JP2008295726A - Preparing method for dental restoration - Google Patents

Preparing method for dental restoration Download PDF

Info

Publication number
JP2008295726A
JP2008295726A JP2007144859A JP2007144859A JP2008295726A JP 2008295726 A JP2008295726 A JP 2008295726A JP 2007144859 A JP2007144859 A JP 2007144859A JP 2007144859 A JP2007144859 A JP 2007144859A JP 2008295726 A JP2008295726 A JP 2008295726A
Authority
JP
Japan
Prior art keywords
slurry
restoration
shaped body
dental restoration
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007144859A
Other languages
Japanese (ja)
Other versions
JP4978929B2 (en
Inventor
Taiji Shiyoumura
泰治 荘村
Yoshio Miyamoto
欽生 宮本
Satohide Kirihara
聡秀 桐原
Masahito Ishikawa
理一登 石川
Yoichi Kumazawa
洋一 熊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bionic
BIONIC CO Ltd
Osaka University NUC
Original Assignee
Bionic
BIONIC CO Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bionic, BIONIC CO Ltd, Osaka University NUC filed Critical Bionic
Priority to JP2007144859A priority Critical patent/JP4978929B2/en
Publication of JP2008295726A publication Critical patent/JP2008295726A/en
Application granted granted Critical
Publication of JP4978929B2 publication Critical patent/JP4978929B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dental Preparations (AREA)
  • Dental Prosthetics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing a dental restoration made of a ceramic at a high precision and at a low cost. <P>SOLUTION: This preparing method for the dental restoration made of the ceramic by using the rapid prototyping method includes the process of preparing a substrate, the molding process, the process of removing a slurry remaining without being cured, the sintering process of sintering a molded article by heating the molded article, and the impregnating process of making the molded article impregnated with glass. In the molding process, processes (a) and (b) are repeated on the substrate to form the molded article which is formed on a restoration forming section, and a guard for molding which is formed at least on the upstream side of the molded article in the slurry. In the process (a), a schema is moved from the upstream side on the board to the downstream side, and the slurry containing a photo-curing resin and a ceramic powder is applied on the board. In the process (b), the restoration forming section of the slurry is irradiated with light, while the slurry at least on the upstream side of the restoration forming section is irradiated with light as well, and the slurry is cured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はセラミック製の歯科用修復物の作製方法に関し、特にラピッドプロトタイピング法を用いたセラミック歯冠修復物の作製方法に関する。   The present invention relates to a method for producing a ceramic dental restoration, and more particularly to a method for producing a ceramic crown restoration using a rapid prototyping method.

近年、審美性等の理由から、金属製の歯冠修復物に代わりセラミック製の歯冠修復物に対する需要が増大している。セラミック製の歯冠修復物の作製には、CAD/CAMシステムが導入されている。CAD/CAMシステムでは、まず、歯列データに基づいてコンピュータ上で歯冠修復物の形状が決定される。続いて、かかる形状に基づいてブロック状のセラミックをドリルで切削し、歯冠修復物が作製される。
Nakamura T., Tanaka H, Kinuta S, Akao T, Okamaoto K, Wakabayashi K, Yatani H, "In vitro study on marginal and internal fit of CAD/CAM all-ceramic crowns", Dent Mater J. 2005 Sep; 24(3):456-9 Hotta Y, Miyazaki T, Fujiwara T, Tomita S, Shinya A, Sugai Y, Ogura H, "Durability of tungsten carbide burs for the fabrication of titanium crowns using dental CAD/CAM", Dent Mater J. 2004 Jun; 23(2):190-6 Li H, You DO, Zhou CR, Ran JG, "Study on machinable glass-ceramic containing fluorophlogopite for dental CAD/CAM system", J Mater Sci Mater Med. 2006 Nov; 17(11):1133-7
In recent years, for reasons such as aesthetics, there is an increasing demand for ceramic crown restorations instead of metal crown restorations. A CAD / CAM system has been introduced for the production of ceramic crown restorations. In the CAD / CAM system, first, the shape of the crown restoration is determined on the computer based on the dentition data. Subsequently, a block-shaped ceramic is cut with a drill based on such a shape, and a restoration of a crown is produced.
Nakamura T., Tanaka H, Kinuta S, Akao T, Okamaoto K, Wakabayashi K, Yatani H, "In vitro study on marginal and internal fit of CAD / CAM all-ceramic crowns", Dent Mater J. 2005 Sep; 24 ( 3): 456-9 Hotta Y, Miyazaki T, Fujiwara T, Tomita S, Shinya A, Sugai Y, Ogura H, "Durability of tungsten carbide burs for the fabrication of titanium crowns using dental CAD / CAM", Dent Mater J. 2004 Jun; 23 (2 ): 190-6 Li H, You DO, Zhou CR, Ran JG, "Study on machinable glass-ceramic containing fluorophlogopite for dental CAD / CAM system", J Mater Sci Mater Med. 2006 Nov; 17 (11): 1133-7

しかしながら、セラミックの切削加工は、1つずつ切削するシリアル処理で行われるため、1つの歯冠修復物の作製に2時間程度かかり、製造コストが高くなるという問題があった。
また、ドリルの摩耗により、完成した歯冠修復物の形状が、CAD上で設計した歯冠修復物の形状からずれるという問題もあった。
更には、セラミックの切削に用いられるドリルの刃が高価であるという問題もあった。
However, since ceramic cutting is performed by serial processing that cuts one by one, it takes about 2 hours to produce one crown restoration, and there is a problem that the manufacturing cost increases.
In addition, due to wear of the drill, there is a problem that the shape of the completed crown restoration is deviated from the shape of the crown restoration designed on CAD.
Further, there is a problem that a drill blade used for cutting ceramic is expensive.

そこで、本発明は、ラピッドプロトタイピング法を用いて、セラミック製の歯科用修復物を高精度かつ安価に作製する方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for producing a dental restoration made of ceramic with high accuracy and low cost by using a rapid prototyping method.

