WO2006103894A1 - Thick seamless steel pipe for line pipe and method for production thereof - Google Patents

Thick seamless steel pipe for line pipe and method for production thereof Download PDF

Info

Publication number
WO2006103894A1
WO2006103894A1 PCT/JP2006/304613 JP2006304613W WO2006103894A1 WO 2006103894 A1 WO2006103894 A1 WO 2006103894A1 JP 2006304613 W JP2006304613 W JP 2006304613W WO 2006103894 A1 WO2006103894 A1 WO 2006103894A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
seamless steel
toughness
steel pipe
heating
Prior art date
Application number
PCT/JP2006/304613
Other languages
French (fr)
Japanese (ja)
Inventor
Kunio Kondo
Yuji Arai
Nobuyuki Hisamune
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to EP06728830.8A priority Critical patent/EP1876254B1/en
Priority to BRPI0608953A priority patent/BRPI0608953B8/en
Priority to CA2602526A priority patent/CA2602526C/en
Priority to AU2006229079A priority patent/AU2006229079C1/en
Publication of WO2006103894A1 publication Critical patent/WO2006103894A1/en
Priority to NO20074257A priority patent/NO340772B1/en
Priority to US11/895,131 priority patent/US20080047635A1/en
Priority to US12/791,486 priority patent/US20100236670A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/04Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Definitions

  • Thick-walled seamless steel pipe for line pipe and manufacturing method thereof
  • the present invention relates to a thick-walled seamless steel pipe for line pipes excellent in strength, toughness, and weldability, and a method for producing the same.
  • Thick-walled seamless steel pipe means a seamless steel pipe with a wall thickness of 25 mm or more.
  • the seamless steel pipe of the present invention has a strength of X70 or higher as specified in API (American Petroleum Institute) standards, specifically X70 (yield strength 482 MPa or higher), X80 (yield strength 551 MPa or higher), X90 (yield strength). 620MPa or higher), X100 (yield strength 689MPa or higher), X120 (yield strength 827MPa or higher), combined with good toughness.
  • API American Petroleum Institute
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-2409173 discloses that a crystal grain can be obtained by adjusting the time until charging of a finishing rolling force reheating furnace using a reheating furnace after finish rolling. A technique for miniaturizing the size is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-104117 discloses a technique that has good performance even when crystal grains are relatively large by adjusting the component composition, particularly the Ti and S contents. Has been.
  • Patent Document 1 In order to manufacture high strength and thick steel pipes for deep seabed oil fields where demand has been increasing in recent years, the technology disclosed in Patent Document 1 described above is applicable. I can't do it. For example, in the case of a thick-walled steel pipe, the finish rolling temperature becomes high, and it takes a long time to reach the target reheating furnace charging temperature, and the production efficiency is greatly reduced. In addition, the above patent document
  • the method described in 2 is also difficult to apply to thick materials. With thick materials, the cooling rate during in-line heat treatment is small, so there is a problem that the toughness decreases even when steel having the composition disclosed in Patent Document 2 is applied.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-240913
  • Patent Document 2 JP 2000-104117 A
  • An object of the present invention is to solve the above-described problems, and in particular, to provide a seamless steel pipe for a line pipe having high strength and stable toughness with a thick steel pipe, and a method for producing the same.
  • Precipitation strengthening deteriorates the balance between strength and toughness in the in-line heat treated material. Although it is disadvantageous to obtain high strength, it is desirable to obtain high toughness by using transformation strengthening and solid solution strengthening without using precipitation strengthening as much as possible.
  • a composition containing an appropriate amount of one or more of M is desirable. This greatly improves the toughness of the thick-walled material.
  • In-line heat treatment does not have a crystal grain refinement process due to “transformation and reverse transformation” in off-line heat treatment, so it is necessary to refine the crystal grains themselves at the end of rolling to ensure toughness.
  • the solidified crystal grains are coarse. It is said that the crystal grains become finer by reheating and performing block rolling. Therefore, a laboratory experiment was conducted to investigate the optimization of the ingot rolling process for in-line heat treated materials. As a result, with in-line heat treatment material Found that there is a tendency for crystal grains to become finer and toughness to be improved if the rolling is not carried out in the first place, even if the rolling conditions are not specified. In other words, it has been found that the above-mentioned conventional common sense is not necessarily correct.
  • a block of the same size as the block made by the above hot working is cut out from the inserted ingot by machining, and the block is heated to 1250 ° C and heated.
  • the drilling process and in-line heat treatment process were simulated by hot rolling and water cooling.
  • Ti carbonitride precipitates at a low temperature when the billet is heated in the subsequent pipe making process. Precipitates and the number of precipitated particles increases. When the number of precipitated particles is large, coarsening of the parent phase crystal grains, which has a large effect of pinning the parent phase crystal grains, is suppressed. Therefore, it is very important to properly control the cooling rate in the pouring process.
  • Ti carbonitride precipitates in the high temperature region during cooling. This is precipitation in the austenite region where there is relatively little dislocation, so there are fewer nucleation sites. The precipitate becomes coarse and becomes a coarse dispersion state. Once coarsely precipitated, Ti carbonitride is difficult to dissolve in the solid phase, making fine dispersion impossible.
  • the cooling rate after solidification is set to a rate at which Ti carbonitride does not precipitate, Ti carbonitride does not exist in the inserted billet, and Ti exists in a solid solution state. .
  • Ti carbonitride precipitates at a relatively low temperature during subsequent heating for heating. In the case of precipitation during heating, because of low-temperature precipitation in a bainite structure with many dislocations, a large number of nucleation sites are dispersed and deposited. It has also been clarified that if the heating rate is too high, the precipitation becomes a high temperature region, and fine precipitation is difficult.
  • Precipitation strengthening with V or Nb makes it easy to obtain high strength. Therefore, precipitation strengthening has been widely applied to steel materials that require high strength and weldability.
  • the above precipitation strengthening greatly reduces the toughness, so it is better not to use it as much as possible.
  • Nb significantly reduces the toughness of the in-line heat-treated material, so when it is included, it is necessary to set an upper limit strictly.
  • V an upper limit of force not set to Nb is set, and an alloy design that secures strength based on transformation strengthening and solid solution strengthening is performed. It is necessary.
  • the toughness which makes it difficult to obtain a uniform metal structure in the first stage of the heat treatment, tends to decrease.
  • the cooling rate decreases with thick materials, it is difficult to obtain a uniform transformation structure. That is, it transforms into martensite and bainite sequentially during cooling, but if the cooling rate is low and diffusion of C is possible to some extent, C is concentrated in untransformed austenite, and that portion has a high C content after the final transformation. It changes to martensite and bainite, and it becomes residual austenite with high C content. Therefore, it is desirable to set the cooling rate as large as possible and perform forced cooling to as low a temperature as possible.
  • the C content is limited to 0.08% or less.
  • the upper limit of Si is set to 0.25% or less, more preferably 0.15% or less, and still more preferably 0.10% or less.
  • Ti should be controlled within a narrow range of 0.004-0.010% as a suitable content for Ti not to precipitate during solidification and to precipitate as fine Ti carbonitride during subsequent billet heating.
  • the Nb additive strength decreases toughness and causes variation in strength. Therefore, Nb is not added, and the upper limit as an impurity is preferably 0.005% or less. V also lowers toughness, so it is necessary to keep it at 0.08% or less even if it is not added or contained.
  • the other elements are adjusted from the viewpoint of Norrance between high strength and good toughness.
  • P and S which have an adverse effect on toughness
  • Mn, Cr, Ni, Mo, and Cu must be selected and adjusted according to the target strength in consideration of toughness and weldability.
  • One or more of Ca, Mg and REM It is also effective to select and add to secure the pitting characteristics and improve toughness.
  • Forging is a process of forming a continuous billet into a round billet (a billet with a round cross-section), which is ideally shaped into an ingot and then into a round billet. Is also possible. However, in that case, it is important to control the cooling rate after fabrication more strictly to secure a sufficient amount of solute Ti by suppressing the precipitation of coarse TiN.
  • the round billet is reheated to a temperature at which hot working is possible, and is subjected to piercing, stretching, and regular rolling. If there is enough Ti in solid solution, Ti carbonitride precipitates during reheating, and the precipitation temperature is relatively low, so that much finer Ti carbonitride is formed than when precipitated during cooling after solidification. Precipitate.
  • the finely precipitated Ti carbonitride suppresses grain boundary migration during heating and holding of billets that are large in number and prevents coarsening of the grains. When rapid heating is performed, fine precipitation at low temperatures becomes impossible, and the effect of preventing grain coarsening cannot be obtained. Therefore, if heating is performed slowly or kept in the middle temperature range, fine Ti carbonitride The precipitation of objects is promoted.
  • the present invention made in accordance with the basic idea described above includes the following (1) and (2) seamless pipes for line pipes and (3) production of seamless pipes for line pipes up to (6).
  • the method is as follows.
  • a method for producing a high-strength, thick tough seamless steel pipe for line pipe characterized by the following steps (a) and (e):
  • C is an important element for ensuring the strength of steel. 0.03% or more is required to increase the hardenability and obtain sufficient strength with thick materials. On the other hand, if it exceeds 0.08%, the toughness S decreases, so it was set to 0.03-0.08%.
  • Si 0.25% or less
  • Si has an effect as a deoxidizer in steelmaking, but it is better not to add it as much as possible.
  • the reason is that the toughness of the thick-walled material is greatly reduced.
  • the Si content exceeds 0.25%, the toughness of the thick-walled material is remarkably lowered. Therefore, when it is added as a deoxidizer, the content should be 0.25% or less. If the content is less than 15%, the toughness can be further improved. The most desirable is to keep it below 0.10%. Extremely good toughness can be obtained by limiting Si, which is an impurity, to an extremely low force of less than 0.05%, which is difficult in the steelmaking process.
  • Mn needs to be contained in a relatively large amount in order to enhance hardenability and strengthen even thick-walled materials to the center, while at the same time increasing toughness. If the content is less than 0.3%, these effects cannot be obtained. If the content exceeds 2.5%, the HIC resistance decreases, so the content should be 0.3 to 2.5%.
  • A1 is added as a deoxidizer in steelmaking. In order to obtain this effect, its content is It is necessary to add so that it may become 0.001% or more. On the other hand, if the Al content exceeds 0.10%, inclusions will form clusters and deteriorate toughness, and surface defects will occur frequently during the beveled surface of the pipe. Therefore, A1 is set to 0.001-0.10%. Regarding the viewpoint power for preventing surface defects, it is desirable to limit the upper limit, and the preferable upper limit is 0.03%, and the more preferable upper limit is 0.02%. Since the steel pipe of the present invention cannot be expected to have a large deoxidation effect due to Si-added iron, the lower limit of the preferable A1 content is 0.001% for sufficient deoxidation.
  • Cr is an element that improves the hardenability and improves the strength of the steel with a thick material. The effect becomes remarkable when the content is 0.02% or more. However, if its content is excessive, the toughness will be reduced, so it was made 1.0% or less.
  • Ni is an element that improves the hardenability and improves the strength of the steel with a thick material. The effect becomes remarkable when the content is 0.02% or more. However, Ni is an expensive element, and even if contained excessively, the effect is saturated, so the upper limit was set to 1.0%.
  • Mo is an element that improves the strength of steel by transformation strengthening and solid solution strengthening. The effect becomes remarkable when the content is 0.02% or more. However, if added in excess, the toughness decreases, so the upper limit was made 1.2%.
  • the Ti content does not precipitate during cooling during solidification, but is controlled to a narrow range of 0.004% to 0.001% as a content suitable for depositing Ti carbonitride during subsequent billet heating. There is a need to. When the content is less than 0.004%, the number of Ti carbonitrides to precipitate cannot be secured, and when it exceeds 0.000%, it precipitates coarsely during cooling after solidification. ⁇ Tsu Te, the content of Ti ⁇ or, from 0.004 to 0.010 is 0/0 force proper.
  • soot In order to secure finely dispersed Ti carbonitrides, soot must contain 0.002% or more. On the other hand, if it exceeds 0.008%, coarse Ti carbonitride will precipitate during solidification. Therefore, it is necessary to control in the narrow range of 0.002 to 0.008 0 / o.
  • V is an element that determines the content based on a balance between strength and toughness. When sufficient strength is obtained with other alloy elements, the toughness is better when the additive is not added. When added as a strength-enhancing element, the content is preferably 0.02% or more. On the other hand, if it exceeds 0.08%, the toughness is greatly reduced, so when it is added, the upper limit of the content is set to 0.08%.
  • Nb 0 ⁇ 0.05%
  • Nb has a remarkable effect of suppressing grain coarsening during heating for quenching.
  • the content is preferably 0.005% or more.
  • the upper limit was made 0.05%.
  • Nb carbonitride precipitates non-uniformly, lowering the toughness and increasing the strength variation. Therefore, it is basically better not to add Nb.
  • the strength knockout becomes noticeable and the manufacturing problem is when the content exceeds 0.005%. Therefore, when applying in-line heat treatment, the allowable upper limit should be 0.005%. It is.
  • Cu does not need to be added, but has the effect of improving the HIC resistance (hydrogen-induced cracking resistance), so it may be added to improve the HIC resistance.
  • the minimum content at which the effect of improving HIC resistance is manifested is 0.02%. On the other hand, even if it exceeds 1.0%, the effect is saturated, so when added, the content is preferably 0.02 to: L 0%.
  • Ca, Mg, REM One kind, or a total of two or more kinds 0.00002 to 0.005%
  • B does not need to be added, but if added, it improves the hardenability even in a trace amount, so it is effective to add it when higher strength is required.
  • the content is desirably 0.003% or more.
  • excessive addition reduces toughness, so when B is added, its content should be 0.01% or less.
  • the steel pipe for a line pipe of the present invention is composed of Fe and impurities in the balance in addition to the above components.
  • the upper limit of the content of P and S in impurities must be kept as follows.
  • P is an impurity element that lowers toughness, and its content is preferably as low as possible. If the content exceeds 0.05%, the toughness deteriorates remarkably, so the upper limit is made 0.05%. 0.02% or less is preferable. 0.01% or less is more preferable.
  • S is also an impurity element that lowers toughness, and is preferably as small as possible. If the content exceeds 0.005%, the toughness is remarkably lowered, so the upper limit is made 0.005%. 0.003% or less is preferable, and 0.001% or less is more preferable.
  • the steel is smelted in a converter or the like so as to have the above composition, forged and solidified to obtain a flake. At this time, it is important to obtain a solidified steel ingot that suppresses the precipitation of 1 carbonitride. If the C, Ti, and N contents specified above are used, Ti carbonitrides are not basically analyzed during solidification. However, if the subsequent cooling rate is low, coarse Ti carbonitride precipitates, so it is necessary to cool at a specific rate or higher.
  • the cooling rate is an average cooling rate in the temperature range of 1400 to 1000 ° C where Ti carbonitride is likely to form after solidification, and when cooling into a round billet, a cooling rate of 6 ° CZ or more is When bulk rolling is performed, a cooling rate of 8 ° CZ or more is required. More preferably, an average cooling rate of 8 ° CZ or more is used when rolling into a round billet, and an average cooling rate of 10 ° CZ or more is used when performing block rolling. In either case, the higher the average cooling rate, the better, so there is no restriction on the upper limit.
  • the cooling rate of the piece varies depending on the part of the piece, but in the case of continuous production in a circular bowl shape, the cooling rate is controlled by the cooling rate at a place away from the center by a distance of 1Z2 of the radius. To speak. In the case of continuous forging in a rectangular shape, the cooling rate is controlled at a location between the center of gravity and the surface on a line passing through the center of gravity of the rectangle and parallel to the long side. Temperature measurements can also be made with a numerical simulation corrected with a temperature history of the force surface that can be attached with a thermocouple.
  • Round billets are reheated to a temperature where hot working is possible and drilled, stretched, and shaped.
  • round billets are formed by forging or Z and rolling, and drilling, stretching, and regular rolling are performed.
  • the reheating temperature is less than 1150 ° C, the hot deformation resistance increases and the generation of soot increases, so 1150 ° C or more is necessary.
  • the temperature exceeds 1280 ° C, the heating fuel intensity will become too large, the scale loss will increase and the yield will decrease, and the heating furnace life will be shortened and it will become uneconomical.
  • the temperature was 1280 ° C. The lower the heating temperature, the finer the crystal grains and the better the toughness. Therefore, the preferred heating temperature is 1200 ° C or lower.
  • the quenching process is basically an in-line heat treatment in which quenching is performed to room temperature after hot rolling and without cooling, but once cooled, re-heating and quenching further refines the crystal grains. Toughness is improved.
  • steel pipes with small strength variation can be obtained by performing quenching after hot working and soaking in a soaking furnace.
  • the required cooling rate is an average cooling rate of 800 ° C to 500 ° C and 8 ° CZ seconds or more. More preferred is 10 ° CZ seconds or more, and most preferred is 15 ° CZ seconds or more.
  • the cooling end temperature is also important in addition to the cooling rate.
  • forced cooling is continuously performed up to 80 ° C or less, more preferably 50 ° C or less, and most preferably 30 ° C or less.
  • forced cooling is continuously performed up to 80 ° C or less, more preferably 50 ° C or less, and most preferably 30 ° C or less.
  • tempering is performed at a temperature within a range of 500 ° C to 700 ° C.
  • the purpose of tempering is to adjust strength and improve toughness.
  • the holding time at the tempering temperature should be appropriately determined according to the thickness of the steel pipe, etc. Usually, it should be set to about 10 to 120 minutes.
  • a round billet was heated under the tube-forming heating conditions shown in Tables 2 to 5, and a hollow shell was obtained using an inclined roll punch.
  • the hollow shell was finish-rolled using a mandrel mill and a sizer to obtain a steel pipe with a thickness of 30 to 50 mm. Then, it cooled on the hardening conditions of Table 2-Table 5. That is, a method of cooling immediately after pipe making, a method of immediately cooling after pipe making and immediately soaking in a reheating furnace and soaking, and cooling to room temperature and then re-heating to cool. And implemented the method. Thereafter, tempering was performed under the conditions described in Table 2 to Table 5 to obtain a product.
  • the impact test piece was tested in accordance with JIS Z 2202 No. 4 test piece by collecting a 10 mm X 10 mm, 2 mm V notch test piece in the longitudinal direction at the center of the wall thickness.
  • trial number 1 of Table 2 two examples with branch numbers 1 and 2 are described. 1-1 and 1-2 use invention steel A, and the manufacturing conditions of 11 are within the range specified in the invention, and good toughness is obtained. On the other hand, sample No. 12 does not have good toughness because the heating rate for pipe making is too high and deviates from the manufacturing process defined in the present invention.
  • branch numbers 1 and 2 for trial numbers 2 to 24 there are branch numbers 1 and 2 for trial numbers 2 to 24, and the same steel grade is used for the same trial number.
  • the production conditions with branch number 1 are within the range specified in the invention, and good toughness is obtained.
  • branch number 2 deviated from the manufacturing process defined in the present invention, and good toughness was not obtained.
  • Test numbers 25 to 30 are examples of steels (comparative steels) that deviated from the alloy composition range defined in the present invention. Both of them are insufficient in performance as line pipes that require high toughness with a thick wall that does not have sufficient toughness.
  • the yield stress is X70 class (yield strength 482 MPa or more), X80 class (yield strength 551 MPa or more), especially for thick steel pipes.
  • X90 class (yield strength 620MPa or higher), X100 class (yield strength 689MPa or higher), X120 class (yield strength 827MPa or higher), high strength and toughness can be produced for line pipe seamless steel pipe Become.
  • the seamless steel pipe of the present invention is a steel pipe that can be laid in more severe deep seas, particularly for submarine flow lines. Therefore, the present invention greatly contributes to the stable supply of energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Metal Extraction Processes (AREA)

