WO2006103742A1 - 耐磨耗特性に優れる人工関節用Co-Cr-Mo合金 - Google Patents

耐磨耗特性に優れる人工関節用Co-Cr-Mo合金 Download PDF

Info

Publication number
WO2006103742A1
WO2006103742A1 PCT/JP2005/005785 JP2005005785W WO2006103742A1 WO 2006103742 A1 WO2006103742 A1 WO 2006103742A1 JP 2005005785 W JP2005005785 W JP 2005005785W WO 2006103742 A1 WO2006103742 A1 WO 2006103742A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
wear resistance
less
mass
mpa
Prior art date
Application number
PCT/JP2005/005785
Other languages
English (en)
French (fr)
Inventor
Akihiko Chiba
Kazushige Kumagai
Naoyuki Nomura
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to PCT/JP2005/005785 priority Critical patent/WO2006103742A1/ja
Priority to US11/909,979 priority patent/US20080195214A1/en
Priority to JP2007510271A priority patent/JP4843795B2/ja
Publication of WO2006103742A1 publication Critical patent/WO2006103742A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/045Cobalt or cobalt alloys

Definitions

  • the present invention relates to a Co—Cr Mo alloy for artificial joints having excellent wear resistance, a method for producing the same, a biomaterial and an artificial prosthetic material produced from the alloy.
  • the present invention provides a technique for improving the wear resistance of a Co—Cr—Mo alloy for artificial joints and suppressing the generation of wear powder in vivo.
  • Co-Cr-Mo alloys are excellent in corrosion resistance and wear resistance. From such reliability, various parts such as prosthetic materials such as artificial bones, parts with sliding surfaces such as artificial hip joints, surgical implants, etc. It is used as a medical device. Co—Cr—Mo alloys are particularly used for artificial hip joints because of their excellent wear resistance. Conventionally, an artificial hip joint is composed of a combination of a Co—Cr Mo alloy femoral head and an ultra-high molecular weight polyethylene (UHMWPE) acetabular cap (socket). Was common.
  • UHMWPE ultra-high molecular weight polyethylene
  • the present inventors as an artificial joint alloy, for example, high temperature forging for an alloy composition not containing carbon such as an ASTM standard F75 alloy composition such as a Co-29Cr-6Mo alloy.
  • an alloy composition not containing carbon such as an ASTM standard F75 alloy composition such as a Co-29Cr-6Mo alloy.
  • the microstructure is refined by applying high-temperature processing, it is possible to improve the wear resistance of the Co—Cr Mo alloy for artificial joints, and to suppress the generation of wear powder in vivo (conventional product)
  • the present inventors made a Co-Cr-Mo alloy (for example, Co-29Cr-6Mo alloy) for artificial joints into a fine powder by a gas atomization method, and then sintered the fine powder.
  • a Co-Cr-Mo alloy for example, Co-29Cr-6Mo alloy
  • pores are appropriately formed on the surface of the member in the obtained sintered body, higher moisture content is obtained. It was clarified that a sliding effect can be obtained and it is very excellent as a medical material, for example, an artificial hip joint material.
  • the present invention provides the following aspects.
  • the present invention relates to a method for improving the wear resistance of a Co—Cr—Mo alloy for artificial joints: (1) treatment for refining the crystal grain size of the alloy; (2) enriching the Mo content.
  • the present invention provides a method for improving the wear resistance of a Co—Cr—Mo alloy for artificial joints.
  • the Co—Cr—Mo forged alloy is subjected to a high temperature forging process to reduce the crystal grain size of the alloy.
  • the average grain size of the alloy crystal is (1) at least 20 m or less, (2) at least 15 m or less, (3) at least 13 m or less, and (4) at least 11 m. (5) at least 9 m or less, (6) at least 7 m or less, (7) at least 5 / zm or less, (8) at least 4 / zm or less, (9) at least 3. or less, (10) at least 3 / zm or less, (11) at least 2. or less, (12) at least 2 m or less, (13) at least 1.5 m or less, and (14) force of at least 1 m or less.
  • the present invention prepares an alloy enriched in Mo content over a known standard Co—Cr—Mo alloy (for example, ASTM standard F75 equivalent, typically Co-29Cr-6Mo alloy).
  • the present invention provides a Co—Cr Mo alloy for artificial joints having excellent wear resistance characteristics and a method for producing the same. More preferably, the Mo content in the high wear resistant alloy is (1) at least 6 mass% or more, (2) at least 6.5 mass%, (3) at least 7 mass% or more.
  • the method for improving the wear resistance of the Co—Cr—Mo alloy of the present invention is based on a known Co—Cr—Mo alloy (for example, ASTM standard F75 equivalent, typically Co-29Cr-6Mo alloy).
  • the alloy composition may be enriched in the Mo content, and may include high temperature forging treatment to strengthen the dispersion precipitation of the ⁇ phase.
  • the alloy targeted by the present invention is Co in the alloy composition, Content power of elements other than Cr and Mo elements may be alloys with at least lmass% or less.
  • the method for improving the wear resistance of the Co—Cr—Mo alloy of the present invention is such that the forged alloy is subjected to a gas atomization method, and the obtained alloy powder is sintered to have pores on the surface of the member. May be included.
  • sintering of the alloy powder is (1) 600 ° C to 1350 ° C, (2) 650. C-1300. C, (3) 700. C-1250. C, (4) 750. C ⁇ 1200. C, (5) 800. C ⁇ 1150. C, (6) 850. C-1100. C, (7) 875. C-1060.
  • the sintering of the alloy powder is performed as follows: (l) 10 to 250 MPa, (2) 20 to 200 MPa, (3) 25 to 150 MPa, (4) 30 to 150 MPa, (5) 30 to 100 MPa, (6) 30 to 80 MPa, (7) 35-50 MPa, (8) 35-45 MPa and (9) 10-60 MPa.
  • the present invention is a Co-Cr-Mo alloy for artificial joints with improved wear resistance, and (1) the crystal grain size of the alloy is refined ( 2) having an alloy composition enriched in Mo content, (3) strengthening dispersion precipitation of ⁇ phase, (4) being subjected to powder sintered body formation treatment! /, And (5) Provided is a Co—CrMo alloy for artificial joints, which is selected from a group force consisting of pores formed in a powder sintered body.
  • the Co—Cr—Mo alloy for artificial joints manufactured by the method for improving wear resistance of the present invention is novel and is considered to have sufficient inventive step.
  • a medical device such as an artificial joint, characterized by being manufactured from the high wear-resistant Co 2 -Cr—Mo alloy.
  • the medical device may include an artificial joint head, an acetabular cap (prosthetic socket), and the like.
  • the wear resistance of the Co—Cr—Mo alloy for artificial joints has been improved, and the generation of wear powder in the living body has been remarkably suppressed (the amount of wear has been reduced to 1/10 compared to conventional products) Therefore, it can be applied to medical devices such as artificial hip joints and artificial knee joints that are less biotoxic, that is, safer and have a longer service life.
  • a technique not based on carbide strengthening that is, a grain refining method and a method of dispersion precipitation strengthening of Z or ⁇ phase is employed to improve hardness.
  • a technique not based on carbide strengthening that is, a grain refining method and a method of dispersion precipitation strengthening of Z or ⁇ phase is employed to improve hardness.
  • FIG. 1 shows a pin-on-disk type wear test apparatus used for evaluating the wear resistance of the manufactured alloy material.
  • FIG. 2 Co-29Cr-6Mo alloy (refined grain size) produced using ASTM F75 (a) and high-temperature forging [(b) Average grain size 14 ⁇ m, (c) Average grain size 3 ⁇ m] shows an optical microscope texture (photo).
  • FIG. 3 shows the results of a wear test of Co 29Cr-6Mo alloy (refined grain size) produced using ASTM F75 and high temperature forging.
  • FIG. 6 shows an optical microscopic structure (photograph) of a sintered body obtained by sintering atomized alloy powder from a Co-29Cr-6Mo forged material.
  • Left side 40MPa press pressure 936 ° C sintered body
  • right side 40MPa press pressure 1052 ° C sintered body
  • FIG. 7 shows the results of wear tests of a 936 ° C. sintered body and a 1052 ° C. sintered body obtained by sintering atomized alloy powder from a Co-29Cr-6Mo forged material.
  • Abrasion test results of ASTM F 75, Co-29Cr-6Mo forging (grain size 12 ⁇ m) are also shown.
  • the "Co-Cr-Mo alloy” is an alloy containing cobalt (Co) containing a substantial proportion of chromium (Cr) and molybdenum (Mo) as a base material. And those in the group known in the field as “super alloys”.
  • the term “superalloy” is a technical term generally used to describe something that has very high strength, excellent mechanical properties, and corrosion resistance. It is recognized that it has a fine microstructure.
  • This Co—Cr—Mo alloy has excellent biocompatibility and has high yield strength, excellent hardness, and the like.
  • the Co—Cr—Mo alloy includes ASTM (American Society for Testing and Materials) standards, such as ASTM F1537 94, ASTM F799, ASTM F75, ISO (International Organization for Standardizatio n; International Standardization mechanism) standards, for example, ISO 5832-12.
  • ASTM American Society for Testing and Materials
  • ASTM F1537 94 ASTM F1537 94
  • ASTM F799 ASTM F75
  • ISO International Organization for Standardizatio n; International Standardization mechanism
  • ASTM F 1537 94 standard alloy composition (wt 0/0 (wt%)) is as follows
  • Si ⁇ 1. Owt%, N: ⁇ 0.2.25wt%, and
  • the balance is Co
  • Ni is inevitably mixed in the raw material, resulting in at least 0.2 to 1.
  • Owt% is usually included, and the balance of Co means the amount of Co that excludes impurities accompanying trace amounts.
  • the balance is Co
  • Ni is inevitably contained in the raw material, and is usually contained at least 0.002 to 2.5 wt%, and the remaining Co is a trace amount. This means the amount of Co excluding accompanying impurities.
  • the Co-CrMo alloy is Mo: approximately 5.0 to 6. Owt%, preferably 5.0 to 5.5wt%, more preferably 5.5wt%, Cr: approximately 26.0 to 29.5 wt%, preferably 27.0 to 29. Owt%, more preferably 29. Owt%. : ⁇ 0.35 wt%, preferably ⁇ approx. 0.07 wt%, Ni: ⁇ approx. 1.0 wt%, Fe: ⁇ approx. 1.5 wt%, preferably ⁇ approx. 0.7 wt%, Mn: ⁇ approx. 1.0 wt%, Si: ⁇ approx. 1.0 wt%, preferably ⁇ approx. 0.4 wt%, N: ⁇ approx. 0.25 wt%,
  • the balance is Co (where Ni is inevitably mixed with the raw material, so at least about 0.002 wt%, at least more than the order of 50 ppm is present).
  • the remaining Co indicates the amount of Co excluding the impurities accompanying the trace amount).
