WO2006097652A1 - Protection d'un getter en couche mince - Google Patents

Protection d'un getter en couche mince Download PDF

Info

Publication number
WO2006097652A1
WO2006097652A1 PCT/FR2006/050206 FR2006050206W WO2006097652A1 WO 2006097652 A1 WO2006097652 A1 WO 2006097652A1 FR 2006050206 W FR2006050206 W FR 2006050206W WO 2006097652 A1 WO2006097652 A1 WO 2006097652A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
getter
protective
reaction
cavity
Prior art date
Application number
PCT/FR2006/050206
Other languages
English (en)
Inventor
Jean-Charles Souriau
Elisabeth Delevoye
François BALERAS
David Henry
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to EP06726230A priority Critical patent/EP1859482B1/fr
Priority to AT06726230T priority patent/ATE458275T1/de
Priority to DE602006012285T priority patent/DE602006012285D1/de
Priority to JP2008501381A priority patent/JP4889722B2/ja
Priority to US11/817,901 priority patent/US8039285B2/en
Publication of WO2006097652A1 publication Critical patent/WO2006097652A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00277Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS
    • B81C1/00285Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS using materials for controlling the level of pressure, contaminants or moisture inside of the package, e.g. getters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/26Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device including materials for absorbing or reacting with moisture or other undesired substances, e.g. getters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Definitions