Abstract

[PROBLEMS] To provide a seamless steel pipe for a line pipe which is a thick steel pipe, has high strength and is excellent in toughness; and a method for producing the seamless steel pipe. [MEANS FOR SOLVING PROBLEMS] A thick seamless steel pipe for a line pipe having high strength and good toughness, characterized in that it has a chemical composition that c: 0.03 to 0.08 %, Si: 0.25 % or less, Mn: 0.3 to 2.5 %, Al: 0.001 to 0.10 %, Cr: 0.02 to 1.0 %, Ni: 0.02 to 1.0 %, Mo: 0.02 to1.2 %, Ti: 0.004 to 0.010%, N: 0.002 to 0.008 %, the total of one or more of Ca, Mg and REM: 0.0002 to 0.005 %, V: 0 to 0.08%, Nb: 0 to 0.05 %, Cu: 0 to 1.0 %, and the balance: Fe and impurities, with the proviso that P in the impurities is 0.05 % or less and S in the impurities is 0.005 % or less. The steel pipe may further comprise 0.0003 to 0.01 % of B in addition to the above components. A method for producing the steel pipe is characterized by the cooling rate of a cast steel product, the heating conditions for piercing and the heat treatment conditions after the formation of a pipe.

Description

明 細 書  Specification
ラインパイプ用厚肉継目無鋼管およびその製造方法  Thick-walled seamless steel pipe for line pipe and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、強度、靱性、溶接性に優れたラインパイプ用厚肉継目無鋼管とその製 造方法に関する。厚肉継目無鋼管とは、肉厚が 25mm以上の継目無鋼管を意味す る。本発明の継目無鋼管は、 API (米国石油協会)規格に規定される X70以上の強 度、具体的には、 X70 (降伏強度 482MPa以上)、 X80 (降伏強度 551MPa以上)、 X90 (降伏強度 620MPa以上)、 X100 (降伏強度 689MPa以上)、 X120 (降伏強 度 827MPa以上)の強度を有し、合わせて良好な靱性を有するラインパイプ用の高 強度高靱性厚肉継目無鋼管であって、特に海底フローライン用に好適なものである  The present invention relates to a thick-walled seamless steel pipe for line pipes excellent in strength, toughness, and weldability, and a method for producing the same. Thick-walled seamless steel pipe means a seamless steel pipe with a wall thickness of 25 mm or more. The seamless steel pipe of the present invention has a strength of X70 or higher as specified in API (American Petroleum Institute) standards, specifically X70 (yield strength 482 MPa or higher), X80 (yield strength 551 MPa or higher), X90 (yield strength). 620MPa or higher), X100 (yield strength 689MPa or higher), X120 (yield strength 827MPa or higher), combined with good toughness. Especially suitable for submarine flow lines
背景技術 Background art
[0002] 陸上や浅海に位置する油田の石油、ガス資源が近年枯渴しつつあり、深海の海底 油田の開発が活発になっている。深海油田では、海底に設置された油井、ガス井の 坑口から、洋上のプラットホームまでフローラインやライザ一を用いて原油やガスを輸 送する必要がある。  [0002] Oil and gas resources in oil fields located on land and in shallow water have been depleted in recent years, and development of deep-sea submarine oil fields has become active. In the deep-sea oil field, it is necessary to transport crude oil and gas from oil and gas well wells installed on the seabed to offshore platforms using flow lines and risers.
[0003] 深海に敷設されたフローラインを構成するノイブの内部には、深い地層圧が加わつ た高圧の内部流体圧がかかり、また、パイプは波浪による繰り返し歪みと、操業停止 時には深海の海水圧の影響を受ける。従って、このような用途に使用されるパイプと しては、高強度で高靱性の厚肉鋼管が望まれている。  [0003] The Neuve that forms the flow line laid in the deep sea is subjected to high internal fluid pressure with deep formation pressure, and the pipe is repeatedly distorted by waves, and when the operation is stopped, Influenced by water pressure. Therefore, a thick steel pipe having high strength and high toughness is desired as a pipe used for such applications.
[0004] 高強度で高靱性の継目無鋼管は、従来、高温に加熱されたビレットを穿孔圧延機 で穿孔した後、圧延、延伸して、製品のパイプ形状に成形し、その後、熱処理を施し て製造していた。し力しながら、近年、省エネルギーや省プロセスの観点から、インラ インでの熱処理を適用し、製造プロセスを簡素化することが検討されている。特に、 熱間加工された後に素材が保有する熱を有効利用することに着目して、一旦室温ま で冷却せずに、焼入するプロセスが導入されている。この方法によれば、大幅な省ェ ネルギ一と製造プロセスの効率ィ匕が達成され、大きな製造コストの削減が可能になる [0005] 仕上圧延後に直接焼入するインライン熱処理プロセスで製造された鋼管は、従来 のように圧延後にー且室温まで冷却されてから再加熱されることがな!、ので、変態お よび逆変態のプロセスを経ない。従って、結晶粒が粗大となりやすぐ靱性および耐 食性の確保が容易ではない。このような問題に対応するため、仕上圧延された鋼管 の結晶粒を微細にする技術や、結晶粒がそれ程小さくなくても靱性ゃ耐食性が確保 できる技術が、いくつか提案されている。 [0004] Conventionally, seamless steel pipes with high strength and toughness are produced by punching a billet heated to a high temperature with a piercing and rolling machine, rolling and stretching it, and then forming it into a product pipe shape, followed by heat treatment. It was manufactured. However, in recent years, from the viewpoint of energy saving and process saving, application of in-line heat treatment to simplify the manufacturing process has been studied. In particular, focusing on the effective use of the heat retained by the material after hot working, a process of quenching has been introduced without cooling it to room temperature. This method achieves significant energy savings and manufacturing process efficiencies, which can significantly reduce manufacturing costs. [0005] Steel pipes manufactured by an in-line heat treatment process, which is directly quenched after finish rolling, cannot be reheated after rolling and after cooling to room temperature, as in the past! Not going through the process. Accordingly, it is not easy to secure toughness and corrosion resistance as soon as the crystal grains become coarse. In order to deal with such problems, several techniques have been proposed for making the crystal grain of the finish-rolled steel pipe finer and for ensuring toughness and corrosion resistance even if the crystal grain is not so small.
[0006] 例えば、特許文献 1 (特開 2001— 240913号公報)には、仕上げ圧延後に再加熱 炉を用いて、仕上げ圧延力 再加熱炉装入までの時間を調整することによって、結 晶粒の微細化を図る技術が開示されている。また、特許文献 2 (特開 2000— 10411 7号公報)には、成分組成、特に Tiと Sの含有量を調整して、結晶粒が比較的大きく ても、良好な性能を有する技術が開示されている。  [0006] For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-240913) discloses that a crystal grain can be obtained by adjusting the time until charging of a finishing rolling force reheating furnace using a reheating furnace after finish rolling. A technique for miniaturizing the size is disclosed. Patent Document 2 (Japanese Patent Application Laid-Open No. 2000-104117) discloses a technique that has good performance even when crystal grains are relatively large by adjusting the component composition, particularly the Ti and S contents. Has been.
[0007] し力しながら、近年需要が増加している大深度の海底油田用の高強度で厚肉の鋼 管を製造するには、上記の特許文献 1に開示されて ヽる技術では対応しきれな 、。 例えば、厚肉鋼管になると、仕上げ圧延の温度が高温になり、狙いの再加熱炉装入 温度になるまでに長時間を要し、生産能率が大きく低下する。また、上記の特許文献 [0007] However, in order to manufacture high strength and thick steel pipes for deep seabed oil fields where demand has been increasing in recent years, the technology disclosed in Patent Document 1 described above is applicable. I can't do it. For example, in the case of a thick-walled steel pipe, the finish rolling temperature becomes high, and it takes a long time to reach the target reheating furnace charging temperature, and the production efficiency is greatly reduced. In addition, the above patent document
2に記載されている方法も厚肉材には適用が困難である。厚肉材ではインライン熱処 理時の冷却速度が小さくなるので、特許文献 2に開示される組成の鋼を適用しても靱 性が低下すると 、う問題がある。 The method described in 2 is also difficult to apply to thick materials. With thick materials, the cooling rate during in-line heat treatment is small, so there is a problem that the toughness decreases even when steel having the composition disclosed in Patent Document 2 is applied.
[0008] 特許文献 1 :特開 2001— 240913号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2001-240913
特許文献 2:特開 2000— 104117号公報  Patent Document 2: JP 2000-104117 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、上記の問題を解決することを課題とし、特に肉厚の厚い鋼管で高強度と 安定した靱性を有するラインパイプ用継目無鋼管、およびその製造方法を提供する ことを目的とする。 An object of the present invention is to solve the above-described problems, and in particular, to provide a seamless steel pipe for a line pipe having high strength and stable toughness with a thick steel pipe, and a method for producing the same. And
課題を解決するための手段  Means for solving the problem
[0010] 1.基礎的検討と知見 まず、厚肉の継目無鋼管の靱性が支配される因子を解析した。その結果、以下の ことが判明した。 [0010] 1. Basic examination and knowledge First, the factors governing the toughness of thick-walled seamless steel pipes were analyzed. As a result, the following was found.
[0011] (1)溶鋼の凝固時および凝固後の冷却条件が靱性に大きく影響する。冷却速度が 小さいと、靱性が低下するので、一定の冷却速度以上で冷却する必要がある。  [1] (1) Cooling conditions during and after solidification of molten steel greatly affect toughness. If the cooling rate is low, the toughness decreases, so it is necessary to cool at a certain cooling rate or higher.
[0012] (2)さらに、鋼塊を高温域に加熱して熱間加工を行う分塊圧延プロセスは、靱性に は良い影響を与えない。  [0012] (2) Furthermore, the ingot rolling process in which the steel ingot is heated to a high temperature range for hot working does not affect the toughness.
[0013] (3)上記の靱性低下の原因は、 Ti炭窒化物の析出形態が凝固時および凝固後の 冷却速度の影響を受けることにある。この靱性低下を防ぐには、 Ti炭窒化物を微細 に析出させることが重要である。  [0013] (3) The cause of the above-mentioned decrease in toughness is that the precipitation form of Ti carbonitride is affected by the cooling rate during solidification and after solidification. In order to prevent this decrease in toughness, it is important to precipitate Ti carbonitride finely.
[0014] (4)析出強化は、インライン熱処理材では、強度と靱性のバランスを悪化させる。高 強度を得るためには不利になるが、析出強化を極力使用せず、変態強化および固 溶強化を活用する方が高靱性を得るには望ましい。 (4) Precipitation strengthening deteriorates the balance between strength and toughness in the in-line heat treated material. Although it is disadvantageous to obtain high strength, it is desirable to obtain high toughness by using transformation strengthening and solid solution strengthening without using precipitation strengthening as much as possible.
[0015] (5)均一な金属組織を得るためには、残留オーステナイトや低温変態マルテンサイ トの生成を防止する必要がある。 [0015] (5) In order to obtain a uniform metal structure, it is necessary to prevent the formation of retained austenite and low-temperature transformation martensite.
[0016] (6)合金組成としては、 Siを低減し、さらに Pおよび Sを低減し、 Nbおよび Vは、一 定の上限を超えないようにコントロールし、かつ適量の Tiならびに Ca、 Mgおよび RE[0016] (6) As an alloy composition, Si is reduced, P and S are further reduced, Nb and V are controlled so as not to exceed a certain upper limit, and appropriate amounts of Ti and Ca, Mg and RE
Mのうちの 1種以上を適量含有させた組成が望ましい。これによつて、厚肉材の靱性 が大幅に向上する。 A composition containing an appropriate amount of one or more of M is desirable. This greatly improves the toughness of the thick-walled material.
[0017] (7)上記(1)〜(6)の知見は、インライン熱処理を前提として得られたものである。し かし、オフラインで熱処理を施す鋼管に適用すると、さらに良好な靱性が得られる。 従って、高強度材をオフライン熱処理で製造する際にも上記の知見は利用できる。  (7) The above findings (1) to (6) are obtained on the premise of in-line heat treatment. However, even better toughness can be obtained when applied to steel pipes that are heat treated off-line. Therefore, the above knowledge can also be used when manufacturing a high-strength material by offline heat treatment.
[0018] 2.基礎試験とその結果  [0018] 2. Basic test and results
インライン熱処理では、オフライン熱処理における「変態 逆変態」による結晶粒微 細化プロセスが存在しないので、圧延終了時の結晶粒そのものを微細化して、靱性 を確保する必要がある。  In-line heat treatment does not have a crystal grain refinement process due to “transformation and reverse transformation” in off-line heat treatment, so it is necessary to refine the crystal grains themselves at the end of rolling to ensure toughness.
[0019] 通常、凝固のままの結晶粒は粗大である力 再加熱して分塊圧延を実施することに より結晶粒が微細になると言われている。そこで、ラボ実験を行ってインライン熱処理 材における分塊圧延プロセスの最適化を検討した。その結果、インライン熱処理材で は、分塊圧延条件を云々するまでもなぐそもそも分塊圧延を実施しない方が結晶粒 が微細になり靱性が向上するという傾向を見出した。即ち、上記の従来の一般常識 は正し 、とは限らな 、ことが判明した。 [0019] Normally, the solidified crystal grains are coarse. It is said that the crystal grains become finer by reheating and performing block rolling. Therefore, a laboratory experiment was conducted to investigate the optimization of the ingot rolling process for in-line heat treated materials. As a result, with in-line heat treatment material Found that there is a tendency for crystal grains to become finer and toughness to be improved if the rolling is not carried out in the first place, even if the rolling conditions are not specified. In other words, it has been found that the above-mentioned conventional common sense is not necessarily correct.
[0020] この予想外の結果を理解するため、さらにラボ実験でシミュレーション試験を実施し た。まず、分塊工程を経たプロセスとして、铸込んだインゴットを 1250°Cに加熱し熱 間加工してブロックを作製し、さらに 1250°Cに加熱して熱間圧延と水冷により穿孔過 程とインライン熱処理工程をシミュレーションした。 [0020] In order to understand this unexpected result, further simulation tests were conducted in laboratory experiments. First, as a process that has undergone a lump process, the inserted ingot is heated to 1250 ° C and hot-worked to produce a block, and further heated to 1250 ° C and hot-rolled and water-cooled to in-line with the drilling process. The heat treatment process was simulated.
