JP5074950B2 - Navigation equipment - Google Patents

Navigation equipment Download PDF

Info

Publication number
JP5074950B2
JP5074950B2 JP2008036286A JP2008036286A JP5074950B2 JP 5074950 B2 JP5074950 B2 JP 5074950B2 JP 2008036286 A JP2008036286 A JP 2008036286A JP 2008036286 A JP2008036286 A JP 2008036286A JP 5074950 B2 JP5074950 B2 JP 5074950B2
Authority
JP
Japan
Prior art keywords
angular velocity
temperature
bias
velocity bias
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008036286A
Other languages
Japanese (ja)
Other versions
JP2009192495A (en
Inventor
裕行 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2008036286A priority Critical patent/JP5074950B2/en
Publication of JP2009192495A publication Critical patent/JP2009192495A/en
Application granted granted Critical
Publication of JP5074950B2 publication Critical patent/JP5074950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Gyroscopes (AREA)
  • Navigation (AREA)

Description

この発明は、少なくとも角速度センサの検出値を含む外部支援データと、航法衛星からの測位信号を受信して得られる観測量とを統合して測位等を行う航法演算を行う航法装置に関するものである。   The present invention relates to a navigation apparatus that performs navigation calculation that performs positioning and the like by integrating external support data including at least a detection value of an angular velocity sensor and an observation amount obtained by receiving a positioning signal from a navigation satellite. .

慣性センサの検出信号を基に慣性航法演算を行う慣性航法装置には、そのセンサの一つとして移動体の所定方向の角速度を検出する角速度センサが用いられる。また、GPS測位装置より得られる観測量と自立システムである慣性航法装置(INS:Inertial Navigation System)より得られた観測量を統合した衛星航法/慣性航法統合測位装置においても、GPS以外のセンサとして角速度センサ,温度センサ,加速度センサ及び/又は速度センサが用いられる(特許文献1〜4参照)。   An inertial navigation device that performs an inertial navigation calculation based on a detection signal of an inertial sensor uses an angular velocity sensor that detects an angular velocity of a moving body in a predetermined direction as one of the sensors. In addition, the satellite navigation / inertial navigation integrated positioning device that integrates the observation amount obtained from the GPS positioning device and the observation amount obtained from the inertial navigation system (INS), which is an independent system, is also a sensor other than GPS. An angular velocity sensor, a temperature sensor, an acceleration sensor, and / or a velocity sensor are used (see Patent Documents 1 to 4).

このように角速度センサを用いて航法演算を行う航法装置において、従来は、角速度センサの角速度バイアスを次の何れかの方法で推定している。   In the navigation apparatus that performs the navigation calculation using the angular velocity sensor as described above, conventionally, the angular velocity bias of the angular velocity sensor is estimated by any one of the following methods.

(1)温度の関数として推定する方法
最小2乗法等を利用してバッチ処理により、角速度バイアスを温度の関数として推定する。
(1) Method of Estimating as a Function of Temperature The angular velocity bias is estimated as a function of temperature by batch processing using the least square method or the like.

(2)時系列に推定する方法
角速度センサの検出信号に対して順次カルマン・フィルタ等の演算を施して角速度バイアスをリアルタイムで時系列に推定する。
(2) Method for estimating in time series The angular velocity bias is estimated in time series in real time by sequentially performing operations such as a Kalman filter on the detection signal of the angular velocity sensor.

特許文献1の装置は、車両停車中に、振動ジャイロの温度に対するドリフト値を算出し、温度特性マップとして記憶し、走行中は、現在温度に応じたドリフト値を求め、振動ジャイロからの出力電圧を補正するものである。   The device of Patent Document 1 calculates a drift value with respect to the temperature of the vibrating gyroscope while the vehicle is stopped, stores it as a temperature characteristic map, obtains a drift value corresponding to the current temperature during traveling, and outputs an output voltage from the vibrating gyroscope. Is to correct.

特許文献2の装置は、車両の方位及び位置を推測航法により求める装置において、方位センサのバイアスの温度依存性ドリフトを、カルマン・フィルタを用いて補正するものであり、カルマン・フィルタは、車両の静止している点ごとに、方位センサのバイアス・ドリフト率対温度のモデルの係数を計算し、車両の移動中にはバイアス・ドリフト率の校正曲線を使用して方位センサのバイアスを定期的に推定するものである。   The device of Patent Document 2 is a device that determines the azimuth and position of a vehicle by dead reckoning navigation, and corrects the temperature-dependent drift of the bias of the azimuth sensor using a Kalman filter. For each stationary point, calculate the orientation sensor bias drift rate vs. temperature model coefficients and use the bias drift rate calibration curve during vehicle movement to periodically adjust the orientation sensor bias. To be estimated.

特許文献3の装置は、移動体速度判定手段及びGPSシステムにより直進走行中等の角速度センサが零点電圧を出力している時、その時の角速度センサの出力電圧と共に、温度センサより角速度センサの周囲温度を検出し、検出温度における補正特性保存メモリの零点電圧−温度特性の零点電圧を検出出力電圧に変更することにより、角速度センサの零点電圧−温度特性について、角速度センサの個体差や経年変化に対処するものである。   In the device of Patent Document 3, when the angular velocity sensor such as the vehicle traveling speed determination means and the GPS system outputs a zero point voltage, the ambient temperature of the angular velocity sensor is determined by the temperature sensor together with the output voltage of the angular velocity sensor at that time. By detecting and changing the zero-point voltage of the correction characteristic storage memory at the detected temperature to the detected output voltage, the zero-point voltage-temperature characteristic of the angular velocity sensor is dealt with individual differences and aging of the angular velocity sensor. Is.

特許文献4の装置は、車両の停止を検出すると、角速度センサの出力値を、そのときのセンサ温度における基準値として記憶し、角速度を求める際は、そのときのセンサ温度に対応する記憶されている基準値を用いて、角速度センサの出力電圧を補正するものである。   When detecting the stop of the vehicle, the device of Patent Document 4 stores the output value of the angular velocity sensor as a reference value at the sensor temperature at that time, and when obtaining the angular velocity, it is stored corresponding to the sensor temperature at that time. The reference voltage is used to correct the output voltage of the angular velocity sensor.

ここで、前記(1)の「温度の関数として推定する方法」の例として、特許文献1に示されている装置の構成を、図1を参照して説明する。図1において、車両位置検出装置1は、車両の適当な位置に配置された振動ジャイロ2、その振動ジャイロ2の温度を検出する温度センサ3、これらの検出信号をディジタル信号に変換するA/Dコンバータ4、このA/Dコンバータ4からのディジタル信号を入力して種々の演算を行うコンピュータ5、コンピュータ5に対して車輪速度に関する検出信号を入力する車輪速度センサ6、及び車両位置を表示するナビゲーション装置70を備えている。   Here, as an example of the “method of estimating as a function of temperature” in the above (1), the configuration of the apparatus disclosed in Patent Document 1 will be described with reference to FIG. In FIG. 1, a vehicle position detection apparatus 1 includes a vibration gyro 2 arranged at an appropriate position of a vehicle, a temperature sensor 3 for detecting the temperature of the vibration gyro 2, and an A / D for converting these detection signals into digital signals. Converter 4, computer 5 for inputting various digital signals from A / D converter 4, wheel speed sensor 6 for inputting detection signals relating to wheel speed to computer 5, and navigation for displaying the vehicle position A device 70 is provided.