本発明は、ラピッドプロトタイピング法を用いたセラミック製の歯科用修復物の作製方法であって、
基板を準備する工程と、
基板上に、以下の工程(a)、(b):
(a)基板上の上流側から下流側にスキーマを移動させて、光硬化樹脂とセラミックパウダーとを含むスラリーを基板上に塗布する工程、
(b)スラリーの修復物形成部分に光を照射するとともに、修復物形成部分の少なくとも上流側のスラリーにも光を照射して、スラリーを硬化させる工程、
を繰り返し、修復物形成部分に形成された造形体と、少なくともその上流側に形成された造形用ガードとをスラリー中に形成する造形工程と、
硬化せずに残ったスラリーを除去する工程と、
造形体を加熱して造形体を焼結する焼結工程と、
造形体にガラスを浸潤させる浸潤工程とを含むことを特徴とする歯科用修復物の作製方法である。
The present invention is a method for producing a dental restoration made of ceramic using a rapid prototyping method,
Preparing a substrate;
On the substrate, the following steps (a) and (b):
(A) moving the schema from the upstream side to the downstream side on the substrate, and applying a slurry containing a photo-curing resin and ceramic powder on the substrate;
(B) A step of irradiating light on the restoration forming portion of the slurry and irradiating light on at least the upstream side of the restoration forming portion to cure the slurry;
The modeling step of forming the modeling body formed in the restoration forming part and the modeling guard formed at least on the upstream side in the slurry,
Removing the remaining slurry without curing;
A sintering process in which the shaped body is heated to sinter the shaped body;
A method for producing a dental restoration, comprising an infiltration step for infiltrating glass into a shaped body.

本発明にかかる歯科用修復物の作製方法では、十分な強度特性等を備えたセラミック製の歯科用修復物を、欠け等の損傷の発生なく高精度に形成できる。   In the method for producing a dental restoration according to the present invention, a ceramic dental restoration having sufficient strength characteristics and the like can be formed with high accuracy without causing damage such as chipping.

実施の形態1.
本発明の実施の形態1にかかるセラミック製の歯科用修復物の作製方法では、ラピッドプロトタイピング法(Rapid Prototyping Method)が用いられる。
図1は、本実施の形態1にかかる歯科用修復物の作製に用いる紫外線硬化光造形装置(CAM装置)の外観であり、図2は装置の内部である。かかる紫外線硬化光造形装置は、DMEC社製の紫外線硬化光造形装置(SCS−300P)をベースに改造を加えたものである。
Embodiment 1 FIG.
In the method for producing a dental restoration made of ceramic according to the first embodiment of the present invention, a rapid prototyping method is used.
FIG. 1 is an external view of an ultraviolet curing stereolithography apparatus (CAM apparatus) used for producing a dental restoration according to the first embodiment, and FIG. 2 is an inside of the apparatus. Such an ultraviolet curing stereolithography apparatus is a modification based on an ultraviolet curing stereolithography apparatus (SCS-300P) manufactured by DMEC.

紫外線硬化光造形装置では、スキーマを用いて、例えば、紫外線硬化性のスラリーを基板上に一定の膜厚で塗布するとともに、紫外線を照射してスラリーを部分的に硬化させることが可能となる。特に、スラリーには、セラミックを成分としたスラリーを用いることもできる。   In the ultraviolet curing stereolithography apparatus, for example, an ultraviolet curable slurry is applied on a substrate with a certain film thickness using a schema, and the slurry can be partially cured by irradiating ultraviolet rays. In particular, a slurry containing ceramic as a component can also be used as the slurry.

図3は、ラピッドプロトタイピング法を用いた歯科用修復物の作製工程の概略図であり、図2の紫外線硬化光造形装置を、右下から左上の方向に見た場合の概略図である。
本実施の形態1にかかる歯科用修復物の作製方法は、以下の工程1〜7を含む。
FIG. 3 is a schematic view of a production process of a dental restoration using the rapid prototyping method, and is a schematic view when the ultraviolet curing stereolithography apparatus of FIG. 2 is viewed from the lower right to the upper left.
The method for producing a dental restoration according to the first embodiment includes the following steps 1 to 7.

工程1:図3(a)に示すように、基板10を準備する。基板10は、基板10上への積層が進むに従って、その積層された厚さずつ下降するようになっている。続いて、スキーマ20を用いて、コンポジットスラリー30を基板10上に塗布する。スキーマ20は上流側(左側)から下流側(右側)への一方向(Aの方向)にコンポジットスラリー30を延ばしながら塗布する。塗布されるコンポジットスラリー30の膜厚は、基板10とスキーマ20との距離により調整できるが、ここでは、1層の膜厚は30μmとする。但し、1層の膜厚は30μmに限定されるものではない。   Step 1: As shown in FIG. 3A, a substrate 10 is prepared. As the stacking on the substrate 10 progresses, the substrate 10 is lowered by the stacked thickness. Subsequently, the composite slurry 30 is applied onto the substrate 10 using the schema 20. The schema 20 is applied while extending the composite slurry 30 in one direction (direction A) from the upstream side (left side) to the downstream side (right side). The film thickness of the applied composite slurry 30 can be adjusted by the distance between the substrate 10 and the schema 20, but here, the film thickness of one layer is 30 μm. However, the film thickness of one layer is not limited to 30 μm.

コンポジットスラリー30には、紫外線硬化樹脂とセラミックパウダー(ナノ粒子)の混合物が用いられ、例えば、アクリル系樹脂(KC1159、DMEC社製)と、αアルミナ粒子(平均粒子径0.17μm、大明化学工業製)を、体積比60/40で混合したスラリーが好ましい。但し、かかる混合比は60/40に限定されるものではない。   For the composite slurry 30, a mixture of an ultraviolet curable resin and ceramic powder (nanoparticles) is used. Made by mixing at a volume ratio of 60/40. However, the mixing ratio is not limited to 60/40.

また、コンポジットスラリー30には、紫外線硬化樹脂とジルコニア強化アルミナ(ZTA)を混合したスラリーを用いても構わない。但し、かかる材料はジルコニア強化アルミナ(ZTA)に限定されるものではない。   The composite slurry 30 may be a slurry in which an ultraviolet curable resin and zirconia reinforced alumina (ZTA) are mixed. However, such a material is not limited to zirconia reinforced alumina (ZTA).