[0021] 分塊工程を経ないプロセスとしては、铸込んだインゴットから上記の熱間加工で作 製したブロックと同サイズのブロックを機械加工で切り出し、そのブロックを 1250°Cに 加熱して熱間圧延と水冷により穿孔過程とインライン熱処理工程をシミュレーションし た。 [0021] As a process that does not go through the lump process, a block of the same size as the block made by the above hot working is cut out from the inserted ingot by machining, and the block is heated to 1250 ° C and heated. The drilling process and in-line heat treatment process were simulated by hot rolling and water cooling.
[0022] 上記の二通りの試験の結果、分塊圧延を実施しない方の結晶粒が圧倒的に微細 になり、靱性が向上した。  [0022] As a result of the above-described two tests, the crystal grains on which the partial rolling was not performed became overwhelmingly fine and the toughness was improved.
[0023] ところが、実機で同様の試作を実施したところ、期待したほどの効果が得られな 、こ とが判明した。そこで、上記シミュレーションにおいて結晶粒径が大きく異なる原因を 調査した。その結果、分塊圧延シミュレーション材では、添カ卩した Tiのほぼ全量が Ti 炭窒化物として析出し、分塊圧延シミュレーション時の加熱と熱間加工による Ti炭窒 化物の粒成長によって、析出粒子数が減少していることがわ力つた。析出粒子数が 減少すると、母相の結晶粒成長をピンユングする能力が低下し、その後の穿孔シミュ レーシヨンのためのブロック加熱時に結晶粒の粗大化が抑制できないのである。  [0023] However, when the same prototype was made with an actual machine, it was found that the effect as expected was not obtained. Therefore, the cause of the large difference in crystal grain size was investigated in the above simulation. As a result, almost all of the added Ti precipitates as Ti carbonitride in the split rolling simulation material, and the precipitated particles are formed by Ti carbon nitride grain growth by heating and hot working during the split rolling simulation. I was convinced that the number was decreasing. When the number of precipitated particles decreases, the ability to pin the crystal growth of the parent phase decreases, and the coarsening of the crystals cannot be suppressed during the subsequent block heating for drilling simulation.
[0024] 一方、分塊圧延シミュレーションを実施しないプロセスでは、まず、インゴット中での 炭窒化物の析出は無ぐ穿孔過程のシミュレーションのための加熱時に Ti炭窒化物 が微細に析出し、この Ti炭窒化物が母相の結晶粒成長をピンユングすることによって 、結晶粒が著しく小さくなることが明らかになった。  [0024] On the other hand, in a process that does not carry out the block rolling simulation, first, Ti carbonitride precipitates finely during heating for simulation of the drilling process without carbonitride precipitation in the ingot. It has been clarified that the crystal grains are remarkably reduced by carbonitride pinning the grain growth of the parent phase.
[0025] なお、実機で試作した時に分塊圧延工程を省略しても、ほとんど結晶粒が微細に ならな力つた原因を調査したところ、铸込み時の冷却速度が十分に大きくないために 、铸込んだ段階で既に Ti炭窒化物が析出し、固溶状態の Tiが存在しな力つたことが 原因であることを見出した。 [0026] 铸込み時に析出する Ti炭窒化物は、高温で析出するので、粗大化しやすぐ析出 個数が減少する。従って、母相の結晶粒をピンユングする能力が減少する。一方、铸 込み時に Ti炭窒化物の析出が少なぐ固溶 Ti量が十分確保されていると、その後の 製管プロセスにおけるビレットの加熱時に、低温で Ti炭窒化物が析出するため、微細 に析出し、析出粒子数は多くなる。析出粒子数が多いと、母相の結晶粒をピンニング する作用が大きぐ母相の結晶粒の粗大化が抑制される。従って、铸込みプロセスに おける冷却速度を適切に制御することがきわめて重要である。 [0025] Even if the split rolling process was omitted when the prototype was manufactured on an actual machine, the cause of the force that made the crystal grains almost fine was investigated, and the cooling rate at the time of squeezing was not sufficiently high. It was found that Ti carbonitride was already deposited at the stage of penetration and that it was caused by the absence of solid solution Ti. [0026] Since Ti carbonitrides that precipitate at the time of pouring precipitate at a high temperature, they coarsen and the number of precipitates immediately decreases. Therefore, the ability to pin the parent phase crystal grains is reduced. On the other hand, if a sufficient amount of solute Ti is ensured with little precipitation of Ti carbonitride during pouring, Ti carbonitride precipitates at a low temperature when the billet is heated in the subsequent pipe making process. Precipitates and the number of precipitated particles increases. When the number of precipitated particles is large, coarsening of the parent phase crystal grains, which has a large effect of pinning the parent phase crystal grains, is suppressed. Therefore, it is very important to properly control the cooling rate in the pouring process.
[0027] 特に、凝固後の冷却が遅いと、冷却途中の高温域で Ti炭窒化物が析出する力 比 較的転位の少ないオーステナイト域での析出であるため、核生成サイトが少なぐ個 々の析出物は粗大化し、粗い分散状態となる。一旦粗く析出すると、 Ti炭窒化物は 固相中では溶解しにくいので、微細分散は不可能となる。  [0027] In particular, when cooling after solidification is slow, Ti carbonitride precipitates in the high temperature region during cooling. This is precipitation in the austenite region where there is relatively little dislocation, so there are fewer nucleation sites. The precipitate becomes coarse and becomes a coarse dispersion state. Once coarsely precipitated, Ti carbonitride is difficult to dissolve in the solid phase, making fine dispersion impossible.
[0028] 一方、凝固後の冷却速度を Ti炭窒化物が析出しな 、速度とした場合、铸込まれた ビレットには、 Ti炭窒化物は存在せず、 Tiは固溶状態で存在する。その後の熱間加 ェのための加熱時に比較的低温で Ti炭窒化物が析出する。加熱時の析出の場合は 、転位の多いベイナイト組織中での低温析出のため、核生成サイトが多ぐ微細に分 散して析出する。なお、加熱速度が大きすぎると、析出が高温域になり、微細析出し にくくなることも明らかになった。  [0028] On the other hand, when the cooling rate after solidification is set to a rate at which Ti carbonitride does not precipitate, Ti carbonitride does not exist in the inserted billet, and Ti exists in a solid solution state. . Ti carbonitride precipitates at a relatively low temperature during subsequent heating for heating. In the case of precipitation during heating, because of low-temperature precipitation in a bainite structure with many dislocations, a large number of nucleation sites are dispersed and deposited. It has also been clarified that if the heating rate is too high, the precipitation becomes a high temperature region, and fine precipitation is difficult.
[0029] 1炭窒化物を十分に微細析出させるためには、加熱途中に適切な温度域で均熱 する処理を実施することも有効である。 Ti炭窒化物は、ー且微細に析出すると、粗大 化しにくぐ分塊圧延を実施した場合でも、結晶粒の粗大化抑制効果が発揮される。 ただし、分塊圧延時に Ti炭窒化物の若干の粗大化が起こるので、凝固時の固溶 Ti は、分塊圧延を実施しないときょり多く存在させる方がよい。  [0029] In order to sufficiently precipitate 1 carbonitride, it is also effective to carry out a soaking process in an appropriate temperature range during heating. When Ti carbonitrides are finely precipitated, the effect of suppressing the coarsening of crystal grains is exhibited even in the case of partial rolling that is difficult to coarsen. However, since Ti carbonitrides are slightly coarsened during batch rolling, it is better to have a large amount of solid solution Ti during solidification when not performing batch rolling.
[0030] Vや Nbによる析出強化によれば高強度を得やすいので、その析出強化は、従来、 高強度で溶接性が要求される鋼材に多く適用されていた。しかしながら、厚肉のイン ライン熱処理材では、上記の析出強化は靱性を大きく低下させるので、なるべく使用 しない方がよい。特に、 Nbはインライン熱処理材の靱性を著しく低下させるので、含 有させる場合は、厳密に上限を設定する必要がある。 Vに関しても、 Nbほどではない 力 上限を設定し、変態強化と固溶強化を基礎として強度を確保する合金設計を行 う必要がある。 [0030] Precipitation strengthening with V or Nb makes it easy to obtain high strength. Therefore, precipitation strengthening has been widely applied to steel materials that require high strength and weldability. However, in the thick in-line heat treated material, the above precipitation strengthening greatly reduces the toughness, so it is better not to use it as much as possible. In particular, Nb significantly reduces the toughness of the in-line heat-treated material, so when it is included, it is necessary to set an upper limit strictly. Regarding V, an upper limit of force not set to Nb is set, and an alloy design that secures strength based on transformation strengthening and solid solution strengthening is performed. It is necessary.
[0031] さらに、厚肉材になると、熱処理の第 1段階の焼入れ処理で、均一な金属組織を得 るのが難しぐ靱性が低下する傾向がある。厚肉材では冷却速度が低下するので、 均一な変態組織とすることが困難なのである。すなわち、冷却時にマルテンサイトや ベイナイトに順次変態するが、冷却速度が小さくて Cの拡散がある程度可能であれば 、未変態のオーステナイトに Cが濃縮し、その部分は最終変態後に C含有量が高い マルテンサイトやべイナイトに変化したり、 C含有量の高い残留オーステナイトになる 。従って、冷却速度は、可能な限り大きく設定したうえ、なるべく低温まで強制冷却を 行うのが望ましい。  [0031] Furthermore, when the material is thick, the toughness, which makes it difficult to obtain a uniform metal structure in the first stage of the heat treatment, tends to decrease. Since the cooling rate decreases with thick materials, it is difficult to obtain a uniform transformation structure. That is, it transforms into martensite and bainite sequentially during cooling, but if the cooling rate is low and diffusion of C is possible to some extent, C is concentrated in untransformed austenite, and that portion has a high C content after the final transformation. It changes to martensite and bainite, and it becomes residual austenite with high C content. Therefore, it is desirable to set the cooling rate as large as possible and perform forced cooling to as low a temperature as possible.
[0032] し力しながら、厚肉鋼管の場合、冷却速度を大きくするのには限度がある。そこで、 厚肉材にお ヽても達成できる冷却速度であっても、均一な組織とする技術を開発す ベく検討を行った。その結果、濃縮する元素、即ち Cの含有量を少なくするとともに、 Siの含有量をも抑えることで、 Cの第 2相への濃縮を低減できることを見出した。  However, in the case of a thick steel pipe, there is a limit to increasing the cooling rate. Therefore, a study was conducted to develop a technique for producing a uniform structure even at a cooling rate that can be achieved even with thick materials. As a result, it was found that the concentration of C to the second phase can be reduced by reducing the content of the element to be concentrated, that is, the C content and suppressing the Si content.
[0033] 以上の知見に基づき、下記のとおり合金設計と製造プロセスの基本思想を明確に し、本発明を完成するに到った。以下、成分含有量に関する「%」は「質量%」を意味 する。  [0033] Based on the above knowledge, the basic idea of alloy design and manufacturing process was clarified as follows, and the present invention was completed. Hereinafter, “%” regarding the component content means “mass%”.
[0034] まず、 C含有量は 0. 08%以下に制限する。さらに、 Siの上限を 0. 25%以下、より 好ましくは 0. 15%以下、さらに好ましくは 0. 10%以下とする。 Tiは、凝固時には析 出せず、その後のビレット加熱時に微細な Ti炭窒化物として析出するのに適した含 有量として、 0. 004-0. 010%の狭い範囲にコントロールする必要がある。さらに、 インライン熱処理の場合、 Nb添力卩は靱性を低下させるとともに、強度バラツキの要因 になるため、 Nbは添加せず、不純物としての上限は 0. 005%以下にするのが好まし い。 Vも靱性を低下させるので、無添加か、含有させても 0. 08%以下とする必要が ある。  [0034] First, the C content is limited to 0.08% or less. Furthermore, the upper limit of Si is set to 0.25% or less, more preferably 0.15% or less, and still more preferably 0.10% or less. Ti should be controlled within a narrow range of 0.004-0.010% as a suitable content for Ti not to precipitate during solidification and to precipitate as fine Ti carbonitride during subsequent billet heating. Furthermore, in the case of in-line heat treatment, the Nb additive strength decreases toughness and causes variation in strength. Therefore, Nb is not added, and the upper limit as an impurity is preferably 0.005% or less. V also lowers toughness, so it is necessary to keep it at 0.08% or less even if it is not added or contained.
[0035] 他の元素は、高強度と良好な靱性とのノランスの観点から調整する。靱性に悪影 響を及ぼす Pおよび Sについてはそれぞれ許容上限値を設定する。 Mn、 Cr、 Ni、 M oおよび Cuは、靱性、溶接性を考慮して、狙いの強度に応じて選択して調整する必 要がある。また、脱酸に必要な A1を添加する。 Ca、 Mgおよび REMのうちの 1種以上 を選択して添加して铸込み特性を確保したり、靱性を向上させたりすることも有効で ある。さらに、安定な Ti炭窒化物を析出させるためには、 N含有量を狭いレンジにコ ントロールする必要がある。 [0035] The other elements are adjusted from the viewpoint of Norrance between high strength and good toughness. For P and S, which have an adverse effect on toughness, an upper limit is set. Mn, Cr, Ni, Mo, and Cu must be selected and adjusted according to the target strength in consideration of toughness and weldability. Add A1 required for deoxidation. One or more of Ca, Mg and REM It is also effective to select and add to secure the pitting characteristics and improve toughness. Furthermore, in order to precipitate stable Ti carbonitride, it is necessary to control the N content in a narrow range.
[0036] 次に、製造プロセスとしては、まず Ti炭窒化物の析出が抑制され、固溶 Tiが確保さ れた凝固鋼塊を得ることが重要である。本発明者は、上記の C、 Tiおよび Nの含有量 とすれば、凝固直後には Ti炭窒化物は析出しないことを見出した力 その後の冷却 速度が小さいと粗大な Ti炭窒化物が析出するので、凝固後は特定の速度以上で冷 却する必要がある。  Next, as a manufacturing process, it is important to first obtain a solidified steel ingot in which precipitation of Ti carbonitride is suppressed and solid solution Ti is secured. The present inventor has found that if the contents of C, Ti and N are the above, Ti carbonitride is not precipitated immediately after solidification, and coarse Ti carbonitride is precipitated when the subsequent cooling rate is low. Therefore, it is necessary to cool at a specific speed or more after solidification.
[0037] 铸造は、丸ビレット(断面が丸のビレット)に連続铸造するのが理想である力 角形 の铸型に連続铸造ゃインゴットとして铸込み、その後に丸ビレットに分塊するプロセス を取ることも可能である。但し、その場合には铸造後の冷却速度をさらに厳しくコント ロールして、粗大な TiNの析出を抑制して十分な量の固溶 Tiを確保するのが重要で ある。  [0037] Forging is a process of forming a continuous billet into a round billet (a billet with a round cross-section), which is ideally shaped into an ingot and then into a round billet. Is also possible. However, in that case, it is important to control the cooling rate after fabrication more strictly to secure a sufficient amount of solute Ti by suppressing the precipitation of coarse TiN.