  • the invention relates to the field of maintaining the vacuum in cavities, in particular for microelectronic devices. More specifically, the invention relates to sorption elements, known more commonly as “getters”, present in these cavities.
  • the invention relates in particular to getters in the form of thin layers, and it relates to a method for temporary protection of these reactive compounds during the manufacture of the cavity, and not affecting their properties.
  • the invention thus relates to the introduction of a protective material which reacts during a heat treatment to pass from a protective zone form covering the getter to a separate element of the sorption layer.
  • Encapsulation or "packaging" is today one of the keys to the development of microsystems, in particular mechanical ones like MEMS
  • MEMS Micro Electro Mechanical Systems
  • infrared detectors For example, for components such as uncooled resonators or bolometers, it is necessary to isolate the component in a cavity under a more or less high vacuum.
  • the encapsulation can be carried out individually (per chip) in a hermetic package, or on the substrate scale ("Wafer level packaging"); different techniques are used, such as for example the transfer of a hood by hermetic sealing, or the manufacture of a hermetic cavity around the device by thin layer deposition technologies.
  • Vacuum sealing techniques in MEMS are for example presented in the article by Jin Y et al. "MEMS Vacuum Packaging Technology and Applications”; IEEE, Electronics Packaging Technology Conference 2003: 301-306.
  • getter materials materials that will provide in situ pumping of residual gases.
  • Many metals thus have getter properties: barium, magnesium, aluminum, thorium, vanadium, etc., and in particular titanium, which is very commonly used in integrated technologies; their performance is well known to those skilled in the art.
  • the getters can be classified into several categories, each of which can be introduced by different techniques: physical getters and chemical getters, which themselves can be separated in two.
  • the evaporable chemical getters are thus materials which are evaporated under vacuum once the cavity is closed and condense on the walls of this cavity, the vacuum of which is to be maintained.
  • the layer thus formed is very reactive and forms a pump in situ.
  • the barium and aluminum / barium alloys are mainly used as evaporable getters, for example in cathode ray tubes (CRTs: "Cathode Ray Tube”).
  • Another evaporable getter pump is titanium sublimation pump (TSP) in which titanium or an alloy of titanium and molybdenum are sublimated and condensed on the cold walls of the pump body.
  • Non Evaporable chemical getters are mainly alloys based on zirconium, vanadium, iron or titanium. NEGs remain in the solid state. They are activated by a suitable heat treatment, and can then adsorb and / or absorb certain gases, such as H 2 , CO, N 2 , CO 2 , O 2 , ...
  • the company SAES Getters markets different NEGs: Stl22 TM is a titanium-based alloy, St707 TM is a ZrVFe alloy (70% zirconium, 24.6% vanadium and 5.4% iron), which is deposited by thin-layer screen printing on a metal substrate.
  • these getters are generally integrated by positioning and gluing ("Pick &Place” technique).
  • NEG getters are often used; they can be positioned and glued in receiving cavities provided for this purpose on the substrate.
  • Another technique is a direct deposition of the material on the bonnet (see, for example, WO 02/42716); the getter can be welded on the layer which also serves as a cord for eutectic sealing.
  • a problem is the saturation that occurs during the "venting" phases before or during the cavity sealing step, i.e. maintaining the controlled atmosphere.
  • the outer portion of the sorbent layer can react during the air exposure time during the MEMS encapsulation process, and thus saturate, thereby limiting its performance "getter”.
  • the getter material is able to regenerate by heating, it is preferable to protect its surface until sealing to prevent the sorption element from becoming saturated and / or its performance being degraded during the manufacturing process of the microdevice.
  • a surface getter layer may be incompatible with certain conventional micromachining techniques (for example when using certain resins, chemical or reactive etchings, etc. ), which limits the possible choices of production methods.
  • the document US 2003/0138656 proposes as a solution to cover the getter material with a non-reactive layer which acts as a protection during air release. Subsequent heat treatment allows the getter material to diffuse into the non-reactive layer to finally perform its pumping function. The diffusion of the getter material in the Non-reactive material, however, reduces its absorption properties.
  • the invention Based on an understanding of pumping mechanisms and the behavior of thin film getters, the invention provides a low cost method of integrating these pumps into microsystems thereby increasing their service life to the specified pressure.
  • the invention relates to a method for setting up a sorption element in a cavity, in particular a microelectronic or micromechanical device, in the form of a zone, preferably a thin layer, for example between 0.1 and 10 micrometers, in getter material, for example titanium.
  • the cavity may furthermore comprise a microelectronic compound, or a MEMS, or a bolometer, or any other component the operation of which recommends positioning in a cavity with a controlled atmosphere and with no more or less high vacuum.
  • a reaction element is placed in the cavity, preferably at a non-zero distance from the getter layer, on the same wall, the opposite wall, or even as a sealing bead of the cavity.
  • the reaction zone can take different configurations with respect to the sorption element: it can form a continuous frame around it, or surround it only partially, or include different reaction blocks distributed around the getter zone, or even partially cover the latter.
  • the zone of getter material is covered, at least partially, but preferably entirely, by a protection zone.
  • a protection zone may be a deposited protective layer, which may have a thickness of between 0.1 and 10 microns; its material is inert with respect to the getter material, that is to say that it is stable and non-wetting.
  • the method according to the invention then comprises an increase in the temperature of the assembly, during sealing of the cavity or after evacuation, which causes the reaction between the protective zone and the reaction element: the protective material moves, by "Aspiration” or “consumption” to the reaction zone to locate or even integrate, so that the zone of getter material is no longer covered with the protective zone and remains free, at least partially.
  • the displacement of the protective material to remove the protective zone and release the getter zone preferably takes place between 200 and 500 ° C.
  • the removal of the protective element is mainly by melting of one of the protective and reaction materials.
  • the reaction material it is possible for the reaction material to be a fusible material, such as a tin-based alloy or an Au / Si alloy, which, on rising in temperature, reacts with the protective zone, for example gold, silver or platinum, consuming it to free the area getter.
  • the fusible reaction material is preferably secured to a wetting material to remain in place and not to alter the getter or active compound.
  • the reaction element may be in contact with the low temperature protection zone, or only when the melting temperature is reached.
  • the protective material may comprise a fusible material, in particular a tin-based alloy, at a shrinkage temperature reached during the temperature rise; in this case, the reaction element is preferably wetting for this material, for example gold, so that the protective material, during its melting, is attracted by the reaction material to release the getter zone.
  • the protective zone may further comprise a second material, for example in bilayer form, driven by the fusible material during its displacement.
  • the invention relates to a device resulting from a method described above, at an intermediate or final stage.
  • FIGS. 2A to 2C show a preferred embodiment of a method according to the invention.
  • Figures 3A and 3B show another preferred embodiment of a method according to the invention.
  • Figure 4 shows another preferred embodiment of a method according to the invention.
  • FIGS. 5 to 7 schematize possible geometries for a protection according to the invention, the indices A, B, C having the steps of protection at the release of the getter.
  • Figure 8 shows an alternative embodiment of a protection according to the invention.
  • FIGS 9A and 9B show an alternative embodiment of the protection according to the invention.
  • a microdevice 1 schematized in FIG. 1A, comprises a substrate 2, for example made of semiconductor material such as silicon, on which an active compound 4 can be located.
  • a cover 6, for example glass or semiconductor material, having a recess allows, in relation to the cover 6 on the substrate 2, to create a cavity 8 in which can be housed the active compound 4; this cavity has dimensions ranging from 1 mm 2 to a few cm 2 ; the active compound 4 may be a micromechanical system of sensor type may comprise suspended elements (accelerometer, gyrometer, bolometer, ).
  • the compound 4 can be located in the hood 6, or that the hood can be reported by different techniques on the
  • the cover 6 may also be flat, without recess, and the cavity 8 may be created by reported weld seams.
  • the substrate 2 may also have been hollowed out.
  • the cavity 8 further houses a getter material 10.
  • the getter material may comprise an alloy based on Zr, V, Fe, Ti, or a metal zone based on Ba, Mo, Mg, Al, Th, Ti, Zr. , Va, Fe, Pd, or any other material having absorption properties.
  • it is titanium whose sorption capacities are high.
  • the getter material is preferably in the form of a layer, advantageously a thin film with a thickness of between 100 nm and 10 ⁇ m, which has, for example, been evaporated or sprayed under vacuum; in this case of spraying, the processes are arranged to reduce the amount of neutral gas incorporated during the deposition and may be released into the cavity 8 during the thermal step.
  • the layer of getter material 10 is deposited on the wall of the cavity 8 facing the wall comprising the active zone 4, that is to say in this case in the hood 6, but it is clear that alternatives are possible, with for example a film 10 adjacent to the compound 4, or even disposed on a part of the compound 4, for example on the elements in suspension of an accelerometer, etc.
  • the getter film 10 is covered by a protective material 12.