なお、図2は、透明の基板上に、白いコンポジットスラリーが塗布された状態を示している。   FIG. 2 shows a state in which a white composite slurry is applied on a transparent substrate.

工程2:図3(b)に示すように、コンポジットスラリー30の所定部分に紫外線レーザ(波長:355nm)を照射して、コンポジットスラリー30を硬化させる。
紫外線レーザを照射する部分は、予め作成された、歯科用修復物と造形用ガードのCADデータに基づいて決定される。具体的には、歯科用修復物と造形用ガードのCAD画像を、コンポジットスラリー30(膜厚30μm)の1層毎に水平分割したCADデータを作成し、そのデータに基づいて、1層毎に紫外線レーザを照射する。
Step 2: As shown in FIG. 3B, a predetermined portion of the composite slurry 30 is irradiated with an ultraviolet laser (wavelength: 355 nm) to cure the composite slurry 30.
The portion to be irradiated with the ultraviolet laser is determined based on CAD data of the dental restoration and the modeling guard, which are created in advance. Specifically, CAD data is created by horizontally dividing CAD images of dental restorations and modeling guards for each layer of the composite slurry 30 (film thickness 30 μm), and based on the data, for each layer Irradiate with ultraviolet laser.

紫外線レーザが照射された部分は、硬化して造形用ガード31、造形体32となる。紫外線レーザが照射されない部分は、コンポジットスラリー30のまま残る。   The portion irradiated with the ultraviolet laser is cured to become a modeling guard 31 and a modeling body 32. The portion that is not irradiated with the ultraviolet laser remains as the composite slurry 30.

なお、ここでは紫外線を用いてコンポジットスラリー30を硬化したが、可視光硬化レジンをコンポジットスラリーの材料に用いて、可視光を用いてコンポジットスラリーを硬化させても構わない。また、スラリーの硬化は、インクジェットプリンターによる硬化剤の噴射によっても可能である。   Although the composite slurry 30 is cured here using ultraviolet rays, the composite slurry may be cured using visible light using a visible light curing resin as the material of the composite slurry. The slurry can also be cured by jetting a curing agent with an ink jet printer.

また、紫外線レーザを走査させてコンポジットスラリー30を硬化する代わりに、例えば、マスクを用いて、所定領域に一度に紫外線を照射して硬化させても構わない。   Further, instead of curing the composite slurry 30 by scanning the ultraviolet laser, for example, using a mask, the predetermined region may be irradiated with ultraviolet rays at once to be cured.

工程3:図3(c)に示すように、工程1と同様に、スキーマ20でコンポジットスラリー30を積み重ねて塗布する。塗布するコンポジットスラリー30の膜厚は、1層目と同じく30μmである。
続いて、紫外線レーザを照射して、所定位置のコンポジットスラリー30を硬化させて造形用ガード31、造形体32を形成する。
Step 3: As shown in FIG. 3C, the composite slurry 30 is stacked and applied by the schema 20 in the same manner as in Step 1. The film thickness of the composite slurry 30 to be applied is 30 μm as in the first layer.
Subsequently, the composite slurry 30 at a predetermined position is cured by irradiating an ultraviolet laser to form the modeling guard 31 and the modeling body 32.

2層目のコンポジットスラリー30をスキーマ20で塗布する場合、塗布されるコンポジットスラリー30に押されて、1層目に形成した造形体32が剥離したり、A方向に位置がずれたりする。特に、クラウン等の歯科用修復物では、下方の厚みが薄く、基板10から剥離しやすい。   When the second-layer composite slurry 30 is applied with the schema 20, the shaped body 32 formed on the first layer is peeled off or displaced in the A direction by being pushed by the applied composite slurry 30. In particular, a dental restoration such as a crown has a thin lower thickness and is easily peeled off from the substrate 10.

これに対して、本実施の形態1にかかる製造方法では、造形体32の上流側に造形体ガード31が形成されているため、上層のコンポジットスラリー30を塗布する場合に、下層の造形体32にかかる力が大幅に軽減され、下層の造形体32の剥離等が防止できる。造形体32と造形体ガード31との間隔は、造形体ガード31の周囲でほぼ等間隔であり、0.1mm〜1.0mm程度が好ましく、特に0.5mm程度が好ましい。   On the other hand, in the manufacturing method according to the first embodiment, the shaped body guard 31 is formed on the upstream side of the shaped body 32. Therefore, when the upper composite slurry 30 is applied, the lower shaped body 32 is formed. Is significantly reduced, and peeling of the lower shaped body 32 can be prevented. The distance between the model body 32 and the model body guard 31 is substantially equal around the model body guard 31, preferably about 0.1 mm to 1.0 mm, and particularly preferably about 0.5 mm.

ここで、造形体ガード31は、少なくとも造形体32の上流側に設けられれば、下層の造形体32の剥離等を防止する効果が得られる。   Here, if the modeling body guard 31 is provided at least on the upstream side of the modeling body 32, an effect of preventing peeling or the like of the lower modeling body 32 can be obtained.

なお、上述のように、クラウン等の歯科用修復物では下方の厚みが薄く、基板10から造形体32が剥離しやすい。このため、図3(c)に示すように、造形体32と造形体ガード31との間隔は、造形体ガード31の周囲でほぼ等間隔の0.5mm程度とすることが好ましい。しかしながら、例えばブロック状の造形体のように、薄い部分の無い形状の場合には、図4に示すような造形体ガード31を用いてもよい。   Note that, as described above, a dental restoration such as a crown has a thin lower thickness, and the shaped body 32 is easily peeled off from the substrate 10. For this reason, as shown in FIG. 3C, it is preferable that the distance between the modeled body 32 and the modeled body guard 31 is about 0.5 mm that is approximately equal around the modeled body guard 31. However, in the case of a shape having no thin portion, such as a block-shaped shaped body, a shaped body guard 31 as shown in FIG. 4 may be used.