コンピュータ5は、車両が停止する毎に、停車時の温度と振動ジャイロのドリフト値とを求めるとともに、温度に対する振動ジャイロのドリフトの特性(温度の関数)を推定し、車両移動時の温度と上記関数とで振動ジャイロの検出信号を補正する。
特開平04−364422号公報 特開2002−303533号公報 特開2000−111348号公報 特開2007−024601号公報
Each time the vehicle stops, the computer 5 obtains the temperature at the time of stopping and the drift value of the vibration gyro, and estimates the drift characteristic of the vibration gyro with respect to the temperature (function of temperature). The detection signal of the vibration gyro is corrected with the function.
Japanese Patent Laid-Open No. 04-364422 JP 2002-303533 A JP 2000-111348 A JP 2007-024601 A

しかしながら、特許文献1〜4を含む従来の航法装置では、次に述べるような解決すべき課題があった。   However, the conventional navigation devices including Patent Documents 1 to 4 have the following problems to be solved.

(1)温度の関数として推定する方法
温度の関数として推定する方法はバッチ処理であるため、角速度バイアスをリアルタイムに推定することができない。また、移動体が停止中であれば直接求めることが可能であるが、移動中では角速度センサから出力された値が移動体の移動によるものなのか、角速度バイアスによるものなのかが不明であるので、GPSデータとの比較によって角速度バイアスを推定することは困難である。そのため、例えば、高速道路を停車せずに走行した場合、角速度バイアスが更新されないため、温度変化によって角速度バイアスの推定誤差が大きくなる。
(1) Method of estimating as a function of temperature Since the method of estimating as a function of temperature is a batch process, the angular velocity bias cannot be estimated in real time. In addition, it can be obtained directly if the moving body is stopped, but it is unknown whether the value output from the angular velocity sensor is due to the movement of the moving body or the angular velocity bias during movement. It is difficult to estimate the angular velocity bias by comparison with GPS data. Therefore, for example, when the vehicle travels without stopping on a highway, the angular velocity bias is not updated, so that an estimation error of the angular velocity bias increases due to a temperature change.

また、高速道路の途中でトンネルを通過した時には、衛星航法による測位ができず、誤差の大きな角速度情報を用いた慣性航法のみとなるので、測位精度が劣化する。   Further, when passing through a tunnel on the highway, positioning by satellite navigation cannot be performed, and only inertial navigation using angular velocity information with a large error is performed, so that positioning accuracy is deteriorated.

(2)時系列に推定する方法
時系列に推定する方法により温度変動に依存する角速度バイアスを推定しようとすると、温度変動幅が小さい状況下においては角速度バイアス(または角速度センサの検出値と角速度バイアスとにより求まる現実の角速度)が正しく推定できない。
(2) Method of estimating in time series When trying to estimate the angular velocity bias that depends on temperature fluctuations by the method of estimating in time series, the angular velocity bias (or the detected value of the angular velocity sensor and the angular velocity bias under the condition where the temperature fluctuation width is small). (Actual angular velocity obtained from the above) cannot be estimated correctly.

また、航法演算停止時と開始時とで温度が異なっている場合には対応できない。例えばエンジンを停止した場合のように航法演算を停止する際には、後の航法演算開始に備えるために、航法演算で用いた各値がバックアップされるが、航法演算の停止時と開始時とで温度が大きく異なっている場合には、バックアップされた値の利用価値が低い。   Moreover, it cannot respond when the temperature is different between when the navigation calculation is stopped and when it is started. For example, when the navigation calculation is stopped, such as when the engine is stopped, the values used in the navigation calculation are backed up to prepare for the subsequent start of the navigation calculation. If the temperature is significantly different, the value of the backed up value is low.

例えば、気温の高い昼間に屋内駐車場に駐車し、気温の低い夜間に屋内駐車場から出発した場合、温度変化による角速度バイアスの成分が直接的に角速度バイアスの推定誤差となって、衛星航法が可能になるまで航法データ(位置・速度等)の精度が劣化してしまう。このように、航法演算停止直前の角速度バイアスの推定値をバックアップしておいても、その利用価値は低い。   For example, if you park in an indoor parking lot in the daytime when the temperature is high and leave the indoor parking lot at night when the temperature is low, the component of the angular velocity bias due to temperature change directly becomes the estimation error of the angular velocity bias, and satellite navigation Until it becomes possible, the accuracy of navigation data (position, speed, etc.) will deteriorate. Thus, even if the estimated value of the angular velocity bias immediately before the stop of the navigation calculation is backed up, its utility value is low.

そこで、この発明の目的は、温度の関数として推定する方法の利点と、時系列に推定する方法の利点とを併せ持ち、移動中にリアルタイムに角速度バイアスを推定して、位置・速度・方位等の航法データの精度を高く保てるようにした航法装置を提供することにある。   Therefore, the object of the present invention is to combine the advantages of the method of estimating as a function of temperature and the advantages of the method of estimating in time series, estimating the angular velocity bias in real time during movement, and calculating the position, velocity, direction, etc. It is an object of the present invention to provide a navigation apparatus that can maintain high accuracy of navigation data.

この発明の航法装置は、温度の関数として推定する方法と、時系列に推定する方法の両方の利点を活かすものである。そのため、この発明の航法装置は次のように構成する。   The navigation device of the present invention takes advantage of both the method of estimating as a function of temperature and the method of estimating in time series. Therefore, the navigation device of the present invention is configured as follows.

法衛星から送信される測位信号、及び移動体に備えた角速度センサの検出値を含む外部支援データを基に統合航法演算を行う統合航法演算手段を備えた航法装置において、前記角速度センサの温度又は該角速度センサが存在する環境の温度を検出する温度センサと、少なくとも前記移動体の停止時に前記角速度センサの検出値と前記温度センサの検出値とに基づいて、角速度バイアスの温度特性を求める、角速度バイアス温度特性検知手段と、を備え、前記統合航法演算手段は、前記測位信号を受信できない期間に、前記角速度センサの検出値、前記温度センサの検出値、及び前記角速度バイアスの温度特性に基づいて角速度を算出し、前記測位信号を受信できる期間に、前記温度センサの検出値及び前記角速度バイアスの温度特性に基づいて直近に算出した角速度バイアスを前記統合航法演算の角速度バイアスの初期値に設定し、前記統合航法演算の結果に基づいて角速度バイアス及び角速度を推定するものとする。 Positioning signal transmitted from ocean-going method satellites, and the navigation system with an integrated navigation calculation means for performing an integrated navigation calculation based on external support data including the detection value of the angular velocity sensor provided in the moving body, the temperature of the angular velocity sensor Alternatively, the temperature characteristic of the angular velocity bias is determined based on the temperature sensor that detects the temperature of the environment in which the angular velocity sensor exists, and at least the detected value of the angular velocity sensor and the detected value of the temperature sensor when the moving body is stopped. Angular velocity bias temperature characteristic detection means, and the integrated navigation calculation means is based on the detection value of the angular velocity sensor, the detection value of the temperature sensor, and the temperature characteristic of the angular velocity bias during a period in which the positioning signal cannot be received. calculating the angular speed Te, the period capable of receiving a positioning signal, based on the detected value and the temperature characteristics of the angular velocity bias of said temperature sensor Te set angular velocity bias calculated most recently to the initial value of the angular velocity bias of the integrated navigation calculation, it is assumed that estimates the angular bias and angular velocity based on the integrated navigation operation results.

