WO2006103303A1 - Preparación de precursores metalorgánicos anhidros y su uso para la deposición y crecimiento de capas y cintas superconductoras - Google Patents

Preparación de precursores metalorgánicos anhidros y su uso para la deposición y crecimiento de capas y cintas superconductoras Download PDF

Info

Publication number
WO2006103303A1
WO2006103303A1 PCT/ES2005/070056 ES2005070056W WO2006103303A1 WO 2006103303 A1 WO2006103303 A1 WO 2006103303A1 ES 2005070056 W ES2005070056 W ES 2005070056W WO 2006103303 A1 WO2006103303 A1 WO 2006103303A1
Authority
WO
WIPO (PCT)
Prior art keywords
anhydrous
temperature
metalorganic
obtaining
material according
Prior art date
Application number
PCT/ES2005/070056
Other languages
English (en)
French (fr)
Inventor
Xavier Obradors Berenguer
Teresa Puig Molina
Susagna Ricart
Neus Roma
Josep Maria MORETÓ
Alberto Pomar Barbeito
Katerina Zalamova
Stephanie Morlens
Jaume Gazquez Alabart
Felip Sandiumenge
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2006103303A1 publication Critical patent/WO2006103303A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition

Definitions

  • the present invention relates to a new method of producing metalorganic oxide precursors by means of anhydride attack of those same starting oxides. Its use is very general and valid for preparing oxide sheets of all types (ferroelectric, ferromagnetic, piezoelectric, etc.), although in the present invention it is applied to the manufacture of superconducting oxides.
  • Chemical Sector Metalorganic precursors.
  • Ceramic-metallurgical sector Deposition and growth of ceramic coatings on metal substrates.
  • Biomedicine and Pharmaceutical Sector New diagnostic equipment and new NMR spectrometers for molecular design.
  • Metal oxides are compounds of great interest due to their wide range of application ranging from superconductivity at high temperatures, ferromagnetism, piezoelectricity to semiconductivity.
  • the preparation of them by a low cost method such as the deposition of chemical precursor solutions has led to a large number of them being studied for possible application in obtaining oxides.
  • chemical precursors such as organometallic molecules (trifluoroacetate acetates, acetylacetonates, ethylhexanoates, alkoxides), metal salts (nitrates, iodides) and polymers.
  • Mixed oxides can be obtained by mixing similar precursors in a common solvent before pyrolysis.
  • second generation typically consist of a metallic substrate, one or several epitaxial thin sheets that chemically protect the substrate, and a thin superconductive epitaxial sheet of YBa 2 Cu 3 or 7 (YBCO).
  • metalorganic precursors of the corresponding Ytrium, Copper and Barium acetates results in low-performance superconducting oxides, normally due to the formation of barium carbonate during pyrolysis.
  • metal trifluoroacetates have been used as starting products, mainly due to the simplicity of their preparation methods, however there are some published studies that start from other precursors such as halides or some fluorine-free precursors that they are normally pivalates of the corresponding metals.
  • the commercial acetates are normally used which, in aqueous solution and in the presence of trifluoroacetic acid, generate the corresponding trifluoroacetates (T. Araki, K. Yamagiwa, I.
  • An aspect of the use of said Technique that is also of great relevance, from the point of manufacture of large lengths of tapes, is to minimize the time required to perform pyrolysis, that is, the decomposition of metalorganic precursors. In a continuous manufacturing process this time will determine the productivity (meters per hour) of tape that can be achieved.
  • An object of the present invention relates to the production of metalorganic oxide precursors by means of anhydride attack of those same starting oxides.
  • Another object of the present invention is to provide a new improved process for obtaining superconducting oxide sheets using deposition and decomposition of metal trifluoroacetates prepared under anhydrous conditions, according to the procedure claimed above.
  • the process for obtaining anhydrous metallurgical material from its oxides of the present invention comprises the following steps: a) dissolution of the oxide powder in: i) an anhydride corresponding to an organic acid capable of dissolving said oxide, ii) a small amount of the organic acid of point i) acting as a reaction catalyst and iii) acetone as a solvent, b) heating the mixture in atmosphere inert, c) filtration of the resulting suspension at room temperature, d) evaporation of the resulting mixture with a rotary evaporator under reduced pressure, e) redisolution of the solid residue thus obtained, and f) optionally, storage of the trifluoroacetates thus obtained in vials in inert atmosphere
  • step a) may consist of the powder dissolution of the oxide in trifluoroacetic anhydride ((CF3CO) 2O), a small amount of trifluoroacetic acid (CF3COOH) as the reaction catalyst and acetone as the solvent.
  • (CF3CO) 2O trifluoroacetic anhydride
  • CF3COOH trifluoroacetic acid
  • the properties of the sheets and tapes obtained with the new anhydrous metalorganic precursors are improved compared to the methods used previously because they have a higher purity, in particular the water content of the solution is practically nil (below the limit of detection using the Karl-Fischer method (lppm).
  • lppm the limit of detection using the Karl-Fischer method
  • An additional advantage of the new precursors obtained refers to the possibility of considerably reducing the time required in the process of decomposition of the deposited precursors, with respect to those They have been used before, while maintaining high layer quality. The advantage of such a reduction in the decomposition time is that it allows the production speed of superconducting tapes to be increased in continuous processes.
  • the method used to produce epitaxial superconducting sheets in monocrystalline ceramic substrates or metal tapes containing epitaxial buffer sheets allows to obtain critical current densities J 0 to 4,000,000 A / cm 2 at 77K in a null magnetic field.
  • An object of the present invention relates to the production of anhydrous metalorganic precursors from their oxides by means of anhydride attack of those same starting oxides.
  • the flowchart of the processes to be followed for the synthesis of the precursor solution of a generic oxide is shown in Figure 1.
  • steps are as follows: a) dissolution of the oxide powder in: i) an anhydride corresponding to an organic acid capable of dissolving said oxide, ii) a small amount of the organic acid of point i) which acts as a catalyst for the reaction , and iii) acetone as solvent, b) heating the mixture in an inert atmosphere, c) filtration of the resulting suspension at room temperature, d) evaporation of the resulting mixture with a rotary evaporator under reduced pressure, e) redisolution of the solid residue thus obtained, and f) optionally, storage of the trifluoroacetates thus obtained in vials in an inert atmosphere.
  • step a) may consist of the powder dissolution of the oxide in trifluoroacetic anhydride ((CF3CO) 2O), a small amount of trifluoroacetic acid (CF3COOH) as the reaction catalyst and acetone as the solvent.
  • (CF3CO) 2O trifluoroacetic anhydride
  • CF3COOH trifluoroacetic acid
  • these precursors are normally alkoxides, soluble in alcohols and sensitive to environmental humidity, therefore they must be handled throughout the process in an inert atmosphere.
  • carboxylates acetates, hexanoates
  • pentadionates acetylacetones
  • Hybrid solutions with precursors belonging to both groups can also be used.
  • trifluoroacetates prepared under anhydrous conditions have been used using trifluoroacetic anhydride ((CF 3 CO) 2 ⁇ ) as the starting reagent instead of trifluoroacetic acid (CF 3 COOH).
  • the lower reactivity of the anhydrides necessitates the use of a small amount of trifluoroacetic acid (5% by volume) as the reaction catalyst.
  • anhydride and trifluoroacetic acid has been particularized in the embodiments of the present invention, in general any anhydride corresponding to another organic acid that dissolves the oxide powders can be used.
  • MM'O oxide powder, excess trifluoroacetic anhydride and trifuoroacetic acid (5% by volume) are introduced as catalyst, using acetone as solvent.
  • the mixture is heated to a temperature between 45 ° C and 50 0 C for a period of time between 50 and 80 hours under inert.
  • the resulting suspension is then filtered and evaporated in a vacuum of between 0.6 and 2 mbar, heating to 75 ° C or 80 0 C.
  • the solid residue thus obtained is redissolved in acetone or methanol to the desired concentration.