図4において、上図が、造形体32の周囲に設けられた造形体ガード31の上面図、下図が造形体ガード31の側面図である。図4では、左側が、スキーマ20がコンポジットスラリー30を塗布する場合の上流側であり、右側が下流側である。   In FIG. 4, the upper diagram is a top view of the modeled body guard 31 provided around the modeled body 32, and the lower diagram is a side view of the modeled body guard 31. In FIG. 4, the left side is the upstream side when the schema 20 applies the composite slurry 30, and the right side is the downstream side.

このように、造形体32が基板から剥離しにくい形状の場合には、必ずしも造形体32と造形体ガード31との間隔を一定にする必要は無く、造形体32の少なくとも上流側に、図4に示すような造形体ガード31を設けることにより、良好な造形体32を形成することができる。   As described above, when the shaped body 32 has a shape that is difficult to peel from the substrate, it is not always necessary to make the distance between the shaped body 32 and the shaped body guard 31 constant. By providing the shaped body guard 31 as shown in FIG. 1, a good shaped body 32 can be formed.

工程4:コンポジットスラリー30の塗布工程(図3(a))と露光硬化工程(図3(b))を繰り返すことにより、図3(d)に示すような、造形体ガード31、造形体32が形成される。   Step 4: By repeating the application process (FIG. 3A) and the exposure curing process (FIG. 3B) of the composite slurry 30, a model body guard 31 and a model body 32 as shown in FIG. Is formed.

図5Aは、図3(d)に対応する、造形体ガード31および造形体32のCAD画像であり、図3(d)を上から見た状態を示す。また、図5Bは、図5Aの構造の上面を削り取った状態であり、造形体ガード31中に配置された造形体32を示す。   FIG. 5A is a CAD image of the modeled body guard 31 and the modeled body 32 corresponding to FIG. 3D, and shows a state when FIG. 3D is viewed from above. 5B is a state where the upper surface of the structure of FIG. 5A is scraped off, and shows a shaped body 32 arranged in the shaped body guard 31. FIG.

図6Aは、工程1〜4により実際に作製した造形体ガード31および造形体32の上面写真であり、図6Bは、造形体ガード31を破壊して取り出した造形体32の上面写真である。造形体32は、臼歯クラウンである。   FIG. 6A is a top view photograph of the shaped body guard 31 and the shaped body 32 actually produced by steps 1 to 4, and FIG. 6B is a top view photograph of the shaped body 32 taken out by destroying the shaped body guard 31. The shaped body 32 is a molar crown.

図7Aは、工程1〜4により実際に作製した造形体ガード31および造形体32の底面写真であり、図7Bは、造形体ガード31を破壊して取り出した造形体32の底面写真である。   FIG. 7A is a bottom photograph of the shaped body guard 31 and the shaped body 32 actually produced in steps 1 to 4, and FIG. 7B is a bottom photograph of the shaped body 32 taken out by destroying the shaped body guard 31.

特に、図6B、図7Bから分かるように、スキーマ20でコンポジットスラリー30を積層する工程で、造形体32の下部等が欠け落ちることもなく、CAD画像通りの造形体32が得られていることがわかる。   In particular, as can be seen from FIG. 6B and FIG. 7B, in the step of laminating the composite slurry 30 with the schema 20, the shaped body 32 according to the CAD image is obtained without the bottom of the shaped body 32 being lost. I understand.

なお、図5Aや図6Aに示すように、造形体ガード31の上流側(左側)は、テーパ形状になっているが、このような形状にすることにより、スキーマ20でコンポジットスラリー30を塗布する場合の、コンポジットスラリー30と、下層に形成された造形体ガード31との抵抗を小さくすることができる。   As shown in FIGS. 5A and 6A, the upstream side (left side) of the shaped body guard 31 has a tapered shape. By using such a shape, the composite slurry 30 is applied with the schema 20. In this case, the resistance between the composite slurry 30 and the shaped body guard 31 formed in the lower layer can be reduced.

工程5:基板10上のコンポジットスラリー30を、例えばアルコールやアセトン等の溶剤で溶かして、造形体ガード31と造形体32のみとする。
更に、造形体ガード31を機械的に破壊して、造形体32を取り出す。例えば、図6Aに示すように、造形体ガード31に隙間(横方向に延びた線)ができるように形成すると、造形体ガード31の取り外しが容易となる。
Step 5: The composite slurry 30 on the substrate 10 is dissolved in, for example, a solvent such as alcohol or acetone, so that only the shaped body guard 31 and the shaped body 32 are obtained.
Further, the model body guard 31 is mechanically destroyed, and the model body 32 is taken out. For example, as shown in FIG. 6A, if the formed body guard 31 is formed so as to have a gap (a line extending in the lateral direction), the formed body guard 31 can be easily removed.

工程6:造形体32を電気炉に入れて、加熱処理(焼結処理)を行う。加熱処理は、例えば以下の工程(a)、(b)からなる。
(a)焼却(脱脂)工程: 600℃×2時間
(b)焼結工程 :1500℃×2時間
Step 6: The shaped body 32 is placed in an electric furnace, and heat treatment (sintering treatment) is performed. The heat treatment includes, for example, the following steps (a) and (b).
(A) Incineration (degreasing) step: 600 ° C. × 2 hours (b) Sintering step: 1500 ° C. × 2 hours

工程(a)では、造形体32中のアクリル樹脂成分が焼却されてなくなる。また、工程(b)では、アルミナのナノ粒子同士が焼結される。なお、ここでは、工程(a)と工程(b)を、別工程として行ったが、工程(b)の昇温中に、アクリル樹脂の焼却を行うことも可能である。   In the step (a), the acrylic resin component in the shaped body 32 is incinerated. In the step (b), alumina nanoparticles are sintered together. Here, the step (a) and the step (b) are performed as separate steps, but it is also possible to incinerate the acrylic resin during the temperature increase in the step (b).

工程7:加熱処理を行った造形体32に対して、ガラス浸潤処理を行う。具体的には、例えば、La・B・Al・SiO系ガラスの粉体に、造形体32を埋めた状態で、電気炉中で、1100℃×2時間、加熱処理を行う。
造形体32を冷やした後、ブラスト処理を行い、表面に付着した余剰のガラスを除去する。以上の工程1〜7により、セラミック製の歯科用修復物が完成する。
Process 7: A glass infiltration process is performed with respect to the modeling body 32 which heat-processed. Specifically, for example, a powder of La 2 O 3 · B 2 O 3 · Al 2 O 3 · SiO 2 -based glass, in a state of filling the shaped body 32, in an electric furnace, 1100 ° C. × 2 hours Then, heat treatment is performed.
After the shaped body 32 is cooled, blasting is performed to remove excess glass adhering to the surface. Through the above steps 1 to 7, a ceramic dental restoration is completed.

