WO2006102829A1 - Systeme d'alimentation longue distance pour systeme de communication - Google Patents

Systeme d'alimentation longue distance pour systeme de communication Download PDF

Info

Publication number
WO2006102829A1
WO2006102829A1 PCT/CN2006/000491 CN2006000491W WO2006102829A1 WO 2006102829 A1 WO2006102829 A1 WO 2006102829A1 CN 2006000491 W CN2006000491 W CN 2006000491W WO 2006102829 A1 WO2006102829 A1 WO 2006102829A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
remote
power
module
central office
Prior art date
Application number
PCT/CN2006/000491
Other languages
English (en)
French (fr)
Inventor
Xuefeng Pan
Zhen Qin
Tianli Jiang
Yingjie Zhou
Original Assignee
Huawei Technologies Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd filed Critical Huawei Technologies Co., Ltd
Priority to EP06722143.2A priority Critical patent/EP1865702B1/en
Priority to ES06722143.2T priority patent/ES2558018T3/es
Priority to US11/909,719 priority patent/US8254563B2/en
Publication of WO2006102829A1 publication Critical patent/WO2006102829A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/001Current supply source at the exchanger providing current to substations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/266Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to remote powering technologies, and in particular to a remote powering system in a communication system.
  • DSLM Digital Subscriber Line
  • DSL Access Multiplexer DSL Access Multiplexer
  • Line powering which provides power to the DSLM equipment on the subscriber's side from the central office via the digital subscriber line, has become the main technical support for the operator's "last mile". Remote power systems will be used in more and more network products.
  • a remote power supply system that supplies power from a central office to a user-side DSLM device through a digital subscriber line generally adopts a one-to-one technical solution, that is, a central office power supply module is set at the DSL office end, and the central office power supply module provides the - The 48V DC voltage is raised to the appropriate DC voltage and loaded onto the digital subscriber line.
  • a remote power module is set at the far end. The remote power module converts the voltage transmitted from the digital subscriber line into the voltage required by the DSL remote equipment, such as Figure 1 shows.
  • the remote power supply system using the remote power supply technology scheme when the central office power module fails, the power supply of the remote device will be terminated, thereby interrupting the communication service. Therefore, the existing remote power supply system cannot guarantee the communication service. Reliability.
  • a central office power module when the remote device is connected to the N remote devices, a central office power module needs to be set at the central office device, and each of the central office power modules respectively The N remote power modules are connected to each other to supply power. This not only takes up a large space in the equipment room, but also complicates the monitoring and management of the central power modules.
  • a remote power supply system in a communication system includes:
  • the central office power supply unit and the remote power supply module connected thereto are characterized in that the central office power supply part includes at least two central office power supply modules, and the central office power supply modules are connected in parallel to supply power to the remote power supply module.
  • the central office power supply part further includes: a central office power supply monitoring module;
  • the remote power supply module further includes: a remote power supply monitoring module connected to the central office power monitoring module by using a power monitoring signal line;
  • the remote power monitoring module performs power monitoring on the remote power module; the central power monitoring module monitors the remote power monitoring module.
  • the central office power supply part further includes: at least two central office service transformers connected to different communication service signal lines; the remote power supply module further comprising: the communication service corresponding to the number of the local office service transformers a remote service transformer connected to a signal line;
  • the positive and negative poles of each of the central office power supply modules connected in parallel are coupled to different communication service signal lines through central taps of different central office service transformers;
  • the remote power module decouples the positive and negative voltages of the remote power module from the communication service signal lines through center taps of the remote service transformers corresponding to different central office service transformers.
  • the central power supply part further includes: at least one central office service transformer connected to the communication service signal line and a central office monitoring transformer connected to the power monitoring signal line;
  • the remote power supply module further includes: a remote service transformer connected to the communication service signal line corresponding to the number of service transformers and a remote monitoring transformer connected to the power monitoring signal line;
  • each of the central office power supply modules connected in parallel are coupled to the communication service signal line and the power monitoring signal line through different center end service transformers and a center tap of the central office monitoring transformer; the remote power supply module passes through the far The center taps of the end service transformer and the remote monitoring transformer respectively decouple the remote power from the communication service signal line and the power monitoring signal line Positive and negative voltages of the source module.
  • the central office power supply part further includes: at least one central office service transformer connected to the communication service signal line; the remote power supply module further comprising: a communication service signal line corresponding to the number of the central office service transformers Connected remote service transformer;
  • a pole connected in parallel with each of the central office power modules is coupled to a communication service signal line through a center tap of the central office service transformer;
  • the other poles in parallel of the central office power modules are directly connected to the corresponding poles of the remote power module through a power line;
  • the remote power module decouples a certain pole voltage of the remote power module from the communication service signal line through a center tap of the remote service transformer.
  • the central office power supply part further includes: a central office monitoring transformer connected to the power monitoring signal line; the remote power supply module further comprising: a remote monitoring transformer connected to the power monitoring signal line;
  • a pole connected in parallel with each of the central power supply modules is coupled to the power monitoring signal line through a center tap of the central office monitoring transformer;
  • the other poles in parallel of the central office power modules are directly connected to the corresponding poles of the remote power module through a power line;
  • the remote power module decouples a certain pole voltage of the remote power module from the power monitoring signal line through a center tap of the remote monitoring transformer.
  • the central power supply part further includes: at least one central office service transformer connected to the communication service signal line and a central office monitoring transformer connected to the power monitoring signal line;
  • the remote power supply module further includes: a remote service transformer connected to the communication service signal line corresponding to the number of service transformers and a remote monitoring transformer connected to the power monitoring signal line;
  • the positive and negative poles of each of the central power supply modules are connected to one end of the power line, the center tap of the central office service transformer, and the center tap of the central office monitoring transformer, and the central office service transformer and the central monitoring transformer will be the positive/negative Coupled into the communication service signal line and the power monitoring signal line, respectively;
  • the remote power module passes through the remote service transformer and the remote monitoring transformer
  • the heart taps respectively decouple the positive/negative voltage of the remote power module from the communication service signal line and the power monitoring signal line, and the remote power module is connected to the other end of the power line.
  • the remote power modules are connected to each of the remote power modules, and the remote power modules are powered by the remote power modules.
  • the other pole (negative or positive) of the same remote power supply module may have the same transmission mode as the one pole, and may be different, but also has the above transmission mode, that is, all the transformer center coupling taps may be used.
  • a disconnection control switch is respectively disposed in each of the branches connected to each of the remote power modules.
  • the open circuit control switch is: recoverable insurance; or
  • the open circuit control switch is: a current detecting device and a disconnect switch.
  • the disconnect switch is: a metal oxide semiconductor field effect transistor or a relay or a contactor.
  • the operating currents of the central office power modules are the same.
  • the present invention provides at least two central office power modules in the central office power supply part, and the central power supply modules are connected in parallel to supply power to the remote power supply module, thereby providing a redundant power supply backup for the remote power supply module.
  • the reliability of the normal communication service in the network communication system is ensured.
  • the power supply of the remote power modules is reduced by connecting the power modules of the central office in parallel, which effectively reduces the number of central office power modules in the central office power supply and saves the equipment room. Space, convenient for monitoring and management of the central office power module.
  • each of the remote power modules and each remote communication is facilitated by setting a corresponding number of open circuit control switches in each branch connected to each remote power module after the power modules of the central office are connected in parallel.
  • Maintenance of the device The power monitoring communication signal is transmitted between the central power supply part and the remote power supply module, which facilitates the monitoring and management of the remote power supply module; the central power supply part adopts different coupling modes for each remote power supply module. Power supply, make the central power supply part
  • the method for powering the remote power module is flexible. Therefore, the technical solution provided by the invention improves the reliability of the communication service, improves the integration degree of the central office equipment, and reduces the cost of the network communication system.
  • FIG. 1 is a schematic diagram of a remote power supply system using a one-to-one power supply technical solution in the prior art
  • FIG. 2 is a schematic diagram of a remote power supply system in the communication system of the present invention.
  • the remote power supply system in the communication system provided by the present invention includes: a central office power supply part and a remote power supply module connected thereto, the central office power supply part includes at least two central office power supply modules, and the central office power supply modules are connected in parallel The power supply is then supplied to the remote power module.
