WO2006103739A1 - Heat insulated container - Google Patents

Heat insulated container Download PDF

Info

Publication number
WO2006103739A1
WO2006103739A1 PCT/JP2005/005778 JP2005005778W WO2006103739A1 WO 2006103739 A1 WO2006103739 A1 WO 2006103739A1 JP 2005005778 W JP2005005778 W JP 2005005778W WO 2006103739 A1 WO2006103739 A1 WO 2006103739A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
particle size
film
heat
radiation
Prior art date
Application number
PCT/JP2005/005778
Other languages
French (fr)
Japanese (ja)
Inventor
Takafumi Fujii
Yu Kobayashi
Original Assignee
Thermos K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermos K.K. filed Critical Thermos K.K.
Priority to CA002590409A priority Critical patent/CA2590409A1/en
Priority to PCT/JP2005/005778 priority patent/WO2006103739A1/en
Priority to DE112005003091T priority patent/DE112005003091T5/en
Priority to US11/720,599 priority patent/US20080190942A1/en
Priority to JP2007510268A priority patent/JPWO2006103739A1/en
Priority to CNA2005800375552A priority patent/CN101052334A/en
Publication of WO2006103739A1 publication Critical patent/WO2006103739A1/en
Priority to GB0710438A priority patent/GB2435091A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J41/00Thermally-insulated vessels, e.g. flasks, jugs, jars
    • A47J41/0055Constructional details of the elements forming the thermal insulation
    • A47J41/0072Double walled vessels comprising a single insulating layer between inner and outer walls
    • A47J41/0077Double walled vessels comprising a single insulating layer between inner and outer walls made of two vessels inserted in each other
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J41/00Thermally-insulated vessels, e.g. flasks, jugs, jars
    • A47J41/02Vacuum-jacket vessels, e.g. vacuum bottles
    • A47J41/022Constructional details of the elements forming vacuum space
    • A47J41/024Constructional details of the elements forming vacuum space made of glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3837Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container in the form of a bottle, jar or like container
    • B65D81/3841Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container in the form of a bottle, jar or like container formed with double walls, i.e. hollow