  • the layer of protective material 12 may partially cover the getter material but, advantageously, it completely covers it, it is that is, the protective layer 12 is of greater surface area than the surface of the getter material 10 and encompasses it.
  • the protective layer 12 may be deposited in situ on the layer of getter material 10, that is to say in the depositing equipment of the getter material without breaking vacuum.
  • the protective layer 12 may be deposited in one or more times. Thus, for example, to locate the getter layer 10, it will be possible to proceed to a step of etching the stack getter layer - protection layer; it may be useful, after etching, to proceed to a new protective deposit 12 to protect the getter areas exposed at the flanks of engravings.
  • the protective material 12 is chosen so as not to interact with the getter material 10; in particular, the protective zone 12 is stable and capable of well embedding the getter material so as to protect it. Its thickness depends on its nature, but preferably remains thin, of the order of 0.1 to 1 ⁇ m to be removed completely.
  • the protective material is also chosen for its reaction properties during a heat treatment.
  • the Protective material 12 is capable of releasing the surface of the getter 10 by reacting with a reaction material 14 which physically displaces it.
  • the rise in temperature occurs while the vacuum can be installed and maintained in the cavity 8, during or after the sealing of the cavity 8.
  • the protective material 12 is thus in contact with a reaction zone 14.
  • the reaction material 14 "sucks" the protective material 12, by creep or consumption as will be specified below: FIG. It is advantageous that the protective layer 12 and the reactive material 14 do not wet well on the getter material 10; this also promotes the use of titanium as a getter material because Ti is non-wetting for many alloys.
  • the protective layer 12 thus gradually releases the getter layer 10, to lead to a microdevice 1 according to FIG. 1C, in which a free getter layer 10 faces the active zone 4 within a cavity 8, in which there is a vacuum more or less pushed, and comprising an element 16 whose composition is a more or less homogeneous mixture of reaction materials 14 and protection 12.
  • the protective layer 12 is consumed by a locally melted material: during the rise in temperature, the reaction material 14, fusible at the shrinkage temperature, is deformed to create a drop 14 '( Figure 2B).
  • the protective layer 12 is arranged to be close to the reaction element 14 and to be in contact with him when he is in the form of gout; preferably it is adjacent thereto even at a temperature below the melting temperature of the reaction material.
  • the protective layer 12 and the reactive material 14 there are many possible couples for the protective layer 12 and the reactive material 14.
  • precious metals such as Au, Ag or Pt are good candidates as protective materials 12: they can be deposited in a thin layer, they are very stable and they are very easily consumed by reaction alloys 14, especially an Au / Si alloy or a tin-based alloy, for example Sn / Bi, Sn / Pb In / Sn, Sn / Pb, Sn
  • the protective layer 12 may be made of any other less noble material if there is a reactive material or alloy that can absorb it: for example copper may be used, or aluminum, or Al / Au / Si.
  • the reaction material 14 is fusible, it may be preferable to have previously defined a wetting zone 18 on which the reactive element 14 is put in place: at the time of melting and during the consumption of the protective layer 12, the drop 14 'of reaction remains in place, away from the getter material 10.
  • Gold is the most used wetting material 18; it is generally deposited in a Ti / Ni / Au or Ti / Pd / Au trilayer, titanium serving as a hook layer and nickel or palladium as a diffusion barrier.
  • a titanium layer of 100 nm to 10 ⁇ m is deposited under vacuum (by evaporation or spraying) and then covered by depositing a layer 12 of gold under vacuum (by evaporation or spraying) with a typical thickness of 100 nm to 1 micron, before return to air.
  • patterning there may be the creation of patterns ("patterning") to define the location of the getter zone; these patterns can be achieved by conventional microelectronic methods, in particular deposition steps, photolithography, etching, etc.
  • the wetting material 18 is then put in place, by successive deposition of Ti (hooked layer), Ni ( diffusion barrier) and Au (wetting layer), for example by evaporation, sputtering or electroplating, each of the monolayers typically being 0.1 to 1 ⁇ m; depending on the case, there may also be patterning of the wetting material.
  • a layer 14 of eutectic alloy Au / Sn (80/20%) is deposited (evaporation, sputtering, electroplating) a layer 14 of eutectic alloy Au / Sn (80/20%), with a thickness of the order of 100 nm to 10 ⁇ m; there may also be patterns.
  • the conditions of absorption of the protective layer 12 by the Reactive material 14 is an annealing beyond 28O 0 C for a few seconds to a few minutes to go from the compound schematized in Figure 2A to that of Figure 2C. It is naturally conceivable to set up the wetting layer 18, or even the reactive material 14, before the getter layer 10 and / or the protective layer 12.
  • the protective material 12 itself to be fusible at the shrinkage temperature: the protective layer 12 is displaced by the surface tension towards previously defined wetting reactive zones 14.
  • 12 Sn / Pb or Sn / Ag alloys are particularly suitable because they do not wet most materials used as getters 10, and in particular titanium, but wet very well on a material. 14 such as gold.
  • the wetting reactive material 14 is generally deposited in Ti / Ni / Au or Ti / Pd / Au trilayer as specified above.
  • An exemplary embodiment of a device according to FIG. 3A comprises a layer of titanium of 100 nm to 10 ⁇ m deposited under vacuum (by evaporation or sputtering); according to the embodiment, there may be the creation of patterns ("patterning").
  • the wetting material 14 of reaction is then, or previously, set up, by successive deposition of Ti (layer hooked), Ni (diffusion barrier) and Au (wetting layer), for example by evaporation, spraying or electroplating, each of the monolayers typically 0.1 to 1 ⁇ m; depending on the pattern chosen, there may also be patterning of the wetting material 14.
  • the two elements 10, 14 are covered by depositing a layer 12 of the Sn / Ag alloy
  • the adsorption conditions of the protective layer 12 by the reactive material 14 to form the heterogeneous material 16 illustrated in FIG. 3B are annealing beyond 200 ° C. for a few seconds to a few minutes.
  • the protective layer 12 may also be composed of both a layer 12 'playing the role of protective "inert” consumable, such as gold, and a fuse material 12 ", as shown in Figure 4: the reaction element 14 then comprises a wetting material, and the rise in temperature causes the fusible material 12 '' of the protective layer 12 to flow towards the wetting zones 14, while consuming the inert layer 12 '.
  • the reaction element 14 then comprises a wetting material, and the rise in temperature causes the fusible material 12 '' of the protective layer 12 to flow towards the wetting zones 14, while consuming the inert layer 12 '.
  • Other geometries are possible.
  • the reaction element 14 has been presented as positioned on one side of the getter layer 10.
  • the getter material 10 forms a film of sides c: between 50 microns and 1 cm; the protective layer 12 completely covers the getter film 10 and protrudes on each side; the reaction material 14 is in the form of a band width J_ of the order of 10 microns to 1 mm, separated from the getter film by a distance d of the order of a few microns; alternatively, if the reaction material does not react with the getter material 10, it may be adjacent to it or even overlap it (FIG. 7). The reaction material 14 may completely surround the getter film 10 (FIG.
  • Steps A, B, C repeat the steps of Figure 1 and illustrate the release of the getter film 10 and the displacement of the protective material 12.
  • Steps A, B, C repeat the steps of Figure 1 and illustrate the release of the getter film 10 and the displacement of the protective material 12.
  • Other configurations are possible, depending on the size and nature of the area getter 10, the shrinkage temperature reached, and the reaction rate for shrinkage among others.
  • a particular example, illustrated in Figure 8, relates to a reaction material 14 which also serves as a sealing bead 20 of the cavity 8 for eutectic sealing: an Au / Si or Sn / Pb or Sn / Ag bead is heated once the cover 6 attached to the substrate 2 to seal the cavity 8; at the same time, it can consume a layer 12 of gold previously deposited to protect the getter material 10.
  • reaction element 14 is also possible to position the reaction element 14 on the wall of the cavity 8 opposite to the getter material 10 coated with its protective layer 12, in particular on the substrate 2: see Figure 9A. It is preferable to set up the reaction material 14 (for example Au / Si, Sn / Pb or Sn / Ag) on a wetting zone 18 to avoid polluting the active zone 4; it is also preferable for this wetting zone 18 to be of small size so that the molten reactive material 14, which forms a drop 14 'on the wetting zone 18, concentrates at this level and comes into contact with the protective layer 12 (eg gold) and consumes it (Figure 9B). Preferably, the two elements 12, 14 are not in contact at ambient temperature, and become adjacent only when the melting temperature is reached or exceeded.
  • the method according to the invention is particularly easy to implement, and does not require expensive modification of encapsulation technologies.
  • the removal of the protective layer can be carried out in parallel with the sealing of the cavity, and is usually accompanied by a regeneration of the getter material by raising the temperature.
  • the method allows the use of thin films deposited directly on a surface of the cavity, or even on several surfaces if necessary, by optimizing the amount of getter material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Micromachines (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Electroluminescent Light Sources (AREA)
  • Magnetic Heads (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Materials For Medical Uses (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Afin de conserver un élément getter en couche mince (10) aux propriétés optimales dans une cavité (8) d'un dispositif microélectronique (1), un procédé de mise en place comprend le revêtement de la couche getter (10) par une couche de protection (12) et la mise en place d'un élément de réaction (14) . Une élévation de la température lorsque la cavité (8) peut être mise sous vide fait réagir la couche de protection (12) avec l'élément de réaction (14) de sorte que le matériau de protection (12) se déplace vers l'élément de réaction (14) et libère la couche de matériau getter (10) .