  • the central office power supply part of the present invention may also be provided with a central office power monitoring module, and the remote power supply module is further provided with a remote power monitoring module.
  • the remote power monitoring module performs power monitoring on the voltage and current of the remote power module, and the remote power monitoring module and the central power monitoring module transmit power monitoring signals through the power monitoring signal line.
  • the remote power modules may be one or more.
  • each remote power module is connected to the central power supply portion, and the central power supply portion simultaneously supplies power to each remote power module. That is, after the central office power modules in a central office power supply are connected in parallel, it is possible to supply power to multiple remote power modules at the same time.
  • the central office power modules in the central office power supply are connected in parallel to each remote power module, and the power supply methods for the remote power modules are as follows:
  • Manner 1 There are two power cables between the central office power supply and each remote power module. The positive and negative poles of each central power supply module are connected through two power cables between each remote power module. The power supply loop of the remote power module provides power to each remote power module.
  • the power line may be a digital subscriber line or a coaxial cable, and the power supply circuit of each of the remote power modules is provided with a disconnection control switch.
  • the open circuit control switch can be controlled by a manual or local power supply monitoring module. For example, when the central power supply monitoring module determines the power supply of the remote power supply module such as voltage, current, etc. through the remote power supply monitoring module and the power monitoring signal line, the control is broken. The control switch cuts off power to the remote power module.
  • the power cable existing between the central power supply part and each remote power supply module may also be More than two, the positive and negative poles of the central power supply module are connected in parallel with more than two power lines to form a power supply loop of the remote power module to provide power for each remote power module.
  • the loop that supplies power to the remote power module is independent of other traces in the communication system, such as the communication service signal line or the power monitor signal line, and is only related to the power line.
  • Manner 2 The communication service signal line of the transmission communication service is coupled to the remote power supply module by a coupler coupling method.
  • the following is an example of using the two communication service signal lines to power a remote power supply module.
  • each of the central office power supply modules are respectively coupled to the two communication service signal lines through the center taps of the two central office service transformers corresponding to the two communication service signal lines, and are connected to the two communication service signal lines.
  • the remote power module decouples the positive and negative voltages of the remote power module from the communication signal lines through the center taps of the two remote service transformers to form a power supply loop of the remote power module.
  • the power module provides power.
  • the central office power supply part can also supply power to a remote power supply module by using more than two communication service signal lines.
  • the positive and negative poles of the central office power supply part pass through three communication service signals.
  • the center taps of the three central office service couplers corresponding to the line are randomly connected, and the remote power module decouples the positive and negative voltages through the center taps of the three remote service transformers to form a power supply loop of the remote power module.
  • a disconnection control switch is disposed in the power supply loop of each of the remote power modules.
  • the position setting of the open circuit control switch is very flexible, for example, a disconnection control switch is set for each remote power module on the branch before the center tap of the central power supply part and the central tap of each central office service transformer, or as shown in FIG. 2
  • the positions of C1 and C2 are directly set in the line directly connected to the user at the central office, and C1 and C2 respectively can realize the open circuit control of a remote power supply module.
  • a disconnection control switch is respectively disposed on each communication service signal line coupled with the positive or negative terminal of the central power supply portion.
  • the open circuit control switch can be controlled by a manual or central power monitoring module.
  • the control is broken.
  • the switch cuts off power to the remote power module.
  • the loop that supplies power to the remote power module is only related to the communication service signal line, and is independent of other traces in the communication system, such as the power monitor signal line.
  • Manner 3 The communication service signal line and the power monitoring signal line of the transmission communication service are coupled to each other to provide power to the remote power module.
  • the following uses a communication service signal line and a power supply monitoring signal line as a remote end for the central office power supply part. Power supply of the power module is taken as an example for description.
  • each central office power supply module is connected to the communication service signal line and the power supply monitoring signal line through the center tap of the central office service transformer corresponding to the communication service signal line and the central end monitoring transformer corresponding to the power monitoring signal line.
  • the remote power module connected to the communication service signal line and the power monitoring signal line is decoupled from the communication service signal line and the power monitoring signal line through the center tap of the remote service transformer and the center tap of the remote monitoring transformer respectively.
  • the positive and negative voltages of the power module of the terminal form a power supply loop of the remote power module, and provide power for the remote power module.
  • the central office power supply part can also supply power to a remote power supply module by using more than one communication service signal line and one power supply monitoring signal line, for example, when the communication service signal line is two, corresponding to two central office services.
  • Transformer the positive and negative poles of the central power supply part can be randomly connected with the central end of two central office service transformers and one central monitoring transformer.
  • the remote power supply module passes through the center of two remote service transformers and one remote monitoring transformer. The tap decouples its positive and negative voltages to form a power supply loop for the remote power module.
  • a disconnection control switch is disposed in the power supply loop of each of the remote power modules.
  • the position setting of the open circuit control switch is very flexible, for example, a disconnection control switch is set for each remote power module on the branch before the center tap of each transformer of the central end power supply part and the central end of the central end, as shown in the figure.
  • a disconnection control switch is respectively disposed on the positive or negative line of the central power supply unit.
  • the open circuit control switch can be controlled by a manual or local power supply monitoring module. For example, when the central power supply monitoring module determines the power supply of the remote power supply module such as voltage, current, etc. through the remote power supply monitoring module and the power monitoring signal line, the control is broken. The control switch cuts off power to the remote power module.
  • Method 4 The communication service signal line using the transmission communication service uses a coupler coupling method and a power line to supply power to the remote power module.
  • At least one communication service signal line and one power line exist between the central office power supply part and each remote power supply module.
  • the central end power supply part uses a communication service signal line and a power supply line to supply power to a remote power supply module. The example is explained.
  • each central office power supply module connected in parallel are coupled to the communication service signal line through the center tap of the central office service transformer corresponding to the communication service signal line, and the other pole of each central office power supply module connected in parallel passes through the power supply line and the remote power supply. Module connection.
  • the center tap of the remote service transformer decouples the positive or negative voltage of the remote power module from the communication service signal line, and the remote power module obtains the voltage of the other pole from the power line to form the remote power module.
  • a power supply loop that supplies power to the remote power module.
  • the central office power supply part can also supply power to a remote power supply module by using more than one communication service signal line.
  • the communication service signal line is two, corresponding to the two central office service transformers
  • the negative pole can be randomly connected with the center tap and the power line of the two central end service transformers.
  • the remote power module decouples the positive or negative voltage from the center tap of the two remote service transformers, and obtains a pole from the power line.
  • the voltage forms a power supply loop of the remote power module to provide power to the remote power module.
  • a disconnection control switch is disposed in each of the power supply circuits of each of the remote power modules.
  • the position setting of the open circuit control switch is very flexible.
  • a disconnection control switch is provided for each remote power module on the branch connected to the power line of the central end power supply, such as the positive or negative pole of the central power supply part and the central office services.
  • a branch control switch is provided for each remote power module on the branch before the center tap connection of the transformer, specifically as the positions of C1 and C2 in FIG. 2, and then in the positive or negative poles of the central power supply portion.
  • a disconnection control switch is respectively disposed on the communication service signal line.
  • the open circuit control switch can be controlled by a manual or local power supply monitoring module.
  • the central power supply monitoring module determines the power supply of the remote power supply module such as voltage, current, etc. through the remote power supply monitoring module and the power monitoring signal line, the corresponding control is performed.
  • the open circuit control switch cuts off power to the remote power module.
  • the circuit that supplies power to the remote power module is only connected to the communication service signal line and power supply.
  • Method 5 The power monitoring signal line using the transmission power monitoring signal uses a coupler coupling mode and a power line to supply power to the remote power module.
  • each central office power module is connected to the communication service signal line through the center tap of the central monitoring transformer corresponding to the power monitoring signal line, and the other pole of each central power supply module connected in parallel through the power line and the remote power source Module connection.