図8Aは、歯科用修復物(臼歯クラウン)のCAD画像であり、図8Bは、本実施の形態1にかかるラピッドプロトタイピング法を用いて作製した、焼結処理前(写真左)、焼結処理後(写真右)の歯科用修復物(造形体)である。   FIG. 8A is a CAD image of a dental restoration (molar crown), and FIG. 8B is a pre-sintering process (left photo), sintering, produced using the rapid prototyping method according to the first embodiment. It is a dental restoration (shaped body) after processing (photo right).

また、図9は、焼結処理前の歯科用修復物(造形体)の上面(左上)、斜視(左下)、底面(右上)の写真であり、図10は、焼結処理後の歯科用修復物(造形体)の上面(左上)、斜視(左下)、底面(右上)の写真である。   9 is a photograph of the upper surface (upper left), perspective view (lower left), and bottom surface (upper right) of the dental restoration (molded body) before the sintering treatment, and FIG. 10 is a dental view after the sintering treatment. It is a photograph of the upper surface (upper left), perspective view (lower left), and bottom surface (upper right) of the restoration (modeled body).

本実施の形態1にかかる作製方法を用いることにより、CADで作製した形状が、再現よく作製できていることがわかる。一方、焼結処理の前後で、造形体の体積が縮小していることも分かる。   By using the manufacturing method according to the first embodiment, it can be seen that the shape manufactured by CAD can be manufactured with good reproducibility. On the other hand, it can also be seen that the volume of the shaped body is reduced before and after the sintering treatment.

焼結処理の前後での、造形体の寸法の変化について調べた結果を以下の表1に示す。焼結処理条件は、上述の工程6に示す工程(a)(b)である。   Table 1 below shows the results of examining changes in the dimensions of the shaped body before and after the sintering treatment. Sintering conditions are the steps (a) and (b) shown in step 6 described above.

(表1)
(Table 1)

表1からわかるように、上述の焼結処理条件では、焼結処理の前後において、近遠心方向、頬舌方向に約23〜24%、歯軸方向に約25%、収縮が発生している。歯軸方向の収縮が大きいのは、重力の影響が加わったためと考えられる。   As can be seen from Table 1, in the above-described sintering treatment conditions, before and after the sintering treatment, contraction occurs in the near-centrifugal direction, the buccal tongue direction by about 23 to 24%, and the tooth axis direction by about 25%. . The contraction in the tooth axis direction is considered to be due to the influence of gravity.

このように、焼結処理により、体積収縮が発生するため、かかる収縮率を考慮した上で、CAD上で歯科用修復物の設計を行うのが好ましい。   As described above, since the volumetric shrinkage occurs due to the sintering treatment, it is preferable to design a dental restoration on CAD in consideration of the shrinkage rate.

なお、収縮率は、焼結処理条件、特に処理温度に依存するため、焼結処理条件を考慮した上で歯科用修復物の設計を行う必要がある。   Since the shrinkage rate depends on the sintering process conditions, particularly the processing temperature, it is necessary to design a dental restoration in consideration of the sintering process conditions.

次に、1)ラピッドプロトタイピング法による造形後、2)焼結処理後、および3)ガラス浸潤処理後の、造形体の曲げ強度および密度についての実験結果を示す。   Next, experimental results on the bending strength and density of the shaped body after 1) modeling by rapid prototyping, 2) after sintering, and 3) after glass infiltration are shown.

1)ラピッドプロトタイピング法による造形は、7mm×3mm×28mmの平板形状のCADデータを作成し、かかるデータに基づいてラピッドプロトタイピング法により造形体を作製した。   1) For modeling by the rapid prototyping method, flat plate CAD data of 7 mm × 3 mm × 28 mm was created, and a modeled body was produced by the rapid prototyping method based on such data.

2)焼結処理は、上述の工程6と同様に、
(a)焼却(脱脂)工程: 600℃×2時間
(b)焼結工程 :1500℃×2時間
の各工程を行った。
2) The sintering process is the same as in step 6 described above.
(A) Incineration (degreasing) step: 600 ° C. × 2 hours (b) Sintering step: Each step of 1500 ° C. × 2 hours was performed.

3)ガラス浸潤処理は、上述の工程7と同様に、La・B・Al・SiO系ガラスの粉体に造形体を埋めた状態で、1100℃×2時間、加熱処理を行った。更に、造形体を冷やした後ブラスト処理を行った。 3) Glass infiltration process, in the same manner as in Step 7 above, in a state of filling the shaped bodies to a powder of La 2 O 3 · B 2 O 3 · Al 2 O 3 · SiO 2 -based glass, 1100 ° C. × 2 Heat treatment was performed for a time. Furthermore, after the shaped body was cooled, blasting was performed.

造形体の曲げ強さは、万能試験機(EZ−Test、島津製作所製)を用い、3点曲げ試験で測定した。また、造形体の密度は、アルキメデス法で計測した。
以下の表2は、造形体の曲げ強さ、密度である。
The bending strength of the shaped body was measured by a three-point bending test using a universal testing machine (EZ-Test, manufactured by Shimadzu Corporation). Further, the density of the shaped body was measured by Archimedes method.
Table 2 below shows the bending strength and density of the shaped body.

(表2)
(Table 2)

1)造形後の曲げ強度は、6.66±0.40MPaと小さかったが、3)ガラス浸潤処理後には、196.99±23.71MPaとなり、曲げ強度が向上したことがわかる。
また、1)造形後の密度は、2.09±0.02g/cmであるが、3)ガラス浸潤処理後には、3.71±0.05g/cmとなり、α−アルミナの理論密度である3.98g/cmに近くなっていることがわかる。
1) The bending strength after modeling was as small as 6.66 ± 0.40 MPa, but 3) after the glass infiltration treatment, it was 196.99 ± 23.71 MPa, indicating that the bending strength was improved.
Further, 1) density after shaping is 2.09 is a ± 0.02g / cm 3, 3) after the glass infiltration treatment, 3.71 ± 0.05g / cm 3 next, alpha-alumina of the theoretical density It can be seen that the value is close to 3.98 g / cm 3 .

