WO2006103893A1 - Current position calculation device, current position calculation method, current position calculation program, and computer-readable recording medium - Google Patents

Current position calculation device, current position calculation method, current position calculation program, and computer-readable recording medium Download PDF

Info

Publication number
WO2006103893A1
WO2006103893A1 PCT/JP2006/304579 JP2006304579W WO2006103893A1 WO 2006103893 A1 WO2006103893 A1 WO 2006103893A1 JP 2006304579 W JP2006304579 W JP 2006304579W WO 2006103893 A1 WO2006103893 A1 WO 2006103893A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal information
acquired
current position
position calculation
time
Prior art date
Application number
PCT/JP2006/304579
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuaki Tanaka
Toshiki Fujiwara
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007510358A priority Critical patent/JP4612675B2/en
Publication of WO2006103893A1 publication Critical patent/WO2006103893A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments

Definitions

  • the present invention relates to a current position calculation device, a current position calculation method, a current position calculation program, and a computer-readable recording medium that process signal information related to speeds that are continuously input.
  • the use of the present invention is not limited to the above-described current position calculation device, current position calculation method, current position calculation program, and computer-readable recording medium.
  • VSS signals Vehicle Speed Sensors
  • data VSS signal information
  • the travel distance and vehicle speed are calculated using this VSS signal.
  • the VSS signal information may be delayed or lost depending on the load condition of the communication line.
  • a delay or loss of VSS signal information will result in an error in the calculated value. It is done.
  • the VSS signal information is an integrated value. On the other hand, even if the information is interpolated when the VSS signal information is delayed or missing, there is no VSS signal information at the previous timing when the VSS signal information power obtained at the next time is also obtained. Therefore, the problem that the number of VSS signals including an error is obtained is an example. In addition, there is a case where there is an error in the VSS signal information to be interpolated. For example, the problem of obtaining the VSS signal information including the error is given as an example. Means for solving the problem
  • the present position calculation device is characterized in that an information communication network power in a vehicle acquires signal information that is information of a vehicle speed sensor, and at a predetermined time, the acquisition means Determining means for determining whether or not the signal information has been acquired; and when the determining means determines that the signal information has not been acquired, the signal information to be acquired by the acquiring means at the predetermined time point is determined as a predetermined signal. Interpolating means for interpolating with information, and when signal information is interpolated by the interpolating means, signal information acquired at a time point subsequent to the predetermined time point is used as signal information interpolated by the interpolating means. Correction means for obtaining a correction value based on the correction means.
  • the present position calculation method includes an acquisition step of acquiring signal information that is also information on the vehicle speed sensor and information communication network power in the vehicle, and at a predetermined time point, A determination step for determining whether or not the signal information has been acquired by the acquisition step; and a signal to be acquired by the acquisition step at the predetermined time when it is determined that the signal information has not been acquired by the determination step An interpolation process for interpolating information with predetermined signal information, and when the signal information is interpolated by the interpolation process, the signal information acquired at a time point subsequent to the predetermined time point is determined by the interpolation process. And a correction step of obtaining a correction value based on the signal information interpolated by the above.
  • a current position calculation program according to claim 6 causes a computer to execute the current position calculation method according to claim 5.
  • a computer-readable recording medium according to the invention of claim 7 is characterized in that the current position calculation program according to claim 6 is recorded.
  • FIG. 1 is a block diagram showing a functional configuration of a current position calculation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing processing of a current position calculation method that works on the embodiment of the present invention.
  • FIG. 3 is a block diagram showing a hardware configuration of a current position calculation apparatus that is useful in an embodiment of the present invention.
  • FIG. 4 is a flowchart 1 to explain the processing of the present position calculation method which is effective in the embodiment of the present invention.
  • FIG. 5 is an explanatory diagram for explaining a case where VSS signal information is acquired normally.
  • FIG. 6 is an explanatory diagram for explaining a case where a loss occurs in the acquisition of the VSS signal information.
  • FIG. 7 is an explanatory diagram for explaining a case where a delay occurs in the acquisition of the VSS signal information. Explanation of symbols
  • FIG. 1 is a block diagram showing a functional configuration of a current position calculation device according to an embodiment of the present invention.
  • the current position calculation device of this embodiment includes an acquisition unit 101, a determination unit 102, an interpolation unit 103, a correction unit 104, a position calculation unit 105, and a display unit 106.
  • Acquisition unit 101 acquires signal information, which is information on a vehicle speed sensor, from an information communication network in the vehicle.
  • the signal information can be given as an integrated value, for example.
  • the signal information can be a value obtained by adding all the input values (for example, the number of VSS signals) of the running start force. Or it can be set as the input value per unit time.
  • the determination unit 102 determines whether or not the signal information has been acquired by the acquisition unit 101 at a predetermined time point. For example, when signal information is input via the in-vehicle LAN, the signal information may not be acquired depending on the communication status. In this case, it is determined that the signal information could not be acquired.
  • Interpolation section 103 interpolates signal information to be acquired by acquisition section 101 at a predetermined time point with predetermined signal information when determination section 102 determines that the signal information has not been acquired. . By interpolating signal information, loss of signal information can be prevented. Further, the interpolation unit 103 can also supplement the signal to be acquired by the acquisition unit 101 at this predetermined time point using the signal information acquired before the predetermined time point. Since the previously used signal information is used, the processing load for obtaining the interpolation value can be minimized.
  • the correcting unit 104 calculates a correction value based on the signal information interpolated by the interpolating unit 103 with respect to signal information acquired at a time point subsequent to a predetermined time point. Ask.
  • the correcting unit 104 obtains the value indicated by the signal information at the time point N + 1 and the signal information at the time point N ⁇ 1.
  • the number of signals between time N-1 and time N + 1 is obtained by taking the difference between the values indicated, and the value indicated by the signal information at time N interpolated by the interpolation means and the value indicated by the signal information at time N-1
  • the number of signals at time N is obtained by taking the difference of By subtracting the number of signals at the time point N from the time point N ⁇ 1 to the time point N + 1, the value including the correction value for the signal number at the time point N + 1 and the signal number at the time point N is obtained.
  • the correction value can be a value obtained by correcting the signal information acquired at the next time point (for example, time point N + 1).
  • a value indicating the speed at the next time point can be obtained from the signal information acquired at the next time point, and the value indicating the speed can be corrected.
  • the position calculation unit 105 obtains the moving distance of the vehicle based on the signal information, and obtains the current position of the vehicle from the moving distance.
  • the display unit 106 displays the current position obtained by the position calculation unit 105.
  • FIG. 2 is a flowchart showing the processing of the current position calculation method that works on the embodiment of the present invention.
  • signal information is acquired (step S201).
  • This signal information is information of the vehicle speed sensor from which the information communication network power in the vehicle is also acquired.
  • step S202 it is determined whether or not signal information has been acquired at a predetermined time (step S202). If it is determined that the signal information could not be acquired (step S202: No), the signal information to be acquired at this predetermined time is interpolated with the predetermined signal information (step S203), and the process goes to step S206. move on.
  • step S204 it is determined whether or not the force has been subjected to the previous interpolation processing (step S204). If the previous interpolation process has not been successful (step S204: No), the process proceeds to step S206.
  • step S204: Yes the signal information acquired at the next time (that is, this time) after this predetermined time (that is, the time when interpolation processing was performed) is changed to the interpolated signal information. Based on this, find the correction value (Step S205)
  • step S206 the travel distance of the vehicle is obtained based on the signal information, and the current position of the vehicle is obtained from the travel distance (step S206). Then, the obtained current position is displayed (step S207).
  • the signal information acquired next is input as a value including the input value that has not been acquired previously, and an error remains as it is. Therefore, by correcting the signal information acquired next, it is possible to correct the deviation caused by the temporarily buried signal information and perform processing based on an accurate input value. In other words, the occurrence of errors due to signal information processing loss can be reduced by interpolation Z correction processing.
  • FIG. 3 is a block diagram showing an example of the hardware configuration of the current position calculation device that is useful in the embodiment of the present invention.
  • the current position calculation device includes in-vehicle LAN 301, in-vehicle LAN control unit 302, ABS sensor 303, ECU 304, angular velocity sensor 305, tilt sensor 306, GPS ratio 307, navigation control unit 310, operation unit 311, display unit 312, A point search unit 313, a route search unit 314, and a route guidance unit 315 are included.
  • the in-vehicle LAN 301 is an example of a current position calculation device, and is controlled by the in-vehicle LAN control unit 302.
  • the in-vehicle LAN 301 is connected to an ABS sensor 303, an ECU 304, and a navigation control unit 310.
  • Data output from each functional unit connected to the in-vehicle LAN 301 is shared via the in-vehicle LAN 301, and a functional unit that requires data acquires the data through the in-vehicle LAN 301.
  • the navigation control unit 310 is connected with an angular velocity sensor 305, an inclination sensor 306, a GPS receiver 307, an operation unit 311, a display unit 312, a point search unit 313, a route search unit 314, and a route guide unit 315.
  • the in-vehicle LAN control unit 302 and each of these functional units include, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a ROM (Read Only Memory) that stores various control programs, and a RAM ( Random Access Memory) can be used.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • In-vehicle LAN 301 is a communication network in the vehicle, and is a CAN (Controller Area
  • the in-vehicle LAN control unit 302 controls the in-vehicle LAN 301 so that each functional unit connected to the in-vehicle LAN 301 can acquire the VSS signal information.
  • the acquisition unit 101 is realized by the in-vehicle LAN 301 and the in-vehicle LAN control unit 302. Further, the determination unit 102, the interpolation unit 103, and the correction unit 104 are realized by the in-vehicle LAN control unit 302.
  • the ABS sensor 303 is a sensor that detects the wheel speed. For example, a sensor that electromagnetically detects the unevenness of a rotor that rotates in conjunction with a wheel and outputs a signal can be given. The signal output at this time is called a VSS signal.