  • the center tap of the remote monitoring transformer decouples the positive or negative voltage of the remote power module from the power monitoring signal line, and the remote power module obtains the voltage of the other pole from the power line to form the power supply of the remote power module.
  • a disconnection control switch is disposed in the power supply loop of each of the remote power modules.
  • the position setting of the open circuit control switch is very flexible.
  • a disconnection control switch is set for each remote power module on the branch connected to the power line of the central office power supply, such as positive or negative and central office monitoring in the central power supply part.
  • a branch control switch is provided for each remote power module on the branch before the center tap connection of the transformer, specifically as the positions of C1 and C2 in FIG. 2, and the positive or negative power sources coupled to the central power supply portion.
  • the open circuit control switch can be controlled by a manual or local power supply monitoring module. For example, when the central power supply monitoring module determines the power supply of the remote power supply module such as voltage, current, etc. through the remote power supply monitoring module and the power monitoring signal line, the control is broken. The control switch cuts off power to the remote power module.
  • the circuit that supplies power to the remote power module is only related to the communication power monitoring signal line and the power line, and is independent of other lines in the communication system, such as communication service signal lines.
  • Method 6 The communication service signal line for transmitting the communication service and the power monitoring signal line for transmitting the power supply monitoring signal are powered by the coupler coupling mode and the power line for the remote power module.
  • the circuit for providing power to the remote power module is related to the communication service signal line, the power monitoring signal line, and the power line in the communication system.
  • FIG. 2 A schematic diagram of connecting two central power modules in parallel to two remote power modules is shown in FIG. 2 .
  • the central office power supply unit uses a 1 + 1 redundancy backup power supply mode for the two remote power supply modules, and the two central office power supply modules provide the remote power supply modules of the two DSL remote devices through the digital subscriber line.
  • the high-voltage DC power supply and the central office power supply can implement independent voltage monitoring and protection for the two remote power modules.
  • the central office provides -48V DC voltage for the central power supply part
  • the central office power supply part includes two central end power supply modules Pl, P2, PI and P2 work in parallel.
  • the working current of P1 and P2 is half of the load. In this way, when one central power module fails, it will not affect the other central power supply module to supply power to the load normally, thus achieving gapless power switching and ensuring the central office power supply. Part of the redundant power hot backup function.
  • the transformer connected to Ulin in the central power supply part is the central office service transformer
  • the transformer connected to U2in is the central office service transformer 2
  • the transformer connected to U3in is the central office service transformer 3
  • the transformer connected with U4in is The central office business transformer 4,
  • the transformer connected to A3out is the central office monitoring transformer 5
  • the transformer connected to A4out is the central office monitoring transformer 6.
  • the transformer connected to Ulin in the remote power module 1 is the remote service transformer
  • the transformer connected to U2in is the remote service transformer
  • the transformer connected to U3in is the remote service transformer 3
  • the transformer connected to U4in is far.
  • the end business transformer 4, the transformer connected to Alin is the remote monitoring transformer 5.
  • the transformer connected to Ulin in the remote power module 2 is the remote service transformer 7
  • the transformer connected to U2in is the remote service transformer 8
  • the transformer connected to U3in is the remote service transformer 9
  • the transformer connected to U4in is far.
  • the end service transformer 10 and the transformer connected to Alin are remote monitoring transformers 11.
  • the positive pole of the DC high voltage power supply generated by the parallel connection of the two central power supply modules is connected to the central tap of the central office service transformer 1, the central office service transformer 2, the central office service transformer 3, and the central office service transformer 4, and is coupled to Ulin, U2in. 4, U3in, U4in, 4 pairs of digital subscriber lines for transmitting communication service signals, where Ulin and U2in of the central power supply part are respectively connected with the remote service transformer 1 of the remote power supply module 1, and the center of the remote service transformer 2
  • the tap connection, the central power supply sections U3in and U4in are respectively connected to the center taps of the remote service transformer 7 of the remote power module 2 and the remote service transformer 8.
  • the remote power module 1 decouples the positive pole of the DC power source through the center tap of the remote service transformer 1 and the remote service transformer 2: +DC1.
  • the remote power module 2 decouples the positive pole of the DC power source through the center tap of the remote service transformer 7 and the remote service transformer 8, respectively: +DC2.
  • the central tap of the central office service transformer 1, the central office service transformer 2, the central office service transformer 3, and the central office service transformer 4 may also be the negative pole of the DC high voltage power supply generated after being connected in parallel with the two central end power supply modules.
  • the central tap of the connection, or central office service transformer 1, 2, 3, 4 may be partially connected to the positive pole of the central power supply part, and partially connected to the negative pole of the central power supply part. That is, the center tap of the central office service transformer 1, 2, 3, 4 is connected to the positive terminal of the central power supply part, or is not limited to the negative connection of the central power supply part.
  • the open circuit control switches Cl, C2, the open circuit control switch can be recoverable or can be: current detecting device and circuit breaker.
  • the disconnect switch can be: MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or relay or contactor.
  • the disconnection control switches C1 and C2 of the remote power module 1 and the remote power module 2 can ensure that the power supply to the remote power module is cut off in the event of a single remote power module failure or line failure. Part of the continued power supply to another remote power module.
  • the position setting of the open circuit control switches Cl and C2 is very flexible.
  • C1 can be four, and they are respectively arranged on the Ulin and U2in lines of the positive pole to which the central power supply unit is coupled, or can be respectively set on the Alout and A3out lines.
  • the C2 may also be four, and are respectively disposed on the U3in and U4in lines of the positive pole to which the central power supply portion is coupled, or may be respectively disposed on the A2out and A4out lines.
  • the open circuit control switches Cl and C2 can be manually controlled. At the same time, they can also be controlled by the central power monitoring module MCU1.
  • the central power monitoring module MCU1 determines the remote power module through the remote power monitoring module MCU2, MCU3, Alout, and A2out lines. 1
  • the control circuit breaker switch cuts off the power supply of the remote voltage module 1 or the remote power module 2.
  • the negative circuit of the central power supply module PI and P2 in parallel passes through the central tap of the central office monitoring transformer 5 and the central monitoring transformer 6, and is coupled to the power monitoring for the power monitoring signal between the central power module and the remote power module.
  • Signal line Alout and A2out, Alout and remote power mode The remote monitoring transformer 5 of block 1 is connected, and A2out is connected to the remote monitoring transformer 11 of the remote power module 2.
  • the remote power module 1 obtains the DC power supply of the remote power module 1 through the center tap decoupling of the remote monitoring transformer 5 and the digital subscriber line directly connected to the power supply. A3out: - DC1.
  • the remote power module 2 is decoupled from the center of the remote monitoring transformer 11 and directly connected to the digital line of the power line.
  • A4out obtains the DC power supply of the remote power module 2: - DC2.
  • the central tap of the central monitoring transformer 5 and the central monitoring transformer 6 can also be connected with the positive pole of the DC high voltage power generated after the two central power modules are connected in parallel, that is, the center tap of the central monitoring transformers 5 and 6. It can be connected to the positive or negative terminal of the central power supply separately.
  • DC2 and “DC2” serve as the power supply for the remote module 2 as part of the central power supply.
  • the power monitoring communication signal transmission between the central power supply part and the remote power supply module 1 and the remote power supply module 2 can be realized on the Alout and the A2out.
  • the data service signal transmission between the central office communication device and the remote communication device 1 and the remote communication device 2 can be realized on the Ul ⁇ U4.
  • the central office power supply part can also be designed as an N+1 redundant power supply backup mode, that is, the central end power supply part is connected by P1, P2, ... PN, PN+1, N+1 central power supply modules.
  • the operating current of each central office power module is one-ninth of the total load current. When one or more central power modules fail, the remaining central power modules can still support the load of all DSL remote devices. Power requirements for seamless power conversion.
  • the remote power module can also be added to M. At the same time, the open circuit control switch needs to be increased to M.
  • the remote power supply system for N+1 redundant power backup is realized by the technical solution provided by the present invention, so that the normal communication service in the communication system is reliably guaranteed, and the number of the central office power modules in the network communication system is effectively reduced. It saves the space of the equipment room, facilitates the monitoring and management of the central office power module, facilitates the maintenance of each remote communication device and each remote power module, facilitates the monitoring and management of the remote power module, and improves the reliability of the communication service. Improve the integration of central office equipment and reduce the cost of network communication systems.
  • the same pole (positive or negative) of the power supply of different remote power modules can all be transmitted by transformer center tap coupling or all transformerless coupling or above. A combination of the two.
  • the other pole of the remote power module has the same power source (negative or positive) and one of the poles
  • the transmission modes can be the same, can be different, but also have the above transmission modes, that is, all of them can be transmitted by the transformer center coupling tapping mode or all of the transformerless coupling mode or a combination of the above two modes.
  • the number of transmission paths included in one pole and the other pole of the sum is not limited to the number in the figure, and may be increased or decreased as needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