[0038] 丸ビレットは、熱間加工が可能な温度に再加熱して、穿孔、延伸、定形圧延を実施 する。固溶状態の Tiが十分存在すると、再加熱時に Ti炭窒化物が析出し、析出温度 が比較的低温であるので、凝固後の冷却時に析出する場合より、格段に微細な Ti炭 窒化物が析出する。微細に析出した Ti炭窒化物は個数が多ぐビレットの加熱保持 時の粒界移動を抑制し、結晶粒粗大化を防止する。急速加熱を行うと、低温での微 細析出が不可能となって、結晶粒粗大化防止の効果が得られないので、緩慢な加熱 とするか、中温領域で保持すると、微細な Ti炭窒化物の析出が促される。  [0038] The round billet is reheated to a temperature at which hot working is possible, and is subjected to piercing, stretching, and regular rolling. If there is enough Ti in solid solution, Ti carbonitride precipitates during reheating, and the precipitation temperature is relatively low, so that much finer Ti carbonitride is formed than when precipitated during cooling after solidification. Precipitate. The finely precipitated Ti carbonitride suppresses grain boundary migration during heating and holding of billets that are large in number and prevents coarsening of the grains. When rapid heating is performed, fine precipitation at low temperatures becomes impossible, and the effect of preventing grain coarsening cannot be obtained. Therefore, if heating is performed slowly or kept in the middle temperature range, fine Ti carbonitride The precipitation of objects is promoted.
[0039] 造管後の熱処理では、均一な組織を得ることが靱性確保に必要である。そのため には、化学組成を調整した鋼を用いて、強制冷却終了温度をなるベく低い温度とし、 十分に冷やし切ることが重要である。それによつて、部分的に cの濃化した変態強化 組織や残留オーステナイトの生成を防止することができて靱性が向上する。  [0039] In heat treatment after pipe formation, it is necessary to secure toughness to obtain a uniform structure. To that end, it is important to use steel with a controlled chemical composition and to make the forced cooling end temperature as low as possible and to cool it down sufficiently. As a result, it is possible to prevent the formation of transformation strengthening structure and residual austenite that are partially enriched in c, and toughness is improved.
[0040] 以上の基本思想に則ってなされた本発明は、下記の(1)および(2)のラインパイプ 用継目無鋼管および (3)力も (6)までのラインパイプ用継目無鋼管の製造方法を要 旨とする。  [0040] The present invention made in accordance with the basic idea described above includes the following (1) and (2) seamless pipes for line pipes and (3) production of seamless pipes for line pipes up to (6). The method is as follows.
[0041] (1) C : 0. 03〜0. 08%、 Si: 0. 25%以下、 Mn: 0. 3〜2. 5%、 A1: 0. 001〜0. 10%、 Cr: 0. 02〜: L 0%、 Ni: 0. 02〜: L 0%、 Mo : 0. 02〜: L 2%、 Ti: 0. 004 〜0. 010%、 N : 0. 002〜0. 008%、ならびに Ca、 Mgおよび REMのうちの 1種ま たは 2種以上の合計で 0. 0002〜0. 005%、V: 0〜0. 08%、Nb : 0〜0. 05%、 C u: 0〜l. 0%を含有し、残部は Feおよび不純物力 なり、不純物中の Pが 0. 05%以 下、 Sが 0. 005%以下であることを特徴とする高強度で靱性の良好なラインパイプ用 厚肉継目無鋼管。 [0041] (1) C: 0.03 to 0.08%, Si: 0.25% or less, Mn: 0.3 to 2.5%, A1: 0.001 to 0.00. 10%, Cr: 0.02 to: L 0%, Ni: 0.02 to: L 0%, Mo: 0.02 to: L 2%, Ti: 0.004 to 0.010%, N: 0 002 to 0.008%, and a total of one or more of Ca, Mg and REM 0.0002 to 0.005%, V: 0 to 0.08%, Nb: 0 to 0.05%, Cu: 0 ~ l. 0%, the balance is Fe and impurity power, P in impurities is 0.05% or less and S is 0.005% or less A thick-walled seamless steel pipe for line pipes with high strength and good toughness.
[0042] (2)上記の成分のほ力、 Feの一部に代えて 0. 0003〜0. 01%の Bを含有する高 強度で靱性の良好なラインパイプ用厚肉継目無鋼管。  [0042] (2) A thick-walled seamless steel pipe for line pipes having high strength and good toughness, containing 0.0003 to 0.01% B in place of a part of Fe, the force of the above components.
[0043] (3)下記の (a)力も (e)までの工程を特徴とする高強度で靱性の良好なラインパイプ 用厚肉継目無鋼管の製造方法。 [0043] (3) A method for producing a thick-walled seamless steel pipe for a line pipe having high strength and good toughness characterized by the following steps (a) and (e).
[0044] (a)上記(1)または(2)に記載の化学組成を有する溶鋼を、連続铸造により断面が 丸形状のビレットに凝固させる工程。 [0044] (a) A step of solidifying molten steel having the chemical composition described in (1) or (2) above into a billet having a round cross section by continuous forging.
[0045] (b)上記のビレットを 1400°Cから 1000°Cまでの間の平均冷却速度を 6°CZ分以上 として室温まで冷却する工程。 [0045] (b) A step of cooling the billet to room temperature with an average cooling rate between 1400 ° C and 1000 ° C being 6 ° CZ min or more.
[0046] (c)550°Cから 900°Cまで間の平均加熱速度を 15°CZ分以下として 1150〜1280[C] (c) 1150 to 1280 with an average heating rate between 550 ° C and 900 ° C of 15 ° CZ or less
°Cに加熱した後、穿孔および圧延により継目無鋼管を製造する工程。 The process of producing seamless steel pipes by piercing and rolling after heating to ° C.
[0047] (d)製管後直ちに 850〜1000°Cで均熱した後、または製管後一且冷却し、引き続 き 850〜1000°Cに加熱した後、または製管後直ちに 800°Cから 500°Cまでの間の 平均冷却速度を 8°CZ秒以上として 100°C以下まで連続して強制冷却する工程。 [0047] (d) Immediately after pipe making, at 850 to 1000 ° C, or after cooling and after cooling, continue heating to 850 to 1000 ° C, or immediately after pipe making, 800 ° A process in which the average cooling rate between C and 500 ° C is forced to cool continuously to 100 ° C or less with an average cooling rate of 8 ° CZ seconds or more.
[0048] (e)500〜690°Cの範囲内の温度で焼き戻す工程。 [0048] (e) A step of tempering at a temperature in the range of 500 to 690 ° C.
[0049] (4)下記の (a)力も (Dまでの工程を特徴とする高強度で靱性の良好なラインパイプ用 厚肉継目無鋼管の製造方法。  [0049] (4) The following (a) force is also provided (a method for producing a thick-walled seamless steel pipe for line pipes having high strength and good toughness characterized by the steps up to D.
[0050] (a)上記(1)または(2)に記載の化学組成を有する溶鋼を、連続铸造により断面が 角形状のブルームまたはスラブに凝固させる工程。 [0050] (a) A step of solidifying molten steel having the chemical composition described in (1) or (2) above into a bloom or slab having a square cross section by continuous forging.
[0051] (b)上記のブルームまたはスラブを 1400°Cから 1000°Cまでの間の平均冷却速度を[0051] (b) Average cooling rate between 1400 ° C and 1000 ° C for the above bloom or slab.
8°CZ分以上として室温まで冷却する工程。 The process of cooling to room temperature over 8 ° CZ minutes.
[0052] (c)550°Cから 900°Cまでの平均加熱速度を 15°CZ分以下として 1150〜 1280°C に加熱した後、鍛造または Zおよび圧延により断面が丸形状のビレットを作製し、室 温まで冷却する工程。 [0052] (c) After heating to 1150 to 1280 ° C with an average heating rate from 550 ° C to 900 ° C of 15 ° CZ or less, billets with a round cross section were produced by forging or Z and rolling. , Room The process of cooling to temperature.
[0053] (d)上記のビレットを 1150〜1280°Cに加熱し、穿孔および圧延により継目無鋼管を 製造する工程。  [0053] (d) A step in which the billet is heated to 1150 to 1280 ° C, and a seamless steel pipe is produced by drilling and rolling.
[0054] (e)製管後直ちに 850〜1000°Cで均熱した後、または、製管後一且冷却し、引き続 き 850〜1000°Cに加熱した後、または、製管後直ちに 800°Cから 500°Cまで間の平 均冷却速度を 8°CZ秒以上として 100°C以下まで連続して強制冷却する工程。  [0054] (e) Immediately after pipe-making, after soaking at 850 to 1000 ° C, or after cooling once after pipe making, and subsequently heated to 850 to 1000 ° C, or immediately after pipe making A process in which the average cooling rate between 800 ° C and 500 ° C is continuously forcibly cooled to 100 ° C or less with an average cooling rate of 8 ° CZ seconds or more.
[0055] (1)500〜690°Cの範囲内の温度で焼き戻す工程。  [0055] (1) A step of tempering at a temperature in the range of 500 to 690 ° C.
[0056] (5)下記の (a)力も (e)までの工程を特徴とする高強度で靱性の良好なラインパイプ 用厚肉継目無鋼管の製造方法。  [0056] (5) A method for producing a high-strength, thick tough seamless steel pipe for line pipe characterized by the following steps (a) and (e):
[0057] (a)上記(1)または(2)に記載の化学組成を有する溶鋼を、連続铸造により断面が 丸形状のビレットに凝固させる工程。 [0057] (a) A step of solidifying molten steel having the chemical composition described in (1) or (2) above into a billet having a round cross section by continuous forging.
[0058] (b)上記のビレットを 1400°Cから 1000°Cまでの間の平均冷却速度を 6°CZ分以上 として室温まで冷却する工程。 [0058] (b) A step of cooling the billet to room temperature with an average cooling rate between 1400 ° C and 1000 ° C being 6 ° CZ min or more.
[0059] (c)550°Cから 1000°Cまで温度域での 15分以上の均熱を行って、 1150〜1280°C に加熱した後、穿孔および圧延により継目無鋼管を製造する工程。 [0059] (c) A step of producing a seamless steel pipe by drilling and rolling after soaking in a temperature range from 550 ° C to 1000 ° C for 15 minutes or more and heating to 1150 to 1280 ° C.
[0060] (d)製管後直ちに 850〜1000°Cで均熱した後、または製管後一且冷却し、引き続 き 850〜1000°Cに加熱した後、または製管後直ちに 800°Cから 500°Cまでの間の 平均冷却速度を 8°CZ秒以上として 100°C以下まで連続して強制冷却する工程。 [0060] (d) Immediately after pipe making, at 850 to 1000 ° C, or after cooling and after cooling, continue heating to 850 to 1000 ° C, or immediately after pipe making, 800 ° A process in which the average cooling rate between C and 500 ° C is forced to cool continuously to 100 ° C or less with an average cooling rate of 8 ° CZ seconds or more.
[0061] (e)500〜690°Cの範囲内の温度で焼き戻す工程。 [0061] (e) A step of tempering at a temperature in the range of 500 to 690 ° C.
[0062] (6)下記の (a)力も (Dまでの工程を特徴とする高強度で靱性の良好なラインパイプ用 厚肉継目無鋼管の製造方法。  [0062] (6) The following (a) force is also provided (a method for producing a thick-walled seamless steel pipe for line pipes characterized by the steps up to D and having high strength and good toughness.
[0063] (a)上記(1)または(2)に記載の化学組成を有する溶鋼を、連続铸造により断面が 角形状のブルームまたはスラブに凝固させる工程。 [0063] (a) A step of solidifying molten steel having the chemical composition described in (1) or (2) above into a bloom or slab having a square cross section by continuous forging.
[0064] (b)上記のブルームまたはスラブを 1400°Cから 1000°Cまでの間の平均冷却速度を[0064] (b) Average cooling rate between 1400 ° C and 1000 ° C for the above bloom or slab.
8°CZ分以上として室温まで冷却する工程。 The process of cooling to room temperature over 8 ° CZ minutes.
[0065] (c)550°Cから 1000°Cまでの温度域での 15分以上の均熱を行って、 1150〜1280[0065] (c) Soaking for 15 minutes or more in the temperature range from 550 ° C to 1000 ° C, 1150-1280
°Cに加熱した後、鍛造または Zおよび圧延により断面が丸形状のビレットを作製し、 室温まで冷却する工程。 [0066] (d)上記のビレットを 1150〜1280°Cに加熱し、穿孔および圧延により継目無鋼管を 製造する工程。 A process in which billets with a round cross section are produced by forging or Z and rolling after heating to ° C, and then cooled to room temperature. [0066] (d) A step of heating the billet to 1150 to 1280 ° C and producing a seamless steel pipe by drilling and rolling.
[0067] (e)製管後直ちに 850〜1000°Cに均熱した後、または、製管後一且冷却し、引き続 き 850〜1000°Cに加熱した後、または、製管後直ちに 800°Cから 500°Cまで間の平 均冷却速度を 8°CZ秒以上として 100°C以下まで連続して強制冷却する工程。  [0067] (e) Immediately after pipe making, after soaking to 850-1000 ° C, or after cooling once after pipe making, continue to heat to 850-1000 ° C, or immediately after pipe making A process in which the average cooling rate between 800 ° C and 500 ° C is continuously forcibly cooled to 100 ° C or less with an average cooling rate of 8 ° CZ seconds or more.
[0068] (1)500〜690°Cの範囲内の温度で焼き戻す工程。  [0068] (1) A step of tempering at a temperature in the range of 500 to 690 ° C.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0069] 1.本発明の鋼管の化学組成 [0069] 1. Chemical composition of steel pipe of the present invention
まず、本発明において鋼管の化学組成を上記のように限定した理由を以下に述べ る。なお、前記のとおり、化学成分含有量 (濃度)を表す%は、質量%を意味する。  First, the reason why the chemical composition of the steel pipe is limited as described above in the present invention will be described below. In addition, as above-mentioned,% showing chemical component content (concentration) means the mass%.
[0070] C : 0. 03〜0. 08% [0070] C: 0.03 to 0.08%
Cは、鋼の強度を確保するための重要な元素である。焼入れ性を高めて厚肉材で 十分な強度を得るために 0. 03%以上を必要とする。一方、 0. 08%を超えると靱性 力 S低下するので、 0. 03-0. 08%とした。  C is an important element for ensuring the strength of steel. 0.03% or more is required to increase the hardenability and obtain sufficient strength with thick materials. On the other hand, if it exceeds 0.08%, the toughness S decreases, so it was set to 0.03-0.08%.
[0071] Si: 0. 25%以下 [0071] Si: 0.25% or less
Siは、製鋼における脱酸剤としての作用を有するが、極力添加しない方がよい。そ の理由は、特に厚肉材の靱性を大幅に低下させるからである。 Siの含有量が 0. 25 %を超えると厚肉材の靱性が著しく低下するので、脱酸剤として添加する場合も、 0. 25%以下の含有量とする。 0. 15%以下とすると更に靱性の改善が得られる。最も望 ましいのは 0. 10%未満に抑制することである。不純物としての Siを極端に低減する のは製鋼プロセス上困難である力 0. 05%未満に制限すると極めて良好な靱性が 得られる。  Si has an effect as a deoxidizer in steelmaking, but it is better not to add it as much as possible. The reason is that the toughness of the thick-walled material is greatly reduced. When the Si content exceeds 0.25%, the toughness of the thick-walled material is remarkably lowered. Therefore, when it is added as a deoxidizer, the content should be 0.25% or less. If the content is less than 15%, the toughness can be further improved. The most desirable is to keep it below 0.10%. Extremely good toughness can be obtained by limiting Si, which is an impurity, to an extremely low force of less than 0.05%, which is difficult in the steelmaking process.