  • the VSS (Vehicle Speed Sensor) signal is a signal generated when the vehicle travels.
  • the ABS sensor 303 calculates the number of times this VSS signal is detected, that is, the number of VSS signals, and outputs it to the in-vehicle LAN 301 as VSS signal information.
  • this VSS signal information is an integrated value of the number of VSS signals, and is not the number of detected VSS signals per unit time but the total number of detected signals. Then, the travel distance and the vehicle speed are obtained based on the number of VSS signals obtained based on the VSS signal information.
  • the number of VSS signals per unit time is obtained as the number of rising edge detections per unit time.
  • the speed changes the number of pulses obtained in a given time is different. Each different value is given as the number of VSS signals.
  • the VSS signal information is output as an integrated value that is the total force when the vehicle starts to run. Therefore, even if the VSS signal information does not arrive once, the VSS signal information obtained at the next timing includes the number of VSS signals that have been delivered and the number of VSS signals in the next section. Since the VSS signal information is obtained as an integrated value, the number of VSS signals can be obtained by taking the difference.
  • An ECU (Electronic Control Unit) 304 is a computer unit that controls the engine based on information from various sensors sent from the engine.
  • the ECU 304 mainly controls engine fuel adjustment and ignition timing. For example, the fuel injection amount and ignition timing are determined based on information such as the air intake amount and throttle opening. Calculate the information from the sensor that measures the intake air amount and the oxygen amount contained in the exhaust gas. An instruction to output an appropriate amount of fuel is output.
  • These control information is input to the in-vehicle LAN 301 in the same manner as the VSS signal information.
  • the angular velocity sensor 305 detects the angular velocity at the time of rotation of the own vehicle, and outputs the angular velocity data and the relative bearing data of the own vehicle.
  • the inclination sensor 306 detects the inclination angle of the road surface and outputs inclination angle data.
  • the GPS receiver 307 receives a radio wave from a GPS satellite and obtains the current position of the apparatus body.
  • the GPS receiver 307 receives radio waves from a GPS satellite and obtains a geometric position with respect to the GPS satellite, and can be measured anywhere on the earth.
  • radio waves 1. It is carried out using L1 radio waves with CZA (Coarse and Access) codes and navigation messages on 57542 GHz carrier waves. This detects the current vehicle position (latitude and longitude). Furthermore, information collected by various sensors such as a vehicle speed sensor and a gyro sensor may be taken into consideration.
  • the navigation control unit 310 controls the entire navigation device. Further, the moving distance is obtained from the obtained number of VSS signals, and the current position is obtained from the moving distance. Also, an arbitrary point is searched, and an optimum route to the point is calculated based on the obtained point information. Also, real-time route guidance information is generated based on this route and the vehicle location information.
  • the position calculation unit 105 is realized by the navigation control unit 310.
  • the operation unit 311 includes an operation button, a remote control, a touch panel, and the like.
  • the display unit 312 includes a liquid crystal display, an organic EL display, and the like.
  • the display unit 106 is realized by the display unit 312.
  • the point search unit 313 searches for an arbitrary point based on the information input from the operation unit 311 and outputs it to the display unit 312. Further, the route search unit 314 calculates an optimum route to the point based on the point information obtained by the point search unit 313. Further, the route guidance unit 315 generates real-time route guidance information based on the information obtained by the route search unit 314 and the vehicle position information.
  • FIG. 4 is a flow chart for explaining the processing of the current position calculation method that works on the embodiment of the present invention.
  • the ABS sensor 303 is activated (step S401).
  • VSS signal information is sequentially input to the in-vehicle LAN 301.
  • step S402 If the VSS signal information can be acquired (step S402: No), the VSS signal information interpolation processing is executed (step S403), and the series of processing ends. That is, the VSS signal information is acquired as an estimated value in order to prevent the VSS signal information from being acquired. For example, by using the previously used value as the VSS signal, the processing can be continued even when the VSS signal information cannot be obtained.
  • step S404 If the VSS signal can be acquired (step S402: Yes), it is determined whether the previous interpolation processing has been performed (step S404). If the previous interpolation processing was performed (step S404: Yes), correction processing is executed for the VSS signal acquired this time (step S405), and the process proceeds to step S407.
  • the previous VSS signal information obtained as an estimated value by the interpolation process is not an accurate input value.
  • the VSS signal information acquired next is input as a value including the input value that was previously acquired, it was input as an estimated value when calculating the number of VSS signals to be acquired next. It is necessary to subtract the number of VSS signals. This correction process corrects the deviation caused by the estimation result and obtains the number of VSS signals reflecting the correct input value.
  • step S404 If the previous interpolation processing has not been performed (step S404: No), the number of VSS signals is calculated (step S406). If there is no missing VSS signal and no previous interpolation processing is performed, the moving distance can be obtained by multiplying the number of VSS signals by the distance coefficient. This distance coefficient is a coefficient indicating the moving distance with respect to the amount of change in the number of VSS signals. The vehicle speed can be obtained by dividing the distance traveled by time.
  • VSS signal information is recorded (step S407), and a series of processing ends.
  • the next VSS signal is acquired, data loss may occur due to delay or omission, so it is necessary to prepare data for interpolation at that time. Therefore, by recording the obtained VSS signal information, it is possible to prepare the data to be interpolated for the next missing VSS signal information.
  • FIG. 5 is an explanatory diagram for explaining a case where the VSS signal information is normally acquired.
  • the VSS signal information is processed continuously every N seconds. This time interval of N seconds is very short, for example every second.
  • the VSS signal information processing timing will be described as 0 seconds to N5 seconds.
  • VSS signal information is received in 0 seconds, and VSS signal information is received in N seconds after section A. Then, after section B, VSS signal information is received in N2 seconds. Similarly, VSS signal information is received in N3 seconds after section C, VSS signal information is received in N4 seconds via section D, and VSS signal information is received in N5 seconds after section E. The At each time point from N seconds to N5 seconds, the number of VSS signals in sections A to E is determined based on the received VSS signal information.
  • FIG. 6 is an explanatory diagram for explaining a case where a loss occurs in the acquisition of VSS signal information.
  • VSS signal information is normally received at 0 and N seconds.
  • a loss occurs in the reception of the signal from the ABS sensor 303.
  • VSS signal information is not normally received in N2 seconds.
  • the ABS sensor 303 Since the ABS sensor 303 outputs the VSS signal information as an integrated value, in the conventional case, the vehicle moves as long as it moves in N2 seconds. Therefore, the signal that should be received in N2 seconds is interpolated using the VSS signal information received in N seconds!
  • the interpolation value is not necessarily the same value as the VSS signal information that should be received in N2 seconds. However, by considering the situation that the vehicle is traveling by interpolation, it is more appropriate to treat it as traveling at the same speed as in N seconds rather than not moving. The process can be executed based on any value.
  • N3 seconds when the VSS signal information is normally received in N3 seconds, the interpolation process is performed in N2 seconds, and if it is processed as it is using the received VSS signal information for N3 seconds, Deviation occurs when calculating the number of VSS signals in section B. Therefore, in N3 seconds, the number of VSS signals in section C is corrected based on the interpolated value in N2 seconds. By correcting, it is possible to prevent an error in N3 seconds from being generated by the interpolation value in N2 seconds. [0053] In N4 seconds, the VSS signal information is normally received. Since the VSS signal information is processed normally in the previous N3 seconds, the VSS signal information is processed as it is in the next N4 seconds. In N5 seconds, the VSS signal information is normally received, and the VSS signal information is processed as it is.
  • FIG. 7 is an explanatory diagram for explaining a case where a delay occurs in the acquisition of the VSS signal information.
  • VSS signal information is normally received at 0 and N seconds.
  • VSS signal information is not normally received in N2 seconds.
  • VSS signal information that should be received after N2 seconds is canceled, and VSS signal information corresponding to N3 seconds is received. Also, the number of VSS signals obtained at N3 seconds is corrected based on the interpolation value at N2 seconds. By correcting, it is possible to prevent an error in N3 seconds from being caused by the interpolation value in N2 seconds.
  • VSS signal information broadcast to the in-vehicle lan 301 is an integrated value. Then, based on the number of VSS signals, which is the integrated value, the travel distance and the vehicle speed are obtained at regular intervals.
  • VSS signal information is acquired from the in-vehicle LAN 301, as shown in FIG. 5, when the VSS signal information can be acquired at regular intervals in the normal case, the VSS signal information is displayed as shown in FIG. When missing, as shown in Fig. 7, there are three possible patterns of delay, although VSS signal information is not missing.
  • B is interpolated with the value calculated between A. This can reduce instantaneous errors.
  • the previous value is used as it is as an interpolated value, the previous value can be corrected using a value estimated in consideration of acceleration or the like. However, since this is an interpolation process, a slight error occurs between the actual travel distance between B and the vehicle speed.
  • the calculated value between the interpolation processes is the interpolation value X, and the interpolation value is stored in order to remove this error.
  • the difference from the VSS signal information at the previous reception is calculated.
  • the difference Y be the value obtained here.
  • the number of VSS signals including the section that has not been received is calculated from the difference between the acquired VSS signal information and the previously acquired VSS signal.
  • the number of VSS signals between C is obtained from the total number of VSS signals between B and C.
  • VSS signal number currently acquired VSS signal information—previously acquired signal information
  • the travel distance / vehicle speed can be calculated based on the number of VSS signals.
  • the travel distance is obtained by multiplying the distance coefficient by the number of VSS signals.
  • the distance coefficient is the moving distance per VSS signal.
  • the vehicle speed can be obtained by dividing the travel distance by time.
  • the occurrence of an error when information is delayed or lost in the in-vehicle LAN can be reduced by the interpolation Z correction process. For example, by acquiring VSS signal information using the previously used value as an estimated value, it is possible to prevent a situation where VSS signal information cannot be acquired. The processing can be continued even at a powerful timing when the VSS signal information cannot be acquired.
  • VSS signal information acquired next is input as a value including the input value that was not acquired last time, an incorrect number of VSS signals is obtained as it is. Therefore, by correcting the VSS signal information acquired next, it is possible to correct the deviation due to the estimation result and acquire the number of VSS signals reflecting the accurate input value.
  • the current position calculation method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by reading the recording medium force by the computer.
  • the program may be a transmission medium that can be distributed through a network such as the Internet.