  • the resulting anhydrous M and M 'trifuoroacetate solution is stored in vials in an inert atmosphere.
  • These materials with a low water content in the solution, prepared according to the procedure just described, constitute another object of the present invention. It is also the object of the present invention to use said materials for the deposition and growth of layers and bands of oxides, such as ferroelectric, ferromagnetic and piezoelectric oxides.
  • oxides such as ferroelectric, ferromagnetic and piezoelectric oxides.
  • Another object of the present invention relates to the production of anhydrous metalorganic precursors consisting of trifluoroacetates of Y, Ba and Cu from
  • trifluoroacetates prepared under anhydrous conditions have been used using trifluoroacetic anhydride ((CF 3 CO) 2 ⁇ ) as the starting reagent instead of trifluoroacetic acid (CF 3 COOH).
  • the lower reactivity of the anhydrides necessitates the use of a small amount of trifluoroacetic acid (5% by volume) as the reaction catalyst.
  • anhydride and trifluoroacetic acid has been particularized in the embodiments of the present invention, in general any anhydride corresponding to another organic acid that dissolves YBCO powders can be used.
  • Such materials prepared according to the procedure described above, which results in solutions with a very low water content (less than lppm), constitute another object of the present invention. It is also an object of the present invention to use these materials as anhydrous metalorganic precursors for the deposition and growth of superconducting layers and tapes.
  • Another object of the present invention is the process for obtaining superconducting material in the form of a layer characterized by the use of anhydrous chemical solutions type Trifluoroacetate described above, for the deposition of the superconducting sheet, which comprises the following steps.
  • the deposition of the solution in the metallic substrate can be carried out by any method that allows to control the thickness of the sheet obtained while allowing to obtain a homogeneous thickness.
  • Preferred methods, for their simplicity, are
  • spin coating and “dip coating” in which parameters such as rotation speed and acceleration (spin coating) and travel speed must be controlled
  • the first method is better suited to tests on substrates of small dimensions while the second case is better suited to continuous tape manufacturing.
  • the concentration of the solutions can vary between 0.3 M and 1.5 M.
  • the thickness of the sheet obtained must not exceed values of up to 600 nm, if you want to preserve the quality of the material.
  • the layer is pyrolyzed in an oven controlling the atmosphere. Ascent ramps can vary over a wide range, starting at 300 ° C / h and reaching up to 1,500 ° C / h between 5O 0 C and 25O 0 C and up to 600 ° C / h between 25O 0 C and a temperature between 300 0 C and 350 0 C. The maximum temperature is maintained between 10 and 60 minutes.
  • the flow is pure O 2 varying between 0.02 1 / min and 0.6 1 / min in a quartz tube 23mm in diameter, at a pressure of 1 bar and a pressure of H 2 O of 24 mbar.
  • Heat treatment The heat treatment is carried out in an oven that controls the temperature, as well as the ramps for changes.
  • the substrate must be kept inside a 23mm diameter quartz tube in a controlled atmosphere throughout the process.
  • the maximum temperature at which the heat treatment is carried out can be varied over a wide range, usually between 750 0 C and 820 0 C, while the ramps Up and down can also be variable.
  • the choice of the maximum temperature at which the heat treatment is carried out will basically determine two morphological characteristics of the thin sheets: the grain size of the oxide and its roughness.
  • the total time the sample will remain at the maximum temperature will normally be 90 minutes, although it can be varied over a wider range.
  • Optimized characteristics are obtained when the procedure described above is carried out in a temperature range between 250 0 C and a temperature between 300 0 C and 350 0 C with a ramp between 30 ° C / h and 600 ° C / h and remaining finally at the maximum temperature for a time that can be between 10 minutes and 90 minutes.
  • This process is followed by another heat treatment at high temperature for the crystallization of the superconducting sheet that is carried out in an oven in a controlled atmosphere and comprising the following two phases.
  • a first stage of heating carried out in an atmosphere formed mainly by nitrogen (with a water vapor pressure between 7 mbar and 100 mbar and an oxygen pressure between 0.1 mbar and 1 mbar) until a temperature between 750 0 C and 820 0 C and staying at this temperature between 30 and 120 minutes and a second heating stage at a temperature between 500 0 C and 300 0 C in an oxygen bar for a time less than about 8 hours finally followed by a cooling process to room temperature.
  • Figure 1 - Flow chart illustrating the different stages of the synthesis process of anhydrous metalorganic precursors from a generic MM'O oxide via anhydride attack of that same starting oxide.
  • Figure 2- Flow chart illustrating the different stages of the synthesis process of the YBCO precursor solution.
  • Figure 4- Intensity of the carboxylate peak in the IR spectra as a function of the heat treatment time at 250 0 C (figure 4b) and 300 0 C (figure 4a).
  • FIG. 5 Optical Microscopy images of pyrolized sheets in optimal conditions (figure 5a) and unacceptable conditions (with cracks (figure 5b) or with undulations (figure 5c)).
  • FIG. 6 General scheme of the heat treatments used for pyrolysis.
  • the temperature rise ramps, the isothermal treatment temperature and the time can be modified in the ranges indicated.
  • Figure 7 Image obtained by TEM of a thin sheet of YBCO on a substrate of LaAlO 3 , after the pyrolysis process where nanometric particles can be seen.
  • Figures 8a and 8b correspond to the same sample at different magnifications. In them you can see that there are few pores and the size of these is very small, resulting in a good critical current.
  • Figure 9 Graph of the critical current as a function of temperature for a YBCO sheet grown under optimal conditions.
  • a solution of 50 mL of Y, Ba and Cu trifluroacetates was prepared with a concentration of 1.5M (Y: Ba: Cu ratio of 1: 2: 3).
  • 8.334 g (0.0125moles) of commercial YBa 2 Cu 3 O 7 were weighed in a 250 mL spherical flask, coupled to a Dimroth refrigerant and provided with magnetic stirring.
  • 25 mL of freshly distilled dry acetone, 22 mL of trifluoroacetic anhydride (0.000156 mmol) (slow addition to avoid overheating) and 5 mL of trifluoroacetic acid were added.
  • the mixture was heated at 50 0 C for 72 hours in inert atmosphere (Ar).
  • the program followed by the oven is the one described in figure 6 with a ramp of 300 ° C / h up to a maximum temperature of 309 0 C, which was maintained for 30 minutes.
  • the use of a controlled atmosphere inside the furnace is needed, for this purpose an oxygen pressure of 1 bar, a flow of 0.051 / min and a water pressure of 24 mbar were worked on.
  • Said humidity is achieved by passing the gas through some washing jars provided with a porous plate in its inner lower part, to divide the gas into small drops, thus increasing the surface of contact with the water.
  • the sample was stored in a desiccator.
  • the sheet obtained was characterized by Optical Microscopy ( Figure 5a), where a homogeneous distribution can be seen, without cracks or roughness and by Transmission Electron Microscopy to confirm that the layer retains its homogeneity on a nanometric scale ( Figure 7).
  • Figure 4a and 4b A series of IR spectra obtained from treated sheets during different times and at two different temperatures were also made ( Figure 4a and 4b). These experiments allowed confirming the total decomposition of organic matter (the disappearance of the carboxylate group). In this way it is possible to determine the minimum duration of the pyrolysis process of the layer.
  • Example III From a pyrolized layer, heat treatment was performed to achieve the formation of the YBa 2 Cu 3 O 7 phase. It worked with an oven, which was applied a rapid rise in temperature (25 ° C / min) until reaching 795 ° C. This temperature was maintained for 180 minutes (the last 30 minutes dry) and then a ramp was applied at a speed of 2.5 ° C / min to room temperature. In this case 0.2 mbar of O 2 and 7 mbar of water pressure was used. The gas flow was the one that allows the mass flow controller used (Bronkhorst High-Tech) to mix with a range of 0.012 to 0.6 1 / min for N 2 and between 0.006 and 0.03 1 / min for O 2 .
  • Bronkhorst High-Tech Bronkhorst High-Tech

