを要求される作業、例えば基 布とチユールのミシンでの貼り合わせ、基布同士のミシンでの導布や基布の刺繍機 への展張などの作業性が著しく低下するば力りでなぐ刺繍後の原反巻き取り時に皺 ができやすくなり、原反の連続仕込みが困難になる。不織布の剛軟度は、好ましくは 50〜: 140mmであり、より好ましくは 60〜: 130mmである。なお不織布の剛軟度は後 述する方法により測定される。  [0034] Further, the bending resistance of the nonwoven fabric of the present invention should be 40 to 150 mm. If it is less than 40mm, the base fabric will be too soft and embroidery patterns will be skipped or misaligned. In addition, if it exceeds 150 mm, the base fabric becomes rugged, and work that requires softness of the base fabric, for example, bonding between the base fabric and the sewing machine, guiding cloth or base fabric with the sewing machine between the base fabrics If workability such as spreading on an embroidery machine is remarkably reduced, wrinkles are easily generated when the original fabric is wound after embroidering by force, and continuous preparation of the original fabric becomes difficult. The bending resistance of the nonwoven fabric is preferably 50 to 140 mm, more preferably 60 to 130 mm. The bending resistance of the nonwoven fabric is measured by the method described later.
[0035] ケミカルレース用基布に要求される品質の中で、ョコ方向の 10%モジュラス強度に 並んで重要なものの一つに不織布の水中溶解温度がある。一般に不織布の水中溶 解温度が低いほど、刺繍後の基布を溶解除去する際に染料の脱落、再付着を防止 できるため、レーヨンやポリエステル繊維などの先染刺繍糸を用いる場合は基布選択 の最重要要件となる。具体的には用いる PVA系繊維の水中溶解温度を A°C、該 PV A系繊維を用いて得られる不織布の水中溶解温度を B°Cとするとき、 B_A≤5°Cで あることが好ましぐより好ましくは B_A≤4°C、さらに好ましくは B_A≤2°Cである。 本発明では、発泡させた水溶性 PVA系樹脂の水溶液をバインダーとして不織布へ 付与することにより、 B_A≤5°Cとすることが可能となる。 B_A≤5°Cとすることにより 、溶解工程でのエネルギーの節減が図れ、さらに風合いがソフトなケミカルレース用 基布が得られやすい。 B— Aが 5°Cを超える場合、刺繍後の基布を溶解除去する際 に先染刺繍糸から染料の脱落'再付着が生じる恐れがある。特に従来の噴霧法や含 浸法は B— A力 ¾°Cを超え、先染刺繍糸から染料の脱落、再付着が生じるので好まし くない。 [0035] Among the qualities required for a base fabric for chemical lace, one of the important factors along with the 10% modulus strength in the horizontal direction is the melting temperature of the nonwoven fabric in water. In general, the lower the temperature at which the nonwoven fabric dissolves, the more the dye can be prevented from falling off or reattaching when the base fabric after embroidery is dissolved and removed. Is the most important requirement. Specifically, when the water dissolution temperature of the PVA fiber used is A ° C and the water dissolution temperature of the nonwoven fabric obtained using the PV A fiber is B ° C, it is preferable that B_A ≤ 5 ° C. More preferably, B_A≤4 ° C, more preferably B_A≤2 ° C. In the present invention, B_A ≦ 5 ° C. can be achieved by applying an aqueous solution of foamed water-soluble PVA resin as a binder to the nonwoven fabric. By setting B_A ≤ 5 ° C, energy can be saved in the melting process, and it is easy to obtain a fabric for chemical lace with a soft texture. B— When A exceeds 5 ° C, when the base fabric after embroidery is dissolved and removed There is a risk that the dye may fall off from the pre-dyed embroidery thread. In particular, the conventional spraying method and the impregnation method are not preferable because the B—A force exceeds ¾ ° C, and the dye is detached from the pre-dyed embroidery thread and reattached.