Abstract

In a current position calculation device, an acquisition unit (101) acquires signal information as information on a vehicle speed sensor from an in-vehicle information communication network. Next, a judgment unit (102) judges whether signal information has been acquired at a predetermined moment. Next, if it is judged that the signal information could not be acquired, an interpolation unit (103) interpolates the signal information to be acquired at the moment by predetermined signal information. When the signal is interpolated, a correction unit (104) acquires a correction value based on the interpolated signal information for signal information to be acquired at the moment next to the predetermined moment. By using the acquired correction value, it is possible to obtain and display an appropriate current position.

Description

明 細 書  Specification
現在位置算出装置、現在位置算出方法、現在位置算出プログラムおよび コンピュータに読み取り可能な記録媒体  Current position calculation device, current position calculation method, current position calculation program, and computer-readable recording medium
技術分野  Technical field
[0001] この発明は、連続して入力される速度に関する信号情報を処理する現在位置算出 装置、現在位置算出方法、現在位置算出プログラムおよびコンピュータに読み取り 可能な記録媒体に関する。ただし、この発明の利用は、上述の現在位置算出装置、 現在位置算出方法、現在位置算出プログラムおよびコンピュータに読み取り可能な 記録媒体に限らない。  The present invention relates to a current position calculation device, a current position calculation method, a current position calculation program, and a computer-readable recording medium that process signal information related to speeds that are continuously input. However, the use of the present invention is not limited to the above-described current position calculation device, current position calculation method, current position calculation program, and computer-readable recording medium.
背景技術  Background art
[0002] 近年の一部車種では、 ABSセンサなどによって検出した VSS信号 (Vehicle Spe ed Sensor)数を、データ (VSS信号情報)として車内 LANで放送して 、る。カーナ ピゲーシヨンなどにぉ 、ては、この VSS信号を利用して移動距離および車両速度を 算出している。  [0002] In some recent vehicle models, the number of VSS signals (Vehicle Speed Sensors) detected by an ABS sensor or the like is broadcast as data (VSS signal information) on the in-vehicle LAN. For car navigation systems, etc., the travel distance and vehicle speed are calculated using this VSS signal.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] この場合、 VSS信号情報の取得は通信を介して行われるので、通信ラインの負荷 状況によっては VSS信号情報の遅延や欠落が発生する場合がある。一定周期でタ スクを起床させ、移動距離および車両速度を算出しているシステムでは、 VSS信号 情報の遅延や欠落が起こった結果、算出値に誤差が生じてしまうという問題が一例と して挙げられる。  [0003] In this case, since the acquisition of the VSS signal information is performed via communication, the VSS signal information may be delayed or lost depending on the load condition of the communication line. As an example, in a system that wakes up a task at a fixed period and calculates the travel distance and vehicle speed, a delay or loss of VSS signal information will result in an error in the calculated value. It is done.
[0004] また、 VSS信号情報は積算値である。一方、 VSS信号情報の遅延や欠落が発生し た時点で情報を補間しても、次の時点で取得される VSS信号情報力も VSS信号数 を求めるときには、前のタイミングの VSS信号情報がない。したがって、誤差を含んだ VSS信号数を求めてしまうという問題が一例として挙げられる。また、補間する VSS 信号情報にも誤差がある場合があるので、それにより誤差を含んだ VSS信号情報を 求めてしまうという問題が一例として挙げられる。 課題を解決するための手段 [0004] The VSS signal information is an integrated value. On the other hand, even if the information is interpolated when the VSS signal information is delayed or missing, there is no VSS signal information at the previous timing when the VSS signal information power obtained at the next time is also obtained. Therefore, the problem that the number of VSS signals including an error is obtained is an example. In addition, there is a case where there is an error in the VSS signal information to be interpolated. For example, the problem of obtaining the VSS signal information including the error is given as an example. Means for solving the problem
[0005] 請求項 1の発明にかかる現在位置算出装置は、車両内の情報通信網力も車両速 度センサの情報である信号情報を取得する取得手段と、所定の時点において、前記 取得手段によって前記信号情報が取得できたか否かを判定する判定手段と、前記 判定手段によって信号情報が取得できなかったと判定された場合、前記所定の時点 において前記取得手段によって取得されるべき信号情報を所定の信号情報で補間 する補間手段と、前記補間手段によって信号情報が補間された場合に、前記所定の 時点の次の時点で取得される信号情報にっ 、て、前記補間手段によって補間され た信号情報に基づいて補正値を求める補正手段と、を備えることを特徴とする。  [0005] The present position calculation device according to the invention of claim 1 is characterized in that an information communication network power in a vehicle acquires signal information that is information of a vehicle speed sensor, and at a predetermined time, the acquisition means Determining means for determining whether or not the signal information has been acquired; and when the determining means determines that the signal information has not been acquired, the signal information to be acquired by the acquiring means at the predetermined time point is determined as a predetermined signal. Interpolating means for interpolating with information, and when signal information is interpolated by the interpolating means, signal information acquired at a time point subsequent to the predetermined time point is used as signal information interpolated by the interpolating means. Correction means for obtaining a correction value based on the correction means.
[0006] また、請求項 5の発明にかかる現在位置算出方法は、車両内の情報通信網力も車 両速度センサの情報である信号情報を取得する取得工程と、所定の時点にぉ 、て、 前記取得工程によって前記信号情報が取得できたか否かを判定する判定工程と、 前記判定工程によって信号情報が取得できなかったと判定された場合、前記所定の 時点において前記取得工程によって取得されるべき信号情報を所定の信号情報で 補間する補間工程と、前記補間工程によって信号情報が補間された場合に、前記所 定の時点の次の時点で取得された信号情報につ!、て、前記補間工程によって補間 された信号情報に基づ ヽて補正値を求める補正工程と、を含むことを特徴とする。  [0006] In addition, the present position calculation method according to the invention of claim 5 includes an acquisition step of acquiring signal information that is also information on the vehicle speed sensor and information communication network power in the vehicle, and at a predetermined time point, A determination step for determining whether or not the signal information has been acquired by the acquisition step; and a signal to be acquired by the acquisition step at the predetermined time when it is determined that the signal information has not been acquired by the determination step An interpolation process for interpolating information with predetermined signal information, and when the signal information is interpolated by the interpolation process, the signal information acquired at a time point subsequent to the predetermined time point is determined by the interpolation process. And a correction step of obtaining a correction value based on the signal information interpolated by the above.
[0007] また、請求項 6の発明に力かる現在位置算出プログラムは、請求項 5に記載の現在 位置算出方法を、コンピュータに実行させることを特徴とする。  [0007] Further, a current position calculation program according to claim 6 causes a computer to execute the current position calculation method according to claim 5.
[0008] また、請求項 7の発明にかかるコンピュータに読み取り可能な記録媒体は、請求項 6に記載の現在位置算出プログラムを記録したことを特徴とする。  [0008] A computer-readable recording medium according to the invention of claim 7 is characterized in that the current position calculation program according to claim 6 is recorded.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は、この発明の実施の形態にかかる現在位置算出装置の機能的構成を示 すブロック図である。  FIG. 1 is a block diagram showing a functional configuration of a current position calculation apparatus according to an embodiment of the present invention.
[図 2]図 2は、この発明の実施の形態に力かる現在位置算出方法の処理を示すフロ 一チャートである。  [FIG. 2] FIG. 2 is a flow chart showing processing of a current position calculation method that works on the embodiment of the present invention.
[図 3]図 3は、この発明の実施例に力かる現在位置算出装置のハードウェア構成を示 すブロック図である。 [図 4]図 4は、この発明の実施例に力かる現在位置算出方法の処理を説明するフロー チ1—ャ〇ートである。[FIG. 3] FIG. 3 is a block diagram showing a hardware configuration of a current position calculation apparatus that is useful in an embodiment of the present invention. [FIG. 4] FIG. 4 is a flowchart 1 to explain the processing of the present position calculation method which is effective in the embodiment of the present invention.
1—  1—
[図 5]図 5は、正常に VSS信号情報が取得されている場合を説明する説明図である。 圆 6]図 6は、 VSS信号情報の取得に欠落が生じる場合を説明する説明図である。 圆 7]図 7は、 VSS信号情報の取得に遅延が生じる場合を説明する説明図である。 符号の説明  FIG. 5 is an explanatory diagram for explaining a case where VSS signal information is acquired normally. [6] FIG. 6 is an explanatory diagram for explaining a case where a loss occurs in the acquisition of the VSS signal information. [7] FIG. 7 is an explanatory diagram for explaining a case where a delay occurs in the acquisition of the VSS signal information. Explanation of symbols
取得部  Acquisition department
102 判定部  102 Judgment part
103 補間部  103 Interpolator
104 補正部  104 Correction section
105 位置算出部  105 Position calculator
106 表示部  106 Display
301 車内 LAN  301 LAN in the car
302 車内 LAN制御部  302 In-vehicle LAN controller
303 ABSセンサ  303 ABS sensor
304 ECU  304 ECU
305 角速度センサ  305 Angular velocity sensor
306 傾斜センサ  306 Tilt sensor
307 GPSレシーバ  307 GPS receiver
310 ナビゲーシヨン制御部  310 Navigation control unit
311 操作部  311 Operation unit
312 表示部  312 Display
313 地点検索部  313 point search part
314 経路探索部  314 Route search unit
315 経路誘導部  315 Route guide
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付図面を参照して、この発明にかかる現在位置算出装置、現在位置算出 方法、現在位置算出プログラムおよびコンピュータに読み取り可能な記録媒体の好 適な実施の形態を詳細に説明する。 With reference to the accompanying drawings, preferred embodiments of a current position calculation device, a current position calculation method, a current position calculation program, and a computer-readable recording medium according to the present invention will be described below. A suitable embodiment will be described in detail.