このように、時系列のリアルタイム処理における初期値には、温度の関数としての算出値を用いることにより、時系列に推定する方法だけでは困難であった昼夜の温度差等に対応できる。また、時々刻々と変化する角速度バイアスを、「時系列にリアルタイム処理で推定した温度に依存しない角速度バイアス」+「温度の関数としてバッチ処理で算出した角速度バイアスの温度特性(係数)」×「温度変化」として求めることにより、温度の関数として推定する方法だけでは困難であった、移動中にリアルタイムで角速度バイアスを推定できる。   Thus, by using a calculated value as a function of temperature as an initial value in time-series real-time processing, it is possible to cope with a temperature difference between day and night, which was difficult only by the time-series estimation method. Also, the angular velocity bias that changes from moment to moment is expressed as “angular velocity bias that does not depend on temperature estimated by real-time processing in time series” + “temperature characteristics (coefficient) of angular velocity bias calculated by batch processing as a function of temperature” × “temperature By calculating as “change”, it is possible to estimate the angular velocity bias in real time during movement, which is difficult only by the method of estimating it as a function of temperature.

なお、前記移動体の停止時に前記角速度センサの検出値はバイアスがなければ角速度0に相当する値となるが、この状態は移動体の停止時に限らず、等速直線運動時であっても同様である。そのため、角速度バイアスの温度特性検知手段は、移動体が等速直線運動しているときに、角速度センサの検出値と温度センサの検出値とに基づいて角速度バイアスの温度特性を求めてもよい。   Note that the detected value of the angular velocity sensor when the moving body is stopped is a value corresponding to an angular velocity of 0 if there is no bias, but this state is not limited to when the moving body is stopped, but is the same even during constant velocity linear motion. It is. Therefore, the temperature characteristic detection means of the angular velocity bias may obtain the temperature characteristic of the angular velocity bias based on the detection value of the angular velocity sensor and the detection value of the temperature sensor when the moving body is moving at a constant linear velocity.

この構成によれば、統合航法演算開始後速やかに精度の高い角速度バイアス及び角速度の推定が行われる。   According to this configuration, the angular velocity bias and the angular velocity are accurately estimated immediately after the integrated navigation calculation is started.

た、この発明の航法装置は、前記統合航法演算手段は、
所定タイミングで前記温度センサの検出値と前記角速度バイアスの温度特性とに基づいて角速度バイアスの温度変動量を検出し、該温度変動量を用いて角速度バイアスの推定値を更新する角速度バイアス温度変動更新手段と、時系列にリアルタイム処理で角速度バイアス誤差を推定し、該角速度バイアス誤差を用いて前記角速度バイアスの推定値を更新するカルマン・フィルタ演算手段と、を備え、
前記統合航法演算手段は、前記角速度バイアス温度変動更新手段と前記演算手段で更新された前記角速度バイアスの推定値を前記角速度センサの検出値から除去することにより角速度バイアス補正後の角速度を推定するものとする。
Also, navigation system of the present invention, the integrated navigation calculation means,
An angular velocity bias temperature variation update that detects an angular velocity bias temperature fluctuation amount based on a detected value of the temperature sensor and a temperature characteristic of the angular velocity bias at a predetermined timing, and updates an estimated angular velocity bias value using the temperature fluctuation amount. And Kalman filter calculation means for estimating an angular velocity bias error in real time processing in time series, and updating the estimated value of the angular velocity bias using the angular velocity bias error,
The integrated navigation calculation means estimates the angular velocity after correcting the angular velocity bias by removing the estimated value of the angular velocity bias updated by the angular velocity bias temperature fluctuation updating means and the calculation means from the detection value of the angular velocity sensor. And

この構成により、移動体が移動中であっても、測位信号を受信できる期間に、角速度バイアスの推定値を更新できる。   With this configuration, the estimated value of the angular velocity bias can be updated during a period in which the positioning signal can be received even when the moving body is moving.

記角速度バイアスの温度特性検知手段は、前記移動体の停止時間が所定時間を超えたときと、前記移動体の停止中の前記温度センサによる検出値が所定温度変動幅を超えたときとの両方または何れかを満たしたとき、前記角速度バイアスの温度特性を求める、または有効な値と見なすものとする。 Temperature characteristic detecting means before Symbol angular velocity bias, and when the stop time of the moving object exceeds a predetermined time, and when the value detected by the temperature sensor during the stop of the movable body exceeds a predetermined temperature variation width When both or any one of them is satisfied, the temperature characteristic of the angular velocity bias is obtained or regarded as an effective value.

これにより、ある程度広い温度変動幅のもとで適用できる角速度バイアスの温度特性が得られる。そのため、より高精度な角速度バイアスの温度特性を用いた角速度バイアスの補正ができる。また、角速度バイアスの温度特性を温度の関数として求める場合に、温度変動幅が小さい状況下においては角速度バイアスの温度特性の検知結果は更新されないので角速度バイアスの温度特性の検知精度を高めることができる。   As a result, the temperature characteristic of the angular velocity bias that can be applied under a somewhat wide temperature fluctuation range is obtained. Therefore, the angular velocity bias can be corrected using the temperature characteristic of the angular velocity bias with higher accuracy. In addition, when the temperature characteristics of the angular velocity bias is obtained as a function of temperature, the detection result of the temperature characteristics of the angular velocity bias is not updated under a condition where the temperature fluctuation range is small, so that the accuracy of detecting the temperature characteristics of the angular velocity bias can be improved. .

た、前記角速度バイアスの温度特性検知手段は、前記温度センサによる検出値の変動範囲内で温度変化に対する角速度バイアスの近似式を求め、且つ前記変動範囲の最高値以上の温度では前記角速度バイアスを前記変動範囲の最高温度での角速度バイアスの値に定め、前記変動範囲の最低値以下の温度では前記角速度バイアスを前記変動範囲の最低温度での角速度バイアスの値に定める。
Also, the temperature characteristic detection means of the angular velocity bias, obtains an approximate expression of the angular velocity bias to temperature changes within the variation range of the detected value by the temperature sensor, and the angular velocity bias the best value above the temperature of the variation range The angular velocity bias value at the maximum temperature in the variation range is determined, and the angular velocity bias is determined as the angular velocity bias value at the minimum temperature in the variation range at a temperature equal to or lower than the minimum value in the variation range.

例えば、前記角速度バイアスの温度特性検知手段は、温度変化に対する角速度バイアスの変化を温度の関数として求める場合に、その関数の0次係数・1次係数等を求める。または温度に対する角速度バイアスの関係テーブルを作成する。   For example, the temperature characteristic detecting means of the angular velocity bias obtains the 0th order coefficient, the first order coefficient, etc. of the function when the change of the angular velocity bias with respect to the temperature change is obtained as a function of the temperature. Alternatively, a relationship table of angular velocity bias with respect to temperature is created.

これにより、まだ経験していない温度では、真値に近い角速度バイアスの温度特性が適用でき、上記温度変動範囲以外の温度でも所定の精度で角速度バイアスの温度特性を用いた角速度バイアスが得られる。   As a result, an angular velocity bias temperature characteristic close to the true value can be applied at a temperature that has not yet been experienced, and an angular velocity bias that uses the temperature characteristic of the angular velocity bias with a predetermined accuracy can be obtained even at a temperature outside the above temperature fluctuation range.

この発明によれば、温度変動を考慮して角速度バイアスの推定ができるため、角速度の検出精度及び角速度を用いた航法データを高精度に求めることができる。また、統合航法演算開始後速やかに高精度な角速度が推定でき、応答性を高めることができる。   According to the present invention, since the angular velocity bias can be estimated in consideration of the temperature fluctuation, the angular velocity detection accuracy and the navigation data using the angular velocity can be obtained with high accuracy. In addition, a highly accurate angular velocity can be estimated immediately after the start of the integrated navigation calculation, and the responsiveness can be improved.

本発明の航法装置の構成を図2に示す。この図2に示すように、航法装置100は、GPS受信機11と、振動ジャイロからなる角速度センサ13と、温度センサ14と、加速度センサ12と、CPU等からなる統合演算部30と、を備えていて、移動体に搭載される。   The configuration of the navigation apparatus of the present invention is shown in FIG. As shown in FIG. 2, the navigation device 100 includes a GPS receiver 11, an angular velocity sensor 13 including a vibrating gyroscope, a temperature sensor 14, an acceleration sensor 12, and an integrated calculation unit 30 including a CPU and the like. It is mounted on a moving body.

GPS受信機11は航法衛星であるGPS衛星から送信される測位信号を受信し、GPS測位信号を出力する。   The GPS receiver 11 receives a positioning signal transmitted from a GPS satellite, which is a navigation satellite, and outputs a GPS positioning signal.

加速度センサ12は移動体の直交3軸方向の加速度を検出する。角速度センサ13は移動体の直交3軸方向の角速度を検出する。温度センサ14は角速度センサ13の温度又は角速度センサ13が存在する環境の温度を検出する。   The acceleration sensor 12 detects the acceleration in the three orthogonal directions of the moving body. The angular velocity sensor 13 detects the angular velocity in the three orthogonal directions of the moving body. The temperature sensor 14 detects the temperature of the angular velocity sensor 13 or the temperature of the environment where the angular velocity sensor 13 exists.

統合演算部30は、演算処理内容をブロック化すれば、追尾処理部20、GPS/INS演算部21、角速度バイアスの温度変動パラメータ推定部22、及び角速度バイアスの温度変動パラメータのバックアップ部23で表すことができる。   If the calculation processing content is made into a block, the integrated calculation unit 30 is represented by a tracking processing unit 20, a GPS / INS calculation unit 21, an angular velocity bias temperature variation parameter estimation unit 22, and an angular velocity bias temperature variation parameter backup unit 23. be able to.

追尾処理部20は、GPS受信回路11からのGPS測位信号を入力し、各GPS衛星からの信号を受信して得られるベースバンドのGPS測位信号の位相を追尾するとともに擬似距離(PR)、ドップラー周波数観測量、各衛星の位置・速度などを求める。   The tracking processing unit 20 receives a GPS positioning signal from the GPS receiving circuit 11 and tracks the phase of a baseband GPS positioning signal obtained by receiving a signal from each GPS satellite, and also includes a pseudorange (PR) and Doppler. Obtain frequency observations, position / velocity of each satellite, etc.

GPS/INS演算部21は、上記擬似距離及びドップラー周波数情報、各衛星の位置・速度等に基づいて受信点の位置・速度を求める。また、前記擬似距離、ドップラー周波数情報、及び前記角速度センサと加速度センサの検出信号を基にGPS/INS統合演算を行う。   The GPS / INS calculation unit 21 obtains the position / velocity of the reception point based on the pseudorange and Doppler frequency information, the position / velocity of each satellite, and the like. Further, GPS / INS integration calculation is performed based on the pseudo distance, Doppler frequency information, and detection signals of the angular velocity sensor and the acceleration sensor.

角速度バイアスの温度特性検知部22は、GPS/INS演算部21から出力される速度情報に基づき、移動体が停止しているとき、後述する方法により角速度バイアスの温度特性(後述するように、温度変化に対する角速度バイアスの変化を温度の関数として求めた場合の、その関数の0次係数・1次係数等)を求め、それを有効/無効状態の情報とともにバックアップ部23に対して書き込む。   Based on the speed information output from the GPS / INS calculation unit 21, the angular velocity bias temperature characteristic detection unit 22 uses a method described later to detect the angular velocity bias temperature characteristic (temperature, as will be described later). When the change of the angular velocity bias with respect to the change is obtained as a function of temperature, a 0th order coefficient, a first order coefficient, etc. of the function are obtained and written to the backup unit 23 together with information on the valid / invalid state.

GPS/INS演算部21は、GPS/INS統合測位演算を行うとともに、この統合測位演算により求めた角速度、温度センサ14の検出値及び角速度センサ13の検出値に基づいて角速度バイアスの温度特性を検知する。この手段が「角速度バイアス温度特性検知手段」に相当する。   The GPS / INS calculation unit 21 performs GPS / INS integrated positioning calculation, and detects the temperature characteristics of the angular velocity bias based on the angular velocity obtained by the integrated positioning calculation, the detection value of the temperature sensor 14, and the detection value of the angular velocity sensor 13. To do. This means corresponds to “angular velocity bias temperature characteristic detecting means”.

GPS/INS演算部21は、所定タイミングで前記温度センサの検出値と前記角速度バイアスの温度特性とに基づいて角速度バイアスの温度変動量を検出し、該温度変動量を用いて角速度バイアスの推定値を更新する。この手段が、「角速度バイアス温度変動更新手段」に相当する。   The GPS / INS calculation unit 21 detects the temperature fluctuation amount of the angular velocity bias based on the detection value of the temperature sensor and the temperature characteristic of the angular velocity bias at a predetermined timing, and uses the temperature fluctuation amount to estimate the angular velocity bias. Update. This means corresponds to “angular velocity bias temperature fluctuation updating means”.

GPS/INS演算部21は、カルマン・フィルタ演算手段により、時系列にリアルタイムに角速度バイアス誤差を推定し、該角速度バイアス誤差を用いて前記角速度バイアスの推定値を更新する。この手段が、「カルマン・フィルタ演算手段」に相当する。   The GPS / INS calculation unit 21 estimates the angular velocity bias error in real time in a time series by the Kalman filter calculation means, and updates the estimated value of the angular velocity bias using the angular velocity bias error. This means corresponds to “Kalman filter calculation means”.

そして、GPS/INS演算部21は、更新された角速度バイアスの推定値を角速度センサ13の検出値から除去することにより角速度バイアス補正後の角速度を推定する。   Then, the GPS / INS calculation unit 21 estimates the angular velocity after the angular velocity bias correction by removing the updated estimated value of the angular velocity bias from the detected value of the angular velocity sensor 13.

なお、上記加速度センサ12に代えて速度センサを設けてもよい。また加速度センサとともに速度センサを設けてもよい。   A speed sensor may be provided instead of the acceleration sensor 12. A speed sensor may be provided together with the acceleration sensor.

図2に示した統合演算部30の処理の内容をフローチャートとして図3に示す。
未だ工場出荷時等で、角速度バイアスの温度特性データがバックアップされていない状態(無効状態)では、カルマン・フィルタ等における角速度バイアスの推定の初期値には、角速度センサの仕様で定められる公称値等の所定の値を初期値として設定する(S1→S2→S3)。そしてGPS/INS統合演算を行う(S4)。ステップS3の処理は一度だけであり、一度GPS/INS演算により角速度バイアスを求めると、以降は、新たにGPS/INS演算(統合航法演算)を開始する際に、その値を初期値として用いる(S2→S4)。
The contents of the processing of the integrated arithmetic unit 30 shown in FIG. 2 are shown as a flowchart in FIG.
When the temperature characteristics data of angular velocity bias has not been backed up at the time of shipment from the factory, etc. (invalid state), the initial value for estimation of angular velocity bias in the Kalman filter, etc. is the nominal value determined by the specifications of the angular velocity sensor Is set as an initial value (S1->S2-> S3). Then, GPS / INS integration calculation is performed (S4). The process of step S3 is only once, and once the angular velocity bias is obtained by GPS / INS calculation, the value is used as an initial value when starting a new GPS / INS calculation (integrated navigation calculation) ( S2 → S4).

停車時には、温度センサ14の検出値と角速度センサ13の検出値とを用いて、温度変化にともなう角速度バイアスの温度特性データを検知し、所定の条件を満たした場合に有効な温度特性データとしてバックアップ部23に保存する、又は求めた温度特性データが有効であることを示すフラグをセットする。(S5→S6)。この所定の条件については後述する。   When the vehicle is stopped, the temperature characteristic data of the angular velocity bias accompanying the temperature change is detected using the detection value of the temperature sensor 14 and the detection value of the angular velocity sensor 13, and is backed up as effective temperature characteristic data when a predetermined condition is satisfied. A flag indicating that the temperature characteristic data stored or obtained in the unit 23 is valid is set. (S5 → S6). This predetermined condition will be described later.

工場出荷時以外の電源起動時等においては、バックアップ部23に保存されている角速度バイアスの温度特性データが有効な場合に、温度センサの検出値と前記角速度バイアスの温度特性とに基づいて算出した温度依存の角速度バイアスを前記角速度センサの検出値から除去して、温度に無依存の角速度バイアスのみを含む角速度を算出し、これをカルマン・フィルタ等における角速度バイアス推定の初期値として設定する(S1→S7→S8)。この処理は、この発明の「角速度バイアスの初期値設定手段」に相当する。   For example, when the temperature characteristic data of the angular velocity bias stored in the backup unit 23 is valid at the time of power-on other than the factory shipment, the calculation is performed based on the detected value of the temperature sensor and the temperature characteristic of the angular velocity bias. The temperature-dependent angular velocity bias is removed from the detected value of the angular velocity sensor, an angular velocity including only the temperature-independent angular velocity bias is calculated, and this is set as the initial value of the angular velocity bias estimation in the Kalman filter or the like (S1). → S7 → S8). This process corresponds to “angular velocity bias initial value setting means” of the present invention.

その後、GPS/INS演算(統合航法演算)を行う(S9)。このステップS9の処理は、この発明の「統合航法演算手段」に相当する。具体的には、GPS測位信号を受信できない期間は、角速度センサ13の検出値から温度依存角速度バイアスを除去した角速度バイアスに基づいて角速度を算出し、GPS測位信号を受信できる期間は、所定のタイミングで(例えば温度が一定値以上変化したとき、や一定時間ごとに)温度センサ14の検出値と角速度バイアスの温度特性とに基づいて角速度バイアスの温度変動量を検出し、この温度変動量分だけ角速度バイアスの推定値を更新する。また、GPS測位信号を用いて統合航法演算を行い、上記温度変動分だけカルマン・フィルタ演算が推定する角速度バイアスの更新を行う。カルマン・フィルタは、時系列にリアルタイム処理で角速度バイアス誤差を推定し、該角速度バイアス誤差を用いて温度無依存の角速度バイアスを推定する。   Thereafter, GPS / INS calculation (integrated navigation calculation) is performed (S9). The processing in step S9 corresponds to “integrated navigation calculation means” of the present invention. Specifically, during the period when the GPS positioning signal cannot be received, the angular velocity is calculated based on the angular velocity bias obtained by removing the temperature-dependent angular velocity bias from the detection value of the angular velocity sensor 13, and the period during which the GPS positioning signal can be received is a predetermined timing. (For example, when the temperature changes by a certain value or every certain time), the temperature fluctuation amount of the angular velocity bias is detected based on the detected value of the temperature sensor 14 and the temperature characteristic of the angular velocity bias, and only this temperature fluctuation amount is detected. Update the estimated angular velocity bias. Further, the integrated navigation calculation is performed using the GPS positioning signal, and the angular velocity bias estimated by the Kalman filter calculation is updated by the temperature fluctuation. The Kalman filter estimates an angular velocity bias error in real time processing in time series, and estimates a temperature-independent angular velocity bias using the angular velocity bias error.

このようにして図3に示した処理を繰り返し、ステップS9のGPS/INS演算によって角速度バイアスを時系列に順次推定する。   In this way, the processing shown in FIG. 3 is repeated, and the angular velocity bias is sequentially estimated in time series by the GPS / INS calculation in step S9.

上記時系列に推定した角速度バイアスはバックアップしておき、その値を角速度バイアスの温度特性データが無効な場合における初期値として用いる。   The angular velocity bias estimated in the above time series is backed up and used as an initial value when the temperature characteristic data of the angular velocity bias is invalid.

次に、GPS測位信号が受信可能な場合とそうでない場合とについて、図3のステップS8、S9の処理内容の例を示す。   Next, an example of the processing contents of steps S8 and S9 in FIG. 3 will be shown for the case where the GPS positioning signal can be received and the case where the GPS positioning signal cannot be received.

例えば、移動体として自動車を想定し、GPS測位信号の受信が可能な屋外を走行した後、屋内駐車場に駐車し、長時間経過した後に出庫した場合、次のような動作となる。   For example, assuming an automobile as a moving body, after traveling outdoors where GPS positioning signals can be received, parked in an indoor parking lot, and exited after a long time has elapsed, the following operation is performed.

(1)駐車場への入庫前は、ステップS9において、加速度センサ12、角速度センサ13、温度センサ14の各検出値、およびGPS測位信号を基にGPS/INS統合航法演算を行う。すなわち加速度センサ12の加速度検出値を用いた慣性航法演算とGPS航法演算との統合によって移動体の位置と速度を求める。   (1) Before entering the parking lot, in step S9, GPS / INS integrated navigation calculation is performed based on the detected values of the acceleration sensor 12, the angular velocity sensor 13, the temperature sensor 14, and the GPS positioning signal. That is, the position and speed of the moving body are obtained by integrating the inertial navigation calculation using the acceleration detection value of the acceleration sensor 12 and the GPS navigation calculation.

また、角速度バイアスをリアルタイムで推定する。すなわち、所定タイミングで温度センサの検出値と角速度バイアスの温度特性とに基づいて角速度バイアスの温度変動量を検出して角速度バイアスの推定値を更新する。そして、この温度変動分の補正を行った角速度バイアスを基に、カルマン・フィルタ演算によって推定される角速度バイアスを更新する。   Also, the angular velocity bias is estimated in real time. That is, at a predetermined timing, the temperature fluctuation amount of the angular velocity bias is detected based on the detected value of the temperature sensor and the temperature characteristic of the angular velocity bias, and the estimated value of the angular velocity bias is updated. Then, the angular velocity bias estimated by the Kalman filter calculation is updated based on the angular velocity bias corrected for the temperature fluctuation.

このようにして求めた角速度バイアスで角速度センサの検知値を補正した、正確な角速度の積分により移動体の方位を求め、この移動体の方位と、GPS航法演算により求めた移動体の移動方位との統合によって移動体の正確な方位を求める。   The detected value of the angular velocity sensor is corrected with the angular velocity bias obtained in this way, and the azimuth of the moving body is obtained by accurate angular velocity integration, and the moving azimuth of the moving body and the moving azimuth of the moving body obtained by the GPS navigation calculation are calculated. The exact orientation of the moving object is obtained by integration of.

(2)屋内駐車場に入るとGPS測位信号を受信できないため、ステップS9で加速度センサ12の加速度検出値を用いた慣性航法演算によって移動体の位置と速度を求める。また、角速度センサ13の検出値から温度依存成分を除去した(温度補正された)角速度の積分により移動体の方位を求める。   (2) Since the GPS positioning signal cannot be received when entering the indoor parking lot, the position and speed of the moving body are obtained by inertial navigation calculation using the acceleration detection value of the acceleration sensor 12 in step S9. Further, the azimuth of the moving body is obtained by integration of the angular velocity (temperature corrected) obtained by removing the temperature dependent component from the detected value of the angular velocity sensor 13.

(3)駐車後、長時間経過した後に出庫した場合、例えば昼に駐車して夜に出庫したような場合、角速度センサの検出値、温度センサの検出値、及び角速度バイアスの温度特性に基づいて算出した角速度バイアスを慣性航法演算時の角速度バイアスの初期値として与える。その後、GPS測位信号を受信するまでは上記(2)と同様に慣性航法演算によって移動体の位置・速度・方位を推測する。   (3) When parking after a long time has elapsed after parking, for example, when parking at noon and leaving at night, based on the detected value of the angular velocity sensor, the detected value of the temperature sensor, and the temperature characteristics of the angular velocity bias The calculated angular velocity bias is given as the initial value of the angular velocity bias at the time of inertial navigation calculation. Thereafter, until the GPS positioning signal is received, the position / velocity / orientation of the moving body is estimated by inertial navigation calculation as in (2) above.

このように駐車時と出庫時との温度差が大きいと、角速度バイアスが駐車時に比べ大きくなるが、角速度センサの検出値、温度センサの検出値、及び角速度バイアスの温度特性に基づいて算出した角速度バイアスを統合航法演算時の角速度バイアスの初期値として与えて慣性航法演算を行うことにより、より正確な移動体の方位が求められる。   Thus, when the temperature difference between parking and leaving is large, the angular velocity bias becomes larger than when parking, but the angular velocity calculated based on the detected value of the angular velocity sensor, the detected value of the temperature sensor, and the temperature characteristics of the angular velocity bias. By giving the bias as an initial value of the angular velocity bias at the time of the integrated navigation calculation and performing the inertial navigation calculation, a more accurate moving body orientation can be obtained.

(4)その後、GPS測位信号を受信できるようになれば、統合航法演算を開始する。ステップS8では、既に求められている直近の角速度バイアスの値をカルマン・フィルタの角速度バイアスの初期値として与える。   (4) After that, when the GPS positioning signal can be received, the integrated navigation calculation is started. In step S8, the value of the most recent angular velocity bias that has already been obtained is given as the initial value of the angular velocity bias of the Kalman filter.

次に、前記角速度バイアスの温度特性データ推定の具体例を、図4を参照して示す。
統合推定値として求めた速度又はGPSデータにより求めた速度が閾値未満(例えば0.1m/s未満)であるか否かにより停車/移動の判定を行い、停車時における角速度のセンサ検出値と温度センサの検出値とを対にして順次保存し、両者の関係を最小2乗法により近似式(関数)のパラメータを算出する。この近似式を表すパラメータが角速度バイアスの温度特性データである。
Next, a specific example of temperature characteristic data estimation of the angular velocity bias will be shown with reference to FIG.
Whether the speed obtained as the integrated estimated value or the speed obtained from the GPS data is less than a threshold value (for example, less than 0.1 m / s) is determined whether the vehicle is stopped / moved. The sensor detection values are sequentially stored in pairs, and the parameters of the approximate expression (function) are calculated by the least square method for the relationship between the two. A parameter representing this approximate expression is temperature characteristic data of the angular velocity bias.

図4において、横軸は温度センサの検出値、縦軸は角速度センサの検出値であり、これらの検出値をプロットした図である。ここで、近似した直線の傾きが角速度バイアスの変動係数のパラメータの1次係数である。また、近似した直線の基準温度(例えば25℃)における角速度が角速度バイアスの変動係数のパラメータの0次係数である。このようにして角速度バイアスの温度特性データを求める。   In FIG. 4, the horizontal axis represents the detection value of the temperature sensor, the vertical axis represents the detection value of the angular velocity sensor, and these detection values are plotted. Here, the slope of the approximated straight line is the primary coefficient of the parameter of the coefficient of variation of the angular velocity bias. Further, the angular velocity at an approximate straight line reference temperature (for example, 25 ° C.) is the zeroth-order coefficient of the parameter of the variation coefficient of the angular velocity bias. In this way, temperature characteristic data of the angular velocity bias is obtained.

次の[数1]は、図4に示した近似直線の温度範囲で角速度バイアスの温度変動をどのように定めるかについて示している。   The following [Equation 1] shows how to determine the temperature fluctuation of the angular velocity bias in the temperature range of the approximate straight line shown in FIG.

Figure 0005074950
Figure 0005074950

なお、経験したことのある温度範囲における角速度バイアスの温度変動の計算には直線で近似したときの1次係数を用いるとは限らない。2次以上の近似曲線から[数2]のようにして求めた観測した温度の近傍における偏微分係数を用いてもよい。   Note that the linear coefficient approximated by a straight line is not always used for calculating the temperature fluctuation of the angular velocity bias in the temperature range that has been experienced. You may use the partial differential coefficient in the vicinity of the observed temperature calculated | required as [Equation 2] from the approximated curve more than quadratic.

Figure 0005074950
Figure 0005074950

図5は、図4に示した最低温度より低い温度及び最高温度より高い温度で角速度バイアスをどのように定めるかについて示している。   FIG. 5 shows how the angular velocity bias is determined at a temperature lower than the lowest temperature shown in FIG. 4 and higher than the highest temperature.

この例では、角速度バイアスの温度変動は、経験したことのある温度範囲では或る値となるが、未経験の温度では零とする。すなわち、最低温度より低い温度で零とし、または、最高温度より高い温度で零とする。未経験の温度では1次係数を用いた計算値をそのまま適用することによって温度補償によって精度が向上する保証がないためである。   In this example, the temperature fluctuation of the angular velocity bias takes a certain value in the temperature range that has been experienced, but is zero at an inexperienced temperature. That is, zero is set at a temperature lower than the lowest temperature, or zero is set at a temperature higher than the highest temperature. This is because there is no guarantee that the accuracy is improved by temperature compensation by applying the calculated value using the first-order coefficient as it is at an inexperienced temperature.

図2に示したバックアップ部23にバックアップされるデータは、角速度バイアスの温度特性データの0次係数・1次係数、角速度バイアスの温度特性データの推定時に経験済みの最高温度・最低温度、及び温度特性データ(0次係数・1次係数)の有効/無効状態のフラグである。   The data to be backed up in the backup unit 23 shown in FIG. 2 includes the 0th order coefficient and the 1st order coefficient of the temperature characteristic data of the angular velocity bias, the maximum temperature / minimum temperature experienced when estimating the temperature characteristic data of the angular velocity bias, and the temperature. This is a flag for valid / invalid state of characteristic data (0th order coefficient / first order coefficient).

前述の、角速度バイアスの温度特性データの有効/無効判定は、経験した温度変動の幅がある程度広いか否かによって行う。例えば、次の2つの条件を共に満たす場合に角速度バイアスの温度特性データを有効と判定する。   The above-described validity / invalidity determination of the temperature characteristic data of the angular velocity bias is performed based on whether or not the range of the experienced temperature fluctuation is somewhat wide. For example, it is determined that the temperature characteristic data of the angular velocity bias is valid when both of the following two conditions are satisfied.

〈条件A〉角速度バイアスの温度特性データを求める際に経験した時間が設定条件(例えば10分間)を超えた場合。
〈条件B〉角速度バイアスの温度特性データを求める際に経験した温度変動幅が設定条件(例えば10℃)を超えた場合。
<Condition A> When the time experienced when obtaining the temperature characteristic data of the angular velocity bias exceeds a set condition (for example, 10 minutes).
<Condition B> When the temperature fluctuation range experienced when obtaining the temperature characteristic data of the angular velocity bias exceeds the set condition (for example, 10 ° C.).

なお、時間及び温度の設定条件によっては、上記条件A、条件Bのいずれかを満たすか否かによって判定してもよい。   In addition, depending on the setting conditions of time and temperature, you may determine by satisfy | filling either the said conditions A or the conditions B. FIG.

特許文献1に係る車両位置検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle position detection apparatus which concerns on patent document 1. FIG. 本発明の実施形態に係る航法装置の構成を示すブロック図である。It is a block diagram which shows the structure of the navigation apparatus which concerns on embodiment of this invention. 図2に示した統合演算部30の処理の内容を示すフローチャートである。It is a flowchart which shows the content of the process of the integrated calculating part 30 shown in FIG. 角速度バイアスの温度特性データの推定方法の例を示す図である。It is a figure which shows the example of the estimation method of the temperature characteristic data of an angular velocity bias. 図4に示した最低温度より低い温度及び最高温度より高い温度で角速度バイアスをどのように定めるかについて示す図である。FIG. 5 is a diagram showing how the angular velocity bias is determined at a temperature lower than the lowest temperature and higher than the highest temperature shown in FIG. 4.

符号の説明Explanation of symbols

11…GPS受信機
12…加速度センサ
13…角速度センサ
14…温度センサ
20…追尾処理部
21…GPS/INS演算部
22…角速度バイアス温度特性検知部
23…バックアップ部
30…統合演算部
100…航法装置
DESCRIPTION OF SYMBOLS 11 ... GPS receiver 12 ... Acceleration sensor 13 ... Angular velocity sensor 14 ... Temperature sensor 20 ... Tracking processing unit 21 ... GPS / INS calculation unit 22 ... Angular velocity bias temperature characteristic detection unit 23 ... Backup unit 30 ... Integrated calculation unit 100 ... Navigation device

Claims (4)

航法衛星から送信される測位信号、及び移動体に備えた角速度センサの検出値を含む外部支援データを基に統合航法演算を行う統合航法演算手段を備えた航法装置において、
前記角速度センサの温度又は該角速度センサが存在する環境の温度を検出する温度センサと、
少なくとも前記移動体の停止時に前記角速度センサの検出値と前記温度センサの検出値とに基づいて、角速度バイアスの温度特性を求める、角速度バイアス温度特性検知手段と、を備え、
前記統合航法演算手段は、
前記測位信号を受信できない期間に
記角速度センサの検出値、前記温度センサの検出値、及び前記角速度バイアスの温度特性に基づいて角速度を算出し
記測位信号を受信できる期間に
前記温度センサの検出値及び前記角速度バイアスの温度特性に基づいて直近に算出した角速度バイアスを前記統合航法演算の角速度バイアスの初期値に設定し、前記統合航法演算の結果に基づいて角速度バイアス及び角速度を推定する、航法装置。
In a navigation apparatus provided with integrated navigation calculation means for performing integrated navigation calculation based on positioning signals transmitted from navigation satellites and external support data including detection values of angular velocity sensors provided in a moving body,
A temperature sensor for detecting the temperature of the angular velocity sensor or the temperature of the environment in which the angular velocity sensor exists;
An angular velocity bias temperature characteristic detection means for obtaining a temperature characteristic of the angular velocity bias based on a detection value of the angular velocity sensor and a detection value of the temperature sensor at least when the moving body is stopped;
The integrated navigation calculation means includes:
During a period when the positioning signal cannot be received ,
Detection value before Symbol angular rate sensor, a detection value of the temperature sensor, and calculates the angular velocity based on the temperature characteristics of the angular velocity bias,
In a period that can receive before Symbol positioning signal,
The most recent angular velocity bias calculated based on the detected value of the temperature sensor and the temperature characteristics of the angular velocity bias is set as the initial value of the angular velocity bias of the integrated navigation calculation, and the angular velocity bias and the angular velocity are determined based on the result of the integrated navigation calculation. Estimate the navigation device.
前記統合航法演算手段は、
所定タイミングで前記温度センサの検出値と前記角速度バイアスの温度特性とに基づいて角速度バイアスの温度変動量を検出し、該温度変動量を用いて角速度バイアスの推定値を更新する角速度バイアス温度変動更新手段と、
時系列にリアルタイム処理で角速度バイアス誤差を推定し、該角速度バイアス誤差を用いて前記角速度バイアスの推定値を更新する演算手段と、を備え、
前記統合航法演算手段は、前記角速度バイアス温度変動更新手段と前記演算手段で更新された前記角速度バイアスの推定値を前記角速度センサの検出値から除去することにより角速度バイアス補正後の角速度を推定する、請求項1に記載の航法装置。
The integrated navigation calculation means includes:
An angular velocity bias temperature variation update that detects an angular velocity bias temperature fluctuation amount based on a detected value of the temperature sensor and a temperature characteristic of the angular velocity bias at a predetermined timing, and updates an estimated angular velocity bias value using the temperature fluctuation amount. Means,
When estimating the angular velocity bias error in real-time processing in sequence, and a computation means to update the estimated value of the angular velocity bias with angular velocity bias error,
The integrated navigation calculation means estimates the angular velocity after the angular velocity bias correction by removing the estimated value of the angular velocity bias updated by the angular velocity bias temperature fluctuation updating means and the calculation means from the detected value of the angular velocity sensor. The navigation device according to claim 1.
前記角速度バイアス温度特性検知手段は、前記移動体の停止時間が所定時間を超えたときと、前記移動体の停止中の前記温度センサによる検出値が所定温度変動幅を超えたときとの両方または何れかを満たしたとき、前記角速度バイアスの温度特性を求める、または有効な値と見なすものである請求項1または請求項2に記載の航法装置。 The angular velocity bias temperature characteristic detecting means is both when the stop time of the moving body exceeds a predetermined time and when the detection value by the temperature sensor during the stop of the moving body exceeds a predetermined temperature fluctuation range or The navigation apparatus according to claim 1 or 2 , wherein when either of the conditions is satisfied, a temperature characteristic of the angular velocity bias is obtained or regarded as an effective value. 前記角速度バイアス温度特性検知手段は、前記温度センサによる検出値の変動範囲内で温度変化に対する角速度バイアスの近似式を求め、且つ前記変動範囲の最高値以上の温度では前記角速度バイアスを前記変動範囲の最高温度での角速度バイアスの値に定め、前記変動範囲の最低値以下の温度では前記角速度バイアスを前記変動範囲の最低温度での角速度バイアスの値に定める、請求項1〜3のいずれかに記載の航法装置。 The angular velocity bias temperature characteristic detecting means obtains an approximate expression of an angular velocity bias with respect to a temperature change within a variation range of a detection value by the temperature sensor, and at a temperature equal to or higher than a maximum value of the variation range, the angular velocity bias is determined within the variation range. defined angular bias value at the highest temperature, said lowest value below the temperature of the variation range defining said angular bias to the value of the angular velocity bias at the lowest temperature of the variation range, according to claim 1 Navigation equipment.
JP2008036286A 2008-02-18 2008-02-18 Navigation equipment Active JP5074950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008036286A JP5074950B2 (en) 2008-02-18 2008-02-18 Navigation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008036286A JP5074950B2 (en) 2008-02-18 2008-02-18 Navigation equipment

Publications (2)

Publication Number Publication Date
JP2009192495A JP2009192495A (en) 2009-08-27
JP5074950B2 true JP5074950B2 (en) 2012-11-14

Family

ID=41074627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008036286A Active JP5074950B2 (en) 2008-02-18 2008-02-18 Navigation equipment

Country Status (1)

Country Link
JP (1) JP5074950B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044746A (en) * 2015-08-20 2015-11-11 北京工业大学 Beidou navigation module with composite sensor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7891103B2 (en) 2009-06-05 2011-02-22 Apple Inc. Magnetometer accuracy and use
US9116002B2 (en) 2009-08-27 2015-08-25 Apple Inc. Context determination to assist location determination accuracy
US8531180B2 (en) * 2010-03-30 2013-09-10 Apple Inc. Determining heading using magnetometer data and angular rate data
US8717009B2 (en) 2010-10-06 2014-05-06 Apple Inc. Magnetometer calibration
KR101252791B1 (en) * 2012-04-04 2013-04-09 주식회사 마이크로어드벤텍 Apparatus and method for correcting bias for digital sensor
US9423252B2 (en) 2012-09-11 2016-08-23 Apple Inc. Using clustering techniques to improve magnetometer bias estimation
US9151610B2 (en) 2013-06-08 2015-10-06 Apple Inc. Validating calibrated magnetometer data
JP6273814B2 (en) * 2013-12-12 2018-02-07 セイコーエプソン株式会社 Signal processing device, detection device, sensor, electronic device, and moving object
JP6555033B2 (en) 2015-09-11 2019-08-07 株式会社Jvcケンウッド Angular velocity sensor correction apparatus and angular velocity sensor correction method
JP7322740B2 (en) * 2020-02-14 2023-08-08 株式会社デンソー Vehicle positioning device and vehicle positioning program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209123A (en) * 1990-01-11 1991-09-12 Sumitomo Electric Ind Ltd Azimuth detector with azimuth correcting function
JPH03221811A (en) * 1990-01-26 1991-09-30 Sumitomo Electric Ind Ltd Azimuth detector with offset correcting function
JP2711746B2 (en) * 1990-03-31 1998-02-10 日本電気ホームエレクトロニクス株式会社 Angular velocity measuring device
JPH04364422A (en) * 1991-06-12 1992-12-16 Nippondenso Co Ltd Vehicle position detection device
JP2000055678A (en) * 1998-08-04 2000-02-25 Denso Corp Current position detecting device for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044746A (en) * 2015-08-20 2015-11-11 北京工业大学 Beidou navigation module with composite sensor

Also Published As

Publication number Publication date
JP2009192495A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5074950B2 (en) Navigation equipment
EP2519803B1 (en) Technique for calibrating dead reckoning positioning data
EP1837627B1 (en) Methods and systems for implementing an iterated extended kalman filter within a navigation system
US8234091B2 (en) Angular velocity sensor correcting apparatus for deriving value for correcting output signal from angular velocity sensor, angular velocity calculating apparatus, angular velocity sensor correcting method, and angular velocity calculating method
US7983842B2 (en) Vehicular present position detection apparatus and program storage medium
JP4780168B2 (en) Angular velocity sensor correction apparatus and angular velocity sensor correction method
US20140067343A1 (en) Moving state calculating method and moving state calculating device
JP2007101526A (en) Apparatus, method, and program for detecting speed and position and navigation system
JP6149699B2 (en) Vehicle trajectory calculation device
JP5273127B2 (en) Angular velocity sensor correction apparatus and angular velocity sensor correction method
JP6248559B2 (en) Vehicle trajectory calculation device
CN111536972A (en) Vehicle-mounted DR navigation method based on odometer scale factor correction
US11085773B2 (en) Angular velocity sensor correction device and method for correcting output signal from angular velocity sensor, and direction estimation device and method for estimating direction by correcting output signal from angular velocity sensor
JP5365606B2 (en) Angular velocity sensor correction apparatus and angular velocity sensor correction method
JP6555033B2 (en) Angular velocity sensor correction apparatus and angular velocity sensor correction method
JP2017215153A (en) Angular velocity sensor correction device and angular velocity sensor correction method
JP5183050B2 (en) In-vehicle navigation device and navigation method
JP5569276B2 (en) Current position detection device for vehicle
JP6673106B2 (en) Angular velocity sensor correction device and angular velocity sensor correction method
JP6287804B2 (en) Direction estimation apparatus and direction estimation method
JP6369320B2 (en) Angular velocity sensor correction apparatus and angular velocity sensor correction method
JP6372339B2 (en) Angular velocity sensor correction apparatus and angular velocity sensor correction method
CN118293907A (en) Zero-speed detection and correction method, device, equipment and medium of integrated navigation system
JPWO2020031711A1 (en) Vehicle control unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Ref document number: 5074950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250