WO2006101085A1 - Air plug and compressed air tool - Google Patents

Air plug and compressed air tool Download PDF

Info

Publication number
WO2006101085A1
WO2006101085A1 PCT/JP2006/305577 JP2006305577W WO2006101085A1 WO 2006101085 A1 WO2006101085 A1 WO 2006101085A1 JP 2006305577 W JP2006305577 W JP 2006305577W WO 2006101085 A1 WO2006101085 A1 WO 2006101085A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
compressed air
plug
flow path
tool
Prior art date
Application number
PCT/JP2006/305577
Other languages
French (fr)
Japanese (ja)
Inventor
Takumichi Hoshino
Masafumi Satsuka
Original Assignee
Max Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Co., Ltd. filed Critical Max Co., Ltd.
Publication of WO2006101085A1 publication Critical patent/WO2006101085A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/08Adjustable joints, Joints allowing movement allowing adjustment or movement only about the axis of one pipe
    • F16L27/0804Adjustable joints, Joints allowing movement allowing adjustment or movement only about the axis of one pipe the fluid passing axially from one joint element to another
    • F16L27/0837Adjustable joints, Joints allowing movement allowing adjustment or movement only about the axis of one pipe the fluid passing axially from one joint element to another the joint elements being bends
    • F16L27/0841Adjustable joints, Joints allowing movement allowing adjustment or movement only about the axis of one pipe the fluid passing axially from one joint element to another the joint elements being bends forming an angle of less than 90 degrees
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/02Construction of casings, bodies or handles