一种通信系统中的远程供电系统
技术领域
本发明涉及远程供电技术, 具体涉及一种通信系统中的远程供电系 统。
背景技术
随着网络通信系统的迅速发展, 远程供电系统已成为拓展通信业务的 一项重要技术。 如在 XDSL ( X数字用户线)服务需求不断增长的情况下, 在现有的已经铺设的数字用户线网络的基础上拓展新业务到最终用户的 一种比较通用的方法为: 将 DSLM ( DSL Access Multiplexer, DSL接入 多路器)设备更加移向最终用户侧。 这样, 可以利用 1 - 2对双绞线、 或 者同轴电缆作为上行通道, 并通过 DSLM设备接入更多的用户和业务。 由 于用户侧环境复杂且在多数情况下不方便提供电源,所以,将 DSLM设备 移向用户侧时, DSLM设备的供电成为一个不易解决的实际问题。
通过数字用户线从局端为位于用户侧的 DSLM设备提供电源的远端 供电技术(Line powering ) 已成为运营商 "最后一公里" 的主要技术支撑 方案。 远程供电系统将会在越来越多的网络产品中获得应用。
目前, 通过数字用户线从局端为用户侧的 DSLM设备提供电源的远程 供电系统一般采用一对一的技术方案, 即在 DSL局端设置一个局端电源模 块,将局端电源模块提供的 -48V直流电压升到合适的直流电压加载到数字 用户线上, 在远端设置一个远端电源模块, 远端电源模块将数字用户线上 传输过来的电压转换成 DSL远端设备需要的电压, 如附图 1所示。
采用这种远端供电技术方案的远程供电系统, 在局端电源模块失效 时, 远端设备的供电将终止, 从而使通信业务中断, 因此, 现有的这种远 程供电系统不能够保证通信业务的可靠性。 同时, 采用这种一对一的远端 供电技术的远程供电系统, 当局端设备连接了 N个远端设备时, 需要在局 端设备设置 个局端电源模块, 每个局端电源模块分别与 N个远端电源 模块连接, 为其进行供电, 这样, 不但会占用较大的机房空间, 还会使局 端电源模块的监控管理变得非常复杂。
发明内容 本发明的目的在于, 提供一种通信系统中的远程供电系统, 以克服现 有技术中存在的通信业务可靠性差, 占用较大机房空间的缺点。
为达到上述目的, 本发明提供的一种通信系统中的远程供电系统, 包 括:
局端电源部分和与其连接的远端电源模块, 其特征在于, 所述局端电 源部分至少包括两个局端电源模块, 且所述各局端电源模块并联后为所述 远端电源模块供电。
所述局端电源部分还包括: 局端电源监控模块; 所述远端电源模块还 包括: 通过电源监控信号线与所述局端电源监控模块连接的远端电源监控 模块;
所述远端电源监控模块对所述远端电源模块进行电源监控; 所述局端电源监控模块对所述远端电源监控模块进行监控。
所述局端电源部分还包括: 至少两个与不同的通信业务信号线连接的 局端业务变压器; 所述远端电源模块还包括: 与所述各局端业务变压器数 量对应的与所述通信业务信号线连接的远端业务变压器;
所述各局端电源模块并联后的正、 负极通过不同的局端业务变压器的 中心抽头耦合到不同的通信业务信号线中;
所述远端电源模块通过与不同的局端业务变压器对应的所述各远端 业务变压器的中心抽头从各通信业务信号线中解耦出该远端电源模块的 正、 负极电压。
所述局端电源部分还包括: 至少一个与通信业务信号线连接的局端业 务变压器和一个与电源监控信号线连接的局端监控变压器; 所述远端电源 模块还包括: 与所述局端业务变压器数量对应的、 与所述通信业务信号线 连接的远端业务变压器和一个与所述电源监控信号线连接的远端监控变 压器;
所述各局端电源模块并联后的正、 负极通过不同的局端业务变压器和 局端监控变压器的中心抽头耦合到通信业务信号线和电源监控信号线中; 所述远端电源模块通过所述远端业务变压器和远端监控变压器的中 心抽头分别从通信业务信号线和电源监控信号线中对应解耦出该远端电 源模块的正、 负极电压。
所述局端电源部分还包括: 至少一个与通信业务信号线连接的局端业 务变压器;所述远端电源模块还包括:与所述局端业务变压器数量对应的、 与所述通信业务信号线连接的远端业务变压器;
所述各局端电源模块并联后的某一极通过所述局端业务变压器的中 心抽头耦合到通信业务信号线中;
所述各局端电源模块并联后的另一极直接通过电源线与所述远端电 源模块的相应极连接;
所述远端电源模块通过所述远端业务变压器的中心抽头从所述通信 业务信号线中对应解耦出该远端电源模块的某一极电压。
所述局端电源部分还包括: 与电源监控信号线连接的局端监控变压 器; 所述远端电源模块还包括: 与所述电源监控信号线连接的远端监控变 压器;
所述各局端电源模块并联后的某一极通过所述局端监控变压器的中 心抽头耦合到电源监控信号线中;
所述各局端电源模块并联后的另一极直接通过电源线与所述远端电 源模块的相应极连接;
所述远端电源模块通过所述远端监控变压器的中心抽头从所述电源 监控信号线中对应解耦出该远端电源模块的某一极电压。
所述局端电源部分还包括: 至少一个与通信业务信号线连接的局端业 务变压器和一个与电源监控信号线连接的局端监控变压器; 所述远端电源 模块还包括: 与所述局端业务变压器数量对应的、 与所述通信业务信号线 连接的远端业务变压器和一个与所述电源监控信号线连接的远端监控变 压器;
所述各局端电源模块并联后的正、 负极与电源线的一端、 局端业务变 压器的中心抽头、 局端监控变压器的中心抽头连接, 局端业务变压器和局 端监控变压器将所述正 /负极分别耦合到通信业务信号线和电源监控信号 线中;
所述远端电源模块通过所述远端业务变压器和远端监控变压器的中 心抽头分别从通信业务信号线和电源监控信号线中解耦出该远端电源模 块的正 /负极电压, 所述远端电源模块与所述电源线的另一端连接。
上述技术方案中的所述远端电源模块为多个, 所述并联后的各局端电 源模块分别与各远端电源模块连接, 为所述各远端电源模块供电。
当远端电源模块为多个时, 不同的远端电源模块的电源相同的某一极
(正极或负极)可以全部采用变压器中心抽头耦合方式传输或者全部采用 无变压器耦合方式传输或者采用以上两种方式的组合。 而且不同的远端电 源模块的电源相同的另一极 (负极或正极)和所述的某一极的传输方式可 以相同, 可以不同, 但同样具有以上传输方式, 即可以全部采用变压器中 心耦合抽头方式传输或者全部采用无变压器耦合方式传输或者采用以上 两种方式的组合。
所述并联后的各局端电源模块与各远端电源模块连接的各支路中分 别设置有断路控制开关。
所述断路控制开关为: 可恢复保险; 或
所述断路控制开关为: 电流检测装置和断路开关。
所述断路开关为: 金属氧化物半导体场效应晶体管或继电器或接触 器。
所述各局端电源模块的工作电流相同。
通过上述技术方案的描述可知, 本发明通过在局端电源部分设置至少 两个局端电源模块, 将各局端电源模块并联后为远端电源模块供电, 为远 端电源模块提供了冗余电源备份, 保证了网络通信系统中正常的通信业务 的可靠性; 通过将各局端电源模块并联后为多个远端电源模块供电, 有效 减少了局端电源部分中局端电源模块的数量, 节约了机房空间, 方便了局 端电源模块的监控管理。
此外, 在本发明的优选方案中, 通过在各局端电源模块并联后与各远 端电源模块连接的各支路中设置相应数量的断路控制开关, 方便了各远端 电源模块及各远端通信设备的维护; 通过在局端电源部分与远端电源模块 之间传输电源监控通信信号, 方便了对远端电源模块的监控管理; 局端电 源部分通过采用不同的耦合方式为各远端电源模块供电, 使局端电源部分 为远端电源模块供电的方式灵活; 从而通过本发明提供的技术方案实现了 提高通信业务可靠性, 提高局端设备集成度, 降低网絡通信系统成本的目 的。
附图说明
图 1是现有技术的采用一对一供电技术方案的远程供电系统示意图; 图 2是本发明的通信系统中的远程供电系统示意图。
具体实施方式
本发明提供的通信系统中的远程供电系统, 包括: 局端电源部分和与 其连接的远端电源模块, 所述局端电源部分至少包括两个局端电源模块, 且所述各局端电源模块并联后为所述远端电源模块供电。
本发明中的局端电源部分还可以设置有局端电源监控模块, 远端电源 模块中还设置有远端电源监控模块。 远端电源监控模块对远端电源模块的 电压、 电流等进行电源监控, 远端电源监控模块与局端电源监控模块通过 电源监控信号线进行电源监控信号的传输。