Description

PROTECTION D'UN GETTER EN COUCHE MINCE
DESCRIPTION
DOMAINE TECHNIQUE L'invention concerne le domaine du maintien du vide dans des cavités, notamment pour des dispositifs microélectroniques. Plus spécifiquement, l'invention a trait aux éléments de sorption, connus plus communément sous le nom de « getters », présents dans ces cavités.
L'invention se rapporte en particulier aux getters sous forme de couches minces, et elle est relative à un procédé permettant une protection temporaire de ces composés réactifs lors de la fabrication de la cavité, et n'altérant pas leurs propriétés .
L'invention concerne ainsi la mise en place d'un matériau de protection qui réagit lors d'un traitement thermique pour passer d'une forme de zone protectrice recouvrant le getter à un élément séparé de la couche de sorption.
ÉTAT DE LA TECHNIQUE ANTERIEURE
L' encapsulation, ou « packaging », est aujourd'hui une des clefs du développement des microsystèmes, en particulier mécaniques comme les MEMS
(pour « Micro Electro Mechanical Systems ») ou des détecteurs infrarouges. Par exemple, pour des composants tels que les résonateurs ou les bolomètres non refroidis, il est nécessaire d'isoler le composant dans une cavité sous un vide plus ou moins poussé. L' encapsulation peut être effectuée individuellement (par puce) dans un boîtier hermétique, ou à l'échelle du substrat (« Wafer level packaging ») ; différentes techniques sont utilisées, comme par exemple le report d'un capot par scellement hermétique, ou la fabrication d'une cavité hermétique autour du dispositif par des technologies de dépôt en couche mince. Des techniques de scellement sous vide dans les MEMS sont par exemple présentées dans l'article de Jin Y et coll. : « MEMS Vacuum Packaging Technology and Applications » ; IEEE, Electronics Packaging Technology Conférence 2003 : 301-306.
Pour maintenir le vide dans la cavité pendant la durée de vie du composant, il est usuel d'y ajouter des matériaux qui vont assurer un pompage in situ des gaz résiduels, connus sous le nom de matériaux « getters ». De nombreux métaux ont ainsi des propriétés getters : le baryum, le magnésium, l'aluminium, le thorium, le vanadium, etc., et notamment le titane, qui est très couramment utilisé dans les technologies intégrées ; leurs performances sont bien connues de l'homme de l'art.
Les getters peuvent être classés en plusieurs catégories, chacune pouvant être introduite par différentes techniques : getters physiques et getters chimiques, qui eux-mêmes peuvent être séparés en deux. Les getters chimiques évaporables sont ainsi des matériaux qui sont évaporés sous vide une fois la cavité fermée et se condensent sur les parois de cette cavité dont on veut maintenir le vide. La couche ainsi formée est très réactive et forme une pompe in situ. Le baryum et les alliages d' aluminium/baryum sont principalement utilisés comme getters évaporables, par exemple dans les tubes cathodiques (CRT : « Cathode Ray Tube ») . Une autre pompe à getter évaporable est la pompe à sublimation de titane (TSP) dans laquelle du titane ou un alliage de titane et molybdène sont sublimés et condensés sur les parois froides du corps de pompe .
Parallèlement existent des getters chimiques non évaporables ou NEG (« Non Evaporable Getter ») ; ce sont principalement des alliages à base de zirconium, vanadium, fer ou titane. Les NEG restent à l'état solide. Ils s'activent par un traitement thermique adapté, et peuvent alors adsorber et/ou absorber certains gaz, tels que H2, CO, N2, CO2, O2,... A titre d'exemple, la société SAES Getters commercialise différents NEG : Stl22™ est un alliage à base de titane, St707™ est un alliage ZrVFe (70 % de zirconium, 24,6 % de vanadium et 5,4 % de fer), qui sont déposés par sérigraphie en fines couches sur un substrat métallique. Pour des applications MEMS, ces getters sont en général intégrés par un positionnement et un collage (technique de type « Pick & Place ») .
A ce jour, pour le packaging des microsystèmes ou des bolomètres non refroidis, des getters NEG sont souvent utilisés ; ils peuvent être positionnés et collés dans des cavités d' accueil prévues à cet effet sur le substrat. Une autre technique est un dépôt direct en couche mince du matériau sur le capot (voir par exemple document WO 02/42716) ; le getter peut être soudé sur la couche qui sert également de cordon pour le scellement eutectique .
Dans le cas des NEG déposés en couches minces, un problème est la saturation qui se produit pendant les phases de « remise à l'air » avant ou pendant l'étape de scellement de la cavité, c'est-à- dire de non maintien de l'atmosphère contrôlée. En effet, la partie externe de la couche de sorption peut réagir pendant le temps d'exposition à l'air au cours du procédé d' encapsulation du MEMS, et donc se saturer, limitant ainsi par la suite ses performances de « getter ». Bien que le matériau getter soit susceptible de se régénérer par chauffage, il est préférable de protéger sa surface jusqu'au scellement pour éviter que l'élément de sorption ne se sature et/ou que ses performances ne soient dégradées lors du processus de fabrication du microdispositif.
Un autre problème lié à la présence d'une couche getter en surface est que cette couche peut être incompatible avec certaines techniques classiques de micro-usinage (par exemple lors de l'emploi de certaines résines, de gravures chimiques ou réactives,...), ce qui limite les choix possibles de procédés de réalisation. Le document US 2003/0138656 propose comme solution de recouvrir le matériau getter par une couche non réactive qui joue le rôle de protection pendant les remises à l'air. Un traitement thermique ultérieur permet au matériau getter de diffuser dans la couche non réactive pour finalement tenir sa fonction de pompage. La diffusion du matériau getter dans le matériau non réactif réduit cependant ses propriétés d' absorption .
Le problème de la protection du matériau de sorption lors de son intégration à une cavité de MEMS n'est donc pas résolu.
EXPOSÉ DE I/ INVENTION
En se basant sur la compréhension des mécanismes de pompage et du comportement des getters en film mince, l'invention propose une méthode à bas coût d'intégration de ces pompes dans les microsystèmes en augmentant ainsi leur durée de vie à la pression spécifiée .
Sous un de ses aspects, l'invention concerne un procédé pour mettre en place un élément de sorption dans une cavité, notamment d'un dispositif microélectronique ou micromécanique, sous la forme d'une zone, de préférence une couche mince, par exemple entre 0,1 et 10 micromètres, en matériau getter, par exemple le titane. La cavité peut comprendre par ailleurs un composé microélectronique, ou un MEMS, ou un bolomètre, ou tout autre composant dont le fonctionnement préconise le positionnement dans une cavité à atmosphère contrôlée et à vide plus ou moins poussé . Un élément de réaction est mis en place dans la cavité, de préférence à une distance non nulle de la couche getter, sur la même paroi, la paroi opposée, ou même en tant que cordon de scellement de la cavité. La zone de réaction peut prendre différentes configurations par rapport à l'élément de sorption : il peut former un cadre continu autour de lui, ou ne l'entourer que partiellement, ou comprendre différents blocs de réaction répartis autour de la zone getter, voire recouvrir partiellement cette dernière.
Par ailleurs, la zone de matériau getter est recouverte, au moins partiellement mais de préférence entièrement, par une zone de protection. Il peut s'agir d'une couche protectrice déposée, qui peut avoir une épaisseur comprise entre 0,1 et 10 micromètres ; son matériau est inerte vis-à-vis du matériau getter, c'est-à-dire qu'il est stable et non mouillant .
Le procédé selon l'invention comprend ensuite une élévation de la température de l'ensemble, lors du scellement de la cavité ou après mise sous vide, qui entraîne la réaction entre zone protectrice et élément de réaction : le matériau de protection se déplace, par « aspiration » ou « consommation », vers la zone de réaction pour s'y localiser voire s'y intégrer, de sorte que la zone de matériau getter n'est plus recouverte de la zone protectrice et reste libre, au moins partiellement. Le déplacement du matériau de protection pour retirer la zone protectrice et libérer la zone getter a lieu de préférence entre 200 et 5000C.