[0036] 本発明は、また、水溶性ポリビュルアルコール系繊維のランダムゥヱブ不織布と先 染め刺繍糸からなる基布に、ポリビュルアルコール系樹脂を含むフォーム状の水溶 液を付着させた後、乾熱処理を施すことを特徴とする前記本発明のケミカルレース用 基布の製造方法も提供する。  [0036] The present invention also provides a dry heat treatment after a foam-like aqueous solution containing a polybulualcohol resin is adhered to a base fabric made of a random tube nonwoven fabric of water-soluble polybulcoalcohol fibers and a pre-dyed embroidery thread. The method for producing a base fabric for chemical lace according to the present invention is also provided.
[0037] 以下、実施例により本発明を詳細に説明するが、本発明は本実施例により何等限 定されるものではなレ、。なお、本発明において、繊維または不織布の水中溶解温度 、 10。 /。モジュラス強度、剛軟度、繊維強度は以下の方法により求めた。 [0037] Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the examples. In the present invention, the dissolution temperature of the fiber or the nonwoven fabric in water is 10. /. The modulus strength, bending resistance, and fiber strength were determined by the following methods.
[0038] (1)繊維の水中溶解温度 A (°C) [0038] (1) Fiber dissolution temperature in water A (° C)
100cm3の水に、長さ l〜2mmにカットした水溶性繊維を数 10mg投入し、攪拌下 、昇温速度 1°C/分の条件で昇温して、繊維が完全に溶解したときの温度を水中溶 解温度 Aとして測定した。 Add several tens of milligrams of water-soluble fiber cut to a length of 1 to 2 mm in 100 cm 3 of water, heat up under stirring at a heating rate of 1 ° C / min, and when the fiber is completely dissolved The temperature was measured as the dissolution temperature A in water.
[0039] (2)不織布の水中溶解温度 B (°C) [0039] (2) Non-woven fabric dissolution temperature B (° C)
400cm3の水に、 2cm平方に切り分けた不織布片又は紙を 3枚投入し、昇温速度 1 °C /分、攪拌速度 280rpmの条件で攪拌しながら昇温して、繊維が完全に溶解した ときの温度を水中溶解温度 Bとして測定した。 Three pieces of non-woven fabric or paper cut into 2 cm square were put into 400 cm 3 of water, and the temperature was raised while stirring at a heating rate of 1 ° C / min and a stirring rate of 280 rpm, and the fibers were completely dissolved. The temperature at that time was measured as the dissolution temperature B in water.
[0040] (3) 10%モジュラス強度(N/50mm幅) [0040] (3) 10% modulus strength (N / 50mm width)
不織布をタテ、ョコ方向にそれぞれ 50mm X 170mmに切り分けて試料とし、試料 掴み間隔 100mm、掴み幅 25mm、引張速度 100mm/分の条件で、インストロン引 張試験機を用いて引張強度を測定し、 10%伸度時の強度を読み取った。  The nonwoven fabric is cut into 50 mm x 170 mm in the vertical and horizontal directions, respectively, and the tensile strength is measured using an Instron tensile tester under the conditions of a sample gripping interval of 100 mm, a gripping width of 25 mm, and a tensile speed of 100 mm / min. The intensity at 10% elongation was read.
[0041] (4)剛軟度 (mm) [0041] (4) Bending softness (mm)
JIS カンチレバー 40. 5度法で測定した。  Measured by JIS cantilever 40.5 degree method.
[0042] (5)繊維強度(cN/dtex) [0042] (5) Fiber strength (cN / dtex)