本发明中远端电源模块可以为一个或多个, 当远端电源模块为多个 时, 各远端电源模块均与局端电源部分连接, 由局端电源部分同时为各远 端电源模块供电, 即一个局端电源部分中的各局端电源模块并联后, 能够 同时为多个远端电源模块供电。
局端电源部分中的各局端电源模块并联后与各远端电源模块连接, 并 为各远端电源模块供电的方式主要包括如下六种:
方式一: 局端电源部分与每个远端电源模块之间都存在两条电源线, 各局端电源模块并联后的正、 负极通过与每个远端电源模块之间的两条电 源线形成每个远端电源模块的供电回路, 为各远端电源模块提供电源。
上述电源线可利用数字用户线或同轴电缆等, 上述各远端电源模块的 供电回路中设置有断路控制开关。 该断路控制开关可以通过手动或局端电 源监控模块控制, 如局端电源监控模块通过远端电源监控模块、 电源监控 信号线确定远端电源模块的电源如电压、 电流等出现异常时, 控制断路控 制开关切断该远端电源模块的供电。
上述局端电源部分与每个远端电源模块之间都存在的电源线也可以 多于两条, 局端电源模块并联后的正、 负极通过与多于两条的电源线随机 组合连接, 形成远端电源模块的供电回路, 为各远端电源模块提供电源。
在本方式中, 为远端电源模块提供电源的回路与通信系统中的其他走 线如通信业务信号线或电源监控信号线等无关, 只与电源线有关。
方式二: 利用传输通信业务的通信业务信号线采用耦合器耦合方式为 远端电源模块提供电源。
局端电源部分与每个远端电源模块之间都存在至少两条通信业务信 号线, 下面以局端电源部分利用两条通信业务信号线为一个远端电源模块 供电为例进行说明。
各局端电源模块并联后的正、 负极分别通过与两条通信业务信号线对 应的两个局端业务变压器的中心抽头耦合到这两条通信业务信号线中, 与 这两条通信业务信号线连接的远端电源模块通过两个远端业务变压器的 中心抽头从各通信业务信号线中解耦出该远端电源模块的正、 负极电压, 形成该远端电源模块的供电回路, 为该远端电源模块提供电源。
当然, 局端电源部分也可以利用多于两条的通信业务信号线为一个远 端电源模块供电, 如当利用三条通信业务信号线时, 局端电源部分的正极 和负极通过与三条通信业务信号线对应的三个局端业务耦合器的中心抽 头随机组合连接, 远端电源模块通过三个远端业务变压器的中心抽头解耦 出其正、 负极电压, 形成远端电源模块的供电回路。
上述各远端电源模块的供电回路中设置有断路控制开关。 该断路控制 开关的位置设置非常灵活, 如在局端电源部分的正或负极与各局端业务变 压器的中心抽头连接前的支路上对应每一个远端电源模块设置一个断路 控制开关,或者如图 2中 C1和 C2位置,直接设置在局端直接接入用户的 线路中, C1和 C2分别能够实现一个远端电源模块的断路控制。 再如在耦 合了局端电源部分正或负极的各通信业务信号线上分别设置一个断路控 制开关。 断路控制开关可以通过手动或局端电源监控模块控制, 如局端电 源监控模块通过远端电源监控模块、 电源监控信号线确定远端电源模块的 电源如电压、 电流等出现异常时, 控制断路控制开关切断该远端电源模块 的供电。 在本方式中, 为远端电源模块供电的回路只与通信业务信号线有关, 与通信系统中的其他走线如电源监控信号线等无关。
方式三: 利用传输通信业务的通信业务信号线和电源监控信号线采用 耦合器耦合方式为远端电源模块提供电源。
局端电源部分与每个远端电源模块之间都存在至少一条通信业务信 号线和一条电源监控信号线, 下面以局端电源部分利用一条通信业务信号 线和一条电源监控信号线为一个远端电源模块供电为例进行说明。
各局端电源模块并联后的正、 负极分别通过与通信业务信号线对应的 局端业务变压器的中心抽头和与电源监控信号线对应的局端监控变压器 耦合到通信业务信号线和电源监控信号线中, 与通信业务信号线和电源监 控信号线连接的远端电源模块通过远端业务变压器的中心抽头和远端监 控变压器的中心抽头分别从通信业务信号线和电源监控信号线中解耦出 该远端电源模块的正、 负极电压, 形成该远端电源模块的供电回路, 为该 远端电源模块提供电源。
当然, 局端电源部分也可以利用多于一奈的通信业务信号线和一奈电 源监控信号线为一个远端电源模块供电, 如当通信业务信号线为两条时, 对应两个局端业务变压器, 局端电源部分的正极、 负极可与两个局端业务 变压器和一个局端监控变压器的中心抽头随机组合连接, 远端电源模块通 过两个远端业务变压器、 一个远端监控变压器的中心抽头解耦出其正极电 压和负极电压, 形成远端电源模块的供电回路。
上述各远端电源模块的供电回路中设置有断路控制开关。 该断路控制 开关的位置设置非常灵活, 如在局端电源部分的正或负极与局端的各变压 器的中心抽头连接前的支路上对应每一个远端电源模块设置一个断路控 制开关,具体可如图 2中的 C1和 C2的位置,再如在耦合了局端电源部分 的正或负极线路上分别设置一个断路控制开关。 该断路控制开关可以通过 手动或局端电源监控模块控制, 如局端电源监控模块通过远端电源监控模 块、电源监控信号线确定远端电源模块的电源如电压、电流等出现异常时, 控制断路控制开关切断该远端电源模块的供电。
在本方式中, 为远端电源模块供电的回路与通信业务信号线和电源监 控信号线有关。
方式四: 利用传输通信业务的通信业务信号线采用耦合器耦合方式和 电源线为远端电源模块提供电源。
局端电源部分与每个远端电源模块之间都存在至少一条通信业务信 号线和一条电源线, 下面以局端电源部分利用一条通信业务信号线和一条 电源线为一个远端电源模块供电为例进行说明。
各局端电源模块并联后的正或负极通过与通信业务信号线对应的局 端业务变压器的中心抽头耦合到通信业务信号线中, 各局端电源模块并联 后的另外一极通过电源线与远端电源模块连接。 远端业务变压器的中心抽 头从通信业务信号线中解耦出该远端电源模块的正或负极电压, 远端电源 模块从电源线中获得其另一极的电压, 形成该远端电源模块的供电回路, 为该远端电源模块提供电源。
当然, 局端电源部分也可以利用多于一条的通信业务信号线为一个远 端电源模块供电, 如当通信业务信号线为两条时, 对应两个局端业务变压 器, 局端电源部分的正极、 负极可与两个局端业务变压器的中心抽头和电 源线随机组合连接, 远端电源模块通过两个远端业务变压器的中心抽头解 耦出其正极电压或负极电压, 从电源线获得一极电压, 形成远端电源模块 的供电回路, 为该远端电源模块提供电源。
上述各远端电源模块的供电回路中均设置有断路控制开关。 该断路控 制开关的位置设置非常灵活, 如在局端电源部分与电源线连接的支路上对 应每一个远端电源模块设置一个断路控制开关, 如在局端电源部分的正或 负极与各局端业务变压器的中心抽头连接前的支路上对应每一个远端电 源模块设置一个断路控制开关,具体可如图 2中的 C1和 C2的位置,再如 在耦合了局端电源部分的正或负极的各通信业务信号线上分别设置一个 断路控制开关。 断路控制开关可以通过手动或局端电源监控模块控制, 如 局端电源监控模块通过远端电源监控模块、 电源监控信号线确定远端电源 模块的电源如电压、 电流等出现异常时, 控制对应的断路控制开关切断该 远端电源模块的供电。
在本方式中, 为远端电源模块供电的回路只与通信业务信号线和电源 线有关, 与通信系统中的其他走线如通信电源监控信号线等无关。
方式五: 利用传输电源监控信号的电源监控信号线采用耦合器耦合方 式和电源线为远端电源模块提供电源。
局端电源部分与每个远端电源模块之间都存在一条电源监控信号线 和一条电源线。
各局端电源模块并联后的正极或负极通过与电源监控信号线对应的 局端监控变压器的中心抽头耦合到通信业务信号线中, 各局端电源模块并 联后的另外一极通过电源线与远端电源模块连接。 远端监控变压器的中心 抽头从电源监控信号线中解耦出该远端电源模块的正或负极电压, 远端电 源模块从电源线中获得其另一极的电压, 形成远端电源模块的供电回路, 为该远端电源模块提供电源。
上述各远端电源模块的供电回路中设置有断路控制开关。 该断路控制 开关的位置设置非常灵活, 如在局端电源部分与电源线连接的支路上对应 每一个远端电源模块设置一个断路控制开关, 如在局端电源部分的正或负 极与局端监控变压器的中心抽头连接前的支路上对应每一个远端电源模 块设置一个断路控制开关,具体可如图 2中的 C1和 C2的位置,再如在耦 合了局端电源部分的正或负极各电源监控信号线上设置一个断路控制开 关。 该断路控制开关可以通过手动或局端电源监控模块控制, 如局端电源 监控模块通过远端电源监控模块、 电源监控信号线确定远端电源模块的电 源如电压、 电流等出现异常时, 控制断路控制开关切断该远端电源模块的 供电。