[0012] 図 1は、この発明の実施の形態にかかる現在位置算出装置の機能的構成を示すブ ロック図である。この実施の形態の現在位置算出装置は、取得部 101、判定部 102、 補間部 103、補正部 104、位置算出部 105および表示部 106により構成されている  FIG. 1 is a block diagram showing a functional configuration of a current position calculation device according to an embodiment of the present invention. The current position calculation device of this embodiment includes an acquisition unit 101, a determination unit 102, an interpolation unit 103, a correction unit 104, a position calculation unit 105, and a display unit 106.
[0013] 取得部 101は、車両内の情報通信網から車両速度センサの情報である信号情報 を取得する。信号情報は、たとえば積算値として与えることができる。この場合、たと えば走行開始力ゝらの入力値 (たとえば VSS信号数)をすベて加算した値を信号情報 とすることができる。または、単位時間当たりの入力値とすることができる。 [0013] Acquisition unit 101 acquires signal information, which is information on a vehicle speed sensor, from an information communication network in the vehicle. The signal information can be given as an integrated value, for example. In this case, for example, the signal information can be a value obtained by adding all the input values (for example, the number of VSS signals) of the running start force. Or it can be set as the input value per unit time.
[0014] 判定部 102は、所定の時点において、取得部 101によって信号情報が取得できた か否かを判定する。たとえば、信号情報が車内 LANを介して入力される場合、通信 状態によって信号情報が取得できない場合がある。この場合、信号情報が取得でき な力つたと判定する。  [0014] The determination unit 102 determines whether or not the signal information has been acquired by the acquisition unit 101 at a predetermined time point. For example, when signal information is input via the in-vehicle LAN, the signal information may not be acquired depending on the communication status. In this case, it is determined that the signal information could not be acquired.
[0015] 補間部 103は、判定部 102によって信号情報が取得できな力つたと判定された場 合、この所定の時点において取得部 101によって取得されるべき信号情報を所定の 信号情報で補間する。信号情報を補間することにより信号情報の欠落を防止すること ができる。また、補間部 103は、この所定の時点において取得部 101によって取得さ れるべき信号を、この所定の時点の前の時点にぉ 、て取得した信号情報を用いて補 間することもできる。前回用いた信号情報を用いるので、補間値を求めるための処理 負担を最小限にすることができる。  Interpolation section 103 interpolates signal information to be acquired by acquisition section 101 at a predetermined time point with predetermined signal information when determination section 102 determines that the signal information has not been acquired. . By interpolating signal information, loss of signal information can be prevented. Further, the interpolation unit 103 can also supplement the signal to be acquired by the acquisition unit 101 at this predetermined time point using the signal information acquired before the predetermined time point. Since the previously used signal information is used, the processing load for obtaining the interpolation value can be minimized.
[0016] 補正部 104は、補間部 103によって信号が補間された場合に、所定の時点の次の 時点で取得された信号情報について、補間部 103によって補間された信号情報に 基づいて補正値を求める。  [0016] When the signal is interpolated by the interpolating unit 103, the correcting unit 104 calculates a correction value based on the signal information interpolated by the interpolating unit 103 with respect to signal information acquired at a time point subsequent to a predetermined time point. Ask.
[0017] 具体的には、補正部 104は、時点 Nにおいて信号情報が取得できな力つたと判定 された場合に、時点 N+ 1における信号情報が示す値と時点 N— 1における信号情 報が示す値の差分を取ることによって時点 N— 1から時点 N+ 1の間の信号数を求め 、前記補間手段によって補間された時点 Nにおける信号情報が示す値と時点 N— 1 における信号情報が示す値の差分を取ることによって時点 Nの信号数を求め、前記 時点 N— 1から時点 N+ 1の間の信号数力も前記時点 Nの信号数を引くことにより、 時点 N+ 1の信号数と時点 Nの信号数に対する補正値を含めた値を求める。 [0017] Specifically, when it is determined that the signal information cannot be acquired at the time point N, the correcting unit 104 obtains the value indicated by the signal information at the time point N + 1 and the signal information at the time point N−1. The number of signals between time N-1 and time N + 1 is obtained by taking the difference between the values indicated, and the value indicated by the signal information at time N interpolated by the interpolation means and the value indicated by the signal information at time N-1 The number of signals at time N is obtained by taking the difference of By subtracting the number of signals at the time point N from the time point N−1 to the time point N + 1, the value including the correction value for the signal number at the time point N + 1 and the signal number at the time point N is obtained.
[0018] なお補正値は、この次の時点(たとえば時点 N+ 1)で取得された信号情報を補正 した値とすることができる。または、この次の時点で取得された信号情報から、この次 の時点における速度を示す値を求め、この速度を示す値を補正した値とすることもで きる。 [0018] The correction value can be a value obtained by correcting the signal information acquired at the next time point (for example, time point N + 1). Alternatively, a value indicating the speed at the next time point can be obtained from the signal information acquired at the next time point, and the value indicating the speed can be corrected.
[0019] 位置算出部 105は、信号情報に基づいて車両の移動距離を求め、移動距離から 車両の現在位置を求める。表示部 106は、位置算出部 105によって求められた現在 位置を表示する。  [0019] The position calculation unit 105 obtains the moving distance of the vehicle based on the signal information, and obtains the current position of the vehicle from the moving distance. The display unit 106 displays the current position obtained by the position calculation unit 105.
[0020] 図 2は、この発明の実施の形態に力かる現在位置算出方法の処理を示すフローチ ヤートである。まず、信号情報を取得する (ステップ S 201)。この信号情報は、車両内 の情報通信網力も取得される車両速度センサの情報である。  FIG. 2 is a flowchart showing the processing of the current position calculation method that works on the embodiment of the present invention. First, signal information is acquired (step S201). This signal information is information of the vehicle speed sensor from which the information communication network power in the vehicle is also acquired.
[0021] 次に、所定の時点にぉ 、て信号情報が取得できたか否かを判定する (ステップ S2 02)。信号情報が取得できな力つたと判定された場合 (ステップ S202 : No)、この所 定の時点において取得されるべき信号情報を、所定の信号情報で補間し (ステップ S 203)、ステップ S206に進む。  [0021] Next, it is determined whether or not signal information has been acquired at a predetermined time (step S202). If it is determined that the signal information could not be acquired (step S202: No), the signal information to be acquired at this predetermined time is interpolated with the predetermined signal information (step S203), and the process goes to step S206. move on.
[0022] 信号情報が取得できたと判定された場合 (ステップ S202 : Yes)、前回補間処理し た力否かを判定する (ステップ S204)。前回補間処理しな力つた場合 (ステップ S204 : No)、ステップ S206に進む。前回補間処理した場合 (ステップ S204 : Yes)、この所 定の時点(つまり、補間処理した時点)の、次の時点(つまり、今回)に取得された信 号情報について、補間された信号情報に基づいて補正値を求める (ステップ S205)  If it is determined that the signal information has been acquired (step S202: Yes), it is determined whether or not the force has been subjected to the previous interpolation processing (step S204). If the previous interpolation process has not been successful (step S204: No), the process proceeds to step S206. When the previous interpolation processing was performed (step S204: Yes), the signal information acquired at the next time (that is, this time) after this predetermined time (that is, the time when interpolation processing was performed) is changed to the interpolated signal information. Based on this, find the correction value (Step S205)
[0023] 次に、信号情報に基づ!/、て車両の移動距離を求め、移動距離から車両の現在位 置を求める(ステップ S206)。そして、求められた現在位置を表示する(ステップ S20 7)。 Next, the travel distance of the vehicle is obtained based on the signal information, and the current position of the vehicle is obtained from the travel distance (step S206). Then, the obtained current position is displayed (step S207).
[0024] 以上説明した実施の形態により、たとえば遅延や欠落により信号情報が取得できな 力つた場合、所定の信号情報によってデータの空白が埋められるので、処理が落ち るのを防ぐことができる。そして、信号情報を取得できな力つたタイミングにおいても処 理を «続させることができる。 [0024] According to the embodiment described above, when signal information cannot be acquired due to delay or omission, for example, data blanks are filled with predetermined signal information, so that it is possible to prevent the processing from being deteriorated. Even when the signal information cannot be acquired, it is processed. Can continue.
[0025] 一方、次に取得される信号情報は、前回取得されな力つた入力値を含めた値として 入力され、そのままでは誤差が残ることになる。そこで、次に取得される信号情報に ついて補正処理することによって、一時的に埋めた信号情報によるずれを修正し、正 確な入力値に基づいて処理することができる。すなわち、信号情報の処理落ちによる 誤差の発生を、補間 Z補正処理により軽減することができる。  [0025] On the other hand, the signal information acquired next is input as a value including the input value that has not been acquired previously, and an error remains as it is. Therefore, by correcting the signal information acquired next, it is possible to correct the deviation caused by the temporarily buried signal information and perform processing based on an accurate input value. In other words, the occurrence of errors due to signal information processing loss can be reduced by interpolation Z correction processing.
実施例  Example
[0026] (ハードウェア構成)  [0026] (Hardware configuration)
図 3は、この発明の実施例に力かる現在位置算出装置のハードウェア構成の一例 を示すブロック図である。現在位置算出装置は、車内 LAN301、車内 LAN制御部 3 02、 ABSセンサ 303、 ECU304、角速度センサ 305、傾斜センサ 306、 GPSレシ一 ノ 307、ナビゲーシヨン制御部 310、操作部 311、表示部 312、地点検索部 313、経 路探索部 314および経路誘導部 315を含む構成となっている。  FIG. 3 is a block diagram showing an example of the hardware configuration of the current position calculation device that is useful in the embodiment of the present invention. The current position calculation device includes in-vehicle LAN 301, in-vehicle LAN control unit 302, ABS sensor 303, ECU 304, angular velocity sensor 305, tilt sensor 306, GPS ratio 307, navigation control unit 310, operation unit 311, display unit 312, A point search unit 313, a route search unit 314, and a route guidance unit 315 are included.