図11Aは、2)焼結処理後の造形体の切断面の顕微鏡写真であり、図11Bは、その拡大写真である。図11Bから分かるように、切断面の表面には、細かいクラックが発生している。また、積層間での剥離が発生するために、曲げ強度も低くなっている   FIG. 11A is a photomicrograph of the cut surface of the shaped body after 2) sintering treatment, and FIG. 11B is an enlarged photograph thereof. As can be seen from FIG. 11B, fine cracks are generated on the surface of the cut surface. Also, since peeling occurs between layers, bending strength is also low.

また、図12Aは、2)焼結処理後の造形体の曲げ試験後の破面写真であり、図12Bは、3)ガラス浸潤処理後の表面写真である。   Moreover, FIG. 12A is a fracture surface photograph after a bending test of 2) the shaped body after the sintering treatment, and FIG. 12B is a surface photograph after 3) glass infiltration treatment.

2)焼結処理後の造形体では、図11Bに示すように、造形体内に多くのクラックが存在するが、3)ガラス浸潤処理後には、ガラスがクラック内に浸潤することにより、クラックを封止する。これは、例えば、図12A(ガラス浸潤処理前)と図12B(ガラス浸潤処理後)に示す造形体の破面状態からも分かる。   2) In the shaped body after the sintering treatment, as shown in FIG. 11B, there are many cracks in the shaped body. 3) After the glass infiltration treatment, the glass is infiltrated into the crack, thereby sealing the crack. Stop. This can be seen from, for example, the fracture surface state of the shaped body shown in FIG. 12A (before the glass infiltration process) and FIG. 12B (after the glass infiltration process).

以上のように、本発明の実施の形態1にかかるラピッドプロトタイピング法を用いることにより、セラミック製の歯科用修復物を、欠け等の損傷の発生なく形成することができる。   As described above, by using the rapid prototyping method according to the first embodiment of the present invention, a dental restoration made of ceramic can be formed without occurrence of damage such as chipping.

また、強度や密度においても、優れた特性を有する歯科用修復物を得ることができる。   In addition, a dental restoration having excellent characteristics in strength and density can be obtained.

更に、焼結処理条件に応じた収縮率を考慮して歯科用修復物を行うことにより、正確な寸法の歯科用修復物を得ることができる。   Furthermore, a dental restoration having an accurate dimension can be obtained by performing a dental restoration taking into account the shrinkage rate according to the sintering process conditions.

実施の形態2.
図13は、本実施の形態2にかかるラピッドプロトタイピング法を用いた歯科用修復物の作製工程の概略図である。
Embodiment 2. FIG.
FIG. 13 is a schematic diagram of a production process of a dental restoration using the rapid prototyping method according to the second embodiment.

図13は、上述の実施の形態1の工程3(図3(c))が終わった後に、1層目の修復物形成部分と2層目の修復物形成部分が重なった部分(基板10の法線方向から見て重なった部分)に、更に、紫外線レーザや可視光のような光を照射する多重露光工程を示す。   FIG. 13 shows a portion where the first-layer restoration formation portion and the second-layer restoration formation portion overlap each other after the step 3 (FIG. 3C) of the first embodiment is completed. A multiple exposure process in which light such as an ultraviolet laser or visible light is further irradiated on the overlapping portion when viewed from the normal direction is shown.

光は、2層目の修復物形成部分を通り、1層目の修復物形成部分に達するように照射する。かかる光は、1層目の修復物形成部分の底面には達しないようにする。図13において、破線で囲まれた領域が、光が照射された領域である。   The light is irradiated so as to pass through the second-layer restoration forming portion and reach the first-layer restoration forming portion. Such light is prevented from reaching the bottom surface of the first restoration forming part. In FIG. 13, a region surrounded by a broken line is a region irradiated with light.

スキーマでスラリーを塗布する際、スラリーの粘度によっては、スラリーの表面張力により、下層に積層された層の間の相対的な位置がずれたり、層の間に空気が入る場合がある。   When applying the slurry by the schema, depending on the viscosity of the slurry, the relative position between the layers laminated on the lower layer may be shifted due to the surface tension of the slurry, or air may enter between the layers.

これに対して、本実施の形態2にかかる方法では、2層目に光を照射して修復物形成部分に造形体等を形成した後、更に、1層目と2層目の修復物形成部分が重なった部分に光を照射し、多重露光することにより、1層目と2層目との接着強度を上げている。1層目と2層目の修復物形成部分が重なった部分は、CADデータに基づき決定される。   On the other hand, in the method according to the second embodiment, the second layer is irradiated with light to form a modeled body or the like on the restoration formation portion, and then the first and second layer restorations are formed. By irradiating the overlapping part with light and performing multiple exposure, the adhesive strength between the first layer and the second layer is increased. The portion where the first layer and second layer restoration formation portions overlap is determined based on CAD data.

これにより、積層された層間の相対的な位置ずれ等が防止され、より精度の高い歯科用修復物(造形体)の形成が可能となる。   Thereby, the relative position shift etc. between the laminated | stacked layers are prevented and formation of a dental restoration (modeling body) with higher precision is attained.

また、多重露光工程は、造形体の作製だけでなく、造形体ガードの作製に適用しても良い。   Moreover, you may apply a multiple exposure process not only to preparation of a modeling body but to preparation of a modeling body guard.