Le retrait de l'élément de protection se fait principalement par fusion de l'un des matériaux de protection et de réaction. Par exemple, il est possible que le matériau de réaction soit un matériau fusible, comme un alliage à base d'étain ou un alliage Au/Si, qui, lors de la montée en température, réagit avec la zone de protection, par exemple en or, argent ou platine, en la consommant pour ainsi libérer la zone getter. Le matériau de réaction fusible est de préférence solidaire d'un matériau mouillant pour rester en place et ne pas altérer le getter ou le composé actif. L'élément de réaction peut être en contact avec la zone de protection à basse température, ou uniquement lorsque la température de fusion est atteinte .
Inversement, le matériau de protection peut comprendre un matériau fusible, en particulier un alliage à base d'étain, à une température de retrait atteinte lors de l'élévation de température ; dans ce cas, l'élément de réaction est de préférence mouillant pour ce matériau, par exemple l'or, de sorte que le matériau de protection, pendant sa fusion, est attiré par le matériau de réaction pour libérer la zone getter. La zone protectrice peut par ailleurs comporter un deuxième matériau, par exemple sous forme de bicouche, entraîné par le matériau fusible lors de son déplacement . Sous un autre aspect, l'invention concerne un dispositif issu d'un procédé décrit précédemment, à une étape intermédiaire ou finale.
BRÈVE DESCRIPTION DES DESSINS
Les caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre et en référence aux dessins annexés, donnés à titre illustratif et nullement limitatifs .
Les figures IA à IC illustrent la protection d'une couche getter selon l'invention. Les figures 2A à 2C montrent un mode de réalisation préféré d'un procédé selon l'invention.
Les figures 3A et 3B montrent un autre mode de réalisation préféré d'un procédé selon l'invention. La figure 4 montre un autre mode de réalisation préféré d'un procédé selon l'invention.
Les figures 5 à 7 schématisent des géométries possibles pour une protection selon l'invention, les indices A, B, C présentant les étapes de la protection à la libération du getter.
La figure 8 montre un mode alternatif de réalisation d'une protection selon l'invention.
Les figures 9A et 9B montrent un mode alternatif de réalisation de la protection selon l'invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Tel qu'il est usuel avant l' encapsulation, un microdispositif 1, schématisé en figure IA, comprend un substrat 2, par exemple en matériau semi-conducteur comme le silicium, sur lequel peut être localisé un composé actif 4. Un capot 6, par exemple en verre ou en matériau semi-conducteur, présentant un évidement permet, par report du capot 6 sur le substrat 2, de créer une cavité 8 dans laquelle peut se loger le composé actif 4 ; cette cavité a des dimensions allant de 1 mm2 à quelques cm2 ; le composé actif 4 peut être un système micromécanique de type capteur pouvant comporter des éléments suspendus (accéléromètre, gyromètre, bolomètre, ...) . Il est clair que le composé 4 peut se situer dans le capot 6, ou que le capot peut être rapporté par différentes techniques sur le substrat 2. Par exemple, le capot 6 peut également être plan, sans évidement, et la cavité 8 être créée par des cordons de soudure rapportés. Le substrat 2 peut également avoir été évidé . La cavité 8 loge en outre un matériau getter 10. Le matériau getter peut comprendre un alliage à base de Zr, V, Fe, Ti, ou bien une zone métallique à base de Ba, Mo, Mg, Al, Th, Ti, Zr, Va, Fe, Pd, ou tout autre matériau ayant des propriétés d'absorption. De préférence, il s'agit de titane dont les capacités de sorption sont élevées.
Le matériau getter est disposé de préférence sous forme d'une couche, avantageusement un film mince, d'épaisseur comprise entre 100 nm et 10 μm, qui a par exemple été évaporée ou pulvérisée sous vide ; dans ce cas de pulvérisation, les procédés sont aménagés pour réduire la quantité de gaz neutre incorporé pendant le dépôt et susceptible d'être relâché dans la cavité 8 lors de l'étape thermique. Selon un mode de réalisation usuel illustré, la couche de matériau getter 10 est déposée sur la paroi de la cavité 8 faisant face à la paroi comprenant la zone active 4, c'est-à-dire dans ce cas dans le capot 6, mais il est clair que des alternatives sont possibles, avec par exemple un film 10 adjacent au composé 4, voire disposé sur une partie du composé 4, par exemple sur les éléments en suspension d'un accéléromètre, etc.
Lors du report du capot 6 sur le substrat
2, il est difficile de maintenir le vide utilisé lors du dépôt de la couche getter 10. Afin de réaliser une protection du getter 10 et éviter ainsi sa saturation avant même la mise sous atmosphère contrôlée de la cavité 8, le film getter 10 est recouvert par un matériau de protection 12. La couche de matériau de protection 12 peut recouvrir partiellement le matériau getter mais, avantageusement, elle le recouvre totalement, c'est-à-dire que la couche de protection 12 est de surface supérieure à la surface du matériau getter 10 et l'englobe. Avantageusement, la couche de protection 12 pourra être déposée in situ sur la couche de matériau getter 10, c'est-à-dire dans l'équipement de dépôt du matériau getter sans rupture de vide.
La couche de protection 12 pourra être déposée en une ou plusieurs fois. Ainsi par exemple, pour localiser la couche getter 10, on pourra procéder à une étape de gravure de l'empilement couche getter - couche de protection ; il pourra être utile, après gravure, de procéder à un nouveau dépôt protecteur 12 pour protéger les zones getter mises à nu au niveau des flancs de gravures. Le matériau de protection 12 est choisi de façon à ne pas interagir avec le matériau getter 10 ; en particulier, la zone protectrice 12 est stable et capable de bien enrober le matériau getter de façon à le protéger. Son épaisseur dépend de sa nature, mais de préférence reste mince, de l'ordre de 0,1 à 1 μm pour pouvoir être retirée complètement.
Le matériau de protection est par ailleurs choisi pour ses propriétés réactionnelles au cours d'un traitement thermique. En particulier, lors d'une élévation en température de la cavité 8 permettant d'atteindre ou dépasser une température de retrait, le matériau de protection 12 est capable de libérer la surface du getter 10 en réagissant avec un matériau de réaction 14 qui le déplace physiquement. La montée en température s'effectue alors que le vide peut être installé et maintenu dans la cavité 8, pendant ou après le scellement de la cavité 8.
Tel qu'illustré sur la figure 1, le matériau de protection 12 est ainsi en contact avec une zone de réaction 14. A la température de retrait ou au-delà, le matériau de réaction 14 « aspire » le matériau de protection 12, par fluage ou consommation tel qu'il sera précisé plus loin : figure IB. Il est avantageux que la couche protectrice 12 et le matériau réactif 14 ne mouillent pas bien sur le matériau getter 10 ; ceci favorise également l'utilisation de titane comme matériau getter car Ti est non mouillant pour beaucoup d'alliages.
La couche de protection 12 libère donc progressivement la couche getter 10, pour aboutir à un microdispositif 1 selon la figure IC, dans lequel une couche getter libre 10 fait face à la zone active 4 au sein d'une cavité 8, dans laquelle règne un vide plus ou moins poussé, et comprenant un élément 16 dont la composition est un mélange plus ou moins homogène des matériaux de réaction 14 et de protection 12.
Pour déplacer le matériau de protection, et donc retirer la couche protectrice 12, différentes solutions sont envisageables.
En particulier, tel que schématisé dans les figures 2, il est possible que la couche protectrice 12 soit consommée par un matériau en fusion localement : lors de la montée en température, le matériau de réaction 14, fusible à la température de retrait, se déforme afin de créer une goutte 14' (figure 2B) . Selon la nature du matériau en fusion, la goutte 14' peut attirer un matériau en contact avec elle, par exemple la couche de protection 12. La couche de protection 12 est donc agencée pour être proche de l'élément de réaction 14 et pour être en contact avec lui lorsqu'il est sous forme de goutte ; de préférence, elle lui est adjacente même à température inférieure à la température de fusion du matériau de réaction.