  • an increased amount of Mo element is added to a raw material that provides a composition that constitutes the Co—Cr—Mo alloy (particularly, an ASTM standard F75 equivalent), and the resulting alloy composition is obtained. It can be done by subjecting it to conventional alloy preparation methods.
  • the compounding amount of the additive element in the alloy composition can be increased or decreased so as to obtain the desired dispersion precipitation strengthening of the sigma phase, and the desired purpose can be obtained and the properties of the obtained alloy can be substantially adversely affected.
  • the blending amount can be set within a range that does not reach.
  • a group force of at least 12 mass% or more may be added so as to be selected.
  • the present invention is not limited to this, and the blending amount can be changed within a range in which the required purpose is obtained and the properties of the obtained alloy are not substantially adversely affected.
  • a raw material having a normal alloy composition is a Mo-enriched alloy raw material, and is mixed and heated as necessary. Melt to make a molten alloy.
  • various known methods can be applied with the help of vacuum induction melting (VIM).
  • VIM vacuum induction melting
  • the partial pressure of an inert gas such as argon gas can be applied to the VIM furnace.
  • a coating gas containing inert gas or nitrogen gas can be allowed to flow in the VIM furnace.
  • the molten alloy is appropriately heated to a predetermined temperature at which a predetermined composition is obtained or is maintained at a predetermined temperature.
  • the molten alloy can be formed into an ingot or a desired shape object, and can be cooled as it is, or can be quenched as necessary.
  • Quenching methods include water quenching, ice quenching, oil quenching, heat bath quenching, salt bath quenching, electrolytic quenching, vacuum quenching, air quenching, injection quenching, spray quenching, step quenching, time quenching, press quenching, Partial quenching, forging quenching, etc. can be mentioned, and those suitable for each are applied as appropriate. In typical cases, water quenching, quenching with ice water Is mentioned.
  • the ingot can be processed into a desired shape by performing hot extrusion, hot rolling, hot drawing, or the like.
  • the alloy melt can be formed into a desired shape such as a ribbon or a fine wire by a molten metal quenching method.
  • the molten metal quenching method may include a liquid spinning method, a spinning solution spinning method, a cabbage method, a twin roll method, a single roll method, and the like.
  • the molten metal is generally cooled and ejected into a metal roll or refrigerant fluid to solidify the molten metal.
  • the cooled metal roll is usually rotated at a high speed.
  • refrigerant fluids can be used, and are not limited as long as a desired result is obtained. For example, fluids containing silicone oils can be used.
  • silicone oil examples include, but are not limited to, powers such as polydimethylsiloxane TSF451-30 and TSF440 manufactured by Toshiba Silicone. These silicone oils can be used alone or in combination of several kinds. In addition, in order to remove gases such as low boiling point solvents or dissolved air contained in ordinary silicone oils, the silicone oils to be used should be preliminarily heated and removed under reduced pressure. May be preferred. Also, in order to produce a fine metal wire directly by rapidly solidifying molten metal in silicone oils, it is preferable to suppress the disturbance applied to the molten metal jet flow as much as possible. For this reason, it is desirable to have a delicate balance between the molten metal jet and the silicone oils. Specifically, it is desirable to control the speed difference, viscosity difference, surface tension difference, etc. between the molten metal jet and the silicone oil. In particular, in the present invention, it is effective to define the viscosity of silicone oils.
  • the spinning in a rotating liquid is generally a method in which a liquid layer is formed inside a rotating drum by a centrifugal force, and a molten metal or a molten alloy is ejected from a nozzle hole to form a liquid layer.
  • This is a technique for producing a fine metal wire by solidification, for example, using water as a refrigerant, and jetting the alloy from a molten state into a rotating water refrigerant to obtain a fine metal wire.
  • the cabbage method is, for example, a technique described in JP-A-49-135820 (JP, A, 49-135820 (December 27, 1974)), and the melt is extruded into a molten filament.
  • the liquid quenching region passes through a controlled gaseous interface region, and in this liquid quenching region, the filament and the liquid medium flow in parallel.
  • Body medium which can be a pure liquid, solution, emulsion, or solid-liquid dispersion, which can react with the melt to form a stable surface skin, or a melt jet
  • the selection of the quenching medium is related to the heat capacity of the molten ejecta, and the higher the heat capacity of the molten ejecta, It is preferred to cool the quenching fluid and to increase the Z or its specific heat, density, heat of vaporization, and thermal conductivity.
  • fluid quench medium other preferred properties of the fluid quench medium are generally low-viscosity, non-viscous, non-toxic, optically transparent, and low-cost, which minimizes fragmentation of the molten ejecta. is there. Also, in fact, water,
  • a fluid of 23% by weight sodium chloride at 20 ° C., a fluid of 21.6% by weight of magnesium chloride at ⁇ 33 ° C., and a solution of 51% by weight of sodium chloride and zinc at ⁇ 62 ° C. are preferred.
  • a silicone quenching fluid such as a Dow-coning 510 fluid having a viscosity of 50 centist / tas at a temperature of 0 to 100 ° C. can be used.
  • the cooled alloy can be appropriately cured.
  • thin ribbons, thin wires, etc. obtained by a molten metal quenching method can be shaped as necessary to make a medical device.
  • the alloy can be further subjected to a homogenization heat treatment to remove segregation and the like.
  • the homogenizing heat treatment can consist of a heat treatment and a quenching treatment.
  • a method known in the art can be selected and applied.
  • an electric furnace or the like can be used.
  • it can be heated under reduced pressure or under vacuum. In a typical case, for example, heating is performed for 5 to 30 hours, preferably 8 to 24 hours, more preferably 10 to 20 hours. In one embodiment, heat for 12-15 hours.
  • the heating temperature is, for example, 1400 ° C or lower, typically 900 to 1350. C, preferably 1000-1300. C, more preferably 1050 to 1250. C is not limited to these as long as the required purpose is achieved. In one embodiment, 1 100-1200 ° C.
  • quenching can be performed after the heat treatment. The quenching method is the same as described above.
  • the Co-Cr-Mo alloy of the present invention it is also possible to obtain an alloy in which internal defects are eliminated by adjusting the thermal history.
  • the nests and bubbles generated in the forged alloy are crushed by forging, the dendrite structure is destroyed, and the subsequent process It is intended to have a uniform structure by recrystallization annealing.
  • structural adjustment it is expected to suppress the growth of precipitates by rapid cooling using a water-cooled copper mold.
  • the second phase such as precipitates and intermetallic compounds can be expected to be finely dispersed by plastic working such as high temperature forging.
  • the effect of rapid cooling during forging on the growth control of precipitates becomes significant when the penetration temperature is cooled to a temperature range of up to 400 ° C at a cooling rate of 1000 ° CZ or more.
  • the forged structure is destroyed by high-temperature forging, and a matrix with equiaxed grain strength refined to 40 m or less is formed. Refinement of the matrix is also effective in improving wear resistance.
  • the crystal grain size of the alloy can be refined by selecting the heat treatment method and the processing temperature, and the dispersion precipitation of the ⁇ phase can be promoted or strengthened.
  • the high temperature forging temperature can be set in the range of 1100 to 1400 ° C. Even when the high temperature forged alloy is brought to room temperature, it is possible to finely disperse it in the matrix while maintaining the fine grain size by adopting rapid cooling such as water cooling.
  • the forged alloy can be subjected to a treatment for refining the crystal grain size of the alloy.
  • the refinement of the crystal grain size of the alloy can be typically achieved by subjecting the forged alloy to a high temperature forging process.
  • the forging process may include a process of hitting (forging) a metal mass in a high temperature state, and may include a process of pressure-bonding bubbles / gas (pores) contained in the metal mass. Typically, it includes a process of refining crystal grains.
  • mechanical forging that applies compression load and metal materials that include free forging are put in a high temperature state, and a force is applied between the upper and lower anvils using a press or hammer.
  • a press or hammer It may be a process that can be clamped, and may include forging and stretching, drilling, hole expansion, expansion, stretching, and combinations thereof.
  • the forging process can be performed by using a forging machine such as die forging, hermetic forging, hammer forging, press forging, etc., and drop nommer, non nommer, counter blow
  • presses such as non-mmers, air nonmers, steam nonmers, hydraulic presses (hydraulic presses), knuckle joint presses and friction presses.
  • the die forging die is preferably preheated and heated. This way the ingot This is preferable because heat is not lost.
  • the high temperature forging can be performed so that the average grain size of the alloy crystal is at least 40 ⁇ m or less, and in some cases, it is further reduced to at least 30 ⁇ m or less, at least 20 m or less, or at least 15 ⁇ m. m or less, more preferably at least 13 / zm or less, at least 11 / zm or less, at least 9 / zm or less, or at least 7 m or less. It can be carried out.
  • the high-temperature forging further reduces the average grain size of the alloy crystal to at least 5 m, at least 4 m, at least 3.5 m, at least 3 m, at least 2. It can be 5 m or less, at least 2 m or less, at least 1.5 m or less, or at least 1 m or less, and can be forged until that happens. This can be done until the desired wear resistance is obtained.
  • the high-temperature forging can be performed at a temperature of 1000 to 1300 ° C, preferably a force that can be performed at a temperature of 1000 to 1200 ° C, but is not limited thereto, for example, 600 ° C to 1350 ° Done at a temperature of C or 650 in some cases. C-1300.
  • a typical example use a 1.5-ton hammer to start striking the material that has been heated to the above temperature and hit it with a hammer until the material temperature falls below the desired temperature. Then, if necessary, forging can be performed in such a manner that after reheating, the material reaches a desired temperature and the striking is resumed.
  • the forged alloy can be cold rolled, machined, etc.
  • the alloy of the present invention is disclosed in Japanese Patent Application Laid-Open No. 62-80245 (JP, A, 62-80245 (April 13, 198 7))! It can be subjected to a gas atomization method of such a metal.
  • US Pat. No. 3,591,362 Meito Ito US, A, 3591362
  • Japanese Patent Laid-Open No. 5-1345 JP, A, 5— 1345 (january 8, 1993)
  • an alloy containing an increased amount of Mo of the present invention is powdered by a gas atomization method, and the resulting powder is compressed by a thermal mechanical treatment to form a solid alloy ( If necessary, an artificial prosthesis can be manufactured by processing such as forging.
  • the sintering treatment may be performed, for example, after atomized alloy powder is screened to 1 to 50 mesh size (for example, screened to 10 mesh size), and then 5.08 cm (2 inches) or 7. Place in a mild steel container with an inner diameter of 62 cm (3 inches) and a height of 10.16 cm (4 inches), fill the container, degas it in the usual way, and then start at 600 ° C It may be carried out by heating to a temperature in the range of 1350 ° C, applying a uniform pressure in the range of 10 to 250 MPa and heating at a high temperature. Thereafter, the sintered product is cooled to ambient temperature along with the container.
  • the particle size of the alloy powder can be appropriately selected according to the purpose.
  • an alloy powder having an average particle size of 25 ⁇ m or more can be suitably used, and if the number of pores is reduced, 25
  • bead-shaped particles having a diameter of 200 to 600 / ⁇ ⁇ are advantageous.
  • sintering of the alloy powder is performed at a temperature in the range of 600 ° C to 1350 ° C, 650. C-1300.
  • Temperature in the range of C temperature in the range of 800 ° C to 1150 ° C, temperature in the range of 850 ° C to 1100 ° C, temperature in the range of 875 ° C to 1060 ° C, temperature in the range of 900 ° C to 1050 ° C This can be done at a range of temperatures.
  • Preferable examples include a temperature in the range of 900 ° C to 1250 ° C.
  • the sintering of the alloy powder is performed under a pressure in the range of 10 to 250 MPa, a pressure in the range of 20 to 200 MPa, a pressure in the range of 25 to 150 MPa, a pressure in the range of 30 to 150 MPa, 30 to: It can be performed under a pressure in the range of LOO MPa, a pressure in the range of 30 to 80 MPa, a pressure in the range of 35 to 50 MPa, and a pressure in the range of 35 to 45 MPa. A pressure in the range of 10 to 60 MPa is preferable. Conditions under which a desired surface porosity can be obtained and lubricity can be obtained may be appropriately selected.
  • the thermal mechanical treatment includes the treatment as described above, and may include hot extrusion, hot rolling, hot pressing and the like.
  • the product can then be machined to a smooth surface and, if necessary, the smooth surface can be treated to create a porous coating. Can be applied.
  • Medical devices such as biomaterials and prosthetic materials can be manufactured from the highly wear-resistant Co-Cr-Mo alloy of the present invention and the Co-Cr-Mo alloy having lubricity.
  • Such medical devices include dental materials such as bridges and roots, prosthetic materials such as artificial bones, surgical implants, and the like, biocompatible implants, joint implants, medical human plant, and the like.
  • Examples of implant materials include artificial hips, artificial knees, artificial shoulders, artificial ankles, artificial elbows, and other artificial joint implants.
  • the member may include a nail, a screw nail, a nut, a screw, a plate, a needle, a hammer, a hook, a receiving tool, an embedded base, and the like.
  • Typical products include medical human joints such as artificial hip joints, and members and products having contact parts of medical members that are movable with respect to each other, such as bone heads for artificial joints, Includes acetabular cap (socket for artificial joint).
  • the present invention provides a problem-solving technique in which the generation of wear powder in a living body is a problem in a living body Co-Cr-Mo alloy used in an artificial hip joint or the like. ing. Therefore, it provides a technology that improves the wear resistance of Co-Cr-Mo alloys for artificial joints and suppresses the generation of wear powder in vivo.
  • the improvement in the wear resistance of the Co Cr Mo alloy for artificial joints of the present invention is achieved by making the crystal grains of the alloy finer than the Co—Cr Mo alloy (for example, Co 29Cr-6Mo alloy) of known standards.
  • This highly wear-resistant Co—Cr—Mo alloy is applicable to medical devices such as artificial hip joints and artificial knee joints that have less biotoxicity, that is, are safer and have a longer service life.
  • the wear resistance is excellent, the crystal grain size is made finer, the Mo content is enriched, or the dispersion precipitation of the ⁇ phase is further strengthened. Further, the presence of more pores on the surface of the member may mean that in comparison with an ASTM standard F75 equivalent, typically a Co-29Cr-6 Mo alloy such as a forged product.
  • the nominal composition of the Co—CrMo alloy sample in the examples is Co: Bal., Cr: 29 mass%, Mo: 6, 8, 10 mass%.
  • the ingot produced using high-temperature forging was processed into a disk with a diameter of 30 mm and a thickness of 5 mm using a wire-cut electric discharge machine. Forging was performed by striking a material with a temperature of about 1000 to 1200 ° C by striking with a 1.5-ton hammer, and when the temperature dropped, the material was again heated to the above temperature. . The operation was continued until the desired crystal grain size was obtained.
  • the member processed into the disk was used as a wear test piece. The wear test specimens were emery-polished and then puffed with 0.06 m barrels, and the surface was finished to an arithmetic average roughness Ra of 0.05 / z m or less.
  • Test conditions are shown as follows.
  • Test solution Hank's solution (inorganic simulated body fluid)
  • the specimen should be ultrasonically cleaned with acetone and then subjected to a wear test.
  • test piece is taken out and ultrasonically cleaned with acetone, and then the weight of the test piece is measured to examine the change in weight of the test piece before and after the test.
  • the wear rate was calculated using the following equation.
  • Figure 2 shows the Co-29Cr-6Mo alloy (refined grain size) produced using ASTM F75 (a) and high-temperature forging [(b) average grain size 14 ⁇ m, (c) average grain size It is an optical microscopic tissue with a diameter of 3 ⁇ m.
  • ASTM F75 is a Co-Cr-Mo forged alloy that is currently used as a bone head material for artificial joints, and contains a large amount of carnoids to improve wear resistance. This shows that the crystal grain size of the alloy produced using high temperature forging in this example is much smaller.
  • Fig. 3 shows the results of a wear test of a Co-29Cr-6Mo alloy (with a refined crystal grain size) produced using ASTM F75 and high-temperature forging. Compared to the wear rate of ASTM F75, the Co—Cr—Mo alloys with an average particle size of 14 ⁇ m are comparable, and the Co—Cr—Mo alloys with an average particle size of 3 ⁇ m are more It shows that the wear rate is lower.
  • the high temperature forging was performed as described above.
  • the wear rate of 6Mo alloy (Co-29Cr-6Mo alloy) was not much different from ASTM F75, but the wear rate of 8Mo alloy (Co-29Cr 8Mo alloy) and ⁇ ⁇ ⁇ ⁇ alloy (Co-29Cr- ⁇ alloy) was Lower than that of ASTM F75. This indicates that the wear rate of the Co-Cr-Mo alloy decreases as the Mo content increases.
  • the starting material was Co-29Cr-6Mo forged material (600g) produced using a vacuum induction melting furnace. This was melted at high frequency and atomized in an Ar atmosphere.
  • the produced alloy powder (particle diameter of 25 ⁇ m or less) was used for sintering in a vacuum high-temperature sintering furnace (hot press: manufactured by Nemus). Sintering was performed at 936 ° C and 1052 ° C with a pressing pressure of 40 MPa.
  • the optical microstructures of the 936 ° C and 1052 ° C sintered bodies are shown in Figures 6 (a) and (b), respectively. From the X-ray diffraction experiment, it was found that the structure of the 936 ° C sintered body was mainly composed of HCP phase but slightly contained ⁇ phase. The porosity at this time was 1 to 10%. Ma The structure of the sintered body at 1052 ° C was found to be an FCC single phase structure. The porosity at this time was 1 to 10%.
  • FIG. 7 shows the results of wear tests of the 936 ° C. sintered body and the 1052 ° C. sintered body.
  • the wear test results of ASTM F75, Co-29Cr-6Mo forging (grain size 12mm) are also shown.
  • both the 936 ° C sintered body and the 1052 ° C sintered body surpassed the wear resistance of the forged material. This is thought to be because, in addition to the fine crystal grains, the pores on the sample surface contained moderately showed a lubricating liquid storage effect, and there was no pores, and a higher lubricating effect was obtained than forging. .
  • the present invention improves the wear resistance of the Co-Cr-Mo alloy for artificial joints by making the crystal grains finer, and suppresses the generation of wear powder in the living body.
  • the amount is 1/10).
  • the conventional ASMTM standard F75 containing carbide of the same kind of material is used. It became clear that the wear resistance was significantly improved over the alloy. This is the result of no carbides attacking the opponent.
  • the present invention it is possible to provide a Co—CrMo alloy for artificial joints having excellent wear resistance, a method for producing the same, a biomaterial and an artificial prosthetic material produced from the alloy.
  • a technique for improving the wear resistance of a Co—Cr Mo alloy for artificial joints by an inexpensive and simple method and suppressing the generation of wear powder in a living body is provided. Alloys are cost-effective and can be applied to a wide range of practical applications, such as the production of biocompatible materials and medical devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)

Abstract

 人工股関節などに使用されている生体用Co-Cr-Mo合金で、生体内での磨耗粉の発生が問題となっている。よって、人工関節用のCo-Cr-Mo合金の耐磨耗特性を改善し、生体内での磨耗粉の発生を抑制する技術を提供。人工関節用のCo-Cr-Mo合金の耐磨耗特性の改善は、合金の結晶粒を微細化すること、公知規格のCo-Cr-Mo合金(例えば、Co-29Cr-6Mo合金)よりもMoを多く含んだ合金組成とすること、σ相の分散析出する割合を高めること、ガスアトマイズ法で製造した合金粉末を焼結せしめて合金部材表面に気孔を形成せしめるなどの手法で達成できる。本高耐磨耗性Co-Cr-Mo合金は、生体毒性の少ない、すなわち、より安全で使用寿命の長い、人工股関節、人工膝関節などの医療用デバイスに応用可能である。

Description

耐磨耗特性に優れる人工関節用 Co_Cr_Mo合金
技術分野
[0001] 本発明は、耐磨耗特性に優れる人工関節用 Co— Cr Mo合金、その製造法及び 該合金より製造される生体用材料及び人工補綴材に関する。本発明は、人工関節 用の Co— Cr— Mo合金の耐磨耗特性を改善し、生体内での磨耗粉の発生を抑制 する技術を提供するものである。
背景技術
[0002] Co— Cr— Mo合金は、耐食性,耐磨耗性に優れており、そうした信頼性から、人工 股関節などの摺動面を有する部位、人工骨材といった補綴材料、外科用インプラント など様々な医療用デバイスとして活用されている。 Co— Cr— Mo合金は、特に、耐 磨耗特性に優れるため、人工股関節などに使用されている。そして、従来、人工股関 節は、 Co— Cr Mo合金製大腿骨頭と高密度ポリエチレン(ultra— high molecul ar weight polyethylene : UHMWPE)製寛骨臼蓋(ソケット)の組み合わせから 構成されて 、るものが一般的であった。
[0003] しかし、最近、 UHMWPEの磨耗粉が原因となって引き起こされる骨吸収の症例が 報告されるに及んで、骨頭とソケットの両方を Co— Cr— Mo合金で構成する、いわゆ る metal— on— metalの人工股関節が普及する様になつた。この metal— on— met alの人工股関節は、铸造用 Co— Cr— Mo合金 (ASTM規格の F75相当品)を使用 するものがほとんどであり、この場合、 Co— Cr— Mo合金の磨耗粉の発生が問題とな つている。生体内での磨耗粉の発生は、人工股関節に铸造用 Co— Cr— Mo合金( ASTM規格の F75相当品)を使用する限り避けられない問題である。こうした問題を 解決できる新素材の開発が求められている。
発明の開示
発明が解決しょうとする課題
[0004] そこで、本発明者らは、上記問題を解決すべく、広範な探索を行! \鋭意研究を行 つた。その結果、従来の metal— on— metalの人工股関節材料は、炭素を 0. 3%程 度含有する ASTM規格の F75合金を使用するものがほとんどであること、そして、こ れは、耐磨耗特性の改善機構として、分散析出する炭化物相を利用するためである ということ、しかし、この場合は相手材に対して高硬度の炭化物相が引つ力き磨耗 (ァ ブレツシブ磨耗)を生じさせる原因になるため、 metal— on— metalの様に、同種材 を関節面に用いる用途には不向きであること、従って、炭化物析出強化によらない高 耐磨耗特性を有する生体用合金の開発が必要であることを認めるに至った。
[0005] カゝくして、本発明者らは、人工関節用合金として、例えば ASTM規格の F75合金 組成で炭素を含有させない合金組成、例えば Co— 29Cr— 6Mo合金に対して、高 温鍛造などの高温加工を施すことにより、組織を微細化させたところ、人工関節用の Co— Cr Mo合金の耐磨耗特性を改善できること、そして、生体内での磨耗粉の発 生を抑制(従来品に比べ磨耗量が 10分の 1を実現)できることを見出すことに成功し 、これに基づき本発明を完成せしめた。人工関節用の Co— Cr— Mo合金 (例えば、 Co— 29Cr— 6Mo合金)の結晶粒径を微細化せしめると、例えば、結晶粒径を 20 m程度に微細化すると、炭化物を含有しなくとも耐磨耗特性を飛躍的に向上させるこ とが可能であることを見出した。し力も、このように結晶粒径を微細化することにより耐 磨耗特性が改善された合金では、擬似生体液中で、磨耗試験を行うと、従来の同種 材の炭化物を含んだ ASTM規格の F75合金よりも、極めて耐磨耗特性が改善され ることも見出した。これは相手材を攻撃する炭化物が無いためにもたらされた結果で ある。
[0006] 更に、本発明者らは、人工関節用の Co— Cr— Mo合金(例えば、 Co— 29Cr— 6 Mo合金)よりも Moを多く含んだ合金、すなわち、 Co— 29Cr— 8Mo、 Co— 29Cr— ΙΟΜοなどを、同じく高温鍛造によりその結晶粒径を微細化せしめると、そうした結晶 粒径微細化合金は、従来材のものに比べて、はるかに良好な耐磨耗特性を示すこと をも見出し、さらに、これは分散析出する σ相が合金全体の硬さを向上させる効果が 発揮されたためであると考えられることも認めるに至った。
[0007] また、本発明者らは、人工関節用の Co— Cr— Mo合金(例えば、 Co— 29Cr— 6M o合金)铸造物をガスアトマイズ法で微粉末とした後その微粉末を焼結せしめて得ら れた焼結体において部材の表面に気孔が適切に形成されて存在すると、より高い潤 滑効果を得ることができ、医療用材料、例えば、人工股関節用材として非常に優れて いることも明らかにした。
[0008] 力べして、本発明は次のような態様を提供している。
[0009] 本発明は、人工関節用 Co— Cr— Mo合金における耐磨耗特性向上法であり、 (1) 合金の結晶粒径を微細化する処理、 (2) Mo含有量を富化せしめた合金組成の調製 、 (3) σ相の分散析出を強化せしめる処理、(4)粉末焼結体形成処理及び (5)粉末 焼結体に生じる気孔形成処理からなる群から選択された処理を施すことを特徴とする 人工関節用 Co— Cr— Mo合金の耐磨耗特性向上法を提供して 、る。好まし 、態様 では、 Co— Cr— Mo铸造合金は、高温鍛造処理に付されて、合金の結晶粒径が微 細化せしめられる。代表的な場合、本発明では、合金結晶の平均粒径を、(1)少なく とも 20 m以下、(2)少なくとも 15 m以下、(3)少なくとも 13 m以下、(4)少なくと も 11 m以下、(5)少なくとも 9 m以下、(6)少なくとも 7 m以下、(7)少なくとも 5 /z m以下、(8)少なくとも 4 /z m以下、(9)少なくとも 3. 以下、(10)少なくとも 3 /z m以下、(11)少なくとも 2. 以下、(12)少なくとも 2 m以下、(13)少なくとも 1. 5 m以下及び(14)少なくとも 1 m以下力 なる群力 選択されたものにする。 また、本発明は、公知規格の Co— Cr— Mo合金(例えば、 ASTM規格の F75相当 品、代表的には Co— 29Cr—6Mo合金)よりも Mo含有量を富化せしめた合金を調 製することを特徴とする耐磨耗特性に優れた人工関節用 Co— Cr Mo合金並びに その製造法を提供する。より好適には、該高耐磨耗性合金中の Mo含有量は、 (1) 少なくとも 6 mass%以上又はそれを超える量、(2)少なくとも 6. 5mass%以上、(3) 少なくとも 7mass%以上、(4)少なくとも 7. 5mass%以上、(5)少なくとも 8111&33%以 上、(6)少なくとも 8. 5mass%以上、(7)少なくとも 9mass%以上、(8)少なくとも 9. 5mass%以上、(9)少なくとも 10mass%以上、(10)少なくとも l lmass%以上及び( 11)少なくとも 12mass%以上力もなる群力も選択されたものにされてょ 、。本発明の Co— Cr— Mo合金の耐磨耗特性向上法は、公知規格の Co— Cr— Mo合金(例え ば、 ASTM規格の F75相当品、代表的には Co— 29Cr—6Mo合金)よりも Mo含有 量を富化せしめた合金組成とし且つ高温鍛造処理をして σ相の分散析出を強化せ しめることを含むものであってよい。本発明で対象とする合金は、合金組成中の Co、 Cr及び Mo元素以外の元素の含有量力 少なくとも lmass%以下の合金であってよ い。また、本発明の Co— Cr— Mo合金の耐磨耗特性向上法は、铸造合金をガスアト マイズ法に付し、得られた合金粉末を焼結して気孔を部材の表面に有するようにする ことを含むものであってよい。例えば、該合金粉末の焼結は、(1) 600°C〜1350°C、 (2) 650。C〜1300。C、(3) 700。C〜1250。C、(4) 750。C〜1200。C、(5) 800。C〜 1150。C、(6) 850。C〜1100。C、(7) 875。C〜1060。C及び(8) 900。C〜1050。C力 らなる群力 選択された温度で行うことであってよい。一方、該合金粉末の焼結は、 ( l) 10〜250MPa、(2) 20〜200MPa、(3) 25〜150MPa、(4) 30〜150MPa、 ( 5) 30〜100MPa、(6) 30〜80MPa、(7) 35〜50MPa、(8) 35〜45MPa及び(9 ) 10〜60MPaからなる群から選択された圧力で行うことであってよ!、。
[0010] このように、本発明は、耐磨耗特性が向上せしめられており且つ人工関節用 Co— Cr— Mo合金であり、(1)合金の結晶粒径が微細化されている、(2) Mo含有量が富 化せしめられている合金組成を有する、 (3) σ相の分散析出が強化せしめられてい る、(4)粉末焼結体形成処理が施されて!/、る及び(5)粉末焼結体に気孔が形成せし められているからなる群力 選択されたものであることを特徴とする人工関節用 Co— Cr Mo合金を提供する。本発明の耐磨耗特性向上法で製造された人工関節用 Co — Cr— Mo合金は、新規であり進歩性を十分有するものと考えられる。本発明では、 該高耐磨耗性 Co -Cr- Mo合金カゝら製造されたことを特徴とする医療用デバイス、 例えば、人工関節などが提供される。該医療用デバイスには、人工関節用骨頭、寛 骨臼蓋 (人工関節用ソケット)などが含まれてよい。
発明の効果
[0011] 人工関節用の Co— Cr— Mo合金の耐磨耗特性が改善せしめられ、生体内での磨 耗粉の発生を顕著に抑制 (従来品に比べ磨耗量が 10分の 1を実現)する技術が提 供され、生体毒性の少ない、すなわち、より安全で使用寿命の長い、人工股関節、人 工膝関節などの医療用デバイスに応用可能である。本発明では、炭化物強化によら ない手法、すなわち、結晶粒微細化法、および Zまたは、 σ相の分散析出強化の手 法を採用し、硬さの向上が図られている。これにより、同種材の組み合わせで問題と なる、相手材に対する攻撃性を抑制することが出来きるといった、従来技術にはない 優れた点を有している。これにより、人工関節での同種材の関節面における磨耗粉 の発生量を飛躍的に低減させることが可能となり、人工関節の緩みの問題を解消で き、使用寿命の一層の長期化を可能にする。
[0012] 本発明のその他の目的、特徴、優秀性及びその有する観点は、以下の記載より当 業者にとっては明白であろう。し力しながら、以下の記載及び具体的な実施例等の記 載を含めた本件明細書の記載は本発明の好ましい態様を示すものであり、説明のた めにのみ示されて 、るものであることを理解された!、。本明細書に開示した本発明の 意図及び範囲内で、種々の変化及び Z又は改変(あるいは修飾)をなすことは、以 下の記載及び本明細書のその他の部分からの知識により、当業者には容易に明ら かであろう。本明細書で引用されている全ての特許文献及び参考文献は、説明の目 的で引用されているもので、それらは本明細書の一部としてその内容は本明細書の 開示に含めて解釈されるべきものである。
図面の簡単な説明
[0013] [図 1]作製した合金材の耐磨耗性を評価するため使用したピンオンディスク型磨耗試 験装置を示すものである。
[図 2]ASTM F75 (a)および高温鍛造を用いて作製した (結晶粒径の微細化された ) Co— 29Cr— 6Mo合金〔(b)平均粒径 14 μ m, (c)平均粒径 3 μ m〕の光学顕微鏡 組織 (写真)を示すものである。
[図 3]ASTM F75および高温鍛造を用いて作製した (結晶粒径の微細化された) C o 29Cr— 6Mo合金の磨耗試験の結果を示すものである。
[図 4]Mo添力卩量を 6, 8,ぉょび10mass%と増加させたCo— 29Cr—xMo (x=6、8
、 10)鍛造合金の光学顕微鏡組織 (写真)を示すものである。 (a) Co- 29Cr-6M o合金, (b) Co 29Cr— 8Mo合金および(c) Co 29Cr— ΙΟΜο合金
[図 5]Mo添加量を 6, 8,ぉょび10mass%と増加させたCo— 29Cr—xMo (x=6、8
、 10)鍛造合金と ASTM F75の磨耗試験の結果を示すものである。
[図 6]Co— 29Cr— 6Mo铸造材よりのアトマイズィ匕合金粉末を焼結して得られた焼結 体の光学顕微鏡組織 (写真)を示すものである。左側: 40MPaプレス圧力 936°C焼 結体、右側: 40MPaプレス圧力 1052°C焼結体 [図 7]Co— 29Cr— 6Mo铸造材よりのアトマイズィ匕合金粉末を焼結して得られた 936 °C焼結体および 1052°Cの焼結体の磨耗試験の結果を示すものである。 ASTM F 75、 Co— 29Cr— 6Moの鍛造材(結晶粒径 12 μ m)の磨耗試験結果も示してある。 発明を実施するための最良の形態
[0014] 本発明において、「Co— Cr— Mo合金」としては、実質的な割合のクロム (Cr)及び モリブデン (Mo)を含有するコバルト (Co)を基体として 、る合金であって、当該分野 で「超合金(super alloy)」として知られている群に含まれるものが挙げられる。用語 「超合金」とは、非常に高い強度、優れた機械的特性並びに耐食性を持っているもの を一般的に表すのに使用されている技術用語であって、代表的な超合金は安定的 なミクロな組織を備えていることが認められている。本 Co— Cr— Mo合金は、優れた 生体適合性を有するものであり、高い降伏強度、優れた硬さなどを有している。該 Co — Cr— Mo合金としては、 ASTM (American Society for Testing and Mat erials ; アメリカ材料試験協会)規格、例えば、 ASTM F1537 94、 ASTM F79 9、 ASTM F75など、 ISO (International Organization for Standardizatio n; 国際標準化機構)規格、例えば、 ISO 5832— 12などを挙げることができる。
[0015] ASTM F 1537 94規格の合金組成(重量0 /0 (wt%) )は、次のようなものである
Mo : 5. 0〜7. Owt%、 Cr: 26. 0〜30. Owt%、 C :≤0. 35wt%、 Ni:≤ 1. Owt%, Fe :≤0. 75wt%, Mn:≤ 1. Owt%、
Si:≤ 1. Owt%、 N :≤0. 25wt%、そして
2
残部が、 Coである
[0016] ここで、 Niは、原料に不可避的に混在していることに起因して、少なくとも 0. 2〜1.
Owt%程度は、通常、含まれており、残部の Coとは、痕跡量で付随してくる不純物を 除!、た Co量を意味して 、る。
[0017] 該 Co— Cr Mo合金としては、 Vitallium (商品名)が整形外科用製品として知ら れているが、その一般的な糸且成は次のようなものである:
Mo :おおよそ 5. 50wt%、 Cr:おおよそ 28. 00wt%、
C :おおよそ 0. 25wt%、 Mn:おおよそ 0. 70wt%、 Si:おおよそ 0. 75wt%、そして
残部が、 Coである
[0018] ここで、 Niは、原料に不可避的に混在していることに起因して、少なくとも 0. 002〜 2. 5wt%、通常、含まれており、残部の Coとは、痕跡量で付随してくる不純物を除い た Co量を意味している。
[0019] 該 Co— Cr— Mo合金は、数多くのものが報告されており、例えば、特開 2002— 36 3675公報 (JP, A, 2002- 363675) ,国際公開第 97,00978号パンフレツ HW O, A, 97,00978)、米国特許第 5, 462, 575号明細書(US, A, 5462575) 、 米国特許第 4, 668, 290号明糸田書(US, A, 4668290)など【こ開示のものある!/ヽ【ま それらを修飾したもの、それから誘導されたものなどが含まれてもよい。例えば、特開 2002— 363675公報に開示されて!ヽるように、 Moの量力 ≤12. 0wt0/o程度まで 増量されて!、るものや 10wt%程度まで増量されて!、るものも含まれてよ!、。
[0020] 一つの具体的な態様では、該 Co— Cr Mo合金は、 Mo :おおよそ 5. 0〜6. Owt %、好ましくは 5. 0〜5. 5wt%、より好ましくは 5. 5wt%、 Cr:おおよそ 26. 0〜29. 5wt%、好ましくは 27. 0〜29. Owt%、より好ましくは 29. Owt%、。:≤ぉぉょそ0. 35wt%、好ましくは≤おおよそ 0. 07wt%、 Ni:≤おおよそ 1. 0wt%、 Fe :≤おお よそ 1. 5wt%、好ましくは≤おおよそ 0. 75wt%、 Mn:≤おおよそ 1. 0wt%、Si:≤ おおよそ 1. 0wt%、好ましくは≤おおよそ 0. 4wt%、 N:≤おおよそ 0. 25wt%、そ
2
して残部が、 Coである(ここで、 Niは、原料に不可避的に混在していることに起因し て、少なくとも 0. 002wt%程度、最低でも、 50ppmのオーダーより多くが存在してお り、残部の Coとは、痕跡量で付随してくる不純物を除いた Co量を示している)というも のであってよい。不可避的に C, Fe, Si, N ,その他の微量元素が含まれていてよい
2
ものである。
[0021] これまでの ASTM F75合金では、炭化物を形成させることを目的として炭素を最 大で 0. 35%含有させている。
[0022] 本発明では、上記 Co— Cr— Mo合金(特には、 ASTM規格の F75相当品)を構成 する組成を与える原料に、増量分 Mo元素を添加し、得られた当該合金用配合物を 通常の合金調製法に付してそれを行うことができる。 [0023] 添加元素の合金組成における配合量は、所望の σ相の分散析出強化が得られる ように増減することができ、所要の目的が得られ且つ得られる合金の特性に実質的 に悪影響を及ぼさない範囲でその配合量を設定できる。例えば、合金中に(1)少なく とも 6mass%以上又はそれを超える量、(2)少なくとも 6. 5mass%以上、(3)少なくと も 7mass%以上、(4)少なくとも 7. 5mass%以上、(5)少なくとも 8mass%以上、(6) 少なくとも 8. 5mass%以上、(7)少なくとも 9mass%以上、(8)少なくとも 9. 5mass %以上、(9)少なくとも 10mass%以上、(10)少なくとも l lmass%以上及び(11)少 なくとも 12mass%以上力もなる群力も選択されたものとなるように添加されてよい。し かし、これには限定されず、所要の目的が得られ且つ得られる合金の特性に実質的 に悪影響を及ぼさない範囲でその配合量を変えることができる。
[0024] Moの増量に伴い、結晶粒が微細になることや、 σ相が微細に析出する結果を得る ことが可能と考えられ、合金の耐磨耗特性を改善することができる。つまり、 Mo添カロ 量増加に伴 、Co— Cr— Mo合金の磨耗率を減少せしめることが可能であるとの結 果が得られる。
[0025] 本発明では、通常の合金組成の原料 (特には公知規格の合金組成の原料)ある ヽ は Mo富化した合金原料はそれを一緒にし、必要に応じて、混合後、加熱して溶融 せしめ、溶融合金とする。溶融化は、真空誘導溶融法 (vacuum induction melti ng ;VIM)のほ力、さまざまな公知の方法を適用できる。溶融処理工程の間、 VIM炉 にはアルゴンガスなどの不活性ガスの分圧をかけておくこともできる。また、別の手法 としては、 VIM炉に不活性ガスや窒素ガスを含有して ヽる被覆用ガスを流しておくこ ともできる。当該不活性ガスや被覆用ガスの存在下、溶融された合金は、適宜、所定 の組成が得られる所定の温度にまで加熱されたり、あるいは所定の温度で保持され る。次に、溶融している合金は、インゴットあるいは所要の形状物体に铸造することが でき、そのまま冷却せしめてもよいし、必要に応じて、焼入れすることができる。焼入 れ法としては、水焼入れ、氷水での焼入れ、油焼入れ、熱浴焼入れ、塩浴焼入れ、 電解焼入れ、真空焼入れ、空気焼入れ、噴射焼入れ、噴霧焼入れ、段階焼入れ、時 間焼入れ、プレスタエンチ、部分焼入れ、鍛造焼入れなどが挙げられるが、適宜、そ れぞれに適したものが適用される。代表的な場合では、水焼入れ、氷水での焼入れ が挙げられる。インゴットは、熱間押出し、熱間圧延、熱間線引き等を行うことにより所 望の形状に加工することもできる。
[0026] さらに、合金溶融物は、溶湯急冷法により、薄帯、細線などの所望の形状にするこ とができる。該溶湯急冷法には、液体紡糸法、回転液中紡糸法、キャベツシュ法、双 ロール法、片ロール法などが含まれてよい。溶湯急冷法では、一般的には、冷却され て 、る金属ロールあるいは冷媒流体中に溶融金属を噴出せしめてこの溶融金属を 凝固させる。該冷却されている金属ロールは、通常、高速で回転せしめられている。 該冷媒流体としては、各種のものを使用でき、所望の結果が得られる限り限定されな いが、例えば、シリコーンオイル類を含む流体を使用できる。該シリコーンオイル類と しては、例えば、東芝シリコーン社製ポリジメチルシロキサン TSF451— 30や TSF4 40が挙げられる力 これらに限定されない。また、これらのシリコーンオイル類は単独 で用いることも、数種組み合わせて用いることもできる。また、通常のシリコーンオイル 類に含まれる低沸点溶媒あるいは溶解した空気などのガスを除くために、使用するシ リコーンオイル類をあらカゝじめ減圧下で加熱してそれらを除去しておくことが好ましい 場合もある。また、溶融金属をシリコーンオイル類中で急冷凝固して直接金属細線を 作製するためには溶融金属ジェット流に加わる擾乱をできるだけ抑えることが好まし い。このため、溶融金属ジェットとシリコーンオイル類の間には微妙なバランスを取る ことが望ましい。具体的には、溶融金属ジェットとシリコーンオイル類の速度差、粘度 の違い、表面張力の違いなど制御することが望まれる。特に、本発明においてはシリ コーンオイル類の粘度を規定することは有効である。
[0027] 回転液中紡糸法とは、一般的には、回転するドラムの内側に遠心力により液層を形 成し、溶融金属あるいは溶融合金をノズル孔より噴出して、液層中にて凝固させ金属 細線を製造する方法で、例えば、冷媒として水を用いて、合金を溶融状態から回転 する水冷媒中に噴出して金属細線を得るといった技術である。キャベツシュ法とは、 例えば、特開昭 49— 135820号公報 (JP, A, 49- 135820 (December 27, 197 4) )に記載されているような手法で、溶融物を溶融フィラメント状に押出し、制御され たガス状界面領域を経て液状急冷領域へ通すもので、該液状急冷領域ではフィラメ ントと液状媒体とが並流しているといった技術であり、そこで用いる冷媒としては、流 体の媒体であって、純粋な液体、溶液、ェマルジヨン、または固液分散物であること ができ、該流体の媒体は、溶融物と反応して安定ィ匕表面スキンを形成でき、あるいは 溶融噴出物と化学的に非反応性であることができるもので、さらに急冷媒体の選択に あたっては、溶融噴出物の熱容量に関係して行なわれ、溶融噴出物の熱容量が大き くなればなるほど、急冷流体をより冷たく及び Z又はその比熱、密度、蒸発熱、およ び熱伝導率をより高いものとするのが好ましいとされる。さらには、流体の急冷媒体の 他の好ましい性質は、一般的には、溶融噴出物の分裂を最小にする低粘度、非粘性 、非毒性、光学的透明度を有するもので、低価格のものである。また、実際には、水、
— 20°Cの 23重量%の塩化ナトリウム水溶液、—33°Cの 21. 6重量%の塩化マグネ シゥム水溶液、—62°Cの 51重量%の塩ィ匕亜鉛水溶液の流体がそれぞれ好ましいこ と力 さらに 0〜100°Cで 50センチスト一タス粘度級のダウ'コ一-ング 510流体のよ うなシリコーン急冷流体などを用いることができる。
[0028] また、冷却された合金は、適宜、それをカ卩工せしめることができる。例えば、溶湯急 冷法などにより得られた、薄帯、細線などは、必要に応じて整形するなどし、それを医 療用デバイスにすることができる。また該合金は、偏析などを取り除くなどのため、さら に均質化熱処理にかけることができる。均質化熱処理は、熱処理と焼入れ処理とから なるものであることができる。熱処理は、当該分野で公知の方法力 選んでそれを適 用でき、例えば、電気炉などを使用したりすることができる。代表的な場合、減圧ある いは真空下に加熱されることができる。典型的な場合では、例えば、 5〜30時間、好 ましくは 8〜24時間、より好ましくは 10〜20時間加熱する。一つの具体例では、 12 〜15時間加熱する。加熱温度としては、例えば、 1400°C以下、代表的には 900〜1 350。C、好ましくは 1000〜1300。C、より好ましくは 1050〜1250。Cである力 所要 の目的が達成されるならばこれらに限定されるものではない。一つの具体例では、 1 100〜1200°Cである。均質化熱処理では、上記加熱処理の後、焼入れすることがで きる。焼入れ法については上記と同様である。
[0029] 本発明の Co— Cr— Mo合金においては、熱履歴を調整することにより、内部欠陥 を解消せしめてあるものを得ることも可能である。該熱履歴調整処理は、鍛造合金に 生じているヒケ巣、気泡などは、鍛造で圧潰され、デンドライト組織も破壊され、後続 する再結晶焼き鈍しにより均一な組織としょうとするものである。組織調整では、水冷 式の銅製铸型を用いて急冷铸造することにより析出物の成長を抑えることが期待でき る。高温鍛造等の塑性加工により、析出物、金属間化合物等の第二相を微細分散さ せることが期待できる。铸造時の急冷が析出物の成長抑制に及ぼす影響は、铸込み 温度力も 400°Cまでの温度域を 1000°CZ分以上の冷却速度で冷却するとき顕著に なる。また、高温鍛造により、铸造組織が破壊され、 40 m以下に微細化された等軸 結晶粒力 なるマトリックスが形成される。マトリックスの微細化は、耐磨耗性の向上に も有効である。
[0030] 本発明では、熱処理方法及び加工温度の選定によって合金の結晶粒径を微細化 したり、 σ相の分散析出の助長あるいは強化をすることも可能である。具体的には、 本発明系において高温鍛造温度を 1100〜1400°Cの範囲に設定することができる。 高温鍛造した当該合金を室温に持ち来たす場合にも、水冷等の急冷を採用すること によって、微細結晶粒径を保持したままそれをマトリックスに微細分散化することがで さる
[0031] 本発明に従えば、铸造合金は合金の結晶粒径を微細化する処理に付されることが できる。こうすること〖こより、耐磨耗特性向上が図られる。合金の結晶粒径の微細化は 、代表的には、铸造合金を高温鍛造処理に付すことにより達成できる。該鍛造処理 では、高温状態の金属塊をたたく(鍛練)処理が含まれていてよぐまた金属塊に含ま れる泡 ·ガス (気孔)を圧着せしめる処理が含まれていてよい。典型的には、結晶粒を 微細化する処理が含まれるものである。該鍛造処理は、圧縮加重を加えるものであつ てよぐ機械鍛造、自由鍛造を含むものであってよぐ金属材料を高温状態として、プ レス又はハンマーを用いて、上下金敷間などで力をカ卩える処理をなすものであってよ ぐ鍛伸すえ込み、穴あけ、穴広げ、展伸、せぎりなど及びそれらの組み合わせを含 むものであってよい。好適には、該鍛造処理は、型鍛造、密閉鍛造、ハンマーによる 鍛造、プレス鍛造などであってよぐ鍛造機械を使用して行うことができ、ドロップノヽン マー、 ノ ネノヽンマー、カウンタブローノヽンマー、 エアーノヽンマー、蒸気ノヽンマーや液 圧プレス(油圧プレス)、ナックルジョイントプレス、摩擦プレスなどのプレスにより鍛造 できる。型鍛造の型は、あら力じめ加熱しておくのが好ましい。こうすればインゴットの 熱が奪われないので好ましい。該高温鍛造は、合金結晶の平均粒径を、少なくとも 4 0 μ m以下にするように実施できるし、ある場合には更に少なくとも 30 μ m以下にした り、少なくとも 20 m以下にしたり、少なくとも 15 m以下にしたり、より好ましくは少 なくとも 13 /z m以下にしたり、少なくとも 11 /z m以下にしたり、少なくとも 9 /z m以下に したり、あるいは少なくとも 7 m以下にしたりできるし、そうなるまで鍛造を行うことが できる。本発明では、該高温鍛造は、合金結晶の平均粒径を、さらに少なくとも 5 m 以下にしたり、少なくとも 4 m以下にしたり、少なくとも 3. 5 m以下にしたり、少なく とも 3 m以下にしたり、少なくとも 2. 5 m以下にしたり、少なくとも 2 m以下にした り、少なくとも 1. 5 m以下にしたり、あるいは少なくとも 1 m以下にしたりできるし、 そうなるまで鍛造を行うことができる。所望の耐磨耗特性が得られるまで行うことがで きる。該高温鍛造は、 1000〜1300°Cの温度で行うことができ、好適には 1000〜12 00°Cの温度で行うことができる力 これには限定されず、例えば、 600°C〜1350°C の温度で行ったり、ある場合には 650。C〜1300。Cの温度で行ったり、 700。C〜125 0。Cの温度で行ったり、 750。C〜1200。Cの温度で行ったり、 800。C〜1150。Cの温 度で行ったり、 850°C〜1100°Cの温度で行ったり、 875°C〜1060°Cの温度で行つ たり、 900°C〜1050°Cの温度で行ったりできる。所望の耐磨耗特性が得られる条件 を適宜選択してよい。鍛造時の加重は、鍛造機を使用する場合ノ、ンマーの重さを変 えて調節でき、所望の耐磨耗特性が得られるように適宜適切に選択できるが、例え ば、 1〜3トンのハンマー、代表例では、 1. 5トンのハンマーを用いて、上記温度に加 熱してぉ ヽた材に対してたたきを始め、材料温度が所望の温度以下になるまでノヽン マーでたたくことをし、必要に応じて、その後再加熱して材料が所望の温度に達して 力もたたきを再開するというようにして鍛造を行うことができる。鍛造された合金は、冷 間圧延、機械加工などされることもできる。
本発明の合金は、特開昭 62— 80245公報 (JP, A, 62— 80245 (April 13, 198 7) )に開示されて!、るような金属のガスアトマイズ法(gas atomization)に付したり、 米国特許第 3, 591, 362号明糸田書 (US, A, 3591362)【こ開示されて!ヽる機械的 合金法(mechanical alloying)を利用している特開平 5— 1345公報 (JP, A, 5— 1345 (january 8, 1993) )に開示されている技術を適用して医療用デバイスに適 した形態の合金にすることも可能である。例えば、本発明の増量 Moを含んだ合金( Mo含有量を富化せしめた合金)を、ガスアトマイズ法で粉末状にせしめ、得られる粉 末を熱的機械的処理により圧縮せしめて、固体合金 (焼結体)とし、必要に応じて、 鍛造処理などの加工処理して人工補綴材を製造できる。
[0033] 該焼結処理は、例えば、アトマイズィ匕された合金粉末を、 1〜50メッシュサイズにス クリーンした後(例えば、 10メッシュサイズにスクリーンした後)、 5. 08cm (2インチ)又 は 7. 62cm (3インチ)の内径及び 10. 16cm (4インチ)の高さをもつ軟鋼製容器に 入れられて、容器を満たした後、通常の方法で脱ガスせしめ、次に 600°C〜1350°C の範囲の温度に熱し、 10〜250 MPaの範囲の均一な圧力をかけ、高温加熱して 行われてよい。その後、焼結体生成物は容器とともに周囲温度に冷却される。
[0034] 該合金粉末の粒径は、目的に応じて適宜選択でき、例えば、 25 μ m以上の平均粒 子径を有するものを好適に使用でき、気孔の数を少なくするのであれば、 25 /z m以 下の粒子径を有する微粒子を用いるのが好ましぐ気孔をより多くして潤滑効果をより 高めるためには、例えば、 200〜600 /ζ πιの径を有するビーズ状の粒子を有利に用 いることもできる。例えば、該合金粉末の焼結は、 600°C〜1350°Cの範囲の温度、 6 50。C〜1300。Cの範囲の温度、 700。C〜1250。Cの範囲の温度、 750。C〜1200。C の範囲の温度、 800°C〜1150°Cの範囲の温度、 850°C〜1100°Cの範囲の温度、 875°C〜1060°Cの範囲の温度、 900°C〜1050°Cの範囲の温度などで行うことがで きる。好適には、 900°C〜1250°Cの範囲の温度などが挙げられる。また、該合金粉 末の焼結は、 10〜250MPaの範囲の圧力下、 20〜200MPaの範囲の圧力下、 25 〜150MPaの範囲の圧力下、 30〜150MPaの範囲の圧力下、 30〜: LOO MPaの 範囲の圧力下、 30〜80MPaの範囲の圧力下、 35〜50MPaの範囲の圧力下、 35 〜45MPaの範囲の圧力下で行うことができる。好適には、 10〜60MPaの範囲の圧 力などが挙げられる。所望の表面気孔率が得られたり、潤滑性が得られる条件を適 宜選択してよい。
[0035] 該熱的機械的処理としては、上記したような処理も含まれ、熱間押出し、熱間圧延 、熱間プレスなどが包含されてよい。製品は、次に、機械加工されて、滑らかな表面 に仕上げることができ、また必要に応じて、該滑らかな表面を処理して多孔質被覆を 施すことちできる。
[0036] 本発明の高耐磨耗性 Co— Cr— Mo合金ゃ高 、潤滑性を有する Co— Cr— Mo合 金より生体用材料及び人工補綴材などの医療用デバイスを製造できる。該医療用デ バイスとしては、ブリッジ、歯根などの歯科材料、人工骨材といった補綴材料、外科用 インプラントなど、さらに生体適合性インプラント、関節用インプラント、医療用人エイ ンプラントなどが含まれる。インプラント材などとしては、人工の腰、人工の膝、人工の 肩、人工の足首、人工の肘、その他の人工の関節インプラントなどが挙げられる。本 発明の合金を使用して、骨折部位を固定したりするための部材を製造することもでき る。該部材としては、クギ、ネジクギ、ナット、ネジ、プレート、針、鈎針、鈎、受具、埋 込み土台などが含まれてよい。代表的な製品としては、人工股関節などの医療用人 ェ関節が挙げられ、互いが可動にされた医療用部材の接触部を有するような部材- 製品などが含まれ、例えば、人工関節用骨頭、寛骨臼蓋 (人工関節用ソケット)など が含まれる。
[0037] このように本発明では、人工股関節などに使用されている生体用 Co— Cr— Mo合 金で、生体内での磨耗粉の発生が問題となっているという課題解決技術を提供して いる。よって、人工関節用の Co— Cr— Mo合金の耐磨耗特性を改善し、生体内での 磨耗粉の発生を抑制する技術を提供しているのである。本発明の人工関節用の Co Cr Mo合金の耐磨耗特性の改善は、合金の結晶粒を微細化すること、公知規 格の Co— Cr Mo合金(例えば、 Co 29Cr— 6Mo合金)よりも Moを多く含んだ合 金組成とすること、 σ相の分散析出する割合を高めること、ガスアトマイズ法で製造し た合金粉末を焼結せしめて合金部材表面に気孔を形成せしめるなどの手法で達成 できる。本高耐磨耗性 Co— Cr— Mo合金は、生体毒性の少ない、すなわち、より安 全で使用寿命の長い、人工股関節、人工膝関節などの医療用デバイスに応用可能 である。
[0038] 本明細書で、耐磨耗性が優れるとか、結晶粒径がより微細化されているとか、 Mo含 有量を富化せしめたとか、 σ相の分散析出をより強化せしめてあるとか、部材表面に 気孔がより存在するとかは、 ASTM規格の F75相当品、代表的には Co— 29Cr— 6 Mo合金、例えば、その铸造品との比較でそれを意味してもよい。 実施例
[0039] 以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の 説明のため、その具体的な態様の参考のために提供されているものである。これらの 例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示 する発明の範囲を限定したり、あるいは制限することを表すものではない。本発明で は、本明細書の思想に基づく様々な実施形態が可能であることは理解されるべきで ある。
[0040] 全ての実施例は、他に詳細に記載するもの以外は、標準的な技術を用いて実施し たもの、又は実施することのできるものであり、これは当業者にとり周知で慣用的なも のである。
[0041] (試料組成)
実施例での Co— Cr Mo合金試料の公称組成は Co : Bal. , Cr: 29mass%, M o : 6, 8, 10mass%である。
[0042] (試験片作製)
高温鍛造を用いて作製されたインゴットより、ワイヤーカット放電加工機を用いて直 径 30mm X厚さ 5mmのディスクに加工した。鍛造は、約 1000〜1200°Cの温度〖こし た材料を、 1. 5トンのハンマーでたたいておこない、温度が低下したら材料を再度カロ 熱して上記温度にして行うというようにして実施した。所望の結晶粒径が得られるまで 操作を行った。該ディスクに加工された部材を、磨耗試験片とした。磨耗試験片はェ メリー研磨の後、 0. 06 mの砲粒を用いてパフ研磨を行い、その表面が算術平均 粗さ Raにして、 0. 05 /z m以下になるように仕上げている。
[0043] (磨耗試験方法)
作製した合金の耐磨耗性を評価するため、ピンオンディスク型磨耗試験(図 1参照) を行った。本磨耗試験で使用したピンおよびディスクは全て同種材で作製した。
[0044] 試験条件は以下のように示される。
試験溶液:ハンクス溶液 (無機系擬似体液)
荷重: 9. 8N
滑り距離: 1. 21 X 107mm 滑り速度: 20mmZs
温度: 37± 2°C
試験片はアセトンで超音波洗浄した後、磨耗試験を行って ヽる。
[0045] (磨耗率の評価)
試験終了後に試験片を取り出しアセトンで超音波洗浄した後、試験片重量を測定 して、試験前後における試験片の重量変化を調べる。
得られた重量変化をもとに、次式を用いて磨耗率を計算した。
ω =Μ / (L- ρ )
loss
ここで、 ω :磨耗率 (単位滑り距離当りの磨耗量) [mm2]
M :試験片の重量変化 [g]
loss
L :滑り距離 [mm]
P:試験片の密度 [gZmm3]
[0046] (試験結果)
実施例 1
[0047] (粒径微細化した合金の磨耗試験結果)
図 2は、 ASTM F75 (a)および高温鍛造を用いて作製した (結晶粒径の微細化さ れた) Co— 29Cr— 6Mo合金〔(b)平均粒径 14 μ m, (c)平均粒径 3 μ m〕の光学顕 微鏡組織である。 ASTM F75は、現在実際に人工関節の骨頭材料として使用され る Co— Cr— Mo铸造合金であり、耐磨耗性向上のためにカーノイドを多く含んでい る。本実施例で高温鍛造を用いて作製した合金の結晶粒径がはるかに小さいことを 示している。
[0048] 図 3は、 ASTM F75および高温鍛造を用いて作製した (結晶粒径の微細化され た) Co— 29Cr— 6Mo合金の磨耗試験結果である。 ASTM F75の磨耗率と比較し て、作製した平均粒径 14 μ mの Co— Cr— Mo合金は同程度であり、平均粒径 3 μ mの Co— Cr— Mo合金はこれらよりも、より一層磨耗率が低いことを示している。なお 、高温鍛造は、上記のようにして実施された。
[0049] 実施例 2
[0050] (Mo添加量増加した合金の磨耗試験結果) 図 4 (a) , (b)および(c)は、それぞれ Mo添力卩量を 6, 8,および 10mass%と増加さ せた Co— 29Cr— xMo (x=6、 8、 10)鍛造合金の光学顕微鏡組織である。結晶粒 径は、 14 m程度である力 Moの添カ卩量が多い、 ΙΟΜοの合金では、 σ相の微細 な析出が認められる。鍛造は、実施例 1と同様にして高温鍛造により行った。
[0051] 図 5は、 Mo添加量を 6, 8, 10mass%と増加させた Co— 29Cr— xMo (x=6、 8、 10)鍛造合金と ASTM F75の磨耗試験の結果である。 6Moの合金(Co— 29Cr— 6Mo合金)の磨耗率は ASTM F75と大差は無かったが、 8Moの合金(Co— 29Cr 8Mo合金)および ΙΟΜοの合金(Co— 29Cr— ΙΟΜο合金)の磨耗率は ASTM F75のものより低かった。このことは Mo添カ卩量増加に伴い Co— Cr— Mo合金の磨 耗率が減少することを示している。これは、 Moの増量に伴い、結晶粒が微細になるこ とに加えて、 σ相が微細に析出する結果、耐磨耗特性が改善されたものと考えられる 。このことより、 σ相を微細に析出させることも、潤滑環境で同種材の耐磨耗特性の 改善に効果的であると言える。
[0052] Mo添加量増加と高温鍛造による合金結晶粒径の微細化とを組み合わせると、 σ 相が微細に析出する( σ相の分散析出を強化せしめる)こととなり、耐磨耗特性が改 善が改善されると 、う結果となることがわかる。
[0053] 実施例 3
[0054] (ガスアトマイズ法により作製された Co— 29Cr—6Mo合金粉末の焼結体の磨耗試 験)
(実験方法)
真空誘導溶解炉を用いて作製した Co— 29Cr— 6Mo铸造材 (600g)を出発原料 とした。これを高周波で溶解し、 Ar雰囲気中でアトマイズを行った。作製した合金粉 末(25 μ m以下の粒子径)を用いて真空高温焼結炉 (ホットプレス:ネムス製)により 焼結した。焼結は 936°Cと 1052°Cで、 40MPaのプレス圧力で行った。
(結果)
936°Cおよび 1052°C焼結体の光学顕微鏡組織を、それぞれ、図 6 (a)および (b) に示す。 X線回折実験より、 936°C焼結体の組織は、 HCP相が主な構成相であるが 、僅かに、 σ相も含まれることが分力つた。このときの気孔率は 1〜10%であった。ま た、 1052°Cの焼結体の組織は、 FCC単相組織であることが分かった。このときの気 孔率は 1〜10%であった。
[0055] 図 7は、 936°C焼結体および 1052°Cの焼結体の磨耗試験結果を示したものである 。比較のために、 ASTM F75、 Co— 29Cr— 6Moの鍛造材(結晶粒径 12mm)の 磨耗試験結果も示してある。これより、 936°C焼結体および 1052°Cの焼結体はいず れも、鍛造材の耐磨耗特性を凌ぐことが分力ゝつた。これは、結晶粒が微細であること に加え、適度に含まれる試料表面の気孔が潤滑液だめ効果を示し、気孔が存在しな い、鍛造材よりも高い潤滑効果が得られたためと考えられる。
[0056] (磨耗試験のまとめ)
Co Cr Mo合金の粒径微細化並びに Mo添カ卩量増加は、同種材での耐磨耗性 の向上をもたらす。また、微細結晶粒組織に σ相を微細に析出させることは、同種材 での耐磨耗性の改善にとって極めて効果が高い。さらに、粉末焼結などで作製され た焼結体の気孔を利用することで、潤滑効果が高まり、同種材の耐磨耗特性を改善 することが分力つた。
[0057] 本発明は人工関節用の Co— Cr— Mo合金の耐磨耗特性を、結晶粒を微細化する ことにより改善し、生体内での磨耗粉の発生を抑制(従来品に比べ磨耗量が 10分の 1を実現)できる。例えば、結晶粒径が 20 m程度というように微細化することにより、 炭化物を含有しなくとも耐磨耗特性が飛躍的に向上させることが可能であることを明 らカにした。し力も、このように結晶粒を微細化することにより耐磨耗特性が改善され た合金では、擬似生体液中で磨耗試験を行うと、従来の同種材の炭化物を含んだ A STM規格の F75合金よりも極めて耐磨耗特性が改善されることが明らカゝとなった。こ れは相手材を攻撃する炭化物が無 、ためにもたらされた結果である。
[0058] さらに、 Co— 29Cr—6Mo合金よりも Moを多く含んだ合金、すなわち、 Co— 29Cr
8Mo、 Co— 29Cr— ΙΟΜοの同じく高温鍛造により結晶粒を微細にした合金を用 いて同様な同種材での磨耗試験を擬似生体液中で行った結果、さらに従来材のも のに比べて良好な耐磨耗特性を示すことが明らかとなった。これは、分散析出する σ 相が合金全体の硬さを向上させる効果が発揮されたためであると考えられる。力べし て、本発明の合金は、生体毒性の少ない、すなわち、より安全で使用寿命の長い、 人工股関節、人工膝関節などの医療用デバイスに応用可能である。
産業上の利用可能性
[0059] 本発明により、耐磨耗特性に優れる人工関節用 Co— Cr Mo合金、その製造法 及び該合金より製造される生体用材料及び人工補綴材が提供できる。本発明では、 安価で且つ簡単な手法で人工関節用の Co— Cr Mo合金の耐磨耗特性を改善し 、生体内での磨耗粉の発生を抑制する技術が提供されるので、得られた合金はコス ト的に優れており、広範な実用用途、例えば、生体適合材料や医療用デバイスを製 造するのに応用できる。
[0060] 本発明は、前述の説明及び実施例に特に記載した以外も、実行できることは明らか である。上述の教示に鑑みて、本発明の多くの改変及び変形が可能であり、従って それらも本件添付の請求の範囲の範囲内のものである。

Claims

請求の範囲
[1] 人工関節用 Co— Cr— Mo合金における耐磨耗特性向上法であり、(1)合金の結 晶粒径を微細化する処理、(2) Mo含有量を富化せしめた合金組成の調製、 (3) σ 相の分散析出を強化せしめる処理、(4)粉末焼結体形成処理及び (5)粉末焼結体 に生じる気孔形成処理からなる群から選択された処理を施すことを特徴とする人工関 節用 Co— Cr— Mo合金の耐磨耗特性向上法。
[2] Co— Cr Mo铸造合金を、高温鍛造処理に付して合金の結晶粒径を微細化する ことを特徴とする請求項 1に記載の Co— Cr— Mo合金の耐磨耗特性向上法。
[3] 合金結晶の平均粒径を、(1)少なくとも 20 m以下、(2)少なくとも 15 m以下、( 3)少なくとも 13 m以下、(4)少なくとも 11 m以下、(5)少なくとも 9 m以下、(6) 少なくとも 以下、(7)少なくとも 5 m以下、(8)少なくとも 4 m以下、(9)少なく とも 3. 以下、(10)少なくとも 3 m以下、(11)少なくとも 2. 以下、(12) 少なくとも 以下、(13)少なくとも 1. 5 m以下及び(14)少なくとも: L m以下か らなる群力も選択されたものにすることを特徴とする請求項 1又は 2に記載の Co— Cr — Mo合金の耐磨耗特性向上法。
[4] 合金中の Mo含有量を、(1)少なくとも 6mass%以上又はそれを超える量、(2)少な くとも 6. 5mass%以上、(3)少なくとも 7mass%以上、(4)少なくとも 7. 5111&33%以 上、(5)少なくとも 8mass%以上、(6)少なくとも 8. 5mass%以上、(7)少なくとも 9m ass%以上、(8)少なくとも 9. 5mass%以上、(9)少なくとも 10mass%以上、(10)少 なくとも 1 lmass%以上及び(11)少なくとも 12mass%以上力もなる群力も選択され たものにすることを特徴とする請求項 1〜3のいずれか一記載の Co— Cr— Mo合金 の耐磨耗特性向上法。
[5] Mo含有量を富化せしめた合金組成とし且つ高温鍛造処理をして σ相の分散析出 を強化せしめることを特徴とする請求項 1〜4のいずれか一記載の Co— Cr— Mo合 金の耐磨耗特性向上法。
[6] 合金組成中の Co、 Cr及び Mo元素以外の元素の含有量力 少なくとも 1111&55%以 下の合金であることを特徴とする請求項 1〜5のいずれか一記載の Co— Cr— Mo合 金の耐磨耗特性向上法。
[7] 铸造合金をガスアトマイズ法に付し、得られた合金粉末を焼結して気孔を部材の表 面に有するようにしてあることを特徴とする請求項 1〜6のいずれか一記載の Co— Cr — Mo合金の耐磨耗特性向上法。
[8] 合金粉末の焼結を、(1) 600。C〜1350。C、(2) 650。C〜1300。C、(3) 700。C〜1
250。C、(4) 750。C〜1200。C、(5) 800。C〜1150。C、(6) 850。C〜1100。C、 (7) 8 75°C〜1060°C及び(8) 900°C〜1050°Cからなる群力も選択された温度で行うこと を特徴とする請求項 1〜7のいずれか一記載の Co— Cr— Mo合金の耐磨耗特性向 上法。
[9] 合金粉末の焼結を、(l) 10〜250MPa、(2) 20〜200MPa、(3) 25〜150MPa、
(4) 30〜150MPa、(5) 30〜: L00MPa、(6) 30〜80MPa、(7) 35〜50MPa、 (8) 35〜45MPa及び(9) 10〜60MPaからなる群から選択された圧力で行うことを特徴 とする請求項 1〜8のいずれか一記載の Co— Cr— Mo合金の耐磨耗特性向上法。
[10] 耐磨耗特性が向上せしめられており且つ人工関節用 Co— Cr— Mo合金であり、 ( 1)合金の結晶粒径が微細化されて 、る、 (2) Mo含有量が富化せしめられて 、る合 金組成を有する、 (3) σ相の分散析出が強化せしめられている、(4)粉末焼結体形 成処理が施されて!/、る及び(5)粉末焼結体に気孔が形成せしめられて!/、るからなる 群力も選択されたものであることを特徴とする人工関節用 Co— Cr— Mo合金。
[11] 請求項 1〜9のいずれか一記載の耐磨耗特性向上法で製造されたことを特徴とす る請求項 10に記載の人工関節用 Co— Cr— Mo合金。
[12] 請求項 10に記載の Co— Cr— Mo合金力も製造されたことを特徴とする医療用デ バイス。
[13] 医療用デバイスが、人工関節であることを特徴とする請求項 12に記載の医療用デ バイス。
[14] 医療用デバイスが、人工関節用骨頭及び寛骨臼蓋 (人工関節用ソケット)であること を特徴とする請求項 13に記載の医療用デバイス。
PCT/JP2005/005785 2005-03-28 2005-03-28 耐磨耗特性に優れる人工関節用Co-Cr-Mo合金 WO2006103742A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2005/005785 WO2006103742A1 (ja) 2005-03-28 2005-03-28 耐磨耗特性に優れる人工関節用Co-Cr-Mo合金
US11/909,979 US20080195214A1 (en) 2005-03-28 2005-03-28 Co-Cr-Mo Alloy for Artificial Joint Having Excellent Wear Resistance
JP2007510271A JP4843795B2 (ja) 2005-03-28 2005-03-28 耐磨耗特性に優れる人工関節用Co−Cr−Mo合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/005785 WO2006103742A1 (ja) 2005-03-28 2005-03-28 耐磨耗特性に優れる人工関節用Co-Cr-Mo合金

Publications (1)

Publication Number Publication Date
WO2006103742A1 true WO2006103742A1 (ja) 2006-10-05

Family

ID=37053015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005785 WO2006103742A1 (ja) 2005-03-28 2005-03-28 耐磨耗特性に優れる人工関節用Co-Cr-Mo合金

Country Status (3)

Country Link
US (1) US20080195214A1 (ja)
JP (1) JP4843795B2 (ja)
WO (1) WO2006103742A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184783A (ja) * 2010-03-11 2011-09-22 Tohoku Univ 窒素添加Co−Cr−Mo合金の結晶粒微細化方法
KR101541455B1 (ko) 2013-07-15 2015-08-03 전남대학교산학협력단 Co-C 모합금의 유도용해 방법을 이용한 Co-Cr-Mo 의료용 합금의 제조방법 및 이로 제조된 Co-Cr-Mo 의료용 합금
CN109570519A (zh) * 2019-01-31 2019-04-05 上海材料研究所 一种用于3D打印的CoCrMo合金粉末的制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164182A (ja) * 2007-12-28 2009-07-23 Hitachi Global Storage Technologies Netherlands Bv 磁気抵抗効果素子、磁気ヘッド及び磁気記録再生装置
WO2010026996A1 (ja) * 2008-09-05 2010-03-11 国立大学法人東北大学 窒素添加Co-Cr-Mo合金の結晶粒微細化方法および窒素添加Co-Cr-Mo合金
WO2011155063A1 (ja) * 2010-06-11 2011-12-15 日本メディカルマテリアル株式会社 拡散硬化処理性に優れた生体用コバルト・クロム基合金鋳造基材、生体用摺動合金部材および人工関節
US20140271317A1 (en) * 2011-10-21 2014-09-18 Kyocera Medical Corporation BIOCOMPATIBLE Co-Cr-Mo ALLOY
CN103060617A (zh) * 2012-12-26 2013-04-24 北京融点金属有限公司 一种高耐磨性能的钴铬钼合金
EP3198059B1 (en) * 2014-09-23 2019-03-06 Medacta International SA Antimicrobial silver complex coated surface
US20190093709A1 (en) * 2017-09-26 2019-03-28 Hamilton Sundstrand Corporation Self lubricating metallic splined coupling for high speed aerospace pumps
CN112553506A (zh) * 2020-12-02 2021-03-26 石家庄利德粉末材料有限责任公司 一种注射成形用钴铬钼合金粉末材料及其制造方法
CN113019716B (zh) * 2021-03-04 2022-08-26 中国矿业大学 一种人工关节混合磨屑多次离心分离的提取方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280245A (ja) * 1985-08-13 1987-04-13 ファイザ−・ホスピタル・プロダクツ・グル−プ・インコ−ポレ−テッド ガス霧化により製造される分散強化コバルト―クロム―モリブデン合金及びその製法
JPH09506142A (ja) * 1993-12-23 1997-06-17 シーアールエス ホールディングス,インコーポレイテッド Co−cr−mo粉末冶金製品及びその製造方法
JP2002363675A (ja) * 2001-06-07 2002-12-18 Japan Science & Technology Corp 生体用Co基合金及びその製造方法
JP2004269994A (ja) * 2003-03-11 2004-09-30 Japan Science & Technology Agency 生体適合性Co基合金及びその製造方法
JP2004315839A (ja) * 2003-04-11 2004-11-11 Nhk Spring Co Ltd Co−Cr−Mo系細線およびその製造方法、ならびにこの細線を加工してなる面状体、筒状体、縒り線およびケーブル

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591362A (en) * 1968-03-01 1971-07-06 Int Nickel Co Composite metal powder
US4714468A (en) * 1985-08-13 1987-12-22 Pfizer Hospital Products Group Inc. Prosthesis formed from dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization
WO2004085098A2 (en) * 2003-03-27 2004-10-07 Purdue Research Foundation Metallic nanoparticles as orthopedic biomaterial
US7763080B2 (en) * 2004-04-30 2010-07-27 Depuy Products, Inc. Implant system with migration measurement capacity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280245A (ja) * 1985-08-13 1987-04-13 ファイザ−・ホスピタル・プロダクツ・グル−プ・インコ−ポレ−テッド ガス霧化により製造される分散強化コバルト―クロム―モリブデン合金及びその製法
JPH09506142A (ja) * 1993-12-23 1997-06-17 シーアールエス ホールディングス,インコーポレイテッド Co−cr−mo粉末冶金製品及びその製造方法
JP2002363675A (ja) * 2001-06-07 2002-12-18 Japan Science & Technology Corp 生体用Co基合金及びその製造方法
JP2004269994A (ja) * 2003-03-11 2004-09-30 Japan Science & Technology Agency 生体適合性Co基合金及びその製造方法
JP2004315839A (ja) * 2003-04-11 2004-11-11 Nhk Spring Co Ltd Co−Cr−Mo系細線およびその製造方法、ならびにこの細線を加工してなる面状体、筒状体、縒り線およびケーブル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184783A (ja) * 2010-03-11 2011-09-22 Tohoku Univ 窒素添加Co−Cr−Mo合金の結晶粒微細化方法
KR101541455B1 (ko) 2013-07-15 2015-08-03 전남대학교산학협력단 Co-C 모합금의 유도용해 방법을 이용한 Co-Cr-Mo 의료용 합금의 제조방법 및 이로 제조된 Co-Cr-Mo 의료용 합금
CN109570519A (zh) * 2019-01-31 2019-04-05 上海材料研究所 一种用于3D打印的CoCrMo合金粉末的制备方法

Also Published As

Publication number Publication date
JPWO2006103742A1 (ja) 2008-09-04
US20080195214A1 (en) 2008-08-14
JP4843795B2 (ja) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4843795B2 (ja) 耐磨耗特性に優れる人工関節用Co−Cr−Mo合金
EP2330227B1 (en) METHOD OF FORMING FINE CRYSTAL GRAINS IN NITROGEN-DOPED Co-Cr-Mo ALLOY AND NITROGEN-DOPED Co-Cr-Mo ALLOY
EP1829982B1 (en) BIO-Co-Cr-Mo ALLOY WITH ION ELUTION SUPPRESSED BY REGULATION OF TEXTURE, AND PROCESS FOR PRODUCING THE SAME
Sahasrabudhe et al. Laser processing of in situ TiN/Ti composite coating on titanium
Dewidar et al. Mechanical properties of metals for biomedical applications using powder metallurgy process: a review
JPH0774409B2 (ja) ガス霧化により製造される分散強化コバルト―クロム―モリブデン合金から製造される人工補装具
Bernard et al. Rotating bending fatigue response of laser processed porous NiTi alloy
Marek et al. Powder metallurgy preparation of Co-based alloys for biomedical applications
Hsu et al. Effects of chromium addition on structure and mechanical properties of Ti–5Mo alloy
Pilliar Manufacturing processes of metals: The porcessing and properties of metal implants
Okazaki Effects of heat treatment and hot forging on microstructure and mechanical properties of Co-Cr-Mo alloy for surgical implants
CN117448711A (zh) 提高承重骨植入用镁合金抗应力腐蚀性能的制备方法
Niinomi Co–Cr-based alloys
Facchini Microstructure and mechanical properties of biomedical alloys produced by Rapid Manufacturing techniques
US20090088845A1 (en) Titanium tantalum oxygen alloys for implantable medical devices
CN116815036A (zh) 一种析出强化型高性能医用多主元合金及其制备方法和应用
Basha et al. The Effect of Si Addition on the Microstructure, Mechanical Properties, and Wear Rate of the Co–Cr–Mo-Based Biomedical Alloys
Mostafaei et al. Additive Manufacturing of Cobalt Alloys
Ducheyne et al. Fatigue properties of cast and heat treated Ti 6Al 4V alloy for anatomic hip prostheses
CN114457258A (zh) 一种离子缓释高强Ti-Cu合金及其3D打印方法和应用
JP2010215960A (ja) 機械部品の製造方法及び機械部品
Berry et al. The production and properties of wrought high carbon Co-Cr-Mo alloys
JP5239005B2 (ja) 組織制御によってイオン溶出を抑えた生体用Co−Cr−Mo合金及びその製造法
CN115595510B (zh) 一种加工硬化能力高的铁锰合金及其制备方法和应用
Öztürk et al. Effects of various heat treatments on microstructure and mechanical properties of investment cast Co-Cr-Mo implants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510271

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11909979

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05727393

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5727393

Country of ref document: EP