本発明の実施の形態1にかかる歯科用修復物の作製に用いる紫外線硬化光造形装置の外観である。It is an external appearance of the ultraviolet curing optical modeling apparatus used for preparation of the dental restoration material concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる歯科用修復物の作製に用いる紫外線硬化光造形装置の内部である。It is the inside of the ultraviolet curing stereolithography apparatus used for preparation of the dental restoration material concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるラピッドプロトタイピング法を用いた歯科用修復物の作製工程の概略図である。It is the schematic of the production process of the dental restoration using the rapid prototyping method concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる、他の造形体ガードである。It is another modeling body guard concerning Embodiment 1 of this invention. 造形体ガードおよび造形体のCAD画像である。It is a CAD image of a modeling body guard and a modeling body. 図5Aの構造の上面を削り取ったCAD画像である。5B is a CAD image with the top surface of the structure of FIG. 実際に作製した造形体ガードおよび造形体の上面写真である。It is the upper surface photograph of the modeling object guard and modeling object which were actually produced. 実際に作製した造形体の上面写真である。It is an upper surface photograph of the modeling object actually produced. 実際に作製した造形体ガードおよび造形体の底面写真である。It is the bottom face photograph of the modeling object guard and modeling object which were actually produced. 実際に作製した造形体の底面写真である。It is a bottom face photograph of the modeling object produced actually. 歯科用修復物のCAD画像である。It is a CAD image of a dental restoration. 本発明の実施の形態1にかかるラピッドプロトタイピング法を用いて作製した、焼結処理前、焼結処理後の歯科用修復物である。It is a dental restoration before and after a sintering process produced using the rapid prototyping method according to the first embodiment of the present invention. 焼結処理前の歯科用修復物の上面、斜視、底面写真である。It is an upper surface, a perspective view, and a bottom photograph of a dental restoration before sintering treatment. 焼結処理後の歯科用修復物の上面、斜視、底面写真である。It is an upper surface, a perspective view, and a bottom photograph of a dental restoration after sintering treatment. 焼結処理後の造形体の切断面の顕微鏡写真である。It is a microscope picture of the cut surface of the molded object after a sintering process. 焼結処理後の造形体の切断面の顕微鏡拡大写真である。It is a microscope enlarged photograph of the cut surface of the molded object after a sintering process. 焼結処理後の造形体の破断面の写真である。It is a photograph of the torn surface of the molded object after a sintering process. ガラス浸潤処理後の破断面の写真である。It is a photograph of the fracture surface after glass infiltration processing. 本発明の実施の形態2にかかるラピッドプロトタイピング法を用いた歯科用修復物の作製工程の概略図である。It is the schematic of the production process of the dental restoration using the rapid prototyping method concerning Embodiment 2 of this invention.

符号の説明Explanation of symbols

10 基板、20 スキーマ、30 コンポジットスラリー、31 造形体ガード、32 造形体。   10 substrate, 20 schema, 30 composite slurry, 31 shaped body guard, 32 shaped body.

Claims (7)

ラピッドプロトタイピング法を用いたセラミック製の歯科用修復物の作製方法であって、
基板を準備する工程と、
該基板上に、以下の工程(a)、(b):
(a)該基板上の上流側から下流側にスキーマを移動させて、光硬化樹脂とセラミックパウダーとを含むスラリーを該基板上に塗布する工程、
(b)該スラリーの修復物形成部分に光を照射するとともに、該修復物形成部分の少なくとも上流側の該スラリーにも光を照射して、該スラリーを硬化させる工程、
を繰り返し、該修復物形成部分に形成された造形体と、少なくともその上流側に形成された造形用ガードとを該スラリー中に形成する造形工程と、
硬化せずに残った該スラリーを除去する工程と、
該造形体を加熱して該造形体を焼結する焼結工程と、
該造形体にガラスを浸潤させる浸潤工程とを含むことを特徴とする歯科用修復物の作製方法。
A method for producing a dental restoration made of ceramic using a rapid prototyping method,
Preparing a substrate;
On the substrate, the following steps (a) and (b):
(A) moving the schema from the upstream side to the downstream side on the substrate, and applying a slurry containing a photocurable resin and ceramic powder on the substrate;
(B) irradiating light to the restoration forming portion of the slurry and irradiating light to at least the upstream side of the restoration forming portion to cure the slurry;
Repeating, and a modeling step of forming in the slurry a modeling body formed in the restoration forming part and a modeling guard formed at least on the upstream side thereof,
Removing the slurry remaining uncured;
A sintering step of heating the shaped body and sintering the shaped body;
A method for producing a dental restoration, comprising an infiltration step of infiltrating the shaped body with glass.
更に、上記工程(b)の後に、上記造形工程において最上層にある第2層の修復物形成部分と、その直下の第1層の修復物形成部分とが重なる部分に、該第2層を通って該第1層に達するように上記光を照射する工程(c)を含むことを特徴とする請求項1に記載の歯科用修復物の作製方法。   Further, after the step (b), the second layer is placed on a portion where the second layer restoration product forming portion in the uppermost layer and the first layer restoration forming portion immediately below the overlapping portion overlap in the modeling step. The method for producing a dental restoration according to claim 1, comprising the step (c) of irradiating the light so as to pass through the first layer. 上記工程(c)は、上記第2層を通った上記光が該第1層に達し、かつ該第1層の底面には達しないように該光を照射する工程であることを特徴とする請求項2に記載の歯科用修復物の作製方法。   The step (c) is a step of irradiating the light so that the light passing through the second layer reaches the first layer and does not reach the bottom surface of the first layer. A method for producing a dental restoration according to claim 2. 上記工程(b)が、上記スラリーの修復物形成部分に光を照射するとともに、該修復物形成部分の周囲の該スラリーにも光を照射して、該スラリーを硬化させる工程であることを特徴とする請求項1〜3のいずれか1つに記載の歯科用修復物の作製方法。   The step (b) is a step of irradiating the restoration forming part of the slurry with light and irradiating the slurry around the restoration forming part to cure the slurry. A method for producing a dental restoration according to any one of claims 1 to 3. 上記造形体と、該造形体を取り囲む上記造形用ガードとの間隔が、一定であることを特徴とする請求項1〜4のいずれか1つに記載の歯科用修復物の作製方法。   The method for producing a dental restoration according to any one of claims 1 to 4, wherein a distance between the shaped body and the shaping guard surrounding the shaped body is constant. 上記造形体と上記造形用ガードとの間隔が、0.1〜1.0mmの範囲にあることを特徴とする請求項5に記載の歯科用修復物の作製方法。   The method for producing a dental restoration according to claim 5, wherein an interval between the shaped body and the shaping guard is in a range of 0.1 to 1.0 mm. 上記スラリーが、紫外線硬化樹脂とセラミックパウダーとのコンポジットスラリーであり、上記光が紫外線であることを特徴とする請求項1〜6のいずれか1つに記載の歯科用修復物の作製方法。   The method for producing a dental restoration according to any one of claims 1 to 6, wherein the slurry is a composite slurry of an ultraviolet curable resin and ceramic powder, and the light is ultraviolet rays.
JP2007144859A 2007-05-31 2007-05-31 How to make a dental restoration Expired - Fee Related JP4978929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007144859A JP4978929B2 (en) 2007-05-31 2007-05-31 How to make a dental restoration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007144859A JP4978929B2 (en) 2007-05-31 2007-05-31 How to make a dental restoration