在本方式中, 为远端电源模块供电的回路只与通信电源监控信号线和 电源线有关, 与通信系统中的其他走线如通信业务信号线等无关。
方式六: 利用传输通信业务的通信业务信号线、 传输电源监控信号的 电源监控信号线采用耦合器耦合方式和电源线为远端电源模块提供电源。
在本方式中, 为远端电源模块提供电源的回路与通信系统中通信业务 信号线、 电源监控信号线、 电源线等均有关。
下面以一个局端电源部分设置两个局端电源模块, 两个局端电源模块 并联后为两个远端电源模块供电为例, 结合附图 2对本方式进行详细描述。 两个局端电源模块并联后分别与两个远端电源模块连接的示意图如 附图 2所示。
在图 2中, 局端电源部分对两个远端电源模块采用 1 + 1冗余备份的供 电方式, 两个局端电源模块通过数字用户线为两个 DSL远端设备的远端电 源模块提供高压直流电源, 局端电源部分可以对两个远端电源模块实现独 立的电压监控和保护, 具体原理表述如下:
局端为局端电源部分提供 -48V直流电压,局端电源部分包括两个局端 电源模块 Pl、 P2, PI和 P2并联工作。 P1和 P2的工作电流均为负载的一半, 这样, 在一个局端电源模块失效时, 不会影响另外一个局端电源模块正常 为负载提供电源, 从而实现无间隙电源切换, 保证了局端电源部分的冗余 电源热备份功能。
设定在局端电源部分中与 Ulin连接的变压器为局端业务变压器 1、 与 U2in连接的变压器为局端业务变压器 2、 与 U3in连接的变压器为局端业务 变压器 3、 与 U4in连接的变压器为局端业务变压器 4、 与 A3out连接的变压 器为局端监控变压器 5、 与 A4out连接的变压器为局端监控变压器 6。 在远 端电源模块 1中与 Ulin连接的变压器为远端业务变压器 1、 与 U2in连接的变 压器为远端业务变压器 2、 与 U3in连接的变压器为远端业务变压器 3、 与 U4in连接的变压器为远端业务变压器 4、 与 Alin连接的变压器为远端监控 变压器 5。 在远端电源模块 2中与 Ulin连接的变压器为远端业务变压器 7、 与 U2in连接的变压器为远端业务变压器 8、 与 U3in连接的变压器为远端业 务变压器 9、 与 U4in连接的变压器为远端业务变压器 10、 与 Alin连接的变 压器为远端监控变压器 11。
两个局端电源模块并联后产生的直流高压电源的正极通过与局端业 务变压器 1、 局端业务变压器 2、 局端业务变压器 3、 局端业务变压器 4的中 心抽头连接, 耦合到 Ulin、 U2in、 U3in、 U4in这 4对用于传输通信业务信 号的数字用户线上, 其中的局端电源部分的 Ulin和 U2in分别与远端电源模 块 1的远端业务变压器 1、 远端业务变压器 2的中心抽头连接, 局端电源部 分 U3in和 U4in分别与远端电源模块 2的远端业务变压器 7、远端业务变压器 8的中心抽头连接。 远端电源模块 1分别通过远端业务变压器 1和远端业务变压器 2的中心 抽头解耦出直流电源正极: +DC1。 远端电源模块 2分别通过远端业务变压 器 7和远端业务变压器 8的中心抽头解耦出直流电源正极: +DC2。
当然, 上述描述中局端业务变压器 1、 局端业务变压器 2、 局端业务变 压器 3、局端业务变压器 4的中心抽头也可以同时与两个局端电源模块并联 后产生的直流高压电源的负极连接, 或局端业务变压器 1、 2、 3、 4的中心 抽头可部分与局端电源部分的正极连接, 部分与局端电源部分的负极连 接。 即局端业务变压器 1、 2、 3、 4的中心抽头是与局端电源部分的正极连 接, 还是与局端电源部分的负极连接没有限制。
局端电源模块 P1和局端电源模块 P2并联后的高压直流电源产生的负 极回路, 在直接接入数字用户线 A3out和 A4out的支路中增加了对应远端 电源模块 1和远端电源模块 2的断路控制开关 Cl、 C2, 该断路控制开关 可以为可恢复保险, 也可以为: 电流检测装置和断路开关。 断路开关可以 为: MOSFET (金属氧化物半导体场效应晶体管)或继电器或接触器。
远端电源模块 1和远端电源模块 2的断路控制开关 C1、C2能够保证在单 一远端电源模块出现故障或线路故障等情况下 , 切断对该远端电源模块的 供电, 以保证局端电源部分对另外一个远端电源模块的继续供电。
断路控制开关 Cl、 C2的位置设置非常灵活, 如 C1可以为 4个, 且 分别设置在耦合了局端电源部分的正极的 Ulin、 U2in线上, 也可以分别 设置在 Alout、 A3out线上, 同样, C2也可以为 4个, 且分别设置在耦合 了局端电源部分的正极的 U3in、 U4in线上, 也可以分别设置在 A2out、 A4out线上。 断路控制开关 Cl、 C2可以通过手动控制, 同时, 也可以通 过局端电源监控模块 MCU1控制, 如局端电源监控模块 MCU1通过远端 电源监控模块 MCU2、 MCU3、 Alout、 A2out线确定远端电源模块 1或远 端电源模块 2出现异常时, 控制断路控制开关切断该远端电压模块 1或远 端电源模块 2的供电。
局端电源模块 PI、 P2并联后的负极回路通过局端监控变压器 5和局端 监控变压器 6的中心抽头, 耦合到用于局端电源模块与远端电源模块之间 的电源监控信号的电源监控信号线 Alout和 A2out上 , Alout与远端电源模 块 1的远端监控变压器 5连接 , A2out与远端电源模块 2的远端监控变压器 11 连接。
远端电源模块 1通过远端监控变压器 5的中心抽头解耦和直接连接电 源的数字用户线 A3out获得远端电源模块 1的直流电源负极: - DC1。 远端 电源模块 2通过远端监控变压器 11的中心抽头解耦和直接连接电源的数字 用户线 A4out获得远端电源模块 2的直流电源负极: - DC2。
当然, 上述描述中局端监控变压器 5、 局端监控变压器 6的中心抽头也 可以与两个局端电源模块并联后产生的直流高压电源的正极连接 , 即局端 监控变压器 5、 6的中心抽头可分别与局端电源部分的正或负极连接。
+ DC1和- DC1作为局端电源部分为远端电源模块 1提供的电源, +
DC2和― DC2作为局端电源部分为远端模块 2提供的电源。
在 Alout和 A2out上可以实现局端电源部分与远端电源模块 1、 远端电 源模块 2之间的电源监控通信信号传输。 在 Ul ~ U4上可以实现局端通信设 备与远端通信设备 1、 远端通信设备 2之间的数据业务信号传输。
上述实施例中, 局端电源部分也可以设计成 N+1冗余电源备份方式, 即局端电源部分由 Pl、 P2、 ...PN、 PN+1这 N+1个局端电源模块并联组成, 每个局端电源模块的工作电流为总负载电流的 N+ 1分之一 , 当一个或多个 局端电源模块失效时, 剩余的局端电源模块依然能够支撑全部 DSL远端设 备的负载功率需求, 从而实现无缝的功率转换。 远端电源模块也可以增加 到 M个, 同时, 断路控制开关也需要增加到 M个。 从而, 通过本发明提供 的技术方案实现了 N+1冗余电源备份的远端供电系统, 使通信系统中正常 的通信业务得到可靠保证, 有效减少了网络通信系统中局端电源模块的数 量, 节约了机房空间, 方便了局端电源模块的监控管理, 方便了各远端通 信设备和各远端电源模块的维护, 方便了对远端电源模块的监控管理; 实 现了提高通信业务可靠性, 提高局端设备集成度, 降低网络通信系统成本 的目的。 此外, 当远端电源模块为多个时, 不同的远端电源模块的电源相 同的某一极(正极或负极)可以全部采用变压器中心抽头耦合方式传输或 者全部采用无变压器耦合方式传输或者采用以上两种方式的组合。 而且不 同的远端电源模块的电源相同的另一极(负极或正极)和所述的某一极的 传输方式可以相同, 可以不同, 但同样具有以上传输方式, 即可以全部采 用变压器中心耦合抽头方式传输或者全部采用无变压器耦合方式传输或 者采用以上两种方式的组合。 所述及的某一极和另一极所包含的传输路数 不限于图中的数量, 可以根据需要增加或者减少。
虽然通过实施例描绘了本发明, 本领域普通技术人员知道, 本发明有 许多变形和变化而不脱离本发明的精神, 本发明的申请文件的权利要求包 括这些变形和变化。