JIS L1013に準拠して測定した。  Measured according to JIS L1013.
[0043] 実施例 1 [0043] Example 1
(1)重合度 1750、ケン化度 99モル%の PVAをジメチルスルホキシド(DMSO)中に 投入し、 90°Cで 10時間窒素気流下にて 240rpmで攪拌し、溶解して、ポリマー濃度 20質量%の紡糸原液を得た。得られた紡糸原液を孔数 15000ホール、孔径 0. 16 mmの紡糸口金を通して、メタノール /DMSOの質量比が 70/30、温度が 10°Cの 固化浴中に湿式紡糸した。ついで、 25°Cのメタノールからなる抽出液で DMSOを抽 出しながら 3. 0倍の湿延伸を行った。その後、窒素雰囲気下で 150°C、 8分間乾燥し 、 170°Cで 2. 0倍乾熱延伸し、捲縮 ·切断を行って、繊度 3. 3万 dtex、強度 7. 2cN /dtex、水中溶解温度 Aが 72°Cの PVA系捲縮繊維を得た。該繊維の性能を表 1に 示す。 (1) PVA with a polymerization degree of 1750 and a saponification degree of 99 mol% in dimethyl sulfoxide (DMSO) The mixture was stirred at 240 rpm under a nitrogen stream at 90 ° C. for 10 hours and dissolved to obtain a spinning dope having a polymer concentration of 20% by mass. The spinning solution thus obtained was wet-spun into a solidification bath having a methanol / DMSO mass ratio of 70/30 and a temperature of 10 ° C. through a spinneret having a hole number of 15,000 holes and a hole diameter of 0.16 mm. Next, 3.0 times wet stretching was performed while extracting DMSO with an extract composed of methanol at 25 ° C. After that, it was dried at 150 ° C for 8 minutes in a nitrogen atmosphere, and was subjected to 2.0 times dry heat drawing at 170 ° C, followed by crimping and cutting, fineness of 33,000 dtex, strength 7.2 cN / dtex, A PVA crimped fiber having a water dissolution temperature A of 72 ° C was obtained. Table 1 shows the performance of the fibers.
(2)得られた PVA系繊維 100質量部からなるランダムウェブを作成し、繊維と同じ 5 質量%の PVA、界面活性剤として「BEROL_48」(直鎖アルキルベンゼンスルホン 酸塩系)からなる水溶液をハンドミキサーにて発泡させ、該ランダムウェブに含浸し、 70°Cで乾燥して不織布を得た。該不織布の性能は表 2に示すように、剛軟度が 118 mmと柔らかで作業性がよぐさらに 10%モジュラス強度が 27. 8 (N/50mm幅)と 高いものであった。  (2) A random web consisting of 100 parts by mass of the obtained PVA fiber was prepared, and an aqueous solution consisting of 5% by mass PVA, the same as the fiber, and “BEROL_48” (linear alkylbenzene sulfonate) was used as a surfactant. Foamed with a mixer, impregnated into the random web, and dried at 70 ° C. to obtain a nonwoven fabric. As shown in Table 2, the performance of the nonwoven fabric was soft, with a bending resistance of 118 mm, good workability, and a 10% modulus strength of 27.8 (N / 50 mm width).
(3)上記(2)で得られた不織布に市販の先染めポリエステル繊維からなる刺繍糸を 用いて刺繍を施したところ、刺繍柄の飛び ·ズレがなぐケミカルレース用基布として 好適なものであった。また刺繍後の基布の水中溶解温度 Bが 74°Cで、 B— Aが 2. 0 °Cであり、移染の生じやすい市販の先染めポリエステル刺繍糸を用いた場合におい ても、基布の溶解除去後に刺繍糸から染料の脱落、再付着が生じず、刺繍柄が鮮明 な高級感を有する刺繍布が得られた。  (3) When embroidered on the non-woven fabric obtained in (2) above using commercially available embroidery yarn made of pre-dyed polyester fiber, it is suitable as a base fabric for chemical lace where the embroidery pattern can be prevented from jumping or shifting. there were. In addition, even when using a commercially available pre-dyed polyester embroidery thread that has a melting temperature B in water of 74 ° C and B-A of 2.0 ° C and is prone to transfer, the base fabric after embroidery is used. After the cloth was dissolved and removed, the embroidery thread did not lose the dye and did not adhere again, and an embroidery cloth with a clear and high-quality embroidery pattern was obtained.
実施例 2 Example 2
重合度 1750、ケンィ匕度 96モル%の PVAを使用する以外は実施例 1と同様の方法 で紡糸し、繊度 8. 5万 dtex、強度 6. 2cN/dtex,水中溶解温度 Aが 65°Cの PVA 系捲縮繊維を得た。該繊維の性能を表 1に示す。また、該繊維を用いて、実施例 1と 同様の条件にて不織布を作製した。該不織布の性能は表 2に示すように、剛軟度が 86mmと柔らかで作業性がよぐさらに 10%モジュラス強度が 19. 4 (N/50mm)と 高いため、該不織布に実施例 1と同じ刺繍糸を用いて刺繍を施したところ、刺繍柄の 飛び'ズレがなぐケミカルレース用基布として好適なものであった。また刺繍後の基 布の水中溶解温度 Bが 68. 5°Cで、 B— Aが 3. 5°Cであるので、基布の溶解除去後 に刺繍糸から染料の脱落、再付着が生じず、刺繍柄が鮮明な高級感を有する刺繍 布が得られた。 Spinning is carried out in the same manner as in Example 1 except that PVA with a polymerization degree of 1750 and a Kenya degree of 96 mol% is used. Fineness is 850,000 dtex, strength is 6.2 cN / dtex, and the dissolution temperature in water is 65 ° C. Of PVA crimped fibers were obtained. The performance of the fiber is shown in Table 1. In addition, a nonwoven fabric was produced using the fibers under the same conditions as in Example 1. As shown in Table 2, the performance of the nonwoven fabric is as soft as 86 mm and has good workability. Further, the 10% modulus strength is as high as 19.4 (N / 50 mm). When the same embroidery thread was used for embroidery, it was suitable as a base fabric for chemical laces, where the embroidery pattern jumped out. Also after the embroidery Since the fabric dissolution temperature B in water is 68.5 ° C and B—A is 3.5 ° C, after the base fabric is dissolved and removed, the embroidery thread does not fall off and reattach to the embroidery pattern. An embroidery cloth having a clear and high-class feeling was obtained.
[0045] 実施例 3 [0045] Example 3
(1)繊維原料として重合度 1750、ケンィ匕度 98. 5モル%の PVAを水に投入し、 90 °Cで 10時間、 240rpmで攪拌して溶解し、ポリマー濃度 17質量%の紡糸原液を得 た。得られた紡糸原液を孔数 15000ホール、孔径 0. 16mmの紡糸口金を通して、 飽和芒硝水溶液からなる 40°Cの酸性凝固浴中に紡出し、凝固を行った。さらに、得 られた糸篠をローラードラフト 3. 0倍で湿熱延伸した後、水洗し、さらに 130°Cにて乾 燥した後、 170°Cにて延伸倍率 2. 0倍の乾熱延伸し、捲縮 ·切断を行って、繊度 3. (1) PVA with a degree of polymerization of 1750 and a chain degree of 98.5 mol% was added to water as a fiber raw material, and dissolved by stirring at 240 rpm for 10 hours at 90 ° C to obtain a spinning stock solution with a polymer concentration of 17% by mass. Obtained. The obtained spinning solution was spun into a 40 ° C acidic coagulation bath made of a saturated sodium sulfate aqueous solution through a spinneret having a hole number of 15,000 holes and a hole diameter of 0.16 mm for coagulation. Further, the obtained shinoshino was wet-heat-stretched with a roller draft of 3.0 times, washed with water, further dried at 130 ° C, and then dry-heated at 170 ° C with a draw ratio of 2.0 times. , Crimping and cutting, fineness 3.