Definitions

  • the present invention relates to an air plug for connecting an air hose connecting a compressed air tool driven by compressed air and a compressed air supply source to the compressed air tool.
  • a compressed air drive nailing machine that drives a piston in a cylinder with compressed air and nails it with a driver connected to the piston, or an air motor driven by compressed air and a driver bit by this air motor
  • Compressed air tools such as screwdrivers that rotate the screw to tighten screws are available.
  • a compressed air supply source such as a compressor and the compressed air tool are connected via an air hose.
  • the compressed air supplied from the compressed air supply source into the compressed air tool is introduced into the impact cylinder to drive the piston, or is supplied to the air motor to rotationally drive the air motor.
  • a compressed air tool Between the compressed air tool and the air hose connecting the compressed air supply source, a compressed air tool, an air hose, a socket for connecting the air hose and the compressed air supply source, and an air plug are configured. Fluid coupling is used.
  • a socket containing a shutoff valve is formed at the end of an air hose connected to a compressed air supply source such as a compressor and a compressed air tool.
  • An air plug connected to the socket is formed at the end of the air hose connected to the compressed air supply source and the compressed air tool.
  • Compressed air supply by connecting an air plug formed on one end of the air hose to a socket of a compressed air supply source, and connecting a socket on the other end of the air hose to an air plug formed on the compressed air tool. Compressed air is supplied from the source to the compressed air tool.
  • Compressed air is supplied to the cylinder and driven by a piston to drive the nailing machine.
  • the conventional nailing machine is driven by compressed air in the normal pressure range below IMPa, which has been used conventionally.
  • the normal-pressure tool it is driven with compressed air in a high-pressure range that is higher than the pressure in the conventional normal-pressure range.
  • There is a compressed air tool dedicated to high pressure that can be moved for example, Japanese Patent No. 3137229).
  • High-pressure compressed air tools are used because high-power tools can be made compact and lightweight.
  • the compressed air for driving the high-pressure tool is supplied from a compressed air supply source dedicated to high pressure.
  • the fluid joint for connecting the high pressure tool and the high pressure compressed air supply source so that the normal pressure tool cannot be connected to the compressed air supply source dedicated to the high pressure is a fluid joint for the normal pressure tool. It is formed in a unique shape different from
  • the compression acting on the end surface of the seal portion 41 fitted in the recess on the socket side is performed.
  • the insertion load should be the same as that of the conventional air plug for normal pressure so that the mounting work load does not deteriorate due to high air pressure.
  • the outer diameter dimension al of the seal portion 41 of the air plug 40 used in the compressed air tool in the high pressure region is set small (diameter 7.1 mm).
  • a large capacity (140 to 200 cc) air chamber is adjacent to the nailing machine cylinder.
  • the compressed air supplied from the compressed air source is stored in the air chamber.
  • a large amount of compressed air in the air chamber is instantaneously supplied into the cylinder, and the piston in the cylinder is driven in an impact manner.
  • a large-capacity air chamber is formed in the compressed air driven tool in this way, when the air hose connected to the compressed air supply source is removed from the tool, a large amount of compressed air is stored in the air chamber. Air blows out of the air plug and generates noise, or mechanical shake occurs due to reaction of the compressed air blowout.
  • a compressed air tool such as a driver has a normal pressure tool, but a high pressure tool that is driven and driven by compressed air with a pressure in the high pressure range.
  • the high-pressure air plug 40 having a small-diameter hole 43 formed at the tip is used for high pressure.
  • the small hole 43 at the tip acts as a throttle and cannot supply sufficient compressed air to the air motor, reducing the pressure of the compressed air supplied to the air motor and reducing the output of the air motor. As a result, there arises a problem that the workability of screw tightening is lowered.
  • One or more embodiments of the present invention provide an air plug for a compressed air tool capable of supplying a sufficient amount of compressed air to a compressed air tool or the like that drives an air motor without causing a pressure drop. To do.
  • An air plug for a compressed air tool includes an air chamber for storing compressed air supplied from a compressed air supply source, and the capacity of the air chamber is set to 90 cc or less.
  • An air plug of a fluid joint composed of a socket and an air plug for connecting the compressed air tool to a compressed air supply source, and the outer diameter of the seal portion of the air plug fitted in the socket is 7.
  • the air flow path formed in the center of the seal portion on the air plug side where compressed air flows from the socket side to the air plug side is formed in the flow path cross section of a hole having a diameter of 3 mm or more.
  • the channel is opened at the end surface of the seal portion with the same channel cross section.
  • the diameter of the air flow path is smaller than 4.1 mm.
  • An air plug for a compressed air tool includes an air chamber for storing compressed air supplied from a compressed air supply source, and the capacity of the air chamber is 90 cc or less.
  • An air plug of a fluid joint composed of a socket and an air plug for connecting a compressed air tool set to a compressed air supply source, and the outer diameter of the seal portion of the air plug fitted into the socket. 7.
  • an air flow path formed at the center of the seal part on the air plug side where compressed air flows from the socket side to the air plug side is formed in a flow path cross section with a diameter of 3 mm or more.
  • the compressed air tool with a chamber capacity of 90cc or less such as an impact driver
  • the air channel is opened to the end face of the seal part with the same channel cross section.
  • the flow rate characteristics can be improved by enlarging the minimum flow path cross section of the air plug to the equivalent of a hole with a diameter of 3 mm, sufficient compressed air can be supplied to the air motor, and the pressure drop immediately before the air motor can be reduced. It is possible to drive with high output.
  • FIG. 1 is a side view showing a part of an impact driver as an example of a compressed air tool equipped with an air plug of a typical embodiment of the present invention.
  • FIG. 3 is a graph showing the relationship between the diameter of the air passage hole and the stress caused by the air plug of the typical embodiment of the present invention.
  • FIG. 4 is a graph showing the correspondence between the chamber volume and the exhaust sound by the air plug of the typical embodiment of the present invention.
  • FIG. 5 is a graph showing the correspondence between the chamber capacity and reaction force of the air plug of the exemplary embodiment of the present invention.
  • FIG. 6 is a graph showing the flow characteristics of an air plug of a typical embodiment of the present invention and a conventional air plug.
  • FIG.7 Longitudinal side view showing a conventional high-pressure air plug
  • FIG. 1 is a side view showing an impact driver as an example of a compressed air tool that is operated with compressed air having a pressure in a high pressure range equipped with an air plug for high pressure according to the present invention, and a part of the impact driver. Is shown in cross section.
  • the impact driver 1 has a housing 2 in which a grip portion 3 for gripping the impact driver 1 during work is formed.
  • the housing 2 has a high pressure region supplied into the impact driver 1.
  • An air motor 4 that is rotationally driven by compressed air is housed.
  • an impact mechanism driven by the air motor 4 is accommodated in the housing 2, and a drive shaft 5 driven to rotate by the impact mechanism is disposed so as to protrude from the tip of the housing 2, and this drive A chuck portion 6 on which a driver bit 7 is detachably attached is formed at the tip of the shaft 5.
  • the grip portion 3 formed integrally with the woozing 2 is formed in a hollow shape, and a supply flow for supplying compressed air to the air motor 4 is formed inside the hollow portion of the grip portion 3.
  • a passage 8 and an exhaust passage 9 for discharging exhaust air exhausted from the air motor 4 after driving the air motor 4 to the atmosphere are formed in parallel.
  • the base of the grip part 3 In this section, a throttle vano lev 10 for supplying the compressed air supplied to the supply flow path 8 to the air motor 4 is formed, and a throttle lever 11 rotatably supported at the base of the grip 3 is provided.
  • Compressed air supplied to the air motor 4 and driving the air motor 4 is exhausted from the air motor and introduced into the exhaust passage 9, and an exhaust portion formed at the rear end of the exhaust passage 9 Exhausted from 12 to the atmosphere.
  • the exhaust section 12 is formed with an exhaust filter 13 for reducing the flow rate of the exhaust air exhausted from the air motor 4 to prevent the exhaust air from blowing up dust and wood chips and reducing the exhaust noise.
  • Exhaust air exhausted from the air motor 4 is guided by the exhaust flow path 9, passes through the exhaust filter 13, and is discharged into the atmosphere from the exhaust port 14 formed in the exhaust part 12. .
  • An end portion of the supply flow path 8 is formed with an opening toward the rear end of the grip portion 3, and an air hose having one end connected to a compressed air supply source is detachably attached to the opening.
  • An air plug 15 for connection is attached, and compressed air is supplied from a compressed air supply source into the supply flow path 8 formed in the grip portion 3 via an air hose connected to the air plug 15.
  • the impact driver 1 of this embodiment is set to be operated by compressed air in a high pressure range higher than the pressure in the normal pressure range of IMPa or less. Therefore, the air plug 15 is connected to the compressed air supply system in the high pressure range. It is formed in a shape exclusively for high-pressure systems that can only be connected.
  • the supply flow path 8 between the downstream side of the air plug 15 and the throttle valve 10 forms an air chamber having a small capacity of about 14 cc, and the compressed air supplied through the air plug 15 is this. It is formed by the supply flow path 8 and is stored in the air chamber.
  • the air plug 15 that is effective in this embodiment is provided with an attachment portion 16 for attaching the air plug 15 to a tool such as an impact driver 1 and the like, and the air plug 15 is attached to one end of an air hose.
  • a connecting portion 17 for connecting the socket, and an intermediate portion 18 rotatably connecting the mounting portion 16 and the connecting portion 17 along two planes disposed between them and inclined with respect to each other. And rotate each pivot connection independently.
  • the connection part 17 of the air plug 15 can be freely directed in any direction with respect to the attachment part 16.
  • the mounting portion 16 is formed with a male screw 22 for attaching the air plug 15 to the end portion of the grip portion of the impact driver 1 and is engaged with a tool for screwing the male screw 22 into engagement. Part 23 is formed.
  • the connecting portion 17 is formed with a hollow cylindrical seal portion 19 which is inserted into a recess formed in a socket attached to one end of the air hose.
  • compressed air on the socket side acts on the end face of the seal 19 to generate an insertion load, but the insertion of the compressed air does not exceed the specified value.
  • the outer diameter dimension a2 is 7.1 mm, similar to the conventional air plug.
  • the outer diameter dimension a2 of the seal portion 19 is a dimension common to an air plug used as an existing high-pressure dedicated compressed air supply system, and is supplied with compressed air from the existing high-pressure compressed air supply system. If received, this dimension cannot be changed.
  • an air flow path that guides compressed air flowing from the socket side attached to the air hose into the supply flow path 8 in the grip part 3 through the mounting part 16. 20 is formed.
  • the air flow path 20 is formed with an opening 21 along the central axis of the seal portion 19 at the end face of the seal portion 19 of the connection portion 17. Further, a plurality of openings 24 in the radial direction are formed at equal intervals in the circumferential direction on the outer peripheral surface close to the tip of the seal part 19, and the compressed air on the socket side passes through the openings 24. The air flows into the air flow path 20.
  • the outer diameter of the seal portion 19 is defined as 7.1 mm as described above, increasing the hole diameter of the air flow path 20 formed at the center of the seal portion 19 is not possible. This will reduce the strength of the tip of the connecting portion 17.
  • the graph shown in Fig. 3 shows the stress generated in the seal part 19 when the same load as the weight of the impact driver 1 is applied to the tip of the connection part 17 from an angle of 45 degrees diagonally, corresponding to the hole diameter of the air flow path 20 From this graph, the stress does not change greatly when the hole diameter of the air flow path 20 is 2.0 to 4.1 mm. For example, even if the tool is dropped, the seal part 19 is damaged. I understood that it never happened. Therefore, in terms of strength, the hole diameter of the air flow path 20 formed in the seal portion 19 is the diameter 4. It can be increased to lmm.
  • the diameter of the air flow path 20 of the seal portion 19 is increased so that the air plug 15 force is compressed when the air hose connected to the compressed air supply source is removed from the air plug 15. It can be assumed that the eruption sound due to is increased.
  • the graph shown in Fig. 4 shows that each of the air plug 15 with a hole diameter of the air flow path 20 set to 4. lmm and the conventional high-pressure air plug with a hole with a diameter of 2. Omm formed at the tip have a predetermined volume of air.
  • the magnitude of the generated sound when the compressed air in the air chamber is ejected from each air plug connected to the chamber is shown in correspondence with the chamber capacity. From this graph, the hole of the air flow path 20 is shown.
  • the air plug 15 has a large diameter of 4.1 and the air chamber capacity is 90cc or less, the generated sound is almost the same as the generated sound of a tool equipped with an existing high-pressure air plug, and there is no practical problem. It was possible to measure the range. In particular, it can be understood that workability is not impaired at all when the air chamber capacity is as small as 14 cc as in the case of a tool for driving an air motor such as the impact driver 1 of this embodiment.
  • the graph shown in Fig. 5 has a predetermined capacity for each of an air plug 15 in which the hole diameter of the air flow path 20 is set to 4. lmm and a conventional high-pressure air plug in which a hole with a diameter of 2.0 mm is formed at the tip.
  • This graph shows the magnitude of reaction force when compressed air in the air chamber is ejected from each air plug in correspondence with the chamber capacity.
  • the air flow path 20 Even with an air plug with a large hole diameter of 4.1, if the air chamber capacity is l lOcc or less, the reaction force is equal to or less than the reaction force of a tool equipped with an existing high-pressure air plug. It is thought that there is no title. In particular, as with tools that drive air motors, such as impact drivers, the workability is not impaired at all when the air chamber volume is as small as 14 cc or less.
  • the hole diameter of the air flow path 20 of the air plug 15 is reduced to a diameter of 4. lmm. Even if it is formed large, when the air hose connected to the compressed air supply source is removed from the air plug 15, the amount of compressed air ejected from the air plug 15 is reduced. Therefore, the generated sound and reaction force can be reduced to less than or equal to those of compressed air tools with large capacity chambers that use existing air plugs. Compressed air driven by compressed air in the high pressure range Workability using tools is improved.
  • the graph shown in FIG. 6 is based on the air plug 15 in which the hole diameter of the air flow path 20 is set to 4.1 mm and the conventional high-pressure air plug in which a hole having a diameter of 2. Omm is formed at the tip.
  • This graph shows the flow characteristics of high-pressure compressed air.
  • the conventional high-pressure air plug with a hole with a diameter of 2. Omm at the tip shows the secondary pressure downstream of the air plug as the flow rate increases.
  • the secondary pressure drops significantly to 1.5Mpa (decrease rate 17%).
  • the air plug 15 with the hole diameter of the air passage 20 set to 4.1mm the secondary pressure It reduced secondary pressure even during Sukunagu 10001 / min is 1.
  • the air motor can be driven at a high output while maintaining the pressure of the compressed air in the high pressure region high.
  • the hole diameter of the air flow path 20 and the diameter of the hole at the end of the air flow path be 3 mm or more. This is because if the hole diameter of the air channel 20 and the diameter of the hole at the tip of the air channel are small, for example, 2 mm, the pressure loss increases.
  • the air channel 20 is preferably formed with the same channel cross section. This is because if the throttle element (for example, the small hole 43 at the tip in FIG. 7) exists in the air flow path, the pressure loss increases.
  • the attachment portion 16 and the connection portion 17 are pivotally connected to each other, and the intermediate portion 18 is configured to freely connect the connection portion 16 to the attachment portion in any direction.
  • the force described based on the air plug 15 that can be directed to the present invention The present invention is not limited to this, but a male screw for attaching the air plug to the impact driver 1 is formed on one end side. And a hollow cylinder that is inserted into a recess formed in a socket attached to the air hose on the other end side. The same can be applied to an air plug in which a cylindrical seal portion is integrally formed.
  • the shape of the air flow path 20 is not limited to the hole shape.
  • the compressed air tool that operates with the compressed air in the high-pressure range in which the volume of the air chamber that stores the compressed air supplied from the compressed air supply source is set to 90cc or less is provided.
  • the air flow path 20 formed at the center of the seal part 19 of the air plug 15 that allows the compressed air flowing from the socket side to the air plug 15 side to circulate is equivalent to a hole with a diameter of 3 mm or more.
  • the air channel 20 is formed in the cross section of the flow path, and the air flow path 20 is opened to the end surface of the seal portion 19 with the same flow path cross section. Therefore, when the air hose is removed from the air plug 15, Since the amount of compressed air ejected from the bar is small, the generated sound and reaction force can exhibit almost the same operability as a normal pressure compressed air tool.
  • the air channel 20 is formed in a channel cross section corresponding to a hole having a diameter of 3 mm or more, and the air channel 20 is opened at the end surface of the seal portion 19 in the same channel cross section.
  • the flow characteristics can be improved compared to conventional air plugs, and a sufficient amount of compressed air can be supplied to the air motor.
  • the pressure drop immediately before the air motor can be reduced, and the air motor can be driven at high output.
  • An embodiment of the present invention provides an air plug that supplies a sufficient amount of compressed air to a compressed air tool or the like that drives an air motor without causing a pressure drop.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Portable Nailing Machines And Staplers (AREA)
  • Portable Power Tools In General (AREA)
  • Pipe Accessories (AREA)

Abstract

An air plug (15) forming, together with a socket, a fluid coupling adapted to connect a compressed air tool to a compressed air feeding source, the compressed air tool having an air chamber (8) for containing compressed air fed from the compressed air feeding source, the capacity of the air chamber (8) being set equal to 90 cc or less. The outer diameter of a seal section (19) of the air plug (15) fitted in the socket is formed equal to 7.1 mm or less. An airflow path (20) that is formed in the center of the seal section (19) of the air plug (15) and through which compressed air flows from the socket side to the air plug (15) side is formed to a cross-section with a diameter of 3 mm or greater. The airflow path (20) is opened to an end surface of the seal section (19) with the same flow path cross-section kept.

Description

明 細 書  Specification
エアブラグ及ぴ圧縮空気工具  Air Bragg and compressed air tools
技術分野  Technical field
[0001] 本発明は、圧縮空気によって駆動される圧縮空気工具と圧縮空気供給源との間を 接続するエアホースを圧縮空気工具に接続するためのエアプラグに関する。  The present invention relates to an air plug for connecting an air hose connecting a compressed air tool driven by compressed air and a compressed air supply source to the compressed air tool.
背景技術  Background art
[0002] シリンダ内のピストンを圧縮空気で駆動してこのピストンに連結されたドライバによつ て釘打ちを行う圧縮空気駆動釘打機や、圧縮空気によってエアモータを駆動してこ のエアモータによってドライバビットを回転させてネジ締めを行うようにした圧縮空気 駆動ドライバ等の圧縮空気工具がある。このような圧縮空気工具では、コンプレッサ 等の圧縮空気供給源と圧縮空気工具とがエアホースを介して接続される。圧縮空気 供給源から圧縮空気工具内に供給された圧縮空気は、前記打撃シリンダ内へ導入 されてピストンを駆動したり、又は、エアモータに供給されてエアモータを回転駆動す る。  [0002] A compressed air drive nailing machine that drives a piston in a cylinder with compressed air and nails it with a driver connected to the piston, or an air motor driven by compressed air and a driver bit by this air motor Compressed air tools such as screwdrivers that rotate the screw to tighten screws are available. In such a compressed air tool, a compressed air supply source such as a compressor and the compressed air tool are connected via an air hose. The compressed air supplied from the compressed air supply source into the compressed air tool is introduced into the impact cylinder to drive the piston, or is supplied to the air motor to rotationally drive the air motor.
[0003] これらの圧縮空気工具と圧縮空気供給源を接続するエアホースとの間には、圧縮 空気工具とエアホース及びエアホースと圧縮空気供給源とを接続するためのソケット とエアプラグとによって構成されている流体継ぎ手が使用されている。一般的にはコ ンプレッサ等の圧縮空気供給源及び圧縮空気工具に接続されるエアホースの端部 には遮断弁が内蔵されているソケットが形成される。圧縮空気供給源と接続されるェ ァホースの端部及び前記圧縮空気工具には前記ソケットと接続されるエアプラグが 形成される。前記エアホースの一端側に形成されているエアプラグを圧縮空気供給 源のソケットに接続し、エアホースの他端側のソケットを前記圧縮空気工具に形成さ れているエアプラグと接続することによって、圧縮空気供給源から圧縮空気工具へ圧 縮空気が供給される。  [0003] Between the compressed air tool and the air hose connecting the compressed air supply source, a compressed air tool, an air hose, a socket for connecting the air hose and the compressed air supply source, and an air plug are configured. Fluid coupling is used. In general, a socket containing a shutoff valve is formed at the end of an air hose connected to a compressed air supply source such as a compressor and a compressed air tool. An air plug connected to the socket is formed at the end of the air hose connected to the compressed air supply source and the compressed air tool. Compressed air supply by connecting an air plug formed on one end of the air hose to a socket of a compressed air supply source, and connecting a socket on the other end of the air hose to an air plug formed on the compressed air tool. Compressed air is supplied from the source to the compressed air tool.
[0004] シリンダ内へ圧縮空気を供給してピストン駆動して釘打ちを行うエア釘打機にぉレ、 ては、従来から使用されている IMPa以下の常圧域の圧縮空気で駆動させるように した常圧用工具に加えて、従来の常圧域の圧力よりも高い高圧域の圧縮空気で駆 動させるようにした高圧専用の圧縮空気工具がある(例えば、特許 3137229号公報 )。高圧専用の圧縮空気工具は、高出力の工具が小型軽量に形成できるという理由 で使用される。前記高圧用工具を駆動するための圧縮空気は、高圧専用の圧縮空 気供給源から供給される。この高圧専用の圧縮空気供給源に常圧用工具が接続で きないように前記高圧用の工具と高圧の圧縮空気供給源との間を接続する流体継ぎ 手は、前記常圧用工具用の流体継ぎ手とは異なった独自の形状に形成される。 [0004] Compressed air is supplied to the cylinder and driven by a piston to drive the nailing machine. The conventional nailing machine is driven by compressed air in the normal pressure range below IMPa, which has been used conventionally. In addition to the normal-pressure tool, it is driven with compressed air in a high-pressure range that is higher than the pressure in the conventional normal-pressure range. There is a compressed air tool dedicated to high pressure that can be moved (for example, Japanese Patent No. 3137229). High-pressure compressed air tools are used because high-power tools can be made compact and lightweight. The compressed air for driving the high-pressure tool is supplied from a compressed air supply source dedicated to high pressure. The fluid joint for connecting the high pressure tool and the high pressure compressed air supply source so that the normal pressure tool cannot be connected to the compressed air supply source dedicated to the high pressure is a fluid joint for the normal pressure tool. It is formed in a unique shape different from
[0005] 一般的な流体継ぎ手にぉレ、ては、エアプラグをソケットと接続するにはエアプラグ の先端のシール部をソケット内に差し込む操作が必要がある。この際にエアプラグの シール部の端面にソケット側の圧縮空気が作用してエアプラグをソケットから離反さ せるように作用する差込荷重が発生する。例えば常圧用のエアプラグを IMPa以下 の常圧の圧力で使用する場合にはこの差込加重が 0. 8MPa以下となるようにエアプ ラグのシール部の外径が設定されている。一方、図 7に示すように、例えば 2MPaま での高圧域の圧縮空気工具で使用される流体継ぎ手のエアプラグ 40では、ソケット 側の凹部内に嵌合されるシール部 41の端面に作用する圧縮空気の圧力が高くなつ て装着荷重が大きくなつて装着作業性が悪くならないように、差込荷重を従来の常圧 用のエアプラグと同じ程度とする必要がある。このため、高圧域の圧縮空気工具で使 用されるエアプラグ 40の前記シール部 41の外径寸法 alは、小さく設定される(直径 7. 1mm)。 [0005] In order to connect an air plug to a socket, it is necessary to insert a seal portion at the tip of the air plug into the socket. At this time, compressed air on the socket side acts on the end surface of the seal portion of the air plug, and an insertion load is generated that acts to separate the air plug from the socket. For example, when an air plug for normal pressure is used at a normal pressure of IMPa or less, the outer diameter of the seal part of the air plug is set so that this insertion load is 0.8 MPa or less. On the other hand, as shown in FIG. 7, in the air plug 40 of the fluid joint used in the compressed air tool in a high pressure range up to 2 MPa, for example, the compression acting on the end surface of the seal portion 41 fitted in the recess on the socket side is performed. The insertion load should be the same as that of the conventional air plug for normal pressure so that the mounting work load does not deteriorate due to high air pressure. For this reason, the outer diameter dimension al of the seal portion 41 of the air plug 40 used in the compressed air tool in the high pressure region is set small (diameter 7.1 mm).