Claims

权 利 要 求
1、 一种通信系统中的远程供电系统, 包括: 局端电源部分和与其连 接的远端电源模块, 其特征在于, 所述局端电源部分至少包括两个局端电 源模块, 且所述各局端电源模块并联后为所述远端电源模块供电。
2、 如权利要求 1 所述的一种通信系统中的远程供电系统, 其特征在 于, 所述局端电源部分还包括: 局端电源监控模块; 所述远端电源模块还 包括: 通过电源监控信号线与所述局端电源监控模块连接的远端电源监控 模块;
所述远端电源监控模块对所述远端电源模块进行电源监控; 所述局端电源监控模块对所述远端电源监控模块进行监控。
3、 如权利要求 1 所述的一种通信系统中的远程供电系统, 其特征在 于, 所述局端电源部分还包括: 至少两个与不同的通信业务信号线连接的 局端业务变压器; 所述远端电源模块还包括: 与所述各局端业务变压器数 量对应的与所述通信业务信号线连接的远端业务变压器;
所述各局端电源模块并联后的正、 负极通过不同的局端业务变压器的 中心抽头耦合到不同的通信业务信号线中;
所述远端电源模块通过与不同的局端业务变压器对应的所述各远端 业务变压器的中心抽头从各通信业务信号线中解耦出该远端电源模块的 正、 负极电压。
4、 如权利要求 2所述的一种通信系统中的远程供电系统, 其特征在 于, 所述局端电源部分还包括: 至少一个与通信业务信号线连接的局端业 务变压器和一个与电源监控信号线连接的局端监控变压器; 所述远端电源 模块还包括: 与所述局端业务变压器数量对应的、 与所述通信业务信号线 连接的远端业务变压器和一个与所述电源监控信号线连接的远端监控变 压器; 所述各局端电源模块并联后的正、 负极通过不同的局端业务变压器和 局端监控变压器的中心抽头耦合到通信业务信号线和电源监控信号线中; 所述远端电源模块通过所述远端业务变压器和远端监控变压器的中 心抽头分别从通信业务信号线和电源监控信号线中解耦出该远端电源模 块的正、 负极电压。
5、 如权利要求 1 所迷的一种通信系统中的远程供电系统, 其特征在 于, 所述局端电源部分还包括: 至少一个与通信业务信号线连接的局端业 务变压器;所述远端电源模块还包括:与所述局端业务变压器数量对应的、 与所迷通信业务信号线连接的远端业务变压器;
所述各局端电源模块并联后的某一极通过所述局端业务变压器的中 心抽头耦合到通信业务信号线中;
所述各局端电源模块并联后的另一极直接通过电源线与所述远端电 源模块的相应极连接;
所述远端电源模块通过所述远端业务变压器的中心抽头从所述通信 业务信号线中对应解耦出该远端电源模块的某一极电压。
6、 如权利要求 2所述的一种通信系统中的远程供电系统, 其特征在 于,所述局端电源部分还包括:与电源监控信号线连接的局端监控变压器; 所述远端电源模块还包括: 与所述电源监控信号线连接的远端监控变压 器;
所述各局端电源模块并联后的某一极通过所述局端监控变压器的中 心抽头耦合到电源监控信号线中;
所述各局端电源模块并联后的另一极直接通过电源线与所述远端电 源模块的相应极连接;
所述远端电源模块通过所述远端监控变压器的中心抽头从所述电源 监控信号线中对应解耦出该远端电源模块的某一极电压。
7、 如权利要求 2所述的一种通信系统中的远程供电系统, 其特征在 于, 所述局端电源部分还包括: 至少一个与通信业务信号线连接的局端业 务变压器和一个与电源监控信号线连接的局端监控变压器; 所述远端电源 模块还包括: 与所述局端业务变压器数量对应的、 与所述通信业务信号线 连接的远端业务变压器和一个与所述电源监控信号线连接的远端监控变 压器;
所述各局端电源模块并联后的正、 负极与电源线的一端、 局端业务变 压器的中心抽头、 局端监控变压器的中心抽头连接, 局端业务变压器和局 端监控变压器将所述正 /负极分别耦合到通信业务信号线和电源监控信号 线中;
所述远端电源模块通过所迷远端业务变压器和远端监控变压器的中 心抽头分别从通信业务信号线和电源监控信号线中解耦出该远端电源模 块的正 /负极电压, 所述远端电源模块与所述电源线的另一端连接。
8、 如权利要求 1至 Ί中任一权利要求所述的一种通信系统中的远程 供电系统, 其特征在于: 所述远端电源模块为多个, 所述并联后的各局端 电源模块分别与各远端电源模块连接, 为所述各远端电源模块供电。
9、 如权利要求 8所述的一种通信系统中的远程供电系统, 其特征在 于, 不同的远端电源模块的电源相同的某一极可以全部采用变压器中心抽 头耦合方式传输或者全部采用无变压器耦合方式传输或者采用以上两种 方式的组合; 而且不同的远端电源模块的电源相同的另一极可以全部采用 变压器中心耦合抽头方式传输或者全部采用无变压器耦合方式传输或者 采用以上两种方式的组合; 所述另一极和所述的某一极的传输方式可以相 同, 可以不同。
10、 如权利要求 8所述的一种通信系统中的远程供电系统, 其特征在 于, 所述并联后的各局端电源模块与各远端电源模块连接的各支路中分别 设置有断路控制开关。
11、 如权利要求 10所述的一种通信系统中的远程供电系统, 其特征在 于, 所述断路控制开关为: 可恢复保险; 或
所述断路控制开关为: 电流检测装置和断路开关。
12、 如权利要求 11 所述的一种通信系统中的远程供电系统, 其特征 在于, 所述断路开关为: 金属氧化物半导体场效应晶体管或继电器或接触 器。
13、 如权利要求 1所述的一种通信系统中的远程供电系统, 其特征在 于, 所述各局端电源模块的工作电流相同。
PCT/CN2006/000491 2005-03-31 2006-03-24 Systeme d'alimentation longue distance pour systeme de communication WO2006102829A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06722143.2A EP1865702B1 (en) 2005-03-31 2006-03-24 A long-distance powering system for communication system
ES06722143.2T ES2558018T3 (es) 2005-03-31 2006-03-24 Sistema de alimentación eléctrica a larga distancia para sistema de comunicación
US11/909,719 US8254563B2 (en) 2005-03-31 2006-03-24 System for line powering in communications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510059805.4 2005-03-31
CN200510059805A CN100596073C (zh) 2005-03-31 2005-03-31 一种通信系统中的远程供电系统