Definitions

  • the present invention relates to a heat insulating container, and more particularly to a glass heat insulating container formed by joining an inner container and an outer container and evacuating a gap provided between the inner container and the outer container.
  • a heat insulating container made of glass is provided with a certain gap inside the outer container, the inner container is disposed, and the vicinity of the mouth is melted to make the mouth of the inner container and the mouth of the outer container Are integrally formed, and the gap is evacuated to provide a vacuum heat insulating layer.
  • the outer surface of the inner container is exposed to radiation such as an ITO film (a substance in which an oxide of indium (In) is doped with tin (Sn)).
  • a protective film is coated, and this coating is performed by sputtering, CVD, PVD, or the like (for example, see Patent Document 1).
  • Patent Document 1 JP 2003-299582
  • the heat retention performance may vary.
  • the heat insulation performance of the radiation prevention film may be different before and after the replacement of the target even if the sputtering is performed under the same conditions.
  • This heat retention performance is considered to be related to the film thickness of the radiation preventing film.
  • the heat insulation container has a predetermined heat insulation performance is determined by assembling the heat insulation container that is not based on the film thickness until the final process, and then adding hot water to the heat insulation container and the temperature of the hot water after several hours have passed. It must be done directly by measuring This inspection takes time, resulting in high manufacturing costs. Even if it is determined that the heat insulation performance of the insulated container does not meet the standards! The film cannot be coated, resulting in disposal, which further increases the overall manufacturing cost.
  • the present invention has been made to solve such problems, and has an object to provide a heat insulating container having a certain heat retaining performance and capable of confirming the heat retaining performance in a non-destructive manner.
  • the present inventors have found that there is a certain relationship between the average particle size of the particles on the surface of the radiation prevention film and the heat retention performance. .
  • the inventors have found that by maintaining the particle size at a predetermined value or more, a certain heat retention performance can be secured, and the present invention has been completed.
  • the heat insulation container according to claim 1 of the present invention at least one of the outer surface of the glass inner container and the inner surface of the glass outer container is coated with a radiation prevention film, and the inner container is A heat-insulating container formed by providing a space inside the outer container, joining the mouth of the inner container and the mouth of the outer container, and evacuating and sealing the space
  • the average particle size of the particles on the surface of the radiation preventing film is not less than a predetermined value.
  • the heat insulation container according to claim 2 wherein at least one of the outer surface of the glass inner container and the inner surface of the glass outer container is coated with a radiation prevention film, and the inner container is the outer container.
  • the heat insulating container formed by disposing and arranging a gap inside, joining the mouth of the inner container and the mouth of the outer container, and evacuating and sealing the gap
  • the average particle size of the surface particles of at least a portion of the radiation preventing film that is present on the side portion of the heat insulating container is a predetermined value or more.
  • the heat insulation container according to claim 3 is characterized in that, in claim 1 or 2, the predetermined value is 5 Onm.
  • the insulated container according to claim 4 is characterized in that, in any one of the forces 1 to 3, the thickness of the radiation preventing film is 150 nm or more.
  • the heat insulation container according to claim 5 is characterized in that, in any one of the forces 1 to 4, the radiation prevention film is an ITO film.
  • the heat insulating container of the present invention sufficient heat retention performance can be obtained by setting the average particle size of the particles on the surface of the radiation preventing film to a predetermined value or more. Since the particle diameter can be measured non-destructively by observing from the outside, it can be inspected quickly, and even if it is judged that the coating is insufficient, it is possible to form a film repeatedly. Therefore, the inspected thermal insulation container is not wasted, and as a result, the entire manufacturing cost can be reduced.
  • the part of the radiation preventing film that greatly affects the heat retaining performance of the heat insulating container is a part that exists on the side of the heat insulating container. Therefore, if the average particle diameter of the surface particles of at least the side portions of the heat insulating container in the radiation prevention film is equal to or greater than a predetermined value, sufficient heat retaining performance can be ensured.
  • the heat insulating container having the radiation preventing film is sealed with lOOOcc of 95 ° C hot water inside, Even after 6 hours have passed in a room at 20 ° C, the temperature of the hot water inside can be kept above 60 ° C.
  • the heat insulation container equipped with the radiation prevention film is sealed with 95 ° C hot water lOOOcc inside, and the room temperature is 20 ° C. Even after 6 hours, the temperature of the internal hot water can be kept above 60 ° C.
  • FIG. 1 is a cross-sectional view of a heat insulating container according to a preferred embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the ITO particle size, the heat retention performance, and the thickness of the ITO film.
  • FIG. 3 is a graph showing the relationship between the soot particle size, the heat retention performance and the thickness of the capsule under different conditions from those in FIG.
  • FIG. 4 Enlarged photographs of capsules with various particle sizes.
  • FIG. 1 is a cross-sectional view of a heat-insulating container 10 that is useful for an embodiment of the present invention.
  • the heat insulating container 10 of the present embodiment includes a glass inner container 12 and a glass outer container 16 disposed with a gap 14 having a certain width outside the inner container 12. Is provided.
  • the outer container 16 is an upper outer container 16a and a lower outer container 16b joined together.
  • the inner container 12 and the upper outer container 16a are joined at the mouth 18, and the inner surface of the outer container 16 and the outer surface of the inner container 12 are joined.
  • the gap 14 between them is kept in a vacuum state.
  • the outer surface of the inner container 12 is covered with an ITO film 20 as a radiation preventing film in order to reduce heat radiation.
  • the ITO film 20 is coated by a sputtering method, and when observed from the outside, the ITO film 20 has particles having a particle diameter of a predetermined value or more on the surface.
  • the ITO film 20 has particles having a particle size of a predetermined value or more over the entire surface of the ITO film 20.
  • the present invention is not limited to this, and the average particle diameter of at least the portion of the surface of the ITO film 20 existing on the side portion 22 of the heat insulating container 10 may be a predetermined value or more.
  • the predetermined value means that 95 ° C of hot water is put in a heat insulating container having an ITO film having particles having a particle size equal to or larger than that value, and sealed, and 20 ° This is the smallest particle size at which the temperature of the hot water inside the insulated container is maintained at 60 ° C or higher even after 6 hours have passed in the C room.
  • place an insulated container in a room at 20 ° C put 10 OOcc of hot water at about 95 ° C in it, seal it, and the temperature of the hot water after 6 hours has passed is referred to as heat insulation performance in this specification.
  • This 60 ° C is generally the lowest temperature required to function as an insulated container.
  • the ITO film 20 is covered on the outer surface of the glass inner container 12, the inner container 12 is disposed with the gap portion 14 provided in the outer container 16, and the inner container 12 and outer container 16
  • the average particle size of the particles on the surface of the ITO film 20 is not less than a predetermined value.
  • the heat retention performance of 60 ° C can be obtained by setting the average particle size of the particles on the surface of the capsule 20 to a predetermined size or more. And since the particle size can be inspected non-destructively by observing from the outside, it can be inspected quickly. Even if the coating is judged to be inadequate, since it has been inspected nondestructively, it is possible to further form a film on the coated ITO film. Therefore, the insulative container that has been inspected is not wasted, and as a result, the overall manufacturing cost can be reduced.
  • the ITO film 20 is used as the radiation preventing film, but the type of the radiation preventing film is not limited to this, and a metal oxide (semiconductor) such as ZnO, SiO 2, SnO 2, or TiO 2 is used. )so
  • the average particle size of the particles on the surface of the anti-radiation film is also sealed by placing 95 ° C hot water in a heat insulating container equipped with the anti-radiation film and placing it in a room at 20 ° C for 6 hours. After the lapse of time, the particle size is not less than the minimum value at which the temperature of the hot water inside the heat insulating container is maintained at 60 ° C or higher.
  • the ITO film 20 is covered on the outer surface of the inner container 12, but the surface to be covered is not limited to this, and may be another surface such as the inner surface of the outer container 16.
  • the relationship between the film thickness and the heat insulation performance of the heat insulation container of the finished product equipped with the inner container coated with the ITO film was investigated.
  • Graph A in Fig. 2 is a graph showing the relationship between the heat retention performance and the ITO particle size, where the vertical axis represents the heat retention performance (° C) of the heat insulating container and the horizontal axis represents the ITO particle size (nm). .
  • the scale of the heat retention performance is shown on the left side of the graph.
  • the temperature of the hot water is 60 ° C even after 6 hours. Maintain above.
  • the heat retention performance is not proportionally improved.
  • the particle size is 150 nm or more, the influence of the particle size on the heat retention performance is reduced, and particularly if the particle size is 200 nm or more, the particle size is increased. Thermal insulation performance is almost unchanged. Obedience Therefore, under the conditions of this example, the particle size is preferably 50 nm or more, more preferably 60 ⁇ m or more, and considering the efficiency of sputtering, 200 nm or less is preferable, and considering the efficiency, 150 nm or less is preferable. is there.
  • Graph B shows the relationship between the thickness of the ITO film and the particle size, with the vertical axis representing the ITO film thickness (nm) and the horizontal axis representing the ITO particle size (nm) as in Graph A.
  • the graph of the ITO film thickness is shown on the right side of the graph. Note that this straight line is slightly deviated from the actual plot because this straight line is an approximate expression for determining the measured force shown in FIG. 3 of Example 2 described later.
  • a particle size of 50 nm corresponds to a film thickness of approximately 150 nm
  • a particle diameter of 60 nm corresponds to a film thickness of approximately 200 nm
  • a particle diameter of 200 nm corresponds to a film thickness of approximately 800 nm
  • a particle diameter of 150 nm corresponds to a film thickness of approximately 600 nm. Therefore, when the above particle size condition is expressed in terms of film thickness, the ITO film preferably has a film thickness of 150 nm or more, more preferably 200 nm or more, and considering the efficiency of sputtering, 800 nm or less is more preferable. Therefore, 600 nm or less is preferable.
  • the average particle size of the surface particles in the heat insulating container 10 covered with the ITO film formed by ITO ITO sputtering in an atmosphere where the weight ratio of argon to oxygen was 76 to 7. It can be seen that when the typical particle size is 50 nm or more, the heat retention performance of 60 ° C or more is maintained even after 6 hours. It can also be seen that when the thickness of the ITO film is 150 nm or more, the heat retention performance of 60 ° C. or more is maintained even after 6 hours.
  • the average particle size (ITO particle size) of the surface particles of the ITO film when ITO is spotted on the outer surface of the inner container 12 is The relationship between the film thickness of the ITO film and the heat insulation performance of the heat insulation container of the finished product including the inner container coated with the ITO film was investigated.
  • Graph A in Fig. 3 is a graph showing the relationship between the heat retention performance and the ITO particle size, with the vertical axis representing the heat insulation performance (° C) of the heat insulating container and the horizontal axis representing the ITO particle size (nm). .
  • the scale of thermal insulation performance is shown on the left side of the graph.
  • graph A under the conditions different from those in Example 1, even in the case of a heat-insulated container in which the outer surface of the inner container is coated with an ITO film having an average particle diameter of about 50 nm or more, 6 It can be seen that the temperature of the hot water remains above 60 ° C even after the time.
  • the heat retention performance is proportionally improved even when the particle size is increased.
  • the particle size is 120 nm or more, the effect of the particle size on the heat retention performance is reduced.
  • the particle size is 150 nm or more, the heat retention performance is hardly changed even when the particle size is increased. Therefore, under the conditions of this example, the particle size is preferably 50 nm or more, more preferably 60 ⁇ m or more. Considering the sputtering efficiency, 150 nm or less is preferable, and 120 nm or less is preferable. Is preferred.
  • Graph B shows the relationship between the ITO film thickness and the ITO particle size, with the vertical axis representing the ITO film thickness (nm) and the horizontal axis representing the ITO particle size (nm) as in Graph A. It is an approximate expression obtained from actual measured values.
  • the scale of the ITO film thickness is shown on the right side of the graph. According to this graph, a particle size of 50 nm corresponds to a film thickness of approximately 150 nm, a particle diameter of 60 nm corresponds to a film thickness of approximately 200 nm, a particle diameter of 120 nm corresponds to a film thickness of approximately 500 nm, and a particle diameter of 150 nm corresponds to a film thickness of approximately 600 nm.
  • the ITO film preferably has a film thickness of 150 nm or more, more preferably 200 nm or more, and the efficiency of sputtering is preferably 600 nm or less. And 500 nm or less are suitable.
  • the average particle size of the surface particles is 5 in a heat insulating container covered with an ITO film in which ITO is spotted in an atmosphere where the weight ratio of argon to oxygen is 76 to 12.
  • the insulation performance of 60 ° C or higher is maintained even after 6 hours.
  • the thickness of the ITO film is 150 nm or more, the heat retention performance of 60 ° C. or more is maintained even after 6 hours.
  • FIG. 4 is an enlarged photograph of the surface of the ITO film.
  • the particles on the surface of the ITO film are not necessarily spherical but also have different sizes.
  • the shape becomes various and elliptical and polygonal, and the size varies as compared with the case where the particle size is about 0.06 ⁇ m.
  • the average particle diameter of the ITO film surface means the average diameter of particles having an average size as shown in the figure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Packages (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Thermally Insulated Containers For Foods (AREA)

Abstract

A heat insulated container that exhibits given heat retention performance, permitting ascertaining of exhibition of the heat retention performance from the appearance thereof. There is provided heat insulated container (10) having at least either the external surface of glass internal container (12) or the internal surface of glass external container (16) coated with radiation preventing film (20), the internal container (12) disposed inside the external container (16) with empty space (14) interposed therebetween, the internal container (12) and the external container (16) united together, the empty space (14) evacuated to vacuum and hermetically sealed, characterized in that the radiation preventing film (20) at its surface has particles whose average diameter is ≥ given value. The heat insulated container (10) realizes satisfactory heat retention performance as the average diameter of the particles at the surface of the radiation preventing film (20) is ≥ given value.

Description

断熱容器  Insulated container
技術分野  Technical field
[0001] 本発明は、断熱容器に関し、特に内容器と外容器とを接合し、その内容器と外容器 との間に設けられた空隙部を真空排気してなるガラス製の断熱容器に関する。 背景技術  The present invention relates to a heat insulating container, and more particularly to a glass heat insulating container formed by joining an inner container and an outer container and evacuating a gap provided between the inner container and the outer container. Background art
[0002] 従来、ガラス製の断熱容器は、外容器の内部に一定の空隙部を設けて内容器を配 置し、口部近傍を溶融させて当該内容器の口部と外容器の口部とを一体に接合し、 空隙部を真空排気することにより真空断熱層を設けて形成されている。そして、断熱 容器の内外間の熱の移動を低減するために、内容器の外面には、 ITO膜 (インジゥ ム (In)の酸ィ匕物にスズ (Sn)をドーピングした物質)等の輻射防止膜が被覆されており 、この被覆は、スパッタリング、 CVD、 PVD等によって行われている(例えば、特許文 献 1参照)。  Conventionally, a heat insulating container made of glass is provided with a certain gap inside the outer container, the inner container is disposed, and the vicinity of the mouth is melted to make the mouth of the inner container and the mouth of the outer container Are integrally formed, and the gap is evacuated to provide a vacuum heat insulating layer. In order to reduce the heat transfer between the inside and outside of the heat insulating container, the outer surface of the inner container is exposed to radiation such as an ITO film (a substance in which an oxide of indium (In) is doped with tin (Sn)). A protective film is coated, and this coating is performed by sputtering, CVD, PVD, or the like (for example, see Patent Document 1).
特許文献 1:特開 2003 - 299582  Patent Document 1: JP 2003-299582
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、この輻射防止膜は、同一の装置によって被覆しても、その保温性能にばら つきを生じることがある。例えば、スパッタリングにより輻射防止膜を被覆する場合、他 の条件を全く同じにしてスパッタリングを行っても、ターゲットの交換の前後で輻射防 止膜の保温性能が異なる場合がある。  [0003] However, even if this radiation prevention film is coated with the same device, the heat retention performance may vary. For example, when a radiation prevention film is coated by sputtering, the heat insulation performance of the radiation prevention film may be different before and after the replacement of the target even if the sputtering is performed under the same conditions.
[0004] この保温性能は、輻射防止膜の膜厚と関係があると考えられる。しかし、膜厚を測 定するには断熱容器を切断する必要があり、一旦切断された容器は製品とすること ができない。従って、断熱容器が所定の保温性能を有するか否かの判断は、膜厚か らではなぐ断熱容器を最終工程まで組み立てた後、断熱容器に熱湯を入れて数時 間経過後の湯の温度を測定することによって直接的に行わなくてはならない。この検 查は時間がかかるため、結果的に製造コストが高くなつてしまう。そして断熱容器の保 温性能が基準を満たさな!/ヽと判明されても、一旦完成された断熱容器に再度輻射防 止膜を被覆することができず、廃棄処分となり、更に全体としての製造コストが高くな る。 [0004] This heat retention performance is considered to be related to the film thickness of the radiation preventing film. However, in order to measure the film thickness, it is necessary to cut the insulated container, and once cut, the product cannot be made into a product. Therefore, whether or not the heat insulation container has a predetermined heat insulation performance is determined by assembling the heat insulation container that is not based on the film thickness until the final process, and then adding hot water to the heat insulation container and the temperature of the hot water after several hours have passed. It must be done directly by measuring This inspection takes time, resulting in high manufacturing costs. Even if it is determined that the heat insulation performance of the insulated container does not meet the standards! The film cannot be coated, resulting in disposal, which further increases the overall manufacturing cost.
[0005] 本発明はこのような問題を解決するためになされたものであり、一定の保温性能を 有し、この保温性能を有することが非破壊で確認できる断熱容器を提供することを目 的とする。  [0005] The present invention has been made to solve such problems, and has an object to provide a heat insulating container having a certain heat retaining performance and capable of confirming the heat retaining performance in a non-destructive manner. And
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、輻射防止膜表面の 粒子の平均的な粒径と保温性能との間に一定の関係があることを発見した。そして、 この粒径を所定の値以上に保つことによって、一定の保温性能を確保することができ ることを見出し、本発明を完成するに至った。  [0006] As a result of intensive studies to solve the above problems, the present inventors have found that there is a certain relationship between the average particle size of the particles on the surface of the radiation prevention film and the heat retention performance. . The inventors have found that by maintaining the particle size at a predetermined value or more, a certain heat retention performance can be secured, and the present invention has been completed.
[0007] 本発明の請求項 1に記載の断熱容器は、ガラス製の内容器の外面及びガラス製の 外容器の内面のうちの少なくともいずれか一面に輻射防止膜を被覆し、前記内容器 を前記外容器の内部に空隙部を設けて配置し、前記内容器の口部と前記外容器の 口部とを接合し、前記空隙部を真空排気して封止することにより形成される断熱容器 にお 、て、前記輻射防止膜表面の粒子の平均的な粒径が所定の値以上であること を特徴とする。  [0007] In the heat insulation container according to claim 1 of the present invention, at least one of the outer surface of the glass inner container and the inner surface of the glass outer container is coated with a radiation prevention film, and the inner container is A heat-insulating container formed by providing a space inside the outer container, joining the mouth of the inner container and the mouth of the outer container, and evacuating and sealing the space The average particle size of the particles on the surface of the radiation preventing film is not less than a predetermined value.
[0008] 請求項 2に記載の断熱容器は、ガラス製の内容器の外面及びガラス製の外容器の 内面のうちの少なくともいずれか一面に輻射防止膜を被覆し、前記内容器を前記外 容器の内部に空隙部を設けて配置し、前記内容器の口部と前記外容器の口部とを 接合し、前記空隙部を真空排気して封止することにより形成される断熱容器において 、前記輻射防止膜のうちの、少なくとも前記断熱容器の側部に存在する部分の表面 粒子の平均的な粒径が、所定の値以上であることを特徴とする。  [0008] The heat insulation container according to claim 2, wherein at least one of the outer surface of the glass inner container and the inner surface of the glass outer container is coated with a radiation prevention film, and the inner container is the outer container. In the heat insulating container formed by disposing and arranging a gap inside, joining the mouth of the inner container and the mouth of the outer container, and evacuating and sealing the gap The average particle size of the surface particles of at least a portion of the radiation preventing film that is present on the side portion of the heat insulating container is a predetermined value or more.
[0009] また、請求項 3に記載の断熱容器は、請求項 1又は 2において、前記所定の値が 5 Onmであることを特徴とする。  [0009] Further, the heat insulation container according to claim 3 is characterized in that, in claim 1 or 2, the predetermined value is 5 Onm.
[0010] 請求項 4に記載の断熱容器は、請求項 1〜3のいずれ力 1項において、前記輻射 防止膜の膜厚が 150nm以上であることを特徴とする。  [0010] The insulated container according to claim 4 is characterized in that, in any one of the forces 1 to 3, the thickness of the radiation preventing film is 150 nm or more.
[0011] 請求項 5に記載の断熱容器は、請求項 1〜4のいずれ力 1項において、前記輻射 防止膜が ITO膜であることを特徴とする。 発明の効果 [0011] The heat insulation container according to claim 5 is characterized in that, in any one of the forces 1 to 4, the radiation prevention film is an ITO film. The invention's effect
[0012] 本発明の断熱容器によると、輻射防止膜表面の粒子の平均的な粒径を所定の値 以上とすることによって、十分な保温性能を得ることができる。そして、粒径は外部か ら観察することによって非破壊で測定することができるために、素早く検査可能で、ま た被覆が不十分と判断されても、重ねて成膜を行うことができる。従って、検査した断 熱容器が無駄にならず、結果として全体の製造コストを低くすることができる。  [0012] According to the heat insulating container of the present invention, sufficient heat retention performance can be obtained by setting the average particle size of the particles on the surface of the radiation preventing film to a predetermined value or more. Since the particle diameter can be measured non-destructively by observing from the outside, it can be inspected quickly, and even if it is judged that the coating is insufficient, it is possible to form a film repeatedly. Therefore, the inspected thermal insulation container is not wasted, and as a result, the entire manufacturing cost can be reduced.
[0013] なお、輻射防止膜の断熱容器の保温性能に大きく影響する部分は、断熱容器の側 部に存在する部分である。従って、輻射防止膜のうちの、少なくとも断熱容器の側部 に存在する部分の表面粒子の平均的な粒径が、所定の値以上であれば、十分な保 温性能を確保することができる。  [0013] It should be noted that the part of the radiation preventing film that greatly affects the heat retaining performance of the heat insulating container is a part that exists on the side of the heat insulating container. Therefore, if the average particle diameter of the surface particles of at least the side portions of the heat insulating container in the radiation prevention film is equal to or greater than a predetermined value, sufficient heat retaining performance can be ensured.
[0014] また、輻射防止膜の表面粒子の平均的な粒径を 50nm以上とすることにより、当該 輻射防止膜を備える断熱容器は、その内部に 95°Cの湯を lOOOcc入れて密封し、 2 0°Cの室内に置いて 6時間経過した後であっても、内部の湯の温度を 60°C以上に保 つことができる。  [0014] Further, by setting the average particle size of the surface particles of the radiation preventing film to 50 nm or more, the heat insulating container having the radiation preventing film is sealed with lOOOcc of 95 ° C hot water inside, Even after 6 hours have passed in a room at 20 ° C, the temperature of the hot water inside can be kept above 60 ° C.
[0015] 更に、輻射防止膜の膜厚を 150nm以上とすることにより、当該輻射防止膜を備え る断熱容器は、その内部に 95°Cの湯を lOOOcc入れて密封し、 20°Cの室内に置い て 6時間経過した後であっても、内部の湯の温度を 60°C以上に保つことができる。 図面の簡単な説明  [0015] Furthermore, by setting the film thickness of the radiation prevention film to 150 nm or more, the heat insulation container equipped with the radiation prevention film is sealed with 95 ° C hot water lOOOcc inside, and the room temperature is 20 ° C. Even after 6 hours, the temperature of the internal hot water can be kept above 60 ° C. Brief Description of Drawings
[0016] [図 1]本発明の好適な実施形態の断熱容器の断面図である。 FIG. 1 is a cross-sectional view of a heat insulating container according to a preferred embodiment of the present invention.
[図 2]ITO粒径と保温性能及び ITO膜の膜厚との関係を示したグラフである。  FIG. 2 is a graph showing the relationship between the ITO particle size, the heat retention performance, and the thickness of the ITO film.
[図 3]図 2と異なる条件での、 ΙΤΟ粒径と保温性能及び ΙΤΟ膜の膜厚との関係を示し たグラフである。  FIG. 3 is a graph showing the relationship between the soot particle size, the heat retention performance and the thickness of the capsule under different conditions from those in FIG.
[図 4]種々の粒径の ΙΤΟ膜の拡大写真である。  [Fig. 4] Enlarged photographs of capsules with various particle sizes.
符号の説明  Explanation of symbols
[0017] 10 断熱容器 [0017] 10 Insulated container
12 内容器  12 Inner container
14 空隙部  14 Gap
16 外容器 20 輻射防止膜 16 Outer container 20 Anti-radiation film
22 側部  22 Side
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明による好適な実施形態について添付図面を参照しながら説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
[0019] 図 1は本発明の実施形態に力かる断熱容器 10の断面図である。図に示すように、 本実施形態の断熱容器 10は、ガラス製の内容器 12と、当該内容器 12の外側に一定 の幅の空隙部 14を設けて配置されたガラス製の外容器 16とを備える。また、外容器 16は上部外容器 16aと下部外容器 16bとが接合されたものであり、内容器 12と上部外 容器 16aとは口部 18において接合され、外容器 16内面と内容器 12外面との間の空隙 部 14は真空状態に保たれている。また、内容器 12の外面には、熱の輻射を低減する ために輻射防止膜として ITO膜 20が被覆されている。この ITO膜 20は、スパッタリン グ法により被覆されたものであり、外部より観察すると、所定の値以上の粒径の粒子 を表面に有する。なお、本実施形態で ITO膜 20は、所定の値以上の粒径の粒子を I TO膜 20表面の全体にわたって有している。し力し、これに限定されず、 ITO膜 20のう ちの、少なくとも断熱容器 10の側部 22に存在する部分の表面粒子の平均的な粒径が 、所定の値以上であればよい。 FIG. 1 is a cross-sectional view of a heat-insulating container 10 that is useful for an embodiment of the present invention. As shown in the figure, the heat insulating container 10 of the present embodiment includes a glass inner container 12 and a glass outer container 16 disposed with a gap 14 having a certain width outside the inner container 12. Is provided. The outer container 16 is an upper outer container 16a and a lower outer container 16b joined together.The inner container 12 and the upper outer container 16a are joined at the mouth 18, and the inner surface of the outer container 16 and the outer surface of the inner container 12 are joined. The gap 14 between them is kept in a vacuum state. The outer surface of the inner container 12 is covered with an ITO film 20 as a radiation preventing film in order to reduce heat radiation. The ITO film 20 is coated by a sputtering method, and when observed from the outside, the ITO film 20 has particles having a particle diameter of a predetermined value or more on the surface. In the present embodiment, the ITO film 20 has particles having a particle size of a predetermined value or more over the entire surface of the ITO film 20. However, the present invention is not limited to this, and the average particle diameter of at least the portion of the surface of the ITO film 20 existing on the side portion 22 of the heat insulating container 10 may be a predetermined value or more.
[0020] ここで、この所定の値とは、その値以上の粒径の粒子を表面に有する ITO膜を備え る断熱容器の内部に、 95°Cの湯を lOOOcc入れて密封し、 20°Cの室内に置いて 6時 間経過した後であっても、当該断熱容器内部の湯の温度が 60°C以上に保たれる最 小の粒径である。なお、 20°Cの室内に断熱容器を置き、その中に約 95°Cの湯を 10 OOcc入れて密封し、 6時間経過した後の湯の温度を、本明細書において保温性能と いい、この 60°Cは、一般に断熱容器としての機能を果たすために要求される最低温 度である。 [0020] Here, the predetermined value means that 95 ° C of hot water is put in a heat insulating container having an ITO film having particles having a particle size equal to or larger than that value, and sealed, and 20 ° This is the smallest particle size at which the temperature of the hot water inside the insulated container is maintained at 60 ° C or higher even after 6 hours have passed in the C room. In addition, place an insulated container in a room at 20 ° C, put 10 OOcc of hot water at about 95 ° C in it, seal it, and the temperature of the hot water after 6 hours has passed is referred to as heat insulation performance in this specification. This 60 ° C is generally the lowest temperature required to function as an insulated container.
[0021] 従って、本実施形態の断熱容器 10の内部に、 95°Cの湯を lOOOcc入れて密封し、 20°Cの室内に置いて 6時間経過した後、断熱容器 10の内部の湯の温度を測定する と、 60°C以上である。  [0021] Therefore, 95 ° C hot water is lOOOOcc sealed in the inside of the heat insulating container 10 of this embodiment, and after placing in a room at 20 ° C for 6 hours, the hot water inside the heat insulating container 10 is removed. When temperature is measured, it is over 60 ° C.
[0022] 以上、本実施形態の断熱容器 10は、ガラス製の内容器 12の外面に ITO膜 20を被 覆し、内容器 12を外容器 16内に空隙部 14を設けて配置し、内容器 12と外容器 16とを 接合し、空隙部 14を真空排気して封止することにより形成される断熱容器 10において 、ITO膜 20表面の粒子の平均的な粒径が所定の値以上であることを特徴とする。 As described above, in the heat insulating container 10 of the present embodiment, the ITO film 20 is covered on the outer surface of the glass inner container 12, the inner container 12 is disposed with the gap portion 14 provided in the outer container 16, and the inner container 12 and outer container 16 In the heat insulating container 10 formed by joining and evacuating and sealing the gap portion 14, the average particle size of the particles on the surface of the ITO film 20 is not less than a predetermined value.
[0023] この断熱容器 10によると、 ΙΤΟ膜 20表面の粒子の平均的な粒径を所定の大きさ以 上とすることによって、 60°Cの保温性能を得ることができる。そして、粒径は外部から 観察することによって非破壊で検査することができるため、素早く検査可能である。ま た被覆が不十分と判断されても、非破壊で検査されているため、被覆された ITO膜 の上に更に成膜を行うことができる。従って、検査した断熱容器が無駄にならず、結 果として全体の製造コストを低くすることができる。  [0023] According to the heat insulating container 10, the heat retention performance of 60 ° C can be obtained by setting the average particle size of the particles on the surface of the capsule 20 to a predetermined size or more. And since the particle size can be inspected non-destructively by observing from the outside, it can be inspected quickly. Even if the coating is judged to be inadequate, since it has been inspected nondestructively, it is possible to further form a film on the coated ITO film. Therefore, the insulative container that has been inspected is not wasted, and as a result, the overall manufacturing cost can be reduced.
[0024] なお、本実施形態では、輻射防止膜として ITO膜 20を用いたが、輻射防止膜の種 類はこれに限定されず、 ZnO, SiO , SnO ,又は TiO等の金属酸化物(半導体)で  In this embodiment, the ITO film 20 is used as the radiation preventing film, but the type of the radiation preventing film is not limited to this, and a metal oxide (semiconductor) such as ZnO, SiO 2, SnO 2, or TiO 2 is used. )so
X 2 X  X 2 X
あってもよい。その場合の輻射防止膜表面の粒子の平均的な粒径も、当該輻射防止 膜を備える断熱容器の内部に 95°Cの湯を lOOOcc入れて密封し、 20°Cの室内に置 いて 6時間経過した後、当該断熱容器内部の湯の温度が 60°C以上に保たれる最小 の値以上の粒径である。また、本実施形態では、当該 ITO膜 20を内容器 12外面に被 覆したが、被覆する面はこれに限定されず、例えば外容器 16の内面等、他の面であ つてもよい。  There may be. In this case, the average particle size of the particles on the surface of the anti-radiation film is also sealed by placing 95 ° C hot water in a heat insulating container equipped with the anti-radiation film and placing it in a room at 20 ° C for 6 hours. After the lapse of time, the particle size is not less than the minimum value at which the temperature of the hot water inside the heat insulating container is maintained at 60 ° C or higher. In the present embodiment, the ITO film 20 is covered on the outer surface of the inner container 12, but the surface to be covered is not limited to this, and may be another surface such as the inner surface of the outer container 16.
実施例 1  Example 1
[0025] アルゴン対酸素の重量比が 76対 7である雰囲気下で、 ITOを内容器外面にスパッ タリングした場合の、 ITO膜の表面粒子の平均的な粒径 (ITO粒径)と、 ITO膜の膜 厚及びその ITO膜を被覆した内容器を備えた完成品の断熱容器の保温性能との関 係を調べた。  [0025] The average particle size (ITO particle size) of the ITO film surface particles when ITO is spattered to the outer surface of the inner container in an atmosphere where the weight ratio of argon to oxygen is 76 to 7. The relationship between the film thickness and the heat insulation performance of the heat insulation container of the finished product equipped with the inner container coated with the ITO film was investigated.
[0026] 図 2のグラフ Aは、縦軸を断熱容器の保温性能 (°C)、横軸を ITO粒径 (nm)とした、 保温性能と ITO粒径との関係を示したグラフである。なお、グラフの左側に保温性能 の目盛を示す。このグラフ Aに示すように、表面粒子の平均的な粒径が約 50nm以上 の ITO膜が内容器外面に被覆された断熱容器の場合、 6時間後であっても湯の温度 は 60°C以上を維持する。また、粒径が大きくなつても保温性能が比例して向上する わけではなぐ粒径 150nm以上になると粒径が保温性能に及ぼす影響は小さくなり 、特に 200nm以上になると粒径が大きくなつても保温性能はほとんど変わらない。従 つて、本実施例の条件下において粒径は 50nm以上が好ましぐ更に好適には 60η m以上、また、スパッタの効率を考えると 200nm以下が好ましぐ更に効率を考えると 150nm以下が好適である。 [0026] Graph A in Fig. 2 is a graph showing the relationship between the heat retention performance and the ITO particle size, where the vertical axis represents the heat retention performance (° C) of the heat insulating container and the horizontal axis represents the ITO particle size (nm). . The scale of the heat retention performance is shown on the left side of the graph. As shown in Graph A, in the case of a heat-insulated container in which the outer surface of the inner container is covered with an ITO film having an average particle diameter of about 50 nm or more, the temperature of the hot water is 60 ° C even after 6 hours. Maintain above. In addition, even if the particle size is larger, the heat retention performance is not proportionally improved. If the particle size is 150 nm or more, the influence of the particle size on the heat retention performance is reduced, and particularly if the particle size is 200 nm or more, the particle size is increased. Thermal insulation performance is almost unchanged. Obedience Therefore, under the conditions of this example, the particle size is preferably 50 nm or more, more preferably 60 ηm or more, and considering the efficiency of sputtering, 200 nm or less is preferable, and considering the efficiency, 150 nm or less is preferable. is there.
[0027] また、グラフ Bは、縦軸を ITO膜の膜厚 (nm)、横軸をグラフ Aと同様に ITO粒径 (n m)とした、 ITO膜の膜厚と粒径との関係を示したグラフであり、グラフの右側に ITO 膜の膜厚の目盛を示す。なお、この直線は実際のプロットから若干ずれているが、こ れは、この直線が、後述する実施例 2の図 3に示す測定値力 求めた近似式であるた めである。このグラフによると、粒径 50nmは約 150nmの膜厚、粒径 60nmは約 200 nmの膜厚、粒径 200nmは約 800nmの膜厚、粒径 150nmは約 600nmの膜厚に相 当する。従って、上記粒径の条件を膜厚で表すと、 ITO膜は 150nm以上の膜厚が 好ましぐ更に好適には 200nm以上、また、スパッタの効率を考えると、 800nm以下 が好ましぐ更に効率を考えると、 600nm以下が好適である。  [0027] Graph B shows the relationship between the thickness of the ITO film and the particle size, with the vertical axis representing the ITO film thickness (nm) and the horizontal axis representing the ITO particle size (nm) as in Graph A. The graph of the ITO film thickness is shown on the right side of the graph. Note that this straight line is slightly deviated from the actual plot because this straight line is an approximate expression for determining the measured force shown in FIG. 3 of Example 2 described later. According to this graph, a particle size of 50 nm corresponds to a film thickness of approximately 150 nm, a particle diameter of 60 nm corresponds to a film thickness of approximately 200 nm, a particle diameter of 200 nm corresponds to a film thickness of approximately 800 nm, and a particle diameter of 150 nm corresponds to a film thickness of approximately 600 nm. Therefore, when the above particle size condition is expressed in terms of film thickness, the ITO film preferably has a film thickness of 150 nm or more, more preferably 200 nm or more, and considering the efficiency of sputtering, 800 nm or less is more preferable. Therefore, 600 nm or less is preferable.
[0028] この実験結果より、アルゴン対酸素の重量比が 76対 7である雰囲気下で、 ITOをス ノ ッタリングして形成した ITO膜を被覆した断熱容器 10にお 、て、表面粒子の平均 的な粒径が 50nm以上の場合、 6時間経過後であっても、 60°C以上の保温性能を維 持することがわかる。また、 ITO膜の膜厚が 150nm以上の場合、 6時間経過後であ つても、 60°C以上の保温性能を維持することがわかる。  [0028] From the results of this experiment, the average particle size of the surface particles in the heat insulating container 10 covered with the ITO film formed by ITO ITO sputtering in an atmosphere where the weight ratio of argon to oxygen was 76 to 7. It can be seen that when the typical particle size is 50 nm or more, the heat retention performance of 60 ° C or more is maintained even after 6 hours. It can also be seen that when the thickness of the ITO film is 150 nm or more, the heat retention performance of 60 ° C. or more is maintained even after 6 hours.
実施例 2  Example 2
[0029] アルゴン対酸素の重量比が 76対 12である雰囲気下で、 ITOを内容器 12外面にス ノ ッタリングした場合の、 ITO膜の表面粒子の平均的な粒径 (ITO粒径)と、 ITO膜 の膜厚及びその ITO膜を被覆した内容器を備えた完成品の断熱容器の保温性能と の関係を調べた。  [0029] In an atmosphere where the weight ratio of argon to oxygen is 76:12, the average particle size (ITO particle size) of the surface particles of the ITO film when ITO is spotted on the outer surface of the inner container 12 is The relationship between the film thickness of the ITO film and the heat insulation performance of the heat insulation container of the finished product including the inner container coated with the ITO film was investigated.
[0030] 図 3のグラフ Aは、縦軸を断熱容器の保温性能 (°C)、横軸を ITO粒径 (nm)とした、 保温性能と ITO粒径との関係を示したグラフである。なお、図 2と同様に、グラフの左 側に保温性能の目盛を示す。このグラフ Aに示すように、実施例 1と異なる条件下に ぉ 、ても、表面粒子の平均的な粒径が約 50nm以上の ITO膜が内容器外面に被覆 された断熱容器の場合、 6時間後であっても湯の温度は 60°C以上を維持することが わかる。また、実施例 1と同様に粒径が大きくなつても保温性能が比例して向上する わけではなぐ粒径 120nm以上になると粒径が保温性能に及ぼす影響が小さくなり 、特に 150nm以上になると粒径が大きくなつても保温性能はほとんど変わらない。従 つて、本実施例の条件下において粒径は 50nm以上が好ましぐ更に好適には 60η m以上、また、スパッタの効率を考えると、 150nm以下が好ましぐ更に効率を考える と 120nm以下が好適である。 [0030] Graph A in Fig. 3 is a graph showing the relationship between the heat retention performance and the ITO particle size, with the vertical axis representing the heat insulation performance (° C) of the heat insulating container and the horizontal axis representing the ITO particle size (nm). . As in Fig. 2, the scale of thermal insulation performance is shown on the left side of the graph. As shown in graph A, under the conditions different from those in Example 1, even in the case of a heat-insulated container in which the outer surface of the inner container is coated with an ITO film having an average particle diameter of about 50 nm or more, 6 It can be seen that the temperature of the hot water remains above 60 ° C even after the time. In addition, as in Example 1, the heat retention performance is proportionally improved even when the particle size is increased. However, when the particle size is 120 nm or more, the effect of the particle size on the heat retention performance is reduced. Especially when the particle size is 150 nm or more, the heat retention performance is hardly changed even when the particle size is increased. Therefore, under the conditions of this example, the particle size is preferably 50 nm or more, more preferably 60 ηm or more. Considering the sputtering efficiency, 150 nm or less is preferable, and 120 nm or less is preferable. Is preferred.
[0031] また、グラフ Bは、縦軸を ITO膜の膜厚 (nm)、横軸をグラフ Aと同様に ITO粒径 (n m)として、 ITO膜の膜厚と ITO粒径との関係を実際の測定値より求めた近似式であ り、グラフの右側に ITO膜の膜厚の目盛を示す。このグラフによると、粒径 50nmは約 150nmの膜厚、粒径 60nmは約 200nmの膜厚、粒径 120nmは約 500nmの膜厚、 粒径 150nmは約 600nmの膜厚に相当する。従って、上記粒径の条件を膜厚で表 すと、 ITO膜は 150nm以上の膜厚が好ましぐ更に好適には 200nm以上、スパッタ の効率を考えると 600nm以下が好ましぐ更に効率を考えると 500nm以下が好適で ある。 [0031] Graph B shows the relationship between the ITO film thickness and the ITO particle size, with the vertical axis representing the ITO film thickness (nm) and the horizontal axis representing the ITO particle size (nm) as in Graph A. It is an approximate expression obtained from actual measured values. The scale of the ITO film thickness is shown on the right side of the graph. According to this graph, a particle size of 50 nm corresponds to a film thickness of approximately 150 nm, a particle diameter of 60 nm corresponds to a film thickness of approximately 200 nm, a particle diameter of 120 nm corresponds to a film thickness of approximately 500 nm, and a particle diameter of 150 nm corresponds to a film thickness of approximately 600 nm. Therefore, when the above particle size condition is expressed in terms of film thickness, the ITO film preferably has a film thickness of 150 nm or more, more preferably 200 nm or more, and the efficiency of sputtering is preferably 600 nm or less. And 500 nm or less are suitable.
[0032] この実験結果より、アルゴン対酸素の重量比が 76対 12である雰囲気下で ITOをス ノッタリングした ITO膜を被覆した断熱容器にぉ 、て、表面粒子の平均的な粒径が 5 Onm以上の場合、 6時間経過後であっても、 60°C以上の保温性能を維持することが わかる。また、 ITO膜の膜厚が 150nm以上の場合、 6時間経過後であっても、 60°C 以上の保温性能を維持することがわかる。  [0032] From the results of this experiment, the average particle size of the surface particles is 5 in a heat insulating container covered with an ITO film in which ITO is spotted in an atmosphere where the weight ratio of argon to oxygen is 76 to 12. In the case of Onm or higher, it can be seen that the insulation performance of 60 ° C or higher is maintained even after 6 hours. It can also be seen that when the thickness of the ITO film is 150 nm or more, the heat retention performance of 60 ° C. or more is maintained even after 6 hours.
[0033] なお、図 4は ITO膜の表面の拡大写真である。この写真に示すように、 ITO膜表面 の粒子は球形とは限らず、また大きさも異なるものが混在する。特に例えば粒子が約 0.2 mと大きくなると、粒径が約 0. 06 μ mの場合と比べてその形状は楕円形や多 角形と多様になり、また大きさもばらついてくる。本明細書において ITO膜表面の粒 子の平均的な粒径とは、図示のように、平均的な大きさの粒子の平均的な直径をいう  FIG. 4 is an enlarged photograph of the surface of the ITO film. As shown in this photograph, the particles on the surface of the ITO film are not necessarily spherical but also have different sizes. In particular, for example, when the particle size is increased to about 0.2 m, the shape becomes various and elliptical and polygonal, and the size varies as compared with the case where the particle size is about 0.06 μm. In this specification, the average particle diameter of the ITO film surface means the average diameter of particles having an average size as shown in the figure.
[0034] 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に 限定されるものではなぐ種々の変更が可能である。 [0034] The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment, and various modifications can be made.

Claims

請求の範囲 The scope of the claims
[1] ガラス製の内容器の外面及びガラス製の外容器の内面のうちの少なくともいずれか 一面に輻射防止膜を被覆し、前記内容器を前記外容器の内部に空隙部を設けて配 置し、前記内容器の口部と前記外容器の口部とを接合し、前記空隙部を真空排気し て封止することにより形成される断熱容器において、  [1] A radiation prevention film is coated on at least one of the outer surface of the glass inner container and the inner surface of the glass outer container, and the inner container is arranged with a gap inside the outer container. In the heat insulating container formed by joining the mouth part of the inner container and the mouth part of the outer container and evacuating and sealing the gap part,
前記輻射防止膜表面の粒子の平均的な粒径が所定の値以上であることを特徴と する断熱容器。  An insulating container, wherein an average particle size of particles on the surface of the radiation preventing film is a predetermined value or more.
[2] ガラス製の内容器の外面及びガラス製の外容器の内面のうちの少なくともいずれか 一面に輻射防止膜を被覆し、前記内容器を前記外容器の内部に空隙部を設けて配 置し、前記内容器の口部と前記外容器の口部とを接合し、前記空隙部を真空排気し て封止することにより形成される断熱容器において、  [2] At least one of the outer surface of the glass inner container and the inner surface of the glass outer container is covered with a radiation-preventing film, and the inner container is disposed with a gap provided inside the outer container. In the heat insulating container formed by joining the mouth part of the inner container and the mouth part of the outer container and evacuating and sealing the gap part,
前記輻射防止膜のうちの、少なくとも前記断熱容器の側部に存在する部分の表面 粒子の平均的な粒径が、所定の値以上であることを特徴とする断熱容器。  An insulating container characterized in that an average particle size of surface particles of at least a portion of the radiation preventing film that is present on a side portion of the insulating container is a predetermined value or more.
[3] 前記所定の値が 50nmであることを特徴とする請求項 1又は 2に記載の断熱容器。  [3] The heat insulating container according to claim 1 or 2, wherein the predetermined value is 50 nm.
[4] 前記輻射防止膜の膜厚が 150nm以上であることを特徴とする請求項 1〜3のいず れか 1項に記載の断熱容器。  [4] The heat insulation container according to any one of claims 1 to 3, wherein the radiation prevention film has a thickness of 150 nm or more.
[5] 前記輻射防止膜が ITO膜であることを特徴とする請求項 1〜4のいずれか 1項に記 載の断熱容器。  [5] The heat insulating container according to any one of [1] to [4], wherein the radiation preventing film is an ITO film.
PCT/JP2005/005778 2005-03-28 2005-03-28 Heat insulated container WO2006103739A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002590409A CA2590409A1 (en) 2005-03-28 2005-03-28 Heat insulated container
PCT/JP2005/005778 WO2006103739A1 (en) 2005-03-28 2005-03-28 Heat insulated container
DE112005003091T DE112005003091T5 (en) 2005-03-28 2005-03-28 Heat insulated container
US11/720,599 US20080190942A1 (en) 2005-03-28 2005-03-28 Heat Insulated Container
JP2007510268A JPWO2006103739A1 (en) 2005-03-28 2005-03-28 Insulated container
CNA2005800375552A CN101052334A (en) 2005-03-28 2005-03-28 Thermal vessel
GB0710438A GB2435091A (en) 2005-03-28 2007-05-31 Heat insulated container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/005778 WO2006103739A1 (en) 2005-03-28 2005-03-28 Heat insulated container

Publications (1)

Publication Number Publication Date
WO2006103739A1 true WO2006103739A1 (en) 2006-10-05

Family

ID=37053012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005778 WO2006103739A1 (en) 2005-03-28 2005-03-28 Heat insulated container

Country Status (7)

Country Link
US (1) US20080190942A1 (en)
JP (1) JPWO2006103739A1 (en)
CN (1) CN101052334A (en)
CA (1) CA2590409A1 (en)
DE (1) DE112005003091T5 (en)
GB (1) GB2435091A (en)
WO (1) WO2006103739A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130334089A1 (en) * 2012-06-15 2013-12-19 Michael P. Remington, Jr. Glass Container Insulative Coating
USD815901S1 (en) 2016-05-04 2018-04-24 Hardy Steinmann Portable beverage container
USD821146S1 (en) 2016-05-04 2018-06-26 Hardy Steinmann Portable beverage container
JP6481674B2 (en) * 2016-11-18 2019-03-13 トヨタ自動車株式会社 Vacuum insulated container
DE202017101031U1 (en) * 2017-02-24 2018-05-28 Emsa Gmbh Double-walled vacuum glass insulation can
CN109528030B (en) * 2018-12-10 2021-06-18 南充辉泓真空技术有限公司 Preparation process of double-layer glass vacuum thermal insulation vessel
CN111319838A (en) * 2020-04-15 2020-06-23 苏州联胜化学有限公司 Water storage bottle
US11375835B2 (en) 2020-10-29 2022-07-05 Paul Sherburne Insulated beverage container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210220A (en) * 1984-04-05 1985-10-22 株式会社豊田中央研究所 Heat insulating tank
JPH10265718A (en) * 1997-03-27 1998-10-06 Mitsubishi Materials Corp Coating material for formation of glare-proof infrared ray blocking film
JP2002068324A (en) * 2000-08-30 2002-03-08 Nippon Sanso Corp Heat-insulating container
JP2003299582A (en) * 2002-04-08 2003-10-21 Thermos Kk Thermally insulated container and manufacturing method therefor
JP2004018295A (en) * 2002-06-14 2004-01-22 Sumitomo Metal Mining Co Ltd Heat-ray shielding film and heat ray shielding member using this

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274788A (en) * 1965-06-14 1966-09-27 Little Inc A Cryogenic liquid storage vessel
JPH11302038A (en) * 1998-04-17 1999-11-02 Nippon Sheet Glass Co Ltd Heat ray reflective light-transmissible plate and heat ray reflective double layer light-transmissible plate using the same
TW430552B (en) * 1998-06-09 2001-04-21 Nippon Oxygen Co Ltd A transparent insulated container and its manufacture method
JP3035288B1 (en) * 1999-03-08 2000-04-24 日本酸素株式会社 Insulated container
US6868982B2 (en) * 2001-12-05 2005-03-22 Cold Chain Technologies, Inc. Insulated shipping container and method of making the same
JP2003339540A (en) * 2002-05-30 2003-12-02 Thermos Kk Electric heating and heat insulating container
JP2004017994A (en) * 2002-06-13 2004-01-22 Thermos Kk Heat insulating container and manufacturing method for the same
JP2004155632A (en) * 2002-11-08 2004-06-03 Nippon Sheet Glass Co Ltd Heat shielding film, heat shielding glass plate using the same, and heat shielding laminated glass plate
US20080314909A1 (en) * 2004-02-10 2008-12-25 Fiji Seal International, Inc Heat Insulating Container
US20050230399A1 (en) * 2004-04-15 2005-10-20 Thermos K.K. Vacuum insulating double vessel and method for manufacturing the same
ATE445804T1 (en) * 2004-08-04 2009-10-15 Ootmarsum Harry Robert Van COLD LIQUID STORAGE CONTAINER AND METHOD OF ATTACHING A THERMAL INSULATION SYSTEM IN SUCH A CONTAINER
KR100661116B1 (en) * 2004-11-22 2006-12-22 가부시키가이샤후지쿠라 Electrode, photoelectric conversion element, and dye-sensitized solar cell
US20070295684A1 (en) * 2005-03-23 2007-12-27 Takafumi Fujii Heat Insulated Container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210220A (en) * 1984-04-05 1985-10-22 株式会社豊田中央研究所 Heat insulating tank
JPH10265718A (en) * 1997-03-27 1998-10-06 Mitsubishi Materials Corp Coating material for formation of glare-proof infrared ray blocking film
JP2002068324A (en) * 2000-08-30 2002-03-08 Nippon Sanso Corp Heat-insulating container
JP2003299582A (en) * 2002-04-08 2003-10-21 Thermos Kk Thermally insulated container and manufacturing method therefor
JP2004018295A (en) * 2002-06-14 2004-01-22 Sumitomo Metal Mining Co Ltd Heat-ray shielding film and heat ray shielding member using this

Also Published As

Publication number Publication date
JPWO2006103739A1 (en) 2008-09-04
CN101052334A (en) 2007-10-10
DE112005003091T5 (en) 2008-02-14
CA2590409A1 (en) 2006-10-05
US20080190942A1 (en) 2008-08-14
GB0710438D0 (en) 2007-07-11
GB2435091A (en) 2007-08-15

Similar Documents

Publication Publication Date Title
WO2006103739A1 (en) Heat insulated container
US20080006598A1 (en) Heat Insulated Container And Manufacturing Method Thereof
JP6180472B2 (en) Self-passivating mechanically stable hermetic thin film
JP3044063B2 (en) Hermetic seal at edge portion and method of manufacturing the same
CN102859741B (en) Multi-laminate hermetic barrier and dependency structure and airtight sealing method
US10281337B2 (en) Thermocouple and manufacturing method for same
EP3078643A1 (en) Sealed structure, multi-layer heat-insulating glass and glass container
JP2009085952A (en) 1,200°c film resistor
JP2014533813A (en) Radiant heat insulation vacuum insulation
JPWO2006100770A1 (en) Insulated container
JP2014199911A (en) Thermistor element, temperature sensor, and method for manufacturing thermistor element
CN108884699A (en) Method for manufacturing vacuum heat-insulation glazing
JP6703065B2 (en) Getter structure and method for forming the structure
US4598005A (en) Thermal insulation
CN103548123A (en) Thermal interface materials and methods for processing the same
JP5301816B2 (en) Heat resistant vacuum insulation
JP2015510043A (en) Sputtering target and associated sputtering method for forming an airtight barrier layer
Zhu et al. Transparent flexible ultra‐low permeability encapsulation film: Fusible glass fired on heat‐resistant polyimide membrane
WO2021065556A1 (en) Heat-reflecting member, and method for manufacturing glass member having heat-reflecting layer included therein
JP4014250B2 (en) Carbon dioxide sensor
Wu et al. Oblique angle deposition of Au/Ti porous getter films
JP7269468B2 (en) Vacuum insulation panel manufacturing method and vacuum insulation panel
Astier et al. Advanced packaging development for very low cost uncooled IRFPA
TW202225625A (en) Silica heat reflection plate
WO2023106132A1 (en) Heat reflection plate

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580037555.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2590409

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 0710438

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20050328

WWE Wipo information: entry into national phase

Ref document number: 11720599

Country of ref document: US

Ref document number: 0710438.3

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1120050030911

Country of ref document: DE

REG Reference to national code

Ref country code: GB

Ref legal event code: 789A

Ref document number: 0710438

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 2007510268

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

RET De translation (de og part 6b)

Ref document number: 112005003091

Country of ref document: DE

Date of ref document: 20080214

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05727333

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5727333

Country of ref document: EP