[0006] 更に、シリンダ内に供給された圧縮空気によってピストン駆動して釘打ちを行う圧縮 空気駆動の釘打機では、釘打機のシリンダと隣接して大容量(140〜200cc)のエア チャンバを形成しており、圧縮空気源力 供給された圧縮空気をこのエアチャンバ内 に貯留するようにしている。そしてこのエアチャンバ内の大量の圧縮空気は、シリンダ 内へ瞬時に供給されて、シリンダ内のピストンは衝撃的に駆動される。このように圧縮 空気駆動工具内に大きな容量のエアチャンバが形成されていると、工具から圧縮空 気供給源に接続しているエアホースを外したときに、エアチャンバに溜められていた 多量の圧縮空気がエアプラグから噴き出して騒音を発生したり又は圧縮空気の噴出 しの反動による機械のふられが発生する。このため、高圧域の圧力の圧縮空気で駆 動される釘打機に装着されている従来のエアプラグでは、図 7に示すように、エアブラ グ 40のシール部 41の中心に形成されているエア流路 42の直径 clを 3mm程度に設 定するとともに、このエア流路 42の端部に直径 blが 2mm程度の小穴 43を形成する ことによって、エアプラグ 40から噴出される圧縮空気による騒音と反動力を従来の常 圧工具とほぼ同じとなるようにしている。 [0006] Further, in a compressed air drive nailing machine that drives a piston with compressed air supplied into the cylinder, a large capacity (140 to 200 cc) air chamber is adjacent to the nailing machine cylinder. The compressed air supplied from the compressed air source is stored in the air chamber. A large amount of compressed air in the air chamber is instantaneously supplied into the cylinder, and the piston in the cylinder is driven in an impact manner. When a large-capacity air chamber is formed in the compressed air driven tool in this way, when the air hose connected to the compressed air supply source is removed from the tool, a large amount of compressed air is stored in the air chamber. Air blows out of the air plug and generates noise, or mechanical shake occurs due to reaction of the compressed air blowout. For this reason, in a conventional air plug mounted on a nailing machine driven by compressed air having a pressure in a high pressure region, as shown in FIG. The diameter cl of the air flow path 42 formed at the center of the seal portion 41 of the group 40 is set to about 3 mm, and a small hole 43 having a diameter bl of about 2 mm is formed at the end of the air flow path 42. As a result, the noise and reaction force caused by the compressed air ejected from the air plug 40 are made to be almost the same as those of a conventional normal pressure tool.
[0007] 圧縮空気によって駆動されるエアモータを内蔵し、このエアモータに圧縮空気を供 給してエアモータに連結されたドライバビットを回転させて、このドライバビットを介し てネジ締めを行うようにしたインパクトドライバのような圧縮空気工具では、常圧用ェ 具はあるが、高圧域の圧力の圧縮空気で駆動駆動させるようにした高圧用工具がな 力、つた。このようなエアモータを駆動させるために大量の圧縮空気を連続してエアモ ータへ供給するようにした工具では、先端に小径の穴 43を形成した前述の高圧用の エアプラグ 40を介して高圧の圧縮空気供給源と接続した場合に、先端の小穴 43が 絞り作用となってエアモータへ充分な圧縮空気が供給できず、エアモータへ供給さ れる圧縮空気の圧力が低下してしまいエアモータの出力が低下して、ネジ締めの作 業性を低下させてしまうという問題が発生してしまう。  [0007] Impact that incorporates an air motor driven by compressed air, supplies compressed air to the air motor, rotates the driver bit connected to the air motor, and tightens the screw via the driver bit A compressed air tool such as a driver has a normal pressure tool, but a high pressure tool that is driven and driven by compressed air with a pressure in the high pressure range. In a tool in which a large amount of compressed air is continuously supplied to the air motor in order to drive such an air motor, the high-pressure air plug 40 having a small-diameter hole 43 formed at the tip is used for high pressure. When connected to a compressed air supply source, the small hole 43 at the tip acts as a throttle and cannot supply sufficient compressed air to the air motor, reducing the pressure of the compressed air supplied to the air motor and reducing the output of the air motor. As a result, there arises a problem that the workability of screw tightening is lowered.
発明の開示  Disclosure of the invention
[0008] 本発明の一または一以上の実施例は、エアモータを駆動する圧縮空気工具等へ 充分な量の圧縮空気を圧力降下をすることなく供給することができる圧縮空気工具 用のエアプラグを提供する。  [0008] One or more embodiments of the present invention provide an air plug for a compressed air tool capable of supplying a sufficient amount of compressed air to a compressed air tool or the like that drives an air motor without causing a pressure drop. To do.
[0009] 本発明の一または一以上の実施例の圧縮空気工具用のエアプラグは、圧縮空気 供給源から供給される圧縮空気を貯留するエアチャンバを備えるとともにこのエアチ ヤンバの容量が 90cc以下に設定された圧縮空気工具を圧縮空気供給源と接続する ためのソケットとエアプラグとから構成される流体継ぎ手のエアプラグであって、ソケッ ト内に嵌合される前記エアプラグのシール部の外径を 7. 1mm以下に形成するととも に、圧縮空気がソケット側からエアプラグ側へ流入するエアプラグ側の前記シール部 の中心に形成したエア流路を直径 3mm相当以上の穴の流路断面に形成し、このェ ァ流路を同一流路断面で前記シール部の端面に開口させる。  [0009] An air plug for a compressed air tool according to one or more embodiments of the present invention includes an air chamber for storing compressed air supplied from a compressed air supply source, and the capacity of the air chamber is set to 90 cc or less. An air plug of a fluid joint composed of a socket and an air plug for connecting the compressed air tool to a compressed air supply source, and the outer diameter of the seal portion of the air plug fitted in the socket is 7. The air flow path formed in the center of the seal portion on the air plug side where compressed air flows from the socket side to the air plug side is formed in the flow path cross section of a hole having a diameter of 3 mm or more. The channel is opened at the end surface of the seal portion with the same channel cross section.
[0010] また、本発明の一または一以上の実施例によれば、エア流路の直径は 4. 1mmより も小さくてちょレ、。 [0011] 本発明の一または一以上の実施例の圧縮空気工具用のエアプラグによれば、圧縮 空気供給源から供給される圧縮空気を貯留するエアチャンバを備えるとともにこのェ ァチャンバの容量が 90cc以下に設定された圧縮空気工具を圧縮空気供給源と接続 するためのソケットとエアプラグとから構成される流体継ぎ手のエアプラグであって、ソ ケット内に嵌合される前記エアプラグのシール部の外径を 7. 1mm以下に形成すると ともに、圧縮空気がソケット側からエアプラグ側へ流入するエアプラグ側の前記シー ル部の中心に形成したエア流路を直径 3mm相当以上の流路断面に形成し、このェ ァ流路を同一流路断面で前記シール部の端面に開口させているので、インパクトドラ ィバ等のチャンバ容量が 90cc以下の圧縮空気工具において、エアプラグの流路径 を大きく形成してもエアプラグからソケットを外した時にエアプラグの先端から噴き出 す圧縮空気の量が少ないため、発生音と反力は小さく常圧の圧縮空気工具とほぼ同 等の操作性を発揮させることができる。また、エアプラグの最小の流路断面を直径 3 mmの穴相当以上に大きくすることで流量特性の向上が図れ、エアモータへ充分な 圧縮空気が供給できてエアモータ直前での圧力降下を小さくできエアモータを高出 力で駆動することが可能となる。 [0010] Further, according to one or more embodiments of the present invention, the diameter of the air flow path is smaller than 4.1 mm. [0011] An air plug for a compressed air tool according to one or more embodiments of the present invention includes an air chamber for storing compressed air supplied from a compressed air supply source, and the capacity of the air chamber is 90 cc or less. An air plug of a fluid joint composed of a socket and an air plug for connecting a compressed air tool set to a compressed air supply source, and the outer diameter of the seal portion of the air plug fitted into the socket. 7. In addition to forming 1 mm or less, an air flow path formed at the center of the seal part on the air plug side where compressed air flows from the socket side to the air plug side is formed in a flow path cross section with a diameter of 3 mm or more. In the compressed air tool with a chamber capacity of 90cc or less, such as an impact driver, the air channel is opened to the end face of the seal part with the same channel cross section. Even if the flow path diameter is increased, the amount of compressed air that is blown out from the tip of the air plug when the socket is removed from the air plug is small, so the generated sound and reaction force are small, and the operation is almost the same as that of a normal pressure compressed air tool. The ability to show off. In addition, the flow rate characteristics can be improved by enlarging the minimum flow path cross section of the air plug to the equivalent of a hole with a diameter of 3 mm, sufficient compressed air can be supplied to the air motor, and the pressure drop immediately before the air motor can be reduced. It is possible to drive with high output.
[0012] その他の特徴および効果は、実施例の記載および添付のクレームより明白である。 [0012] Other features and advantages will be apparent from the description of the examples and the appended claims.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明の典型的実施例のエアプラグを装着した圧縮空気工具の一例としての インパクトドライバを示す一部を断面で示す側面図  1 is a side view showing a part of an impact driver as an example of a compressed air tool equipped with an air plug of a typical embodiment of the present invention.
[図 2]図 1のエアプラグの縦断側面図  [Figure 2] Vertical side view of the air plug of Figure 1
[図 3]本発明の典型的実施例のエアプラグによるエア流路の穴径と応力の関係を示 すグラフ図  FIG. 3 is a graph showing the relationship between the diameter of the air passage hole and the stress caused by the air plug of the typical embodiment of the present invention.
[図 4]本発明の典型的実施例のエアプラグによるチャンバ容量と排気音の対応関係 を示すグラフ図  FIG. 4 is a graph showing the correspondence between the chamber volume and the exhaust sound by the air plug of the typical embodiment of the present invention.
[図 5]本発明の典型的実施例のエアプラグによるチャンバ容量と反力の対応関係を 示すグラフ図  FIG. 5 is a graph showing the correspondence between the chamber capacity and reaction force of the air plug of the exemplary embodiment of the present invention.
[図 6]本発明の典型的実施例のエアプラグと従来のエアプラグとの流量特性を示すグ ラフ図 [図 7]従来の高圧用のエアプラグを示す縦断側面図 FIG. 6 is a graph showing the flow characteristics of an air plug of a typical embodiment of the present invention and a conventional air plug. [Fig.7] Longitudinal side view showing a conventional high-pressure air plug
符号の説明  Explanation of symbols
[0014] 1 インパクトドライバ (圧縮空気工具) [0014] 1 Impact driver (compressed air tool)
8 供給流路 (エアチャンバ)  8 Supply channel (Air chamber)
15 エアプラグ  15 Air plug
16 取付部  16 Mounting part
17 接続部  17 Connection
18 中間部  18 Middle part
19 シール部  19 Seal part
20 エア流路  20 Air flow path
21 開口  21 opening
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下図面に従い、本発明の典型的な実施例について説明する。 [0015] Exemplary embodiments of the present invention will be described below with reference to the drawings.
実施例 1  Example 1
[0016] 図 1は本発明の高圧用のエアプラグを装着した高圧域の圧力の圧縮空気で作動す るようにした圧縮空気工具の一例としてのインパクトドライバを示す側面図であり、そ の一部を断面にして示しているものである。インパクトドライバ 1は、作業時にインパク トドライバ 1を把持するためのグリップ部 3がー体に形成されたハウジング 2を備えてお り、このハウジング 2内にはインパクトドライバ 1内へ供給される高圧域の圧縮空気に よって回転駆動されるエアモータ 4が収容されている。更にハウジング 2内には前記 エアモータ 4によって駆動されるインパクト機構が収容配置されており、このインパクト 機構によって回転駆動される駆動シャフト 5が前記ハウジング 2の先端から突出させ て配置されており、この駆動シャフト 5の先端部にはドライバビット 7を着脱自在に装 着させるチャック部 6が形成されている。  FIG. 1 is a side view showing an impact driver as an example of a compressed air tool that is operated with compressed air having a pressure in a high pressure range equipped with an air plug for high pressure according to the present invention, and a part of the impact driver. Is shown in cross section. The impact driver 1 has a housing 2 in which a grip portion 3 for gripping the impact driver 1 during work is formed. The housing 2 has a high pressure region supplied into the impact driver 1. An air motor 4 that is rotationally driven by compressed air is housed. Further, an impact mechanism driven by the air motor 4 is accommodated in the housing 2, and a drive shaft 5 driven to rotate by the impact mechanism is disposed so as to protrude from the tip of the housing 2, and this drive A chuck portion 6 on which a driver bit 7 is detachably attached is formed at the tip of the shaft 5.
[0017] ノ、ウジング 2と一体に形成されている前記グリップ部 3は中空状に形成されておりこ のグリップ部 3の中空内部には、圧縮空気を前記エアモータ 4へ供給するための供給 流路 8と、前記エアモータ 4を駆動した後にエアモータ 4から排気される排気空気を大 気へ排出させるための排気流路 9が並列して形成されている。前記グリップ部 3の基 部には、供給流路 8に供給されている圧縮空気をエアモータ 4へ供給させるためのス ロットルバノレブ 10が形成されており、グリップ部 3の基部に回動可能に支持されてい るスロットルレバー 11をグリップ部 3を把持している手の指によって操作することによつ て、前記スロットルバルブ 10を介して前記供給流路 8に供給されてレ、る圧縮空気をェ ァモータ 4へ供給してエアモータ 4を回転駆動させるようにしてレ、る。 [0017] The grip portion 3 formed integrally with the woozing 2 is formed in a hollow shape, and a supply flow for supplying compressed air to the air motor 4 is formed inside the hollow portion of the grip portion 3. A passage 8 and an exhaust passage 9 for discharging exhaust air exhausted from the air motor 4 after driving the air motor 4 to the atmosphere are formed in parallel. The base of the grip part 3 In this section, a throttle vano lev 10 for supplying the compressed air supplied to the supply flow path 8 to the air motor 4 is formed, and a throttle lever 11 rotatably supported at the base of the grip 3 is provided. By operating with the finger of the hand holding the grip portion 3, the compressed air supplied to the supply flow path 8 through the throttle valve 10 is supplied to the air motor 4 and supplied to the air motor. Rotate 4 to drive.
[0018] エアモータ 4へ供給されてエアモータ 4を駆動した圧縮空気は、エアモータから排 気されて前記排気流路 9へ導入され、この排気流路 9の後端部に形成されている排 気部 12から大気へ排出される。この排気部 12にはエアモータ 4から排気される排気 空気の流速を減少させて排気空気が埃や木屑を吹き上げてしまうことを防ぐとともに 排気音を小さくさせるための排気フィルタ 13が形成されており、エアモータ 4から排気 される排気空気が前記排気流路 9によって誘導されて前記排気フィルタ 13を通過し て排気部 12に形成された排気口 14から大気中へ排出されるようにされてレ、る。  Compressed air supplied to the air motor 4 and driving the air motor 4 is exhausted from the air motor and introduced into the exhaust passage 9, and an exhaust portion formed at the rear end of the exhaust passage 9 Exhausted from 12 to the atmosphere. The exhaust section 12 is formed with an exhaust filter 13 for reducing the flow rate of the exhaust air exhausted from the air motor 4 to prevent the exhaust air from blowing up dust and wood chips and reducing the exhaust noise. Exhaust air exhausted from the air motor 4 is guided by the exhaust flow path 9, passes through the exhaust filter 13, and is discharged into the atmosphere from the exhaust port 14 formed in the exhaust part 12. .
[0019] 前記供給流路 8の端部はグリップ部 3の後端に向けた開口部が形成されており、こ の開口部には一端側が圧縮空気供給源に接続されたエアホースを着脱自在に接続 するためのエアプラグ 15が取り付けられ、このエアプラグ 15に接続されるエアホース を介して圧縮空気供給源から圧縮空気がグリップ部 3内に形成されている前記供給 流路 8内へ供給されている。尚、この実施例のインパクトドライバ 1は、 IMPa以下の 常圧域の圧力よりも高い高圧域の圧縮空気によって作動させるように設定しており、 従って前記エアプラグ 15は高圧域の圧縮空気供給システムにのみ接続できる高圧 システム専用の形状に形成されている。上記エアプラグ 15の下流側から前記スロット ルバルブ 10までの間の供給流路 8内は容積が 14cc程度の小さい容量のエアチャン バを形成しており、前記エアプラグ 15を介して供給される圧縮空気がこの供給流路 8 によつて形成されてレ、るエアチャンバ内に溜められてレ、る。  [0019] An end portion of the supply flow path 8 is formed with an opening toward the rear end of the grip portion 3, and an air hose having one end connected to a compressed air supply source is detachably attached to the opening. An air plug 15 for connection is attached, and compressed air is supplied from a compressed air supply source into the supply flow path 8 formed in the grip portion 3 via an air hose connected to the air plug 15. The impact driver 1 of this embodiment is set to be operated by compressed air in a high pressure range higher than the pressure in the normal pressure range of IMPa or less. Therefore, the air plug 15 is connected to the compressed air supply system in the high pressure range. It is formed in a shape exclusively for high-pressure systems that can only be connected. The supply flow path 8 between the downstream side of the air plug 15 and the throttle valve 10 forms an air chamber having a small capacity of about 14 cc, and the compressed air supplied through the air plug 15 is this. It is formed by the supply flow path 8 and is stored in the air chamber.
[0020] 図 2に示すように、この実施例に力、かるエアプラグ 15は、インパクトドライバ 1等のェ 具にエアプラグ 15を取り付けるための取付部 16と、このエアプラグ 15にエアホース の一端に取り付けたソケットを接続する接続部 17と、これらの間に配置されて互いに 傾斜した 2つの平面に沿って前記取付部 16と接続部 17をそれぞれ回動可能に接続 させている中間部 18によって構成されており、各々の回動接続部を独自に回転させ ることによってエアプラグ 15の接続部 17を取付部 16に対して任意の方向に自在に 向けることができるようにしたものである。前記取付部 16にはインパクトドライバ 1のグ リップ部の端部にエアプラグ 15を取り付けるための雄ネジ 22が形成されるとともにこ の雄ネジ 22を螺合操作するための工具を係合させる係合部 23が形成されている。 [0020] As shown in FIG. 2, the air plug 15 that is effective in this embodiment is provided with an attachment portion 16 for attaching the air plug 15 to a tool such as an impact driver 1 and the like, and the air plug 15 is attached to one end of an air hose. A connecting portion 17 for connecting the socket, and an intermediate portion 18 rotatably connecting the mounting portion 16 and the connecting portion 17 along two planes disposed between them and inclined with respect to each other. And rotate each pivot connection independently. In this way, the connection part 17 of the air plug 15 can be freely directed in any direction with respect to the attachment part 16. The mounting portion 16 is formed with a male screw 22 for attaching the air plug 15 to the end portion of the grip portion of the impact driver 1 and is engaged with a tool for screwing the male screw 22 into engagement. Part 23 is formed.
[0021] 前記接続部 17には、エアホースの一端側に取り付けられているソケットに形成され ている凹部内へ揷入される中空筒状のシール部 19が形成されており、このシール部 19をソケットの凹部に装着する際にソケット側の圧縮空気がシール部 19の端面に作 用して差込荷重が発生するが、圧縮空気による差込荷重が所定値以上にならないよ うにシール部 19の外径寸法 a2は従来技術のエアプラグと同様に 7. 1mmに形成さ れている。このシール部 19の外径寸法 a2は、既存の高圧専用の圧縮空気供給シス テムとして使用されているエアプラグに共通の寸法であって、既存の高圧の圧縮空 気供給システムから圧縮空気の供給を受ける場合にはこの寸法は変更することはで きない。 [0021] The connecting portion 17 is formed with a hollow cylindrical seal portion 19 which is inserted into a recess formed in a socket attached to one end of the air hose. When the socket is inserted into the socket recess, compressed air on the socket side acts on the end face of the seal 19 to generate an insertion load, but the insertion of the compressed air does not exceed the specified value. The outer diameter dimension a2 is 7.1 mm, similar to the conventional air plug. The outer diameter dimension a2 of the seal portion 19 is a dimension common to an air plug used as an existing high-pressure dedicated compressed air supply system, and is supplied with compressed air from the existing high-pressure compressed air supply system. If received, this dimension cannot be changed.
[0022] 前記エアプラグ 15の接続部 17の中心にはエアホースに取り付けられているソケット 側から流入する圧縮空気を取付部 16を経てグリップ部 3内の供給流路 8内へ誘導す るエア流路 20が形成されている。このエア流路 20は前記シール部 19の中心軸に沿 つて前記接続部 17のシール部 19の端面に開口 21して形成されている。更に、前記 シール部 19の先端部に近接した外周面には放射方向に向けた複数の開口 24が円 周方向に等間隔に形成されており、この開口 24を経てソケット側の圧縮空気が前記 エア流路 20内へ流通するようにしている。  [0022] At the center of the connection part 17 of the air plug 15, an air flow path that guides compressed air flowing from the socket side attached to the air hose into the supply flow path 8 in the grip part 3 through the mounting part 16. 20 is formed. The air flow path 20 is formed with an opening 21 along the central axis of the seal portion 19 at the end face of the seal portion 19 of the connection portion 17. Further, a plurality of openings 24 in the radial direction are formed at equal intervals in the circumferential direction on the outer peripheral surface close to the tip of the seal part 19, and the compressed air on the socket side passes through the openings 24. The air flows into the air flow path 20.
[0023] 前記シール部 19の外径寸法は前述したように 7. 1mmに規定されているので、この シール部 19の中心に形成されている前記エア流路 20の穴径を大きくすることは接続 部 17の先端部の強度を低下させてしまうことになる。図 3に示すグラフは接続部 17の 先端に斜め 45度の方向からインパクトドライバ 1の重量と同じ荷重を作用させたとき の前記シール部 19に発生する応力をエア流路 20の穴径に対応して示すもので、こ のグラフからエア流路 20の穴径が 2. 0乃至 4. 1mmまでは応力が大きく変化するこ とがなぐ例えば工具を落下させた場合でもシール部 19を損傷してしまうことがないこ とが解った。従って強度的にはシール部 19に形成するエア流路 20の穴径を直径 4. lmmまで大きくすることが可能である。 [0023] Since the outer diameter of the seal portion 19 is defined as 7.1 mm as described above, increasing the hole diameter of the air flow path 20 formed at the center of the seal portion 19 is not possible. This will reduce the strength of the tip of the connecting portion 17. The graph shown in Fig. 3 shows the stress generated in the seal part 19 when the same load as the weight of the impact driver 1 is applied to the tip of the connection part 17 from an angle of 45 degrees diagonally, corresponding to the hole diameter of the air flow path 20 From this graph, the stress does not change greatly when the hole diameter of the air flow path 20 is 2.0 to 4.1 mm. For example, even if the tool is dropped, the seal part 19 is damaged. I understood that it never happened. Therefore, in terms of strength, the hole diameter of the air flow path 20 formed in the seal portion 19 is the diameter 4. It can be increased to lmm.
[0024] また、上記シール部 19のエア流路 20の径を大きく形成することは、圧縮空気供給 源に接続されているエアホースをエアプラグ 15から外したときときに、エアプラグ 15 力 噴出する圧縮空気による噴出音が大きくなることが想定できる。図 4に示すグラフ は、エア流路 20の穴径を 4. lmmに設定したエアプラグ 15と、先端に直径 2. Omm の穴を形成した従来の高圧用のエアプラグの各々を、所定容量のエアチャンバに接 続して該エアチャンバ内の圧縮空気をそれぞれのエアプラグから噴出させたときの発 生音の大きさをチャンバ容量と対応させて示すものであり、このグラフから、エア流路 20の穴径を 4. 1と大きくしたエアプラグ 15でもエアチャンバの容量が 90cc以下であ れば、発生音は既存の高圧用のエアプラグを装着した工具の発生音とほぼ同等であ つて実用上間題無い範囲であることが計測できた。特に本実施例のインパクトドライ バ 1等のエアモータを駆動する工具のように、エアチャンバ容量が 14ccとごく小さレヽ 揚合には全く作業性を損なうことがないことが理解できる。  [0024] In addition, the diameter of the air flow path 20 of the seal portion 19 is increased so that the air plug 15 force is compressed when the air hose connected to the compressed air supply source is removed from the air plug 15. It can be assumed that the eruption sound due to is increased. The graph shown in Fig. 4 shows that each of the air plug 15 with a hole diameter of the air flow path 20 set to 4. lmm and the conventional high-pressure air plug with a hole with a diameter of 2. Omm formed at the tip have a predetermined volume of air. The magnitude of the generated sound when the compressed air in the air chamber is ejected from each air plug connected to the chamber is shown in correspondence with the chamber capacity. From this graph, the hole of the air flow path 20 is shown. Even if the air plug 15 has a large diameter of 4.1 and the air chamber capacity is 90cc or less, the generated sound is almost the same as the generated sound of a tool equipped with an existing high-pressure air plug, and there is no practical problem. It was possible to measure the range. In particular, it can be understood that workability is not impaired at all when the air chamber capacity is as small as 14 cc as in the case of a tool for driving an air motor such as the impact driver 1 of this embodiment.
[0025] 更に、上記シール部 19のエア流路 20の径を大きく形成することによって、エアプラ グ 15から噴出する圧縮空気による反力が大きくなることが想定できる。図 5に示すグ ラフは、エア流路 20の穴径を 4. lmmに設定したエアプラグ 15と、先端に直径 2. 0 mmの穴を形成した従来の高圧用のエアプラグの各々を、所定容量のエアチャンバ に接続して該エアチャンバ内の圧縮空気をそれぞれのエアプラグから噴出させたとき の反力の大きさをチャンバ容量と対応させて示すものであり、このグラフから、エア流 路 20の穴径を 4· 1と大きくしたエアプラグでもエアチャンバの容量が l lOcc以下で あれば、反力は既存の高圧用のエアプラグを装着した工具の反力と同等以下になつ ており、実用上間題無いと考えられる。特に、インパクトドライバ等のエアモータを駆 動する工具のように、エアチャンバ容積が 14cc以下とごく小さい揚合には全く作業性 を損なうことがない程度である。  Furthermore, it can be assumed that the reaction force due to the compressed air ejected from the air plug 15 is increased by forming the diameter of the air flow path 20 of the seal portion 19 to be large. The graph shown in Fig. 5 has a predetermined capacity for each of an air plug 15 in which the hole diameter of the air flow path 20 is set to 4. lmm and a conventional high-pressure air plug in which a hole with a diameter of 2.0 mm is formed at the tip. This graph shows the magnitude of reaction force when compressed air in the air chamber is ejected from each air plug in correspondence with the chamber capacity. From this graph, the air flow path 20 Even with an air plug with a large hole diameter of 4.1, if the air chamber capacity is l lOcc or less, the reaction force is equal to or less than the reaction force of a tool equipped with an existing high-pressure air plug. It is thought that there is no title. In particular, as with tools that drive air motors, such as impact drivers, the workability is not impaired at all when the air chamber volume is as small as 14 cc or less.
[0026] 上記のように、チャンバの容積が 90ccより小さい例えば 14cc程の容積のチャンバ を形成したインパクトドライバ等の圧縮空気工具において、エアプラグ 15のエア流路 20の穴径を直径 4. lmmまで大きく形成しても、エアプラグ 15から圧縮空気供給源 に接続されているエアホースを外したときに、エアプラグ 15から噴出す圧縮空気量が 少ない為、その発生音と反力を既存のエアプラグを使用している大きな容量のチャン バを備えた圧縮空気工具と同等以下に以下にすることができ、高圧域の圧縮空気で 駆動する圧縮空気工具を使用しての作業性が改善される。 [0026] As described above, in a compressed air tool such as an impact driver in which the chamber volume is smaller than 90 cc, for example, a chamber with a volume of about 14 cc, the hole diameter of the air flow path 20 of the air plug 15 is reduced to a diameter of 4. lmm. Even if it is formed large, when the air hose connected to the compressed air supply source is removed from the air plug 15, the amount of compressed air ejected from the air plug 15 is reduced. Therefore, the generated sound and reaction force can be reduced to less than or equal to those of compressed air tools with large capacity chambers that use existing air plugs. Compressed air driven by compressed air in the high pressure range Workability using tools is improved.
[0027] 更に、図 6に示すグラフは、エア流路 20の穴径を 4. 1mmに設定したエアプラグ 15 と、先端に直径 2. Ommの穴を形成した従来の高圧用のエアプラグの各々による高 圧の圧縮空気の流量特性を示すもので、このグラフから、先端に直径 2. Ommの穴 を形成した従来の高圧用のエアプラグでは、流量の増加とともにエアプラグより下流 側である二次圧力の低下が大きぐ lOOOlZmin時には二次圧が 1. 5Mpa (低下率 17%)と大きく低下してしまうが、一方エア流路 20の穴径を 4. 1mmに設定したエア プラグ 15では二次圧の低下が少なぐ 10001/min時でも二次圧が 1. 7Mpa (低下 率 6。/0)と高い圧力が維持されることが解った。このように、エアプラグでの流量特性 の改善が図れることによって、エアモータを高圧域の圧縮空気の圧力を高く維持させ て高出力で駆動させることができる。このような流量特性の観点から、エア流路 20の 穴径およびエア流路の先端の穴の直径を 3mm以上とすることが好ましレ、。エア流路 20の穴径およびエア流路の先端の穴の直径を、例えば、 2mmなど小さなものとする と、圧力の損失が大きくなるからである。また、エア流路 20は同一流路断面で形成す ることが好ましい。エア流路中に絞り要素(例えば図 7の先端の小穴 43)が存在すると 、圧力の損失が大きくなるからである。 Furthermore, the graph shown in FIG. 6 is based on the air plug 15 in which the hole diameter of the air flow path 20 is set to 4.1 mm and the conventional high-pressure air plug in which a hole having a diameter of 2. Omm is formed at the tip. This graph shows the flow characteristics of high-pressure compressed air. From this graph, the conventional high-pressure air plug with a hole with a diameter of 2. Omm at the tip shows the secondary pressure downstream of the air plug as the flow rate increases. When the lOOOlZmin is large, the secondary pressure drops significantly to 1.5Mpa (decrease rate 17%). On the other hand, with the air plug 15 with the hole diameter of the air passage 20 set to 4.1mm, the secondary pressure It reduced secondary pressure even during Sukunagu 10001 / min is 1. 7 Mpa (reduction rate 6/0) and high pressure is found to be maintained. Thus, by improving the flow characteristics of the air plug, the air motor can be driven at a high output while maintaining the pressure of the compressed air in the high pressure region high. From the viewpoint of such flow characteristics, it is preferable that the hole diameter of the air flow path 20 and the diameter of the hole at the end of the air flow path be 3 mm or more. This is because if the hole diameter of the air channel 20 and the diameter of the hole at the tip of the air channel are small, for example, 2 mm, the pressure loss increases. The air channel 20 is preferably formed with the same channel cross section. This is because if the throttle element (for example, the small hole 43 at the tip in FIG. 7) exists in the air flow path, the pressure loss increases.
[0028] なお、上記実施例では、取付部 16と接続部 17をそれぞれ回動可能に接続させて レ、る中間部 18によって構成され、接続部 16を取付部に対して任意の方向に自由に 向けることができる用にしたエアプラグ 15に基づいて説明した力 本発明はこのよう なものに限定されるものではなぐ一端側にインパクトドライバ 1にエアプラグを取り付 けるための雄ネジが形成されるとともにこの雄ネジを螺合操作するための工具を係合 させる係合部が形成され、更に、他端側にエアホースに取り付けられているソケットに 形成されている凹部内へ揷入される中空筒状のシール部が一体に形成されたエア プラグにおいても同様に実施することが可能である。また、エア流路 20の形状は、穴 形状には限らない。同軸でない穴に類似の形状でもよぐまた四角穴等の多角形状 でもよい。 [0029] 上記実施例のエアプラグ 15によれば、圧縮空気の供給源から供給される圧縮空気 を貯留するエアチャンバの容量が 90cc以下に設定された高圧域の圧縮空気で作動 する圧縮空気工具を圧縮空気供給源と接続するソケットとエアプラグとから構成され る流体継ぎ手のエアプラグ 15であって、ソケットに形成されている凹部内に嵌合され るエアプラグ 15のシール部 19の外径を既存のエアプラグと同一の 7. 1mmに形成 するとともに、ソケット側からエアプラグ 15側へ流入する圧縮空気を流通させるエアプ ラグ 15のシール部 19の中心に形成したエア流路 20を、直径 3mm以上の穴相当の 流路断面に形成するとともに、このエア流路 20を同一の流路断面でシール部 19の 端面に開口させているので、エアプラグ 15からエアホースを外した時にエアチャンバ から噴出す圧縮空気の量が少ないため発生音と反力は常圧の圧縮空気工具とほぼ 同等の操作性を発揮させることができる。 [0028] In the above embodiment, the attachment portion 16 and the connection portion 17 are pivotally connected to each other, and the intermediate portion 18 is configured to freely connect the connection portion 16 to the attachment portion in any direction. The force described based on the air plug 15 that can be directed to the present invention The present invention is not limited to this, but a male screw for attaching the air plug to the impact driver 1 is formed on one end side. And a hollow cylinder that is inserted into a recess formed in a socket attached to the air hose on the other end side. The same can be applied to an air plug in which a cylindrical seal portion is integrally formed. Further, the shape of the air flow path 20 is not limited to the hole shape. A shape similar to a non-coaxial hole or a polygonal shape such as a square hole may be used. [0029] According to the air plug 15 of the above embodiment, the compressed air tool that operates with the compressed air in the high-pressure range in which the volume of the air chamber that stores the compressed air supplied from the compressed air supply source is set to 90cc or less is provided. An air plug 15 of a fluid joint composed of a socket connected to a compressed air supply source and an air plug, and the outer diameter of the seal portion 19 of the air plug 15 fitted in a recess formed in the socket is changed to an existing air plug. The air flow path 20 formed at the center of the seal part 19 of the air plug 15 that allows the compressed air flowing from the socket side to the air plug 15 side to circulate is equivalent to a hole with a diameter of 3 mm or more. The air channel 20 is formed in the cross section of the flow path, and the air flow path 20 is opened to the end surface of the seal portion 19 with the same flow path cross section. Therefore, when the air hose is removed from the air plug 15, Since the amount of compressed air ejected from the bar is small, the generated sound and reaction force can exhibit almost the same operability as a normal pressure compressed air tool.
[0030] また、前記エア流路 20を直径 3mm以上の穴相当の流路断面に形成するとともに、 このエア流路 20を同一の流路断面でシール部 19の端面に開口させているので、従 来のエアプラグより流量特性の向上が図れ、エアモータへ充分な量の圧縮空気を供 給できるとともに、エアモータ直前での圧力降下を小さくできエアモータを高出力で 駆動することが可能となる。例えば、エア流路 20の有効断面積を直径 3. 8mmの穴 相当にしたインパクトドライバを、 1. 8Mpaの圧力の圧縮空気で作動させたときに、ェ ァモータの出力が約 11 %向上し、ネジ 1本あたりの締込時間が 15%短縮され、ネジ 締め作業の作業効率の改善が図れた。  [0030] In addition, the air channel 20 is formed in a channel cross section corresponding to a hole having a diameter of 3 mm or more, and the air channel 20 is opened at the end surface of the seal portion 19 in the same channel cross section. The flow characteristics can be improved compared to conventional air plugs, and a sufficient amount of compressed air can be supplied to the air motor. The pressure drop immediately before the air motor can be reduced, and the air motor can be driven at high output. For example, when an impact driver whose effective cross-sectional area of the air flow path 20 is equivalent to a hole with a diameter of 3.8 mm is operated with compressed air with a pressure of 1.8 Mpa, the output of the motor increases by about 11%, The tightening time per screw was reduced by 15%, and the work efficiency of the screw tightening work was improved.
[0031] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 [0031] While the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there.
[0032] 本出願は、 2005年 3月 24日出願の日本特許出願(特願 2005— 086964)に基づくも のであり、その内容はここに参照として取り込まれる。  [0032] This application is based on a Japanese patent application filed on March 24, 2005 (Japanese Patent Application No. 2005-086964), the contents of which are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0033] 本発明の実施例は、エアモータを駆動する圧縮空気工具等へ充分な量の圧縮空 気を圧力降下をすることなく供給するエアプラグを提供する。 [0033] An embodiment of the present invention provides an air plug that supplies a sufficient amount of compressed air to a compressed air tool or the like that drives an air motor without causing a pressure drop.