Il existe beaucoup de couples possibles pour la couche protectrice 12 et le matériau réactif 14. En particulier, les métaux précieux tels que Au, Ag ou Pt sont des bons candidats en tant que matériaux de protection 12 : ils peuvent être déposés en couche mince, ils sont très stables et ils sont très facilement consommés par des alliages de réaction 14, notamment un alliage Au/Si ou un alliage à base d'étain, par exemple Sn/Bi, Sn/Pb In/Sn, Sn/Pb, Sn/Pb/Ag, Sn/Ag.... Toutefois, la couche protectrice 12 peut être réalisée dans tout autre matériau moins noble s'il existe un matériau ou alliage réactif qui puisse l'absorber : par exemple le cuivre peut être utilisé, ou l'aluminium, ou encore Al/Au/Si.
Dans ce cas où le matériau de réaction 14 est fusible, il peut s'avérer préférable d'avoir préalablement défini une zone mouillante 18 sur laquelle l'élément réactif 14 est mis en place : au moment de la fusion et pendant la consommation de la couche protectrice 12, la goutte 14' de matériau de réaction reste en place, à l'écart du matériau getter 10. L'or est le matériau mouillant 18 le plus utilisé ; il est généralement déposé en tricouche Ti/Ni/Au ou Ti/Pd/Au, le titane servant de couche d'accroché et le nickel ou le palladium servant de barrière de diffusion .
A titre d'exemple pour un élément tel qu'illustré en figure 2A, une couche 10 de titane de 100 nm à 10 μm est déposée sous vide (par évaporation ou pulvérisation), puis recouverte par dépôt d'une couche 12 d' or sous vide (par évaporation ou pulvérisation) d'épaisseur typique de 100 nm à 1 μm, avant remise à l'air. Suivant le mode de réalisation, il peut y avoir la création de motifs (« patterning ») pour définir la localisation de la zone getter ; ces motifs peuvent être réalisés par des procédés classiques de microélectronique, notamment des étapes de dépôt, photolithographie, gravure,.... Le matériau mouillant 18 est ensuite mis en place, par dépôts successifs de Ti (couche d'accroché), Ni (barrière de diffusion) et Au (couche mouillante) , par exemple par évaporation, pulvérisation ou électrodéposition, chacune des monocouches faisant typiquement de 0,1 à 1 μm ; selon le cas, il peut y avoir également patterning du matériau mouillant. Sur le matériau mouillant 18 est déposée (évaporation, pulvérisation, électrodéposition) une couche 14 d'alliage eutectique Au/Sn (80/20 %) , d'épaisseur de l'ordre de 100 nm à 10 μm ; il peut y avoir également création de motifs. Dans cet exemple, les conditions d' absorption de la couche protectrice 12 par le matériau réactif 14 sont un recuit au-delà de 28O0C pendant quelques secondes à quelques minutes pour passer du composé schématisé à la figure 2A à celui de la figure 2C. Il est naturellement envisageable de mettre en place la couche mouillante 18, voire le matériau réactif 14, avant la couche getter 10 et/ou la couche protectrice 12.
Tel qu'illustré sur les figures 3, il est possible que le matériau protecteur 12 lui-même soit fusible à la température de retrait : la couche protectrice 12 se déplace grâce à la tension de surface vers des zones réactives mouillantes 14 préalablement définies. Ici encore, il existe beaucoup de couples alliage fusible/couche mouillante possibles. A titre d'exemples, les alliages 12 Sn/Pb ou Sn/Ag sont particulièrement indiqués, car ils ne mouillent pas sur la plupart des matériaux utilisés en tant que getters 10, et en particulier le titane, mais mouillent très bien sur un matériau 14 tel que l'or. Le matériau réactif mouillant 14 est généralement déposé en tricouche Ti/Ni/Au ou Ti/Pd/Au tel que précisé plus haut .
Un exemple de réalisation d'un dispositif selon la figure 3A comprend une couche 10 de titane de 100 nm à 10 μm déposée sous vide (par évaporation ou pulvérisation) ; suivant le mode de réalisation, il peut y avoir la création de motifs (« patterning ») . Le matériau mouillant 14 de réaction est ensuite, ou auparavant, mis en place, par dépôts successifs de Ti (couche d'accroché), Ni (barrière de diffusion) et Au (couche mouillante) , par exemple par évaporation, pulvérisation ou électrodéposition, chacune des monocouches faisant typiquement de 0,1 à 1 μm ; selon le motif choisi, il peut y avoir également patterning du matériau mouillant 14. Les deux éléments 10, 14 sont recouverts par dépôt d'une couche 12 de l'alliage Sn/Ag
(96,5/3,5 %) sous vide (par évaporation ou pulvérisation) d'épaisseur typique de 100 nm à 1 μm, avant remise à l'air
Dans cet exemple, les conditions d' adsorption de la couche protectrice 12 par le matériau réactif 14 pour former le matériau hétérogène 16 illustré en figure 3B sont un recuit au-delà de 2000C pendant quelques secondes à quelques minutes.
La couche protectrice 12 peut par ailleurs être composée à la fois d'une couche 12' jouant le rôle de protection « inerte » consommable, comme l'or, et d'un matériau fusible 12'', comme illustré sur la figure 4 : l'élément de réaction 14 comprend alors un matériau mouillant, et la montée en température fait fluer le matériau fusible 12'' de la couche de protection 12 vers les zones mouillantes 14, tout en consommant la couche inerte 12'. D'autres géométries sont possibles.
L'élément de réaction 14 a été présenté comme positionné sur un côté de la couche getter 10. De fait, de nombreuses configurations sont possibles, tel qu'illustré sur les figures 5, 6 et 7 : dans le cadre représenté, le matériau getter 10 forme un film de côtés c: compris entre 50 μm et 1 cm ; la couche de protection 12 recouvre totalement le film getter 10 et le dépasse sur chaque côté ; le matériau de réaction 14 se présente sous la forme d'une bande de largeur J_ de l'ordre de 10 μm à 1 mm, séparée du film getter d'une distance d de l'ordre de quelques microns ; en variante, si le matériau de réaction ne réagit pas avec le matériau getter 10, il peut lui être adjacent, voire le chevaucher (figure 7) . Le matériau de réaction 14 peut entourer totalement le film getter 10 (figure 5) ou partiellement (figure 6) ou être disposé sous forme de réseau ajouré (figure 7) . Les étapes A, B, C reprennent les étapes de la figure 1 et illustrent la libération du film getter 10 et le déplacement du matériau de protection 12. Bien entendu, d'autres configurations sont possibles, suivant la taille et la nature de la zone getter 10, la température de retrait atteinte, et la vitesse de réaction pour le retrait entre autres.
Un exemple particulier, illustré en figure 8, concerne un matériau de réaction 14 qui sert également de cordon de scellement 20 de la cavité 8 pour un scellement eutectique : un cordon 20 en Au/Si ou en Sn/Pb ou en Sn/Ag est chauffé une fois le capot 6 rapporté sur le substrat 2 afin d'assurer l'étanchéité de la cavité 8 ; en même temps, il peut consommer une couche 12 d' or préalablement déposée pour protéger le matériau getter 10.
Par ailleurs, en particulier dans le cas où la couche protectrice 12 est consommée par un matériau réactif 14 en fusion, il est également envisageable de positionner l'élément de réaction 14 sur la paroi de la cavité 8 opposée au matériau getter 10 revêtu de sa couche de protection 12, en particulier sur le substrat 2 : voir figure 9A. Il est préférable de mettre en place le matériau de réaction 14 (par exemple Au/Si, Sn/Pb ou Sn/Ag) sur une zone mouillante 18 pour éviter de polluer la zone active 4 ; il est préférable également que cette zone mouillante 18 soit de taille restreinte de façon à ce que le matériau réactif 14 en fusion, qui forme une goutte 14' sur la zone mouillante 18, se concentre à ce niveau et vienne au contact de la couche protectrice 12 (par exemple en or) et la consomme (figure 9B) . De préférence, les deux éléments 12, 14 ne sont pas en contact à température ambiante, et ne deviennent adjacents que lorsque la température de fusion est atteinte ou dépassée.
Le procédé selon l'invention est particulièrement facile à mettre en œuvre, et ne nécessite pas de modification coûteuse des technologies d' encapsulation . En particulier, le retrait de la couche de protection peut être effectué en parallèle du scellement de la cavité, et s'accompagne habituellement d'une régénération du matériau getter par l'élévation de la température. Le procédé permet l'utilisation de films minces déposés directement sur une surface de la cavité, voire sur plusieurs surfaces si nécessaire, en optimisant la quantité de matériau getter.

Claims

REVENDICATIONS
1. Procédé de mise en place d'un élément de sorption (10) dans une cavité (8) comprenant : - la réalisation, à l'intérieur de la cavité (8), d'une zone en matériau getter (10), d'une zone en matériau de réaction (14) et d'une zone protectrice (12) en matériau de protection, la zone protectrice (12) recouvrant au moins une partie de la zone en matériau getter (10) de façon à enterrer ladite partie ;
- une élévation de la température jusqu'à au moins une température de retrait ;
- le déplacement du matériau de protection de la zone protectrice (12) vers la zone de réaction
(14) de façon à ce que au moins une portion de ladite partie de la zone en matériau getter (10) ne soit plus recouverte de matériau de protection.
2. Procédé selon la revendication 1 dans lequel la zone de matériau getter est réalisée sous forme d'une couche mince (10) d'épaisseur comprise entre 100 nm et 10 μm.
3. Procédé selon l'une des revendications 1 à 2 dans lequel la zone protectrice (12) est réalisée sous forme d'une couche mince d'épaisseur comprise entre 100 nm et 10 μm et recouvre entièrement la zone de matériau getter (10) .
4. Procédé selon l'une des revendications 1 à 3 dans lequel le matériau de protection est stable et non mouillant vis-à-vis du matériau getter.
5. Procédé selon l'une des revendications
1 à 4 dans lequel le matériau getter est du titane.
6. Procédé selon l'une des revendications 1 à 5 dans lequel la température de retrait est de l'ordre de 200 à 5000C.
7. Procédé selon l'une des revendications 1 à 6 dans lequel le matériau de réaction (14) est un matériau fusible à la température de retrait.
8. Procédé selon la revendication 7 dans lequel la zone de réaction (14) est positionnée au moins partiellement sur un matériau mouillant (18) pour le matériau de réaction.
9. Procédé selon l'une des revendications 7 ou 8 dans lequel le matériau de protection (12) est choisi parmi Au, Ag et Pt, et le matériau de réaction (14) est choisi parmi un alliage Au/Si ou les alliages à base d'étain.
10. Procédé selon l'une des revendications 1 à 6 dans lequel le matériau de protection (12) comprend un matériau fusible à la température de retrait.
11. Procédé selon la revendication 10 dans lequel le matériau de réaction (14) est un matériau mouillant pour le matériau de protection (12) fusible.
12. Procédé selon l'une des revendications
10 ou 11 dans lequel le matériau de protection (12) est choisi parmi les alliages à base d'étain, comme Sn/Pb, Sn/Ag et Sn/Au, et le matériau de réaction (14) est l'or.
13. Procédé selon l'une des revendications 1 à 12 dans lequel la zone de réaction (14) est positionnée sur la même paroi de la cavité (8) que la zone de matériau getter (10) .
14. Procédé selon l'une des revendications 1 à 12 dans lequel la zone de réaction (14) est placée sur une paroi de la cavité (8) opposée à la paroi supportant la zone de matériau getter (10) .
15. Procédé selon l'une des revendications 1 à 14 dans lequel la zone de réaction (14) est sous forme d'un anneau encadrant la zone de matériau getter (10) .
16. Procédé selon l'une des revendications 1 à 14 dans lequel la zone de réaction (14) comprend plusieurs blocs de réaction disposés sous forme de réseau au niveau de la zone de matériau getter (10) .
17. Procédé selon l'une des revendications 1 à 12 dans lequel la zone de réaction (14) est constitutive d'une paroi (20) au moins de la cavité (8) .
18. Procédé selon l'une des revendications 1 à 17 comprenant en outre une étape de scellement de la cavité (8) avant ou pendant l'élévation de température .
19. Procédé selon l'une des revendications 1 à 18 dans lequel la cavité (8) comprend en outre un microsystème (4) .
20. Dispositif microélectronique (1) comprenant une cavité (8) dans laquelle sont positionnées une zone de réaction (14) et une zone de matériau getter (10), la zone de matériau getter (10) étant revêtue, au moins partiellement, d'un matériau de protection (12) qui est apte à réagir avec le matériau de réaction en se déplaçant vers la zone de réaction (14) .
PCT/FR2006/050206 2005-03-14 2006-03-10 Protection d'un getter en couche mince WO2006097652A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06726230A EP1859482B1 (fr) 2005-03-14 2006-03-10 Protection d'un getter en couche mince
AT06726230T ATE458275T1 (de) 2005-03-14 2006-03-10 Dünnfilm-getter-schutz
DE602006012285T DE602006012285D1 (de) 2005-03-14 2006-03-10 Dünnfilm-getter-schutz
JP2008501381A JP4889722B2 (ja) 2005-03-14 2006-03-10 マイクロ電子デバイスを形成する方法およびマイクロ電子デバイス
US11/817,901 US8039285B2 (en) 2005-03-14 2006-03-10 Thin film getter protection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0550649A FR2883099B1 (fr) 2005-03-14 2005-03-14 Protection d'un getter en couche mince
FR0550649 2005-03-14

Publications (1)

Publication Number Publication Date
WO2006097652A1 true WO2006097652A1 (fr) 2006-09-21

Family

ID=34977062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050206 WO2006097652A1 (fr) 2005-03-14 2006-03-10 Protection d'un getter en couche mince

Country Status (7)

Country Link
US (1) US8039285B2 (fr)
EP (1) EP1859482B1 (fr)
JP (1) JP4889722B2 (fr)
AT (1) ATE458275T1 (fr)
DE (1) DE602006012285D1 (fr)
FR (1) FR2883099B1 (fr)
WO (1) WO2006097652A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084987A (ja) * 2006-09-26 2008-04-10 Matsushita Electric Works Ltd 真空封止デバイスおよびその製造方法
US9041174B2 (en) 2009-11-17 2015-05-26 Commissariat A L'energies Atomique Et Aux Energies Alternatives Getter having two activation temperatures and structure comprising this getter
US9136794B2 (en) 2011-06-22 2015-09-15 Research Triangle Institute, International Bipolar microelectronic device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950876B1 (fr) * 2009-10-07 2012-02-10 Commissariat Energie Atomique Procede de traitement d'un materiau getter et procede d'encapsulation d'un tel materiau getter
US8395229B2 (en) 2011-03-11 2013-03-12 Institut National D'optique MEMS-based getter microdevice
WO2012122619A1 (fr) * 2011-03-11 2012-09-20 Institut National D'optique Micro-dispositif de dégazeur à système microélectromécanique
DE102011056742B4 (de) * 2011-05-09 2019-07-18 Conti Temic Microelectronic Gmbh Steuergerät mit einer Getterschicht in einem Kraftfahrzeug
FR2976932A1 (fr) 2011-06-23 2012-12-28 Commissariat Energie Atomique Structure a materiau getter protege hermetiquement lors de sa realisation
FR2981198B1 (fr) * 2011-10-11 2014-04-04 Commissariat Energie Atomique Structure d'encapsulation de dispositif electronique et procede de realisation d'une telle structure
FR2982073B1 (fr) * 2011-10-28 2014-10-10 Commissariat Energie Atomique Structure d'encapsulation hermetique d'un dispositif et d'un composant electronique
DE102012209973B4 (de) * 2012-06-14 2024-03-07 Robert Bosch Gmbh Mikromechanische Vorrichtung und Verfahren zur Herstellung einer mikromechanischen Vorrichtung
US9463977B2 (en) * 2012-07-31 2016-10-11 Raytheon Company Sacrificial limiter filter
FR3008190B1 (fr) 2013-07-08 2015-08-07 Commissariat Energie Atomique Procede et dispositif de mesure d'un champ magnetique au moyen d'excitations synchronisees
NO2944700T3 (fr) * 2013-07-11 2018-03-17
CN105157853A (zh) * 2015-08-17 2015-12-16 电子科技大学 一种非制冷红外焦平面阵列探测器及其制造方法
DE102015226772A1 (de) * 2015-12-29 2017-06-29 Robert Bosch Gmbh Gettervorrichtung für ein mikromechanisches Bauelement
US20200149519A1 (en) * 2016-11-28 2020-05-14 Inter-University Research Institute Corporation High Energy Accelerator Research Organization Non-evaporable getter coated component and chamber, manufacturing method and manufacturing apparatus
US10526199B1 (en) * 2018-09-27 2020-01-07 Taiwan Semiconductor Manufacturing Co., Ltd. High efficiency getter design in vacuum MEMS device
FR3088319B1 (fr) * 2018-11-08 2020-10-30 Ulis Boitier hermetique comportant un getter, composant optoelectronique ou dispositif mems integrant un tel boitier hermetique et procede de fabrication associe
CN113337800A (zh) * 2020-03-02 2021-09-03 杭州海康微影传感科技有限公司 薄膜吸气剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426769A (en) * 1981-08-14 1984-01-24 Amp Incorporated Moisture getter for integrated circuit packages
WO2002042716A2 (fr) * 2000-11-27 2002-05-30 Microsensors Inc. Soudage eutectique de tranches de systeme mecanique micro-electrique gyroscopique
US20030138656A1 (en) * 2002-01-07 2003-07-24 Sparks Douglas Ray Method of forming a reactive material and article formed thereby
US20040189195A1 (en) * 2003-03-24 2004-09-30 Osram Opto Semiconductors Gmbh Devices including, methods using, and compositions of reflowable getters

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243281A (ja) 1999-02-23 2000-09-08 Canon Inc 画像表示装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426769A (en) * 1981-08-14 1984-01-24 Amp Incorporated Moisture getter for integrated circuit packages
WO2002042716A2 (fr) * 2000-11-27 2002-05-30 Microsensors Inc. Soudage eutectique de tranches de systeme mecanique micro-electrique gyroscopique
US20030138656A1 (en) * 2002-01-07 2003-07-24 Sparks Douglas Ray Method of forming a reactive material and article formed thereby
US20040189195A1 (en) * 2003-03-24 2004-09-30 Osram Opto Semiconductors Gmbh Devices including, methods using, and compositions of reflowable getters

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084987A (ja) * 2006-09-26 2008-04-10 Matsushita Electric Works Ltd 真空封止デバイスおよびその製造方法
US9041174B2 (en) 2009-11-17 2015-05-26 Commissariat A L'energies Atomique Et Aux Energies Alternatives Getter having two activation temperatures and structure comprising this getter
US9136794B2 (en) 2011-06-22 2015-09-15 Research Triangle Institute, International Bipolar microelectronic device

Also Published As

Publication number Publication date
US20080213539A1 (en) 2008-09-04
FR2883099B1 (fr) 2007-04-13
JP4889722B2 (ja) 2012-03-07
ATE458275T1 (de) 2010-03-15
US8039285B2 (en) 2011-10-18
DE602006012285D1 (de) 2010-04-01
JP2008532756A (ja) 2008-08-21
FR2883099A1 (fr) 2006-09-15
EP1859482B1 (fr) 2010-02-17
EP1859482A1 (fr) 2007-11-28

Similar Documents

Publication Publication Date Title
EP1859482B1 (fr) Protection d'un getter en couche mince
EP2450949B1 (fr) Structure d'encapsulation d'un micro-dispositif comportant un matériau getter
EP1878693B1 (fr) Microcomposant encapsule equipe d'au moins un getter
EP1415951B1 (fr) Microstructure électromécanique intégrée comportant des moyens de réglage de la pression dans une cavité scellée et procédé de réglage de la pression
EP2204347B1 (fr) Structure comportant une couche getter et une sous-couche d'ajustement de la température d'activation et procédé de fabrication
EP2308797B1 (fr) Structure à cavité comportant une interface de collage à base de matériau getter
EP2141117B1 (fr) Procédé d'encapsulation d'un dispositif microélectronique par un materiau getter
EP2213616B1 (fr) Procédé de fermeture de cavité pour au moins un dispositif microélectronique
EP1834924A2 (fr) Encapsulation dans une cavité hermétique d'un compose microélectronique, notamment d'un MEMS
EP2284121B1 (fr) Structure à microcavité et structure d'encapsulation d'un dispositif microélectronique
FR2867178A1 (fr) Composant micromecanique et procede de fabrication de ce composant
FR3008965A1 (fr) Structure d'encapsulation comprenant un capot renforce mecaniquement et a effet getter
EP2322469B1 (fr) Getter ayant deux températures d'activation et structure comportant ce getter
EP2354083B1 (fr) Procédé d'encapsulation d'un microcomposant par un capot renforce mécaniquement
EP2586741A2 (fr) Structure d'encapsulation hermétique d'un dispositif et d'un composant électronique
US6979585B2 (en) Micro-electromechanical system
EP3034460B1 (fr) Structure getter multi-niveaux et structure d'encapsulation comportant une telle structure getter multi-niveaux
FR2865467A1 (fr) Dispositif et procede pour assurer l'hermeticite d'une cavite en presence d'un via
ATOMIQUE Souriau et al.(43) Pub. Date: Sep. 4, 2008
FR3043671A1 (fr) Procede de preparation d'un support

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006726230

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11817901

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008501381

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006726230

Country of ref document: EP