3万 dtex、強度 3. lcN/dtex,水中溶解温度 Aが 76°Cの PVA系捲縮繊維を得た 。該繊維の性能を表 1に示す。 30,000 dtex, strength 3. lcN / dtex, water melting temperature A was 76 ° C PVA crimped fiber. The performance of the fiber is shown in Table 1.
(2)さらに、実施例 1と同様の条件にて不織布を作製した。該不織布の性能は表 2に 示すように、剛軟度が 139mmと柔らかで作業性がよぐさらに 10%モジュラス強度が 35. 3 (N/50mm)と高いものであった。  (2) Further, a nonwoven fabric was produced under the same conditions as in Example 1. As shown in Table 2, the performance of the non-woven fabric was as soft as 139 mm in bending resistance and good in workability, and further as high as 10% modulus strength was 35.3 (N / 50 mm).
(3)上記(2)で得られた不織布に実施例 1と同じ刺繍糸を用いて刺繍を施したところ 、刺繍柄の飛び ·ズレがなぐケミカルレース用基布として好適なものであった。また 刺繍後の基布の水中溶解温度 Bが 78°Cで、 B— Aが 2. 0°Cであるので、基布の溶解 除去後に刺繍糸から染料の脱落、再付着が生じず、刺繍柄が鮮明な高級感を有す る刺繍布が得られた。  (3) When the non-woven fabric obtained in the above (2) was embroidered using the same embroidery thread as in Example 1, it was suitable as a chemical lace base fabric with no embroidery pattern jumping. Also, since the dissolution temperature B of the base fabric after embroidery is 78 ° C and B-A is 2.0 ° C, the dye does not fall off from the embroidery thread and does not reattach after the base fabric is dissolved and removed. An embroidered cloth with a clear and high-quality pattern was obtained.
[0046] 比較例 1  [0046] Comparative Example 1
不織布原料として、実施例 1と同様のランダムウェブを作成し、繊維原料と同じ PV Aからなる 1質量%水溶液を該ランダムウェブに含浸し、搾液して、 70°Cで乾燥し、 不織布を得た。該不織布の性能は表 2に示すように、 10%モジュラス強度は 54. 8 ( N/50mm幅)と高レ、ものの、剛軟度が 162mmと高すぎるため風合レ、が硬レ、ものと なり、実施例 1と同じ刺繍糸を用いて刺繍を施そうとしたが、刺繍時に針が折れる等 作業性が悪ぐケミカルレース用基布としては適さないものであった。  As a nonwoven material, a random web similar to that in Example 1 was prepared, and the random web was impregnated with a 1% by mass aqueous solution made of the same PV A as the fiber material, squeezed, and dried at 70 ° C. Obtained. As shown in Table 2, the performance of the nonwoven fabric is as high as 10% modulus strength is 54.8 (N / 50mm width), but the softness is too high at 162mm, so the texture is hard. Thus, although embroidery was attempted using the same embroidery thread as in Example 1, it was not suitable as a chemical lace base fabric with poor workability such as a needle breaking during embroidery.
[0047] 比較例 2 不織布原料として、実施例 1と同様のランダムウェブを作成し、繊維原料と同じ PV Aからなる 1質量%水溶液を発泡させて、該ランダムウェブに含浸し、 70°Cで乾燥し て不織布を得た。該不織布の性能は表 2に示すように、 10%モジュラス強度が 7. 8 ( NZ50mm幅)と低いため、実施例 1と同じ刺繍糸を用いて刺繍を施したところ、刺繍 柄の飛び 'ズレが生じ、ケミカルレース用基布としては適さなレ、ものであった。 [0047] Comparative Example 2 A random web similar to that in Example 1 was prepared as a nonwoven material, and a 1% by mass aqueous solution composed of the same PV A as the fiber material was foamed, impregnated into the random web, and dried at 70 ° C to obtain a nonwoven fabric. It was. As shown in Table 2, the nonwoven fabric has a low 10% modulus strength of 7.8 (NZ 50 mm width). Therefore, when the embroidery is applied using the same embroidery thread as in Example 1, the embroidery pattern jumps. As a result, it was suitable as a base material for chemical lace.