Abstract

La presente invención se refiere a un nuevo procedimiento de producción de precursores metalorgánicos de óxidos por vía de ataque con anhídrido de esos mismos óxidos de partida. Su uso es muy general y válido para preparar láminas de óxidos de todo tipo (ferroeléctricos, ferromagnéticos, piezoelectricos, etc.). También se refiere a un procedimiento de producción de precursores metalorgánicos anhidros de YBCO y a su aplicación en un procedimiento de fabricación de capas de dicho material superconductor. El bajo contenido en agua de los precursores preparados según el procedimiento de la presente invención permite eliminar pasos intermedios de purificación. Los nuevos precursores permiten reducir el tiempo de pirólisis para su descomposición con lo que la productividad en la producción de capas y cintas superconductoras se incrementa significativamente manteniendo su calidad y sus prestaciones.

Description

TITULO
PREPARACIÓN DE PRECURSORES METALORGÁNICOS ANHIDROS Y SU USO PARA LA DEPOSICIÓN Y CRECIMIENTO DE CAPAS Y CINTAS SUPERCONDUCTORAS.
SECTOR DE LA TÉCNICA
La presente invención se refiere a un nuevo procedimiento de producción de precursores metalorgánicos de óxidos por vía de ataque con anhídrido de esos mismos óxidos de partida. Su uso es muy general y válido para preparar láminas de óxidos de todo tipo (ferroeléctricos, ferromagnéticos, piezoelectricos, etc.), si bien en la presente invención se aplica a la fabricación de óxidos superconductores.
Los objetos de la presente invención son de especial relevancia en los siguientes sectores:
Sector Químico: Precursores metalorgánicos. - Sector Cerámico -metalúrgico: Deposición y crecimiento de recubrimientos cerámicos sobre substratos metálicos.
Sector Energético: Mejora de la eficiencia del aparataje eléctrico existente y desarrollo de nuevos equipos eléctricos de potencia.
Sector Biomedicina y Farmacéutico: Nuevos equipos de diagnóstico y nuevos espectrómetros de RMN para diseño molecular.
ESTADO DE LA TÉCNICA
Los óxidos metálicos son compuestos de gran interés debido a su amplio campo de aplicación que va desde la superconductividad a altas temperaturas, el ferromagnetismo, la piezoelectricidad hasta la semiconductividad. La preparación de los mismos por un método de bajo coste como la deposición de soluciones de precursores químicos ha hecho que se hayan estudiado un gran número de éstos para su posible aplicación en la obtención de óxidos. Dependiendo del objetivo final a alcanzar se ha partido de precursores químicos tales como, moléculas organometálicas (acetatos trifluoroacetatos, acetilacetonatos, etilhexanoatos, alcóxidos), sales metálicas (nitratos, yoduros) y polímeros. Los óxidos mixtos se pueden obtener mezclando precursores similares en un disolvente común antes de la pirólisis.
La preparación de óxidos superconductores es un campo de gran interés debido a la amplia variedad de aplicaciones de los mismos, que va desde el diagnóstico por imagen en Medicina (Resonancia Magnética Nuclear) hasta sus numerosas aplicaciones en el sector Energético (p.ej. imanes superconductores para el almacenamiento de energía).
Existen dos tipos de óxidos superconductores, los basados en Bismuto
(BÍ2Ca2Sr2Cu3O10) y los de Ytrio (YBa2Cu3O7), sin embargo debido a sus mejores propiedades, desde el punto de vista de estabilidad y densidad de corriente crítica, incluso bajo un campo magnético, estos últimos son los que han despertado un mayor interés.
En la actualidad se esta trabajando ya en la obtención de cintas superconductoras denominadas de segunda generación que consisten, típicamente, en un substrato metálico, una o varias láminas delgadas epitaxiales tampón que protegen químicamente al sustrato, y una lámina delgada epitaxial superconductora de YBa2Cu3O7 (YBCO).
Existen diferentes métodos para la preparación de superconductores basados en los óxidos de Ytrio entre ellos podemos citar la deposición por láser (PLD), la pulverización por radiofrecuencia, la epitaxia por fase líquida o la evaporación por haz de electrones. Entre todos ellos la deposición de las láminas delgadas utilizando disoluciones químicas ha merecido en los últimos tiempos una especial atención ya que evita la utilización de costosas técnicas de vacío y permite la preparación de óxidos superconductores con bajo costo.
La utilización como precursores metalorgánicos de los correspondientes acetatos de Ytrio, Cobre y Bario da lugar a óxidos superconductores de bajas prestaciones, debido normalmente a la formación de carbonato de bario durante la pirólisis. Como alternativa se han utilizado mayoritariamente trifluoroacetatos metálicos como productos de partida debido, principalmente, a la simplicidad de los métodos de preparación de los mismos, sin embargo hay algunos estudios publicados en que se parte de otros precursores tales como haluros o algunos precursores sin flúor que son normalmente pivalatos de los correspondientes metales. Para la preparación de la mezcla precursora se parte normalmente de los acetatos comerciales que, en solución acuosa y en presencia de ácido trifluoroacetico, generan los correspondientes trifluoroacetatos (T.Araki, K. Yamagiwa, I. Hirabayashi. U.S. Pat. No. 6,586,042 (2003), "Method of preparing oxide superconductor with purified mixed metal trifluoroacetate"). En estas condiciones los compuestos formados precisan de purificaciones posteriores con el objeto de eliminar el agua (disolvente de la reacción) y los posibles productos secundarios (ácido acético) para dar lugar a la mezcla de trifluoroacetatos metálicos con la pureza suficiente para, después de la pirólisis y crecimiento, dar lugar a material superconductor con buenas prestaciones. Entre los métodos de preparación partiendo de acetatos podemos citar también los utilizados por Gupta et al. (A. Gupta, R. Jagannathan, E.I.Cooper, E.A.Giess, J.I.Landman, B.W.Hussey, "Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors" Appl. Phys. Lett. 52, 1988, 2077) o el grupo de Mclntyre y Cima (P. C. Mclntyre, M. J. Cima, and M. F. Ng, "Metalorganic deposition of high- J Ba YCu O thin films from trifluoroacetate precursors onto (100) SrTiO ," J. Appl. Phys., 68, 1990, 4183).
Asimismo, la metodología de deposición de láminas delgadas de YBCO utilizando las sales de TFA en forma de solución química ha sido utilizada por otros autores en substratos monocristalinos (J. Smith, MJ. Cima, International Patent Classification HOlL 39/24, International Publication Number WO 98/58415, "Controlled Conversión Of Metal Oxyfluorides Into Superconducting Oxides") o en substratos metálicos con láminas tampón depositadas mediante técnicas de vacío.
Un aspecto de la utilización de dicha Técnica que reviste asimismo una gran relevancia, desde el punto de la fabricación de grandes longitudes de cintas, es el lograr minimizar el tiempo requerido para realizar la pirólisis, es decir la descomposición de los precursores metalorgánicos. En un proceso de fabricación en continuo dicho tiempo determinará la productividad (los metros por hora) de cinta que puede lograrse.
Los precursores utilizados hasta la fecha requieren tiempos muy largos de pirólisis si se quieren mantener buenas prestaciones superconductoras. Con el fin de reducir dicho tiempo de pirólisis, otros autores han utilizado aditivos en la disolución de trifluoroacetatos que permiten reducir dicho tiempo, por ejemplo la dietanolamina