[0072] Mn: 0. 3〜2. 5% [0072] Mn: 0.3 to 2.5%
Mnは、焼入れ性を高めて厚肉材でも中心まで強化すると同時に、靱性を高めるた めに、比較的多量の含有が必要である。その含有量が 0. 3%未満ではこれらの効果 が得られず、 2. 5%を超えると耐 HIC特性が低下するので、 0. 3〜2. 5%とする。  Mn needs to be contained in a relatively large amount in order to enhance hardenability and strengthen even thick-walled materials to the center, while at the same time increasing toughness. If the content is less than 0.3%, these effects cannot be obtained. If the content exceeds 2.5%, the HIC resistance decreases, so the content should be 0.3 to 2.5%.
[0073] A1: 0. 001〜0. 10% [0073] A1: 0.001 ~ 0.10%
A1は、製鋼における脱酸剤として添加する。この効果を得るために、その含有量が 0. 001%以上となるように添加することが必要である。一方、 Alの含有量が 0. 10% を超えると介在物がクラスター状になって靭性を劣化させ、また、管端のベベル面カロ ェ時に表面欠陥が多発する。そのため、 A1は 0. 001-0. 10%とする。表面欠陥を 防止する観点力もは、上限を制限することが望ましぐ好ましい上限は 0. 03%、より 好ましい上限は 0. 02%である。なお、本発明鋼管では Si添カ卩による大きな脱酸効 果を期待できないので、脱酸を十分に行うために好ましい A1含有量の下限は 0. 010 %である。 A1 is added as a deoxidizer in steelmaking. In order to obtain this effect, its content is It is necessary to add so that it may become 0.001% or more. On the other hand, if the Al content exceeds 0.10%, inclusions will form clusters and deteriorate toughness, and surface defects will occur frequently during the beveled surface of the pipe. Therefore, A1 is set to 0.001-0.10%. Regarding the viewpoint power for preventing surface defects, it is desirable to limit the upper limit, and the preferable upper limit is 0.03%, and the more preferable upper limit is 0.02%. Since the steel pipe of the present invention cannot be expected to have a large deoxidation effect due to Si-added iron, the lower limit of the preferable A1 content is 0.001% for sufficient deoxidation.
[0074] Cr: 0. 02〜: L 0%  [0074] Cr: 0.02 ~: L 0%
Crは、焼き入れ性を向上させて、厚肉材で鋼の強度を向上させる元素である。その 効果が顕著になるのは 0. 02%以上含有させた場合である。しかし、その含有量が過 剰になると、却って靱性が低下するので 1. 0%以下とした。  Cr is an element that improves the hardenability and improves the strength of the steel with a thick material. The effect becomes remarkable when the content is 0.02% or more. However, if its content is excessive, the toughness will be reduced, so it was made 1.0% or less.
[0075] Ni: 0. 02〜: L . 0%  [0075] Ni: 0.02: L. 0%
Niは、焼き入れ性を向上させて、厚肉材で鋼の強度を向上させる元素である。その 効果は、 0. 02%以上の含有で顕著になる。しかしながら、 Niは高価な元素であり、 また、過剰に含有させてもその効果が飽和するので、上限を 1. 0%とした。  Ni is an element that improves the hardenability and improves the strength of the steel with a thick material. The effect becomes remarkable when the content is 0.02% or more. However, Ni is an expensive element, and even if contained excessively, the effect is saturated, so the upper limit was set to 1.0%.
[0076] Mo : 0. 02〜: L 2%  [0076] Mo: 0.02 ~: L 2%
Moは、変態強化と固溶強化により鋼の強度を向上させる元素である。その効果は 0. 02%以上の含有で顕著になる。しかし、過剰に添加すると靱性が低下するので、 上限を 1. 2%とした。  Mo is an element that improves the strength of steel by transformation strengthening and solid solution strengthening. The effect becomes remarkable when the content is 0.02% or more. However, if added in excess, the toughness decreases, so the upper limit was made 1.2%.
[0077] Ti: 0. 004〜0. 010%  [0077] Ti: 0.004-0.001%
Tiの含有量は、凝固時の冷却時には析出せず、その後のビレット加熱時に Ti炭窒 化物を析出させるのに適した含有量として、 0. 004%〜0. 010%の狭い範囲にコン トロールする必要がある。 0. 004%未満の含有量の場合は、析出する Ti炭窒化物の 個数が確保できず、 0. 010%を超えると、凝固後の冷却時に粗大に析出する。従つ て、 Tiの含有量 ίま、 0. 004〜0. 0100/0力適正である。 The Ti content does not precipitate during cooling during solidification, but is controlled to a narrow range of 0.004% to 0.001% as a content suitable for depositing Ti carbonitride during subsequent billet heating. There is a need to. When the content is less than 0.004%, the number of Ti carbonitrides to precipitate cannot be secured, and when it exceeds 0.000%, it precipitates coarsely during cooling after solidification.従Tsu Te, the content of Ti ί or, from 0.004 to 0.010 is 0/0 force proper.
[0078] Ν: 0. 002〜0. 008%  [0078] Trap: 0.002-0.008%
Νは、微細に分散した Ti炭窒化物を確保するために 0. 002%以上の含有が必要 である。一方、 0. 008%を超えると、凝固時に粗大な Ti炭窒化物が析出するようにな るので、 0. 002〜0. 0080/oの狭!ヽ範囲にコン卜ローノレする必要力ある。 In order to secure finely dispersed Ti carbonitrides, soot must contain 0.002% or more. On the other hand, if it exceeds 0.008%, coarse Ti carbonitride will precipitate during solidification. Therefore, it is necessary to control in the narrow range of 0.002 to 0.008 0 / o.
[0079] V: 0〜0. 08%  [0079] V: 0 ~ 0.08%
Vは、強度と靱性のバランスで含有量を決定する元素である。他の合金元素で十分 強度が得られる場合は、無添加の方が良好な靱性が得られる。強度向上元素として 添加する場合は、 0. 02%以上の含有量とするのが望ましい。一方、 0. 08%を超え ると靱性が大きく低下するので、添加する場合は、含有量の上限を 0. 08%とする。  V is an element that determines the content based on a balance between strength and toughness. When sufficient strength is obtained with other alloy elements, the toughness is better when the additive is not added. When added as a strength-enhancing element, the content is preferably 0.02% or more. On the other hand, if it exceeds 0.08%, the toughness is greatly reduced, so when it is added, the upper limit of the content is set to 0.08%.
[0080] Nb : 0〜0. 05%  [0080] Nb: 0 ~ 0.05%
オフライン熱処理の場合、 Nbは、焼入れのための加熱時に結晶粒粗大化を抑制 する働きが顕著である。その効果を得るためには 0. 005%以上の含有が望ましい。 しかし、 Nbの含有量が 0. 05%を超えると粗大な炭窒化物が析出して靱性が低下す るので、上限を 0. 05%とした。  In the case of off-line heat treatment, Nb has a remarkable effect of suppressing grain coarsening during heating for quenching. In order to obtain the effect, the content is preferably 0.005% or more. However, if the Nb content exceeds 0.05%, coarse carbonitrides precipitate and the toughness decreases, so the upper limit was made 0.05%.
[0081] インライン熱処理の場合は、 Nb炭窒化物が不均一に析出して、靱性を低下させる とともに強度バラツキが大きくなるので、基本的には Nbは添加しない方がよい。強度 ノ ツキが顕著になり、製造上問題となるのは、その含有量が 0. 005%を超えたとき であるので、インライン熱処理を適用する場合は、許容上限を 0. 005%とするべきで ある。  [0081] In the case of in-line heat treatment, Nb carbonitride precipitates non-uniformly, lowering the toughness and increasing the strength variation. Therefore, it is basically better not to add Nb. The strength knockout becomes noticeable and the manufacturing problem is when the content exceeds 0.005%. Therefore, when applying in-line heat treatment, the allowable upper limit should be 0.005%. It is.
[0082] Cu: 0〜l. 0%  [0082] Cu: 0 to l. 0%
Cuは添加しなくてもよいが、耐 HIC特性 (耐水素誘起割れ特性)を改善する作用を 有するので、耐 HIC特性を向上させたい場合には添加してもよい。耐 HIC特性改善 の効果が発現する最少含有量は 0. 02%である。一方、 1. 0%を超えても効果が飽 和するので、添加する場合、その含有量は 0. 02〜: L 0%とするのがよい。  Cu does not need to be added, but has the effect of improving the HIC resistance (hydrogen-induced cracking resistance), so it may be added to improve the HIC resistance. The minimum content at which the effect of improving HIC resistance is manifested is 0.02%. On the other hand, even if it exceeds 1.0%, the effect is saturated, so when added, the content is preferably 0.02 to: L 0%.
[0083] Ca、 Mg、 REM : 1種で、または 2種以上の合計で 0. 0002〜0. 005%  [0083] Ca, Mg, REM: One kind, or a total of two or more kinds 0.00002 to 0.005%
これらの元素は、介在物の形態制御により靱性、耐食性を改善する目的と、铸込み 時のノズル詰まりを抑制して铸込み特性を改善する目的で添加する。これらの効果を 得るためには、 1種で、または 2種以上の合計で 0. 0002%以上の含有が必要である 。一方、 1種で 0. 005%を超える力、または 2種以上の合計含有量で 0. 005%を超 えると、上記の効果が飽和して、それ以上の効果が発揮されないば力りではなぐ介 在物がクラスター化し易くなり、逆に靱性、耐 HIC特性が低下する。従って、上記元 素を単独で添加する場合は、いずれも含有量を 0. 0002-0. 005%、 2種以上を添 加する場合は合計の含有量を 0. 0002-0. 005%とする。なお、 REMとは、ランタ ノイド元素、 Yおよび Scの 17元素である。 These elements are added for the purpose of improving toughness and corrosion resistance by controlling the form of inclusions, and for the purpose of improving clogging characteristics by suppressing nozzle clogging during clogging. In order to obtain these effects, it is necessary to contain 0.0002% or more of one kind or a total of two or more kinds. On the other hand, if the force exceeds 0.005% for one type or exceeds 0.005% for a total content of two or more types, the above effect will be saturated, and if no further effect is exhibited, The inclusions are easily clustered, and the toughness and HIC resistance are reduced. Therefore, the original When adding element alone, the content is 0.0002 to 0.005% in all cases, and when adding two or more elements, the total content is 0.0002 to 0.005%. REM is a lanthanoid element, 17 elements of Y and Sc.
[0084] B: 0. 0003〜0. 01%  [0084] B: 0.0003-0.01%
Bは、添カ卩しなくてもよいが、添加すると微量であっても焼入れ性を向上させるので 、より高強度が必要な場合に添加すると有効である。上記の効果を得るためには、 0 . 0003%以上の含有が望ましい。しかし、過剰の添加は、靱性を低下させるので、 B を添加する場合には、その含有量は 0. 01%以下とする。  B does not need to be added, but if added, it improves the hardenability even in a trace amount, so it is effective to add it when higher strength is required. In order to obtain the above effect, the content is desirably 0.003% or more. However, excessive addition reduces toughness, so when B is added, its content should be 0.01% or less.
[0085] 本発明のラインパイプ用鋼管は、上記の成分の他、残部が Feと不純物からなる。た だし、不純物中の Pと Sは下記のように含有量の上限を抑える必要がある。  [0085] The steel pipe for a line pipe of the present invention is composed of Fe and impurities in the balance in addition to the above components. However, the upper limit of the content of P and S in impurities must be kept as follows.
[0086] P : 0. 05%以下  [0086] P: 0.05% or less
Pは、靱性を低下させる不純物元素であり、その含有量は可及的に少なくするのが 好ましい。含有量が 0. 05%を超えると、靱性が著しく低下するので許容上限を 0. 0 5%とする。 0. 02%以下が好ましぐ 0. 01%以下がさらに好ましい。  P is an impurity element that lowers toughness, and its content is preferably as low as possible. If the content exceeds 0.05%, the toughness deteriorates remarkably, so the upper limit is made 0.05%. 0.02% or less is preferable. 0.01% or less is more preferable.
[0087] S : 0. 005%以下  [0087] S: 0.005% or less
Sも、靱性を低下させる不純物元素であり、可及的に少なくするのが好ましい。含有 量が 0. 005%を超えると、靱性が著しく低下するので許容上限を 0. 005%とする。 0 . 003%以下にするのが好ましぐ 0. 001%以下がさらに好ましい。  S is also an impurity element that lowers toughness, and is preferably as small as possible. If the content exceeds 0.005%, the toughness is remarkably lowered, so the upper limit is made 0.005%. 0.003% or less is preferable, and 0.001% or less is more preferable.
[0088] 2.製造方法について  [0088] 2. Manufacturing method
次に、本発明の製造方法に関し、好適な製造条件について説明する。  Next, preferred production conditions for the production method of the present invention will be described.
[0089] (1)铸造および凝固後の冷却  [0089] (1) Cooling after fabrication and solidification
まず、上記の組成になるよう鋼を転炉等で精練し、铸造し、凝固させ铸片を得る。こ のとき、 1炭窒化物の析出を抑制した凝固鋼塊を得ることが重要である。前記のよう に規定した Cと Tiと Nの含有量とすれば、凝固時には Ti炭窒化物は、基本的には析 出しない。し力しながら、その後の冷却速度が小さいと粗大な Ti炭窒化物が析出する ので、特定の速度以上で冷却する必要がある。  First, the steel is smelted in a converter or the like so as to have the above composition, forged and solidified to obtain a flake. At this time, it is important to obtain a solidified steel ingot that suppresses the precipitation of 1 carbonitride. If the C, Ti, and N contents specified above are used, Ti carbonitrides are not basically analyzed during solidification. However, if the subsequent cooling rate is low, coarse Ti carbonitride precipitates, so it is necessary to cool at a specific rate or higher.
[0090] 製造プロセスとしては、丸ビレット形状に連続铸造するのが理想である。しかし、角 形の铸型に連続铸造ゃインゴットとして铸込み、その後、丸ビレットに分塊するプロセ スを取ることもできる。その場合には铸造後の冷却速度をさらに厳しくコントロールし て、粗大な TiNの析出を抑制することが肝要である。 [0090] As a manufacturing process, it is ideal to continuously produce a round billet shape. However, a process that slabs into a square-shaped bowl as a continuous ingot and then into round billets. You can also take In that case, it is important to control the cooling rate after fabrication more strictly to suppress coarse TiN precipitation.
[0091] 冷却速度としては、凝固後に Ti炭窒化物が生成しやすい 1400〜1000°Cの温度 域の平均冷却速度で、丸ビレットに铸込む場合は 6°CZ分以上の冷却速度が、分塊 圧延を実施する場合は 8°CZ分以上の冷却速度が必要である。より好ましいのは、 丸ビレットに铸込む場合は 8°CZ分以上の平均冷却速度、分塊圧延を実施する場合 は 10°CZ分以上の平均冷却速度とすることである。なお、いずれの場合も平均冷却 速度は大き 、ほど望ま 、ので、その上限に制約はな 、。  [0091] The cooling rate is an average cooling rate in the temperature range of 1400 to 1000 ° C where Ti carbonitride is likely to form after solidification, and when cooling into a round billet, a cooling rate of 6 ° CZ or more is When bulk rolling is performed, a cooling rate of 8 ° CZ or more is required. More preferably, an average cooling rate of 8 ° CZ or more is used when rolling into a round billet, and an average cooling rate of 10 ° CZ or more is used when performing block rolling. In either case, the higher the average cooling rate, the better, so there is no restriction on the upper limit.