Publications (2)

Publication Number Publication Date
JP2008295726A true JP2008295726A (en) 2008-12-11
JP4978929B2 JP4978929B2 (en) 2012-07-18

Family

ID=40169831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007144859A Expired - Fee Related JP4978929B2 (en) 2007-05-31 2007-05-31 How to make a dental restoration

Country Status (1)

Country Link
JP (1) JP4978929B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101071554B1 (en) 2010-04-06 2011-10-10 주식회사 하스 Manufacturing method of ceramic primary crown and ceramic primary crown manufactured by the method
TWI569940B (en) * 2015-06-05 2017-02-11 優克材料科技股份有限公司 Method of manufacturing gradient color slurry and method of molding three dimensional object
JP2021506528A (en) * 2018-01-17 2021-02-22 エイオン カンパニー リミテッド Artificial tooth molding equipment and its method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102065069B1 (en) * 2018-05-09 2020-01-10 이승희 Device and Method for manufacturing tooth restoration using 3D printer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812442A (en) * 1994-06-22 1996-01-16 Toshiba Ceramics Co Ltd Slurry for ceramic composite material and method for molding the same
JPH10244596A (en) * 1997-03-04 1998-09-14 Rikagaku Kenkyusho Three-dimensional form-generating method by film lamination forming method and three-dimensional form-generating apparatus thereby
JP2001157686A (en) * 1999-12-02 2001-06-12 Rojitetsuku Kk Method of manufacturing artificial crown, denture and dental plate by lamination and accumulation method
WO2006100964A1 (en) * 2005-03-18 2006-09-28 Osaka University Method for producing three-dimensional article and three-dimensional article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812442A (en) * 1994-06-22 1996-01-16 Toshiba Ceramics Co Ltd Slurry for ceramic composite material and method for molding the same
JPH10244596A (en) * 1997-03-04 1998-09-14 Rikagaku Kenkyusho Three-dimensional form-generating method by film lamination forming method and three-dimensional form-generating apparatus thereby
JP2001157686A (en) * 1999-12-02 2001-06-12 Rojitetsuku Kk Method of manufacturing artificial crown, denture and dental plate by lamination and accumulation method
WO2006100964A1 (en) * 2005-03-18 2006-09-28 Osaka University Method for producing three-dimensional article and three-dimensional article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101071554B1 (en) 2010-04-06 2011-10-10 주식회사 하스 Manufacturing method of ceramic primary crown and ceramic primary crown manufactured by the method
CN102843990A (en) * 2010-04-06 2012-12-26 哈斯有限公司 Preparation method of ceramic crowns for primary teeth, and ceramic crowns for primary teeth prepared thereby
US9458062B2 (en) 2010-04-06 2016-10-04 Hass Co., Ltd. Method of manufacturing ceramic primary crown and ceramic primary crown manufactured by the same
TWI569940B (en) * 2015-06-05 2017-02-11 優克材料科技股份有限公司 Method of manufacturing gradient color slurry and method of molding three dimensional object
JP2021506528A (en) * 2018-01-17 2021-02-22 エイオン カンパニー リミテッド Artificial tooth molding equipment and its method

Also Published As

Publication number Publication date
JP4978929B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
Methani et al. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all‐ceramic crowns: A review
Kessler et al. 3D printing in dentistry—State of the art
Ishida et al. Dimensional accuracy of dental casting patterns created by 3D printers
CN113905871B (en) 3D print object with selective oversolidified regions
Revilla-León et al. Additive manufacturing technologies for processing zirconia in dental applications
CN115043974A (en) 3D printing compound made of single resin by patterned exposure
CN106175950B (en) A kind of digitlization face projects shaped ceramic corona bridge preparation method
CN103637851A (en) Production of dental prostheses via CAD and rapid manufacturing from digitally recorded oral data
US20100143868A1 (en) Method for the precise fabrication of dental components using a sintering or selective laser melting process
Katreva et al. 3D-printing in contemporary prosthodontic treatment
JP2006163370A (en) Method for making dental model, dental model having ceramic layer deposited on surface thereof, making of dental molding and use of dental model, 3d printer and kit
JP4317027B2 (en) Methods and compositions for making ceramic parts by stereolithography and applications in the dental field
JP4978929B2 (en) How to make a dental restoration
Methani et al. Additive manufacturing in dentistry: current technologies, clinical applications, and limitations
Punia et al. 3D printable biomaterials for dental restoration: A systematic review
JP2011528597A (en) Molded member manufactured from shape stabilizing material and method for manufacturing the same
CN108245432B (en) Additive manufacturing method of all-ceramic dental prosthesis
CN105142568B (en) The manufacture method of distortionless dentognathic model and the dentognathic model so manufactured for manufacturing
WO2006056980A2 (en) Method and accessory for preparing a dental crown or bridge
CN110002883A (en) A kind of polysilazane ceramic of photocuring 3D printing and preparation method thereof
RU2700356C1 (en) Method of making parts made from ceramic material by additive production technology
Gali et al. 3D Printing: the future technology in prosthodontics
JP2018047556A (en) Laminate molding structure, laminate molding method and laminate molding device
EP3870100B1 (en) 3d-printed dental restoration precursor with support element and process of production
Dikova et al. Accuracy of polymeric dental bridges manufactured by stereolithography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4978929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees