WO2006100964A1 - Method for producing three-dimensional article and three-dimensional article - Google Patents

Method for producing three-dimensional article and three-dimensional article Download PDF

Info

Publication number
WO2006100964A1
WO2006100964A1 PCT/JP2006/305003 JP2006305003W WO2006100964A1 WO 2006100964 A1 WO2006100964 A1 WO 2006100964A1 JP 2006305003 W JP2006305003 W JP 2006305003W WO 2006100964 A1 WO2006100964 A1 WO 2006100964A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
meth
producing
acrylate
Prior art date
Application number
PCT/JP2006/305003
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinari Miyamoto
Soshu Kirihara
Keitaro Hino
Toshio Teramoto
Original Assignee
Osaka University
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University, Jsr Corporation filed Critical Osaka University
Publication of WO2006100964A1 publication Critical patent/WO2006100964A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Definitions

  • the present invention relates to a method for producing a three-dimensionally shaped article useful for forming ceramics. More specifically, a process for producing a three-dimensional product using a photocurable liquid composition having excellent fluidity and curability during optical layered modeling by containing ceramic particles having an extremely small particle diameter, and this photocuring property.
  • the present invention relates to a three-dimensional shape made of a cured product of a liquid composition, and a ceramic fired body obtained by firing the three-dimensional shape.
  • Metal powders such as aluminum and silicon, and ceramic powders are dispersed in a binder made of a photocurable liquid composition and cured by a known additive manufacturing method to form a desired three-dimensional shape.
  • a binder made of a photocurable liquid composition and cured by a known additive manufacturing method to form a desired three-dimensional shape.
  • the technology for firing and manufacturing a three-dimensional shape having a complicated shape is known.
  • a thin layer liquid surface of a photocurable resin liquid is irradiated with light to form a cross-section hardened layer having a desired pattern, and then photocurable on the hardened layer.
  • a typical method is to form a three-dimensional object with a desired shape by supplying the resin liquid for one layer, further forming a cross-section hardened layer, and repeating this operation by laminating and integrating the cross-section hardened layers. (For example, refer nonpatent literature 1.).
  • Non-Patent Document 1 Paul F. Jacobs, “Basics of High-Speed 3D Molding”, 1st Edition, Nikkei BP Publishing Center, December 10, 1993, p. 379- 406
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-144205
  • Patent Document 2 JP 2003-129862 A
  • Patent Document 3 JP-A-8-252867
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-261977
  • Patent Document 5 JP-A-8-252867
  • Patent Document 6 Japanese Patent Laid-Open No. 7-60844
  • Patent Document 7 JP-A-2004-143247
  • Patent Document 8 JP-A-6-329460
  • Patent Document 9 JP-A-8-91940
  • the present inventors show good fluidity and photocurability even when the ceramic filling ratio in the mixture of the ceramic powder and the like and the binder composition is increased.
  • the study was conducted with the aim of developing a method for manufacturing a three-dimensional object that can easily form a desired three-dimensional object.
  • the inventors have found that the above object can be achieved by using finer ceramic particles (ceramic powder) than those conventionally used, and have completed the present invention.
  • the present invention provides the following three-dimensionally shaped product manufacturing method, three-dimensionally shaped product, and ceramic sintered body.
  • a photocurable liquid composition containing ceramic particles is irradiated with light to form a cured layer of the composition, and the composition is again supplied onto the cured layer and irradiated with light. And By repeatedly forming a cured layer of the composition, a method for producing a three-dimensional object that forms a three-dimensional object in which the cured layer is laminated and integrated,
  • a method for producing a three-dimensional product wherein the composition contains the following components (A) to (C).
  • a three-dimensional object A three-dimensional object.
  • the method for producing a three-dimensionally shaped article of the present invention exhibits good fluidity and photocurability even when the ceramic filling rate in the mixture of ceramic powder and the like and the binder composition is increased. As a result, there is an effect that a desired three-dimensional shape can be easily modeled by the optical layered modeling method. For this reason, the method for producing a three-dimensionally shaped article of the present invention is suitable for producing a ceramic fired body.
  • FIG. 1 is a diagram showing a typical example of an optical three-dimensional modeling method (a method for producing a three-dimensional object) according to the present invention.
  • FIG. 2 is a design drawing of a three-dimensional object produced in Example 1.
  • FIG. 3 is an electron microscopic image of a three-dimensionally shaped product (unfired) produced in Example 1.
  • FIG. 4 is an electron microscopic image of the fired body produced in Example 1.
  • the method for producing a three-dimensionally shaped article of the present invention comprises (A) ceramic particles having a number average particle diameter of 0.01 to 0.5 / m by electron microscopy, (B) a compound having a polymerizable functional group, and (C) This is an optical layered modeling method using a photocurable liquid composition containing a photopolymerization initiator.
  • the photocurable liquid composition exhibits thixotropic characteristics, has low viscosity resistance, and can be used to store an uncured liquid composition with a pump or the like.
  • the photocurable liquid composition used in the present invention comprises (A) ceramic particles having a number average particle diameter of 0.01-0. By electron microscopy, (B) a compound having a polymerizable functional group, and (C) light. It contains a polymerization initiator.
  • Component (A) is ceramic particles.
  • the particle is a concept including powder.
  • the number average particle diameter, as measured by electron microscopy, is usually from 0.01 to 0., preferably from 0.02 to 0, and more preferably from 0.05 to 0. is there.
  • the particle size of the component (A) is measured by electron microscopy, and scanning electron microscopy is particularly preferred.
  • the shape of the component (A) is not particularly limited as long as it has a granularity that can define the particle size. For example, it is not limited to a spherical shape, and may be a pulverized body.
  • the particle diameter in the case of a shape other than a spherical shape is defined by the maximum diameter in the electron microscope image.
  • the material constituting the component (A) is not particularly limited as long as it does not substantially absorb light having an irradiation wavelength.
  • oxides such as alumina, zirconium, titania, zinc oxide, ferrite, barium titanate, apatite, silica, etc., charcoal such as zinc carbide, carbon carbide, etc.
  • Various ceramics such as nitride, aluminum nitride, silicon nitride, sialon (SiAlON), or a mixture thereof can be used.
  • alumina, dinoleconia, silica, aluminum nitride, silicon nitride, or a mixture thereof is preferably used.
  • alumina particles are preferable in that a commercially available product having a relatively small particle diameter can be easily obtained.
  • Examples of commercially available alumina particles that can be used as component (A) include AKP-20 (0.5 zm), AKP_30 (0.3 ⁇ m), AKP_50 (0.2 ⁇ m) (Sumitomo Chemical Industry Co., Ltd.) and TM_DAR (0.17 zm; manufactured by Daimei Chemical Industry Co., Ltd.).
  • the content of the component (A) is usually 10% by volume or more, preferably 20% by volume or more, and more preferably 30% by volume with respect to the entire photocurable liquid composition. More preferably, it is 35% by volume or more.
  • the upper limit for volume% is not fixed because the specific gravity differs depending on the material of component (A).
  • the weight% is 95% by weight with respect to the entire photocurable liquid composition. It is preferably 90% by weight or less, more preferably 85% by weight or less.
  • the specific gravity of ⁇ -alumina is 3.90, and if the specific gravity of the components ( ⁇ ) and (C) is approximately 1.0, 95% by weight corresponds to about 83% by volume.
  • the present component becomes sufficiently dense in the three-dimensionally shaped product, so that a good ceramic can be produced. If it is 95% by weight or less, the component (ii) can be uniformly dispersed in the composition.
  • the component (B1) include monofunctional monomers having one ethylenically unsaturated bond in one molecule, and polyfunctional monomers having two or more ethylenically unsaturated bonds in one molecule. .
  • Monofunctional monomers that can be suitably used as the component (B1) include, for example, (meth) atalynoreamide, (meth) atalyleunomonoreforin, 7_amino-3,7-dimethyloctyl (meth) atalylate, Isobutoxymethyl (meth) acrylamide, isobornyloxetyl (meth) a Tallylate, isobornyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, ethyl diethylene glycol (meth) acrylate, t-octyl (meth) acrylamide, diacetone (meth) acrylamide, dimethylaminoethyl (meth) Atarylate, Jetylaminoethyl (meth) acrylate, Laurinole (meth) acrylate, Dicyclopentagen (meth) acrylate, Dicyclopentuloxychetyl (
  • each R 21 independently represents a hydrogen atom or a methyl group
  • R 22 represents an alkylene group having 26, preferably 24 carbon atoms
  • R 23 represents a hydrogen atom or a carbon number: ! To 12, preferably 19 alkyl group
  • R 24 represents an alkylene group having 28, preferably 25 carbon atoms.
  • isobornyl (meth) acrylate, (meth) ateloy loy noremonoreforin, bull force prolatatum, polypropylene glycol mono (meth) acrylate, methoxytripropylene glycol (meth) acrylate, methoxypropylene Glycol (meth) acrylate and phenoxychetyl (meth) acrylate are particularly preferred.
  • the polyfunctional monomer that can be suitably used as the component (B1) includes, for example, ethylene glycol di (meth) acrylate, dicyclopentenyl di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol Di (meth) acrylate, tricyclodecandiyldimethylenedi (meth) acrylate, tris (2-hydroxyethyl) isocyanurate di (meth) acrylate, tris (2-hydroxyethyl) isocyanuratetri (meth) acrylate Rate, force prolataton modified tris (2-hydroxyethyl) iso cyanurate tri (meth) ate, trimethylolpropane tri (meth) ate, ethylene oxide (hereinafter referred to as “E ⁇ ”) Say.
  • E ⁇ ethylene oxide
  • trimethylolpropane tri (meth) acrylate tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, triatalylooxyethyl phosphate
  • Particularly preferred are dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate.
  • the component (B1) is trifunctional or more, that is, a polyfunctional monomer having 3 or more ethylenically unsaturated bonds in one molecule, preferably trifunctional or more.
  • the polyfunctional (meth) acrylate monomer is preferably used.
  • the content of the trifunctional or higher polyfunctional monomer is preferably 10% by weight or more, more preferably 15% by weight or more, particularly preferably 100% by weight of the total component (B). 20% by weight or more. When the content ratio is 10% by weight or more, the composition exhibits good photocurability and a three-dimensional shape having good strength.
  • the above monofunctional monomer and polyfunctional monomer are each singly or in combination of two or more, or a combination of at least one monofunctional monomer and at least one polyfunctional monomer ( Component B) can be configured.
  • (B2) The cationically polymerizable compound is irradiated with light in the presence of a cationic photopolymerization initiator. It is an organic compound that causes a polymerization reaction or a crosslinking reaction.
  • Component (B2) includes epoxy compounds, oxetanyl group-containing compounds, oxolane compounds, cyclic acetal compounds, cyclic rataton compounds, thiirane compounds, chetanich compounds, butyl ether compounds, epoxy compounds and reaction products of ratatones. Examples thereof include spiro orthoester compounds, ethylenically unsaturated compounds, cyclic ether compounds, cyclic thioether compounds, and vinyl compounds.
  • the epoxy compound that can be suitably used as the component (B2) is preferably a cyclohexene oxide group-containing compound or a glycidinole group-containing compound.
  • Cyclohexene oxide group-containing compounds are excellent in cationic polymerizability.
  • the glycidyl group-containing compound can impart flexibility to the resulting polymer, increase the mobility of the polymerization system, and further improve the curability.
  • Cyclohexene oxide group-containing compounds that can be suitably used as the component (B2) include, for example, 3, 4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylate, 2- (3, 4 epoxycyclohexane Hexilou 5,5-spiro 3,4 epoxy) cyclohexane meta dioxane, bis (3,4-epoxycyclohexenolemethinole) adipate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, 3, 4 Epoxy-6-methylcyclohexyl lune 3 ', 4' Epoxy 6'-methylcyclohexane carboxylate, methylenebis (3,4-epoxycyclohexane), ethylene glycol di (3, 4-epoxycyclohexylmethinole) Ether, ethylene bis (3,4-epoxycyclohexanecarboxylate),
  • UVR_ 6100 Commercially available compounds containing a cyclohexene oxide group include UVR_ 6100, UVR-6 105, UVR-6110, UVR-6128, UVR-6199, UVR-6200, UVR-6216 (above, Union Carbide) , Celoxide 2021, Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, Epolide GT-300, Epolide GT_301, Epolide GT_302, Evolide GT_400, Evolid 401, Epolide 403 (above, manufactured by Daicel Chemical Industries), KRM-2100, KRM-2110, KRM-2199 (above, manufactured by Asahi Denka Kogyo Co., Ltd.)
  • Examples of the glycidyl group-containing compound that can be suitably used as the component (B2) include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol no A diglycidyl ether, Brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1, 4 butanediol Diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl noleateol, trimethylone propane triglycidinoleateol, polyethylene glycolenoresidue glycidylate , Polypropylene glycol diglycidyl ethers; polyglycidinole
  • bisphenol A diglycidyl ether bisphenol F diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, 1,4-butanediol diglycidyl ether, 1, 6— Hexanedioresidyl glycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, neopentyl glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and polypropylene glycol diglycidyl ether are preferred.
  • glycidinole group-containing compounds include Evolite 1600 (manufactured by Kyoeisha Igaku Co., Ltd.), UVR-6216 (manufactured by Union Carbide), glycidol, AOEX24, cyclomer A200, (manufactured by Daicel) Chemical Industry Co., Ltd.), Epicourt 828, Epicourt 812, Epicourt 1031, Epiquat 872, Epicote CT508 (above, manufactured by Yuka Shell Co., Ltd.), KR M-2400, KRM-2410, KRM-2408, KRM— 2490, KRM-2720, KRM-2750 (above, manufactured by Asahi Denka Kogyo Co., Ltd.)
  • oxetanyl group-containing compound (hereinafter referred to as "oxetane compound") that can be suitably used as the component (B2) has at least one oxetane ring represented by the following formula (4) in the molecule. It is a compound.
  • Examples of the compound having one oxetane ring in the molecule include a compound represented by the following formula (5).
  • Z represents an oxygen atom or a sulfur atom.
  • R 1 is a hydrogen atom; a fluorine atom; an alkyl group having from 6 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group; a trifluoromethyl group, a perfluoroethyl group, and a perfluoro group.
  • a fluoroalkyl group having 16 carbon atoms such as a propyl group; an aryl group having 6 to 18 carbon atoms such as a phenyl group or a naphthyl group; a furyl group or a chenyl group.
  • R 2 represents a hydrogen atom; a methyl group, an ethyl group, a propyl group, a butyl group, or the like, an alkyl group having! To 6; 1-propenyl group, 2_propenyl group, 2_methyl _ 1 _Propenyl group, 2_methyl _ 2_propenyl group, 1-butulyl group, 2-butulyl group, 3-butulyl group and the like alkenyl group having 26 carbon atoms; phenyl group, naphthyl group, Aryl group having 618 carbon atoms such as anthonyl group, phenanthryl group, etc .; substituted or unsubstituted carbon such as benzyl group, fluorobenzoyl group, methoxybenzyl group, phenethyl group, styryl group, cinnamyl group, ethoxybenzyl group Aralkyl group having 7 to 18 atoms; Group having other aromatic
  • Examples of the compound having two oxetane rings in the molecule include compounds represented by the following formula (6).
  • R 1 has the same definition as in the above formula (5).
  • R 3 is a linear or branched alkylene group having 120 carbon atoms such as an ethylene group, a propylene group or a butylene group; a linear or branched group such as a poly (ethyleneoxy) group or a poly (propyleneoxy) group.
  • R 3 may be a polyvalent group selected from the groups represented by any one of the following formulas (7), (8) and (9).
  • R 4 represents a hydrogen atom; an alkyl group having 14 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group; a methoxy group, an ethoxy group, a propoxy group, a butoxy group.
  • An alkoxy group having 14 carbon atoms, a halogen atom such as a chlorine atom or a bromine atom, a nitrogen group, a cyano group, a mercapto group, a lower alkyl carboxyl group, a carboxyl group or a force novamoino group
  • X is: It is an integer of 4.
  • R 5 represents an oxygen atom, a sulfur atom, a methylene group, —NH—_SO_
  • R 6 is an alkyl group having 14 carbon atoms such as a methyl group, an ethyl group, a propyl group, or a butyl group; the number of carbon atoms such as a phenyl group or a naphthyl group. 6 ⁇ : 18 aryl groups.
  • y is an integer of 0 200.
  • R 7 is methyl, ethyl, propyl, butyl, An alkyl group having 1 to 4 carbon atoms such as a til group; an aryl group having 6 to 18 carbon atoms such as a phenyl group or a naphthyl group; or a group represented by the following formula (10).
  • R 8 is an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, or a butyl group; a carbon atom number such as a phenyl group or a naphthyl group 6 to: 18 aryl groups.
  • z is an integer from 0 to 100.
  • R 1 is the same as defined in the above formula (5).
  • the compound having three or more oxetane rings in the molecule is represented by the following formula (14). Compounds and the like.
  • R 1 is the same as defined in the above formula (5).
  • R 9 represents a trivalent organic group, for example, a branched or linear alkylene group having 1 to 30 carbon atoms such as a group represented by any of the following formulas (15) to (17), Examples thereof include branched poly (alkyleneoxy) groups such as the group represented by (18), linear or branched polysiloxane-containing groups represented by the following formula (19) or formula (20), and the like.
  • j represents an integer of 3 to 10 equal to the valence of R 9 .
  • R 1U represents 1 carbon atom such as a methinole group, an ethyl group, a propyl group, or the like.
  • the compound represented by the following formula (22) may have 1 to 10 oxetane rings in the molecule c
  • R 1 has the same definition as in the above formula (5), and R 11 has 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, or a butyl group.
  • An alkyl group or a trialkylsilyl group (wherein the alkyl group is the same or different and is an alkyl group having 3 to 12 carbon atoms. Examples of the trialkylsilyl group include a trimethylsilyl group, a triethylsilyl group, and a triprovirsilyl group. And tributylsilyl group, etc.), and r represents an integer of 1 to 10.
  • the oxetane compound has a high molecular weight of about 1,000 to 5,000 in terms of polystyrene measured by gel permeation chromatography (GPC) in addition to the above-described examples. Also included are compounds. Examples thereof include compounds represented by any of the following formula (23), formula (24), and formula (25).
  • pi is an integer between 20 and 200.
  • si is an integer from 20 to 200.
  • the oxetane compound that can be suitably used as the component (B2) is a compound having 1 to 10, more preferably 1 to 4, particularly preferably 2 oxetane rings in the molecule. is there.
  • trimethylolpropane tris represented by the following formula (29) (3- (Cyl-3-oxetanylmethyl) ether, 3_ethyl_3_oxetanylmethoxybenzene represented by the following formula (30), and a compound represented by the above formula (22).
  • oxetane compounds can be used alone or in combination of two or more.
  • the content ratio of the component (B) is usually 1 to 65% by weight based on the entire photocurable liquid composition, regardless of whether the component (B1) or the component (B2) is used. It is preferably 5 to 40% by weight, more preferably 10 to 30% by weight.
  • the content ratio of the component (B) is 1% by weight or more, the component (A) is uniformly dispersed in the present composition. Further, if it is 20% by weight or less, the content ratio of the component (A) in the present composition increases, and the volumetric shrinkage of the three-dimensionally shaped product after firing can be reduced.
  • the content ratio of the component (B) when the content ratio of the component (B) is too small, the viscosity increases and the composition does not have sufficient fluidity. In addition, when this content ratio is excessive, the content ratio of the component (A) is decreased, the strength of the three-dimensional object is reduced, or cracks and other defects are lost when the three-dimensional object is degreased and fired. May occur.
  • the component (B), the component (B1) and the component (B2) can be used in combination.
  • Photopolymerization initiator (hereinafter referred to as component (C)) is (C1) a radical photopolymerization initiator when (B1) radical polymerizable compound is used as component (B). (B2) When a cationically polymerizable compound is used, (C2) a cationic photopolymerization initiator.
  • the (C1) radical photopolymerization initiator is a compound that decomposes by receiving energy rays such as light and initiates a radical polymerization reaction by the generated radicals.
  • energy rays such as light mean visible light, ultraviolet light, infrared light, X-rays, ⁇ rays, rays, ⁇ rays, and the like.
  • Specific examples of the component (C1) include, for example, acetophenone and acetophenone benziketa.
  • Butane 1-on is particularly preferred. These can be used alone or in combination of two or more to constitute the component (C1).
  • the (C2) cationic photopolymerization initiator is a compound capable of releasing the substance that initiates the cationic polymerization of the component (B2) by receiving energy rays such as light.
  • an ion salt having a structure represented by the following formula (31) can be cited.
  • This onium salt is a compound (photoacid generator) that releases Lewis acid upon receiving light.
  • W is S, Se, Te, P, As, Sb, Bi, 0, I, Br, CI or —N ⁇ N
  • R ° 2 , R. 3 and R ° 4 are the same or different organic groups
  • a, b, c and d are each an integer of 0 to 3
  • (a + b + c + d) is equal to the valence of W.
  • M is A metal or metalloid constituting the central atom of the halide complex [MX], for example n + m
  • X is a halogen atom such as F, Cl, Br, etc.
  • m is the net charge of the halide complex ion
  • n is the valence of M.
  • ion ion represented by the above formula (31) include diphenyl rhododonium,
  • an onium salt having an anion represented by the general formula [MX (OH) —] can be used.
  • perchlorate ion (CIO-) trifluoromethanesulfonate ion (C
  • Onion salts having other anions such as nitrobenzene sulphonate aniline, trinitrotonol senorephonate aniline, and the like can also be used.
  • onium salts compounds particularly effective as the component (C2) are aromatic onium salts.
  • Examples of commercially available compounds that can be suitably used as the component (C2) include UVI-6950, UVI-6970, UVI-6974, UVI_6990 (manufactured by Union Carbide), Adeka Opmer SP-150, SP — 151, SP—170, SP—171, SP—172 (above, manufactured by Asahi Denki Kogyo Co., Ltd.), Irgacure 261 (above, manufactured by Ciba “Specialty” Chemicals), CI— 2481, CI — 2624, CI— 2639, CI— 2064 (above, Nippon Soda Co., Ltd.), CD—1010, CD—1011, CD—1012 (above, manufactured by Thermar), DTS—102, DTS—103, NAT-103, NDS-103, TPS-103, MDS-103, MPI-103, BBI-103 (above, Midori Chemical Co., Ltd.), PCI_061T, PC
  • UVI-6970, UVI-6974, Adeka OPMER SP-170, SP-171, SP-172, CD-1012 and MPI-103 have high photocuring sensitivity for resin compositions containing them. Is particularly preferred since it can be expressed.
  • the above photoacid generators can be used alone or in combination of two or more to constitute the component (C2).
  • the content ratio of the component (C) is usually 0.01 to 10 wt% with respect to the entire photocurable liquid composition, regardless of whether the component (C1) or the component (C2) is used. %, Preferably 0.1 to 8% by weight.
  • the content ratio of the component (C) is too small, the radical polymerization reaction rate (curing rate) of the composition is lowered, so that time is required for modeling or the resolution is lowered.
  • the content ratio of the component (C) is excessive, an excessive amount of this component lowers the curing characteristics of the present composition or lowers the strength of the three-dimensional object.
  • the components (B1) and (B2) are used together as the component (B)
  • the components (C1) and (C2) can be used together as the component (C).
  • the photocurable liquid composition used in the present invention may contain various additives as other optional components as long as the objects and effects of the present invention are not impaired.
  • additives include epoxy resins, polyamides, polyamideimides, polyurethanes, polybutadienes, polychloroprene, polyetheroles, polyesteroles, styrene-butadiene resins.
  • Polymers and oligomers such as lock copolymers, petroleum resins, xylene resins, ketone resins, cellulose resins, fluorine-based oligomers, silicone-based oligomers, polysulfide-based oligomers, aryl ether copolymers; phenothiazines, 2,6-di-tert-butyl Polymerization inhibitors such as 4-methylphenol; polymerization initiators; leveling agents; wettability improvers; surfactants; plasticizers; ultraviolet absorbers; silane coupling agents; inorganic fillers; pigments; Light of amine compounds such as noroleamine, methyljetanolamine, triethinoleamine, and jetylamine, thixanthone and its derivatives, anthraquinone and its derivatives, anthracene and its derivatives, perylene and its derivatives, benzophenone, benzoin isopropyl ether, etc.
  • amine compounds such as norol
  • Sensitizer Polymerization accelerator vinyl ethers, Binirusurufuido acids, Bulle urethanes, urethane Atari rate such, such as reactive diluents such Byuruurea acids are exemplified up.
  • the photocurable liquid composition used in the present invention can be produced by uniformly mixing the above components (A) to (C) and optionally the above optional components.
  • the viscosity of the photocurable liquid composition obtained in this way is not particularly limited as long as it is in a range in which it can be flowed by an external force, but it does not flow in a state in which no external force is applied, and flows by applying an external force. It preferably has thixotropic properties.
  • the manufacturing method of the three-dimensionally shaped product of the present invention employs the above-mentioned photocurable liquid composition for the optical layered modeling method.
  • the optical additive manufacturing method is not particularly limited. A typical example of the optical three-dimensional modeling method of the present invention will be described with reference to the drawings.
  • a support stage 3 provided in a self-lifting manner is placed in a container 2 containing a photocurable liquid composition 1, and a minute amount is lowered from the liquid level 4 of the composition 1.
  • composition 1 is supplied onto support stage 3 to form a thin layer of composition 1.
  • the thin layer is selectively irradiated with light to form a cured product (cured resin layer) 6 of the composition 1.
  • the support stage 3 is lowered (sedged) by a small amount, and this hardening is performed.
  • Composition 1 is fed over article 6 to again form a thin layer of composition.
  • the thin layer is selectively irradiated with light, and a new cured product 7 is further formed on the cured product 6 so as to be laminated continuously and continuously therewith.
  • a three-dimensional object formed by integrally laminating a plurality of continuous hard layers is formed. .
  • Various means can be employed as the means for selectively irradiating the photocurable liquid composition with light, not particularly limited.
  • a means for irradiating the composition while scanning convergent light obtained by using laser light or a lens, a mirror, etc., a mask having a light transmitting portion of a predetermined pattern, and this mask A means for irradiating the composition with non-converged light and a light guide member formed by bundling a number of optical fibers, and light is transmitted through the optical fiber corresponding to a predetermined pattern in the light guide member.
  • Means for irradiating the composition means for controlling ONZOFF of light irradiation using each mirror as a pixel using a digital mirror device, and the like can be employed.
  • a mask that electro-optically forms a mask image composed of a light transmission region and a light non-transmission region according to a predetermined pattern according to the same principle as a liquid crystal display device is used. You can also.
  • a laser with a small spot diameter is used as a means for selectively irradiating the composition with light. It is preferable to employ means for scanning light.
  • the light irradiation surface (for example, the scanning plane of the convergent light) is either the liquid surface of the composition or the contact surface with the vessel wall of the translucent container. May be.
  • the liquid surface of the composition or the contact surface with the vessel wall is used as the light irradiation surface, the light can be irradiated directly from the outside of the container or through the vessel wall.
  • the light irradiation position (irradiation surface) is moved continuously or stepwise to the uncured partial force uncured part. By doing so, the cured parts are laminated to obtain a desired three-dimensional shape.
  • the irradiation position can be moved by various methods, for example, by moving any one of the light source, the composition container, and the already cured portion of the composition, or additionally supplying the composition to the container Or the like.
  • the three-dimensionally shaped product of the present invention is composed of a cured product of the above-described photocurable liquid composition.
  • the obtained three-dimensional object is taken out of the container and the unreacted composition (uncured) remaining on the surface is removed, and then washed as necessary.
  • cleaning agents alcohol-based organic solvents typified by alcohols such as isopropyl alcohol and ethyl alcohol; ketone-based organic solvents typified by acetone, ethyl acetate, methyl ethyl ketone, etc .; typified by terpenes Aliphatic organic solvents; low viscosity thermosetting resins and photocurable resins.
  • a ceramic fired body After the post-treatment of the above three-dimensionally shaped product, when the three-dimensionally shaped product of the present invention is fired, a ceramic fired body can be obtained.
  • the firing method used here is not particularly limited, and a known method can be used.
  • the three-dimensional object of the present invention usually has a bending strength of 150 to 300 MPa.
  • Table 1 shows the composition (% by weight) of the obtained composition and the volume percentage of alumina particles.
  • a three-dimensional object was prepared using an optical modeling apparatus (SCS-300P type, manufactured by Sony Corporation).
  • Fig. 2 shows a design drawing of the target 3D object
  • Fig. 3 shows an electron micrograph of the 3D object obtained.
  • the three-dimensional product obtained in (2) above was heated to 900 ° C at a temperature rising rate of 0.33 ° C / min. After maintaining at 900 ° C for 2 hours, it was degreased by natural cooling. After that, using an air sintering furnace (SUP ER BURN SH-1415C MS0373, manufactured by Motoyama Co., Ltd.), heat to 1500 ° C at a rate of temperature increase of 8.5 ° C / min. After maintaining for 2 hours, the product was naturally cooled to obtain a fired body.
  • SUP ER BURN SH-1415C MS0373 manufactured by Motoyama Co., Ltd.
  • FIG. 4 shows an electron micrograph of the obtained fired body.
  • a photocurable liquid composition was prepared in the same manner as in Example 1 except that alumina particles having an average particle diameter of 4 / im were used instead of alumina particles having an average particle diameter of 0.17 ⁇ used in Example 1. Then, a three-dimensional object was produced using the same, and a fired body was produced.
  • Fluidity The fluidity was evaluated by the coating property when the photocurable liquid composition placed on the glass plate was spread using a stainless applicator. At this time, the case where the uniform coating was easily performed was judged as “ ⁇ ”, and the case where a crack occurred was judged as “X”.
  • Linear shrinkage rate (%) of the fired body Measure the external dimensions in the X-axis direction of the three-dimensional product before degreasing and the external dimensions in the X-axis direction of the fired body, respectively, and degrease The linear shrinkage rate was calculated from the amount of change in the external dimensions before and after the treatment and before and after the firing treatment.
  • the photocurable liquid composition used in the method for producing a three-dimensional product of the present invention has good fluidity and photocurability even when the ceramic filling ratio in the mixture of the ceramic powder and the binder composition is increased.
  • a desired three-dimensional object can be easily modeled by the optical layered modeling method. Therefore, the method for producing a three-dimensional object of the present invention is suitable for producing a ceramic fired body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Polymerisation Methods In General (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

A method for producing a three-dimensional article composed of an integrated laminate having a plurality of cured layers by the repetition of an operation in which a photocurable liquid composition containing ceramic particles is irradiated with a light, to form a cured layer of the composition, and the composition is again supplied onto the cured layer and the composition is irradiated with a light, to further form a cured layer of the composition, wherein the composition comprises the following (A) to (C) components: (A) ceramic particles having a number average particle diameter of 0.01 to 0.5 μm, as measured by the electron microscopy, (B) a compound having a polymerizable functional group, and (C) a photopolymerization initiator.

Description

明 細 書  Specification
立体形状物の製造方法及び立体形状物  Manufacturing method of three-dimensional object and three-dimensional object
技術分野  Technical field
[0001] 本発明は、セラミックス成形用として有用な立体形状物の製造方法に関する。さら に詳しくは、粒径が極めて小さいセラミックス粒子を含有することにより流動性及び光 積層造形の際の硬化性に優れた光硬化性液状組成物を用いる立体形状物の製造 方法、この光硬化性液状組成物の硬化物からなる立体形状物、及びこの立体形状 物を焼成して得られるセラミックス焼成体に関する。  [0001] The present invention relates to a method for producing a three-dimensionally shaped article useful for forming ceramics. More specifically, a process for producing a three-dimensional product using a photocurable liquid composition having excellent fluidity and curability during optical layered modeling by containing ceramic particles having an extremely small particle diameter, and this photocuring property. The present invention relates to a three-dimensional shape made of a cured product of a liquid composition, and a ceramic fired body obtained by firing the three-dimensional shape.
背景技術  Background art
[0002] アルミニウムやシリコン等の金属粉体やセラミックス粉体を、光硬化性液状組成物か らなるバインダー中に分散し、これを公知の積層造形法により硬化させて所望の立体 形状を形成した後に、焼成し、複雑な形状を有する立体形状を製造する技術は、公 知である。  [0002] Metal powders such as aluminum and silicon, and ceramic powders are dispersed in a binder made of a photocurable liquid composition and cured by a known additive manufacturing method to form a desired three-dimensional shape. The technology for firing and manufacturing a three-dimensional shape having a complicated shape is known.
このような積層造形法としては、 CAD (Computer Aided Design) /CAM (Compu ter Aided Manufacturing)を用いて得られた目的とする立体形状の数値データに基 づき、各種ラピッドプロトタイピング法により、造形する技術が挙げられる。具体的には 、ノズルから樹脂混合物を吐出し、熱硬化させる方法 (特許文献 1)や、金属粉体を溶 融してノズルから吐出して積層する方法 (特許文献 2)、光積層造形法を利用する方 法 (特許文献 3〜9)等が知られている。光積層造形法は、微細な形状を成形し易い 等の利点を有することから、その利用が積極的に検討されている。  As such additive manufacturing methods, modeling is performed by various rapid prototyping methods based on numerical data of the target solid shape obtained using CAD (Computer Aided Design) / CAM (Computer Aided Manufacturing). Technology. Specifically, a resin mixture is discharged from a nozzle and thermally cured (Patent Document 1), a metal powder is melted and discharged from a nozzle and stacked (Patent Document 2), an optical additive manufacturing method There are known methods of using the method (Patent Documents 3 to 9). The optical additive manufacturing method has advantages such as easy formation of fine shapes, and its use has been actively studied.
ここで、公知の光積層造形法としては、光硬化性樹脂液の薄層液面に光線を照射 して所望パターンの断面硬化層を形成し、次に、この硬化層の上に光硬化性樹脂液 を 1層分供給して、断面硬化層をさらに形成し、この操作を繰り返すことによって、断 面硬化層が積層一体化した造形希望形状の立体形状物を造形する方法が代表的 である (例えば、非特許文献 1参照。)。  Here, as a known optical layered modeling method, a thin layer liquid surface of a photocurable resin liquid is irradiated with light to form a cross-section hardened layer having a desired pattern, and then photocurable on the hardened layer. A typical method is to form a three-dimensional object with a desired shape by supplying the resin liquid for one layer, further forming a cross-section hardened layer, and repeating this operation by laminating and integrating the cross-section hardened layers. (For example, refer nonpatent literature 1.).
[0003] 非特許文献 1 :ポール 'エフ'ジエイコブス(Paul F. Jacobs)著、「高速 3次元成形 の基礎」、第 1版、 日経 BP出版センター、 1993年 12月 10日、 p. 379 -406 特許文献 1:特開 2000— 144205号公報 [0003] Non-Patent Document 1: Paul F. Jacobs, “Basics of High-Speed 3D Molding”, 1st Edition, Nikkei BP Publishing Center, December 10, 1993, p. 379- 406 Patent Document 1: Japanese Unexamined Patent Publication No. 2000-144205
特許文献 2 :特開 2003— 129862号公報  Patent Document 2: JP 2003-129862 A
特許文献 3:特開平 8— 252867号公報  Patent Document 3: JP-A-8-252867
特許文献 4 :特開 2001— 261977号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-261977
特許文献 5:特開平 8— 252867号公報  Patent Document 5: JP-A-8-252867
特許文献 6 :特開平 7— 60844号公報  Patent Document 6: Japanese Patent Laid-Open No. 7-60844
特許文献 7:特開 2004— 143247  Patent Document 7: JP-A-2004-143247
特許文献 8:特開平 6— 329460号公報  Patent Document 8: JP-A-6-329460
特許文献 9:特開平 8— 91940号公報  Patent Document 9: JP-A-8-91940
[0004] しかし、これらの技術は、積層造形法が熱硬化性樹脂を用いるものである場合には 、複雑な形状の立体形状物を造形することが困難であったり、光積層造形法を用い る方法ではあっても、従来は 1 μ m程度以上の比較的粒径の大きいセラミックス粉体 を用いていたため、得られる立体形状物の容積中に占めるセラミックス粉体の割合が 低ぐこのため、立体形状物を焼成して得られる焼成体の密度は、セラミック粉体自 体の密度の 90重量%未満であった。また、溶媒やバインダー組成物を大量に混和し なければならないために、十分な強度を有するセラミックス焼成体を製造することが 困難である等の欠点があった。 [0004] However, in these techniques, when the additive manufacturing method uses a thermosetting resin, it is difficult to form a three-dimensional object having a complicated shape, or an optical additive manufacturing method is used. However, since ceramic powder with a relatively large particle size of about 1 μm or more has been used in the past, the proportion of ceramic powder in the volume of the resulting three-dimensional object is low. The density of the fired body obtained by firing the three-dimensionally shaped product was less than 90% by weight of the density of the ceramic powder itself. In addition, since a large amount of a solvent and a binder composition must be mixed, there is a drawback that it is difficult to produce a fired ceramic body having sufficient strength.
発明の開示  Disclosure of the invention
[0005] 本発明者らは、セラミックス粉体等とバインダー組成物との混合物中に占めるセラミ ックス充填率を増加させても、良好な流動性と光硬化性を示し、光積層造形法により 、所望の立体形状物を容易に造形できる立体形状物の製造方法の開発を目的とし て検討した。その結果、従来用いられていたものより微細なセラミックス粒子(セラミツ タス粉体)を用いることにより、上記目的を達成できることを見出し、本発明を完成する に至った。  [0005] The present inventors show good fluidity and photocurability even when the ceramic filling ratio in the mixture of the ceramic powder and the like and the binder composition is increased. The study was conducted with the aim of developing a method for manufacturing a three-dimensional object that can easily form a desired three-dimensional object. As a result, the inventors have found that the above object can be achieved by using finer ceramic particles (ceramic powder) than those conventionally used, and have completed the present invention.
[0006] 即ち、本発明は、下記の立体形状物の製造方法、立体形状物、及びセラミックス焼 成体を提供する。  That is, the present invention provides the following three-dimensionally shaped product manufacturing method, three-dimensionally shaped product, and ceramic sintered body.
[1]セラミックス粒子を含有する光硬化性液状組成物に光を照射して、前記組成物 の硬化層を形成し、前記硬化層の上に、前記組成物を再度供給し、光を照射して、 前記組成物の硬化層をさらに形成することを繰り返すことにより、前記硬化層が積層 一体化した立体形状物を造形する立体形状物の製造方法であって、 [1] A photocurable liquid composition containing ceramic particles is irradiated with light to form a cured layer of the composition, and the composition is again supplied onto the cured layer and irradiated with light. And By repeatedly forming a cured layer of the composition, a method for producing a three-dimensional object that forms a three-dimensional object in which the cured layer is laminated and integrated,
前記組成物が下記 (A)〜(C)成分を含有してなる、立体形状物の製造方法。 A method for producing a three-dimensional product, wherein the composition contains the following components (A) to (C).
(A)電子顕微鏡法による数平均粒径が 0. 0:!〜 0. 5 x mのセラミックス粒子、(A) Ceramic particles having a number average particle diameter by electron microscopy of 0.0:! To 0.5 x m,
(B)重合性官能基を有する化合物、及び (B) a compound having a polymerizable functional group, and
(C)光重合開始剤  (C) Photopolymerization initiator
[2]前記組成物全量に対して、前記 (A)セラミックス粒子を 10容量%以上含有して なる、上記 [1]に記載の立体形状物の製造方法。  [2] The method for producing a three-dimensional product according to the above [1], comprising (A) 10% by volume or more of the ceramic particles (A) with respect to the total amount of the composition.
[3]前記 (A)セラミックス粒子が、アルミナ粒子である、上記 [1]又は [2]に記載の立 体形状物の製造方法。  [3] The method for producing a solid shaped article according to the above [1] or [2], wherein the (A) ceramic particles are alumina particles.
[4]前記(B)成分が、ラジカル重合性化合物及び Z又はカチオン重合性化合物であ る、上記 [1]〜[3]のいずれかに記載の立体形状物の製造方法。  [4] The method for producing a three-dimensional product according to any one of the above [1] to [3], wherein the component (B) is a radical polymerizable compound and Z or a cationic polymerizable compound.
[5]前記 (B)成分が、 3個以上の重合性官能基を有するラジカル重合性化合物を含 有してなる、上記 [1]〜 [4]のレ、ずれかに記載の立体形状物の製造方法。  [5] The three-dimensionally shaped article according to any one of [1] to [4] above, wherein the component (B) comprises a radical polymerizable compound having three or more polymerizable functional groups. Manufacturing method.
[6]下記 (A)〜(C)成分を含有してなる光硬化性液状組成物を硬化させて得られる [6] Obtained by curing a photocurable liquid composition comprising the following components (A) to (C)
、立体形状物。 A three-dimensional object.
(A)電子顕微鏡法による数平均粒径 0. 01〜0. 5 /i mのセラミックス粒子、 (A) ceramic particles having a number average particle diameter of 0.01 to 0.5 / im by electron microscopy,
(B)重合性官能基を有する化合物、及び (B) a compound having a polymerizable functional group, and
(C)光重合開始剤  (C) Photopolymerization initiator
[7]上記 [6]に記載の立体形状物を焼成して得られる、セラミックス焼成体。  [7] A ceramic fired body obtained by firing the three-dimensional product according to [6].
[0007] 本発明の立体形状物の製造方法は、セラミックス粉体等とバインダー組成物との混 合物中に占めるセラミックス充填率を増加させても、良好な流動性と光硬化性を示し 、その結果、光積層造形法により所望の立体形状物を容易に造形できるという効果 を奏する。このため、本発明の立体形状物の製造方法は、セラミックス焼成体の製造 に好適である。 [0007] The method for producing a three-dimensionally shaped article of the present invention exhibits good fluidity and photocurability even when the ceramic filling rate in the mixture of ceramic powder and the like and the binder composition is increased. As a result, there is an effect that a desired three-dimensional shape can be easily modeled by the optical layered modeling method. For this reason, the method for producing a three-dimensionally shaped article of the present invention is suitable for producing a ceramic fired body.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本発明の光学的立体造形法 (立体形状物の製造方法)の代表的な一例を示す 図である。 [図 2]実施例 1で作製した立体形状物の設計図である。 FIG. 1 is a diagram showing a typical example of an optical three-dimensional modeling method (a method for producing a three-dimensional object) according to the present invention. FIG. 2 is a design drawing of a three-dimensional object produced in Example 1.
[図 3]実施例 1で作製した立体形状物 (未焼成)の電子顕微鏡像である。  FIG. 3 is an electron microscopic image of a three-dimensionally shaped product (unfired) produced in Example 1.
[図 4]実施例 1で作製した焼成体の電子顕微鏡像である。  FIG. 4 is an electron microscopic image of the fired body produced in Example 1.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 以下、本発明の立体形状物の製造方法について説明する。  [0009] Hereinafter, a method for producing a three-dimensional object of the present invention will be described.
本発明の立体形状物の製造方法は、(A)電子顕微鏡法による数平均粒径 0. 01 〜0. 5 / mのセラミックス粒子、(B)重合性官能基を有する化合物、及び (C)光重合 開始剤を含有する光硬化性液状組成物を用いた光積層造形法である。このような構 成の光硬化性液状組成物を採用することにより、この光硬化性液状組成物は、チクソ トロピックな特性を示すため粘性抵抗が小さく、未硬化の液状組成物をポンプ等で容 易に送液できるため撹拌が容易であり、長時間にわたり均一な粒子分散状態を維持 できる他、既存の硬化層の上に未硬化の液状組成物を塗布した後には容易に流動 性を失い、安定した塗布層を得ることができるため、一般的な光積層造形法を用いて 容易にセラミックス粒子を含有した立体形状物を製造することができる。  The method for producing a three-dimensionally shaped article of the present invention comprises (A) ceramic particles having a number average particle diameter of 0.01 to 0.5 / m by electron microscopy, (B) a compound having a polymerizable functional group, and (C) This is an optical layered modeling method using a photocurable liquid composition containing a photopolymerization initiator. By adopting such a photocurable liquid composition, the photocurable liquid composition exhibits thixotropic characteristics, has low viscosity resistance, and can be used to store an uncured liquid composition with a pump or the like. Since it can be fed easily, stirring is easy and a uniform particle dispersion state can be maintained over a long period of time, and after applying an uncured liquid composition on an existing cured layer, it easily loses fluidity. Since a stable coating layer can be obtained, a three-dimensional object containing ceramic particles can be easily produced using a general optical layered manufacturing method.
[0010] 1.光硬化性液状組成物  [0010] 1. Photocurable liquid composition
本発明に使用する光硬化性液状組成物は、(A)電子顕微鏡法による数平均粒径 0. 01-0. のセラミックス粒子、(B)重合性官能基を有する化合物、及び (C) 光重合開始剤を含有してなる。  The photocurable liquid composition used in the present invention comprises (A) ceramic particles having a number average particle diameter of 0.01-0. By electron microscopy, (B) a compound having a polymerizable functional group, and (C) light. It contains a polymerization initiator.
[0011] (A)成分は、セラミックス粒子である。ここで、粒子とは、粉体を含む概念である。そ の数平均粒径は、電子顕微鏡法による測定で、通常、 0. 01-0. である、好ま しくは、 0. 02〜0. であり、さらに好ましくは、 0. 05〜0. である。 (A)成 分の粒径は、電子顕微鏡法により測定されるが、特に、走査型電子顕微鏡法が好ま しい。 (A)成分の形状は、粒径を定義できる程度の粒状性を有していれば、特に限 定されるものではない。例えば、球状に限らず、粉砕体等であってもよい。球状以外 の形状である場合の粒径は、電子顕微鏡像における最大径により定義される。  [0011] Component (A) is ceramic particles. Here, the particle is a concept including powder. The number average particle diameter, as measured by electron microscopy, is usually from 0.01 to 0., preferably from 0.02 to 0, and more preferably from 0.05 to 0. is there. The particle size of the component (A) is measured by electron microscopy, and scanning electron microscopy is particularly preferred. The shape of the component (A) is not particularly limited as long as it has a granularity that can define the particle size. For example, it is not limited to a spherical shape, and may be a pulverized body. The particle diameter in the case of a shape other than a spherical shape is defined by the maximum diameter in the electron microscope image.
[0012] (A)成分を構成する材質は、照射波長の光を実質的に吸収しないものであれば特 に制限されない。例えば、アルミナ、ジルコユア、チタニア、酸化亜鉛、フェライト、チ タン酸バリウム、アパタイト、シリカ等の酸化物、炭化ジノレコニゥム、炭化ケィ素等の炭 化物、窒化アルミニウム、窒化ケィ素、サイアロン(SiAlON)等の窒化物、又はこれら の混合物等の各種セラミックスを用いることができる。通常、 (A)成分としては、アルミ ナ、ジノレコニァ、シリカ、窒化アルミニウム、窒化ケィ素、又はこれらの混合物等が好 適に用いられる。 The material constituting the component (A) is not particularly limited as long as it does not substantially absorb light having an irradiation wavelength. For example, oxides such as alumina, zirconium, titania, zinc oxide, ferrite, barium titanate, apatite, silica, etc., charcoal such as zinc carbide, carbon carbide, etc. Various ceramics such as nitride, aluminum nitride, silicon nitride, sialon (SiAlON), or a mixture thereof can be used. Usually, as the component (A), alumina, dinoleconia, silica, aluminum nitride, silicon nitride, or a mixture thereof is preferably used.
[0013] (A)成分は、比較的小粒径の市販品が容易に得られる点で、アルミナ粒子が好ま しい。 (A)成分として使用できるアルミナ粒子の市販品としては、例えば、 AKP- 20 (0. 5 z m)、 AKP_ 30 (0. 3 μ m)、 AKP_ 50 (0. 2 μ m) (以上、住友化学工業株 式会社製)や TM_ DAR (0. 17 z m;大明化学工業株式会社製)等を挙げること力 S できる。  [0013] As the component (A), alumina particles are preferable in that a commercially available product having a relatively small particle diameter can be easily obtained. Examples of commercially available alumina particles that can be used as component (A) include AKP-20 (0.5 zm), AKP_30 (0.3 μm), AKP_50 (0.2 μm) (Sumitomo Chemical Industry Co., Ltd.) and TM_DAR (0.17 zm; manufactured by Daimei Chemical Industry Co., Ltd.).
[0014] (A)成分の含有割合は、光硬化性液状組成物全体に対して、通常、 10容量%以 上であり、好ましくは、 20容量%以上であり、さらに好ましくは、 30容量%以上であり 、特に好ましくは、 35容量%以上である。容量%としての上限値は、(A)成分の材質 により比重が異なるため、一定値に定まるものではなレ、が、重量%としては、光硬化 性液状組成物全体に対して、 95重量%以下であることが好ましぐ 90重量%以下が さらに好ましぐ 85重量%以下が特に好ましい。例えば、 αアルミナの比重は、 3. 90 であり、(Β)及び (C)成分の比重を略 1 · 0とすると、 95重量%は、約 83容量%に該 当する。 (Α)成分の含有割合が 35容量%以上であれば、立体形状物において本成 分が十分に緻密となるため、良好なセラミックスを製造できる。また、 95重量%以下で あれば、本組成物中に (Α)成分を均一に分散することができる。  [0014] The content of the component (A) is usually 10% by volume or more, preferably 20% by volume or more, and more preferably 30% by volume with respect to the entire photocurable liquid composition. More preferably, it is 35% by volume or more. The upper limit for volume% is not fixed because the specific gravity differs depending on the material of component (A). However, the weight% is 95% by weight with respect to the entire photocurable liquid composition. It is preferably 90% by weight or less, more preferably 85% by weight or less. For example, the specific gravity of α-alumina is 3.90, and if the specific gravity of the components (Β) and (C) is approximately 1.0, 95% by weight corresponds to about 83% by volume. When the content ratio of the component (ii) is 35% by volume or more, the present component becomes sufficiently dense in the three-dimensionally shaped product, so that a good ceramic can be produced. If it is 95% by weight or less, the component (ii) can be uniformly dispersed in the composition.
[0015] (Β)重合性官能基を有する化合物 (以下、(Β)成分)として用いられる化合物には、  [0015] (i) a compound having a polymerizable functional group (hereinafter referred to as (i) component),
(B1)ラジカル重合性化合物及び (Β2)カチオン重合性化合物がある。  There are (B1) radical polymerizable compounds and (Β2) cationic polymerizable compounds.
[0016] (B1)ラジカル重合性化合物は、エチレン性不飽和結合(C = C)を分子中に有する 化合物であり、(メタ)アクリル系モノマーを含む概念である。 (B1)成分としては、 1分 子中に 1個のエチレン性不飽和結合を有する単官能性モノマー、及び 1分子中に 2 個以上のエチレン性不飽和結合を有する多官能性モノマーが挙げられる。  [0016] The (B1) radical polymerizable compound is a compound having an ethylenically unsaturated bond (C = C) in the molecule, and is a concept including a (meth) acrylic monomer. Examples of the component (B1) include monofunctional monomers having one ethylenically unsaturated bond in one molecule, and polyfunctional monomers having two or more ethylenically unsaturated bonds in one molecule. .
[0017] (B1)成分として好適に使用できる単官能性モノマーとしては、例えば、 (メタ)アタリ ノレアミド、 (メタ)アタリロイノレモノレホリン、 7_アミノー 3, 7—ジメチルォクチル (メタ)ァ タリレート、イソブトキシメチル(メタ)アクリルアミド、イソボルニルォキシェチル(メタ)ァ タリレート、イソボルニル(メタ)アタリレート、 2—ェチルへキシル(メタ)アタリレート、ェ チルジエチレングリコール(メタ)アタリレート、 t—ォクチル(メタ)アクリルアミド、ジァセ トン (メタ)アクリルアミド、ジメチルアミノエチル (メタ)アタリレート、ジェチルアミノエチ ノレ (メタ)アタリレート、ラウリノレ (メタ)アタリレート、ジシクロペンタジェン (メタ)アタリレー ト、ジシクロペンテュルォキシェチル(メタ)アタリレート、ジシクロペンテュル(メタ)ァク リレート、 N, N—ジメチル(メタ)アクリルアミド、テトラクロ口フエニル(メタ)アタリレート 、 2—テトラクロ口フエノキシェチル(メタ)アタリレート、テトラヒドロフルフリノレ(メタ)ァク リレート、テトラブロモフエニル(メタ)アタリレート、 2—テトラブロモフエノキシェチル(メ タ)アタリレート、 2 _トリクロ口フエノキシェチル(メタ)アタリレート、トリブロモフエ二ル( メタ)アタリレート、 2 _トリブロモフエノキシェチル(メタ)アタリレート、 2—ヒドロキシェ チル(メタ)アタリレート、 2—ヒドロキシプロピル(メタ)アタリレート、ビュル力プロラクタ ム、 N—ビュルピロリドン、フエノキシェチル(メタ)アタリレート、ブトキシェチル(メタ)ァ タリレート、ペンタクロロフェニル(メタ)アタリレート、ペンタブロモフエニル(メタ)アタリ レート、ポリエチレングリコールモノ(メタ)アタリレート、ポリプロピレングリコールモノ(メ タ)アタリレート、メトキシトリプロピレングリコール (メタ)アタリレート、ボルニル (メタ)ァ タリレート、メチルトリエチレンジグリコール(メタ)アタリレート、メトキシプロピレングリコ ール (メタ)アタリレート、及び下記一般式(1)〜(3)で表される化合物を例示すること ができる。 [0017] Monofunctional monomers that can be suitably used as the component (B1) include, for example, (meth) atalynoreamide, (meth) atalyleunomonoreforin, 7_amino-3,7-dimethyloctyl (meth) atalylate, Isobutoxymethyl (meth) acrylamide, isobornyloxetyl (meth) a Tallylate, isobornyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, ethyl diethylene glycol (meth) acrylate, t-octyl (meth) acrylamide, diacetone (meth) acrylamide, dimethylaminoethyl (meth) Atarylate, Jetylaminoethyl (meth) acrylate, Laurinole (meth) acrylate, Dicyclopentagen (meth) acrylate, Dicyclopentuloxychetyl (meth) acrylate, Dicyclopentyl ( (Meth) acrylate, N, N-dimethyl (meth) acrylamide, tetrachlorophenyl phenyl (meth) acrylate, 2-tetrachlorophenoxychetyl (meth) acrylate, tetrahydrofurfurinole (meth) acrylate, tetrabromophenyl (Meta) a Relate, 2-Tetrabromophenoxy (meth) acrylate, 2_Trichlorophenoxy (meth) acrylate, Tribromophenyl (meth) acrylate, 2_Tribromophenoxy (meth) acrylate , 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, bull force prolactam, N-butyl pyrrolidone, phenoxycetyl (meth) acrylate, butoxetyl (meth) acrylate, pentachlorophenyl (meta) ) Atarylate, pentabromophenyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, methoxytripropylene glycol (meth) acrylate, bornyl (meth) Relate can be exemplified methyl triethylene diglycol (meth) Atari rate, methoxy propylene glycol (meth) Atari rate, and a compound represented by the following general formula (1) to (3).
[化 1] [Chemical 1]
Figure imgf000009_0001
Figure imgf000009_0001
Figure imgf000009_0002
Figure imgf000009_0002
[0019] 式中、 R21は、それぞれ独立に水素原子又はメチル基を示し、 R22は、炭素数 2 6 、好ましくは 2 4のアルキレン基を示し、 R23は、水素原子又は炭素数:!〜 12、好ま しくは 1 9のアルキル基を示し、 R24は、炭素数 2 8、好ましくは 2 5のアルキレン 基を示す。 ufま、 0〜: 12、好ましく fま:!〜 8の整数であり、 vfま、:!〜 8、好ましく fま:!〜 4 の整数である。 In the formula, each R 21 independently represents a hydrogen atom or a methyl group, R 22 represents an alkylene group having 26, preferably 24 carbon atoms, and R 23 represents a hydrogen atom or a carbon number: ! To 12, preferably 19 alkyl group, and R 24 represents an alkylene group having 28, preferably 25 carbon atoms. uf, 0 to: 12, preferably f is an integer of !! to 8, vf is:! to 8, preferably f is an integer of!
[0020] これらの単官能性モノマーのうち、イソボルニル(メタ)アタリレート、 (メタ)アタリロイ ノレモノレホリン、ビュル力プロラタタム、ポリプロピレングリコールモノ(メタ)アタリレート、 メトキシトリプロピレングリコール(メタ)アタリレート、メトキシプロピレングリコール(メタ) アタリレート、フエノキシェチル (メタ)アタリレートが特に好ましい。  [0020] Among these monofunctional monomers, isobornyl (meth) acrylate, (meth) ateloy loy noremonoreforin, bull force prolatatum, polypropylene glycol mono (meth) acrylate, methoxytripropylene glycol (meth) acrylate, methoxypropylene Glycol (meth) acrylate and phenoxychetyl (meth) acrylate are particularly preferred.
[0021] (B1)成分として好適に使用できる多官能性モノマーとしては、例えば、エチレング リコールジ (メタ)アタリレート、ジシクロペンテニルジ (メタ)アタリレート、トリエチレング リコールジ (メタ)アタリレート、テトラエチレングリコールジ (メタ)アタリレート、トリシクロ デカンジィルジメチレンジ(メタ)アタリレート、トリス(2—ヒドロキシェチル)イソシァヌレ ートジ (メタ)アタリレート、トリス(2—ヒドロキシェチル)イソシァヌレートトリ(メタ)アタリ レート、力プロラタトン変性トリス(2—ヒドロキシェチル)イソシァヌレートトリ(メタ)アタリ レート、トリメチロールプロパントリ(メタ)アタリレート、エチレンォキシド(以下「E〇」と いう。)変性トリメチロールプロパントリ(メタ)アタリレート、プロピレンォキシド(以下「P o」という。)変性トリメチロールプロパントリ(メタ)アタリレート、トリプロピレングリコール ジ(メタ)アタリレート、ネオペンチルグリコールジ(メタ)アタリレート、ビスフエノーノレ A ジグリシジルエーテルの両末端(メタ)アクリル酸付加物、 1 , 4_ブタンジオールジ(メ タ)アタリレート、 1, 6—へキサンジオールジ(メタ)アタリレート、ペンタエリスリトールト リ(メタ)アタリレート、ペンタエリスリトールテトラ(メタ)アタリレート、ポリエステルジ (メタ )アタリレート、ポリエチレングリコールジ(メタ)アタリレート、ジペンタエリスリトールへキ サ(メタ)アタリレート、ジペンタエリスリトールペンタ(メタ)アタリレート、ジペンタエリスリ トールテトラ(メタ)アタリレート、力プロラタトン変性ジペンタエリスリトールへキサ(メタ) アタリレート、力プロラタトン変性ジペンタエリスリトールペンタ(メタ)アタリレート、ジトリ メチロールプロパンテトラ(メタ)アタリレート、 E〇変性ビスフエノール Aジ(メタ)アタリレ ート、 P〇変性ビスフエノーノレ Aジ(メタ)アタリレート、 E〇変性水添ビスフエノーノレ Aジ (メタ)アタリレート、 PO変性水添ビスフエノール Aジ (メタ)アタリレート、 EO変性ビスフ ェノール Fジ(メタ)アタリレート、フエノールノボラックポリグリシジルエーテルの(メタ) アタリレート、トリアタリロイルォキシェチルホスフェート等を例示することができる。 [0021] The polyfunctional monomer that can be suitably used as the component (B1) includes, for example, ethylene glycol di (meth) acrylate, dicyclopentenyl di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol Di (meth) acrylate, tricyclodecandiyldimethylenedi (meth) acrylate, tris (2-hydroxyethyl) isocyanurate di (meth) acrylate, tris (2-hydroxyethyl) isocyanuratetri (meth) acrylate Rate, force prolataton modified tris (2-hydroxyethyl) iso cyanurate tri (meth) ate, trimethylolpropane tri (meth) ate, ethylene oxide (hereinafter referred to as “E〇”) Say. ) Modified trimethylolpropane tri (meth) acrylate, propylene oxide (hereinafter referred to as “Po”) modified trimethylol propane tri (meth) acrylate, tripropylene glycol di (meth) acrylate, neopentyl glycol di ( (Meth) attalylate, Bisphenolol A Diglycidyl ether end (meth) acrylic acid adduct, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, penta Erythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, polyester di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipenta erythritol Penta (meth) a Tallylate, dipentaerythritol tetra (meth) acrylate, force prolatatatone modified dipentaerythritol hexa (meth) acrylate, force prolatataton modified dipentaerythritol penta (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, E〇 Modified bisphenol A di (meth) acrylate, P ○ Modified bisphenol A di (meth) acrylate, E ○ Modified hydrogenated bisphenol A A di (meth) acrylate, PO Modified hydrogenated bisphenol A di (meth) attaly Examples thereof include rate, EO-modified bisphenol F di (meth) acrylate, (meth) acrylate of phenol novolak polyglycidyl ether, and triatalyloyloxetyl phosphate.
[0022] これらの多官能性モノマーのうち、トリメチロールプロパントリ(メタ)アタリレート、トリ ス(2—ヒドロキシェチル)イソシァヌレートトリ(メタ)アタリレート、トリアタリロイルォキシ ェチルホスフェート、ジペンタエリスリトールへキサ(メタ)アタリレート、ジペンタエリスリ トールペンタ(メタ)アタリレート、ジトリメチロールプロパンテトラ(メタ)アタリレートが特 に好ましい。 [0022] Among these polyfunctional monomers, trimethylolpropane tri (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, triatalylooxyethyl phosphate, Particularly preferred are dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate.
[0023] 上記の単官能性モノマーの市販品としては、例えば、 ACMO (以上、興人製)、ァ 口ニックス M— 101、 M— 102、 M— 111、 M— 113、 M— 117、 M— 152、 T〇— 12 10 (以上、東亞合成 (株)製)、 ΙΒΧΑ (以上、共栄社化学製)、 KAYARAD TC- 1 10S、 R— 564、 R— 128H (以上、 日本ィ匕薬(株)製)、ビスコート 160、ビスコート 19 2、ビスコート 220、ビスコート 320、ビスコート 2311HP、ビスコート 2000、ビスコート 2100、ビスコート 2150、ビスコート 8F、ビスコート 17F (以上、大阪有機ィ匕学工業( 株)製)等が挙げられる。  [0023] Commercially available products of the above-mentioned monofunctional monomers include, for example, ACMO (above, manufactured by Kojin Co., Ltd.), KANIX M-101, M-102, M-111, M-113, M-117, M — 152, T〇—12 10 (above, manufactured by Toagosei Co., Ltd.), ΙΒΧΑ (above, manufactured by Kyoeisha Chemical Co., Ltd.), KAYARAD TC-1 10S, R—564, R—128H (above, Nippon Gyaku Co., Ltd.) )), Biscoat 160, biscoat 192, biscoat 220, biscoat 320, biscoat 2311HP, biscoat 2000, biscoat 2100, biscoat 2150, biscoat 8F, biscoat 17F (above, manufactured by Osaka Organic Chemical Co., Ltd.) Can be mentioned.
[0024] また、多官能性モノマーの市販品としては、例えば、 SA1002 (以上、三菱化学 (株 )製)、ビスコート 195、ビスコート 230、ビスコート 260、ビスコート 215、ビスコート 310 、ビスコート 214HP、ビスコート 295、ビスコート 300、ビスコート 360、ビスコート GPT 、ビスコー卜 400、ビスコー卜 700、ビスコー卜 540、ビスコー卜 3000、ビスコー卜 3700、 ビスコート 3PA (以上、大阪有機化学工業 (株)製)、カャラッド R— 526、 HDDA、 N PGDA、 TPGDA、 MANDA、 R— 551、 R— 712、 R— 604、 R— 684、 PET— 30 、 GPO— 303、 TMPTA、 THE— 330、 DPHA、 DPHA_ 2H、 DPHA_ 2C、 DP HA- 21, D— 310、 D— 330、 DPCA_ 20、 DPCA_ 30、 DPCA— 60、 DPCA— 120、 DN— 0075、 DN— 2475、 T— 1420、 T— 2020、 T— 2040、 TPA— 320、 TPA— 330、 RP— 1040、 RP— 2040、 R— 011、 R— 300、 R— 205 (以上、 日本 ィ匕薬(株)製)、ァロニックス M— 210、 M— 220、 M— 233、 M— 240、 M— 215、 M — 305、 M— 309、 M— 310、 M— 315、 M— 325、 M— 400、 M— 6200、 M— 64 00 (以上、東亞合成(株)製)、ライトアタリレート BP_4EA、 BP_4PA、 BP— 2EA、 BP— 2PA、 DCP—A (以上、共栄社化学(株)製)、ニューフロンティア BPE— 4、 B R— 42M、 GX— 8345 (以上、第一工業製薬 (株)製)、 ASF— 400 (以上、新日鐵 ィ匕学(株)製)、リポキシ SP— 1506、 SP— 1507、 SP— 1509、 VR— 77、 SP— 401 0、 SP— 4060 (以上、昭和高分子(株)製)、^^ェステル八ー8?£— 4 (以上、新中 村化学工業 (株)製)等が挙げられる。 [0024] Commercially available products of multifunctional monomers include, for example, SA1002 (above, Mitsubishi Chemical Corporation ), Biscoat 195, Biscoat 230, Biscoat 260, Biscoat 215, Biscoat 310, Biscoat 214HP, Biscoat 295, Biscoat 300, Biscoat 360, Biscoat GPT, Viscoe 400, Viscoe 700, Viscoe 540, Viscoe 3000, Viscoe 3700, Viscoat 3PA (above Osaka Organic Chemical Industry Co., Ltd.), Carad R—526, HDDA, N PGDA, TPGDA, MANDA, R—551, R—712, R—604, R—684, PET — 30, GPO—303, TMPTA, THE—330, DPHA, DPHA_2H, DPHA_2C, DP HA-21, D—310, D—330, DPCA_20, DPCA_30, DPCA—60, DPCA—120, DN— 0075, DN—2475, T—1420, T—2020, T—2040, TPA—320, TPA—330, RP—1040, RP—2040, R—011, R—300, R—205 (above, Japan (Manufactured by Shakuyaku Co., Ltd.), ALONIX M-210, M-220, M-233, M-240, M-215, M-305, M-309 , M-310, M-315, M-325, M-400, M-6200, M-6400 (above, manufactured by Toagosei Co., Ltd.), light talate BP_4EA, BP_4PA, BP-2EA, BP-2PA DCP-A (above, Kyoeisha Chemical Co., Ltd.), New Frontier BPE-4, BR-42M, GX-8345 (above, Daiichi Kogyo Seiyaku Co., Ltd.), ASF-400 (above, Nippon Steel) Lipoxy SP-1506, SP-1507, SP-1509, VR-77, SP-401 0, SP-4060 (above, Showa Polymer Co., Ltd.), ^^ -8? £ —4 (Shin Nakamura Chemical Co., Ltd.).
[0025] 本発明では、(B1)成分の少なくとも一部が、 3官能以上、即ち、 1分子中に 3個以 上のエチレン性不飽和結合を有する多官能性モノマー、好ましくは、 3官能以上の多 官能 (メタ)アタリレート系モノマーであることが好ましい。また、 3官能以上の多官能性 モノマーの含有割合は、(B)成分全体を 100重量%としたとき、好ましくは 10重量% 以上であり、さらに好ましくは 15重量%以上であり、特に好ましくは 20重量%以上で ある。含有割合が 10重量%以上であることにより、本組成物が良好な光硬化性を示 すと共に、良好な強度を有する立体形状物が得られる。 In the present invention, at least a part of the component (B1) is trifunctional or more, that is, a polyfunctional monomer having 3 or more ethylenically unsaturated bonds in one molecule, preferably trifunctional or more. The polyfunctional (meth) acrylate monomer is preferably used. The content of the trifunctional or higher polyfunctional monomer is preferably 10% by weight or more, more preferably 15% by weight or more, particularly preferably 100% by weight of the total component (B). 20% by weight or more. When the content ratio is 10% by weight or more, the composition exhibits good photocurability and a three-dimensional shape having good strength.
[0026] 上記の単官能性モノマー及び多官能性モノマーは、各々一種単独で、又は二種以 上組み合わせるか、あるいは単官能性モノマーの少なくとも一種と多官能性モノマー の少なくとも一種とを組み合わせて(B)成分を構成することができる。  [0026] The above monofunctional monomer and polyfunctional monomer are each singly or in combination of two or more, or a combination of at least one monofunctional monomer and at least one polyfunctional monomer ( Component B) can be configured.
[0027] (B2)カチオン重合性化合物は、カチオン性光重合開始剤の存在下で光照射する ことにより重合反応や架橋反応を起こす有機化合物である。 (B2)成分としては、ェポ キシ化合物、ォキセタニル基含有化合物、ォキソラン化合物、環状ァセタール化合 物、環状ラタトン化合物、チイラン化合物、チェタンィヒ合物、ビュルエーテル化合物、 エポキシィ匕合物とラタトンとの反応生成物であるスピロオルソエステル化合物、ェチレ ン性不飽和化合物、環状エーテル化合物、環状チォエーテル化合物、ビニル化合 物等を挙げることができる。 [0027] (B2) The cationically polymerizable compound is irradiated with light in the presence of a cationic photopolymerization initiator. It is an organic compound that causes a polymerization reaction or a crosslinking reaction. Component (B2) includes epoxy compounds, oxetanyl group-containing compounds, oxolane compounds, cyclic acetal compounds, cyclic rataton compounds, thiirane compounds, chetanich compounds, butyl ether compounds, epoxy compounds and reaction products of ratatones. Examples thereof include spiro orthoester compounds, ethylenically unsaturated compounds, cyclic ether compounds, cyclic thioether compounds, and vinyl compounds.
[0028] (B2)成分として好適に使用できるエポキシ化合物としては、シクロへキセンォキシ ド基含有化合物及びグリシジノレ基含有化合物が好ましい。 [0028] The epoxy compound that can be suitably used as the component (B2) is preferably a cyclohexene oxide group-containing compound or a glycidinole group-containing compound.
シクロへキセンォキシド基含有化合物はカチオン重合性に優れている。また、グリシ ジル基含有化合物は、得られる重合体に柔軟性を付与し、重合系のモビリティを増 加させ、硬化性を一層向上させることができる。  Cyclohexene oxide group-containing compounds are excellent in cationic polymerizability. In addition, the glycidyl group-containing compound can impart flexibility to the resulting polymer, increase the mobility of the polymerization system, and further improve the curability.
[0029] (B2)成分として好適に使用できるシクロへキセンォキシド基含有化合物としては、 例えば 3, 4—エポキシシクロへキシルメチルー 3 ' , 4 '—エポキシシクロへキサンカル ボキシレート、 2 - (3, 4 エポキシシクロへキシルー 5, 5—スピロ 3, 4 エポキシ )シクロへキサン メタ ジォキサン、ビス(3, 4—エポキシシクロへキシノレメチノレ)ァ ジペート、ビス(3, 4—エポキシー6—メチルシクロへキシルメチル)アジペート、 3, 4 エポキシー6—メチルシクロへキシルー 3 ' , 4 ' エポキシ 6 '—メチルシクロへキ サンカルボキシレート、メチレンビス(3, 4—エポキシシクロへキサン)、エチレングリコ 一ルのジ(3, 4—エポキシシクロへキシルメチノレ)エーテル、エチレンビス(3, 4—ェ ポキシシクロへキサンカルボキシレート)、 ε一力プロラタトン変性 3, 4—エポキシシク 口へキシルメチルー 3 ' , 4 '—エポキシシクロへキサンカルボキシレート、トリメチルカ プロラタトン変性 3, 4_エポキシシクロへキシルメチル一3 ', 4 ' _エポキシシクロへキ サンカルボキシレート、 β—メチノレ一 δ—バレロラタトン変性 3, 4 _エポキシシクロへ キシルメチル一3 ', 4 '—エポキシシクロへキサンカルボキシレート等を例示すること ができ、これらの化合物は、単独で又は 2種以上を組み合わせて使用することができ る。 [0029] Cyclohexene oxide group-containing compounds that can be suitably used as the component (B2) include, for example, 3, 4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylate, 2- (3, 4 epoxycyclohexane Hexilou 5,5-spiro 3,4 epoxy) cyclohexane meta dioxane, bis (3,4-epoxycyclohexenolemethinole) adipate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, 3, 4 Epoxy-6-methylcyclohexyl lune 3 ', 4' Epoxy 6'-methylcyclohexane carboxylate, methylenebis (3,4-epoxycyclohexane), ethylene glycol di (3, 4-epoxycyclohexylmethinole) Ether, ethylene bis (3,4-epoxycyclohexanecarboxylate), ε Modified 3, 4—epoxy cyclohexyl methyl 3 ′, 4′—epoxy cyclohexyl carboxylate, trimethylcaprolatatone modified 3, 4_epoxy cyclohexyl methyl 1 3 ′, 4 ′ _epoxy cyclohexane carboxylate, β-methylolone δ-valerolataton-modified 3, 4 _epoxycyclohexylmethyl 1 3 ', 4'-epoxycyclohexanecarboxylate etc. can be exemplified, and these compounds can be used alone or in combination of two or more. Can be used.
[0030] これらのうち、 3, 4_エポキシシクロへキシルメチル一3 ', 4'—エポキシシクロへキ サンカルボキシレート、ビス(3, 4_エポキシシクロへキシルメチル)アジペート、 ε - 力プロラタトン変性 3, 4—エポキシシクロへキシルメチルー 3' , 4 '—エポキシシクロへ キサンカルボキシレート、トリメチルカプロラタトン変性 3, 4—エポキシシクロへキシル メチルー 3' , 4 '—エポキシシクロへキサンカルボキシレート、 βーメチノレー δ バレ 口ラタトン変'性 3, 4_エポキシシクロへキシノレメチノレ一 3' , 4' _エポキシシクロへキサ ンカルボキシレートが好ましぐ特に 3, 4_エポキシシクロへキシルメチル一3 ', 4' _ エポキシシクロへキサンカルボキシレート、ビス(3, 4 _エポキシシクロへキシルメチ ノレ)アジペートが好ましい。 [0030] Of these, 3, 4_epoxycyclohexylmethyl 1 3 ', 4'-epoxycyclohexanecarboxylate, bis (3,4_epoxycyclohexylmethyl) adipate, ε- Forced prolatatone-modified 3, 4--epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexylcarboxylate, trimethylcaprolataton-modified 3,4-epoxycyclohexyl methyl-3', 4'-epoxycyclohexanecarboxylate , Β-Methinore δ Bare mouth ratatoton modification 3, 4_Epoxycyclohexylenolemethinole 3 ', 4' _Epoxycyclohexanecarboxylate is particularly preferred 3, 4_Epoxycyclohexylmethyl 1 '3 '_Epoxycyclohexanecarboxylate, bis (3,4-epoxycyclohexylmethylol) adipate are preferred.
[0031] シクロへキセンォキシド基含有化合物の市販品としては、 UVR_ 6100、 UVR- 6 105、 UVR— 6110、 UVR— 6128、 UVR— 6199、 UVR— 6200、 UVR— 6216 ( 以上、ユニオンカーバイド社製)、セロキサイド 2021、セロキサイド 2021P、セロキサ イド 2081、セロキサイド 2083、セロキサイド 2085、ェポリード GT— 300、ェポリード GT_ 301、ェポリード GT_ 302、エボリード GT_400、エボリード 401、ェポリード 403 (以上、ダイセル化学工業(株)製)、 KRM— 2100、 KRM— 2110、 KRM— 21 99 (以上、旭電化工業 (株)製)等を挙げること力 Sできる。  [0031] Commercially available compounds containing a cyclohexene oxide group include UVR_ 6100, UVR-6 105, UVR-6110, UVR-6128, UVR-6199, UVR-6200, UVR-6216 (above, Union Carbide) , Celoxide 2021, Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, Epolide GT-300, Epolide GT_301, Epolide GT_302, Evolide GT_400, Evolid 401, Epolide 403 (above, manufactured by Daicel Chemical Industries), KRM-2100, KRM-2110, KRM-2199 (above, manufactured by Asahi Denka Kogyo Co., Ltd.)
[0032] (B2)成分として好適に使用できるグリシジル基含有化合物としては、例えばビスフ エノーノレ Aジグリシジルエーテル、ビスフエノール Fジグリシジルエーテル、ビスフエノ ール Sジグリシジルエーテル、臭素化ビスフエノーノレ Aジグリシジルエーテル、臭素化 ビスフエノール Fジグリシジルエーテル、臭素化ビスフエノール Sジグリシジルエーテ ノレ、水添ビスフエノーノレ Aジグリシジルエーテル、水添ビスフエノール Fジグリシジルェ 一テル、水添ビスフエノール Sジグリシジルエーテル、 1, 4 ブタンジオールジグリシ ジルエーテル、 1, 6—へキサンジオールジグリシジルエーテル、グリセリントリグリシジ ノレエーテノレ、トリメチローノレプロパントリグリシジノレエーテノレ、ポリエチレングリコーノレジ グリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類;エチレングリ コール、プロピレングリコール、グリセリン等の脂肪族多価アルコールに 1種又は 2種 以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールの ポリグリシジノレエーテル類;脂肪族長鎖二塩基酸のジグリシジルエステル類;脂肪族 高級アルコールのモノグリシジルエーテル類;フエノール、クレゾール、ブチルフエノ ール又はこれらにアルキレンオキサイドを付加して得られるポリエーテルアルコール のモノグリシジノレエーテル類;高級脂肪酸のグリシジルエステル類等を例示すること ができ、これらの化合物は、単独で又は 2種以上を組み合わせて使用することができ る。 [0032] Examples of the glycidyl group-containing compound that can be suitably used as the component (B2) include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol no A diglycidyl ether, Brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1, 4 butanediol Diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl noleateol, trimethylone propane triglycidinoleateol, polyethylene glycolenoresidue glycidylate , Polypropylene glycol diglycidyl ethers; polyglycidinole ethers of polyether polyols obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin Diglycidyl esters of aliphatic long-chain dibasic acids; monoglycidyl ethers of higher aliphatic alcohols; polyether alcohols obtained by adding phenol, cresol, butylphenol or alkylene oxide to these Monoglycidinole ethers; glycidyl esters of higher fatty acids, and the like. These compounds can be used alone or in combination of two or more.
[0033] これらのうち、ビスフエノーノレ Aジグリシジルエーテル、ビスフエノール Fジグリシジル エーテル、水添ビスフエノーノレ Aジグリシジルエーテル、水添ビスフエノール Fジグリシ ジルエーテル、 1, 4_ブタンジオールジグリシジルエーテル、 1, 6—へキサンジォー ノレジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリ グリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリエチレング リコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルが好ま しい。  [0033] Of these, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, 1,4-butanediol diglycidyl ether, 1, 6— Hexanedioresidyl glycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, neopentyl glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and polypropylene glycol diglycidyl ether are preferred.
[0034] グリシジノレ基含有化合物の市販品としては、エボライト 1600 (共栄社ィ匕学 (株)製) 、 UVR-6216 (以上、ユニオンカーバイド社製)、グリシドール、 AOEX24,サイクロ マー A200、 (以上、ダイセル化学工業(株)製)、ェピコート 828、ェピコート 812、ェ ピコート 1031、ェピコート 872、ェピコート CT508 (以上、油化シェル(株)製)、 KR M— 2400、 KRM— 2410、 KRM— 2408、 KRM— 2490、 KRM— 2720、 KRM — 2750 (以上、旭電化工業 (株)製)等を挙げること力 Sできる。  [0034] Commercially available glycidinole group-containing compounds include Evolite 1600 (manufactured by Kyoeisha Igaku Co., Ltd.), UVR-6216 (manufactured by Union Carbide), glycidol, AOEX24, cyclomer A200, (manufactured by Daicel) Chemical Industry Co., Ltd.), Epicourt 828, Epicourt 812, Epicourt 1031, Epiquat 872, Epicote CT508 (above, manufactured by Yuka Shell Co., Ltd.), KR M-2400, KRM-2410, KRM-2408, KRM— 2490, KRM-2720, KRM-2750 (above, manufactured by Asahi Denka Kogyo Co., Ltd.)
[0035] (B2)成分として好適に使用できるォキセタニル基含有化合物(以下「ォキセタン化 合物」という。)は、下記式 (4)で表されるォキセタン環を分子内に 1個以上有するィ匕 合物である。  [0035] An oxetanyl group-containing compound (hereinafter referred to as "oxetane compound") that can be suitably used as the component (B2) has at least one oxetane ring represented by the following formula (4) in the molecule. It is a compound.
分子内に 1個のォキセタン環を有する化合物としては、下記式(5)で表される化合 物が挙げられる。  Examples of the compound having one oxetane ring in the molecule include a compound represented by the following formula (5).
[0036] [化 2]
Figure imgf000014_0001
[0036] [Chemical 2]
Figure imgf000014_0001
[0037] [化 3]  [0037] [Chemical 3]
(5)(Five)
Figure imgf000014_0002
[0038] 上記式(5)において、 Zは酸素原子又は硫黄原子を示す。 R1は水素原子;フッ素 原子;メチル基、ェチル基、プロピル基、ブチル基等の炭素原子数:!〜 6のアルキル 基;トリフルォロメチル基、パーフルォロェチル基、パーフルォロプロピル基等の炭素 原子数 1 6のフルォロアルキル基;フヱニル基、ナフチル基等の炭素原子数 6〜: 18 のァリール基;フリル基又はチェニル基である。
Figure imgf000014_0002
[0038] In the above formula (5), Z represents an oxygen atom or a sulfur atom. R 1 is a hydrogen atom; a fluorine atom; an alkyl group having from 6 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group; a trifluoromethyl group, a perfluoroethyl group, and a perfluoro group. A fluoroalkyl group having 16 carbon atoms such as a propyl group; an aryl group having 6 to 18 carbon atoms such as a phenyl group or a naphthyl group; a furyl group or a chenyl group.
R2は、水素原子;メチル基、ェチル基、プロピル基、ブチル基等の炭素原子数:!〜 6のアルキル基;1—プロぺニル基、 2_プロぺニル基、 2_メチル _ 1 _プロぺニル 基、 2_メチル _ 2_プロぺニル基、 1—ブテュル基、 2—ブテュル基、 3—ブテュル 基等の炭素原子数 2 6のアルケニル基;フエ二ル基、ナフチル基、アントニル基、フ ヱナントリル基等の炭素原子数 6 18のァリール基;ベンジル基、フルォ口べンジル 基、メトキシベンジル基、フエネチル基、スチリル基、シンナミル基、エトキシベンジル 基等の置換又は非置換の炭素原子数 7〜: 18のァラルキル基;フヱノキシメチル基、フ エノキシェチル基等のァリーロキシアルキル等のその他の芳香環を有する基;ェチル カルボニル基、プロピルカルボニル基、ブチルカルボニル基等の炭素原子数 2 6の アルキルカルボニル基;エトキシカルボニル基、プロポキシカルボニル基、ブトキシカ ノレボニル基等の炭素原子数 2 6のアルコキシカルボニル基;ェチルカルバモイル 基、プロピル力ルバモイル基、ブチルカルバモイル基、ペンチルカルバモイル基等の 炭素原子数 2 6の N—アルキル力ルバモイル基等である。 R 2 represents a hydrogen atom; a methyl group, an ethyl group, a propyl group, a butyl group, or the like, an alkyl group having! To 6; 1-propenyl group, 2_propenyl group, 2_methyl _ 1 _Propenyl group, 2_methyl _ 2_propenyl group, 1-butulyl group, 2-butulyl group, 3-butulyl group and the like alkenyl group having 26 carbon atoms; phenyl group, naphthyl group, Aryl group having 618 carbon atoms such as anthonyl group, phenanthryl group, etc .; substituted or unsubstituted carbon such as benzyl group, fluorobenzoyl group, methoxybenzyl group, phenethyl group, styryl group, cinnamyl group, ethoxybenzyl group Aralkyl group having 7 to 18 atoms; Group having other aromatic ring such as aryloxyalkyl such as phenoxymethyl group, phenoxychetyl group, etc .; Carbon atom such as ethyl carbonyl group, propylcarbonyl group, butylcarbonyl group 26 alkyl carbonyl group; alkoxy carbonyl group having 26 carbon atoms such as ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group, etc .; carbon such as ethylcarbamoyl group, propyl carbamoyl group, butylcarbamoyl group, pentylcarbamoyl group Such as an N-alkyl-powered rubermoyl group having 26 atoms.
[0039] 分子内に 2個のォキセタン環を有する化合物としては、下記式(6)で示される化合 物が挙げられる。  [0039] Examples of the compound having two oxetane rings in the molecule include compounds represented by the following formula (6).
[0040] [化 4]  [0040] [Chemical 4]
Figure imgf000015_0001
Figure imgf000015_0001
[0041] 上記式(6)において、 R1は、上記式(5)における定義に同じである。 In the above formula (6), R 1 has the same definition as in the above formula (5).
R3は、エチレン基、プロピレン基、ブチレン基等の線状或いは分枝状の、炭素原子 数 1 20のアルキレン基;ポリ(エチレンォキシ)基、ポリ(プロピレンォキシ)基等の線 状或いは分枝状の、炭素原子数 1〜: 120のポリ(アルキレンォキシ)基;プロぺニレン 基、メチルプロぺニレン基、ブテニレン基等の線状或いは分枝状の不飽和炭化水素 基;カルボニル基;カルボ二ル基を含むアルキレン基;分子鎖の途中にカルボキシル 基を含むアルキレン基;分子鎖の途中に力ルバモイル基を含むアルキレン基である。 また、 R3は、下記式(7)、式(8)及び式(9)の何れかで示される基から選択される多 価の基でもよい。 R 3 is a linear or branched alkylene group having 120 carbon atoms such as an ethylene group, a propylene group or a butylene group; a linear or branched group such as a poly (ethyleneoxy) group or a poly (propyleneoxy) group. Branched, poly (alkyleneoxy) group having 1 to 120 carbon atoms; propenylene Linear, branched unsaturated hydrocarbon groups such as a group, methylpropenylene group, butenylene group, etc .; a carbonyl group; an alkylene group containing a carbonyl group; an alkylene group containing a carboxyl group in the middle of the molecular chain; a molecular chain Is an alkylene group containing a rubamoyl group. R 3 may be a polyvalent group selected from the groups represented by any one of the following formulas (7), (8) and (9).
[0042] [化 5]  [0042] [Chemical 5]
Figure imgf000016_0001
Figure imgf000016_0001
[0043] 上記式(7)において、 R4は、水素原子;メチル基、ェチル基、プロピル基、ブチル基 等の炭素原子数 1 4のアルキル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ 基等の炭素原子数 1 4のアルコキシ基;塩素原子、臭素原子等のハロゲン原子;二 トロ基;シァノ基;メルカプト基;低級アルキルカルボキシル基;カルボキシル基又は力 ノレバモイノレ基であり、 Xは:!〜 4の整数である。 In the above formula (7), R 4 represents a hydrogen atom; an alkyl group having 14 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group; a methoxy group, an ethoxy group, a propoxy group, a butoxy group. An alkoxy group having 14 carbon atoms, a halogen atom such as a chlorine atom or a bromine atom, a nitrogen group, a cyano group, a mercapto group, a lower alkyl carboxyl group, a carboxyl group or a force novamoino group, and X is: It is an integer of 4.
[0044] [化 6]
Figure imgf000016_0002
[0044] [Chemical 6]
Figure imgf000016_0002
[0045] 上記式(8)において、 R5は、酸素原子、硫黄原子、メチレン基、—NH― _SO_ In the above formula (8), R 5 represents an oxygen atom, a sulfur atom, a methylene group, —NH—_SO_
- SO C (CF ) —又は一 C (CH ) —である。  -SO C (CF) — or one C (CH) —.
2 3 2 3 2  2 3 2 3 2
[0046] [化 7]  [0046] [Chemical 7]
' ' ' (9) '''( 9)
Figure imgf000016_0003
Figure imgf000016_0003
[0047] 上記式(9)におレ、て、 R6は、メチル基、ェチル基、プロピル基、ブチル基等の炭素 原子数 1 4のアルキル基;フエニル基、ナフチル基等の炭素原子数 6〜: 18のァリー ル基である。 yは、 0 200の整数である。 R7はメチル基、ェチル基、プロピル基、ブ チル基等の炭素原子数 1〜4のアルキル基;フエ二ル基、ナフチル基等の炭素原子 数 6〜18のァリール基、又は下記式(10)で示される基である。 In the above formula (9), R 6 is an alkyl group having 14 carbon atoms such as a methyl group, an ethyl group, a propyl group, or a butyl group; the number of carbon atoms such as a phenyl group or a naphthyl group. 6 ~: 18 aryl groups. y is an integer of 0 200. R 7 is methyl, ethyl, propyl, butyl, An alkyl group having 1 to 4 carbon atoms such as a til group; an aryl group having 6 to 18 carbon atoms such as a phenyl group or a naphthyl group; or a group represented by the following formula (10).
[0048] [化 8] [0048] [Chemical 8]
Figure imgf000017_0001
Figure imgf000017_0001
[0049] 上記式(10)において、 R8は、メチル基、ェチル基、プロピル基、ブチル基等の炭 素原子数 1〜4のアルキル基;フエ二ル基、ナフチル基等の炭素原子数 6〜: 18のァリ ール基である。 zは、 0〜: 100の整数である。 In the above formula (10), R 8 is an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, or a butyl group; a carbon atom number such as a phenyl group or a naphthyl group 6 to: 18 aryl groups. z is an integer from 0 to 100.
[0050] 分子内に 2個のォキセタン環を有する化合物の具体例としては、下記式(11)、式 ( 12)及び式(13)の何れかで示される化合物等が挙げられる。  [0050] Specific examples of the compound having two oxetane rings in the molecule include compounds represented by any of the following formulas (11), (12), and (13).
[0051] [化 9]  [0051] [Chemical 9]
Figure imgf000017_0002
Figure imgf000017_0002
[0052] [化 10]  [0052] [Chemical 10]
Figure imgf000017_0003
Figure imgf000017_0003
[0053] [化 11] [0053] [Chemical 11]
Figure imgf000017_0004
Figure imgf000017_0004
[0054] 上記式(13)において、 R1は、上記式(5)における定義と同じである。 In the above formula (13), R 1 is the same as defined in the above formula (5).
[0055] 分子内に 3個以上のォキセタン環を有する化合物としては、下記式(14)で示される 化合物等が挙げられる。 [0055] The compound having three or more oxetane rings in the molecule is represented by the following formula (14). Compounds and the like.
[0056] [化 12]  [0056] [Chemical 12]
Figure imgf000018_0001
Figure imgf000018_0001
[0057] 上記式(14)において、 R1は、上記式(5)における定義と同じである。 R9は、 3 価の有機基を示し、例えば下記式(15)〜(17)の何れかで示される基等の炭素原子 数 1〜30の分枝状又は線状のアルキレン基、下記式(18)で示される基等の分枝状 ポリ(アルキレンォキシ)基、下記式(19)又は式(20)で示される線状又は分枝状ポリ シロキサン含有基等が挙げられる。 jは、 R9の価数に等しい 3〜: 10の整数を示す。 In the above formula (14), R 1 is the same as defined in the above formula (5). R 9 represents a trivalent organic group, for example, a branched or linear alkylene group having 1 to 30 carbon atoms such as a group represented by any of the following formulas (15) to (17), Examples thereof include branched poly (alkyleneoxy) groups such as the group represented by (18), linear or branched polysiloxane-containing groups represented by the following formula (19) or formula (20), and the like. j represents an integer of 3 to 10 equal to the valence of R 9 .
[0058] [化 13]
Figure imgf000018_0002
[0058] [Chemical 13]
Figure imgf000018_0002
[0059] 上記式(15)において、 R1Uは、メチノレ基、ェチル基、プロピル基等の炭素原子数 1In the above formula (15), R 1U represents 1 carbon atom such as a methinole group, an ethyl group, a propyl group, or the like.
〜6のアルキル基である。 Is an alkyl group of ˜6.
[0060] [化 14] [0060] [Chemical 14]
CH2- ""GHg一 C— CH -" CH 2- "" GHg One C— CH-"
CH2 -CH 2-
[0061] [化 15] [0061] [Chemical 15]
― CH,- CH。- CH - CH2_CH-CH CH2— •••(17) ― CH,-CH. -CH-CH 2 _CH-CH CH 2 — ••• (17)
[0062] [化 16]
Figure imgf000019_0001
[0062] [Chemical 16]
Figure imgf000019_0001
[0063] 上記式(18)において、 Lは同一又は異なる、:!〜 10の整数である c [0063] In the formula (18), L is the same or different,:! C is an integer between 10
[0064] [化 17] [0064] [Chemical 17]
rtg  rtg
CH。一 CH— CH2— Si— 0· CH2-CH-CHa- . . . (19) CH. CH- CH 2 — Si— 0 · CH 2 -CH-CH a -... (19)
CHg CH3 CH3 CHg  CHg CH3 CH3 CHg
[0065] [化 18] [0065] [Chemical 18]
Figure imgf000019_0002
Figure imgf000019_0002
[0066] 分子内に 3個以上のォキセタン環を有する化合物の具体例としては、下記式(21) で示される化合物等が挙げられる。  [0066] Specific examples of the compound having three or more oxetane rings in the molecule include compounds represented by the following formula (21).
[0067] [化 19] [0067] [Chemical 19]
Figure imgf000019_0003
Figure imgf000019_0003
[0068] 下記式(22)で表される化合物は、分子内に 1〜: 10個のォキセタン環を有し得る c [0068] The compound represented by the following formula (22) may have 1 to 10 oxetane rings in the molecule c
[0069] [化 20]
Figure imgf000020_0001
[0069] [Chemical 20]
Figure imgf000020_0001
[0070] 上記式(22)において、 R1は、上記式(5)における定義と同じであり、 R11は、メチル 基、ェチル基、プロピル基、ブチル基等の炭素原子数 1〜4のアルキル基又はトリア ルキルシリル基(ここで、アルキル基は同一又は異なり、炭素原子数 3〜: 12のアルキ ル基である。トリアルキルシリル基としては、例えばトリメチルシリル基、トリェチルシリ ル基、トリプロビルシリル基、トリブチルシリル基等を挙げることができる。)であり、 rは 1〜 10の整数を示す。 [0070] In the above formula (22), R 1 has the same definition as in the above formula (5), and R 11 has 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, or a butyl group. An alkyl group or a trialkylsilyl group (wherein the alkyl group is the same or different and is an alkyl group having 3 to 12 carbon atoms. Examples of the trialkylsilyl group include a trimethylsilyl group, a triethylsilyl group, and a triprovirsilyl group. And tributylsilyl group, etc.), and r represents an integer of 1 to 10.
[0071] さらに、ォキセタン化合物としては、上述の例以外にも、ゲルパーミエーシヨンクロマ トグラフィー(GPC)で測定したポリスチレン換算の数平均分子量 1 , 000〜5, 000程 度の高分子量を有する化合物も挙げられる。このような例として、下記式(23)、式(2 4)、式(25)の何れかで表される化合物が挙げられる。  [0071] Further, the oxetane compound has a high molecular weight of about 1,000 to 5,000 in terms of polystyrene measured by gel permeation chromatography (GPC) in addition to the above-described examples. Also included are compounds. Examples thereof include compounds represented by any of the following formula (23), formula (24), and formula (25).
[0072] [化 21]  [0072] [Chemical 21]
Figure imgf000020_0002
Figure imgf000020_0002
(ここで、 piま 20〜200の整数である。 )  (Here, pi is an integer between 20 and 200.)
[0073] [化 22]  [0073] [Chemical 22]
Figure imgf000020_0003
(ここで、 qiま 15〜: 100の整数である。)
Figure imgf000020_0003
(Where qi 15 is an integer of 100 :)
[化 23] [Chemical 23]
Figure imgf000021_0001
Figure imgf000021_0001
(ここで、 siま 20〜200の整数である。 )  (Here, si is an integer from 20 to 200.)
以上説明したォキセタンィ匕合物の具体例は次の通りである。  Specific examples of the oxetane compound described above are as follows.
〔分子内にォキセタン環を 1個有する化合物〕 [Compound with one oxetane ring in the molecule]
3 -ェチル _ 3—ヒドロキシメチルォキセタン、 3 - (メタ)ァリルォキシメチル _ 3 -ェ チルォキセタン、(3—ェチル _ 3—ォキセタニルメトキシ)メチルベンゼン、 4—フノレ オロー〔1 _ (3—ェチル _ 3—ォキセタニルメトキシ)メチル〕ベンゼン、 4—メトキシ一 〔1 _ (3—ェチル _ 3—ォキセタニルメトキシ)メチル〕ベンゼン、〔1 _ (3 _ェチル_ 3 —ォキセタニルメトキシ)ェチノレ〕フエニルエーテル、イソブトキシメチル(3—ェチル一 3 -ォキセタニルメチノレ)エーテル、イソボルニルォキシェチル(3 -ェチル _ 3—ォ キセタ二ルメチノレ)エーテル、イソボルニル(3—ェチル - 3-ォキセタニルメチノレ)ェ 一テル、 2—ェチルへキシル(3—ェチルー 3—ォキセタニルメチル)エーテル、ェチ ルジェチレングリコール(3—ェチルー 3—ォキセタニルメチノレ)エーテル、ジシクロぺ ンタジェン(3—ェチルー 3—ォキセタニルメチル)エーテル、ジシクロペンテ二ルォキ シェチル(3—ェチルー 3—ォキセタニルメチル)エーテル、ジシクロペンテュル(3— ェチルー 3—ォキセタニルメチル)エーテル、テトラヒドロフルフリノレ(3—ェチルー 3— ォキセタニルメチル)エーテル、テトラブロモフエニル(3—ェチルー 3—ォキセタニル メチル)エーテル、 2—テトラブロモフエノキシェチル(3—ェチルー 3—ォキセタニルメ チル)エーテル、トリブロモフエニル(3—ェチルー 3—ォキセタニルメチル)エーテル 、 2—トリブロモフエノキシェチル(3—ェチルー 3—ォキセタニルメチル)エーテル、 2 -ヒドロキシェチル(3 _ェチル _ 3—ォキセタニルメチノレ)エーテル、 2 -ヒドロキシ プロピル(3—ェチル _ 3—ォキセタニルメチノレ)エーテル、ブトキシェチル(3—ェチ ル一 3—ォキセタニルメチノレ)エーテル、ペンタクロロフェニル(3—ェチル _ 3—ォキ セタニルメチノレ)エーテル、ペンタブロモフエニル(3—ェチルー 3—ォキセタニルメチ ノレ)エーテル、ボルニル(3—ェチルー 3—ォキセタニルメチル)エーテル等。 3-Ethyl _ 3-hydroxymethyloxetane, 3- (Meth) aryloxymethyl _ 3-Ethyloxetane, (3-Ethyl_ 3-oxetanylmethoxy) methylbenzene, 4-Funoleo [1 _ (3-Ethyl_ 3-Oxetanylmethoxy) methyl] benzene, 4-Methoxy- [1_ (3-Ethyl_3-Oxetanylmethoxy) methyl] benzene, [1_ (3_Ethyl_3—O Xethanylmethoxy) ethinole] phenyl ether, isobutoxymethyl (3-ethyl-1-3-acetanylmethinole) ether, isobornyloxetyl (3-ethyl _ 3 -xetaneylmethinole) ether, isobornyl (3-Ethyl-3-oxetanylmethinole) ether, 2-Ethylhexyl (3-Ethyl-3-oxetanylmethyl) ether, Ethyljetylene glycol (3-Ethyl 3-Oxy) Tanylmethinole) ether, dicyclopentagen (3-ethyl-3-oxetanylmethyl) ether, dicyclopentenyloxychetyl (3-ethyl-3-oxetanylmethyl) ether, dicyclopentyl (3-ethyl-3-oxetanyl) Methyl) ether, tetrahydrofurfurinole (3-ethyl-3-oxetanylmethyl) ether, tetrabromophenyl (3-ethyl-3-oxetanylmethyl) ether, 2-tetrabromophenoxetyl (3-ethyl-3-oxetanylme) Til) ether, tribromophenyl (3-ethyl-3-oxetanylmethyl) ether, 2-tribromophenoxychetyl (3-ethyl-3-oxetanylmethyl) ether, 2-hydroxyethyl (3_ Ethyl _ 3—oxetanylmethinole) ether, 2-hydroxy Propyl (3-Echiru _ 3 O xenon Tani Le methylol Honoré) ether, Butokishechiru (3-E Ji Le one 3-O xenon Tani Le methylol Honoré) ether, pentachlorophenyl (3-Echiru _ 3 O key Cetanylmethynole) ether, pentabromophenyl (3-ethyl-3-ethylacetonyl) ether, bornyl (3-ethyl-3-oxetanylmethyl) ether, and the like.
〔分子内にォキセタン環を 2個以上有する化合物〕 [Compound with two or more oxetane rings in the molecule]
3, 7_ビス(3 ォキセタニル) _ 5 _ォキサ一ノナン、 3, 3 ' _ (1 , 3_ (2 メチレ ニル)プロパンジィルビス(ォキシメチレン))ビス一(3—ェチルォキセタン)、 1, 4—ビ ス〔(3 ェチル _ 3—ォキセタニルメトキシ)メチル〕ベンゼン、 1, 2_ビス [ (3—ェチ ノレ _ 3—ォキセタニルメトキシ)メチル]ェタン、 1, 3_ビス [ (3 _ェチル _ 3 _ォキセ タニノレメトキシ)メチノレ]プロノ ン、エチレングリコーノレビス(3—ェチノレ _ 3—ォキセタ ニルメチル)エーテル、ジシクロペンテュルビス(3—ェチル _ 3_ォキセタニルメチル )エーテル、トリエチレングリコールビス(3—ェチル _ 3—ォキセタニルメチノレ)エーテ ノレ、テトラエチレンダリコールビス(3—ェチル _ 3—ォキセタニルメチノレ)エーテル、ト リシクロデカンジィルジメチレン(3 _ェチル _ 3 -ォキセタニルメチノレ)エーテル、トリ メチロールプロパントリス(3—ェチルー 3—ォキセタニルメチノレ)エーテル、 1, 4ービ ス(3—ェチル 3—ォキセタニルメトキシ)ブタン、 1 , 6—ビス(3—ェチル 3—ォキ セタニルメトキシ)へキサン、ペンタエリスリトールトリス(3—ェチルー 3—ォキセタニル メチル)エーテル、ペンタエリスリトールテトラキス(3—ェチルー 3—ォキセタニルメチ ノレ)エーテル、ポリエチレングリコールビス(3—ェチルー 3—ォキセタニルメチノレ)ェ 一テル、ジペンタエリスリトールへキサキス(3—ェチルー 3—ォキセタニルメチノレ)ェ 一テル、ジペンタエリスリトールペンタキス(3—ェチルー 3—ォキセタニルメチル)ェ 一テル、ジペンタエリスリトールテトラキス(3—ェチルー 3—ォキセタニルメチノレ)エー テル、力プロラタトン変性ジペンタエリスリトールへキサキス(3—ェチルー 3—ォキセタ ニルメチル)エーテル、力プロラタトン変性ジペンタエリスリトールペンタキス(3—ェチ ノレ一 3—ォキセタニルメチノレ)エーテル、ジトリメチロールプロパンテトラキス(3—ェチ ノレ _ 3—ォキセタニルメチル)エーテル、 E〇変性ビスフエノーノレ Aビス(3—ェチル一 3 -ォキセタニルメチル)エーテル、 P〇変性ビスフエノーノレ Aビス(3 _ェチル _ 3 - ォキセタニルメチル)エーテル、 E〇変性水添ビスフエノーノレ Aビス(3 _ェチル _ 3 - ォキセタニルメチル)エーテル、 P〇変性水添ビスフエノーノレ Aビス(3—ェチル _ 3 _ ォキセタニルメチル)エーテル、 E〇変性ビスフエノール F (3 _ェチル _ 3—ォキセタ ニルメチル)エーテル等。 3, 7_bis (3 oxetanyl) _ 5 _oxanononane, 3, 3 '_ (1, 3_ (2 methylenyl) propanediylbis (oxymethylene)) bis (3-ethyloxetane), 1, 4-bi Sus [(3 ethyl_ 3-oxetanylmethoxy) methyl] benzene, 1,2_bis [(3-ethynole_3-oxetanylmethoxy) methyl] ethane, 1,3_bis [(3 _ Ethyl _ 3 _oxetaninolemethoxy) methinole] pronone, ethyleneglycololebis (3-ethynole _3-oxetanylmethyl) ether, dicyclopenturbis (3-ethyl _3_oxetanylmethyl) ether, tri Ethylene glycol bis (3-ethyl _ 3-oxetanylmethinole) ether, tetraethylene dallicol bis (3-ethyl _ 3-oxetanylmethinole) ether, tricyclodecanedyldimethylene (3 _ Ethyl _ 3 -Oxetanylmethinole) ether, Trimethylolpropane tris (3-Ethyl-3-oxetanylmethinole) ether, 1,4-bis (3-Ethyl3-oxetanylmethoxy) butane, 1 , 6-bis (3-ethyl 3-oxetanylmethoxy) hexane, pentaerythritol tris (3-ethyl-3-oxetanylmethyl) ether, pentaerythritol tetrakis (3-ethyl-3-oxetanylmethyl) ether, polyethylene glycol bis (3-Ethyl-3-oxetanylmethinole) Itel, Dipentaerythritol Hexakis (3-Ethyl-3-oxetanylmethinore) Iter, Dipentaerythritol Pentaquist (3-Ethyl-3-3-Oxe) Tanylmethyl) ite, dipentaerythritol tetrakis (3-ethylol-3-oxy) Cetaneylmethinole) ether, force prolataton-modified dipentaerythritol hexakis (3-ethyl-3-oxetanylmethyl) ether, force prolatataton-modified dipentaerythritol pentakis (3-ethynole 1-oxetanylmethinore) ether, ditri Methylolpropanetetrakis (3-ethynole _ 3-oxetanylmethyl) ether, E〇 modified bisphenol A bis (3-ethyl-1-3-xetanylmethyl) ether, P〇 modified bisphenol bis (3_ethyl _ 3-Oxetanylmethyl) ether, E〇 Modified hydrogenated bisphenolanol A bis (3_ethyl _3-oxetanylmethyl) ether, P〇 Modified hydrogenated bisphenolanol A bis (3-ethyl) _3_ Oxetanylmethyl ) Ether, E〇 Modified Bisphenol F (3_Ethyl_3-Oxeta Nylmethyl) ether and the like.
これらは 1種単独あるいは 2種以上を組み合わせて用いることができる。  These can be used alone or in combination of two or more.
[0077] これらのうち、 (B2)成分として好適に使用できるォキセタンィ匕合物は、分子内に有 するォキセタン環の数が 1〜10、さらに好ましくは 1〜4、特に好ましくは 2の化合物で ある。具体的には、下記式(26)で示される(3—ェチル _ 3—ォキセタニルメトキシ)メ チルベンゼン、下記式(27)で示される 1, 4_ビス [ (3 _ェチル _ 3—ォキセタニルメ トキシ)メチル]ベンゼン、下記式(28)で示される 1 , 2_ビス(3_ェチル _ 3—ォキ セタニルメトキシ)ェタン、下記式(29)で示されるトリメチロールプロパントリス(3—ェ チル— 3—ォキセタニルメチル)エーテル、下記式(30)で示される 3 _ェチル _ 3_ ォキセタニルメトキシベンゼン及び上記式(22)で表される化合物が挙げられる。 [0077] Of these, the oxetane compound that can be suitably used as the component (B2) is a compound having 1 to 10, more preferably 1 to 4, particularly preferably 2 oxetane rings in the molecule. is there. Specifically, (3-Ethyl_3-oxetanylmethoxy) methylbenzene represented by the following formula (26), 1,4_bis [(3_Ethyl_3-oxetanylmethyl) represented by the following formula (27): Toxi) methyl] benzene, 1,2-bis (3-ethyl) -3-oxetanylmethoxy) ethane represented by the following formula (28), trimethylolpropane tris represented by the following formula (29) (3- (Cyl-3-oxetanylmethyl) ether, 3_ethyl_3_oxetanylmethoxybenzene represented by the following formula (30), and a compound represented by the above formula (22).
[0078] [化 24] [0078] [Chemical 24]
Figure imgf000023_0001
Figure imgf000023_0001
[0081] [化 27] [0081] [Chemical 27]
Figure imgf000024_0001
Figure imgf000024_0001
Figure imgf000024_0002
Figure imgf000024_0002
[0083] これらのォキセタン化合物は、 1種単独であるいは 2種以上を組み合わせて使用す ること力 Sできる。 [0083] These oxetane compounds can be used alone or in combination of two or more.
[0084] (B)成分の含有割合は、 (B1)成分、(B2)成分のいずれを用いるかを問わず、光 硬化性液状組成物全体に対して、通常、 1〜65重量%でぁり、好ましくは 5〜40重 量%、さらに好ましくは 10〜30重量%である。 (B)成分の含有割合が 1重量%以上 であれば、(A)成分が、均一に本組成物中に分散される。また、 20重量%以下であ れば、本組成物における (A)成分の含有割合が増大し、焼成後の立体形状物の体 積収縮を低減できる。  [0084] The content ratio of the component (B) is usually 1 to 65% by weight based on the entire photocurable liquid composition, regardless of whether the component (B1) or the component (B2) is used. It is preferably 5 to 40% by weight, more preferably 10 to 30% by weight. When the content ratio of the component (B) is 1% by weight or more, the component (A) is uniformly dispersed in the present composition. Further, if it is 20% by weight or less, the content ratio of the component (A) in the present composition increases, and the volumetric shrinkage of the three-dimensionally shaped product after firing can be reduced.
一方、(B)成分の含有割合が過小である場合には、粘度が増大し、本組成物は、 十分な流動性が得られない。また、この含有割合が過大である場合には、 (A)成分 の含有割合が減少し、立体形状物の強度が低下したり、立体形状物を脱脂、焼成す る際に、ひび割れ等の欠損を生じたりする。  On the other hand, when the content ratio of the component (B) is too small, the viscosity increases and the composition does not have sufficient fluidity. In addition, when this content ratio is excessive, the content ratio of the component (A) is decreased, the strength of the three-dimensional object is reduced, or cracks and other defects are lost when the three-dimensional object is degreased and fired. May occur.
また、 (B)成分としては、(B1)成分と(B2)成分を併用することもできる。  As the component (B), the component (B1) and the component (B2) can be used in combination.
[0085] (C)光重合開始剤 (以下、(C)成分)は、 (B)成分として (B1)ラジカル重合性化合 物を用いる場合には、 (C1)ラジカル性光重合開始剤であり、(B2)カチオン重合性 化合物を用いる場合には、 (C2)カチオン性光重合開始剤である。  [0085] (C) Photopolymerization initiator (hereinafter referred to as component (C)) is (C1) a radical photopolymerization initiator when (B1) radical polymerizable compound is used as component (B). (B2) When a cationically polymerizable compound is used, (C2) a cationic photopolymerization initiator.