[0048] 比較例 3 [0048] Comparative Example 3
不織布原料として、実施例 1と同様のランダムウェブを作成し、加熱したエンボス口 ールとスチールロールとの間を通過させることで不織布を得た。このときのエンボス条 件は接着面積率 12%、温度 195°C、線圧 329N/cm、処理速度 5m/分であった。 該不織布の性能は表 2に示すように刺繍性はまずまずであった力 S、刺繍後の基布の 水中溶解温度が 86. 5°Cで、繊維の水中溶解温度との差が 14. 5°Cとなったため、 刺繍後の基布を溶解除去する際に染料の脱落、再付着が生じ、ケミカルレース用基 布としては適さないものであった。  A random web similar to that of Example 1 was prepared as a nonwoven material, and a nonwoven fabric was obtained by passing between a heated embossing tool and a steel roll. The embossing conditions at this time were a bonding area ratio of 12%, a temperature of 195 ° C, a linear pressure of 329 N / cm, and a processing speed of 5 m / min. As shown in Table 2, the performance of the non-woven fabric is the force S that the embroidery property was reasonable, the water dissolution temperature of the base fabric after embroidery was 86.5 ° C, and the difference from the fiber dissolution temperature in water was 14.5. Since the temperature reached ° C, the dye was dropped and reattached when the base fabric after embroidery was dissolved and removed, making it unsuitable for a chemical lace base.
[0049] [表 1] [0049] [Table 1]
Figure imgf000015_0001
Figure imgf000015_0001
[0050] [表 2] [0050] [Table 2]
実施例 1 実施例 2 実施例 3 比較例 1 比較例 2 比較例 3 im 40. 2 39. 7 40. 3 40. 4 40. 0 39. 8 ≤p ffQ Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 im 40. 2 39. 7 40. 3 40. 4 40. 0 39. 8 ≤p ffQ
厚さ (mm) 0. 16 0. 16 0. 17 0. 16 0. 1 7 0. 35 フォーム状  Thickness (mm) 0. 16 0. 16 0. 17 0. 16 0. 1 7 0. 35 Foam
樹脂付着量  Resin adhesion amount
8. 3 7. 6 8. 5 27. 9 1. 6 0 (質量%  8. 3 7. 6 8. 5 27. 9 1. 6 0 (mass%
/PVA)  / PVA)
ョコ方向  Horizontal direction
10%モジュ  10% modular
27. 8 19. 4 35. 3 54. 8 7. 8 28. 0 ラス強度  27. 8 19. 4 35. 3 54. 8 7. 8 28. 0 Lath strength
(N/50mm幅)  (N / 50mm width)
剛軟度 (m  Flexibility (m
1 18 86 1 39 162 8 1 62 m)  (1 18 86 1 39 162 8 1 62 m)
水中溶解  Dissolution in water
74. 0 68. 5 78. 0 76. 0 74. 0 86. 5 温度 B (。C)  74. 0 68. 5 78. 0 76. 0 74. 0 86.5 Temperature B (.C)
B-A (°C) 2. 0 3. 5 2. 0 4. 0 2. 0 14. 5 刺繍性 風合い硬  B-A (° C) 2. 0 3. 5 2. 0 4. 0 2. 0 14.5 Embroidery texture
刺繍柄の飛 染料の脱 良好 良好 良好 く作業性  Embroidery pattern flying Dye removal Good Good Good Workability
び■ズレ有 落 ·付着有 悪い  ■ Misalignment Falling · Adhesion Yes Bad
総合評価 良好 良好 良好 不可 不可 不可 産業上の利用可能性  Overall evaluation Good Good Good No No No No Industrial applicability
本発明によれば、柔らかで作業性がよぐ寸法安定性が高く刺繍柄の飛び'ズレが 生じ難ぐ溶解温度が低い、安価なケミカルレース用基布及びその製造方法を提供 すること力 Sできる。  ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide an inexpensive chemical lace base fabric that is soft, has good workability, has high dimensional stability, is less prone to embroidery pattern displacement, and has a low melting temperature, and a method for producing the same. it can.