(DEA) (J.T. Dawley, P.G. Clem, TJ. Boyle, L.M. Ottley, D.L. Overmyer, M.P. Siegal, "Rapid processing method for solution deposited YBa2Cu3O7-S thin film", Physica C, 402, 2004, 143), Dichos aditivos, no obstante modifican las propiedades que controlan la cristalización y las prestaciones superconductoras. Es deseable por tanto reducir el tiempo de pirólisis sin introducir por ello limitaciones en las prestaciones de los superconductores fabricados.
DESCRIPTIVA DE LA INVENCIÓN - Descripción breve
Un objeto de la presente invención se refiere a la producción de precursores metalorgánicos de óxidos por vía de ataque con anhídrido de esos mismos óxidos de partida.
Otro objeto de la presente invención se refiere a la producción de material metalorgánico anhidro consistente en trifluoroacetatos de Y, Ba y Cu a partir del ataque con anhídrido trifluoroacético de YBCO. Otro objeto de la presente invención se refiere a los materiales obtenidos mediante los procesos de producción de precursores metalorgánicos reivindicados en ella.
Finalmente, otro objeto de la presente invención es proporcionar un proceso nuevo mejorado para obtener láminas de óxidos superconductores utilizando deposición y descomposición de trifluoroacetatos metálicos preparados en condiciones anhidras, según el procedimiento reivindicado anteriormente.
Hasta la fecha la preparación de precursores metalorgánicos para la obtención de óxidos implica la realización de numerosos procesos de purificación intermedios que son necesarios para conseguir buenas prestaciones. La utilización de soluciones anhidras evita gran parte de estos pasos intermedios consiguiéndose muy buenos resultados en los óxidos finales de una forma simplificada. El procedimiento de obtención de material metalorgánico anhidro a partir de sus óxidos de la presente invención comprende los siguientes pasos: a) disolución del polvo del óxido en: i) un anhídrido correspondiente a un ácido orgánico capaz de disolver a dicho óxido, ii) una pequeña cantidad del ácido orgánico del punto i) que actúa como catalizador de la reacción y iii) acetona como disolvente, b) calentamiento de la mezcla en atmósfera inerte, c) filtración de la suspensión resultante a temperatura ambiente, d) evaporación de la mezcla resultante con un evaporador rotatorio a presión reducida, e) redisolución del residuo sólido así obtenido, y f) opcionalmente, almacenamiento de los trifluoroacetatos así obtenidos en viales en atmósfera inerte.
En particular, el paso a) puede consistir en la disolución de polvo del óxido en anhídrido trifluoroacético ((CF3CO)2O), una pequeña cantidad de ácido trifluoroacético (CF3COOH) como catalizador de la reacción y acetona como disolvente.
La utilización de soluciones anhidras para la preparación de precursores metalorgánicos para la obtención de óxidos superconductores evita gran parte de los procesos intermedios de purificación necesarios actualmente, dando lugar a óxidos finales con muy buenas prestaciones (espesores de varios centenares de nanómetros y densidades de corriente de 1 -5 MA/cm2) de una forma simplificada.
Las propiedades de las láminas y cintas obtenidas con los nuevos precursores metalorgánicos anhidros se ven mejoradas respecto a los métodos utilizados anteriormente debido a que éstas tienen una mayor pureza, en particular el contenido en agua de la solución es prácticamente nulo (por debajo del límite de detección utilizando el método Karl-Fischer (lppm)). Por otro lado una gran ventaja práctica de la nueva metodología desarrollada radica en que se consigue dicho nivel de pureza de forma directa, es decir sin ser necesaria la realización de procesos largos y costosos de purificación de las soluciones. Una ventaja adicional de los nuevos precursores obtenidos se refiere a la posibilidad de reducir considerablemente el tiempo requerido en el proceso de descomposición de los precursores depositados, con respecto a los que se han utilizado anteriormente, manteniendo sin embargo una alta calidad de las capas. La ventaja de dicha reducción del tiempo de descomposición es el permitir aumentar la velocidad de producción de cintas superconductoras en los procesos en continuo.
El método utilizado para producir láminas superconductoras epitaxiales en substratos cerámicos monocristalinos o cintas metálicas conteniendo láminas tampón epitaxiales permite obtener densidades de corriente crítica J0 hasta 4.000.000 A/cm2 a 77K en campo magnético nulo.
- Descripción detallada Un objeto de la presente invención se refiere a la producción de precursores metalorgánicos anhidros a partir de sus óxidos por vía de ataque con anhídrido de esos mismos óxidos de partida. En la Figura 1 se muestra el diagrama de flujo de los procesos que deben seguirse para la síntesis de la solución precursora de un óxido genérico . Dichos pasos son los siguientes: a) disolución del polvo del óxido en: i) un anhídrido correspondiente a un ácido orgánico capaz de disolver a dicho óxido, ii) una pequem cantidad del ácido orgánico del punto i) que actúa como catalizador de la reacción, y iii) acetona como disolvente, b) calentamiento de la mezcla en atmósfera inerte, c) filtración de la suspensión resultante a temperatura ambiente, d) evaporación de la mezcla resultante con un evaporador rotatorio a presión reducida, e) redisolución del residuo sólido así obtenido, y f) opcionalmente, almacenamiento de los trifluoroacetatos así obtenidos en viales en atmósfera inerte. En particular, el paso a) puede consistir en la disolución de polvo del óxido en anhídrido trifluoroacético ((CF3CO)2O), una pequeña cantidad de ácido trifluoroacético (CF3COOH) como catalizador de la reacción y acetona como disolvente.
Existen distintos precursores químicos que pueden usarse para la preparación de soluciones metalorgánicas que puedan depositarse en el sustrato para el posterior crecimiento de una fase cristalina. Dichos precursores son los que usualmente se utilizan en las metodologías denominadas de sol-gel o descomposición metalorgánica.
En el primer caso estos precursores son normalmente alcóxidos, solubles en alcoholes y sensibles a la humedad ambiental, en consecuencia deben manejarse durante todo el proceso en atmósfera inerte. En el segundo caso se utilizan carboxilatos (acetatos, hexanoatos) o pentadionatos (acetilacetonas) solubles en distintos solventes orgánicos y menos sensibles a la humedad ambiental. Se pueden utilizar también soluciones híbridas con precursores pertenecientes a ambos grupos.
En la presente invención se ha partido de trifluoroacetatos preparados en condiciones anhidras utilizando para ello anhídrido trifluoroacético ((CF3CO)2θ) como reactivo de partida en lugar del ácido trifluoroacético (CF3COOH). La menor reactividad de los anhídridos hace necesaria la utilización de una pequeña cantidad de ácido trifluoroacético (5% en volumen) como catalizador de la reacción. Aunque en los ejemplos de realización de la presente invención se ha particularizado al uso de anhídrido y ácido trifluoroacético, en general puede utilizarse cualquier anhídrido correspondiente a otro ácido orgánico que disuelva a los polvos del óxido.
En un matraz esférico provisto de un refrigerante Dimroth y agitación se introduce polvo de de óxido de MM'O, anhídrido trifluoroacético en exceso y ácido trifuoroacético (5% en volumen) como catalizador, usando acetona como disolvente. Se calienta la mezcla a una temperatura de entre 45°C y 500C durante un período de tiempo de entre 50 y 80 horas en atmósfera inerte. Seguidamente se filtra la suspensión resultante y se evapora a un vacío de entre 0.6 y 2 mbar, calentando hasta 75°C u 800C. El residuo sólido así obtenido se redisuelve en acetona o metanol hasta la concentración deseada. La solución de trifuoroacetatos de M y M' anhidros resultante se almacena en viales en atmósfera inerte.
Estos materiales, con un bajo contenido de agua en la solución, preparados según el procedimiento que se acaba de describir, constituyen otro objeto de la presente invención. También es objeto de la presente invención el uso de dichos materiales para la deposición y crecimiento de capas y cintas de óxidos, tales como óxidos ferroeléctricos, ferromagnéticos y piezoeléctricos.
Otro objeto de la presente invención se refiere a la producción de precursores metalorgánicos anhidros consistentes en trifluoroacetatos de Y, Ba y Cu a partir de
YBCO por vía de ataque con anhídrido de ese mismo óxido de partida. En la Figura 2 se muestra el diagrama de flujo de los procesos que deben seguirse para la síntesis de dicha solución precursora. Los pasos son los siguientes: a) disolución de polvo de YBCO en anhídrido trifluoroacético ((CF3CO)2θ), una pequeña cantidad de ácido trifluoroacético (CF3COOH) como catalizador de la reacción y acetona como disolvente, b) calentamiento de la mezcla en atmósfera inerte, c) filtración de la suspensión resultante a temperatura ambiente, d) evaporación de la mezcla resultante con un evaporador rotatorio a presión reducida, e) redisolución del residuo sólido así obtenido, y f) opcionalmente, almacenamiento de los trifluoroacetatos así obtenidos en viales en atmósfera inerte.
En la presente invención se ha partido de trifluoroacetatos preparados en condiciones anhidras utilizando para ello anhídrido trifluoroacético ((CF3CO)2θ) como reactivo de partida en lugar del ácido trifluoroacético (CF3COOH). La menor reactividad de los anhídridos hace necesaria la utilización de una pequeña cantidad de ácido trifluoroacético (5% en volumen) como catalizador de la reacción. Aunque en los ejemplos de realización de la presente invención se ha particularizado al uso de anhídrido y ácido trifluoroacético, en general puede utilizarse cualquier anhídrido correspondiente a otro ácido orgánico que disuelva a los polvos del YBCO.
Para la preparación de la solución química se introduce en un matraz esférico provisto de un refrigerante Dimroth y agitación magnética polvo de óxido de YBCO, anhídrido trifluoroacético en exceso y ácido trifuoroacético como catalizador, usando acetona como disolvente. Un 5% en volumen de la sustancia catalizadora da resultados óptimos, aunque dicha cantidad podría variarse. Se calienta la mezcla a una temperatura de entre 45°C y 500C durante un período de tiempo de entre 50 y 80 horas en atmósfera inerte. El calentamiento a 500C durante 72 horas en atmósfera de Argón proporciona resultados óptimos. Seguidamente se filtra la suspensión resultante con filtros de 0.45 μm y se evapora al vacío (0.6 a 2 mbar) calentando hasta un rango de temperaturas de 75°C a 800C. El residuo sólido así obtenido se redisuelve en acetona o metanol hasta la concentración deseada. La solución de trifuoroacetatos de Ytrio, Bario y Cobre anhidros se almacena en viales en atmósfera inerte.
Dichos materiales, preparados según el procedimiento descrito anteriormente, que da como resultado soluciones con un muy bajo contenido de agua (menor de lppm), constituyen otro objeto de la presente invención. También es un objeto de la presente invención el uso de estos materiales como precursores metalorgánicos anhidros para la deposición y crecimiento de capas y cintas superconductoras.
Otro objeto de la presente invención lo constituye el procedimiento de obtención de material superconductor en forma de capa caracterizado por el uso de soluciones químicas tipo Trifluoroacetato anhidras descritas anteriormente, para el depósito de la lámina superconductora, que comprende los siguientes pasos.
Deposición de soluciones químicas
La deposición de la solución en el substrato metálico puede efectuarse por cualquier método que permita controlar el grosor de la lámina obtenida a la vez que permite obtener un grosor homogéneo. Los métodos preferidos, por su sencillez, son
"spin coating" y "dip coating" en los cuales deben controlarse parámetros como la velocidad de rotación y la aceleración (spin coating) y la velocidad de desplazamiento
(dip coating). El primer método se adapta mejor a los ensayos en substratos de pequeñas dimensiones mientras que el segundo caso se adapta mejor a la fabricación de cintas en continuo.
La concentración de las disoluciones puede variar entre 0.3 M y 1.5 M. El espesor de la lámina obtenida no debe sobrepasar valores de hasta los 600 nm, si se quiere preservar la calidad del material. Pirólisis
Una vez se ha sintetizado y depositado el precursor sobre el sustrato de LaAlO3, se piroliza la capa en un horno controlando la atmósfera. Las rampas de subida pueden variar en un amplio intervalo, comenzando en los 300°C/h y llegando hasta 1.500°C/h entre 5O0C y 25O0C y hasta 600°C/h entre 25O0C y una temperatura comprendida entre 3000C y 350 0C. La temperatura máxima se mantiene entre 10 y 60 minutos. El flujo es de O2 puro variando entre 0.02 1/min y 0.6 1/min en un tubo de cuarzo de 23mm de diámetro, a un presión de 1 bar y una presión de H2O de 24 mbar.
Tratamiento térmico El tratamiento térmico se efectúa en un horno que controla la temperatura, así como las rampas para sus cambios. El substrato se debe mantener en el interior de un tubo de cuarzo de 23mm de diámetro en atmósfera controlada durante todo el proceso. Normalmente se usa una mezcla de los gases de N2 y O2, con un rango de 0.012 a 0.6 1/min para el N2 y entre 0.006 a 0.03 1/min para el O2. Esto resulta en velocidades lineales comprendidas entre lo 0.80mm/s y los 24 mm/s.La temperatura máxima a la que se efectúa el tratamiento térmico puede variarse en un amplio rango, normalmente entre 750 0C y 820 0C , mientras que las rampas de subida y bajada también pueden ser variables. La elección de la temperatura máxima a la que se efectúa el tratamiento térmico determinará básicamente dos características morfológicas de las láminas delgadas: el tamaño de grano del óxido y su rugosidad. El tiempo total que permanecerá la muestra a la temperatura máxima será normalmente de 90 minutos, aunque puede variarse en un margen más amplio. Se obtienen unas características optimizadas cuando el procedimiento anteriormente descrito se efectúa en un rango de temperaturas de entre 2500C y una temperatura comprendida entre 3000C y 3500C con un rampa comprendida entre 30°C/h y 600°C/h y permaneciendo finalmente en la temperatura máxima durante un tiempo que puede encontrarse entre 10 minutos y 90 minutos.
A este proceso le sigue otro tratamiento térmico a alta temperatura para la cristalización de la lámina superconductora que se lleva a cabo en un horno en atmósfera controlada y que comprende las dos siguientes fases. Una primera etapa de calentamiento realizada en una atmósfera formada principalmente por nitrógeno (con una presión vapor de agua entre 7 mbar y 100 mbar y una presión de oxígeno entre 0.1 mbar y 1 mbar) hasta una temperatura comprendida entre 750 0C y 820 0C y permaneciendo en esta temperatura entre 30 y 120 minutos y una segunda etapa de calentamiento a una temperatura comprendida entre 500 0C y 300 0C en un bar de oxígeno durante un tiempo inferior a unas 8 horas seguida finalmente por un proceso de enfriamiento hasta temperatura ambiente. Una vez descrito el proceso térmico al que se someten las muestras debe consignarse cuál es la estructura y las características morfológicas que generan las láminas delgadas epitaxiales. Dichas determinaciones fueron realizadas a partir de diagramas de difracción de rayos X, de Microscopía electrónica de Barrido y de Microscopía de Fuerzas Atómicas. La descripción de dichos análisis a los depósitos efectuados sobre un monocristal de LaAlO3, se describen en los ejemplos que se detallan a continuación, aunque también podría usarse como sustrato, cualquier cinta metálica convenientemente protegida con una capa de óxido crecido epitaxialmente.