[0086] (C1)ラジカル性光重合開始剤は、光等のエネルギー線を受けることにより分解し、 発生するラジカルによって、ラジカル重合反応を開始させる化合物である。ここで、光 等のエネルギー線とは可視光、紫外光、赤外光、 X線、 α線、 線、 γ線等を意味す る。 (C1)成分の具体例としては、例えば、ァセトフエノン、ァセトフエノンべンジルケタ ール、アントラキノン、 1— (4—イソプロピルフエ二ル)一 2—ヒドロキシ一 2—メチルプ 口パン 1 オン、カルバゾール、キサントン、 4 クロ口べンゾフエノン、 4, 4'ージァ ミノべンゾフエノン、 1 , 1ージメトキシデォキシベンゾイン、 3, 3 '—ジメチルー 4ーメト キシベンゾフヱノン、チォキサントン系化合物、 2_メチル _ 1 _ [4_ (メチルチオ)フ ェニル]— 2—モルフオリノ一プロパン一 2—オン、 2 -ベンジル - 2-ジメチルァミノ —1— (4—モルフォリノフエ二ル)一ブタン一 1—オン、トリフエニノレアミン、 2, 4, 6 ト リメチルベンゾィルジフヱニルホスフィンオキサイド、ビス(2, 6—ジメトキシベンゾィル ) - 2, 4, 4 _トリ一メチルペンチルフォスフィンオキサイド、ベンジルジメチルケター ノレ、 1—ヒドロキシシクロへキシノレフエニノレケトン、 2—ヒドロキシ _ 2—メチノレ _ 1—フ ェニルプロパン _ 1 _オン、フルォレノン、フルオレン、ベンズアルデヒド、ベンゾイン ェチルエーテル、ベンゾインプロピルエーテル、ベンゾフエノン、 3 _メチルァセトフエ ノン、 3, 3 ', 4, 4 '—テトラ(t_ブチルパーォキシカルボニル)ベンゾフエノン(BTTB )、及び BTTBとキサンテン、チォキサンテン、クマリン、ケトクマリンその他の色素増 感剤との組み合わせ等が挙げられる。これらのうち、ベンジルジメチルケタール、 1 ヒドロキシシクロへキシルフェニルケトン、 2, 4, 6 トリメチルベンゾィルジフエニルホ スフインオキサイド、 2—ベンジル一 2—ジメチルァミノ一 1— (4—モルフォリノフエ二 ノレ) ブタン 1 オン等が特に好ましい。これらは、一種単独又は二種以上を組み 合わせて、 (C1)成分を構成することができる。 [0086] The (C1) radical photopolymerization initiator is a compound that decomposes by receiving energy rays such as light and initiates a radical polymerization reaction by the generated radicals. Here, energy rays such as light mean visible light, ultraviolet light, infrared light, X-rays, α rays, rays, γ rays, and the like. Specific examples of the component (C1) include, for example, acetophenone and acetophenone benziketa. , Anthraquinone, 1— (4-Isopropylphenol) 1 2-Hydroxy 1 2-Methyl propanone 1-on, carbazole, xanthone, 4-clobenbenzophenone, 4, 4'-diaminobenzophenone, 1, 1 -Dimethoxydeoxybenzoin, 3,3'-dimethyl-4-methoxybenzophenone, thixanthone compounds, 2_methyl _ 1 _ [4_ (methylthio) phenyl] — 2-morpholinopropane 1-2-one, 2-Benzyl-2-dimethylamino —1— (4-morpholinophenyl) 1-butane 1-one, triphenylenolamine, 2, 4, 6 trimethylbenzoyldiphenylphosphine oxide, bis ( 2,6-Dimethoxybenzoyl) -2,4,4_trimethylpentylphosphine oxide, benzyldimethylketanol, 1-hydroxycyclohexenoleveno Reketone, 2-hydroxy _ 2-methinole _ 1-phenylpropane _ 1 _one, fluorenone, fluorene, benzaldehyde, benzoin ethyl ether, benzoin propyl ether, benzophenone, 3_methylacetophenone, 3, 3 ', 4, 4'— Examples include tetra (t_butylperoxycarbonyl) benzophenone (BTTB), and combinations of BTTB with xanthene, thixanthene, coumarin, ketocoumarin and other dye sensitizers. Of these, benzyldimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2, 4, 6 trimethylbenzoyldiphenylphosphine oxide, 2-benzyl-1-2-dimethylamino-1- (4-morpholinophenol) ) Butane 1-on is particularly preferred. These can be used alone or in combination of two or more to constitute the component (C1).
[0087] (C2)カチオン性光重合開始剤は、光等のエネルギー線を受けることによって、前 記(B2)成分のカチオン重合を開始させる物質を放出することができる化合物である [0087] The (C2) cationic photopolymerization initiator is a compound capable of releasing the substance that initiates the cationic polymerization of the component (B2) by receiving energy rays such as light.
(C2)成分の化合物の例として、下記式(31)で表される構造を有するォニゥム塩を 挙げること力 Sできる。このォニゥム塩は、光を受けることによりルイス酸を放出する化合 物(光酸発生剤)である。 As an example of the compound of the component (C2), an ion salt having a structure represented by the following formula (31) can be cited. This onium salt is a compound (photoacid generator) that releases Lewis acid upon receiving light.
[0088] [R01 R。2 R。3 R。4 W]m+ [MX ]m— (31) [0088] [R 01 R. 2 R. 3 R. 4 W] m + [MX] m — (31)
a b e d n+m  a b e d n + m
〔式中、カチオンはォニゥムイオンであり、 Wは S、 Se、 Te、 P、 As、 Sb、 Bi、 0, I、 Br 、 CI又は— N≡Nであり、
Figure imgf000025_0001
2、 R。3及び R°4は同一又は異なる有機基であり、 a、 b、 c及び dは各々 0〜3の整数であって、(a + b + c + d)は Wの価数に等しレ、。 Mは ハロゲン化物錯体 [MX ]の中心原子を構成する金属又はメタロイドであり、例え n + m
[Wherein the cation is an ion, W is S, Se, Te, P, As, Sb, Bi, 0, I, Br, CI or —N≡N,
Figure imgf000025_0001
R ° 2 , R. 3 and R ° 4 are the same or different organic groups, a, b, c and d are each an integer of 0 to 3, and (a + b + c + d) is equal to the valence of W. ,. M is A metal or metalloid constituting the central atom of the halide complex [MX], for example n + m
ば、 B、 P、 As、 Sb、 Fe、 Sn、 Bi、 Al、 Ca、 In、 Ti、 Zn、 Sc、 V、 Cr、 Mn、 Co等である B, P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn, Co, etc.
。 Xは、例えば F、 Cl、 Br等のハロゲン原子であり、 mはハロゲン化物錯体イオンの正 味の電荷であり、 nは Mの原子価である。〕 . X is a halogen atom such as F, Cl, Br, etc., m is the net charge of the halide complex ion, and n is the valence of M. ]
[0089] 上記式(31)に示されるォニゥムイオンの具体例としては、ジフヱ二ルョードニゥム、 [0089] Specific examples of the ion ion represented by the above formula (31) include diphenyl rhododonium,
4—メトキシジフエ二ルョードニゥム、ビス(4—メチルフエニル)ョードニゥム、ビス(4— tert—ブチルフエニル)ョードニゥム、ビス(ドデシルフェニル)ョードニゥム、トリフエ二 ルスルホニゥム、ジフエニル一 4—チオフエノキシフエニルスルホニゥム、ビス [4— (ジ フエニルスルホニォ)一フエ二ノレ]スルフイド、ビス [4— (ジ(4— (2—ヒドロキシェチノレ )フヱ二ノレ)スルホニォ)一フエ二ノレ]スルフイド、 5— 2, 4 _ (シクロペンタジェニル)  4-methoxydiphenyl, bis (4-methylphenyl), bis (4-tert-butylphenyl), bis (dodecylphenyl), sulfonylsulfone, diphenyl-4-dithiophenoxysulfonyl, bis [ 4- (diphenylsulfonio) monophenyl] sulfide, bis [4- (di (4- (2-hydroxyethylenole) sulfinole) sulfonio) monophenyl] sulfide, 5- 2 , 4 _ (cyclopentagenyl)
[1 , 2, 3, 4, 5, 6 _ ] _ (メチルェチル)—ベンゼン]—鉄(1 +)等が挙げられる。 上記式(31)中におけるァニオン [MX ]の具体例としては、テトラフルォロボレ一 n + m  [1, 2, 3, 4, 5, 6 _] _ (methylethyl) -benzene] -iron (1 +) and the like. Specific examples of the anion [MX] in the above formula (31) include tetrafluorobore 1 + m
ト(BF―)、へキサフルォロホスフェート(PF―)、へキサフルォロアンチモネート(SbF  (BF-), Hexafluorophosphate (PF-), Hexafluoroantimonate (SbF
4 6  4 6
―)、へキサフルォロアルセネート(AsF―)、へキサクロ口アンチモネート(SbCl _)等―), Hexafluoroarsenate (AsF-), Hexaclo oral antimonate (SbCl _ ), etc.
6 6 6 が挙げられる。 6 6 6
[0090] また、一般式 [MX (OH)—]で表されるァニオンを有するォニゥム塩を使用すること 力 sできる。さらに、過塩素酸イオン(CIO―)、トリフルォロメタンスルフォン酸イオン(C  [0090] In addition, an onium salt having an anion represented by the general formula [MX (OH) —] can be used. In addition, perchlorate ion (CIO-), trifluoromethanesulfonate ion (C
4  Four
F SO _)、フルォロスルフォン酸イオン(FS〇 ―)、トルエンスルフォン酸イオン、トリ F SO _), Fluorosulphonate ion (FS0-), Toluene sulphonate ion, Tri
3 3 3 3 3 3
ニトロベンゼンスノレフォン酸ァニ才ン、トリニトロトノレエンスノレフォン酸ァニ才ン等の他 のァニオンを有するォニゥム塩を使用することもできる。  Onion salts having other anions such as nitrobenzene sulphonate aniline, trinitrotonol senorephonate aniline, and the like can also be used.
[0091] このようなォニゥム塩のうち、(C2)成分として特に有効な化合物は芳香族ォニゥム 塩である。例えば特開昭 50— 151996号公報、特開昭 50— 158680号公報等に記 載の芳香族ハロニゥム塩、特開昭 50— 151997号公報、特開昭 52— 30899号公報 、特開昭 56— 55420号公報、特開昭 55— 125105号公報等に記載の VIA族芳香 族ォニゥム塩、特開昭 50— 158698号公報等に記載の VA族芳香族ォニゥム塩、特 開昭 56— 8428号公報、特開昭 56— 149402号公報、特開昭 57_ 192429号公 報等に記載のォキソスルホキソニゥム塩、特開昭 49一 17040号公報等に記載の芳 香族ジァゾニゥム塩、米国特許第 4, 139, 655号明細書に記載のチオビリリウム塩 等が好ましい。また、鉄/アレン錯体、アルミニウム錯体/光分解ケィ素化合物系開 台斉 IJ等も挙げること力 sできる。 [0091] Among such onium salts, compounds particularly effective as the component (C2) are aromatic onium salts. For example, aromatic halonium salts described in JP-A-50-151996, JP-A-50-158680, etc., JP-A-50-151997, JP-A-52-30899, JP-A-56. — VIA group aromatic onion salts described in JP 55420, JP 55-125105 A, etc., VA group aromatic onium salts described in JP 50-158698 A, etc., JP 56-8428 Oxosulfoxonium salts described in JP-A-56-149402, JP-A-57-192429, etc., aromatic diazonium salts described in JP-A-49-17040, etc. Thiobililium salt described in Japanese Patent No. 4,139,655 Etc. are preferred. In addition, iron / allene complex, aluminum complex / photolytic silicon compound system IJ, etc. can be cited.
[0092] (C2)成分として好適に使用できる化合物の市販品としては、 UVI— 6950、 UVI - 6970, UVI-6974, UVI_ 6990 (以上、ユニオンカーバイド社製)、アデカオプ 卜マー SP— 150、 SP— 151、 SP— 170、 SP— 171、 SP— 172 (以上、旭電ィ匕工業 (株)製)、 Irgacure 261 (以上、チバ'スペシャルティー'ケミカルズ (株)製)、 CI— 2481、 CI— 2624、 CI— 2639、 CI— 2064 (以上、 日本曹達(株)製)、 CD— 1010 、 CD— 1011、 CD— 1012 (以上、サー卜マー社製)、 DTS— 102、 DTS— 103、 N AT— 103、 NDS— 103、 TPS— 103、 MDS— 103、 MPI— 103、 BBI— 103 (以 上、みどり化学(株)製)、 PCI_061T、 PCI_062T、 PCI_020T、 PCI_022T ( 以上、 日本化薬 (株)製)等を挙げることができる。これらのうち、 UVI— 6970、 UVI — 6974、アデカオプ卜マー SP— 170、 SP— 171、 SP— 172、 CD— 1012、 MPI— 103は、これらを含有してなる樹脂組成物に高い光硬化感度を発現させることができ ることから特に好ましい。 [0092] Examples of commercially available compounds that can be suitably used as the component (C2) include UVI-6950, UVI-6970, UVI-6974, UVI_6990 (manufactured by Union Carbide), Adeka Opmer SP-150, SP — 151, SP—170, SP—171, SP—172 (above, manufactured by Asahi Denki Kogyo Co., Ltd.), Irgacure 261 (above, manufactured by Ciba “Specialty” Chemicals), CI— 2481, CI — 2624, CI— 2639, CI— 2064 (above, Nippon Soda Co., Ltd.), CD—1010, CD—1011, CD—1012 (above, manufactured by Thermar), DTS—102, DTS—103, NAT-103, NDS-103, TPS-103, MDS-103, MPI-103, BBI-103 (above, Midori Chemical Co., Ltd.), PCI_061T, PCI_062T, PCI_020T, PCI_022T (above, Nippon Kayaku ( And the like). Among these, UVI-6970, UVI-6974, Adeka OPMER SP-170, SP-171, SP-172, CD-1012 and MPI-103 have high photocuring sensitivity for resin compositions containing them. Is particularly preferred since it can be expressed.
上記の光酸発生剤は、単独で又は 2種以上を組み合わせて(C2)成分を構成する こと力 Sできる。  The above photoacid generators can be used alone or in combination of two or more to constitute the component (C2).
[0093] (C)成分の含有割合は、(C1)成分、(C2)成分のいずれを用いるかを問わず、光 硬化性液状組成物全体に対して、通常、 0. 01〜: 10重量%であり、好ましくは 0. 1 〜8重量%である。 (C)成分の含有割合が過小である場合には、本組成物のラジカ ル重合反応速度 (硬化速度)が低くなるため、造形に時間を要したり、解像度が低下 したりする。一方、(C)成分の含有割合が過大である場合には、過剰量の本成分が、 本組成物の硬化特性をかえって低下させたり、立体形状物の強度を低下させたりす る。また、(B)成分として、(B1)成分と (B2)成分を併用する場合には、(C)成分とし て、(C1)成分と (C2)成分を併用することができる。  [0093] The content ratio of the component (C) is usually 0.01 to 10 wt% with respect to the entire photocurable liquid composition, regardless of whether the component (C1) or the component (C2) is used. %, Preferably 0.1 to 8% by weight. When the content ratio of the component (C) is too small, the radical polymerization reaction rate (curing rate) of the composition is lowered, so that time is required for modeling or the resolution is lowered. On the other hand, when the content ratio of the component (C) is excessive, an excessive amount of this component lowers the curing characteristics of the present composition or lowers the strength of the three-dimensional object. In addition, when the components (B1) and (B2) are used together as the component (B), the components (C1) and (C2) can be used together as the component (C).
[0094] 本発明に使用される光硬化性液状組成物には、本発明の目的及び効果を損なわ ない範囲において、その他の任意成分として、各種の添加剤が含有されていてもよ レ、。力、かる添加剤としては、エポキシ樹脂、ポリアミド、ポリアミドイミド、ポリウレタン、ポ リブタジエン、ポリクロ口プレン、ポリエーテノレ、ポリエステノレ、スチレン一ブタジエンブ ロック共重合体、石油樹脂、キシレン樹脂、ケトン樹脂、セルロース樹脂、フッ素系ォ リゴマー、シリコーン系オリゴマー、ポリスルフイド系オリゴマー、ァリルエーテルコポリ マー等のポリマー及びオリゴマー;フエノチアジン、 2, 6—ジー tーブチルー 4ーメチ ルフエノール等の重合禁止剤;重合開始助剤;レべリング剤;濡れ性改良剤;界面活 性剤;可塑剤;紫外線吸収剤;シランカップリング剤;無機充填剤;顔料;染料;トリエタ ノーノレアミン、メチルジェタノールァミン、トリエチノレアミン、ジェチルァミン等のアミン 系化合物、チォキサントン及びその誘導体、アントラキノン及びその誘導体、アントラ セン及びその誘導体、ペリレン及びその誘導体、ベンゾフヱノン、ベンゾインイソプロ ピルエーテル等の光増感剤(重合促進剤);ビニルエーテル類、ビニルスルフイド類、 ビュルウレタン類、ウレタンアタリレート類、ビュルウレァ類等の反応性希釈剤等が挙 げられる。 [0094] The photocurable liquid composition used in the present invention may contain various additives as other optional components as long as the objects and effects of the present invention are not impaired. Examples of such additives include epoxy resins, polyamides, polyamideimides, polyurethanes, polybutadienes, polychloroprene, polyetheroles, polyesteroles, styrene-butadiene resins. Polymers and oligomers such as lock copolymers, petroleum resins, xylene resins, ketone resins, cellulose resins, fluorine-based oligomers, silicone-based oligomers, polysulfide-based oligomers, aryl ether copolymers; phenothiazines, 2,6-di-tert-butyl Polymerization inhibitors such as 4-methylphenol; polymerization initiators; leveling agents; wettability improvers; surfactants; plasticizers; ultraviolet absorbers; silane coupling agents; inorganic fillers; pigments; Light of amine compounds such as noroleamine, methyljetanolamine, triethinoleamine, and jetylamine, thixanthone and its derivatives, anthraquinone and its derivatives, anthracene and its derivatives, perylene and its derivatives, benzophenone, benzoin isopropyl ether, etc. Sensitizer Polymerization accelerator); vinyl ethers, Binirusurufuido acids, Bulle urethanes, urethane Atari rate such, such as reactive diluents such Byuruurea acids are exemplified up.
[0095] 本発明に使用される光硬化性液状組成物は、上記 (A)〜(C)成分、及び必要に応 じて上記任意成分を均一に混合することによって製造することができる。  [0095] The photocurable liquid composition used in the present invention can be produced by uniformly mixing the above components (A) to (C) and optionally the above optional components.
また、予め(B)及び (C)成分を混合したベース樹脂液に、(A)成分を分散させる方 法によっても製造することができる。  It can also be produced by a method in which the component (A) is dispersed in a base resin liquid in which the components (B) and (C) are mixed beforehand.
[0096] このようにして得られる光硬化性液状組成物の粘度は、外力によって流動する範囲 であれば特に限定しないが、外力が加わらない状態では流動せず、外力が加わるこ とで流動するチクソトロピックな特性を有することが好ましい。 [0096] The viscosity of the photocurable liquid composition obtained in this way is not particularly limited as long as it is in a range in which it can be flowed by an external force, but it does not flow in a state in which no external force is applied, and flows by applying an external force. It preferably has thixotropic properties.
[0097] 2.立体形状物の製造方法 [0097] 2. Manufacturing method of three-dimensional object
本発明の立体形状物の製造方法は、光積層造形法に、上記の光硬化性液状組成 物を採用するものである。光積層造形法としては、特に限定されない。本発明の光学 的立体造形法の代表的な一例を、図を用いて説明する。  The manufacturing method of the three-dimensionally shaped product of the present invention employs the above-mentioned photocurable liquid composition for the optical layered modeling method. The optical additive manufacturing method is not particularly limited. A typical example of the optical three-dimensional modeling method of the present invention will be described with reference to the drawings.
まず、図 1 (a)に示すように、光硬化性液状組成物 1を収容した容器 2内に、昇降自 在に設けられた支持ステージ 3を、組成物 1の液面 4から微小量降下(沈降)させるこ とにより、支持ステージ 3上に、組成物 1を供給して、組成物 1の薄層を形成する。次 いで、この薄層に対して、選択的に光を照射し、組成物 1の硬化物 (硬化樹脂層) 6を 形成する。  First, as shown in FIG. 1 (a), a support stage 3 provided in a self-lifting manner is placed in a container 2 containing a photocurable liquid composition 1, and a minute amount is lowered from the liquid level 4 of the composition 1. By (sedimentation), composition 1 is supplied onto support stage 3 to form a thin layer of composition 1. Next, the thin layer is selectively irradiated with light to form a cured product (cured resin layer) 6 of the composition 1.
