JPS58220806A - Polyvinyl alcohol type synthetic fiber having latent solubility in water at low temperature and production thereof - Google Patents

Polyvinyl alcohol type synthetic fiber having latent solubility in water at low temperature and production thereof

Info

Publication number
JPS58220806A
JPS58220806A JP10253982A JP10253982A JPS58220806A JP S58220806 A JPS58220806 A JP S58220806A JP 10253982 A JP10253982 A JP 10253982A JP 10253982 A JP10253982 A JP 10253982A JP S58220806 A JPS58220806 A JP S58220806A
Authority
JP
Japan
Prior art keywords
fibers
water
temperature
glauber
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10253982A
Other languages
Japanese (ja)
Other versions
JPS6360123B2 (en
Inventor
Tsuneo Genma
玄馬 恒夫
Akio Mizobe
溝辺 昭雄
Tomoo Saeki
佐伯 知男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP10253982A priority Critical patent/JPS58220806A/en
Publication of JPS58220806A publication Critical patent/JPS58220806A/en
Publication of JPS6360123B2 publication Critical patent/JPS6360123B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the titled fibers, capable of increasing the dissolving temperature in water, reducing the dissolving temperature in water after the treatment with an alkali, and having improved drying efficiency, by spinning a polyvinyl alcohol (PVA) having introduced carboxyl groups into a coagulation bath of Glauber's salt, treating the resultant fibers in an acidic bath, drying the resultant fibers, and heat-treating the dried fibers. CONSTITUTION:A polyvinyl alcohol (PVA) having 0.02-0.4mol/100g introduced carboxyl groups is dissolved in water to give an aqueous solution, which is then spun into a coagulation bath of Glauber's salt. The resultant fibers are then treated in an acidic bath of 2-6pH, and dried with the stuck Glauber's salt. The dried fibers are further heat-treated at 150 deg.C-the melting point to increase the dissolving temperature in water to 90 deg.C or above. The resultant fibers are washed with water to remove the stuck Glauber's salt, and if necessary an oiling agent is applied thereto. The oiled fibers are dried and treated with an alkali to afford the aimed PVA fibers having <=80 deg.C dissolving temperature in water. EFFECT:The high dissolving temperature in water as high as 90 deg.C or above facilitates the drying in the preparation process, and the removal of the stuck Glauber's salt is possible at 80 deg.C or below in the dissolving and removing step thereof. USE:Binder fibers for nonwoven fabrics, etc.

Description

【発明の詳細な説明】 本発明は潜在的に低温で水に溶解する性質を有するポリ
ビニルアルコール(以下PVAと略記)系合成繊維に関
するものである。        ”元来PVAけ水に
溶解する性質を有する高分子であり、該高分子の繊維は
その水溶液を湿式又は乾式法にて紡糸して製造されてい
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyvinyl alcohol (hereinafter abbreviated as PVA) synthetic fiber that has the property of potentially dissolving in water at low temperatures. ``PVA is a polymer that originally has the property of dissolving in water, and fibers of this polymer are manufactured by spinning its aqueous solution using a wet or dry method.

当該繊維は一般に紡糸後乾燥、延伸、熱処理を施し、さ
らに必要に応じてアセタール化反応等を行い、#水性の
高い高強力、高ヤング率の繊維として主として産業資材
用途に多量に消費されている。
The fiber is generally dried, stretched, and heat treated after spinning, and if necessary undergoes an acetalization reaction, etc., and is consumed in large quantities primarily for industrial material applications as a highly water-based, high-strength, high-Young's-modulus fiber. .

一方紡糸後の繊維に含有する水分を乾燥した段階で、本
来のPVAの水に溶解する性質全利用した水溶性繊維と
しても種々の分野に用いられている。
On the other hand, it is also used in various fields as a water-soluble fiber that takes full advantage of the original property of PVA to dissolve in water after drying the water contained in the fiber after spinning.

例えば乾式、湿式不織、布のバインダー用繊維。For example, dry-processed, wet-processed nonwovens, fibers for textile binders.

ケミカルレース基布用繊維等が知られている。中でも湿
式不織布のバインダー用繊維は代表的な用途であり、数
層に切断した主体繊維とPVA系水溶性バインダー繊維
金適当な比に混ぜてスラリーを作り、該スラリーfr例
えば丸網式抄紙機でウェットシートラ作り、それを乾燥
していわゆる紙である湿式不織布とするものであるが、
その乾燥工程でバインダー繊維が溶解して主体繊維交点
で微少なフィルム状になり、水の蒸発と共に固着し、紙
力を発現するものである。
Fibers for chemical lace base fabrics and the like are known. Among them, binder fibers for wet-laid non-woven fabrics are typically used. Main fibers cut into several layers and PVA-based water-soluble binder fibers are mixed in an appropriate ratio to make a slurry. The process involves making a wet sheetra and drying it to make a wet non-woven fabric, which is called paper.
During the drying process, the binder fibers dissolve and form a fine film at the intersections of the main fibers, which solidify as water evaporates and develop paper strength.

PVA系水溶性繊維の製造方法は前述の如く乾式法と湿
式法があるが、後述で理解されるように本発明は特に湿
式法に効果を発揮するものであるので、以下は湿式法に
基づいて説明する。
As mentioned above, there are two methods for producing PVA-based water-soluble fibers: the dry method and the wet method.As will be understood later, the present invention is particularly effective in the wet method, so the following will be based on the wet method. I will explain.

公知の湿式法による水溶性繊維の製造方法は、適当なケ
ン化度1重合度を有するPVAt−水に溶解して主とし
て飽和芒硝水溶液全凝固浴として紡糸するものであるが
、溶媒そある水を最終的には除去即ち乾燥しなければな
らない。
In the known wet method for producing water-soluble fibers, PVAt having an appropriate degree of saponification and degree of polymerization is dissolved in water and spun as a total coagulation bath of a saturated sodium sulfate solution. Eventually it must be removed or dried.

ところが本来水溶性を有する繊維であるために乾燥時に
水を含有したまま温度が上がると、その温度によっては
繊維が溶断したシあるいは溶断に到らなくても繊維の表
面が部分的に溶解するために水分の蒸発とともに単繊維
同志が接着し、全く商品価値を失うことになる。従って
繊維の水溶解温度以下の温度で乾燥することになるが、
乾燥効率が著しく低下することになる。
However, since fibers are inherently water-soluble, if the temperature rises while still containing water during drying, depending on the temperature, the fibers may be fused, or even if they are not fused, the surface of the fibers may be partially dissolved. As the moisture evaporates, the single fibers adhere to each other, resulting in a total loss of commercial value. Therefore, the fibers are dried at a temperature below the water dissolution temperature,
Drying efficiency will be significantly reduced.

この問題を回避するために種々の工夫がなされている。Various efforts have been made to avoid this problem.

例えば湿式不織布用バインダー繊維の場合、通常芒硝浴
を凝固浴として繊維の形成がなされるが、その芒硝を洗
滌することなく乾燥し、適当な繊維長に切断して目的に
供される。
For example, in the case of binder fibers for wet-processed nonwoven fabrics, the fibers are usually formed using a Glauber's salt bath as a coagulating bath, but the Glauber's salt is dried without washing and cut into suitable fiber lengths for use for the purpose.