DESCRIPCIÓN DE LAS FIGURAS
Figura 1- Diagrama de flujo que ilustra las distintas etapas del proceso de síntesis de precursores metalorgánicos anhidros a partir de un óxido genérico MM'O por vía de ataque con anhídrido de ese mismo óxido de partida. Figura 2- Diagrama de flujo que ilustra las distintas etapas del proceso de síntesis de la solución precursora de YBCO.
Figura 3- Espectro IR de la solución precursora de TFA donde se observa la banda característica del carboxilato alrededor de lóδOcm"1.
Figura 4- Intensidad del pico carboxilato en los espectros IR en función del tiempo de tratamiento térmico a 2500C (figura 4b) y 3000C (figura 4a).
Figura 5- Imágenes de Microscopía Óptica de láminas pirolizadas en condiciones óptimas (figura 5a) y condiciones no aceptables (con grietas (figura 5b) o con ondulaciones (figura 5c)).
Figura 6- Esquema general del los tratamientos térmicos utilizados para la pirólisis. Las rampas de subida de la temperatura, la temperatura de tratamiento isotermo y el tiempo pueden modificarse en los rangos indicados.
Figura 7- Imagen obtenida mediante TEM de una lámina delgada de YBCO sobre un substrato de LaAlO3, después del proceso de pirólisis donde se pueden apreciar partículas nanométricas. Figura 8- Imágenes de SEM después de un crecimiento óptimo, de una lámina delgada de YBCO sobre un substrato de LaAlO3. Las figuras 8a y 8b corresponden a la misma muestra a distintos aumentos. En ellas se puede observar que hay pocos poros y el tamaño de estos es muy reducido, dando como resultado una buena corriente crítica.
Figura 9- Gráfico de la corriente crítica en función de la temperatura para una lámina de YBCO crecida en condiciones óptimas.
Figura 10- Diagrama de rayos X tipo Θ-2Θ en que puede apreciarse los picos de Bragg (001) de la fase YBCO y (hOO) del substrato de LaAlO3. EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN
Ejemplo I
Se preparó una solución de 50 mL de trifluroacetatos de Y, Ba y Cu con una concentración de 1.5M (relación Y:Ba:Cu de 1:2:3). Para ello se pesaron 8.334 g (0.0125moles) de YBa2Cu3O7 comercial en un matraz esférico de 250 mL, acoplado a un refrigerante Dimroth y provisto de agitación magnética. Se añadieron además 25 mL de acetona seca recién destilada, 22 mL de anhídrido trifluroacético (0.000156moles) (adición lenta para evitar sobrecalentamientos) y 5mL de ácido trifluoroacético. La mezcla se calentó a 500C durante 72 horas en atmósfera inerte (Ar). Seguidamente se enfrió a temperatura ambiente y se filtró a través de un filtro de 0.45 μm. Se procedió entonces a evaporar la solución resultante a presión reducida utilizando un evaporador rotatorio, primero a temperatura ambiente (2 horas) y calentando luego progresivamente a 800C, obteniéndose los trifluoroacetatos de Y, Ba y Cu (caracterizados por su espectro de IR (figura 3)). Una parte del sólido obtenido se disolvió en acetona y otra en metanol manteniéndose ambas soluciones en viales cerrados y en atmósfera inerte.
Tanto de la solución cetónica como de la metanólica se realizaron análisis de ICP (1:1.98:2.97) con el objeto de verificar que se había mantenido la relación estequiométrica inicial. Asimismo se realizó una evaluación del contenido en agua de la muestra en polvo y se vio que estaba por debajo de los límites de detección utilizando la técnica Karl-Fischer (inferior a lppm). El espectro de IR de la mezcla evidenció la existencia de las bandas a 1650-1720 cm"1 correspondientes a los trifluoroacetatos formados.
Ejemplo II
A partir de los trifluoroacetatos de Y, Ba y Cu, se realizó su deposición (14μl) en un sustrato de LaAlO3 (de dimensiones 5mm*5mm, grosor 0.5mm y orientación (100)) mediante la técnica de Spin-coating (6000rpm durante 2.02 minutos). Es necesario realizar el experimento en una sala de atmósfera controlada debido a que una elevada humedad en el medio puede deteriorar la solución dipositada. A continuación se realizó la pirólisis, consistente en la descomposición de la materia orgánica. Para ello se utilizó un crisol de alúmina (donde se pone el sustrato) que se introdujo en un tubo de cuarzo de 23mm de diámetro, el cual se puso en el interior de un horno. El programa seguido por el horno es el descrito en la figura 6 con una rampa de 300°C/h hasta una temperatura máxima de 309 0C, la cual se mantuvo durante 30 minutos. Se necesita el uso de una atmósfera controlada en el interior del horno, para ello se trabajó con una presión de oxígeno de 1 bar, un flujo de 0.051/min y una presión de agua de 24 mbar. Dicha humedad se consigue haciendo pasar el gas por unos frascos lavadores dotados de una placa porosa en su parte inferior interna, para dividir el gas en pequeñas gotas, aumentando así la superficie de contacto con el agua. Al finalizar el proceso, la muestra se guardó en un desecador.
La lámina obtenida se caracterizó mediante Microscopía Óptica (figura 5a), donde se puede ver una distribución homogénea, sin grietas ni rugosidades y mediante Microscopía Electrónica de transmisión para confirmar que la capa conserva su homogeneidad a escala nanométrica (figura 7). También se realizaron una serie de espectros IR obtenidos de láminas tratadas durante tiempos distintos y a dos temperaturas diferentes (figura 4a y 4b). Dichos experimentos permitieron confirmar la total descomposición de la materia orgánica (la desaparición del grupo carboxilato). De esta forma es posible determinar cual debe ser la duración mínima del proceso de pirólisis de la capa.
En otros casos, cuando se incrementa la concentración de la solución de los trifluoroacetatos de Y, Ba y Cu, las muestras presentan grietas debido a las tensiones generadas (al aumentar la concentración, la lámina resultante presenta un mayor grosor y eso genera mayor tensiones dando lugar a la formación de las grietas (figura 5b)). Cuando la solución precursora no resultaba homogénea pueden aparecer precipitados pudiéndose formar láminas que presentan distintos grosores y rugosidades (figura 5c) que posteriormente reducen su calidad.
Ejemplo III A partir de una capa pirolizada, se realizó el tratamiento térmico para conseguir la formación de la fase YBa2Cu3O7. Se trabajó con un horno, al que se le aplicó una subida rápida de temperatura (25°C/min) hasta llegar a 795°C. Dicha temperatura se mantuvo durante 180 minutos (los 30 últimos minutos en seco) y luego se aplicó una rampa a una velocidad de 2.5 °C/min hasta la temperatura ambiente. En este caso se utilizó 0.2 mbar de O2 y 7 mbar de presión de agua. El flujo del gas fue el que permite el controlador másico de flujo utilizado (Bronkhorst High-Tech) para realizar la mezcla con un rango de 0.012 a 0.6 1/min para el N2 y de entre 0.006 y 0.03 1/min para el O2. Sin sacar la muestra del horno, se realizó la oxigenación de dicha muestra utilizando la misma atmósfera seca. Se subió a 450°C, se cambió el gas portador por O2 seco a 1 bar de presión y se mantuvo a esta temperatura por un tiempo de 90 minutos. A continuación se realizó una rampa a 300°C/h hasta temperatura ambiente.
La caracterización de la muestra se realizó mediante imágenes de SEM (figura 8), mediciones de la corriente crítica a 5K (J c = 3.3*107 A/cm2) y a 77K (J c = 4.3*106 A/cm2) (figura 9) y análisis de DRX (figura 10).

Claims

REIVINDICACIONES
1.- Procedimiento de obtención de material metalorgánico anhidro a partir de sus óxidos que comprende los siguientes pasos: a) disolución del polvo del óxido en: i) un anhídrido correspondiente a un ácido orgánico capaz de disolver a dicho óxido, ii) una pequeña cantidad del ácido orgánico del punto i) que actúa como catalizador de la reacción, y iii) acetona como disolvente, b) calentamiento de la mezcla en atmósfera inerte, c) filtración de la suspensión resultante a temperatura ambiente, d) evaporación de la mezcla resultante con un evaporador rotatorio a presión reducida, e) redisolución del residuo sólido así obtenido, y f) opcionalmente, almacenamiento de los trifluoroacetatos así obtenidos en viales en atmósfera inerte.
2.- Procedimiento de obtención de material metalorgánico anhidro según reivindicación 1 en el que el paso a) se realiza utilizando anhídrido trifluoroacético ((CF3CO)2θ), una pequeña cantidad de ácido trifluoroacético (CF3COOH) como catalizador de la reacción y acetona como disolvente.
3.- Procedimiento de obtención de material metalorgánico anhidro según las reivindicaciones 1 y 2 caracterizado porque la cantidad de ácido trifluoroacético utilizado como catalizador en el paso a) es del 5% en volumen.
4.- Procedimiento de obtención de material metalorgánico anhidro según las reivindicaciones 1 a 3 caracterizado porque la disolución del paso a) se realiza en un matraz acoplado a un refrigerante Dimroth y provisto de agitación magnética.
5.- Procedimiento de obtención de material metalorgánico anhidro según las reivindicaciones 1 a 4 caracterizado porque el paso b) se efectúa a una temperatura entre 45°C y 500C en una atmósfera de Ar durante 50-80 horas, 6.- Procedimiento de obtención de material metalorgánico anhidro según las reivindicaciones 1 a 5 caracterizado porque el paso d) se realiza a una temperatura entre 75°C y 85°C, y a una presión entre 0.
6 mbar y 2 mbar
7.- Procedimiento de obtención de material metalorgánico anhidro según las reivindicaciones 1 a 6 caracterizado porque la redisolución del paso e) utiliza acetona como disolvente.
8.- Procedimiento de obtención de material metalorgánico anhidro según las reivindicaciones 1 a 6 caracterizado porque la redisolución del paso e) utiliza metanol como disolvente.
9.- Procedimiento de obtención de material metalorgánico anhidro consistente en trifluoroacetatos de Y, Ba y Cu a partir de YBCO que comprende los siguientes pasos: a) disolución de polvo de YBCO en anhídrido trifluoroacético ((CF3CO)2θ), una pequeña cantidad de ácido trifluoroacético (CF3COOH) como catalizador de la reacción y acetona como disolvente, b) calentamiento de la mezcla en atmósfera inerte durante c) filtración de la suspensión resultante a temperatura ambiente, d) evaporación de la mezcla resultante con un evaporador rotatorio a presión reducida, y e) redisolución del residuo sólido así obtenido.
10.- Procedimiento de obtención de material metalorgánico anhidro según reivindicación 9 al que se le añade el almacenamiento de los trifluoroacetatos obtenidos en viales en atmósfera inerte como último paso.
11.- Procedimiento de obtención de material metalorgánico anhidro según las reivindicaciones 9 y 10 caracterizado porque la cantidad de ácido trifluoroacético utilizado como catalizador en el paso a) es del 5% en volumen.
12.- Procedimiento de obtención de material metalorgánico anhidro según las reivindicaciones 9 a 11 caracterizado porque la disolución del paso a) se realiza en un matraz acoplado a un refrigerante Dimroth y provisto de agitación magnética.
13.- Procedimiento de obtención de material metalorgánico anhidro según las reivindicaciones 9 a 12 caracterizado porque el paso b) se efectúa a una temperatura entre 45°C y 500C en una atmósfera de Ar durante 50-80 horas,
14.- Procedimiento de obtención de material metalorgánico anhidro según las reivindicaciones 9 a 13 caracterizado porque el paso d) se realiza a una temperatura entre 75°C y 85°C, y a una presión entre 0.6 mbar y 2 mbar
15.- Procedimiento de obtención de material metalorgánico anhidro según las reivindicaciones 9 a 14 caracterizado porque la redisolución del paso e) utiliza acetona como disolvente.
16.- Procedimiento de obtención de material metalorgánico anhidro según las reivindicaciones 9 a 15 caracterizado porque la redisolución del paso e) utiliza metanol como disolvente.
17.- Trifluoroacetato obtenido según los procedimientos de las reivindicaciones 1 a 9 caracterizado porque su contenido en agua es inferior a 1 pmm.
18.- Trifluoroacetato obtenido según los procedimientos de las reivindicaciones 9 a 16 caracterizado porque es un trifluoroacetato de Y y porque su contenido en agua es inferior a 1 pmm.
19.- Trifluoroacetato obtenido según los procedimientos de las reivindicaciones 9 a 16 caracterizado porque es un trifluoroacetato de Ba y porque su contenido en agua es inferior a 1 pmm.
20.- Trifluoroacetato obtenido según los procedimientos de las reivindicaciones 9 a 16 caracterizado porque es un trifluoroacetato de Cu y porque su contenido en agua es inferior a 1 pmm.
21.- Uso del trifluoroacetato de la reivindicación 17 como precursor metalorgánico anhidro para la deposición y crecimiento de capas y cintas de óxidos.
22.- Uso del trifluoroacetato de las reivindicaciones 18 a 20 como precursor metalorgánico anhidro para la deposición y crecimiento de capas y cintas superconductoras.
23.- Procedimiento de obtención de material superconductor en forma de capa caracterizado por el uso de soluciones químicas tipo Trifluoroacetato anhidras de las reivindicaciones 18 a 20 para el depósito de la lámina superconductora, y porque comprende los siguientes pasos: a) limpieza de la superficie del substrato, b) deposición de la solución química por cualquier método que permita obtener un grosor homogéneo y controlar el grosor de la lámina obtenida, en una atmósfera controlada con baja humedad, c) secado rápido de la solución química de b), a temperaturas inferiores a 2500C usando una rampa de subida de temperatura entre 300°C/h y 1.500°C/h en un flujo de oxígeno a una presión de 1 bar y una presión de H2O de 24mbar, y manteniendo la temperatura máxima entre 10 y 60 minutos. d) descomposición de los precursores metalorgánicos mediante un tratamiento térmico en atmósfera controlada de oxígeno, nitrógeno o una mezcla de ambos usando un flujo de gas controlado que corresponde a una velocidad lineal comprendida entre 0.80 mm/s y 24 mm/s, a la vez que se efectúa un aumento de temperatura entre 2500C y una temperatura comprendida entre 3000C y 3500C con un rampa comprendida entre 30°C/h y 600°C/h y permaneciendo finalmente en la temperatura máxima durante un tiempo que puede encontrarse entre 10 minutos y 90 minutos, y e) tratamiento térmico a alta temperatura para la cristalización de la lámina superconductora que se lleva a cabo en un horno en atmósfera controlada y que comprende las siguientes fases: i) una primera etapa de calentamiento realizada en una atmósfera formada principalmente por nitrógeno (con una presión vapor de agua entre 7 mbar y
100 mbar y una presión de oxígeno entre 0.1 mbar y 1 mbar) hasta una temperatura comprendida entre 750 0C y 820 0C y permaneciendo en esta temperatura entre 30 y 120 minutos y ii) una segunda etapa de calentamiento a una temperatura comprendida entre 500 0C y 300 0C en un bar de oxígeno durante un tiempo inferior a unas 8 horas seguida finalmente por un proceso de enfriamiento hasta temperatura ambiente.
24.- Procedimiento de obtención de material superconductor en forma de capa de la reivindicación 23 caracterizado porque la deposición de la solución química del paso b) se lleva a cabo por "spin-coating".
25.- Procedimiento de obtención de material superconductor en forma de capa de la reivindicación 23 caracterizado porque la deposición de la solución química del paso b) se lleva a cabo por "dip-coating".
PCT/ES2005/070056 2005-04-01 2005-04-28 Preparación de precursores metalorgánicos anhidros y su uso para la deposición y crecimiento de capas y cintas superconductoras WO2006103303A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200500749 2005-04-01
ES200500749A ES2259919B1 (es) 2005-04-01 2005-04-01 Preparacion de precursores metalorganicos anhidros y su uso para la deposicion y crecimiento de capas y cintas superconductoras.