次に、図 1 (b)に示すように、支持ステージ 3を微小量降下(沈降)させて、この硬化 物 6の上に、組成物 1を供給して、組成物の薄層を再度形成する。次いで、この薄層 に対して、選択的に光照射し、硬化物 6の上に、これと連続して一体的に積層するよ うに新しい硬化物 7をさらに形成する。そして、光照射されるパターンを変化させなが ら又は変化させずに、この工程を所定回数繰り返すことにより、連続する複数層の硬 化物が一体的に積層されてなる立体形状物が造形される。 Next, as shown in Fig. 1 (b), the support stage 3 is lowered (sedged) by a small amount, and this hardening is performed. Composition 1 is fed over article 6 to again form a thin layer of composition. Next, the thin layer is selectively irradiated with light, and a new cured product 7 is further formed on the cured product 6 so as to be laminated continuously and continuously therewith. Then, by repeating this process a predetermined number of times with or without changing the pattern irradiated with light, a three-dimensional object formed by integrally laminating a plurality of continuous hard layers is formed. .
[0098] 光硬化性液状組成物に光を選択的に照射する手段としては、特に制限されるもの ではなぐ種々の手段を採用することができる。例えば、レーザー光、又はレンズ、ミラ 一等を用いて得られた収束光等を走査させながら組成物に照射する手段、所定のパ ターンの光透過部を有するマスクを用レ、、このマスクを介して非収束光を組成物に照 射する手段、多数の光ファイバ一を束ねてなる導光部材を用い、この導光部材にお ける所定のパターンに対応する光ファイバ一を介して光を組成物に照射する手段、 デジタルミラーデバイスを用いて各ミラーを画素として光照射の ONZOFFを制御す る手段等を採用することができる。また、マスクを用いる手段においては、マスクとして 、液晶表示装置と同様の原理により、所定のパターンに従って、光透過領域と光不 透過領域とよりなるマスク像を電気光学的に形成するものを用いることもできる。 以上において、 目的とする立体形状物が微細な部分を有するもの、又は高い寸法 精度が要求されるものである場合には、組成物に選択的に光を照射する手段として 、スポット径の小さいレーザー光を走査する手段を採用することが好ましい。尚、容器 内に組成物が収容されている場合、光の照射面(例えば、収束光の走査平面)は、 組成物の液面、透光性容器の器壁との接触面の何れであってもよい。組成物の液面 又は器壁との接触面を光の照射面とする場合には、容器の外部から直接又は器壁 を介して光を照射することができる。 [0098] Various means can be employed as the means for selectively irradiating the photocurable liquid composition with light, not particularly limited. For example, a means for irradiating the composition while scanning convergent light obtained by using laser light or a lens, a mirror, etc., a mask having a light transmitting portion of a predetermined pattern, and this mask A means for irradiating the composition with non-converged light and a light guide member formed by bundling a number of optical fibers, and light is transmitted through the optical fiber corresponding to a predetermined pattern in the light guide member. Means for irradiating the composition, means for controlling ONZOFF of light irradiation using each mirror as a pixel using a digital mirror device, and the like can be employed. In the means using a mask, a mask that electro-optically forms a mask image composed of a light transmission region and a light non-transmission region according to a predetermined pattern according to the same principle as a liquid crystal display device is used. You can also. In the above, when the target three-dimensional object has a fine part or a high dimensional accuracy is required, a laser with a small spot diameter is used as a means for selectively irradiating the composition with light. It is preferable to employ means for scanning light. When the composition is contained in the container, the light irradiation surface (for example, the scanning plane of the convergent light) is either the liquid surface of the composition or the contact surface with the vessel wall of the translucent container. May be. When the liquid surface of the composition or the contact surface with the vessel wall is used as the light irradiation surface, the light can be irradiated directly from the outside of the container or through the vessel wall.
[0099] 光積層造形法においては、通常、組成物の特定部分を硬化させた後、光の照射位 置(照射面)を、既硬化部分力 未硬化部分に連続的に又は段階的に移動させるこ とにより、硬化部分を積層させて所望の立体形状とする。ここで、照射位置の移動は 、種々の方法によって行うことができ、例えば、光源、組成物の収容容器、組成物の 既硬化部分の何れかを移動させたり、収容容器に組成物を追加供給したりする等の 方法が挙げられる。 [0100] 3.立体形状物 [0099] In the optical additive manufacturing method, usually, after a specific part of the composition is cured, the light irradiation position (irradiation surface) is moved continuously or stepwise to the uncured partial force uncured part. By doing so, the cured parts are laminated to obtain a desired three-dimensional shape. Here, the irradiation position can be moved by various methods, for example, by moving any one of the light source, the composition container, and the already cured portion of the composition, or additionally supplying the composition to the container Or the like. [0100] 3. Solid objects
次に、本発明の立体形状物について説明する。本発明の立体形状物は、上記の 光硬化性液状組成物の硬化物からなるものである。得られた立体形状物は、収容容 器力 取り出し、その表面に残存する未反応の組成物 (未硬化)を除去した後、必要 に応じて洗浄する。ここで、洗浄剤としては、イソプロピルアルコール、ェチルアルコ ール等のアルコール類に代表されるアルコール系有機溶剤;アセトン、酢酸ェチル、 メチルェチルケトン等に代表されるケトン系有機溶剤;テルペン類に代表される脂肪 族系有機溶剤;低粘度の熱硬化性樹脂及び光硬化性樹脂が挙げられる。  Next, the three-dimensional object of the present invention will be described. The three-dimensionally shaped product of the present invention is composed of a cured product of the above-described photocurable liquid composition. The obtained three-dimensional object is taken out of the container and the unreacted composition (uncured) remaining on the surface is removed, and then washed as necessary. Here, as cleaning agents, alcohol-based organic solvents typified by alcohols such as isopropyl alcohol and ethyl alcohol; ketone-based organic solvents typified by acetone, ethyl acetate, methyl ethyl ketone, etc .; typified by terpenes Aliphatic organic solvents; low viscosity thermosetting resins and photocurable resins.
[0101] 4.セラミックス焼成体 [0101] 4. Ceramic fired body
上記 3の立体形状物の後処理の後、本発明の立体形状物を焼成すると、セラミック ス焼成体となり得る。ここで用いる焼成方法は特に限定されず、公知の方法を用いる こと力 Sできる。  After the post-treatment of the above three-dimensionally shaped product, when the three-dimensionally shaped product of the present invention is fired, a ceramic fired body can be obtained. The firing method used here is not particularly limited, and a known method can be used.
[0102] 以上述べたように、本発明の立体形状物の製造方法を用いることにより、セラミック ス粉体等とバインダー組成物との混合物中に占めるセラミックス充填率を増加させて も、良好な流動性と光硬化性を示し、その結果、光積層造形法により、所望の立体形 状物を容易に造形できる。本発明の立体形状物は、通常、 150〜300MPaの曲げ 強度を有している。  [0102] As described above, even when the ceramic filling ratio in the mixture of the ceramic powder and the binder composition is increased by using the method for producing a three-dimensionally shaped article of the present invention, good fluidity can be obtained. As a result, the desired three-dimensional shape can be easily modeled by the optical layered modeling method. The three-dimensional object of the present invention usually has a bending strength of 150 to 300 MPa.
[実施例]  [Example]
[0103] 以下、実施例により、本発明の具体的態様を説明するが、本発明は、以下の実施 例に記載の態様に限定されるものではない。  [0103] Hereinafter, specific embodiments of the present invention will be described by way of examples. However, the present invention is not limited to the embodiments described in the following examples.
[0104] 実施例 1  [0104] Example 1
( 1 )光硬化性液状組成物の調製  (1) Preparation of photocurable liquid composition
メトキシプロピレングリコールアタリレート 18. Ogと、トリス(2—ヒドロキシェチル)イソ シァヌレートトリアタリレート 6. 5gと、 1—ヒドロキシシクロへキシルフェニルケトン 1. 4g と、 日本油脂(株)製、マリアリム AKM_0531 (ァリルエーテルコポリマー、分散剤) 1 . 6gとの混合物からなるバインダー樹脂に、平均粒径 0. 17 z mのアルミナ粒子 (T M— DAR ;大明化学工業株式会社製)を 72. 5g添加し (組成物全量の 40容量%)、 特殊機化工業 (株)製、 T. K. HOMO DISPERを用い、均一分散することによって 、光硬化性液状組成物を調製した。 Methoxypropylene glycol atylate 18. Og, Tris (2-hydroxyethyl) isocyanurate triatalylate 6.5 g, 1-hydroxycyclohexyl phenyl ketone 1.4 g, manufactured by Nippon Oil & Fats Co., Ltd., Marialim AKM_0531 (Aryl ether copolymer, dispersant) 72.5 g of alumina particles (TM—DAR; manufactured by Daimei Chemical Co., Ltd.) with an average particle size of 0.17 zm were added to a binder resin consisting of 1.6 g of a mixture. (40% by volume of the total amount of the composition), made by TK HOMO DISPER, made by Tokushu Kika Kogyo Co., Ltd. A photocurable liquid composition was prepared.
得られた組成物の組成 (重量%)及びアルミナ粒子の容量%を表 1に示す。  Table 1 shows the composition (% by weight) of the obtained composition and the volume percentage of alumina particles.
[0105] (2)立体形状物の作製 [0105] (2) Production of three-dimensional object
上記の光硬化性液状組成物を用いて、光造形装置(ソニー(株)製、 SCS- 300P 型)を用いて、立体形状物を作製した。  Using the photocurable liquid composition described above, a three-dimensional object was prepared using an optical modeling apparatus (SCS-300P type, manufactured by Sony Corporation).
目的とする立体形状物の設計図を図 2に示し、得られた立体形状物の電子顕微鏡 写真を図 3に示す。  Fig. 2 shows a design drawing of the target 3D object, and Fig. 3 shows an electron micrograph of the 3D object obtained.
[0106] (3)焼成体の作製 [0106] (3) Fabrication of fired body
上記(2)で得られた立体形状物を、大気脱脂炉 (KM— 100,アドバンテック株式 会社製)を用いて、昇温速度 0. 33°C/min.で 900°Cまでカ卩温し、 900°Cで 2時間 維持した後、自然冷却することにより、脱脂した。その後、さらに、大気焼結炉 (SUP ER BURN SH- 1415C MS0373,株式会社モトャマ製)を用いて、昇温速度 8. 5°C/min.で 1500°Cまで加温し、 1500°Cで 2時間維持した後、 自然冷却するこ とにより、焼成体を得た。  Using the atmospheric degreasing furnace (KM-100, manufactured by Advantech Co., Ltd.), the three-dimensional product obtained in (2) above was heated to 900 ° C at a temperature rising rate of 0.33 ° C / min. After maintaining at 900 ° C for 2 hours, it was degreased by natural cooling. After that, using an air sintering furnace (SUP ER BURN SH-1415C MS0373, manufactured by Motoyama Co., Ltd.), heat to 1500 ° C at a rate of temperature increase of 8.5 ° C / min. After maintaining for 2 hours, the product was naturally cooled to obtain a fired body.
得られた焼成体の電子顕微鏡写真を図 4に示す。  FIG. 4 shows an electron micrograph of the obtained fired body.
[0107] 比較例 1 [0107] Comparative Example 1
実施例 1で用いた平均粒径 0. 17 μ ΐηのアルミナ粒子の代わりに、平均粒径 4 /i m のアルミナ粒子を用いた以外は実施例 1と同様にして光硬化性液状組成物を調製し 、それを用いて立体形状物を作製し、焼成体を作製した。  A photocurable liquid composition was prepared in the same manner as in Example 1 except that alumina particles having an average particle diameter of 4 / im were used instead of alumina particles having an average particle diameter of 0.17 μΐη used in Example 1. Then, a three-dimensional object was produced using the same, and a fired body was produced.
[0108] [評価方法] [0108] [Evaluation method]
実施例 1及び比較例 1で得た、光硬化性液状組成物の流動性、チクソトロピック性 及び光硬化性、その硬化物の造形精度、並びにその焼成体の線収縮率及び焼成体 の成否を、以下に示す条件で評価した。結果を表 1に示す。  The flowability, thixotropic property and photocurability of the photocurable liquid composition obtained in Example 1 and Comparative Example 1, the molding accuracy of the cured product, the linear shrinkage ratio of the fired product, and the success or failure of the fired product. Evaluation was performed under the following conditions. The results are shown in Table 1.
(1)流動性:ガラス板上に乗せた光硬化性液状組成物を、ステンレス製アプリケータ を用いて塗り伸ばした場合の塗工性により、流動性を評価した。このとき、容易に均 一塗工できた場合を「〇」、ひび割れを生じた場合を「 X」と判定した。  (1) Fluidity: The fluidity was evaluated by the coating property when the photocurable liquid composition placed on the glass plate was spread using a stainless applicator. At this time, the case where the uniform coating was easily performed was judged as “◯”, and the case where a crack occurred was judged as “X”.
[0109] (2)チクソトロピック性:ガラス板上に高さ lOO x m以上となるように塗布した光硬化性 液状組成物を、ガラス板と平行にスクレーパーで搔き取って、チクソトロピック性を評 価した。このとき、スクレーパーに接した光硬化性液状組成物のみが流動し、それ以 外の部分は流動せず、スクレーパー端部の周辺部分で糸 \き等見られなレ、場合を「 〇」、スクレーパーに直接接していない部分も流れたり、端部に糸引きが見られる場 合は「X」と判定した。 [0109] (2) Thixotropic property: A photocurable liquid composition coated on a glass plate so as to have a height of lOO xm or more is scraped off with a scraper in parallel with the glass plate to evaluate thixotropic property. I was worth it. At this time, only the photocurable liquid composition in contact with the scraper flows, the other portions do not flow, and the thread is not seen in the peripheral portion of the scraper end. If the part that is not in direct contact with the scraper also flows or stringing is observed at the end, it was judged as “X”.
[0110] (3)光硬化性:光積層造形法 (造型機として、ソニー (株)製、 SCS— 300P型を使用 した。)により、 100mW/cm2のエネルギー密度のレーザー光(波長 355nm、直径 2 OO z m)を速度 290mm/sで 1回直線的に走査して、光硬化性を評価した。このとき 、硬化深度 140 z m以上の硬化物が得られた場合を「◎」、硬化深度 140 x m未満 の硬化物が得られた場合を「〇」、硬化物が得られなかった場合を「 X」と判定した。 [0110] (3) Photocurability: Laser light with an energy density of 100 mW / cm 2 (wavelength of 355 nm, using the SCS-300P manufactured by Sony Corporation as a molding machine) by optical additive manufacturing method. The photocurability was evaluated by scanning once linearly at a speed of 290 mm / s. At this time, “◎” indicates that a cured product having a cured depth of 140 zm or more is obtained, “◯” indicates that a cured product having a cured depth of less than 140 xm is obtained, and “X” indicates that a cured product is not obtained. Was determined.
[0111] (4)立体形状物の造形精度:得られた立体形状物の X、 Υ、 Ζ軸方向の各外形寸法 を測定し、設計寸法との差異が 100 z m以下であれば、「〇」とし、 lOO x mを超えた 場合を「X」とした。  [0111] (4) Modeling accuracy of the three-dimensional object: Measure the external dimensions in the X, Υ, and Ζ axis directions of the three-dimensional object, and if the difference from the design dimension is 100 zm or less, ”And“ X ”when lOO xm is exceeded.
[0112] (5)焼成体の線収縮率(%):脱脂処理前である立体形状物の X軸方向の各外形寸 法及び焼成体の X軸方向の各外形寸法をそれぞれ測定し、脱脂処理前後と焼成処 理前後での外形寸法の変化量から線収縮率を算出した。  [0112] (5) Linear shrinkage rate (%) of the fired body: Measure the external dimensions in the X-axis direction of the three-dimensional product before degreasing and the external dimensions in the X-axis direction of the fired body, respectively, and degrease The linear shrinkage rate was calculated from the amount of change in the external dimensions before and after the treatment and before and after the firing treatment.
[0113] (6)焼成体の成否:脱脂又は焼成工程でひび割れ等を生じなかった場合を「〇」、ひ び割れ等を生じた場合を「 X」と判定した。  [6] (6) Success or failure of fired body: “O” was determined when cracks were not generated in the degreasing or firing process, and “X” was determined when cracks were generated.
[0114] [表 1]  [0114] [Table 1]
Figure imgf000032_0001
Figure imgf000032_0001
[0115] 表 1の結果から、平均粒径の小さいアルミナ粒子を用いることにより、立体形状物の 造形精度に優れた立体形状物を得ることができ、かつ、それを焼成してなる焼成体 は線収縮率が小さぐ脱脂又は焼成工程でひび割れ等を生じないことがわかる。 産業上の利用可能性 [0115] From the results in Table 1, by using alumina particles having a small average particle diameter, It can be seen that a three-dimensional object having excellent modeling accuracy can be obtained, and a fired body obtained by firing the same does not cause cracking or the like in a degreasing or firing process with a low linear shrinkage rate. Industrial applicability
本発明の立体形状物の製造方法で用いる光硬化性液状組成物は、セラミックス粉 体等とバインダー組成物との混合物中に占めるセラミックス充填率を増加させても、 良好な流動性と光硬化性を示し、その結果、本発明の立体形状物の製造方法によ れば、光積層造形法により所望の立体形状物を容易に造形できる。従って、本発明 の立体形状物の製造方法は、セラミックス焼成体の製造に好適である。  The photocurable liquid composition used in the method for producing a three-dimensional product of the present invention has good fluidity and photocurability even when the ceramic filling ratio in the mixture of the ceramic powder and the binder composition is increased. As a result, according to the method for manufacturing a three-dimensional object of the present invention, a desired three-dimensional object can be easily modeled by the optical layered modeling method. Therefore, the method for producing a three-dimensional object of the present invention is suitable for producing a ceramic fired body.

