WO2006098217A1 - ベクトル量の性質が応用される電力消費装置 - Google Patents

ベクトル量の性質が応用される電力消費装置 Download PDF

Info

Publication number
WO2006098217A1
WO2006098217A1 PCT/JP2006/304598 JP2006304598W WO2006098217A1 WO 2006098217 A1 WO2006098217 A1 WO 2006098217A1 JP 2006304598 W JP2006304598 W JP 2006304598W WO 2006098217 A1 WO2006098217 A1 WO 2006098217A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic core
core material
electromotive force
dynamic
Prior art date
Application number
PCT/JP2006/304598
Other languages
English (en)
French (fr)
Inventor
Shinichiro Takeuchi
Original Assignee
Shinichiro Takeuchi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinichiro Takeuchi filed Critical Shinichiro Takeuchi
Publication of WO2006098217A1 publication Critical patent/WO2006098217A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia

Definitions

  • the present invention relates to a power device in which a transformer electromotive force is induced.
  • Patent Document 1 U.S. Pat.No. 4,260,914
  • Patent Document 2 US Patent US 6,246,561B1
  • the present invention is a novel power that optimizes the effect of the magnetic field from the current and makes the magnetic field particularly suitable for preventing the back electromotive force induced in the power supply coil from which the transformer electromotive force is induced. It is to provide a consumption device or a power consumption method.
  • the first magnetic flux of the magnetic force brought into close contact with the static closed magnetic core material is interposed A dynamic magnetic circuit formed via the magnetic core material, the first magnetic flux passed through a power coil wound around the magnetic core material portion of the dynamic magnetic circuit, and the first magnetic circuit
  • the magnetic flux is changed by making the dynamic magnetic circuit dynamic, and a transformer electromotive force is induced in the power supply coil, and the power supply coil electromagnetically couples the mutual inductance negatively.
  • a method of inducing second magnetic fluxes of approximately the same magnitude and in opposite directions into the power supply coil, and substantially preventing back electromotive force induced in the power supply coil, and / or Or it can be achieved by the device.
  • FIG. 1 is an explanatory diagram showing a simple embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing an embodiment in which leakage magnetic flux is reduced when a large current is passed in the present invention.
  • FIG. 3 is an explanatory view showing an example in which jerky rotation (cogging) generated between a magnet and a magnetic core material is reduced in the present invention.
  • a power consuming device denoted by reference numeral 100 in FIG. 1 includes a static magnetic first magnetic core material 10, a magnet 20 closely attached to the magnetic core material 10, and a first magnetic flux 30 from the magnet 20. Therefore, the magnetic core material 10 branches to the magnetic core material 10 interposed between the dynamic magnetic circuit 40 formed via the magnetic core material 10 and the magnetic core material 10 to which the first magnetic flux 30 is branched.
  • the second magnetic core member 14 has a shape that can be changed, and a shaft 80 that is fitted to the second magnetic core member 14 to transmit torque from the outside to the second magnetic core member 14.
  • the shaft 80 is rotatably supported. These members are held.
  • the power consumption device in Fig. 1 works as follows.
  • the second magnetic core member 14 When a constant torque is continuously applied to the shaft 80 from the outside, the second magnetic core member 14 is also continuously rotated. Then, the first magnetic flux 30 passing through the dynamic magnetic circuit 40 is regularly changed, and the transformer electromotive force 90 is applied to each power coil 60 in a direction that prevents the change of the first magnetic flux 30. Be guided. At this time, the first magnetic fluxes 30 are mutually! Therefore, the power supply coils 60 penetrate through the power supply coils 60 in opposite directions. Accordingly, the transformer electromotive force 90 is also induced in opposite directions, and the mutual inductance between the power supply coils 60 is made negative. Furthermore, the power supply coils 60 are preferably connected to each other. At the same time, it is connected to switch 300 and load 400 via conductor 200.
  • the second magnetic fluxes 31 having the same magnitude due to the magnetic field from the induced current 500 flowing through the power supply coils 60 and in opposite directions are applied to the magnetic core 10. It is guided in a closed loop. Then, since the mutual inductance is made negative, the counter electromotive force from the induced current 500 is substantially blocked by the mutual inductance from each magnetic flux 31. In other words, the back electromotive force from the induced current 500 induced in the other power supply coil 60 is blocked by the power supply coils 60 through which the induced current 500 flows.
  • FIG. 2 shows an example in which the leakage flux from the induced current 500 is reduced.
  • a magnetic core material 12 having a central leg 70 is used.
  • the power coil 60 is wound up and down across the portion where the magnet 20 is in close contact with the central leg 70.
  • the transformer electromotive forces 90 are connected in the direction in which the electromotive force is applied.
  • Fig. 3 shows an example in which the jerky rotation (cogging) that occurs between the magnet and the magnetic core is reduced.
  • Two sets of the example shown in Fig. 2 are prepared, and magnetite is used instead of the magnetic core.
  • the second magnet while an attractive force acts between the first magnet 20 and the second magnet 22 in the magnetic field of the first magnet 20 closely attached to the first magnetic core member 12 of the first set. 22 is engaged with the shaft engaging portion 81 and rotated, and at the same time, the third magnet 20 and the second magnet 20 are in the magnetic field of the third magnet 20 which is in close contact with the second magnetic core material 12 of the second set. While the repulsive force is acting between the four magnets 24, the shaft is engaged with the shaft engaging portion 81 and rotated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

電流からの磁界の影響を最適にして、前記磁界を特に変庄器起電力が誘導 される電源コイルに誘導される逆起電力を阻止するのに適する様にする新規な電力消費装置または電力消費方法を提供する。 静的な閉路状の磁性芯材と、前記磁性芯材に密着させられる磁石と、前記磁石からの磁束によって、介される前記磁性芯材に分岐し、前記磁性芯材を径由して形成される動的磁気回路と、相互インダクタンスが負にされる様に作用する、前記磁性芯材のそれぞれの部分に巻かれる各コイルと、誘導電流が流されるコイルの逆起電力を阻止する様に作用する前記動的磁気回路が動的にされる手段とを具備する電力装置。

Description

明 細 書
ベクトル量の性質が応用される電力消費装置
産業上の利用分野
[0001] 本発明は、変圧器起電力が誘導される電力装置に関する。
背景技術
[0002] アンペールの法則では、電流が磁界を生み出し、アンペールの力にお!/、ては、電 流を磁界中に置くと力が生まれる。ファラデーの電磁誘導法則では、磁石が作った磁 界の中にコイルを置き、コイルの端に電流計をつないで置き、この状態で、磁石に力 をカ卩えて動かすと磁界が変化して電流が流れる。これらが電流と磁界と力の関係であ る。
この応用として、発電機や変圧器がある。発電機に流される誘導電流は元々の磁 界の変化を打ち消す方向に流れるので、誘導電流によって生じる磁界と元々の磁石 による磁界には反発する力が働く。従って、外からトルクを加えてコイルを回し続ける 為にはトルクを加え続けなければならな 、。変圧器の一次側にも発電機が使われて いるので、同様である。
その結果は、電気的仕事が、発電機に外部より与えられた機械的仕事に等しいと 考えられてしまっている。しかし、これらは見掛け上現れるベクトル量を主として、見掛 け上現れないベクトル量を従とした技術的思想によってもたらされる。
特許文献 1 :米国特許第 4, 260, 914号
特許文献 2 :米国特許 US第 6, 246, 561B1号
発明の開示
発明が解決しょうとする課題
[0003] 本発明は電流からの磁界の影響を最適にして、前記磁界を特に変圧器起電力が 誘導される電源コイルに誘導される逆起電力を阻止するのに適する様にする新規な 電力消費装置または電力消費方法を提供する事にある。
課題を解決するための手段
[0004] 静的な閉路状の磁性芯材に密着させられる磁石力 の第 1の磁束によって、介され る前記磁性芯材を経由して形成される動的磁気回路と、前記動的磁気回路の前記 磁性芯材の部分に巻かれる電源コイルに貫通させられる前記第 1の磁束と、前記第 1の磁束が、前記動的磁気回路が動的にされる事によって変動させられる工程と、前 記電源コイルに変圧器起電力が誘導されて、前記電源コイルが、相互インダクタンス を負に電磁的に結合される工程と、ほぼ同じ大きさで互いに反対方向の第 2の磁束 を前記電源コイル内に誘導し、前記電源コイルに誘導される逆起電力がほぼ阻止さ れる工程とを具備する方法及び/又は装置によって、達成する事が出来る。
発明の効果
[0005] 電源コイルに誘導される逆起電力が誘導電流自身の磁気エネルギー丈で、ほぼ阻 止される。
図面の簡単な説明
[0006] [図 1]本発明の簡素な実施例を示した説明図である。
[図 2]本発明で大電流が流される場合に、漏れ磁束を少なくする実施例を示した説明 図である。
[図 3]本発明で、磁石と磁性芯材との間に生じるぎくしゃくとした回転 (コギング)が軽 減される例を示した説明図である。
符号の説明
[0007] 10 磁性芯材
12 磁性芯材
14 磁性芯材
20 磁石
22 磁石
24 磁石
30 磁束
31 磁束
40 動的磁気回路
50 部分
60 電源コイル 70 中央脚
80 軸
81 軸係合部分
90 変圧器起電力
100 総括的な符号
200 導線
300 開閉器
400 負荷
500 誘導電流
発明を実施するための最良の形態
第 1図に符号 100で示す電力消費装置は静的な閉路状の第 1の磁性芯材 10と、 前記磁性芯材 10に密着させられる磁石 20と、前記磁石 20からの第 1の磁束 30によ つて、介される前記磁性芯材 10に分岐し、前記磁性芯材 10を経由して形成される動 的磁気回路 40と、前記第 1の磁束 30が分岐させられる前記磁性芯材 10のそれぞれ の部分 50に互いに相互インダクタンスを等しくされて電磁的に結合される電源コイル 60と、回転させられると、前記動的磁気回路 40を動的にし、前記第 1の磁束 30が規 則的に変動させられる形状の第 2の磁性芯材 14と、前記第 2の磁性芯材 14に嵌め 合わされて、外部からのトルクを前記第 2の磁性芯材 14に伝える働きをさせられる軸 80から成り、前記軸 80は回転可能に支持される。これらの部材は保持される。 第 1図の電力消費装置は次の様に働く。
外部から前記軸 80に一定のトルクが継続して加えられると、前記第 2の磁性芯材 14 も継続して一定の回転をさせられる。すると、前記動的磁気回路 40を通る前記第 1の 磁束 30が規則的に変動させられ、各前記電源コイル 60には前記第 1の磁束 30の変 化を妨げる方向に変圧器起電力 90が誘導される。この時、各前記第 1の磁束 30は 互!、に遠ざかろうとする性質を有する為に、各前記電源コイル 60内を互 、に反対方 向に貫通している。従って、前記変圧器起電力 90も互いに反対方向に誘導され、各 前記電源コイル 60同士の相互インダクタンスは負にされる。更に、好ましくは各電源 コイル 60同士が接続される。同時に、導線 200を介して開閉器 300と負荷 400に接 続され、誘導電流 500が流されると、各前記電源コイル 60に流される前記誘導電流 500からの磁界によって大きさが同じで、互いに反対方向の各第 2の磁束 31が前記 磁性芯材 10に閉路状に誘導される。すると、相互インダクタンスが負にされている為 、各前記磁束 31からの相互インダクタンスによって前記誘導電流 500からの逆起電 力がほぼ阻止される。言い換えると、前記誘導電流 500が流される前記電源コイル 6 0同士によって、他の前記電源コイル 60に誘導される前記誘導電流 500からの逆起 電力が阻止される。
以下の変形例では、符号は変形部分以外はそのまま流用し、変形部分の新たな部 材には新しく符号を付けて説明される。
第 2図は誘導電流 500からの漏れ磁束を少なくする場合の例を示している。磁性芯 材 10の替わりに中央脚 70を有する磁性芯材 12が用いられる。前記中央脚 70に磁 石 20が密着させられる部分を挟んで電源コイル 60が上下に巻かれる。好ましくは、 変圧器起電力 90同士は起電力が加わる方向に接続される。コイルが中央脚に巻か れると、コイルからの磁束の漏れは減り、磁束の漏れは 2脚に比べると無視出来る程 に少、なくなる。
第 3図は磁石と磁性芯材との間に生じるぎくしゃくとした回転 (コギング)が軽減される 場合の例を示している。第 2図で示された例が二組用意され、磁性芯材の替わりに磁 石が用いられる。
一組目の第 1の磁性芯材 12に密着させられる第 1の磁石 20の磁界中で、前記第 1の 磁石 20と第 2の磁石 22の間に吸引力が働きながら前記第 2の磁石 22が軸係合部分 81と嵌め合わされて回転させられると同時に、二組目の第 2の磁性芯材 12に密着さ せられる第 3の磁石 20の磁界中で前記第 3の磁石 20と第 4の磁石 24の間に反発力 が働きながら軸係合部分 81と嵌め合わされて回転させられる。回転が進むと吸引力 は反発力に変わって働き始めるが、同時に、反発力は吸引力に変わって働き始める ので前記軸 80には、吸引力と反発力の互いに反対方向のトルクが常に与えられる。 従って、ぎくしゃくとした回転 (コギング)が軽減される。
尚、外部力ゝらのトルクを伝達するのに、複数の軸を介して、変形しても良ぐ前述の 具体例は専ら解説の為のものであって、本発明の範囲を限定するものではない。 産業上の利用可能性
磁石の作る閉じられた磁界に介された磁性芯材に誘導される磁束の変化を用いて 省エネルギーが求められる用途にも適用できる。

Claims

請求の範囲
[1] 静的な閉路状の磁性芯材と、
前記磁性芯材に密着させられる磁石と、
前記磁石からの磁束によって、介される前記磁性芯材に分岐し、前記磁性芯材を経 由して形成される動的磁気回路と、
相互インダクタンスが負にされる様に作用する、前記磁性芯材のそれぞれの部分に 巻かれる各コイルと、
誘導電流が流されるコイルの逆起電力を阻止する様に作用する前記動的磁気回路 が動的にされる手段とを具備する電力を消費する装置。
[2] 静的な閉路状の磁性芯材に密着させられる磁石からの第 1の磁束によって、介され る前記磁性芯材を経由して形成される動的磁気回路の前記磁性芯材の部分に巻か れる電源コイルに貫通させられる前記第 1の磁束が、前記動的磁気回路が動的にさ れる事によって変動させられる工程と、
前記電源コイルに変圧器起電力が誘導されて、前記電源コイルが、負に、電磁的に 結合される工程と、
ほぼ同じ大きさで互いに反対方向の第 2の磁束を前記電源コイル内に誘導し、前 記電源コイルに誘導される逆起電力がほぼ阻止される工程とを具備する電力を消費 する方法。
[3] 変圧器起電力及び/又は逆起電力が誘導される電力装置であって、閉じられた静的 な磁性芯材に密着させられた磁石を動的にする事によって、前記磁性芯材に卷かれ たコイルに誘導される変圧器起電力と、負の相互インダクタンスを受ける事によって、 誘導電流自身の磁気エネルギー丈で、ほぼ阻止される前記コイルに誘導される逆起 電力とを具備する事を特徴とする電力装置。
PCT/JP2006/304598 2005-03-13 2006-03-09 ベクトル量の性質が応用される電力消費装置 WO2006098217A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-113855 2005-03-13
JP2005113855A JP2006254680A (ja) 2005-03-13 2005-03-13 ベクトル量の性質が応用される電力消費装置

Publications (1)

Publication Number Publication Date
WO2006098217A1 true WO2006098217A1 (ja) 2006-09-21

Family

ID=36970083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304598 WO2006098217A1 (ja) 2005-03-13 2006-03-09 ベクトル量の性質が応用される電力消費装置

Country Status (3)

Country Link
US (1) US20060202583A1 (ja)
JP (1) JP2006254680A (ja)
WO (1) WO2006098217A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857075A (zh) * 2011-06-28 2013-01-02 宏远创建有限公司 安全电能的生产方法和设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20070100694A (el) * 2007-11-20 2009-06-12 Γεωργιος Ιωαννη Σχοιναρακης Μεθοδος παραγωγης ενεργειας δια διαταξεως μονιμων μαγνητων και μαγνητικος κινητηρας εφαρμογης της μεθοδου
US8089188B2 (en) * 2009-06-04 2012-01-03 Ut-Battelle, Llc Internal split field generator
US8120225B2 (en) * 2009-06-04 2012-02-21 Ut-Battelle, Llc External split field generator
US8304952B2 (en) * 2009-12-14 2012-11-06 Mccarthy Sean Electric motor with no counter electromotive force
US20110254386A1 (en) * 2010-04-19 2011-10-20 Liu Kuo-Shen Power generator with high power-to-volume ratio

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213254A (ja) * 1988-06-30 1990-01-17 Sawafuji Electric Co Ltd ブラシレス発電機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202886A (en) * 1962-01-11 1965-08-24 Bulova Watch Co Inc Bistable solenoid
US3634735A (en) * 1969-04-03 1972-01-11 Mikio Komatsu Self-holding electromagnetically driven device
US3743898A (en) * 1970-03-31 1973-07-03 Oded Eddie Sturman Latching actuators
US4260914A (en) * 1979-03-28 1981-04-07 Digital Equipment Corporation Differential linear velocity transducer
BR8702929A (pt) * 1987-05-22 1988-12-20 Josef David Baumann Dispositivo permanente magnetico de retencao para movimentacao fixacao ou transporte de pecas ou cargas ferromagneticas com comutacao eletronica do fluxo magnetico para desligamento da carga transportada
US5268662A (en) * 1988-08-08 1993-12-07 Mitsubishi Mining & Cement Co., Ltd. Plunger type electromagnet
US6246561B1 (en) * 1998-07-31 2001-06-12 Magnetic Revolutions Limited, L.L.C Methods for controlling the path of magnetic flux from a permanent magnet and devices incorporating the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213254A (ja) * 1988-06-30 1990-01-17 Sawafuji Electric Co Ltd ブラシレス発電機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857075A (zh) * 2011-06-28 2013-01-02 宏远创建有限公司 安全电能的生产方法和设备

Also Published As

Publication number Publication date
JP2006254680A (ja) 2006-09-21
US20060202583A1 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
WO2006098217A1 (ja) ベクトル量の性質が応用される電力消費装置
US20180191214A1 (en) Devices and Methods for Magnetic Flux Return Optimization in Electromagnetic Machines
Naoe et al. Trial production of a hybrid excitation type synchronous machine
US20200185137A1 (en) Electromagnet-switchable permanent magnet device
CA1231399A (en) Low core loss rotating flux transformer
CN102859618A (zh) 双稳态磁性致动器
AU2007237923A1 (en) Electricity generating apparatus utilizing a single magnetic flux path
CN107257889A (zh) 磁轴承
WO2006135802A3 (en) Electromagnetic drive for a ventricular assist device
JP2006504254A5 (ja)
Yang et al. Flux-regulatable characteristics analysis of a novel switched-flux surface-mounted PM memory machine
WO2009057916A3 (en) Construction device of generator have to switching magnetic flux.
WO2015184793A1 (zh) 永磁增流变压器
WO2007032898A3 (en) Rotating magnetec field and fixed conducting wire coil generator
KR101082880B1 (ko) 고효율용 쌍코어 구조
KR20120044212A (ko) 합성 자속 제어 장치 및 방법
JP6558715B2 (ja) 電磁誘導作用の抑制が有効な電力装置
CN206921630U (zh) 永磁偏置电感器
JPH11204353A (ja) 静止磁石型発電機
JP3563455B2 (ja) 発電コイル装置
CN212775849U (zh) 一种电磁喷射阀的励磁装置及电磁喷射阀
US20200366142A1 (en) High Efficiency Power Generation System And A Method Of Operating Same
Behra et al. Finite element analysis of decoupled control 12/14 bearingless switched reluctance motor with the different rotor angle and current
CN105490489A (zh) 一种无反作用力直流发电机
JP2008220138A (ja) 永久磁石発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715469

Country of ref document: EP

Kind code of ref document: A1