Publications (1)

Publication Number Publication Date
WO2006103303A1 true WO2006103303A1 (es) 2006-10-05

Family

ID=37052961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070056 WO2006103303A1 (es) 2005-04-01 2005-04-28 Preparación de precursores metalorgánicos anhidros y su uso para la deposición y crecimiento de capas y cintas superconductoras

Country Status (2)

Country Link
ES (1) ES2259919B1 (es)
WO (1) WO2006103303A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008071829A1 (es) 2006-12-14 2008-06-19 Consejo Superior De Investigaciones Científicas MATERIAL SUPERCONDUCTOR NANOESTRUCTURADO TIPO REBa2Cu3O7 (RE=TIERRA RARA O YTRIO) CON UNA ELEVADA DENSIDAD DE CENTROS DE ANCLAJE DE VÓRTICES Y SU MÉTODO DE PREPARACIÓN
CN101710502B (zh) * 2009-12-18 2011-06-08 西北有色金属研究院 一种钇钡铜氧涂层导体前驱膜的制备方法
WO2011067453A1 (es) 2009-12-04 2011-06-09 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de cintas superconductoras a partir de soluciones metalorgánicas con bajo contenido en flúor
CN102627453A (zh) * 2012-04-23 2012-08-08 清华大学 非水基化学溶液制备钇钡铜氧高温超导膜的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721009A (en) * 1996-06-24 1998-02-24 He Holdings, Inc. Controlled carbon content MOD precursor materials using organic acid anhydride
US20020139960A1 (en) * 2001-03-27 2002-10-03 National Institute Of Advanced Industrial Science And Technology Rare earth-Ba-Cu complex composition and method of producing superconductor using same
WO2005007576A1 (en) * 2003-07-18 2005-01-27 Korea Polytechnic University Method for manufacturing metal organic deposition precursor solution using superconduction oxide and film superconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721009A (en) * 1996-06-24 1998-02-24 He Holdings, Inc. Controlled carbon content MOD precursor materials using organic acid anhydride
US20020139960A1 (en) * 2001-03-27 2002-10-03 National Institute Of Advanced Industrial Science And Technology Rare earth-Ba-Cu complex composition and method of producing superconductor using same
WO2005007576A1 (en) * 2003-07-18 2005-01-27 Korea Polytechnic University Method for manufacturing metal organic deposition precursor solution using superconduction oxide and film superconductor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOKUNAGA Y. ET AL.: "High critical current YBCO films using advanced TFA-MOD process", PHYSICA C, vol. 412-414, October 2004 (2004-10-01), pages 910 - 915, XP004579528, DOI: doi:10.1016/j.physc.2003.12.077 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008071829A1 (es) 2006-12-14 2008-06-19 Consejo Superior De Investigaciones Científicas MATERIAL SUPERCONDUCTOR NANOESTRUCTURADO TIPO REBa2Cu3O7 (RE=TIERRA RARA O YTRIO) CON UNA ELEVADA DENSIDAD DE CENTROS DE ANCLAJE DE VÓRTICES Y SU MÉTODO DE PREPARACIÓN
WO2011067453A1 (es) 2009-12-04 2011-06-09 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de cintas superconductoras a partir de soluciones metalorgánicas con bajo contenido en flúor
CN101710502B (zh) * 2009-12-18 2011-06-08 西北有色金属研究院 一种钇钡铜氧涂层导体前驱膜的制备方法
CN102627453A (zh) * 2012-04-23 2012-08-08 清华大学 非水基化学溶液制备钇钡铜氧高温超导膜的方法

Also Published As

Publication number Publication date
ES2259919A1 (es) 2006-10-16
ES2259919B1 (es) 2007-11-01

Similar Documents

Publication Publication Date Title
Norton Synthesis and properties of epitaxial electronic oxide thin-film materials
ES2302637B1 (es) Material superconductor nanoestructurado tipo reba2cu3o7(re=tierra rara o ytrio) con una elevada densidad de centros de anclaje de vortices y su metodo de preparacion.
US7919434B2 (en) Oxide superconducting film and method of preparing the same
WO2007018027A1 (ja) 超電導材料の製造方法
ES2259919B1 (es) Preparacion de precursores metalorganicos anhidros y su uso para la deposicion y crecimiento de capas y cintas superconductoras.
US5135907A (en) Manufacture of high purity superconducting ceramic
JP4963062B2 (ja) Aサイト層状秩序化型ペロブスカイトMn酸化物薄膜の製造方法
Ng et al. Heteroepitaxial growth of lanthanum aluminate films derived from mixed metal nitrates
KR20110050433A (ko) 희토류 금속 Ba2Cu3O7-δ 박막의 조성물 및 제조 방법
Akin et al. Textured CeO/sub 2/thin films on nickel tape by sol-gel process
EP2509124A1 (en) Method for obtaining superconducting tapes from metal-organic solutions having low fluorine content
RU2616305C1 (ru) Способ получения прозрачных наноразмерных плёнок феррита висмута
ES2355222B1 (es) Cintas superconductoras formadas a partir de soluciones metalorgánicas que contienen dos metales de transición.
JP2011201712A (ja) 配向酸化物膜の製造方法および配向酸化物膜、酸化物超電導体
Parola et al. New sol-gel route for processing of PMN thin films
KR100338359B1 (ko) 부분 용융법을 이용한 고온 초전도 에피텍셜 후막의 제조방법
Wang Chemical solution deposition for YBCO superconducting films and Sm2O3 buffer layers on single crystal and biaxially textured metallic substrates
Paranthaman Non-Fluorine Based Bulk Solution Techniques to Grow Superconducting YBa2Cu3O7− δ Films
ES2259564A1 (es) Cintas superconductoras multicapa preparadas mediante deposicion de disoluciones quimicas.
Leleckaite et al. Sol-gel synthesis and characterization of yttrium gallium garnets
Katayama et al. Low-temperature synthesis of YBa 2 Cu 3 O 7–x films by the solution process using Y–Ba–Cu heterometallic alkoxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05743936

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5743936

Country of ref document: EP