[0092] 铸片の冷却速度は、铸片の部位によっても差異が生じるが、円形の铸型に連続铸 造する場合は、半径の 1Z2の距離だけ中心から離れた場所での冷却速度でコント口 ールする。角形の铸型に連続铸造する場合は、四角形の重心を通り長辺に平行な 線上で、重心と表面の中間の場所での冷却速度でコントロールする。温度の測定は 、熱電対を取り付けて行うことができる力 表面の温度履歴で更正した数値シミュレ一 シヨンにて行うこともできる。  [0092] The cooling rate of the piece varies depending on the part of the piece, but in the case of continuous production in a circular bowl shape, the cooling rate is controlled by the cooling rate at a place away from the center by a distance of 1Z2 of the radius. To speak. In the case of continuous forging in a rectangular shape, the cooling rate is controlled at a location between the center of gravity and the surface on a line passing through the center of gravity of the rectangle and parallel to the long side. Temperature measurements can also be made with a numerical simulation corrected with a temperature history of the force surface that can be attached with a thermocouple.
[0093] (2)ビレットまたは铸塊の加工  [0093] (2) Processing of billet or lump
丸ビレットは、熱間加工が可能な温度に再加熱して穿孔、延伸、定形圧延を実施 する。また、断面が角形状のブルームまたはスラブに铸造した場合には、再加熱後に 鍛造または Zおよび圧延によって丸ビレットとし、穿孔、延伸、定形圧延を実施する。  Round billets are reheated to a temperature where hot working is possible and drilled, stretched, and shaped. In addition, when forging a bloom or slab with a square cross section, after reheating, round billets are formed by forging or Z and rolling, and drilling, stretching, and regular rolling are performed.
[0094] 再加熱温度としては 1150°C未満では熱間変形抵抗が大きくなり、疵の発生が増加 するので、 1150°C以上が必要である。一方、 1280°Cを超えると、加熱燃料原単位 が大きくなりすぎることや、スケールロスが大きくなつて歩留まりが低下すること、加熱 炉の寿命が短くなつて不経済となること等から、上限を 1280°Cとした。加熱温度を低 くするほど結晶粒は微細になって靱性が良好となるので、好ましい加熱温度は 1200 °C以下である。  [0094] When the reheating temperature is less than 1150 ° C, the hot deformation resistance increases and the generation of soot increases, so 1150 ° C or more is necessary. On the other hand, if the temperature exceeds 1280 ° C, the heating fuel intensity will become too large, the scale loss will increase and the yield will decrease, and the heating furnace life will be shortened and it will become uneconomical. The temperature was 1280 ° C. The lower the heating temperature, the finer the crystal grains and the better the toughness. Therefore, the preferred heating temperature is 1200 ° C or lower.
[0095] 固溶状態の Tiが十分存在すると、再加熱時に Ti炭窒化物が析出する。しかし、そ の析出は、凝固後の冷却中における析出とは異なり、析出温度が比較的低温である 。従って、凝固後の冷却時に析出する場合より、格段に微細な Ti炭窒化物が析出す る。微細に析出した Ti炭窒化物は個数が多ぐビレットの加熱保持時の粒界移動を 抑制し、結晶粒粗大化を防止する。ただし、急速加熱を行うと、低温での微細析出が 不可能となるので、結晶粒粗大化防止の効果が得られない。低温での微細析出を促 すのには、再加熱のときに、 550°Cから 900°Cまでの間の平均加熱速度を 15°CZ分 以下とするか、 550°C〜1000°Cの間で 15分間以上、均熱する処理を実施すると有 効である。 [0095] When sufficient solid solution Ti exists, Ti carbonitride precipitates during reheating. However, unlike precipitation during cooling after solidification, the precipitation temperature is relatively low. Therefore, much finer Ti carbonitride precipitates than when it precipitates during cooling after solidification. Finely precipitated Ti carbonitrides move grain boundaries during heating and holding of large numbers of billets. Suppresses and prevents grain coarsening. However, if rapid heating is performed, fine precipitation at low temperatures becomes impossible, and the effect of preventing crystal grain coarsening cannot be obtained. In order to promote fine precipitation at low temperature, the average heating rate between 550 ° C and 900 ° C should be 15 ° CZ or less during reheating, or between 550 ° C and 1000 ° C. It is effective to perform soaking for 15 minutes or more.
[0096] 穿孔、延伸および定形圧延は通常の継目無鋼管の製造条件で実施すればょ 、。  [0096] The piercing, drawing, and regular rolling should be carried out under the usual conditions for producing seamless steel pipes.
[0097] 3.造管後の熱処理  [0097] 3. Heat treatment after pipe making
造管後の熱処理では、均一な組織を得ることが靱性確保に必要である。焼入れ処 理は、熱間圧延後に室温までー且冷却せずに焼入れを実施するインライン熱処理が 基本であるが、一旦冷却した後に再加熱して焼入れを実施すると、さらに結晶粒が微 細になり靱性が向上する。インライン熱処理方法として、熱間加工終了後、均熱炉に て均熱した後に焼入れを実施すると、強度バラツキの小さい鋼管が得られる。  In heat treatment after pipe making, it is necessary to obtain a uniform structure to ensure toughness. The quenching process is basically an in-line heat treatment in which quenching is performed to room temperature after hot rolling and without cooling, but once cooled, re-heating and quenching further refines the crystal grains. Toughness is improved. As an in-line heat treatment method, steel pipes with small strength variation can be obtained by performing quenching after hot working and soaking in a soaking furnace.
[0098] 焼入れ時の冷却速度を大きくするほど、厚肉材で高強度、高靱性が得られやすく なり、理論上の限界冷却速度に近付けば近付くほど、高強度、高靱性が得られる。必 要な冷却速度は 800°C〜500°Cの平均冷却速度で 8°CZ秒以上である。より好まし いのは、 10°CZ秒以上、最も好ましいのは、 15°CZ秒以上である。  [0098] The higher the cooling rate during quenching, the easier it is to obtain high strength and high toughness with a thick material, and the closer to the theoretical limit cooling rate, the higher the strength and high toughness. The required cooling rate is an average cooling rate of 800 ° C to 500 ° C and 8 ° CZ seconds or more. More preferred is 10 ° CZ seconds or more, and most preferred is 15 ° CZ seconds or more.
[0099] 優れた靱性の確保に関しては、冷却速度にカ卩えて、冷却終了温度も重要である。  [0099] For securing excellent toughness, the cooling end temperature is also important in addition to the cooling rate.
化学組成を調整した鋼を用いて、強制冷却終了温度を 100°C以下のなるべく低い温 度まで冷やし切ることが重要である。好ましいのは 80°C以下まで、より好ましいのは 5 0°C以下、最も好ましいのは 30°C以下まで、継続して強制冷却を行うことである。そ れによって、部分的に Cの濃化した変態強化糸且織ゃ残留オーステナイトの生成を防 止することでき、靱性が大幅に改善する。  It is important to cool down the forced cooling end temperature to as low a temperature as possible below 100 ° C by using steel with adjusted chemical composition. Preferably, forced cooling is continuously performed up to 80 ° C or less, more preferably 50 ° C or less, and most preferably 30 ° C or less. As a result, it is possible to prevent the formation of retained austenite if the transformation strengthened yarn and weave are partially concentrated in C, and the toughness is greatly improved.
[0100] 焼入れた後、 500°C〜700°Cの範囲内の温度で焼戻しを行う。焼戻しの目的は、 強度の調整と靱性の向上である。焼戻し温度での保持時間は、鋼管の肉厚等に応じ て適宜決定すればよぐ通常は 10分〜 120分程度に設定する。  [0100] After quenching, tempering is performed at a temperature within a range of 500 ° C to 700 ° C. The purpose of tempering is to adjust strength and improve toughness. The holding time at the tempering temperature should be appropriately determined according to the thickness of the steel pipe, etc. Usually, it should be set to about 10 to 120 minutes.
実施例  Example
[0101] 表 1に示す化学組成の鋼を転炉で溶製し、丸ビレットの製造方法としては、断面が 丸形状の連続铸造モールドに铸込む方法と、ー且角形状のモールドに铸込んだ後 、分塊圧延にて丸ビレットを製造する方法とを採用した。丸形状の連続铸造モールド に铸込んだ場合の製造条件を表 2および表 3に示す。凝固プロセスは「RCC」と表記 している。角形状のモールドに铸込むプロセスは「BLCC」と表記し、その製造条件を 表 4および表 5に示す。 [0101] Steels having the chemical composition shown in Table 1 were melted in a converter, and round billets were produced by a method in which the steel was poured into a continuous forging mold having a round cross section, and into a square mold. After And a method of manufacturing a round billet by split rolling. Tables 2 and 3 show the manufacturing conditions when inserted into a round continuous mold. The solidification process is denoted as “RCC”. The process of pouring into a square mold is denoted as “BLCC” and the manufacturing conditions are shown in Table 4 and Table 5.
[0102] 表 2〜表 5に示す製管加熱条件で丸ビレットを加熱して、傾斜ロール穿孔機を用い て中空素管を得た。この中空素管をマンドレルミルおよびサイザ一を用いて仕上圧 延して、肉厚 30mmから 50mmの鋼管を得た。その後、表 2〜表 5に記載の焼入れ 条件で冷却した。すなわち、製管後、直ちに冷却を実施する方法と、製管後、直ちに 再加熱炉に装入して均熱した後、急冷する方法と、ー且室温まで冷却した後、再カロ 熱して冷却する方法とを実施した。その後、表 2〜表 5に記載の条件で焼戻しを実施 して製品とした。  [0102] A round billet was heated under the tube-forming heating conditions shown in Tables 2 to 5, and a hollow shell was obtained using an inclined roll punch. The hollow shell was finish-rolled using a mandrel mill and a sizer to obtain a steel pipe with a thickness of 30 to 50 mm. Then, it cooled on the hardening conditions of Table 2-Table 5. That is, a method of cooling immediately after pipe making, a method of immediately cooling after pipe making and immediately soaking in a reheating furnace and soaking, and cooling to room temperature and then re-heating to cool. And implemented the method. Thereafter, tempering was performed under the conditions described in Table 2 to Table 5 to obtain a product.
[0103] 得られた鋼管から、引張試験として、 JIS 12号引張試験片を採取し、引張強さ (TS )、降伏強さ (YS)を測定した。なお、引張試験 WIS  [0103] As a tensile test, a JIS No. 12 tensile test piece was sampled from the obtained steel pipe, and the tensile strength (TS) and yield strength (YS) were measured. Tensile test WIS
Z 2241に準じて行った。衝撃試験片は、 JIS Z 2202の 4号試験片に準じ、 10mm X 10mm, 2mmVノッチの試験片を肉厚中央の長手方向力 採取して試験を行った  Performed according to Z 2241. The impact test piece was tested in accordance with JIS Z 2202 No. 4 test piece by collecting a 10 mm X 10 mm, 2 mm V notch test piece in the longitudinal direction at the center of the wall thickness.
[0104] 表 2の試番 1には、枝番が 1と 2の 2例が記載されている。 1—1および 1—2は発明 鋼 Aを使用し、 1 1の製造条件は発明で規定した範囲内にあり、良好な靱性が得ら れている。一方、試番 1 2は製管のための加熱の速度が大きすぎて本発明で規定 した製造プロセスを逸脱しており、良好な靱性が得られていない。以下、試番 2〜24 番に対しても、それぞれ枝番が 1と 2があり、同じ試番には同じ鋼種を用いている。枝 番が 1の製造条件は発明で規定した範囲内にあり、良好な靱性が得られている。一 方、枝番 2では、本発明で規定した製造プロセスを逸脱しており、良好な靱性が得ら れなかった。 [0104] In trial number 1 of Table 2, two examples with branch numbers 1 and 2 are described. 1-1 and 1-2 use invention steel A, and the manufacturing conditions of 11 are within the range specified in the invention, and good toughness is obtained. On the other hand, sample No. 12 does not have good toughness because the heating rate for pipe making is too high and deviates from the manufacturing process defined in the present invention. Below, there are branch numbers 1 and 2 for trial numbers 2 to 24, and the same steel grade is used for the same trial number. The production conditions with branch number 1 are within the range specified in the invention, and good toughness is obtained. On the other hand, branch number 2 deviated from the manufacturing process defined in the present invention, and good toughness was not obtained.
[0105] 表 4および表 5でも同様に、一つの試番内は同じ鋼種を使用し、枝番 1は本発明に 規定した範囲内の製造プロセスとなっていて、良好な靱性が得られている。一方、枝 番 2は、本発明で規定した製造プロセスを逸脱しているために良好な靱性が得られて いない。 [0106] なお、試番 25から 30は、本発明に規定した合金組成範囲を逸脱した鋼 (比較鋼) の実施例である。いずれも靱性が十分でなぐ厚肉で高靱性が要求されるラインパイ プとしては性能が不十分である。 [0105] Similarly, in Table 4 and Table 5, the same steel type is used in one trial number, and branch number 1 is a manufacturing process within the range specified in the present invention, and good toughness is obtained. Yes. On the other hand, branch No. 2 does not have good toughness because it deviates from the manufacturing process defined in the present invention. [0106] Test numbers 25 to 30 are examples of steels (comparative steels) that deviated from the alloy composition range defined in the present invention. Both of them are insufficient in performance as line pipes that require high toughness with a thick wall that does not have sufficient toughness.
[0107] [表 1] [0107] [Table 1]
〔〕0108 [] 0108
 table
化 学 組 成 [mass%、 Fe:baIJ  Chemical composition [mass%, Fe: baIJ
Figure imgf000019_0001
Figure imgf000019_0001
^〕〔〕〔30109 ^] [] [30109
表 2
Figure imgf000020_0001
Table 2
Figure imgf000020_0001
〔〕 []
表 3
Figure imgf000021_0001
Table 3
Figure imgf000021_0001
]
表 4
Figure imgf000022_0001
Table 4
Figure imgf000022_0001
表 5 Table 5
Figure imgf000023_0001
Figure imgf000023_0001
産業上の利用可能性 Industrial applicability
本発明によれば、継目無鋼管の化学組成とその製造方法を規定することによって、 特に肉厚の厚い鋼管で降伏応力が X70クラス(降伏強度 482MPa以上)、 X80クラ ス(降伏強度 551MPa以上)、 X90クラス(降伏強度 620MPa以上)、 X100クラス ( 降伏強度 689MPa以上)、 X120クラス(降伏強度 827MPa以上)の高強度を有し、 し力も靱性に優れたラインパイプ用継目無鋼管が製造可能となる。本発明の継目無 鋼管は、特に海底フローライン用として、より厳しい深海に敷設可能な鋼管である。よ つて、本発明は、エネルギーの安定供給に大きく貢献する発明である。  According to the present invention, by specifying the chemical composition of seamless steel pipe and its manufacturing method, the yield stress is X70 class (yield strength 482 MPa or more), X80 class (yield strength 551 MPa or more), especially for thick steel pipes. , X90 class (yield strength 620MPa or higher), X100 class (yield strength 689MPa or higher), X120 class (yield strength 827MPa or higher), high strength and toughness can be produced for line pipe seamless steel pipe Become. The seamless steel pipe of the present invention is a steel pipe that can be laid in more severe deep seas, particularly for submarine flow lines. Therefore, the present invention greatly contributes to the stable supply of energy.