[0027] 車内 LAN301は、現在位置算出装置の一例であり、車内 LAN制御部 302によつ て制御される。また、車内 LAN301は、 ABSセンサ 303、 ECU304およびナビゲー シヨン制御部 310が接続されている。車内 LAN301に接続された各機能部から出力 されたデータは車内 LAN301を介して共有され、データを必要とする機能部は、車 内 LAN301を介してデータを取得する。  The in-vehicle LAN 301 is an example of a current position calculation device, and is controlled by the in-vehicle LAN control unit 302. The in-vehicle LAN 301 is connected to an ABS sensor 303, an ECU 304, and a navigation control unit 310. Data output from each functional unit connected to the in-vehicle LAN 301 is shared via the in-vehicle LAN 301, and a functional unit that requires data acquires the data through the in-vehicle LAN 301.
[0028] また、ナビゲーシヨン制御部 310には、角速度センサ 305、傾斜センサ 306、 GPS レシーバ 307、操作部 311、表示部 312、地点検索部 313、経路探索部 314および 経路誘導部 315が接続されている。車内 LAN制御部 302およびこれらの各機能部 は、たとえば所定の演算処理を実行する CPU (Central Processing Unit)、各種 制御プログラムを格納する ROM (Read Only Memory)および CPUのワークエリ ァとして機能する RAM (Random Access Memory)などによって構成されるマイ クロコンピュータなどによって実現することができる。  [0028] Further, the navigation control unit 310 is connected with an angular velocity sensor 305, an inclination sensor 306, a GPS receiver 307, an operation unit 311, a display unit 312, a point search unit 313, a route search unit 314, and a route guide unit 315. ing. The in-vehicle LAN control unit 302 and each of these functional units include, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a ROM (Read Only Memory) that stores various control programs, and a RAM ( Random Access Memory) can be used.
[0029] 車内 LAN301は、車内における通信ネットワークであり、 CAN (Controller Area  [0029] In-vehicle LAN 301 is a communication network in the vehicle, and is a CAN (Controller Area
Network) , LIN, FlexRay, MOSTなどの通信プロトコルによって動作している。 この車内 LANを 301を介して、車両内の各部で使用される情報が放送されている。 [0030] 車内 LAN制御部 302は、車内 LAN301を制御することにより、 VSS信号情報を車 内 LAN301に接続される各機能部が取得できるようにしている。この車内 LAN301 および車内 LAN制御部 302により、取得部 101は実現される。また、判定部 102、補 間部 103、補正部 104は、車内 LAN制御部 302によって実現される。 Network), LIN, FlexRay, MOST and other communication protocols. Information used in each part of the vehicle is broadcast via this in-vehicle LAN 301. The in-vehicle LAN control unit 302 controls the in-vehicle LAN 301 so that each functional unit connected to the in-vehicle LAN 301 can acquire the VSS signal information. The acquisition unit 101 is realized by the in-vehicle LAN 301 and the in-vehicle LAN control unit 302. Further, the determination unit 102, the interpolation unit 103, and the correction unit 104 are realized by the in-vehicle LAN control unit 302.
[0031] ABSセンサ 303は、車輪速を検出するセンサである。たとえば、車輪と連動して回 転するロータの凹凸を電磁気的に検出して信号を出力するセンサが例として挙げら れる。このとき出力される信号を VSS信号という。 VSS (Vehicle Speed Sensor) 信号とは、車両が走行することにより発生する信号のことである。 ABSセンサ 303は、 この VSS信号が検出される回数、すなわち VSS信号数を求めて、 VSS信号情報とし て車内 LAN301に出力する。  [0031] The ABS sensor 303 is a sensor that detects the wheel speed. For example, a sensor that electromagnetically detects the unevenness of a rotor that rotates in conjunction with a wheel and outputs a signal can be given. The signal output at this time is called a VSS signal. The VSS (Vehicle Speed Sensor) signal is a signal generated when the vehicle travels. The ABS sensor 303 calculates the number of times this VSS signal is detected, that is, the number of VSS signals, and outputs it to the in-vehicle LAN 301 as VSS signal information.
[0032] なお、この VSS信号情報は、 VSS信号数の積算値であり、単位時間当たりの VSS 信号検出数ではなく検出数の合計値である。そして、この VSS信号情報に基づいて 求められる VSS信号数に基づいて、移動距離および車速が求められる。  Note that this VSS signal information is an integrated value of the number of VSS signals, and is not the number of detected VSS signals per unit time but the total number of detected signals. Then, the travel distance and the vehicle speed are obtained based on the number of VSS signals obtained based on the VSS signal information.
[0033] 単位時間当たりの VSS信号数は、単位時間当たりの立ち上がりエッジの検出回数 として求められる。または、立ち下がりエッジの検出回数として求める方法、立ち上が りエッジと立下りエッジの両方の検出回数として求める方法もある。速度が変化した場 合、一定時間内に得られるパルスの数は異なる力 その異なる値のそれぞれが VSS 信号数として与えられる。  [0033] The number of VSS signals per unit time is obtained as the number of rising edge detections per unit time. Alternatively, there are a method of obtaining the number of detections of the falling edge and a method of obtaining the number of detections of both the rising edge and the falling edge. When the speed changes, the number of pulses obtained in a given time is different. Each different value is given as the number of VSS signals.
[0034] そして、たとえば車両が走り始めて力 の合計である積算値で、 VSS信号情報が出 力される。したがって、 VSS信号情報が一度届かなくても、次のタイミングで得られる VSS信号情報は、届かな力つた VSS信号数と、次回の区間の VSS信号数も含む。 また、 VSS信号情報は、積算値として得られるので、差分を取ることで VSS信号数を 求めることができる。  [0034] Then, for example, the VSS signal information is output as an integrated value that is the total force when the vehicle starts to run. Therefore, even if the VSS signal information does not arrive once, the VSS signal information obtained at the next timing includes the number of VSS signals that have been delivered and the number of VSS signals in the next section. Since the VSS signal information is obtained as an integrated value, the number of VSS signals can be obtained by taking the difference.
[0035] ECU (Electronic Control Unit) 304は、エンジンから送られる様々なセンサ の情報をもとにエンジンを制御するコンピュータユニットである。 ECU304は、主にェ ンジンの燃調や点火時期を制御する。たとえば、空気吸入量やスロットル開度などの 情報をもとに、燃料噴射量や点火タイミングを決定する。ェアフロメーター力ゝらの吸入 空気量や、排ガス中に含まれる酸素量などを測定するセンサからの情報等を演算し 、適切な量の燃料噴射を行うよう指示を出力する。これらの制御情報が、 VSS信号情 報と同様に車内 LAN301に入力される。 An ECU (Electronic Control Unit) 304 is a computer unit that controls the engine based on information from various sensors sent from the engine. The ECU 304 mainly controls engine fuel adjustment and ignition timing. For example, the fuel injection amount and ignition timing are determined based on information such as the air intake amount and throttle opening. Calculate the information from the sensor that measures the intake air amount and the oxygen amount contained in the exhaust gas. An instruction to output an appropriate amount of fuel is output. These control information is input to the in-vehicle LAN 301 in the same manner as the VSS signal information.
[0036] 角速度センサ 305は、自車の回転時の角速度を検出し、自車の角速度データと相 対方位データとを出力する。傾斜センサ 306は、路面の傾斜角度を検出し、傾斜角 データを出力する。 [0036] The angular velocity sensor 305 detects the angular velocity at the time of rotation of the own vehicle, and outputs the angular velocity data and the relative bearing data of the own vehicle. The inclination sensor 306 detects the inclination angle of the road surface and outputs inclination angle data.
[0037] また、 GPSレシーバ 307は、 GPS衛星からの電波を受信して装置本体の現在位置 を求めるものである。 GPSレシーバ 307は、 GPS衛星からの電波を受信し、 GPS衛 星との幾何学的位置を求めるものであり、地球上どこでも計測可能である。電波とし ては、 1. 57542GHzの搬送波で、 CZA (Coarse and Access)コードおよび航 法メッセージが乗っている L1電波を用いておこなわれる。これによつて、現在の車両 の位置 (緯度および経度)を検知する。さらに、車速センサやジャイロセンサ等の各種 センサによって収集された情報を加味してもよい。  [0037] The GPS receiver 307 receives a radio wave from a GPS satellite and obtains the current position of the apparatus body. The GPS receiver 307 receives radio waves from a GPS satellite and obtains a geometric position with respect to the GPS satellite, and can be measured anywhere on the earth. As radio waves: 1. It is carried out using L1 radio waves with CZA (Coarse and Access) codes and navigation messages on 57542 GHz carrier waves. This detects the current vehicle position (latitude and longitude). Furthermore, information collected by various sensors such as a vehicle speed sensor and a gyro sensor may be taken into consideration.
[0038] ナビゲーシヨン制御部 310は、ナビゲーシヨン装置全体を制御する。また、得られた VSS信号数カゝら移動距離を求め、移動距離から現在位置を求める。また、任意の地 点を検索し、得られた地点情報に基づいて、当該地点までの最適な経路を算出する 。また、この経路と自車位置情報に基づいて、リアルタイムな経路誘導情報の生成を おこなう。このナビゲーシヨン制御部 310によって、位置算出部 105は実現される。  [0038] The navigation control unit 310 controls the entire navigation device. Further, the moving distance is obtained from the obtained number of VSS signals, and the current position is obtained from the moving distance. Also, an arbitrary point is searched, and an optimum route to the point is calculated based on the obtained point information. Also, real-time route guidance information is generated based on this route and the vehicle location information. The position calculation unit 105 is realized by the navigation control unit 310.
[0039] 操作部 311は、操作ボタン、リモコン、タツチパネルなどを含む。表示部 312は、液 晶ディスプレイや有機 ELディスプレイなどを含む。この表示部 312によって表示部 1 06は実現される。  [0039] The operation unit 311 includes an operation button, a remote control, a touch panel, and the like. The display unit 312 includes a liquid crystal display, an organic EL display, and the like. The display unit 106 is realized by the display unit 312.
[0040] 地点検索部 313は、操作部 311から入力された情報に基づいて、任意の地点を検 索し、これを表示部 312へ出力する。また、経路探索部 314は、地点検索部 313によ つて得られた地点情報に基づいて、当該地点までの最適な経路を算出する。また、 経路誘導部 315は、経路探索部 314によって得られた情報と自車位置情報に基づ V、て、リアルタイムな経路誘導情報の生成をおこなう。  The point search unit 313 searches for an arbitrary point based on the information input from the operation unit 311 and outputs it to the display unit 312. Further, the route search unit 314 calculates an optimum route to the point based on the point information obtained by the point search unit 313. Further, the route guidance unit 315 generates real-time route guidance information based on the information obtained by the route search unit 314 and the vehicle position information.
[0041] 図 4は、この発明の実施例に力かる現在位置算出方法の処理を説明するフローチ ヤートである。まず、 ABSセンサ 303を起動する(ステップ S401)。 ABSセンサ 303を 起動することにより、 VSS信号情報が逐次車内 LAN301に入力される。 [0042] 次に、 VSS信号情報を取得できて 、るか否かを判定する (ステップ S402)。すなわ ち、通信抜けが発生することにより、 VSS信号情報を取得できていないか否かを判定 する。 FIG. 4 is a flow chart for explaining the processing of the current position calculation method that works on the embodiment of the present invention. First, the ABS sensor 303 is activated (step S401). By starting the ABS sensor 303, VSS signal information is sequentially input to the in-vehicle LAN 301. Next, it is determined whether or not the VSS signal information can be acquired (step S402). In other words, it is determined whether or not VSS signal information has been acquired due to a communication loss.
[0043] VSS信号情報を取得できて 、な 、場合 (ステップ S402: No)、 VSS信号情報の補 間処理を実行し (ステップ S403)、一連の処理を終了する。すなわち、 VSS信号情 報を取得できなくなることを防ぐために、推測値として VSS信号情報を取得する。たと えば前回使用した値を、 VSS信号として使うことにより、 VSS信号情報を取得できな 力 たタイミングにおいても処理を継続させることができる。  If the VSS signal information can be acquired (step S402: No), the VSS signal information interpolation processing is executed (step S403), and the series of processing ends. That is, the VSS signal information is acquired as an estimated value in order to prevent the VSS signal information from being acquired. For example, by using the previously used value as the VSS signal, the processing can be continued even when the VSS signal information cannot be obtained.
[0044] VSS信号を取得できて 、る場合 (ステップ S402: Yes)、前回補間処理を行ったか 否かを判定する (ステップ S404)。前回補間処理した場合 (ステップ S404 : Yes)、今 回取得した VSS信号について補正処理を実行し (ステップ S405)、ステップ S407に 進む。  [0044] If the VSS signal can be acquired (step S402: Yes), it is determined whether the previous interpolation processing has been performed (step S404). If the previous interpolation processing was performed (step S404: Yes), correction processing is executed for the VSS signal acquired this time (step S405), and the process proceeds to step S407.
[0045] 補間処理により推測値として取得された、前回の VSS信号情報は正確な入力値で はな 、。また次に取得される VSS信号情報は前回取得されな力つた入力値を含めた 値として入力されるので、次に取得される VSS信号情報力 VSS信号数を求める場 合、推測値として入力した VSS信号数を減算する必要がある。この補正処理によつ て、推測の結果によるずれを修正し、正確な入力値を反映した VSS信号数を取得す ることがでさる。  [0045] The previous VSS signal information obtained as an estimated value by the interpolation process is not an accurate input value. In addition, since the VSS signal information acquired next is input as a value including the input value that was previously acquired, it was input as an estimated value when calculating the number of VSS signals to be acquired next. It is necessary to subtract the number of VSS signals. This correction process corrects the deviation caused by the estimation result and obtains the number of VSS signals reflecting the correct input value.
[0046] 前回補間処理していない場合 (ステップ S404 : No)、 VSS信号数を算出する (ステ ップ S406)。 VSS信号の抜けがなぐまた前回補間処理していない場合、このとき、 VSS信号数に距離係数を掛け合わせることにより移動距離を求めることができる。こ の距離係数は、 VSS信号数の変化量に対する移動距離を示す係数である。また、移 動距離を時間で割ることにより車速を求めることができる。  [0046] If the previous interpolation processing has not been performed (step S404: No), the number of VSS signals is calculated (step S406). If there is no missing VSS signal and no previous interpolation processing is performed, the moving distance can be obtained by multiplying the number of VSS signals by the distance coefficient. This distance coefficient is a coefficient indicating the moving distance with respect to the amount of change in the number of VSS signals. The vehicle speed can be obtained by dividing the distance traveled by time.
[0047] 次に、 VSS信号情報を記録し (ステップ S407)、一連の処理を終了する。次の VS S信号を取得するときに、遅延や欠落によるデータの抜けが発生する場合があるので 、そのときに補間するためのデータを用意しておく必要がある。そこで、求められた V SS信号情報を記録することにより、次に VSS信号情報の抜けに対して補間すべきデ ータを用意しておくことができる。 [0048] 図 5は、正常に VSS信号情報が取得されている場合を説明する説明図である。 VS S信号情報の処理は N秒毎に連続して実行する。この時間間隔の N秒は、きわめて 短時間であり、たとえば 1秒ごととすることもできる。 VSS信号情報の処理タイミングは 、それぞれ 0秒〜 N5秒として説明する。 VSS信号情報を逐次受信することにより、 V SS信号情報が取得されて 、く。 [0047] Next, VSS signal information is recorded (step S407), and a series of processing ends. When the next VSS signal is acquired, data loss may occur due to delay or omission, so it is necessary to prepare data for interpolation at that time. Therefore, by recording the obtained VSS signal information, it is possible to prepare the data to be interpolated for the next missing VSS signal information. FIG. 5 is an explanatory diagram for explaining a case where the VSS signal information is normally acquired. The VSS signal information is processed continuously every N seconds. This time interval of N seconds is very short, for example every second. The VSS signal information processing timing will be described as 0 seconds to N5 seconds. By sequentially receiving the VSS signal information, the VSS signal information is acquired.
[0049] まず、 0秒にぉ 、て VSS信号情報が受信され、区間 Aを経て N秒にぉ 、て VSS信 号情報を受信する。そして区間 Bを経て、 N2秒において VSS信号情報が受信される 。同様に、区間 Cを経て、 N3秒において VSS信号情報が受信され、そして区間 Dを 経て、 N4秒において VSS信号情報が受信され、そして区間 Eを経て、 N5秒におい て VSS信号情報が受信される。 N秒〜 N5秒の各時点において、受信された VSS信 号情報に基づいて、区間 A〜Eにおける VSS信号数が求められる。  [0049] First, VSS signal information is received in 0 seconds, and VSS signal information is received in N seconds after section A. Then, after section B, VSS signal information is received in N2 seconds. Similarly, VSS signal information is received in N3 seconds after section C, VSS signal information is received in N4 seconds via section D, and VSS signal information is received in N5 seconds after section E. The At each time point from N seconds to N5 seconds, the number of VSS signals in sections A to E is determined based on the received VSS signal information.
[0050] 図 6は、 VSS信号情報の取得に欠落が生じる場合を説明する説明図である。図 5 で説明した正常な場合と同様に、 0秒および N秒においては、 VSS信号情報は正常 に受信される。ここで、 ABSセンサ 303からの信号の受信に欠落が生じたとする。こ のとき、 N2秒において VSS信号情報は正常に受信されない。  FIG. 6 is an explanatory diagram for explaining a case where a loss occurs in the acquisition of VSS signal information. As in the normal case described in Fig. 5, VSS signal information is normally received at 0 and N seconds. Here, it is assumed that a loss occurs in the reception of the signal from the ABS sensor 303. At this time, VSS signal information is not normally received in N2 seconds.
[0051] ABSセンサ 303は積算値で VSS信号情報を出力するので、従来の場合では、 N2 秒にぉ 、て自車は移動して ヽな 、ものとして扱われる。そこで、 N秒にお!、て受信し た VSS信号情報を用いて、 N2秒において受信するはずの信号を補間する。補間値 は、 N2秒において本来受信すべき VSS信号情報と同一の値とは限らない。しかし、 補間することによって、自車が走行中であるという状態を考えたときに、移動していな いとするよりも N秒のときと同じ速度で走行しているとして扱ったことにより、より適切な 値に基づ 、て処理を実行することができる。  [0051] Since the ABS sensor 303 outputs the VSS signal information as an integrated value, in the conventional case, the vehicle moves as long as it moves in N2 seconds. Therefore, the signal that should be received in N2 seconds is interpolated using the VSS signal information received in N seconds! The interpolation value is not necessarily the same value as the VSS signal information that should be received in N2 seconds. However, by considering the situation that the vehicle is traveling by interpolation, it is more appropriate to treat it as traveling at the same speed as in N seconds rather than not moving. The process can be executed based on any value.
[0052] 次に、 N3秒において VSS信号情報が正常に受信される力 N2秒において補間 処理を行って 、る分、 N3秒にぉ 、て受信した VSS信号情報を用いてそのまま処理 した場合、区間 Bの VSS信号数を求める際にずれが生じてしまう。そこで、 N3秒にお いては、区間 Cの VSS信号数を N2秒における補間値に基づいて補正する。補正す ることにより、 N2秒における補間値によって N3秒において誤差が生じるのを防ぐこと ができる。 [0053] N4秒において、 VSS信号情報が正常に受信される。前の N3秒において VSS信 号情報が正常に処理されているので、その次の N4秒においてはそのまま VSS信号 情報を処理する。そして、 N5秒において VSS信号情報が正常に受信され、そのまま VSS信号情報を処理する。 [0052] Next, when the VSS signal information is normally received in N3 seconds, the interpolation process is performed in N2 seconds, and if it is processed as it is using the received VSS signal information for N3 seconds, Deviation occurs when calculating the number of VSS signals in section B. Therefore, in N3 seconds, the number of VSS signals in section C is corrected based on the interpolated value in N2 seconds. By correcting, it is possible to prevent an error in N3 seconds from being generated by the interpolation value in N2 seconds. [0053] In N4 seconds, the VSS signal information is normally received. Since the VSS signal information is processed normally in the previous N3 seconds, the VSS signal information is processed as it is in the next N4 seconds. In N5 seconds, the VSS signal information is normally received, and the VSS signal information is processed as it is.
[0054] 図 7は、 VSS信号情報の取得に遅延が生じる場合を説明する説明図である。図 5 で説明した正常な場合と同様に、 0秒および N秒においては、 VSS信号情報は正常 に受信される。ここで、 ABSセンサ 303からの信号の受信に遅延が生じたとする。こ のとき、図 6の場合と同様に、 N2秒において VSS信号情報は正常に受信されない。  FIG. 7 is an explanatory diagram for explaining a case where a delay occurs in the acquisition of the VSS signal information. As in the normal case described in Fig. 5, VSS signal information is normally received at 0 and N seconds. Here, it is assumed that there is a delay in receiving a signal from the ABS sensor 303. At this time, as in the case of FIG. 6, VSS signal information is not normally received in N2 seconds.