Claims

請求の範囲 [1] 水溶性ポリビュルアルコール系繊維のランダムウェブ不織布と先染め刺繍糸からな り、以下の条件を全て満足することを特徴とするケミカルレース用基布。 Claims [1] A chemical lace base fabric comprising a random web non-woven fabric of water-soluble polybulal alcohol fiber and a pre-dyed embroidery thread, which satisfies all of the following conditions.
(1)不織布に付着させるバインダーがポリビュルアルコール系樹脂を含む水溶液を フォーム状としたものであり、かつ、全不織布質量に対する該バインダーの付着量が (1) The binder to be adhered to the nonwoven fabric is a foamed aqueous solution containing a polybutyl alcohol resin, and the amount of the binder adhered to the total mass of the nonwoven fabric is
2〜20質量0 /0であること、 2 to 20 weight 0/0,
(2)不織布のョコ方向の 10%モジュラス強度が 15〜80N/50mm幅であること、 (2) The nonwoven fabric has a 10% modulus strength in the horizontal direction of 15 to 80 N / 50 mm width,
(3)不織布の剛軟度が 40〜: 150mmであること。 (3) The bending resistance of the nonwoven fabric is 40 to 150 mm.
[2] 不織布を構成する水溶性ビニルアルコール系繊維の水中溶解温度を A°C、ポリビ ニルアルコール系繊維のランダムウェブ不織布の水中溶解温度を B°Cとするとき、 B A≤ 5°Cであることを特徴とする請求項 1に記載のケミカルレース用基布。  [2] BA≤5 ° C, where the water solubility temperature of the water-soluble vinyl alcohol fiber constituting the nonwoven fabric is A ° C, and the water solubility temperature of the random web nonwoven fabric of polyvinyl alcohol fiber is B ° C. 2. The chemical lace base fabric according to claim 1, wherein:
[3] 不織布を構成する水溶性ポリビュルアルコール系繊維の水中溶解温度が 50〜80 °Cである請求項 1又は 2に記載のケミカルレース用基布。  [3] The base fabric for chemical laces according to claim 1 or 2, wherein the water-soluble polybutyl alcohol fiber constituting the nonwoven fabric has a water dissolution temperature of 50 to 80 ° C.
[4] 水溶性ポリビニルアルコール系繊維のランダムウェブ不織布と先染め刺繍糸からな る基布に、ポリビニルアルコール系樹脂を含むフォーム状とした水溶液を付着させた 後、乾熱処理を施すことを特徴とする請求項 1〜3のいずれ力 4項に記載のケミカル レース用基布の製造方法。  [4] A water-soluble polyvinyl alcohol-based fiber random web nonwoven fabric and a base fabric made of pre-dyed embroidery thread are adhered to a foam-form aqueous solution containing a polyvinyl alcohol-based resin, followed by a dry heat treatment. The manufacturing method of the base fabric for chemical laces of any one of Claims 1-3.
PCT/JP2006/305534 2005-03-25 2006-03-20 Base fabric for chemical lace and process for production thereof WO2006103974A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800053943A CN101124361B (en) 2005-03-25 2006-03-20 Base fabric for burnt-out lace and process for production thereof
EP06729502A EP1862585B1 (en) 2005-03-25 2006-03-20 Base fabric for chemical lace and process for production thereof
JP2007510402A JP4796571B2 (en) 2005-03-25 2006-03-20 Chemical lace base fabric and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005087372 2005-03-25
JP2005-087372 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006103974A1 true WO2006103974A1 (en) 2006-10-05

Family

ID=37053235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305534 WO2006103974A1 (en) 2005-03-25 2006-03-20 Base fabric for chemical lace and process for production thereof

Country Status (4)

Country Link
EP (1) EP1862585B1 (en)
JP (1) JP4796571B2 (en)
CN (1) CN101124361B (en)
WO (1) WO2006103974A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177368A (en) * 2010-03-02 2011-09-15 Bridgestone Sports Co Ltd Felt for tennis ball, and tennis ball
JP2011177369A (en) * 2010-03-02 2011-09-15 Bridgestone Sports Co Ltd Tennis ball
JP2011188878A (en) * 2010-03-11 2011-09-29 Bridgestone Sports Co Ltd Tennis ball
JP2011188877A (en) * 2010-03-11 2011-09-29 Bridgestone Sports Co Ltd Tennis ball

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102312340A (en) * 2010-07-02 2012-01-11 江苏金辰针纺织有限公司 Method for producing hollow single-side knitted fabric

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898464A (en) * 1981-12-07 1983-06-11 日本バイリ−ン株式会社 Production of base fabric for chemical lace
JPS6445791U (en) * 1987-09-17 1989-03-20
JPH0566088U (en) * 1992-02-17 1993-08-31 日本バイリーン株式会社 Base fabric for chemical lace
JPH062259A (en) * 1992-06-17 1994-01-11 Kanebo Ltd Reinforcing material for embroidery
JPH0754257A (en) * 1993-08-11 1995-02-28 Kuraray Co Ltd Nonwoven fabric of polyvinyl alcohol-based water-soluble filament
JP2001522412A (en) * 1997-05-02 2001-11-13 カーギル インコーポレイテッド Methods, products and uses of degradable polymer fibers
JP2006063459A (en) * 2004-08-25 2006-03-09 Kuraray Co Ltd Water soluble nonwoven fabric

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445791A (en) * 1987-08-12 1989-02-20 Kubota Ltd Glassy graphite-reinforced composite material
JPH0266088U (en) * 1988-11-07 1990-05-18
EP0636716B1 (en) * 1993-07-29 1999-01-20 Kuraray Co., Ltd. Water soluble polyvinyl alcohol-based fiber
JPH08158224A (en) * 1994-11-24 1996-06-18 Japan Vilene Co Ltd Base fabric for chemical lace and its production
JPH0978423A (en) * 1995-09-06 1997-03-25 Kao Corp Production of paper or nonwoven fabric
AU1913099A (en) * 1997-12-31 1999-07-19 Duracell Inc. Battery separator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898464A (en) * 1981-12-07 1983-06-11 日本バイリ−ン株式会社 Production of base fabric for chemical lace
JPS6445791U (en) * 1987-09-17 1989-03-20
JPH0566088U (en) * 1992-02-17 1993-08-31 日本バイリーン株式会社 Base fabric for chemical lace
JPH062259A (en) * 1992-06-17 1994-01-11 Kanebo Ltd Reinforcing material for embroidery
JPH0754257A (en) * 1993-08-11 1995-02-28 Kuraray Co Ltd Nonwoven fabric of polyvinyl alcohol-based water-soluble filament
JP2001522412A (en) * 1997-05-02 2001-11-13 カーギル インコーポレイテッド Methods, products and uses of degradable polymer fibers
JP2006063459A (en) * 2004-08-25 2006-03-09 Kuraray Co Ltd Water soluble nonwoven fabric

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1862585A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177368A (en) * 2010-03-02 2011-09-15 Bridgestone Sports Co Ltd Felt for tennis ball, and tennis ball
JP2011177369A (en) * 2010-03-02 2011-09-15 Bridgestone Sports Co Ltd Tennis ball
JP2011188878A (en) * 2010-03-11 2011-09-29 Bridgestone Sports Co Ltd Tennis ball
JP2011188877A (en) * 2010-03-11 2011-09-29 Bridgestone Sports Co Ltd Tennis ball

Also Published As

Publication number Publication date
JP4796571B2 (en) 2011-10-19
CN101124361B (en) 2010-05-19
JPWO2006103974A1 (en) 2008-09-04
EP1862585A1 (en) 2007-12-05
CN101124361A (en) 2008-02-13
EP1862585A4 (en) 2010-05-26
EP1862585B1 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
EP0636716B1 (en) Water soluble polyvinyl alcohol-based fiber
CN102812170B (en) Highly functional polyethylene fiber, and dyed highly functional polyethylene fiber
JP4796571B2 (en) Chemical lace base fabric and method for producing the same
JPWO2006129744A1 (en) Masking fabric used for post-transfer dyeing of embroidery parts
KR100602825B1 (en) Water-soluble polyvinyl alcohol fibers and nonwoven fabric comprising them
KR101366894B1 (en) Ground fabric for embroidery and process for producing the same
JP3828217B2 (en) Polyvinyl alcohol fiber and method for producing the same
JP2005194666A (en) Water-soluble polyvinyl alcohol-based fiber
JP2006063459A (en) Water soluble nonwoven fabric
JP2008190063A (en) Method for producing soft spun raw yarn having excellent feeling and textile product obtained from the same
JP3609851B2 (en) Water-soluble polyvinyl alcohol fiber
JP3345110B2 (en) Multifilament or staple fiber composed of water-soluble polyvinyl alcohol fiber
JP3193938B2 (en) Polyvinyl alcohol-based water-soluble long-fiber nonwoven fabric
JP2000178864A (en) Production of nonwoven fabric structural form and nonwoven fabric structural form thus produced
JP2001271222A (en) Polyvinyl alcohol-based water-soluble fiber
WO2022138241A1 (en) Polyvinyl-alcohol-based fiber, fiber structure, and method for manufacturing same
JP2000248424A (en) Production of low temperature water-soluble polyvinyl alcohol-based fiber
JP3509279B2 (en) Fabric with excellent high-temperature wear resistance
JP2003041429A (en) Multifilament and staple fiber each comprising water- soluble polyvinyl alcohol fiber
JPS58220806A (en) Polyvinyl alcohol type synthetic fiber having latent solubility in water at low temperature and production thereof
JPS6246679B2 (en)
JP2003183937A (en) Separatable conjugated polyamide fiber
JP2008150752A (en) Acrylic fiber having antipilling property
JP2002161431A (en) Water-soluble polyvinyl alcohol-based fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510402

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680005394.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006729502

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729502

Country of ref document: EP