Claims

請求の範囲 The scope of the claims
[1] 質量0 /0で、 C:0.03〜0.08%, Si:0.25%以下、 Mn:0.3~2.5%, A1:0.00 1〜0.10%、 Cr:0.02〜: L 0%、 Ni:0.02〜: L 0%、 Mo:0.02〜: L 2%、 Ti:0 .004〜0.010%、 N:0.002〜0.008%、ならびに Ca、 Mgおよび REMのうちの 1種または 2種以上の合計で 0.0002〜0.005%、V:0〜0.08%、Nb:0〜0.05 %、 Cu:0〜l.0%を含有し、残部は Feおよび不純物からなり、不純物中の Pが 0.0 5%以下、 Sが 0.005%以下であることを特徴とする高強度で靱性の良好なラインパ イブ用厚肉継目無鋼管。 [1] in a weight 0/0, C: 0.03~0.08% , Si: 0.25% or less, Mn: 0.3 ~ 2.5%, A1: 0.00 1~0.10%, Cr: 0.02~: L 0%, Ni: 0.02~ : L 0%, Mo: 0.02 to: L 2%, Ti: 0.004 to 0.010%, N: 0.002 to 0.008%, and a total of one or more of Ca, Mg and REM 0.0002 to 0.005%, V: 0 to 0.08%, Nb: 0 to 0.05%, Cu: 0 to 1.0%, balance is Fe and impurities, P in impurities is 0.05% or less, S is 0.005 A thick-walled seamless steel pipe for line pipes with high strength and good toughness.
[2] 質量0 /0で、 C:0.03〜0.08%、 Si:0.25%以下、 Mn:0.3〜2.5%, A1:0.00 1〜0.10%、 Cr:0.02〜: L 0%、 Ni:0.02〜: L 0%、 Mo:0.02〜: L 2%、 Ti:0 .004〜0.010%、 N:0.002〜0.008%、 B:0.0003〜0.01%、ならびに Ca、 Mgおよび REMのうちの 1種または 2種以上の合計で 0.0002〜0.005%、 V:0〜 0.08%、 Nb:0〜0.05%、 Cu:0〜l.0%を含有し、残部が Feおよび不純物から なり、不純物中の Pが 0.05%以下、 Sが 0.005%以下であることを特徴とする高強 度で靱性の良好なラインパイプ用厚肉継目無鋼管。 [2] Mass 0/0, C: 0.03~0.08% , Si: 0.25% or less, Mn: 0.3~2.5%, A1: 0.00 1~0.10%, Cr: 0.02~: L 0%, Ni: 0.02~ : L 0%, Mo: 0.02 to: L 2%, Ti: 0.04 to 0.010%, N: 0.002 to 0.008%, B: 0.0003 to 0.01%, and one or two of Ca, Mg and REM Contains 0.0002 to 0.005% in total for species and more, V: 0 to 0.08%, Nb: 0 to 0.05%, Cu: 0 to 1.0%, the balance is Fe and impurities, and P in impurities is 0.05 A thick-walled seamless steel pipe for line pipes with high strength and good toughness, characterized by% or less and S of 0.005% or less.
[3] 下記の (a)力も (e)までの工程を特徴とする高強度で靱性の良好なラインパイプ用厚 肉継目無鋼管の製造方法。  [3] A method of manufacturing a thick-walled seamless steel pipe for high-strength, high-toughness line pipes characterized by the following steps (a) and (e).
(a)請求項 1または 2に記載の化学組成を有する溶鋼を、連続铸造により断面が丸 形状のビレットに凝固させる工程。  (a) A step of solidifying the molten steel having the chemical composition according to claim 1 or 2 into a billet having a round cross section by continuous forging.
(b)上記のビレットを 1400°Cから 1000°Cまでの間の平均冷却速度を 6°CZ分以上 として室温まで冷却する工程。  (b) A step of cooling the billet to room temperature with an average cooling rate between 1400 ° C and 1000 ° C being 6 ° CZ min or more.
(c) 550°Cから 900°Cまで間の平均加熱速度を 15°CZ分以下として 1150〜1280 °Cに加熱した後、穿孔および圧延により継目無鋼管を製造する工程。  (c) A step of producing a seamless steel pipe by piercing and rolling after heating to 1150-1280 ° C with an average heating rate between 550 ° C and 900 ° C of 15 ° CZ or less.
(d)製管後直ちに 850〜1000°Cで均熱した後、または製管後一且冷却し、引き続 き 850〜1000°Cに加熱した後、または製管後直ちに 800°Cから 500°Cまでの間の 平均冷却速度を 8°CZ秒以上として 100°C以下まで連続して強制冷却する工程。  (d) Immediately after pipe making, soak at 850 to 1000 ° C, or cool down after pipe making and continue heating to 850 to 1000 ° C, or immediately after pipe making, from 800 ° C to 500 The process of forced cooling continuously to 100 ° C or lower with an average cooling rate between 8 ° C and 8 ° CZ seconds.
(e) 500〜690°Cの範囲内の温度で焼き戻す工程。  (e) A step of tempering at a temperature in the range of 500 to 690 ° C.
[4] 下記の (a)力も (Dまでの工程を特徴とする高強度で靱性の良好なラインパイプ用厚 肉継目無鋼管の製造方法。 [4] The following (a) force is also available (thickness for line pipe with high strength and good toughness characterized by the process up to D Manufacturing method for seamless steel pipes.
(a)請求項 1または 2に記載の化学組成を有する溶鋼を、連続铸造により断面が角 形状のブルームまたはスラブに凝固させる工程。  (a) A step of solidifying molten steel having the chemical composition according to claim 1 or 2 into a bloom or slab having a square cross section by continuous forging.
(b)上記のブルームまたはスラブを 1400°Cから 1000°Cまでの間の平均冷却速度を 8°CZ分以上として室温まで冷却する工程。  (b) A step of cooling the bloom or slab to room temperature at an average cooling rate between 1400 ° C and 1000 ° C of 8 ° CZ or more.
(c) 550°Cから 900°Cまでの平均加熱速度を 15°CZ分以下として 1150〜 1280°C に加熱した後、鍛造または Zおよび圧延により断面が丸形状のビレットを作製し、室 温まで冷却する工程。  (c) After heating to 1150-1280 ° C with an average heating rate from 550 ° C to 900 ° C of 15 ° CZ or less, billets with a round cross-section were produced by forging or Z and rolling, and the room temperature The process of cooling to.
(d)上記のビレットを 1150〜1280°Cに加熱し、穿孔および圧延により継目無鋼管を 製造する工程。  (d) A process in which the above billet is heated to 1150 to 1280 ° C, and a seamless steel pipe is produced by drilling and rolling.
(e)製管後直ちに 850〜1000°Cで均熱した後、または、製管後一且冷却し、引き続 き 850〜1000°Cに加熱した後、または、製管後直ちに 800°Cから 500°Cまで間の平 均冷却速度を 8°CZ秒以上として 100°C以下まで連続して強制冷却する工程。  (e) Immediately after pipe making at 850 to 1000 ° C, or after cooling down after pipe making, and after heating to 850 to 1000 ° C, or immediately after pipe making, 800 ° C A process of forced cooling continuously to 100 ° C or lower with an average cooling rate from 1 to 500 ° C of 8 ° CZ seconds or longer.
(1)500〜690°Cの範囲内の温度で焼き戻す工程。  (1) A step of tempering at a temperature in the range of 500 to 690 ° C.
[5] 下記の (a)力も (e)までの工程を特徴とする高強度で靱性の良好なラインパイプ用厚 肉継目無鋼管の製造方法。 [5] A method for producing a thick-walled seamless steel pipe for line pipes, characterized by the following steps (a) and (e):
(a)請求項 1または 2に記載の化学組成を有する溶鋼を、連続铸造により断面が丸 形状のビレットに凝固させる工程。  (a) A step of solidifying the molten steel having the chemical composition according to claim 1 or 2 into a billet having a round cross section by continuous forging.
(b)上記のビレットを 1400°Cから 1000°Cまでの間の平均冷却速度を 6°CZ分以上 として室温まで冷却する工程。  (b) A step of cooling the billet to room temperature with an average cooling rate between 1400 ° C and 1000 ° C being 6 ° CZ min or more.
(c) 550。C力も 1000。Cまで温度域での 15分以上の均熱を行って、 1150〜 1280°C に加熱した後、穿孔および圧延により継目無鋼管を製造する工程。  (c) 550. C force is also 1000. A process of producing seamless steel pipes by drilling and rolling after soaking for 15 minutes or more in the temperature range to C and heating to 1150-1280 ° C.
(d)製管後直ちに 850〜1000°Cで均熱した後、または製管後一且冷却し、引き続 き 850〜1000°Cに加熱した後、または製管後直ちに 800°Cから 500°Cまでの間の 平均冷却速度を 8°CZ秒以上として 100°C以下まで連続して強制冷却する工程。  (d) Immediately after pipe making, soak at 850 to 1000 ° C, or cool down after pipe making and continue heating to 850 to 1000 ° C, or immediately after pipe making, from 800 ° C to 500 The process of forced cooling continuously to 100 ° C or lower with an average cooling rate between 8 ° C and 8 ° CZ seconds.
(e) 500〜690°Cの範囲内の温度で焼き戻す工程。  (e) A step of tempering at a temperature in the range of 500 to 690 ° C.
[6] 下記の (a)力も (Dまでの工程を特徴とする高強度で靱性の良好なラインパイプ用厚 肉継目無鋼管の製造方法。 (a)請求項 1または 2に記載の化学組成を有する溶鋼を、連続铸造により断面が角 形状のブルームまたはスラブに凝固させる工程。 [6] The following (a) force is also provided (a method of manufacturing a high-strength, high-toughness thick-walled seamless steel pipe characterized by processes up to D). (a) A step of solidifying molten steel having the chemical composition according to claim 1 or 2 into a bloom or slab having a square cross section by continuous forging.
(b)上記のブルームまたはスラブを 1400°Cから 1000°Cまでの間の平均冷却速度を 8°CZ分以上として室温まで冷却する工程。  (b) A step of cooling the bloom or slab to room temperature at an average cooling rate between 1400 ° C and 1000 ° C of 8 ° CZ or more.
(c) 550。C力も 1000。Cまでの温度域での 15分以上の均熱を行って、 1150〜 1280 °Cに加熱した後、鍛造または Zおよび圧延により断面が丸形状のビレットを作製し、 室温まで冷却する工程。  (c) 550. C force is also 1000. A step of soaking in the temperature range up to C for 15 minutes or more, heating to 1150 to 1280 ° C, producing a billet with a round cross section by forging or Z and rolling, and cooling to room temperature.
(d)上記のビレットを 1150〜1280°Cに加熱し、穿孔および圧延により継目無鋼管を 製造する工程。  (d) A process in which the above billet is heated to 1150 to 1280 ° C, and a seamless steel pipe is produced by drilling and rolling.
(e)製管後直ちに 850〜1000°Cに均熱した後、または、製管後一且冷却し、引き続 き 850〜1000°Cに加熱した後、または、製管後直ちに 800°Cから 500°Cまで間の平 均冷却速度を 8°CZ秒以上として 100°C以下まで連続して強制冷却する工程。  (e) Immediately after pipe making, soak to 850-1000 ° C, or cool down after pipe making and continue heating to 850-1000 ° C, or immediately after pipe making, 800 ° C A process of forced cooling continuously to 100 ° C or lower with an average cooling rate from 1 to 500 ° C of 8 ° CZ seconds or longer.
(1)500〜690°Cの範囲内の温度で焼き戻す工程。  (1) A step of tempering at a temperature in the range of 500 to 690 ° C.
PCT/JP2006/304613 2005-03-29 2006-03-09 Thick seamless steel pipe for line pipe and method for production thereof WO2006103894A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP06728830.8A EP1876254B1 (en) 2005-03-29 2006-03-09 Thick seamless steel pipe for line pipe and method for production thereof
BRPI0608953A BRPI0608953B8 (en) 2005-03-29 2006-03-09 Production methods of seamless steel pipe for pipe, wall thickness 25 mm or more, with high strength and increased toughness.
CA2602526A CA2602526C (en) 2005-03-29 2006-03-09 A method of manufacturing a heavy wall seamless steel pipe for line pipe
AU2006229079A AU2006229079C1 (en) 2005-03-29 2006-03-09 Thick seamless steel pipe for line pipe and method for production thereof
NO20074257A NO340772B1 (en) 2005-03-29 2007-08-21 Thick seamless steel pipe for conduit and method for making it.
US11/895,131 US20080047635A1 (en) 2005-03-29 2007-08-23 Heavy wall seamless steel pipe for line pipe and a manufacturing method thereof
US12/791,486 US20100236670A1 (en) 2005-03-29 2010-06-01 Heavy wall seamless steel pipe for line pipe and a manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005095240A JP4792778B2 (en) 2005-03-29 2005-03-29 Manufacturing method of thick-walled seamless steel pipe for line pipe
JP2005-095240 2005-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/895,131 Continuation US20080047635A1 (en) 2005-03-29 2007-08-23 Heavy wall seamless steel pipe for line pipe and a manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2006103894A1 true WO2006103894A1 (en) 2006-10-05

Family

ID=37053160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304613 WO2006103894A1 (en) 2005-03-29 2006-03-09 Thick seamless steel pipe for line pipe and method for production thereof

Country Status (10)