[0055] 信号の欠落の場合と同様、従来の場合では、 N2秒において自車は移動していな いものとして扱われる。そこで、 N秒において求めた VSS信号数を用いて、 N2秒に おいて受信するはずの信号を補間する。補間することによって、移動していないとす るよりも N秒のときと同じ速度で走行しているとして扱ったことにより、より適切な値に 基づ 、て処理を実行することができる。  [0055] Similar to the case of signal loss, in the conventional case, the vehicle is treated as not moving in N2 seconds. Therefore, the number of VSS signals obtained in N seconds is used to interpolate signals that should be received in N2 seconds. Interpolation makes it possible to execute processing based on a more appropriate value by treating it as traveling at the same speed as in N seconds rather than not moving.
[0056] 次に、 N3秒において、 N2秒において受信されるはずの VSS信号情報と、 N3秒に おいて受信される VSS信号情報がともに受信される。また、信号の欠落の場合と同 様に、 N2秒において補間処理を行っている分、 N3秒において受信した VSS信号 情報を用いて処理した場合、ずれが生じてしまう。  Next, in N3 seconds, both VSS signal information that should be received in N2 seconds and VSS signal information that is received in N3 seconds are received. Similarly to the case of signal loss, the interpolation processing is performed in N2 seconds, and if processing is performed using the VSS signal information received in N3 seconds, a deviation occurs.
[0057] まず、 N2秒にぉ 、て受信するはずの VSS信号情報はキャンセルして、 N3秒に対 応する VSS信号情報を受信する。また、 N3秒において求められる VSS信号数を N2 秒における補間値に基づ 、て補正する。補正することにより、 N2秒における補間値 によって N3秒において誤差が生じるのを防ぐことができる。  First, VSS signal information that should be received after N2 seconds is canceled, and VSS signal information corresponding to N3 seconds is received. Also, the number of VSS signals obtained at N3 seconds is corrected based on the interpolation value at N2 seconds. By correcting, it is possible to prevent an error in N3 seconds from being caused by the interpolation value in N2 seconds.
[0058] 次に、補正処理および補間処理について説明する。車内 LAN301における情報 の遅延や欠落により発生した誤差を、補間'補正処理により軽減する。一方、車内 L AN301に放送されている VSS信号情報は積算値である。そして、この積算値である VSS信号数に基づいて、一定周期毎に移動距離および車速が求められる。  Next, correction processing and interpolation processing will be described. Errors caused by information delay or omission in the in-vehicle LAN301 are reduced by interpolation 'correction processing. On the other hand, the VSS signal information broadcast to the in-vehicle lan 301 is an integrated value. Then, based on the number of VSS signals, which is the integrated value, the travel distance and the vehicle speed are obtained at regular intervals.
[0059] しかし、通信抜けや遅延が発生した場合、正確な算出値を求めることができない。こ れに対し、前回の値を用いて補間処理を実行する。これにより、瞬時的な誤差が軽 減される。一方、車両は移動しているので前回の値で補間処理する正確な値を算出 することができないので、積算誤差が発生する。 However, when communication loss or delay occurs, an accurate calculated value cannot be obtained. On the other hand, interpolation processing is executed using the previous value. This reduces instantaneous errors. On the other hand, since the vehicle is moving, calculate the correct value to interpolate with the previous value Since this is not possible, an integration error occurs.
[0060] 車内 LAN301から VSS信号情報を取得する場合、図 5に示すように、正常な場合 で、一定周期毎に VSS信号情報を取得できる場合、図 6に示すように、 VSS信号情 報が欠落する場合、図 7に示すように、 VSS信号情報が欠落はしないものの、遅延 する場合の 3つのパターンが考えられる。  [0060] When the VSS signal information is acquired from the in-vehicle LAN 301, as shown in FIG. 5, when the VSS signal information can be acquired at regular intervals in the normal case, the VSS signal information is displayed as shown in FIG. When missing, as shown in Fig. 7, there are three possible patterns of delay, although VSS signal information is not missing.
[0061] 図 5で説明したように正常な場合は、一定周期毎に VSS信号情報を取得している ので、補間処理および補正処理を必要とせずに移動距離および車両速度を正常に 算出することできる。一方、図 6および図 7で説明したように、 VSS信号の欠落や遅延 が発生する場合、 B間の移動距離および車両速度を算出することができない。  [0061] As described with reference to FIG. 5, since the VSS signal information is acquired at regular intervals in the normal case, the movement distance and the vehicle speed can be normally calculated without the need for interpolation processing and correction processing. it can. On the other hand, as described with reference to FIGS. 6 and 7, when the VSS signal is lost or delayed, the travel distance between B and the vehicle speed cannot be calculated.
[0062] ここで N2秒の時点にぉ 、て、 A間で算出した値で B間を補間する。これにより瞬時 的な誤差を軽減することができる。なお、補間値としては前回の値をそのまま使うとし て説明したが、加速度などを考慮して推測した値を用いて前回の値を修正して使うこ ともできる。しかし補間処理であるので、実際の B間の移動距離および車両速度との 間に微小な誤差が生じる。ここで、補間処理間の算出値を補間値 Xとし、この誤差を 取り除くために補間値を記憶しておく。  Here, at the time point of N2 seconds, B is interpolated with the value calculated between A. This can reduce instantaneous errors. Although the previous value is used as it is as an interpolated value, the previous value can be corrected using a value estimated in consideration of acceleration or the like. However, since this is an interpolation process, a slight error occurs between the actual travel distance between B and the vehicle speed. Here, the calculated value between the interpolation processes is the interpolation value X, and the interpolation value is stored in order to remove this error.
[0063] そして、次回以降に VSS信号情報を取得した際に、前回受信時の VSS信号情報 との差分を算出する。ここで求められた値を差分 Yとする。すなわち、 N3秒の時点で VSS信号を受信したとき、取得した VSS信号情報と前回取得した VSS信号の差分 から、受信しな力 た区間を含めた VSS信号数を算出する。具体的には、 B間と C間 の VSS信号数の合計値から、 C間の VSS信号数を求める。  [0063] Then, when the VSS signal information is acquired after the next time, the difference from the VSS signal information at the previous reception is calculated. Let the difference Y be the value obtained here. In other words, when the VSS signal is received at the time point of N3 seconds, the number of VSS signals including the section that has not been received is calculated from the difference between the acquired VSS signal information and the previously acquired VSS signal. Specifically, the number of VSS signals between C is obtained from the total number of VSS signals between B and C.
[0064] そして差分 Yから補間値 Xを減算することにより、積算誤差を差し引いた算出結果 を求めることができる。つまり、この 2区間の合計の VSS信号数から、保持している補 間値を減算することにより、誤差分を相殺した移動距離を算出することができる。具体 的には、 B'C間の VSS信号合計数から、補間処理で使用した推測の VSS信号数で ある補間値を差し引くことにより、 C間の VSS信号数を算出することができる。これに より、積算誤差をなくすことができ、トータルで正しい算出値を得ることができる。  [0064] By subtracting the interpolation value X from the difference Y, a calculation result obtained by subtracting the integration error can be obtained. In other words, by subtracting the retained compensation value from the total number of VSS signals in these two sections, it is possible to calculate the travel distance that offsets the error. Specifically, the number of VSS signals between C can be calculated by subtracting the interpolation value, which is the estimated number of VSS signals used in the interpolation process, from the total number of VSS signals between B'C. As a result, the integration error can be eliminated, and a total correct calculation value can be obtained.
[0065] VSS信号数 (単位時間当たりの VSS信号数)の算出方法を説明する。まず、車内 L AN301上に放送されている VSS信号情報を取得する。次に、 VSS信号数を算出す る。 VSS信号数は、「VSS信号数 =今回取得 VSS信号情報—前回取得信号情報」 t 、う式により求めることができる。 A method for calculating the number of VSS signals (number of VSS signals per unit time) will be described. First, the VSS signal information broadcast on the vehicle LAN 301 is acquired. Next, calculate the number of VSS signals. The The number of VSS signals can be obtained by the following equation: “VSS signal number = currently acquired VSS signal information—previously acquired signal information” t.
[0066] この VSS信号数に基づいて移動距離 ·車速を算出することができる。まず、距離係 数と VSS信号数を掛け合わせることにより、移動距離を求める。なお、距離係数とは 、 VSS信号 1つあたりの移動距離のことである。そして、移動距離を時間で割ることに より車速を求めることができる。  [0066] The travel distance / vehicle speed can be calculated based on the number of VSS signals. First, the travel distance is obtained by multiplying the distance coefficient by the number of VSS signals. The distance coefficient is the moving distance per VSS signal. The vehicle speed can be obtained by dividing the travel distance by time.
[0067] 以上説明した実施例によれば、車内 LANで情報が遅延や欠落した場合の誤差の 発生を、補間 Z補正処理により軽減することができる。たとえば前回使用した値を、 推測値として VSS信号情報を取得することにより、 VSS信号情報を取得できない状 態が防止できる。そして、 VSS信号情報を取得できな力つたタイミングにおいても処 理を «続させることができる。  [0067] According to the embodiment described above, the occurrence of an error when information is delayed or lost in the in-vehicle LAN can be reduced by the interpolation Z correction process. For example, by acquiring VSS signal information using the previously used value as an estimated value, it is possible to prevent a situation where VSS signal information cannot be acquired. The processing can be continued even at a powerful timing when the VSS signal information cannot be acquired.
[0068] 一方、次に取得される VSS信号情報は、前回取得されな力つた入力値を含めた値 として入力されるので、そのままでは誤った VSS信号数を求めることになる。そこで、 次に取得される VSS信号情報について補正処理することによって、推測の結果によ るずれを修正し、正確な入力値を反映した VSS信号数を取得することができる。  On the other hand, since the VSS signal information acquired next is input as a value including the input value that was not acquired last time, an incorrect number of VSS signals is obtained as it is. Therefore, by correcting the VSS signal information acquired next, it is possible to correct the deviation due to the estimation result and acquire the number of VSS signals reflecting the accurate input value.
[0069] なお、本実施の形態で説明した現在位置算出方法は、予め用意されたプログラム をパーソナルコンピュータやワークステーションなどのコンピュータで実行することによ り実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、 C D— ROM、 MO、 DVDなどのコンピュータで読み取り可能な記録媒体に記録され、 コンピュータによって記録媒体力も読み出されることによって実行される。またこのプ ログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体 であってもよい。  Note that the current position calculation method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation. This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by reading the recording medium force by the computer. The program may be a transmission medium that can be distributed through a network such as the Internet.

Claims

請求の範囲 The scope of the claims
[1] 車両内の情報通信網力 車両速度センサの情報である信号情報を取得する取得 手段と、  [1] Information communication network power in the vehicle Acquisition means for acquiring signal information that is information of the vehicle speed sensor;
所定の時点にお!、て、前記取得手段によって前記信号情報が取得できたか否かを 判定する判定手段と、  A determination means for determining whether or not the signal information has been acquired by the acquisition means at a predetermined time;
前記判定手段によって信号情報が取得できなかったと判定された場合、前記所定 の時点において前記取得手段によって取得されるべき信号情報を所定の信号情報 で補間する補間手段と、  An interpolation means for interpolating the signal information to be acquired by the acquisition means at the predetermined time point with predetermined signal information when the determination means determines that the signal information could not be acquired;
前記補間手段によって信号情報が補間された場合に、前記所定の時点の次の時 点で取得される信号情報について、前記補間手段によって補間された信号情報に 基づ 、て補正値を求める補正手段と、  When signal information is interpolated by the interpolating means, correction means for obtaining a correction value based on the signal information interpolated by the interpolating means for signal information acquired at a time point subsequent to the predetermined time point When,
を備えることを特徴とする現在位置算出装置。  A current position calculation device comprising:
[2] 前記補間手段は、前記所定の時点において前記取得手段によって取得されるべき 信号情報を、前記所定の時点の前の時点において取得した信号情報を用いて補間 することを特徴とする請求項 1に記載の現在位置算出装置。  [2] The interpolating means interpolates signal information to be acquired by the acquiring means at the predetermined time point using signal information acquired at a time point before the predetermined time point. 1. The current position calculation device according to 1.
[3] 前記信号情報は積算値として与えられ、  [3] The signal information is given as an integrated value,
前記補正手段は、時点 Nにお 、て信号情報が取得できな力つたと判定された場合 に、  When it is determined at time N that the correction means has been unable to acquire signal information,
時点 N+ 1における信号情報が示す値と時点 N— 1における信号情報が示す値の 差分を取ることによって時点 N— 1から時点 N+ 1の間の信号数を求め、前記補間手 段によって補間された時点 Nにおける信号情報が示す値と時点 N— 1における信号 情報が示す値の差分を取ることによって時点 Nの信号数を求め、前記時点 N— 1から 時点 N+ 1の間の信号数力 前記時点 Nの信号数を引くことにより、時点 N+ 1の信 号数と時点 Nの信号数に対する補正値を含めた値を求めることを特徴とする請求項 1に記載の現在位置算出装置。  By calculating the difference between the value indicated by the signal information at the time N + 1 and the value indicated by the signal information at the time N−1, the number of signals between the time N−1 and the time N + 1 is obtained and interpolated by the interpolation means. The number of signals at time N is obtained by taking the difference between the value indicated by the signal information at time N and the value indicated by the signal information at time N−1, and the number of signals between time N−1 and time N + 1 is determined. 2. The current position calculating apparatus according to claim 1, wherein a value including a correction value for the number of signals at time N + 1 and the number of signals at time N is obtained by subtracting the number of N signals.
[4] 前記信号情報に基づいて前記車両の移動距離を求め、該移動距離から前記車両 の現在位置を求める位置算出手段と、 [4] A position calculating means for determining a moving distance of the vehicle based on the signal information, and determining a current position of the vehicle from the moving distance;
前記位置算出手段によって求められた現在位置を表示する表示手段を備えること を特徴とする請求項 1〜3のいずれか一つに記載の現在位置算出装置。 Display means for displaying the current position obtained by the position calculation means; The present position calculation apparatus according to any one of claims 1 to 3.
[5] 車両内の情報通信網力 車両速度センサの情報である信号情報を取得する取得 工程と、 [5] Information communication network power in the vehicle An acquisition step of acquiring signal information that is information of the vehicle speed sensor;
所定の時点にお!、て、前記取得工程によって前記信号情報が取得できた力否かを 判定する判定工程と、  At a predetermined point in time, a determination step for determining whether or not the signal information has been acquired by the acquisition step;
前記判定工程によって信号情報が取得できなかったと判定された場合、前記所定 の時点において前記取得工程によって取得されるべき信号情報を所定の信号情報 で補間する補間工程と、  An interpolation step of interpolating signal information to be acquired by the acquisition step at the predetermined time point with predetermined signal information when it is determined that the signal information could not be acquired by the determination step;
前記補間工程によって信号情報が補間された場合に、前記所定の時点の次の時 点で取得された信号情報につ!、て、前記補間工程によって補間された信号情報に 基づ 、て補正値を求める補正工程と、  When the signal information is interpolated by the interpolation step, the correction value is obtained based on the signal information acquired at the next time after the predetermined time point and based on the signal information interpolated by the interpolation step. A correction process for obtaining
を含むことを特徴とする現在位置算出方法。  The present position calculation method characterized by including.
[6] 請求項 5に記載の現在位置算出方法をコンピュータに実行させることを特徴とする 現在位置算出プログラム。 [6] A current position calculation program causing a computer to execute the current position calculation method according to claim 5.
[7] 請求項 6に記載の現在位置算出プログラムを記録したことを特徴とするコンピュータ に読み取り可能な記録媒体。 [7] A computer-readable recording medium on which the current position calculation program according to claim 6 is recorded.
PCT/JP2006/304579 2005-03-25 2006-03-09 Current position calculation device, current position calculation method, current position calculation program, and computer-readable recording medium WO2006103893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510358A JP4612675B2 (en) 2005-03-25 2006-03-09 Current position calculation device, current position calculation method, current position calculation program, and computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-090120 2005-03-25
JP2005090120 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006103893A1 true WO2006103893A1 (en) 2006-10-05

Family

ID=37053159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304579 WO2006103893A1 (en) 2005-03-25 2006-03-09 Current position calculation device, current position calculation method, current position calculation program, and computer-readable recording medium

Country Status (2)

Country Link
JP (1) JP4612675B2 (en)
WO (1) WO2006103893A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228252A (en) * 2012-04-25 2013-11-07 Denso Corp Vehicular position detecting device
WO2019151258A1 (en) * 2018-02-01 2019-08-08 アルプスアルパイン株式会社 Computation system, computation device, and computation program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253352A (en) * 1997-03-07 1998-09-25 Pioneer Electron Corp Movement judging apparatus and navigator
JPH10267953A (en) * 1997-03-28 1998-10-09 Isuzu Motors Ltd Rotation pulse measurer
JP2000035436A (en) * 1998-07-17 2000-02-02 Kansei Corp Period calculating method and measuring device for vehicle using it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286708A (en) * 1987-05-20 1988-11-24 Matsushita Electric Ind Co Ltd Navigator for vehicle
JP2002333452A (en) * 2001-05-07 2002-11-22 Pioneer Electronic Corp Method and device for detecting omission of vehicular speed pulse, on-vehicle navigation systen, and computer program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253352A (en) * 1997-03-07 1998-09-25 Pioneer Electron Corp Movement judging apparatus and navigator
JPH10267953A (en) * 1997-03-28 1998-10-09 Isuzu Motors Ltd Rotation pulse measurer
JP2000035436A (en) * 1998-07-17 2000-02-02 Kansei Corp Period calculating method and measuring device for vehicle using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228252A (en) * 2012-04-25 2013-11-07 Denso Corp Vehicular position detecting device
WO2019151258A1 (en) * 2018-02-01 2019-08-08 アルプスアルパイン株式会社 Computation system, computation device, and computation program

Also Published As

Publication number Publication date
JP4612675B2 (en) 2011-01-12
JPWO2006103893A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4780174B2 (en) Angular velocity sensor correction device, angular velocity calculation device, angular velocity sensor correction method, angular velocity calculation method
JP4780168B2 (en) Angular velocity sensor correction apparatus and angular velocity sensor correction method
US20090005985A1 (en) GPS-based in-vehicle sensor calibration algorithm
JP5074950B2 (en) Navigation equipment
CN109343095B (en) Vehicle-mounted navigation vehicle combined positioning device and combined positioning method thereof
US20150247728A1 (en) Systems for navigating using corrected yaw bias values
JP2008116370A (en) Mobile location positioning device
JP5273127B2 (en) Angular velocity sensor correction apparatus and angular velocity sensor correction method
JP3218876B2 (en) Current position detection device for vehicles
JP6248559B2 (en) Vehicle trajectory calculation device
US11085773B2 (en) Angular velocity sensor correction device and method for correcting output signal from angular velocity sensor, and direction estimation device and method for estimating direction by correcting output signal from angular velocity sensor
JP5365606B2 (en) Angular velocity sensor correction apparatus and angular velocity sensor correction method
JPH07301541A (en) Navigation device
JP4612675B2 (en) Current position calculation device, current position calculation method, current position calculation program, and computer-readable recording medium
JP6555033B2 (en) Angular velocity sensor correction apparatus and angular velocity sensor correction method
JP5278128B2 (en) Conversion coefficient deriving device and conversion coefficient deriving method
JP6699355B2 (en) Angular velocity sensor correction device and angular velocity sensor correction method
JP6673106B2 (en) Angular velocity sensor correction device and angular velocity sensor correction method
JP5183050B2 (en) In-vehicle navigation device and navigation method
JP6287804B2 (en) Direction estimation apparatus and direction estimation method
JPH07167871A (en) Angular velocity sensor output correcting apparatus
JP3076088B2 (en) Automatic correction device for distance correction coefficient
JP4046584B2 (en) Car navigation system and GPS receiver
JP6372339B2 (en) Angular velocity sensor correction apparatus and angular velocity sensor correction method
JP6369320B2 (en) Angular velocity sensor correction apparatus and angular velocity sensor correction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007510358

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715450

Country of ref document: EP

Kind code of ref document: A1