Claims

請求の範囲 The scope of the claims
[1] ソケットとエアプラグとから構成される流体継ぎ手のエアプラグであって、  [1] A fluid coupling air plug composed of a socket and an air plug,
ソケット内に嵌合されるシール部と、  A seal part to be fitted in the socket;
前記シール部の中心に形成され同一流路断面を有し前記シール部の先端に開口 するエア流路と、  An air flow path formed at the center of the seal portion and having the same flow path cross section and opening at the tip of the seal portion;
を具備し、  Comprising
前記シール部の外径は 7. 1mm以下であり、  The outer diameter of the seal portion is 7.1 mm or less,
前記エア流路の直径は 3mm以上である、  The diameter of the air flow path is 3 mm or more.
エアプラグ。  Air plug.
[2] 前記エアプラグは、圧縮空気供給源から供給される圧縮空気を貯留するエアチヤ ンバを備える圧縮空気工具に取り付けられ、  [2] The air plug is attached to a compressed air tool including an air chamber for storing compressed air supplied from a compressed air supply source,
前記エアチャンバの容量が 90cc以下である、  The capacity of the air chamber is 90 cc or less,
請求項 1のエアプラグ。  The air plug of claim 1.
[3] 前記エア流路の直径は 4. 1mmよりも小さい、請求項 1のエアプラグ。 [3] The air plug according to claim 1, wherein the diameter of the air flow path is smaller than 4.1 mm.
[4] 圧縮空気供給源から供給される圧縮空気を貯留するエアチャンバと、 [4] an air chamber for storing compressed air supplied from a compressed air supply source;
圧縮空気供給源と接続するためのエアプラグと、  An air plug for connection with a compressed air supply;
を備え、  With
前記エアプラグは、  The air plug is
ソケット内に嵌合されるシール部と、  A seal part to be fitted in the socket;
前記シール部の中心に形成され同一流路断面を有し前記シール部の先端に開口 するエア流路と、  An air flow path formed at the center of the seal portion and having the same flow path cross section and opening at the tip of the seal portion;
を具備し、  Comprising
前記シール部の外径は 7. 1mm以下であり、  The outer diameter of the seal portion is 7.1 mm or less,
前記エア流路の直径は 3mm以上である、  The diameter of the air flow path is 3 mm or more.
圧縮空気工具。  Compressed air tool.
[5] 前記エアチャンバの容量が 90cc以下である、請求項 4の圧縮空気工具。  5. The compressed air tool according to claim 4, wherein the capacity of the air chamber is 90 cc or less.
[6] 前記エア流路の直径は 4. 1mmよりも小さい、請求項 4の圧縮空気工具。 6. The compressed air tool according to claim 4, wherein the diameter of the air flow path is smaller than 4.1 mm.
PCT/JP2006/305577 2005-03-24 2006-03-20 Air plug and compressed air tool WO2006101085A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-086964 2005-03-24
JP2005086964A JP2006263877A (en) 2005-03-24 2005-03-24 Air plug for compressed air tool

Publications (1)

Publication Number Publication Date
WO2006101085A1 true WO2006101085A1 (en) 2006-09-28

Family

ID=37023745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305577 WO2006101085A1 (en) 2005-03-24 2006-03-20 Air plug and compressed air tool

Country Status (2)

Country Link
JP (1) JP2006263877A (en)
WO (1) WO2006101085A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2213711A1 (en) 2007-10-10 2010-08-04 Ube Industries, Ltd. -sialon phosphor powder and process for production of the same
TWI573672B (en) * 2015-06-26 2017-03-11 To reduce the start load of the pulsating pneumatic tools

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164756A (en) * 2014-02-04 2015-09-17 日立工機株式会社 pneumatic tool and filter mechanism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727770U (en) * 1993-10-29 1995-05-23 マックス株式会社 Structure of tool air connection using compressed air
JPH08118259A (en) * 1994-10-26 1996-05-14 Max Co Ltd Air filter device in compressed air tool
WO2003037570A1 (en) * 2001-11-02 2003-05-08 Poly Systems Pty Ltd Nail gun
JP2003236771A (en) * 2002-02-15 2003-08-26 Hitachi Koki Co Ltd Air plug and pneumatic nailing machine
JP2004001137A (en) * 2002-05-31 2004-01-08 Hitachi Koki Co Ltd Pneumatic nailing machine
JP2004330333A (en) * 2003-05-02 2004-11-25 Max Co Ltd Air filter apparatus for pneumatic tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727770U (en) * 1993-10-29 1995-05-23 マックス株式会社 Structure of tool air connection using compressed air
JPH08118259A (en) * 1994-10-26 1996-05-14 Max Co Ltd Air filter device in compressed air tool
WO2003037570A1 (en) * 2001-11-02 2003-05-08 Poly Systems Pty Ltd Nail gun
JP2003236771A (en) * 2002-02-15 2003-08-26 Hitachi Koki Co Ltd Air plug and pneumatic nailing machine
JP2004001137A (en) * 2002-05-31 2004-01-08 Hitachi Koki Co Ltd Pneumatic nailing machine
JP2004330333A (en) * 2003-05-02 2004-11-25 Max Co Ltd Air filter apparatus for pneumatic tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2213711A1 (en) 2007-10-10 2010-08-04 Ube Industries, Ltd. -sialon phosphor powder and process for production of the same
TWI573672B (en) * 2015-06-26 2017-03-11 To reduce the start load of the pulsating pneumatic tools

Also Published As

Publication number Publication date
JP2006263877A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP2006326794A (en) Air tool
WO2006101085A1 (en) Air plug and compressed air tool
GB2416384A (en) Pneumatic tool inlet valve
EP1714747A1 (en) End cap of compressed air tool
TWI527670B (en) Pneumatic tools
US20070056758A1 (en) Rear exhaust type pneumatic tool
JP5318511B2 (en) Pneumatic tool
JP3821005B2 (en) Detachment device for driver bit of compressed air screw tightener
JP4089633B2 (en) Compressed air tool throttle valve
JP4710409B2 (en) Compressed air inflow adjustment mechanism for pneumatic tools
JP2005059143A (en) Coming-out prevention mechanism of compressed-air driving screwing machine
JP4967694B2 (en) Air compressor capacity switching mechanism of air compressor
JP4288596B2 (en) Relief valve for compressed air tool
JP4428218B2 (en) Dust-proof filter device for compressed air tools
JP4055799B2 (en) Compressed air screw tightener
JP2004034287A (en) Retrofit kit for modular control apparatus for power impact tool, and manufacturing method and using method of kit
JP2008075605A (en) Air compressor and pneumatic tool system
JP2003161302A (en) Compressor for pneumatic tool
JPH09141570A (en) Exhaust mechanism in pneumatic nailing machine
JP2000088176A (en) Air delivery/exhaust system of pneumatic tool
JP6555752B2 (en) Air tool operation system
JP2005219193A (en) End cap of pneumatic tool
JP4941228B2 (en) Connecting structure of multiple air compressors
KR200335874Y1 (en) An air tool
JP2004017205A (en) Compressed-air driven screw tightening machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729545

Country of ref document: EP

Kind code of ref document: A1