Country Link
US (2) US20080047635A1 (en)
EP (1) EP1876254B1 (en)
JP (1) JP4792778B2 (en)
CN (1) CN100543167C (en)
AR (1) AR052706A1 (en)
AU (1) AU2006229079C1 (en)
BR (1) BRPI0608953B8 (en)
CA (1) CA2602526C (en)
NO (1) NO340772B1 (en)
WO (1) WO2006103894A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534413A (en) * 2011-12-31 2012-07-04 朱育盼 Production method of corrosion-resistant steel pipe for high-pressure boiler
CN103757561A (en) * 2014-01-15 2014-04-30 扬州龙川钢管有限公司 Large-caliber thick-wall marine seamless steel tube and TMCP (thermomechanical rolling process) production method thereof

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100545291C (en) * 2003-04-25 2009-09-30 墨西哥钢管股份有限公司 Weldless steel tube and the method that obtains described steel pipe as conduit
JP4945946B2 (en) * 2005-07-26 2012-06-06 住友金属工業株式会社 Seamless steel pipe and manufacturing method thereof
MXPA05008339A (en) * 2005-08-04 2007-02-05 Tenaris Connections Ag High-strength steel for seamless, weldable steel pipes.
CN101300369B (en) 2005-08-22 2010-11-03 住友金属工业株式会社 Seamless steel pipe for line pipe and method for producing same
MX2007004600A (en) * 2007-04-17 2008-12-01 Tubos De Acero De Mexico S A Seamless steel pipe for use as vertical work-over sections.
US7862667B2 (en) * 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
WO2009065432A1 (en) * 2007-11-19 2009-05-28 Tenaris Connections Ag High strength bainitic steel for octg applications
JP4484123B2 (en) * 2008-02-08 2010-06-16 株式会社日本製鋼所 High strength and excellent base material for clad steel plate with excellent weld heat affected zone toughness
CN101565800B (en) * 2008-04-22 2011-11-23 宝山钢铁股份有限公司 Steel plate with obdurability and strong plasticity and manufacturing method thereof
CN101660100B (en) * 2008-08-27 2011-05-11 宝山钢铁股份有限公司 Super-thick quenched and tempered steel plate with good obdurability matching, and manufacturing method thereof
US20100136369A1 (en) * 2008-11-18 2010-06-03 Raghavan Ayer High strength and toughness steel structures by friction stir welding
MX2009012811A (en) * 2008-11-25 2010-05-26 Maverick Tube Llc Compact strip or thin slab processing of boron/titanium steels.
JP4553073B1 (en) * 2009-04-01 2010-09-29 住友金属工業株式会社 Manufacturing method of high-strength Cr-Ni alloy seamless pipe
US20100319814A1 (en) * 2009-06-17 2010-12-23 Teresa Estela Perez Bainitic steels with boron
CN101962741B (en) * 2009-07-24 2012-08-08 宝山钢铁股份有限公司 Quenched and tempered steel sheet and manufacturing method thereof
WO2011021396A1 (en) 2009-08-21 2011-02-24 住友金属工業株式会社 Method for manufacturing thick-walled seamless steel pipe
EP2325435B2 (en) 2009-11-24 2020-09-30 Tenaris Connections B.V. Threaded joint sealed to [ultra high] internal and external pressures
WO2011152240A1 (en) * 2010-06-02 2011-12-08 住友金属工業株式会社 Seamless steel pipe for line pipe and method for producing the same
CN101898295B (en) * 2010-08-12 2011-12-07 中国石油天然气集团公司 Manufacturing method of high-strength and high-plasticity continuous tube
WO2012070360A1 (en) * 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
US9163296B2 (en) 2011-01-25 2015-10-20 Tenaris Coiled Tubes, Llc Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment
IT1403689B1 (en) 2011-02-07 2013-10-31 Dalmine Spa HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS.
IT1403688B1 (en) 2011-02-07 2013-10-31 Dalmine Spa STEEL TUBES WITH THICK WALLS WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER TENSIONING FROM SULFUR.
US8636856B2 (en) 2011-02-18 2014-01-28 Siderca S.A.I.C. High strength steel having good toughness
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
JP6047947B2 (en) 2011-06-30 2016-12-21 Jfeスチール株式会社 Thick high-strength seamless steel pipe for line pipes with excellent sour resistance and method for producing the same
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
AU2013253775B2 (en) 2012-04-27 2015-10-15 Nippon Steel Corporation Seamless steel pipe and method for producing the same
JP5488643B2 (en) * 2012-05-31 2014-05-14 Jfeスチール株式会社 High strength stainless steel seamless pipe for oil country tubular goods and method for producing the same
JP5682602B2 (en) * 2012-08-09 2015-03-11 新日鐵住金株式会社 Method for producing Ni-containing high alloy round billet with excellent inner surface quality
ES2659008T3 (en) 2012-08-29 2018-03-13 Nippon Steel & Sumitomo Metal Corporation Seamless steel tube and method for its production
CA2897451C (en) 2013-01-11 2019-10-01 Tenaris Connections Limited Galling resistant drill pipe tool joint and corresponding drill pipe
JP5907083B2 (en) * 2013-01-31 2016-04-20 Jfeスチール株式会社 Manufacturing method and equipment for seamless steel pipe with excellent toughness
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
EP2789701A1 (en) * 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
EP2789700A1 (en) * 2013-04-08 2014-10-15 DALMINE S.p.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
AR096965A1 (en) 2013-07-26 2016-02-10 Nippon Steel & Sumitomo Metal Corp LOW ALLOY STEEL TUBE FOR OIL WELL AND METHOD FOR THE MANUFACTURE OF THE SAME
AU2014303873B2 (en) * 2013-08-06 2017-06-08 Nippon Steel Corporation Seamless steel pipe for line pipe, and method for producing same
CN103521550B (en) * 2013-10-07 2016-08-31 宝鸡石油钢管有限责任公司 A kind of X90 level pipe line steel heavy caliber thick wall straight-line joint submerged arc welding tube manufacture method
CN103740900A (en) * 2013-11-30 2014-04-23 常熟市东鑫钢管有限公司 Heat treatment technology for seamless steel pipes
CN103695808B (en) * 2013-12-13 2016-05-25 莱芜钢铁集团有限公司 High Grade Pipeline Steel hot rolled steel plate of X120 and preparation method thereof
CN106255773B (en) 2014-05-16 2018-06-05 新日铁住金株式会社 Line-pipes seamless steel pipe and its manufacturing method
US20160138143A1 (en) * 2014-11-18 2016-05-19 Air Liquide Large Industries U.S. Lp Materials of construction for use in high pressure hydrogen storage in a salt cavern
US11060160B2 (en) 2014-12-12 2021-07-13 Nippon Steel Corporation Low-alloy steel for oil well pipe and method of manufacturing low-alloy steel oil well pipe
WO2016113794A1 (en) 2015-01-15 2016-07-21 Jfeスチール株式会社 Seamless stainless steel pipe for oil well, and method for manufacturing same
SG11201704242TA (en) * 2015-01-16 2017-06-29 Jfe Steel Corp Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
US11072835B2 (en) 2016-07-27 2021-07-27 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CN106623432A (en) * 2016-12-15 2017-05-10 苏州赛斯德工程设备有限公司 Pressure-corrosion and resistant-natural gas pipeline and processing technique thereof
US10434554B2 (en) 2017-01-17 2019-10-08 Forum Us, Inc. Method of manufacturing a coiled tubing string
EP3626841B1 (en) * 2018-09-20 2021-11-17 Vallourec Tubes France High strength micro alloyed steel seamless pipe for sour service and high toughness applications
CN112845654B (en) * 2019-11-12 2023-03-10 新疆大学 Preparation method of large-size titanium and titanium alloy seamless pipe
CN114752850B (en) * 2021-01-12 2023-03-14 宝山钢铁股份有限公司 High-strength steel plate with yield strength of 785MPa and manufacturing method thereof
CN113046628B (en) * 2021-02-01 2022-06-17 南京钢铁股份有限公司 N800CF steel for pumped storage pressure steel pipe and smelting method
CN113046655B (en) * 2021-02-01 2022-06-17 南京钢铁股份有限公司 Wide and thick pipeline steel with excellent low-temperature toughness and manufacturing method thereof
CN112981242B (en) * 2021-02-01 2022-06-17 南京钢铁股份有限公司 N800CF steel for pumped storage pressure steel pipe and manufacturing method thereof
CN115491581B (en) * 2021-06-17 2023-07-11 宝山钢铁股份有限公司 X100-grade low-temperature-resistant corrosion-resistant thick-wall seamless pipeline tube and manufacturing method thereof
CN113737096B (en) * 2021-08-31 2022-09-09 东风商用车有限公司 Annealing-free seamless steel tube, preparation method thereof and gearbox gear

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158935A (en) * 1999-09-24 2001-06-12 Sumitomo Metal Ind Ltd Steel for line pipe
JP2004124158A (en) * 2002-10-01 2004-04-22 Sumitomo Metal Ind Ltd Seamless steel pipe and manufacturing method therefor
JP2005213534A (en) * 2004-01-27 2005-08-11 Jfe Steel Kk Method for producing steel material excellent in toughness at welding heat affected zone

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168422A (en) * 1974-12-11 1976-06-14 Nippon Steel Corp Kyojinkono seizoho
JPS5849628B2 (en) * 1979-05-28 1983-11-05 新日本製鐵株式会社 Method for producing composite structure high-strength cold-rolled steel sheet with excellent deep drawability
JPH066741B2 (en) * 1985-01-26 1994-01-26 新日本製鐵株式会社 Manufacturing method of structural steel plate with high toughness
JP2672441B2 (en) * 1992-12-10 1997-11-05 新日本製鐵株式会社 Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH07173536A (en) * 1993-12-16 1995-07-11 Nippon Steel Corp Production of steel sheet for high strength line pipe excellent in sour resistance
JPH07331381A (en) * 1994-06-06 1995-12-19 Nippon Steel Corp Seamless steel tube having high strength and high toughness and its production
JPH08104922A (en) * 1994-10-07 1996-04-23 Nippon Steel Corp Production of high strength steel pipe excellent in low temperature toughness
US5993570A (en) * 1997-06-20 1999-11-30 American Cast Iron Pipe Company Linepipe and structural steel produced by high speed continuous casting
JP3344308B2 (en) * 1998-02-09 2002-11-11 住友金属工業株式会社 Ultra-high-strength steel sheet for linepipe and its manufacturing method
JP3812168B2 (en) * 1998-09-30 2006-08-23 住友金属工業株式会社 Manufacturing method of seamless steel pipe for line pipe with excellent strength uniformity and toughness
JP3800836B2 (en) * 1998-12-15 2006-07-26 住友金属工業株式会社 Manufacturing method of steel with excellent strength and toughness
JP3579307B2 (en) * 1999-08-19 2004-10-20 Jfeスチール株式会社 60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging
DE29923062U1 (en) * 1999-12-31 2000-02-24 Eugster/Frismag Ag, Romanshorn Hose wire clamp assembly
JP2004176172A (en) * 2002-10-01 2004-06-24 Sumitomo Metal Ind Ltd High strength seamless steel pipe with excellent hic (hydrogen-induced cracking) resistance, and its manufacturing method
US7566416B2 (en) * 2004-10-29 2009-07-28 Sumitomo Metal Industries, Ltd. Steel pipe for an airbag inflator and a process for its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158935A (en) * 1999-09-24 2001-06-12 Sumitomo Metal Ind Ltd Steel for line pipe
JP2004124158A (en) * 2002-10-01 2004-04-22 Sumitomo Metal Ind Ltd Seamless steel pipe and manufacturing method therefor
JP2005213534A (en) * 2004-01-27 2005-08-11 Jfe Steel Kk Method for producing steel material excellent in toughness at welding heat affected zone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534413A (en) * 2011-12-31 2012-07-04 朱育盼 Production method of corrosion-resistant steel pipe for high-pressure boiler
CN103757561A (en) * 2014-01-15 2014-04-30 扬州龙川钢管有限公司 Large-caliber thick-wall marine seamless steel tube and TMCP (thermomechanical rolling process) production method thereof

Also Published As

Publication number Publication date
AU2006229079C1 (en) 2011-03-17
AU2006229079B2 (en) 2009-04-09
BRPI0608953A2 (en) 2010-02-17
BRPI0608953B1 (en) 2016-10-11
JP4792778B2 (en) 2011-10-12
EP1876254A4 (en) 2012-08-01
CA2602526C (en) 2011-08-16
EP1876254B1 (en) 2014-11-12
US20080047635A1 (en) 2008-02-28
CN101151387A (en) 2008-03-26
NO20074257L (en) 2007-12-20
EP1876254A1 (en) 2008-01-09
NO340772B1 (en) 2017-06-19
US20100236670A1 (en) 2010-09-23
AU2006229079A1 (en) 2006-10-05
BRPI0608953B8 (en) 2017-03-21
CN100543167C (en) 2009-09-23
JP2006274350A (en) 2006-10-12
AR052706A1 (en) 2007-03-28
CA2602526A1 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP4792778B2 (en) Manufacturing method of thick-walled seamless steel pipe for line pipe
JP4945946B2 (en) Seamless steel pipe and manufacturing method thereof
JP4502012B2 (en) Seamless steel pipe for line pipe and manufacturing method thereof
US5938865A (en) Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
CN113637917B (en) 690 MPa-grade ultrahigh-strength extra-thick ship plate steel with excellent low-temperature impact performance and production method thereof
US20180073094A1 (en) X80 pipeline steel with good strain-aging performance, pipeline tube and method for producing same
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP4072009B2 (en) Manufacturing method of UOE steel pipe with high crushing strength
CN104532155B (en) X90 level heterogeneous structure pipeline steel for longitudinal welded pipe
CN113913695A (en) Corrosion-resistant and fatigue-resistant pipeline steel for underwater oil and gas production and production method thereof
JP6468301B2 (en) Material for steel pipe for high strength oil well and method for producing steel pipe for high strength oil well using the material
CN116815046A (en) FH36 marine steel with excellent hydrogen induced cracking resistance and manufacturing method thereof
CN102162061A (en) Low-carbon bainite thick steel plate with high strength and toughness and manufacturing method thereof
CN113897553B (en) 600 MPa-grade high-plasticity-deformation precipitation-strengthened pipeline steel plate and production method thereof
CN113930684B (en) Economical aging-resistant high-strain precipitation-strengthened pipeline steel and production method thereof
JP5927927B2 (en) High-strength hot-rolled steel sheet for line pipes with excellent on-site weldability and manufacturing method thereof
CN112375997B (en) Manufacturing method of X70M pipeline steel plate used under low-cost and ultralow-temperature conditions
JP4793499B2 (en) Thick-walled seamless steel pipe for line pipe
CN110592469A (en) 550 MPa-grade preheating-free welding thick-specification steel plate for ocean engineering and preparation method thereof
JP2004339550A (en) LOW YIELD RATIO 570 MPa CLASS HIGH-TENSILE STRENGTH STEEL HAVING EXCELLENT WELD ZONE TOUGHNESS AND THREAD CUTTABILITY, AND ITS PRODUCTION METHOD
JPH08295929A (en) Production of sour resistant steel sheet for line pipe excellent in co2 corrosion resistance and low temperature toughness
CN116891976A (en) 400 Mpa-grade low Wen Haigong steel plate with good wear resistance and preparation method thereof
CN115491587A (en) High-strain V reinforced pipeline wide and thick plate with good corrosion resistance and production method thereof
CN118685711A (en) 460 MPa-grade marine steel with excellent fracture resistance and preparation method thereof
CN118374737A (en) High-plasticity anti-fatigue X65-level steel plate for catenary riser and production method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680009884.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006229079

Country of ref document: AU

Ref document number: 11895131

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2006229079

Country of ref document: AU

Date of ref document: 20060309

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006229079

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/011567

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2602526

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006728830

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006728830

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0608953

Country of ref document: BR

Kind code of ref document: A2