この場合付着していると硝の有する凝固、脱水能のため
に、該繊維の水での溶解温度以上の温度で乾燥しても溶
断や接着は起らず、効率よく乾燥することが可能である
In this case, due to the coagulation and dehydration ability of the sulfate that adheres to the fibers, no melting or adhesion will occur even if the fibers are dried at a temperature higher than the melting temperature of the fibers in water, making it possible to dry efficiently. be.

湿式不織布用バインダー繊維の場合、前述の如く抄紙工
程で水を使用しスラリー化するので芒硝が除去され、し
たがって出来上がった湿式不織布中には芒硝は全く存在
しない。従って芒硝っきのままでも湿式不織布用バイン
ダー繊維としては何ら問題はない。
In the case of binder fibers for wet-laid non-woven fabrics, as mentioned above, water is used in the paper-making process to form a slurry, so Glauber's salt is removed, and therefore no Glauber's salt is present in the finished wet-laid non-woven fabric. Therefore, even if it is coated with Glauber's salt, there is no problem as a binder fiber for wet-laid nonwoven fabrics.

しかしながら芒硝が付着している該繊維は前述の湿式不
織布用途など限定的な用途には使用可能なるも、汎用的
な用途には使用できない。
However, the fibers to which Glauber's salt is attached can be used for limited purposes such as the above-mentioned wet-laid nonwoven fabric, but cannot be used for general purposes.

例えば紡績を必要とする水溶性ステープルや織物用フィ
ラメント等としては芒硝の付着はその紡績、織工程など
の加工工程の通過性に対しては致命的なものとなる。
For example, for water-soluble staples, textile filaments, etc. that require spinning, adhesion of Glauber's salt is fatal to their ability to pass through processing steps such as spinning and weaving.

一般的には加工工程の通過性をよくするために、平滑性
、制電性、捲つき性その池諸要因に対して充分に吟味さ
れた油剤が使用されておシ、その油剤の選択を誤ると全
く工程を通過しないことは当業者ならしばしば経験する
事実である。
In general, in order to improve the passage through the processing process, oils that have been carefully examined for smoothness, antistatic properties, winding properties, and various other factors are used, and the selection of the oil is important. It is a fact that those skilled in the art often experience that if they make a mistake, they will not pass the process at all.

ましてや芒硝が付着していると紡績、織工程を全く通過
しないということは論7kまたないところである。
Furthermore, it is highly unlikely that the fabric will not pass through the spinning and weaving processes if it has Glauber's salt attached to it.

芒硝付着が許されない用途の水溶性繊維の公知湿式製造
方法をさらに詳しく述べる。
A known wet manufacturing method for water-soluble fibers for applications where glauber's salt adhesion is not allowed will be described in more detail.

前述の如(FVA水溶液を主として高濃度の芒硝凝固浴
中へ紡糸し、適宜湿延伸を施した後、付着している芒硝
を洗滌し、さらに油剤を塗布して乾燥する。フィラメン
トの場合はチーズに巻取り撚糸、織工程へ供する。
As described above (spun the FVA aqueous solution mainly into a high-concentration sodium sulfate coagulation bath, wet-stretched as appropriate, wash off the adhering sodium sulfate, apply an oil and dry. In the case of filaments, cheese The yarn is then wound, twisted, and subjected to the weaving process.

ステーグルの場合は乾式不縁布製造工程や紡績工程へ供
するので捲aを施した後適当な長さに切断される。又別
の製造方法は前記湿延伸後乾燥したものを水洗にて芒硝
を洗滌除去し、油剤を塗布した後乾燥し、フィラメント
の場合はチーズ巻にし、ステープルの場合は捲縮、切断
後加工工程へ供するものである。
In the case of staples, they are used in the dry non-woven fabric manufacturing process or the spinning process, so they are wound and then cut into appropriate lengths. Another manufacturing method is to wash the dried product after the wet stretching with water to remove the mirabilite, coat it with an oil agent, and then dry it. In the case of filament, it is made into a cheese roll, and in the case of staple, it is crimped, and the post-cutting process is performed. It is an offering to

いづれの方法にても芒硝洗滌にはその溶解度が大で、か
つ経済的な水を使用し、又油剤塗布後に乾燥工程が存在
する。
In either method, water, which has high solubility and is economical, is used for cleaning the sodium sulfate, and a drying step is required after applying the oil.

本来水溶性繊維は水の存在下では該繊維の有する水溶解
温度以上になると大部分又は完全に溶解するものである
Originally, water-soluble fibers are mostly or completely dissolved in the presence of water when the temperature exceeds the water dissolution temperature of the fibers.

又その温度以下でも膨潤が大きく、さらに部分的には一
部溶解も起きる場合もあシ、この傾向は繊維中に存在す
る水の温度が水溶解温度に近づくにつれ大となるもので
ある。
Further, even below that temperature, swelling is large and even partial dissolution may occur, and this tendency becomes stronger as the temperature of the water present in the fiber approaches the water dissolution temperature.

従って芒硝付着のない湿式法による水溶性PVA系繊維
の製造上のポイントは、芒硝の洗滌工程での繊維膨潤を
押えて溶解分をなくし、かつ乾燥工程での溶解による繊
維の溶断、接it防止するととKある。
Therefore, the key points in manufacturing water-soluble PVA fibers using a wet process that does not cause mirabilite adhesion are to suppress fiber swelling in the washing process of mirabilite to eliminate dissolved components, and to prevent fibers from melting and wetting due to dissolution in the drying process. Then there is K.

かかる問題に対して低い水溶解温度のものをいかに経済
的に得るかという観点から種々の検討がなされている。
In response to this problem, various studies have been made from the viewpoint of how to economically obtain materials with a low water dissolution temperature.

芒硝洗滌工程ではPVAの膨潤は抑えるが、芒硝に対し
ては溶解性のある溶剤の検討がなされている。例えばメ
タノールがあるが、芒硝の溶解度が小さいうえにPVA
の膨潤を抑制するために繊維内部の芒硝の溶解、拡散が
律速となル、洗滌に著しく長時間を要することに加えて
、引火性薬品であるために設備に多額の投資を要し、又
取扱いに<<、結果的には著しく製tl造コストが高く
なる。
In the sodium sulfate washing process, the swelling of PVA is suppressed, but solvents that are soluble in sodium sulfate are being considered. For example, methanol has a low solubility for mirabilite and PVA
The dissolution and diffusion of Glauber's salt inside the fibers is the rate-limiting factor in order to suppress the swelling of the sulfate, which requires an extremely long time to wash, and because it is a flammable chemical, it requires a large investment in equipment. As a result, the manufacturing cost increases significantly.

従って結局は芒硝の洗滌には”水を使用することになシ
、せいぜい経済的に見合う程度に水温を強制的に下げる
とか、繊維に出来るだけ張力をかけて膨潤を押える程度
であり、それでも問題を惹起する場合は止むなく繊維の
水溶解温度を上げざるを得ないのが実情である。
Therefore, in the end, there is no need to use water to wash Glauber's salt; at best, the water temperature can be forcibly lowered to an economically viable level, or the fibers can be put under as much tension as possible to suppress swelling, but even then, there is no problem. The reality is that if this is to occur, it is unavoidable to raise the water dissolution temperature of the fibers.

一方乾燥工程は前述の如く繊維の溶断や繊維同志の接着
なしにいかに効率よく乾燥するかということが問題であ
る。
On the other hand, in the drying process, as mentioned above, the problem is how to dry efficiently without cutting the fibers or adhering the fibers to each other.

水溶性繊維は水分の存在下ではその水溶解温度以上の温
度に加熱されると溶解するものである。
Water-soluble fibers dissolve in the presence of water when heated to a temperature equal to or higher than the water-soluble fiber.

従って乾燥に際しては、その大部分の時間を該繊維の水
溶解温度よりかなり低い温度で乾燥しなければならない
Therefore, during drying, most of the time must be spent at a temperature considerably lower than the water dissolution temperature of the fiber.

かなシ低い温度にしなければならない理由は前記の如く
水溶解温度以下でも該繊維は著しく膨潤し、場合によっ
ては一部溶解するからである。この傾向は水溶解温度に
近づくにつれ顕著となる。
The reason why the temperature must be kept very low is that, as mentioned above, the fibers swell significantly even below the water dissolution temperature, and in some cases may partially dissolve. This tendency becomes more noticeable as the temperature approaches the water dissolution temperature.

一般的には水溶解温度より10°C程度低いところで乾
燥がなされて!る。
Generally, drying is done at a temperature about 10°C lower than the water dissolution temperature! Ru.

かかる理由によシ、低温度溶解の水溶性繊維を得んとす
れば、おのづと乾燥温度を低下させねばならず、その結
果乾燥に著しく長時間を要することになり、生産性が大
幅に低下し、得られる水溶性繊維は非常に高価なものと
なる。
For this reason, in order to obtain water-soluble fibers that melt at low temperatures, it is necessary to lower the drying temperature, which results in a significantly longer drying time, which significantly reduces productivity. The resulting water-soluble fibers are extremely expensive.

従って少しでも乾燥効率を高めようとして種々の試みが
なされている。即ち出来るだけ乾燥温度をその水溶解温
度まで近づけようという試みである。
Therefore, various attempts have been made to increase the drying efficiency as much as possible. That is, an attempt is made to bring the drying temperature as close as possible to the water dissolution temperature.

例えば、単繊維同志の接着を防止する試みとして乾燥前
に接着防止剤を塗布することが種々検討されているが、
鉱物油等を塗布しても若干効果があるという程度であり
、飛躍的な効果を上げ得ていない。
For example, various attempts have been made to apply an anti-adhesion agent before drying in an attempt to prevent single fibers from adhering to each other.
Even if mineral oil or the like is applied, it is only slightly effective, and no dramatic effects have been achieved.

又乾燥工程で水分を有する繊維が膨潤し、結果として繊
維同志が接着することを防ぐために、繊維軸方向に張力
をかけることが比較的効果があるが、これとて水溶解温
度に若干近づけうるという程度のものである。
In addition, in order to prevent fibers with moisture from swelling during the drying process and resulting in fibers adhering to each other, it is relatively effective to apply tension in the fiber axis direction, but this can approach the water dissolution temperature slightly. That's about it.

又繊維の有する水分量が少なくなると、繊維の溶解によ
る繊維同志の接着はしにくくなる傾向がある。
Furthermore, when the amount of water contained in the fibers decreases, it tends to become difficult for the fibers to adhere to each other due to dissolution of the fibers.

本発明者等社本発明に到達する以前にこの点に関しても
種々検討を加えたが、ドフィペースで100〜200%
の水分率のものが10%程度になるまではその繊維の゛
水溶解温度以上には上げえず従って大部分の乾燥全低温
度で乾燥せざるを得ないという結果を得た。
The present inventors made various studies regarding this point before arriving at the present invention, but it was found that 100 to 200%
It was found that until the moisture content of the fiber reaches about 10%, it cannot be raised above the water dissolution temperature of the fiber, and therefore most of the drying must be done at a low temperature.

以上の如く乾燥効率を大幅に改善するためには結局はそ
の繊維の有する水溶解温度を上げる以外に方法はないメ
いうことになる。
As described above, the only way to significantly improve drying efficiency is to increase the water dissolution temperature of the fibers.

しかるに水溶解温度を上げると、なる程繊維の製造工程
では効率的な生産が可能となるも、□該繊維の使用目的
よりして加工工程で溶解又は溶解除去する必要があるが
、溶解温度が高いためにその操作が非常に困難でコスト
高になることに加えて、高温で処理するために主体とな
る繊維の物性を著しく損うという致命的欠陥を有するこ
とになる。
However, if the water dissolution temperature is raised, efficient production is possible in the fiber manufacturing process, but depending on the intended use of the fiber, it is necessary to dissolve or remove it in the processing process. In addition to being extremely difficult and expensive to operate due to the high temperature, it also has a fatal defect in that the physical properties of the main fiber are significantly impaired due to the high temperature treatment.

以上の如く水に対し低温溶解性を有する繊維は生産性が
低く非常に高価となり、又高温溶解性繊維は繊維そのも
のは比較的安価に製造可能なるも溶解又は溶解除去の加
工工程で著しく費用を要し、さらに質的にも問題となる
As mentioned above, fibers that are soluble in water at low temperatures have low productivity and are very expensive, and high-temperature soluble fibers can be manufactured at relatively low cost, but the processing process of dissolving or dissolving them requires significant costs. In addition, it also poses a qualitative problem.

従っていづれKしても水溶性繊維を使用した乾式不織布
、織物1編物を利用する商品は高価なものとなる。
Therefore, products using dry non-woven fabrics and knitted fabrics using water-soluble fibers will be expensive even if K is eventually used.

本発明者等は上述の如き問題点を解決すべく鋭意研究の
結果本発明に到達したものである。
The present inventors have arrived at the present invention as a result of intensive research to solve the above-mentioned problems.

即ち本発明は、水溶性繊維の製造工程では9゜°C以上
と高温の水溶解温度であって、溶解又は溶解除去の工程
では80°C以下という低温で目的を達し得る水溶性繊
維に関するものである。
That is, the present invention relates to a water-soluble fiber that can achieve its purpose at a high water dissolution temperature of 9°C or higher in the manufacturing process of water-soluble fiber, but at a low temperature of 80°C or lower in the dissolution or dissolution/removal process. It is.

さらに具体的には、繊維中にカルボキシル基を導入し熱
処理を施すことにより、繊維製造工程では水溶解温度を
90°C以上と高くして芒硝の洗滌及びその後の乾燥を
容易ならしめ、加工工程ではアルカリ処理を施すことK
より、水溶解温度を80°C以下と低い温度にして溶解
、溶解除去を容易ならしめたPVA系繊維ならびにその
製造法である。
More specifically, by introducing carboxyl groups into the fibers and subjecting them to heat treatment, the water dissolution temperature in the fiber manufacturing process is increased to 90°C or higher, making it easier to wash and subsequently dry the sodium sulfate, and in the processing process. Then apply alkali treatment.
The present invention provides a PVA-based fiber whose water dissolution temperature is as low as 80° C. or lower to facilitate dissolution and removal, and a method for producing the same.

J・\ 以下本発明の詳細な説明す不。J・\ The present invention will be described in detail below.

PVA系繊維に力〃ボキシρ基を導入することが本発明
の重要な要件の−っであり、以下の3方法が有効″′C
ある。
Introducing a force boxy ρ group into PVA fibers is an important requirement of the present invention, and the following three methods are effective.
be.

(1ン  カルボキシル基を導入したPVAを紡糸する
こと、 (2)  上記カルボキシル基金導入したPVAと通常
のPVAI混合紡糸すること、 (5)  ポリアクリル酸、ポリメタクリル酸等カルボ
キシル基を有する水溶性ポリマーと通常のPVAを混合
紡糸すること、 である。
(1) Spinning PVA into which a carboxyl group has been introduced; (2) Spinning a mixture of the PVA into which a carboxyl group has been introduced and ordinary PVAI; (5) Water-soluble polymers having carboxyl groups such as polyacrylic acid and polymethacrylic acid. and ordinary PVA are mixed and spun.

かくして得られる繊維は低温で溶解するものであるが、
水溶解温度を90°C以上にあげるには該紡糸繊維をp
H2〜6の液で処理し、芒硝の付着したまま乾燥後さら
に150°Cで熱処理を行うことが肝要である。
The fibers thus obtained dissolve at low temperatures, but
To raise the water dissolution temperature to 90°C or higher, the spun fibers should be
It is important to treat with H2-6 solution, dry with the Glauber's salt still attached, and then heat-treat at 150°C.

尚PVA系繊維の湿式製造法は、通常、紡糸原液を芒硝
液からなる凝固浴中に吐出し凝固させ糸篠を形成し、該
糸篠は引続き、より高温の芒硝液中に導びかれ適当□倍
率の延伸を受け、その後乾燥され、さらに延伸、必要に
応じて熱処理を受ける、という工程を採るが、前記pH
2〜6下での処理は、凝固浴を用いでも、又それに続く
より高温の芒硝浴(2浴)を用いて酸性浴としても、さ
らに又前記浴以外の酸性浴を用いてもよいが、後段で接
着が起らないように乾燥・熱処理をするために、操業的
1cI′i、前記2浴を酸性浴として用いることが好ま
しい。
In the wet manufacturing method of PVA fibers, the spinning dope is usually discharged into a coagulation bath consisting of a sodium sulfate solution and coagulated to form a thread, which is then introduced into a higher temperature of a sodium sulfate solution and heated to an appropriate temperature. □The process is to undergo stretching at a certain magnification, then drying, further stretching, and heat treatment if necessary.
The treatments under 2 to 6 may be performed using a coagulation bath, or an acidic bath using a subsequent higher temperature sodium sulfate bath (2 baths), or an acidic bath other than the above-mentioned baths. In order to perform drying and heat treatment to prevent adhesion at a later stage, it is preferable to use 1cI'i and the above two baths as acidic baths.

本願での水溶解温度とは適当な長さ、太さの繊維法をス
ケールの上端に固定し、該篠の下端に10’00 ””
/デニール相当のおも賎つけて水中に。
The water dissolution temperature in this application means that a fiber of appropriate length and thickness is fixed at the upper end of the scale, and 10'00" is fixed at the lower end of the scale.
/ Place it in the water with a denier-equivalent weight.

垂直に浸漬し、常温より1分間に1℃の速度で水温を上
昇させた時に、篠が溶断し、溶断部よりおもりと共に落
下する温度を言う。なおアルカリ処理後の水溶解温度と
はカセイソーダI Q/lで処理した後の上記測定法に
よる溶解温度である。
This is the temperature at which the sinker melts and falls along with the weight from the melted part when the water is immersed vertically and the water temperature is raised from room temperature at a rate of 1°C per minute. Note that the water dissolution temperature after alkali treatment is the dissolution temperature measured by the above measurement method after treatment with caustic soda IQ/l.

PTAにカルボキシμ基を導入する方法は種々あるが、
下記の方法が有効である。
There are various methods for introducing carboxy μ groups into PTA, but
The following methods are effective.

(イ) ビニルエステルと共重合しうるモノマーと共重
合させてケン化する方法、 (ロ) PVAにグラフト重合するか、またはポリビニ
ルエステルにグラフト重合してケン化する方法、・ (ハ) PVAの化学反応による方法、などがあげられ
るが(イ)の方法がより経済的である。
(b) A method of copolymerizing with a monomer that can be copolymerized with vinyl ester and saponifying it; (b) A method of graft polymerizing to PVA or graft polymerizing to polyvinyl ester and saponifying it. There are methods such as chemical reaction, but method (a) is more economical.

さらに具体的に述べると(イ)の方法としてはギ酸ビニ
ル、酢酸ビニル又はプロピオン酸ビニルなどの有機酸ビ
ニルエステルと共重合しうる不飽和塩基性酸、不飽和三
塩基性酸、これらの無水物、ま −たけこれらのエステ
ル、例えば、アクリル酸、メタクリル酸、クロトン酸、
マレイン酸、フマル酸、イタコン酸、無水マレイン酸、
無水イタコン酸すどの共重合体をケン化することにより
、あるいは上記ヒニルエステル類ト7クリロニトリル、
メタクリルニトリル、アクリルアミドとの共重合体をケ
ン化することによって目的とする分子中にカルボキシル
基金有するPVA1製造することができる。
More specifically, method (a) involves the use of unsaturated basic acids, unsaturated tribasic acids, and anhydrides thereof that can be copolymerized with organic acid vinyl esters such as vinyl formate, vinyl acetate, or vinyl propionate. , take these esters, such as acrylic acid, methacrylic acid, crotonic acid,
maleic acid, fumaric acid, itaconic acid, maleic anhydride,
By saponifying a copolymer of itaconic anhydride, or by saponifying the copolymer of itaconic anhydride, or the above-mentioned hinyl esters,
By saponifying a copolymer of methacrylnitrile and acrylamide, the desired PVA1 having a carboxyl group in the molecule can be produced.

(ロ)の方法としてはPTAあるいはポリ酢酸ビニルに
、アクリロニトリル、アクリルアマイドをグラフト重合
してケン化する方法などがある。
Method (b) includes a method in which acrylonitrile or acrylamide is graft-polymerized to PTA or polyvinyl acetate and then saponified.

(ハ)の方法としてはPVAに二塩基酸、たとえばマレ
イン酸、7マル酸、ga、マロン酸、コハク酸、アジピ
ン酵あるいはこれらの無水物を反応させて片エステル化
反応によってカルボキシル基を導入させることができる
Method (c) involves reacting PVA with a dibasic acid, such as maleic acid, 7-malic acid, ga, malonic acid, succinic acid, adipic acid, or anhydride thereof, and introducing a carboxyl group through a partial esterification reaction. be able to.

PVA系繊維中にカルボキシル基を導入し熱処理すると
水溶層温度が上がり、アルカリで処理すると著しく低下
する理由は明らかではないが、多分カルボキシル基が分
子間又は分子内に存在する水酸基との間にエステル結合
を生成して水溶層温度が上昇し、アルカリで処理すると
アルカリに弱いエステル結合が切れるために著しく低下
するものと思われる。
It is not clear why the temperature of the aqueous layer increases when carboxyl groups are introduced into PVA fibers and is heat-treated, but it decreases significantly when treated with alkali, but it is probably due to the formation of esters between the carboxyl groups and the hydroxyl groups present between or within the molecules. It is thought that the temperature of the aqueous layer increases due to the formation of bonds, and that when treated with alkali, the ester bonds, which are weak against alkali, are broken, resulting in a significant drop.

PVA中のカルボキシル基の量は、ポリマー100g中
に0.02モル以上0.4モル以下含まれていることが
好ましく、0.04〜0.18モルがよす好適である。
The amount of carboxyl groups in PVA is preferably from 0.02 mol to 0.4 mol, more preferably from 0.04 to 0.18 mol, per 100 g of polymer.

0.02モル以下ではカルボキシル基の存在の影響が小
さく、従って水溶層温度とアルカリ処理後の水溶層温度
の差力ハニさいので、繊維製造工程でPO°C以上の水
溶層温度にした場合加工工程を想定したアルカリ水溶液
処理後の水溶層温度が80°C以下にならない。
If the amount is less than 0.02 mol, the effect of the presence of carboxyl groups is small, and therefore the difference between the aqueous layer temperature and the aqueous layer temperature after alkali treatment is large, so if the aqueous layer temperature is raised to above PO°C in the fiber manufacturing process, processing will be difficult. The temperature of the aqueous layer after the alkaline aqueous solution treatment does not fall below 80°C.

又0.4モル以上では繊維にすることがむづかしい。即
ち、紡糸時の凝固状態がよくなく、紡糸調子が悪い。さ
らに熱処理する前の乾燥工程での膨潤が大きすぎ、芒硝
が存在していても単繊維同志の接着が起こり問題である
Moreover, if it is more than 0.4 mol, it is difficult to make it into fibers. That is, the coagulation state during spinning is not good and the spinning condition is poor. Furthermore, the swelling during the drying process before heat treatment is too large, causing adhesion of single fibers even in the presence of Glauber's salt, which is a problem.

なおケン化度は80%以上が好ましく、重合度は400
〜3000が適当である。
The saponification degree is preferably 80% or more, and the polymerization degree is 400%.
~3000 is appropriate.

(2)の方法の前記カルボキシル基を導入したPVAと
、導入していない通常のPVAとを混合紡糸する場合は
、混合後のPVAポリマー100g中に力〃ホキシル基
が0.02〜0.4モル含まれるようにすればよい。例
えば、PVAポリマー10 ’Og中に0.16モルの
カルボキシル基を有するPVAを50重量襲、有しない
通常のPVA50重量%を混ぜると、ポリマー1009
あたりに0.08モルのカルボキシル基を有することK
なる。
When mixing and spinning the PVA into which carboxyl groups have been introduced in method (2) and ordinary PVA without carboxyl groups, the amount of carboxyl groups in 100 g of the mixed PVA polymer is 0.02 to 0.4. It is sufficient to include moles. For example, if 50% by weight of PVA with 0.16 mol of carboxyl groups and 50% by weight of normal PVA without carboxyl groups are mixed in 10'Og of PVA polymer, polymer 1009
Having 0.08 mol of carboxyl group per K
Become.

(5)の場合はポリ□′)□ン゛□クリル酸、ポリメ・
クリ・・酸やその塩等とカルボキシル基を有しないPV
Aとの混合紡糸であるが、混合後の平均カルボキシル量
がポリマー100fあたり0.02〜0.4七μになる
よう傾混合するだけでよい。
In the case of (5), poly□′)□□acrylic acid, polymer
Chrysanthemum... PV that does not have acid or its salts, etc. and carboxyl group
Regarding mixed spinning with A, it is only necessary to perform gradient mixing so that the average amount of carboxyl after mixing becomes 0.02 to 0.47 microns per 100 f of polymer.

かくして得られるカルボキシル基を有するPVA系水溶
液の濃度は8〜20重量−がよく、よシ好ましくは13
〜17%である。
The concentration of the PVA-based aqueous solution having carboxyl groups thus obtained is preferably 8 to 20% by weight, and more preferably 13% by weight.
~17%.

該紡糸用原液を主として濃厚な芒硝浴中へ紡糸し、引続
きより高温の芒硝液中に導ひいて適当倍率の湿延伸を施
し、pH2〜6の酸性浴で処理し、芒硝が付着したまま
で乾燥する。
The spinning stock solution is mainly spun into a concentrated Glauber's salt bath, then introduced into a hotter Glauber's salt solution, subjected to wet stretching at an appropriate ratio, and treated in an acidic bath with a pH of 2 to 6, with the Glauber's salt still attached. dry.

pH2以下では後段の熱処理拠よV)PVAが劣化する
ので好ましくない。又pH6以上では熱処理によっても
水溶層温度が上がりに<<、従ってアルカリ処理後の水
溶層温度との差が小さい。カルボキシル基が力μボン酸
塩の形で存在し、反応性を減じているものと想像される
If the pH is lower than 2, it is not preferable because V) PVA deteriorates during the subsequent heat treatment. Moreover, at pH 6 or higher, the temperature of the aqueous layer increases even with heat treatment, and therefore the difference from the temperature of the aqueous layer after alkali treatment is small. It is assumed that the carboxyl group is present in the form of a carbonate salt, reducing reactivity.

引続き150°C以上融点以下の温度で定長下もしくは
若干の延伸を施して熱処理し水溶層温度を90℃以上と
する。
Subsequently, the film is heat-treated at a temperature of 150°C or higher and lower than the melting point by constant length or slight stretching to bring the temperature of the aqueous layer to 90°C or higher.

150°C以下では90℃以上め水溶層温度が得られな
い。
If the temperature is below 150°C, an aqueous layer temperature of 90°C or above cannot be obtained.

該繊維を乾式不織布用あるいは織、m動用に供するため
にはさらに芒硝の除去及び油剤を付与することが重要で
ある。芒硝の洗滌は水で行うが、本発明の場合力)Ly
diキシル基?導入し水溶解温厘を高めているので、水
温を特に下げる必要もなく、通常の緊張下での水洗でよ
く、水洗工程は通常のP’ V A系水溶性繊維に比し
非常に楽である。反油剤は公知の油剤を適宜選択すれば
よい。  □油剤付与後の乾燥は本発明の最も特長とす
るところであるが、水分10〜20襲稈度までは該繊維
の有する水溶解温度以下で乾燥する。一般的には約10
°C以下にする必要があるが、本発明の゛場合約50°
C程度で充分であり、もともと90°C以上と水溶層温
度が高い上に、乾燥温度は水溶層温度かられずかだけ低
下させるだけでよく、従ってより高い乾燥温度の設定が
できるので著しく乾燥効率を高めるととkなる。
In order to use the fibers for dry nonwoven fabrics, weaving, and textile applications, it is important to remove Glauber's salt and add an oil agent. Although washing of Glauber's salt is carried out with water, in the case of the present invention, Ly)
dixyl group? As the water solubility temperature is increased, there is no need to lower the water temperature in particular, and washing under normal tension is sufficient, and the washing process is much easier than with normal P'VA-based water-soluble fibers. be. As the anti-oil agent, any known oil agent may be appropriately selected. □Drying after applying the oil agent is the most distinctive feature of the present invention, and drying is performed below the water dissolution temperature of the fiber until the moisture content reaches 10 to 20 culm attack degree. Generally about 10
°C or less, but in the case of the present invention, it is approximately 50 °C.
C or so is sufficient, and in addition to the aqueous layer temperature being originally high at 90°C or higher, the drying temperature only needs to be lowered by a small amount from the aqueous layer temperature, and therefore a higher drying temperature can be set, resulting in a remarkable drying efficiency. If you increase , it becomes k.

乾燥温度が本発明の場合水溶解温度よシ若干低目でよい
理由は定かでないが、通常のPVAの場合その耐水性は
結晶化という物理的因子のみによるものであるが、本発
明は力〜ホキシル基と水酸基の化学的な反応が付与され
ているので湿熱に対し、より安定なためと推定される。
It is not clear why the drying temperature may be slightly lower than the water dissolution temperature in the case of the present invention, but in the case of ordinary PVA, its water resistance is only due to the physical factor of crystallization, but the present invention It is presumed that this is because it is more stable against moist heat due to the chemical reaction between phoxyl and hydroxyl groups.

ステープルの場合乾燥後の繊維は必要に応じ捲縮を施し
適当な長さに切断する。フィラメントの場合は通常乾燥
後チーズ巻とする。
In the case of staples, the dried fibers are crimped if necessary and cut into appropriate lengths. In the case of filament, it is usually rolled into cheese after drying.

かくして得られた繊維は水溶群温度は90°C以上と高
いが、アルカリ浴で処理しさえすれば80°C以下とな
り、低温で溶解又は溶解除去が可能である。
Although the fiber thus obtained has a high aqueous group temperature of 90° C. or higher, it becomes 80° C. or lower if treated in an alkaline bath, and can be dissolved or removed at low temperatures.

該繊維はフィラメント、紡績糸として織9編物にして、
例えばケミカルレース基布、高級タオル地等最終的には
溶解除去する種々の用途や、ステープルとして乾式不織
布のバインダー等のようなバインダー繊維としての種々
の用途に利用できる。
The fibers are made into woven and knitted fabrics as filaments and spun yarns,
For example, it can be used in various applications such as chemical lace base fabrics and high-grade terry cloth, where it is ultimately dissolved and removed, and in various applications as binder fibers such as binders for dry-laid non-woven fabrics as staples.

なお利用範囲は当然のことながら上記例に限定されるも
のではない。
Note that the scope of use is not limited to the above example, as a matter of course.

以下実施例をもって本発明□を説明するが、この実施例
に限定されるものではない。
The present invention □ will be explained below with reference to examples, but it is not limited to these examples.

実施例1 メタノールを溶媒トして酢酸ビニルとイタコン酸を、触
媒に2,2′−アゾビスイソブチロニトリルを使用し共
重合した後に、アルカリでケン化して、イタコン酸を2
モル%導入した重合度1800.ケン(tjtpa、s
モ/l/%のポリビニル7ルコー7v(PVAloog
あ*、bの力#ボキシ#基zO,087モ#)を得た。
Example 1 Vinyl acetate and itaconic acid were copolymerized using methanol as a solvent using 2,2'-azobisisobutyronitrile as a catalyst, and then saponified with an alkali to convert itaconic acid into 2
Degree of polymerization introduced in mol%: 1800. Ken (tjtpa, s
Mo/l/% polyvinyl 7 luco 7v (PVAloog
A *, b force #boxy # group zO, 087 mo #) was obtained.

このPVA金用い16重量%の水溶液とし紡糸原液とし
た。
A 16% by weight aqueous solution of this PVA gold was used as a spinning dope.

該紡糸原液を40°Cの飽和芒硝浴からなる凝固浴中に
紡糸し、ローラー間で2倍延伸し、さらに80°C,P
H4,5に調整した飽和芒硝浴中で2倍延伸の上、12
0°Cで乾燥後定長下で210°C30秒間の熱処理を
施した。得られた繊維は単繊維の太さが2デニールで、
その水溶群温度は100°C以上であった。(100°
Cで溶断しなかった)引続き緊張下で芒硝を常温水で洗
滌し、アニオン系の油剤処理をした後水分10%までは
97°Cの熱風で乾燥し、残シの水Q[、,120°C
で乾燥した。単繊維同志の接着は全くみられなかった。
The spinning stock solution was spun into a coagulation bath consisting of a saturated mirabilite bath at 40°C, stretched twice between rollers, and further stretched at 80°C and P.
After stretching 2 times in a saturated sodium sulfate bath adjusted to H4.5,
After drying at 0°C, heat treatment was performed at 210°C for 30 seconds at a constant length. The obtained fiber has a single fiber thickness of 2 denier,
The aqueous group temperature was 100°C or higher. (100°
After washing the Glauber's salt with room temperature water under tension and treating it with an anionic oil, it was dried with hot air at 97°C until the moisture content reached 10%, and the remaining water was washed with water Q[,,120 °C
It was dried. No adhesion between single fibers was observed.

該繊維を緊張下で濃度19/l)、温度50”Cのカセ
イソーダ水溶液で処理した後の水溶群温度はる。
The aqueous group temperature after treating the fiber under tension with an aqueous solution of caustic soda at a concentration of 19/l) and a temperature of 50''C is:

°Cと非常に低温で溶断した。即ち繊維製造工程では水
溶群温度が高いために効率的な生産が出来、加工工程で
はアルカリ土類金施しさえすれば60°Cという低温で
の溶解ないし溶解除去が出来ることを示している。
It melted at a very low temperature of °C. That is, in the fiber manufacturing process, efficient production is possible due to the high aqueous group temperature, and in the processing process, it is possible to dissolve or remove by dissolution at a low temperature of 60°C as long as alkaline earth metal is applied.

比較例1 カルボキシル基を含まない■ぐラレ製の重合度1750
、ケン化度98.5モIv%(7)PVAi使用し、実
施例1と油剤処理工程までは全く同一条件で処理した。
Comparative Example 1 Polymerization degree of 1750 made by ■Gurare, which does not contain carboxyl groups
, PVAi with saponification degree of 98.5 moIv% (7) was used, and the treatment was performed under exactly the same conditions as in Example 1 up to the oil treatment step.

得られた繊維の水溶群温度は70°Cであった。The aqueous group temperature of the obtained fiber was 70°C.

油剤処理後の乾燥を実施例1と同条件で処理したところ
溶断が起ったシ、単繊維同志がはげしく接着し、棒状と
なった。
When drying after the oil treatment was carried out under the same conditions as in Example 1, fusing occurred, and the single fibers strongly adhered to each other, resulting in a rod-like shape.

従って水分10弾まで60°Cで乾燥し、それ以下は1
20°Cで乾燥した。接着はほんのわずかという程度に
押え得たが、乾燥時間が実施例1の20倍以上もかがシ
工業的な生産としては全く問題外であった。
Therefore, up to 10 moisture particles can be dried at 60°C, and less than 10 particles can be dried at 60°C.
Dry at 20°C. Although the adhesion was suppressed to a slight extent, the drying time was more than 20 times that of Example 1, which was completely out of the question for industrial production.

なお実施例1.と同様な方法でカセイソーダ水溶液で処
理した後の水溶群温度を測定したが、処理しない場合の
70°Cと全く同じであった。
Note that Example 1. The aqueous group temperature after treatment with a caustic soda aqueous solution was measured in the same manner as above, and it was exactly the same as 70°C without treatment.

比較例2 カルボキシル基を含まない■クラレ製の重合度1700
、ケン化度99.9モル%の完全ケン化PVAを実施例
1と同条件で製造した。
Comparative Example 2 - Polymerization degree 1700 manufactured by Kuraray, which does not contain carboxyl groups
Completely saponified PVA with a saponification degree of 99.9 mol % was produced under the same conditions as in Example 1.

水溶群温度は90°Cであったが油剤処理後の乾燥工程
でやはシ激しい単繊維間の接着がみられた。
Although the aqueous group temperature was 90°C, severe adhesion between single fibers was observed during the drying process after oil treatment.

そこで水分10%までを80°Cまで低下して乾燥し、
しかる後に120°Cに上げて残りの水分を乾燥した。
Therefore, the moisture content is reduced to 80°C and dried.
Thereafter, the temperature was raised to 120°C to dry the remaining moisture.

単繊維間の接着はみられなかったが、水溶群温度が90
°Cと高いうえに乾燥時間も実施例1の5倍も要した。
Although no adhesion between single fibers was observed, the aqueous group temperature was 90
The temperature was high, and the drying time was five times that of Example 1.

なお比較例1と同様カセイソーダ水溶液で処理しても水
溶群温度は処理なしの場合の90°Cと差はなかった。
As in Comparative Example 1, even when treated with an aqueous caustic soda solution, the aqueous group temperature was no different from 90°C in the case without treatment.

比較例1.2と比較して実施例1は低温水溶解性を有す
るPVA系繊維の生産が効率的に可能なることを明白に
示している。
In comparison with Comparative Example 1.2, Example 1 clearly shows that it is possible to efficiently produce PVA-based fibers with low-temperature water solubility.

実施例2〜5.比較例3〜4 メタノールを溶媒として酢酸ビニルとイタコン酸を2.
2’−乙ゾビスイソブチルニトリルを用いて共重合した
後、アルカリでケン化して重合度16o。
Examples 2-5. Comparative Examples 3 to 4 Vinyl acetate and itaconic acid were mixed using methanol as a solvent.
After copolymerizing with 2'-zobisisobutylnitrile, the polymerization degree was 16o by saponification with an alkali.

〜1700.ケン化度98.0〜98.6モ/L’%の
イタコン酸共重合PVAを得た。イタコン酸共重合七ル
数を変更してポリマ〜100g中に含まれるカルボキシ
ル基量を0.014モル(比較例3)、o、o3+モ/
I/(実施例2 )、o、o66モ/L/C実施例3)
、C1,21モ/L/(実施例4)、0.31モル(実
施例5)。
~1700. Itaconic acid copolymerized PVA with a saponification degree of 98.0 to 98.6 mo/L'% was obtained. By changing the itaconic acid copolymerization number, the amount of carboxyl groups contained in 100 g of polymer was 0.014 mol (Comparative Example 3), o, o3 + mo/
I/(Example 2), o, o66mo/L/C Example 3)
, C1,21 mo/L/(Example 4), 0.31 mole (Example 5).

0.53モ/I/(比較例4)とした。It was set to 0.53 mo/I/ (Comparative Example 4).

それぞれのイタコン酸共重合PVAN用いて油剤処理工
程までは実施例1と全く同条件で製造した。
Using each itaconic acid copolymerized PVAN, production was performed under exactly the same conditions as in Example 1 up to the oil treatment step.

その後の乾燥条件は10憾までは(水溶群温度−5°C
)の熱風温度で乾燥し、残シの水分は120°Cに上げ
て乾燥した。   、、・。
The subsequent drying conditions were as follows: (aqueous group temperature -5°C)
), and the moisture content of the residue was raised to 120°C. ,,・.

1□、ゎえ、−5−ルー1□8え。1□, ゎeh, -5-ru 1□8eh.

比較例3はアルカリ処理後の水溶群温度が90°Cと高
く、又比較例4は紡糸時熱処理前の乾燥での接着が大で
又紡糸調子も良くなかった。
In Comparative Example 3, the aqueous group temperature after alkali treatment was as high as 90°C, and in Comparative Example 4, adhesion was large during drying before heat treatment during spinning, and the spinning condition was not good.

実施例6〜8.比較例5〜6 実施例1にてローラー延伸後の80°C芒硝浴処理にお
けるpHを変更した以外は全く同方法で実施した。
Examples 6-8. Comparative Examples 5 to 6 The same method as in Example 1 was carried out except that the pH in the 80° C. sodium sulfate bath treatment after roller stretching was changed.

pHは硫酸及びカセイソーダで調整し、1.5(比較例
5)、2.5(実施例6)、4.0(実施例7)。
The pH was adjusted with sulfuric acid and caustic soda and was 1.5 (Comparative Example 5), 2.5 (Example 6), and 4.0 (Example 7).

5.0(実施例8)、8.0(比較例6)とした。その
水溶群温度をアルカ)ノ処理前・後で測定し、その結果
を表−2に示した。
5.0 (Example 8) and 8.0 (Comparative Example 6). The aqueous group temperature was measured before and after the alkali treatment, and the results are shown in Table 2.

比較例5はpHが低すぎて繊維の着色は大であシ、又ア
ルカリ処理後の水溶群温度が高すぎる。
In Comparative Example 5, the pH was too low, resulting in severe discoloration of the fibers, and the temperature of the aqueous group after alkali treatment was too high.

原因は明確ではないが、PVAの主鎖が切れて分子間に
エステル結合以外の架橋結合全生成している可能性があ
り、アルカリ処理による水溶群温度の低下が小さすぎる
Although the cause is not clear, it is possible that the main chain of PVA is broken and all crosslinks other than ester bonds are formed between molecules, and the aqueous group temperature decreases by the alkali treatment is too small.

比較例6け熱処理しても水溶群温度があまシ上昇しない
。理由は判然としないが、pHが高いためにカルボキシ
ル基が塩となり、水酸基との反応性を減じている可能性
がある。
Comparative Example 6 The temperature of the aqueous solution does not rise significantly even after heat treatment. Although the reason is not clear, it is possible that the carboxyl group becomes a salt due to the high pH, reducing its reactivity with the hydroxyl group.

ともかく熱処理しても水溶群温度が低く、かつアルカリ
処理してもその低下がほとんどない。
In any case, the aqueous group temperature is low even after heat treatment, and there is almost no decrease in temperature even after alkali treatment.

実施例のpHが如何に重要であるかが明白である。It is clear how important the pH of the example is.

実施例9〜11.比較例7〜8 実施例1と紡糸後の乾燥工程までは同一条件として熱処
理温度を種々変更し、水溶群温度をカセイソーダ197
g、50°C,5分の処理的・後で測定し、表−5に示
した。
Examples 9-11. Comparative Examples 7 to 8 The conditions were the same as in Example 1 up to the drying step after spinning, but the heat treatment temperature was variously changed, and the aqueous group temperature was changed to caustic soda 197.
The results are shown in Table 5.

なお熱処理時間は実施例1と同じく30秒とした。Note that the heat treatment time was 30 seconds as in Example 1.

0表−3 150°C以下の熱処理では水溶層温度が低すぎて油剤
処理後の乾燥に長時間を要することになシ問題である。
Table 0-3 The problem with heat treatment at 150°C or lower is that the temperature of the aqueous layer is too low and it takes a long time to dry after oil treatment.

実施例12 無水マレイン酸と酢酸ビニルの共重合物をケン化して得
られた変性度2モ)V%(ポリマー100g中のカルボ
キシル基含量0.088モ/L/)の重合度1800、
ケン化度98.5モル憾のイタコン酸共重合PVAと通
常の完全ケン化PTA(比較例2と同−PVA )2重
量比で75対25の割合で混合し、rt:’)−q−1
oog中のカルボキシル基量を平均0.066モルとし
た16重量%のPVA水溶g!ヲ紡糸原液とした。該紡
糸原液を紡糸以降は実施例1と全く同一条件で処理し繊
維を得た。該繊維は全く接着がなく、水溶解温度100
°C以上と高く、又1g/lのカセイソーダ水溶液での
処理後の水溶層温度は73℃と低いものであった。゛ 実施例15 実施例12にで無水マレイン酸を共重合して得られたP
VAのかわりにイタコン酸2モ/L/金共重合したPV
A(実施例1と同−PVA)i使用した以外は全〈実施
例12と同条件で処理した。
Example 12 Modification degree obtained by saponifying a copolymer of maleic anhydride and vinyl acetate 2 mo) V% (carboxyl group content in 100 g of polymer 0.088 mo/L/) degree of polymerization 1800,
Itaconic acid copolymerized PVA with a saponification degree of 98.5 mol and ordinary completely saponified PTA (the same PVA as in Comparative Example 2) were mixed at a weight ratio of 75:25, rt:')-q- 1
16% by weight PVA water soluble g! with an average carboxyl group amount of 0.066 mol in oog! It was used as a spinning stock solution. After spinning, the spinning solution was treated under exactly the same conditions as in Example 1 to obtain fibers. The fiber has no adhesion and has a water solubility temperature of 100
The temperature of the aqueous layer after treatment with a 1 g/l caustic soda aqueous solution was as low as 73°C.゛Example 15 P obtained by copolymerizing maleic anhydride in Example 12
PV copolymerized with itaconic acid 2 mo/L/gold instead of VA
A (same as in Example 1 - PVA) All were treated under the same conditions as in Example 12, except that i was used.

得られた繊維は全く接着がなく、水溶層温度は100°
C以上と高く、アルカリ処理後の水溶層温度は67°C
と低いものであった。
The resulting fibers had no adhesion at all, and the temperature of the aqueous layer was 100°.
The temperature of the aqueous layer after alkali treatment is 67°C.
It was low.

特許出−大   株式会社 り ラ し代理人 弁理士
本多 堅
Patent Issuance Dai Co., Ltd. Attorney Ken Honda

Claims (2)

【特許請求の範囲】[Claims] (1)繊維を形成するポリマー100g中にカルボキシ
ル基を0.02〜0.4モル含有し、水溶解温度が90
℃以上であり、かつアルカリ浴で処理後の水溶解温度が
80℃以下の潜在的に低温水溶解性を有するポリビニル
アルコール系合成繊維
(1) Contains 0.02 to 0.4 moles of carboxyl group in 100 g of polymer forming the fiber, and has a water dissolution temperature of 90
Polyvinyl alcohol-based synthetic fibers that have potential low-temperature water solubility, with a water solubility temperature of 80°C or higher after treatment in an alkaline bath.
(2)繊維を形成するポリマー100g中にカルボキシ
ル基in、02〜0.4モル含有するポリマーを水溶液
とし1.該水溶液を芒硝を凝固浴として湿式紡糸し、凝
固浴あるいはその後の工程でpH2〜6の処理液で処理
し、以後芒硝付着のままで乾燥し、さらに150°C以
上融点以下で熱処理することを特徴とする水溶解温度が
90℃以上であシ、かつアルカリ浴で処理後の水溶解温
度が80°C以下の潜在的に低温水溶解性を有するポリ
ビニルアルコ−μ系合成職維JjlF+の製造法
(2) A polymer containing 02 to 0.4 moles of carboxyl groups in 100 g of the polymer forming the fibers is prepared as an aqueous solution.1. The aqueous solution is wet-spun using Glauber's salt as a coagulating bath, treated with a treatment solution of pH 2 to 6 in the coagulating bath or in a subsequent step, dried with the attached Glauber's salt still attached, and further heat-treated at a temperature above 150°C and below the melting point. Production of polyvinyl alcohol-μ-based synthetic fiber JjlF+, which has a characteristic water solubility temperature of 90°C or higher and a water solubility temperature of 80°C or lower after treatment in an alkali bath, potentially having low-temperature water solubility. law
JP10253982A 1982-06-14 1982-06-14 Polyvinyl alcohol type synthetic fiber having latent solubility in water at low temperature and production thereof Granted JPS58220806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10253982A JPS58220806A (en) 1982-06-14 1982-06-14 Polyvinyl alcohol type synthetic fiber having latent solubility in water at low temperature and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10253982A JPS58220806A (en) 1982-06-14 1982-06-14 Polyvinyl alcohol type synthetic fiber having latent solubility in water at low temperature and production thereof

Publications (2)

Publication Number Publication Date
JPS58220806A true JPS58220806A (en) 1983-12-22
JPS6360123B2 JPS6360123B2 (en) 1988-11-22

Family

ID=14330066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10253982A Granted JPS58220806A (en) 1982-06-14 1982-06-14 Polyvinyl alcohol type synthetic fiber having latent solubility in water at low temperature and production thereof

Country Status (1)

Country Link
JP (1) JPS58220806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215011A (en) * 1985-11-01 1987-09-21 Kuraray Co Ltd Rapidly shrinkable fiber and production thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289422U (en) * 1988-12-27 1990-07-16
JPH0490508A (en) * 1990-08-01 1992-03-24 Shiiretsukusu Kk Cover sunglass spectacles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266725A (en) * 1975-11-26 1977-06-02 Nichibi:Kk Preparation of polyvinyl alcohol fiber easily soluble in water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266725A (en) * 1975-11-26 1977-06-02 Nichibi:Kk Preparation of polyvinyl alcohol fiber easily soluble in water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215011A (en) * 1985-11-01 1987-09-21 Kuraray Co Ltd Rapidly shrinkable fiber and production thereof

Also Published As

Publication number Publication date
JPS6360123B2 (en) 1988-11-22

Similar Documents

Publication Publication Date Title
JP3828217B2 (en) Polyvinyl alcohol fiber and method for producing the same
JP4796571B2 (en) Chemical lace base fabric and method for producing the same
JPS58220806A (en) Polyvinyl alcohol type synthetic fiber having latent solubility in water at low temperature and production thereof
JP2006322090A (en) Binder fiber
JP5069691B2 (en) Embroidery base fabric and manufacturing method thereof
JP3017865B2 (en) Ethylene-vinyl alcohol copolymer hollow fiber and method for producing the same
JP4030686B2 (en) Polyester special blend yarn
JP2002054036A (en) Crimped polyester fiber and method for producing the same
JP2014005578A (en) Conjugate fiber and ultrafine cation dyeable polyester composite fiber obtained from the same
JPS6342969A (en) Production of bulky spun yarn knitted fabric excellent in abrasion resistance
JP3887119B2 (en) Water-soluble thermoplastic polyvinyl alcohol filament with excellent shape retention
JPH1136172A (en) Improvement in processability in producing spun yarn, production of fibrous structural product and spun yarn
JP2008190063A (en) Method for producing soft spun raw yarn having excellent feeling and textile product obtained from the same
JP2000178864A (en) Production of nonwoven fabric structural form and nonwoven fabric structural form thus produced
JP4236775B2 (en) Special polyester-based structurally processed yarn with high void development performance
JP3207968B2 (en) Mixed yarn
JP3887126B2 (en) Method for producing water-soluble thermoplastic polyvinyl alcohol fiber
JP3887131B2 (en) Wiping cloth
JP4002033B2 (en) Split type composite fiber
JPH0754257A (en) Nonwoven fabric of polyvinyl alcohol-based water-soluble filament
JP2000170069A (en) Production of nonwoven fabric and nonwoven fabric
JP3743627B2 (en) Textile treatment agent
JP2588868B2 (en) Alkali easily soluble filament
JPH0749607B2 (en) Method for producing acrylonitrile-based precursor for producing carbon fiber
JP3657398B2 (en) Manufacturing method of composite fiber