Publications (1)

Publication Number Publication Date
WO2006102829A1 true WO2006102829A1 (fr) 2006-10-05

Family

ID=37030867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/000491 WO2006102829A1 (fr) 2005-03-31 2006-03-24 Systeme d'alimentation longue distance pour systeme de communication

Country Status (5)

Country Link
US (1) US8254563B2 (zh)
EP (1) EP1865702B1 (zh)
CN (1) CN100596073C (zh)
ES (1) ES2558018T3 (zh)
WO (1) WO2006102829A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100596073C (zh) 2005-03-31 2010-03-24 华为技术有限公司 一种通信系统中的远程供电系统
US8532265B2 (en) * 2009-05-12 2013-09-10 Telect Inc. Power distribution module with monitoring and control functions
EP2357484B1 (de) * 2010-01-25 2013-03-13 Siemens Aktiengesellschaft Verfahren zur Diagnose einer elektrischen Verbindung und Ausgabebaugruppe
US8693679B1 (en) 2010-07-22 2014-04-08 Adtran, Inc. Communications system and associated method for reducing power consumption of a telecommunications device
US8564922B1 (en) * 2010-07-22 2013-10-22 Adtran, Inc. System and method for protecting telecommunications device from power faults
WO2012095055A2 (zh) * 2012-03-01 2012-07-19 华为技术有限公司 一种远供系统及远端电源
CA2903908C (en) 2013-03-06 2020-01-07 Huawei Technologies Co., Ltd. Power supply circuit and power supply panel
CN103812311B (zh) * 2014-03-13 2016-09-21 刘晓霖 基于双通讯口的开关电源并联快速控制系统
CN104538949B (zh) * 2014-12-26 2016-08-24 广州大中电力技术有限公司 远供电源系统及电缆短路故障的隔离方法
CN104600691B (zh) * 2014-12-26 2017-01-11 广州大中电力技术有限公司 远供电源系统及电缆短路时防止越级保护方法
CN104539049B (zh) * 2014-12-26 2016-08-24 广州大中电力技术有限公司 远供电源系统及电缆短路故障的定位方法
CN115800549A (zh) * 2022-12-26 2023-03-14 中国铁塔股份有限公司 一种远程供电装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1285680A (zh) * 1999-08-24 2001-02-28 日本电气株式会社 远程电源供电的方法和系统
US6690718B1 (en) * 1998-11-26 2004-02-10 Samsung Electronics Co. Ltd. Asymmetric digital subscriber line transceiver unit-card and method of controlling the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289359A (en) * 1991-02-13 1994-02-22 Charles Industries, Limited DC-DC power converter including sensing means for providing an output when the reserve power of the converter falls below a predetermined amount for a given input voltage
FR2720559B1 (fr) * 1994-05-31 1996-07-05 Alcatel Converters Dispositif de synchronisation pour un système d'alimentation sécurisé.
SE512170C2 (sv) * 1998-06-02 2000-02-07 Ericsson Telefon Ab L M Förfarande och anordning för val av matningsspänning
US6253330B1 (en) * 1999-02-17 2001-06-26 Lucent Technologies Inc. Redundant regulated power supply system with monitoring of the backup power supply
SE9903476L (sv) 1999-09-24 2001-03-25 Ericsson Telefon Ab L M Anordning och metod som avser kraftförsörjning i ett kommunikationsnätverk
US6532277B2 (en) * 1999-11-12 2003-03-11 Qwest Communications International Inc. Method for controlling DSL transmission power
US6690792B1 (en) * 1999-11-19 2004-02-10 Adtran Inc. Active decoupling and power management circuit for line-powered ringing generator
FR2810485B1 (fr) 2000-06-19 2002-09-06 Cit Alcatel Procede pour reinitialiser des terminaux raccordes a un reseau local, et dispositif pour la mise en oeuvre de ce procede
US6459171B1 (en) * 2000-07-21 2002-10-01 Arraycomm, Inc. Method and apparatus for sharing power
DE60104064T2 (de) * 2000-08-29 2005-06-30 Lucent Technologies Inc. Vorrichtung und Verfahren zur Bereitstellung von Leistungsnotdiensten für DSL-Teilnehmern
DE10133289B4 (de) * 2001-07-09 2005-07-21 Siemens Ag Teilnehmerleitungsanschlusseinheit und Verfahren zur Fehlererkennung in der Stromversorgung
CN1567816A (zh) 2003-06-26 2005-01-19 烽火通信科技股份有限公司 一种带远程控制功能的远程供电装置
CN100596073C (zh) 2005-03-31 2010-03-24 华为技术有限公司 一种通信系统中的远程供电系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690718B1 (en) * 1998-11-26 2004-02-10 Samsung Electronics Co. Ltd. Asymmetric digital subscriber line transceiver unit-card and method of controlling the same
CN1285680A (zh) * 1999-08-24 2001-02-28 日本电气株式会社 远程电源供电的方法和系统

Also Published As

Publication number Publication date
EP1865702A1 (en) 2007-12-12
CN1842010A (zh) 2006-10-04
US8254563B2 (en) 2012-08-28
CN100596073C (zh) 2010-03-24
US20080043947A1 (en) 2008-02-21
ES2558018T3 (es) 2016-02-01
EP1865702A4 (en) 2008-03-12
EP1865702B1 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2006102829A1 (fr) Systeme d'alimentation longue distance pour systeme de communication
US6295356B1 (en) Power feed for network devices
US6658098B2 (en) Power transfer apparatus for use by network devices including telephone equipment
US9590811B2 (en) Method and apparatus for distributing power over communication cabling
US8861507B2 (en) Systems and methods for automatic public switched telephone network backup of voice over internet protocol services
US5982854A (en) Fiber optic based subscriber terminal
CN103701617B (zh) 具有共享连接接口和两个水平涌流限制的受电设备控制器
US9992353B2 (en) Reverse power feed system
WO2015020868A1 (en) Electrical power management system and method
TW200522581A (en) High power architecture for power over ethernet
US7872378B2 (en) Power management system
CN104410062B (zh) 一种通信电源远供系统
CN112202571A (zh) 一种poe电源传输装置、poe交换机及poe系统
CN110690755A (zh) 通信电源系统
CN112886694B (zh) 一种配电系统及服务器系统
EP1835711B1 (en) A long-distance powering system
US6650028B1 (en) Dual isolated input power supply
CN100515005C (zh) 直流电源供电控制系统及控制方法
KR100757871B1 (ko) 종합정보통신망 가입자 단말기에 전력/데이터를 공급하기위한 전력선 통신 시스템 및 제어 방법
CN100372285C (zh) 一种远程供电系统和方法
CN208908382U (zh) 一种混合型双电源转换装置及双电源系统
JP2004056218A (ja) 電力線搬送通信システム及び電力線搬送通信装置
CN221487740U (zh) PoE系统的供电设备、受电设备及使用其的PoE系统
CN219801973U (zh) 发电机组的启停装置、柴油发电机组系统及数据系统
JPS5859638A (ja) 光信号バイパス用給電方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006722143

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11909719

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006722143

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11909719

Country of ref document: US