Claims

請求の範囲 The scope of the claims
[1] セラミックス粒子を含有する光硬化性液状組成物に光を照射して、前記組成物の 硬化層を形成し、前記硬化層の上に、前記組成物を再度供給し、光を照射して、前 記組成物の硬化層をさらに形成することを繰り返すことにより、前記硬化層が積層一 体化した立体形状物を造形する立体形状物の製造方法であって、  [1] A photocurable liquid composition containing ceramic particles is irradiated with light to form a cured layer of the composition, and the composition is again supplied onto the cured layer and irradiated with light. A method for producing a three-dimensional product by forming a three-dimensional product in which the cured layer is laminated and integrated by repeating the formation of a cured layer of the composition.
前記組成物が下記 (A)〜(C)成分を含有してなる、立体形状物の製造方法。 A method for producing a three-dimensional product, wherein the composition contains the following components (A) to (C).
(A)電子顕微鏡法による数平均粒径が 0. 01〜0. 5 μ ΐηのセラミックス粒子、(A) ceramic particles having a number average particle diameter of 0.01 to 0.5 μΐη by electron microscopy;
(B)重合性官能基を有する化合物、及び (B) a compound having a polymerizable functional group, and
(C)光重合開始剤  (C) Photopolymerization initiator
[2] 前記組成物全量に対して、前記 (A)セラミックス粒子を 10容量%以上含有してなる [2] Containing 10% by volume or more of (A) ceramic particles with respect to the total amount of the composition
、請求項 1に記載の立体形状物の製造方法。 The method for producing a three-dimensional object according to claim 1.
[3] 前記 (A)セラミックス粒子が、アルミナ粒子である、請求項 1又は 2に記載の立体形 状物の製造方法。 [3] The method for producing a three-dimensional product according to claim 1 or 2, wherein the (A) ceramic particles are alumina particles.
[4] 前記(B)成分が、ラジカル重合性化合物及び/又はカチオン重合性化合物である 、請求項:!〜 3のいずれか一に記載の立体形状物の製造方法。  [4] The method for producing a three-dimensionally shaped product according to any one of [1] to [3], wherein the component (B) is a radical polymerizable compound and / or a cationic polymerizable compound.
[5] 前記 (B)成分が、 3個以上の重合性官能基を有するラジカル重合性化合物を含有 してなる、請求項 1〜4のいずれか一に記載の立体形状物の製造方法。  [5] The method for producing a three-dimensional product according to any one of claims 1 to 4, wherein the component (B) comprises a radical polymerizable compound having three or more polymerizable functional groups.
[6] 下記 (A)〜(C)成分を含有してなる光硬化性液状組成物を硬化させて得られる、 立体形状物。  [6] A three-dimensional product obtained by curing a photocurable liquid composition comprising the following components (A) to (C).
(A)電子顕微鏡法による数平均粒径 0. 01〜0. 5 z mのセラミックス粒子、 (A) ceramic particles having a number average particle diameter of 0.01 to 0.5 zm by electron microscopy;
(B)重合性官能基を有する化合物、及び (B) a compound having a polymerizable functional group, and
(C)光重合開始剤  (C) Photopolymerization initiator
[7] 請求項 6に記載の立体形状物を焼成して得られる、セラミックス焼成体。  [7] A ceramic fired body obtained by firing the three-dimensionally shaped article according to claim 6.
PCT/JP2006/305003 2005-03-18 2006-03-14 Method for producing three-dimensional article and three-dimensional article WO2006100964A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-078773 2005-03-18
JP2005078773A JP2006257323A (en) 2005-03-18 2005-03-18 Stereo-structured article and its production method

Publications (1)

Publication Number Publication Date
WO2006100964A1 true WO2006100964A1 (en) 2006-09-28

Family

ID=37023630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305003 WO2006100964A1 (en) 2005-03-18 2006-03-14 Method for producing three-dimensional article and three-dimensional article

Country Status (3)

Country Link
JP (1) JP2006257323A (en)
TW (1) TW200642988A (en)
WO (1) WO2006100964A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295726A (en) * 2007-05-31 2008-12-11 Osaka Univ Preparing method for dental restoration
JP2010031279A (en) * 2008-07-30 2010-02-12 Ivoclar Vivadent Ag Photo-curable slip for preparing dental ceramic by three-dimensional lithography
JP2018122571A (en) * 2017-02-03 2018-08-09 日本特殊陶業株式会社 Method for producing ceramic molded body
CN108996998A (en) * 2018-10-08 2018-12-14 广东工业大学 A kind of composition and the method for preparing crystalline ceramics
US20220032378A1 (en) * 2020-07-31 2022-02-03 Seiko Epson Corporation Three-dimensional shaping apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080135721A1 (en) * 2006-12-06 2008-06-12 General Electric Company Casting compositions for manufacturing metal casting and methods of manufacturing thereof
CN101733839B (en) * 2009-12-08 2012-02-01 西安交通大学 Magnetic stirring and liquid level regulation device for light-cured rapid-forming ceramic slurry
KR102021406B1 (en) * 2011-06-01 2019-09-16 밤 분데스안슈탈트 퓌어 마테리알포르슝 운트-프뤼풍 Method for producing a moulded body and device
EP2844839A1 (en) 2012-04-23 2015-03-11 General Electric Company Turbine airfoil with local wall thickness control
JP2017127997A (en) * 2016-01-18 2017-07-27 国立研究開発法人産業技術総合研究所 Powder for molding
US20220402822A1 (en) 2019-07-05 2022-12-22 Nippon Electric Glass Co., Ltd. Paste for ceramic 3d shaping and method for manufacturing three-dimensional shaped object

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150662A (en) * 1994-11-30 1996-06-11 Olympus Optical Co Ltd Optical shaping apparatus and method using powder mixed photo-setting resin
JPH0985839A (en) * 1995-09-27 1997-03-31 Olympus Optical Co Ltd Preparation of sintered structural body
JPH1030002A (en) * 1996-07-16 1998-02-03 Olympus Optical Co Ltd Photo curable fluid resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150662A (en) * 1994-11-30 1996-06-11 Olympus Optical Co Ltd Optical shaping apparatus and method using powder mixed photo-setting resin
JPH0985839A (en) * 1995-09-27 1997-03-31 Olympus Optical Co Ltd Preparation of sintered structural body
JPH1030002A (en) * 1996-07-16 1998-02-03 Olympus Optical Co Ltd Photo curable fluid resin composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295726A (en) * 2007-05-31 2008-12-11 Osaka Univ Preparing method for dental restoration
JP2010031279A (en) * 2008-07-30 2010-02-12 Ivoclar Vivadent Ag Photo-curable slip for preparing dental ceramic by three-dimensional lithography
JP2018122571A (en) * 2017-02-03 2018-08-09 日本特殊陶業株式会社 Method for producing ceramic molded body
CN108996998A (en) * 2018-10-08 2018-12-14 广东工业大学 A kind of composition and the method for preparing crystalline ceramics
US20220032378A1 (en) * 2020-07-31 2022-02-03 Seiko Epson Corporation Three-dimensional shaping apparatus
US11826826B2 (en) * 2020-07-31 2023-11-28 Seiko Epson Corporation Three-dimensional shaping apparatus

Also Published As

Publication number Publication date
JP2006257323A (en) 2006-09-28
TW200642988A (en) 2006-12-16

Similar Documents

Publication Publication Date Title
WO2006100964A1 (en) Method for producing three-dimensional article and three-dimensional article
CA2325716C (en) Liquid, radiation-curable composition, especially for stereolithography
JP4800074B2 (en) Manufacturing method of stereolithography
JP5656419B2 (en) Radiation curable resin composition and rapid prototyping method using the same
EP1171502B2 (en) Resin composition for photofabrication of three dimensional objects
US20040106692A1 (en) Resin composition and three dimensional object
JPH10168165A (en) Photocurable resin composition for optical three-dimensional shaping
JPH10115920A (en) Photohardenable resin composition
CN101755238A (en) Dual photoinitiator, photo curable composition, their purposes and the method for preparing three-dimensional article
JP4017238B2 (en) Photo-curable liquid resin composition
CN101631832A (en) Photocurable compositions for preparing ABS-like articles
KR20070052705A (en) Radiation curable liquid resin composition for optical three-dimensional molding and optical molded article obtained by photocuring same
JPH09278811A (en) Photosetting resin composition
JP5317503B2 (en) Photo-curable resin composition for optical three-dimensional modeling and three-dimensional modeling
JP2013166893A (en) Radiation-curable composition for stereophotolithography
JP4863288B2 (en) Photo-curable resin composition for optical three-dimensional modeling and three-dimensional modeling
JP3820289B2 (en) Photocurable resin composition for producing resin mold and method for producing resin mold
JP2006169326A (en) Photocurable resin composition for stereolithography
JPH11228610A (en) Photo-setting resin composition
JP4916744B2 (en) Manufacturing method of three-dimensional object and three-dimensional object
JP5334389B2 (en) Photo-curable resin composition for optical three-dimensional modeling and three-dimensional modeling
JP4627587B2 (en) Resin composition and three-dimensional shape
JP2002060463A (en) Photocurable resin composition and three-dimensionally shaped article
JP2005015627A (en) Photocurable liquid resin composition
JP2005281414A (en) Radiation curable liquid resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729037

Country of ref document: EP

Kind code of ref document: A1