WO2006095772A1 - Method of forming zinc oxide layer, zinc oxide layer forming apparatus and zinc oxide layer - Google Patents

Method of forming zinc oxide layer, zinc oxide layer forming apparatus and zinc oxide layer Download PDF

Info

Publication number
WO2006095772A1
WO2006095772A1 PCT/JP2006/304475 JP2006304475W WO2006095772A1 WO 2006095772 A1 WO2006095772 A1 WO 2006095772A1 JP 2006304475 W JP2006304475 W JP 2006304475W WO 2006095772 A1 WO2006095772 A1 WO 2006095772A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
substrate
oxide layer
zinc oxide
compound solution
Prior art date
Application number
PCT/JP2006/304475
Other languages
French (fr)
Japanese (ja)
Inventor
Hisayoshi Yamoto
Shinichi Koshimae
Yuichi Sato
Original Assignee
Youtec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youtec Co., Ltd. filed Critical Youtec Co., Ltd.
Priority to JP2007507149A priority Critical patent/JPWO2006095772A1/en
Publication of WO2006095772A1 publication Critical patent/WO2006095772A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Definitions

  • the present invention relates to a method for forming a zinc oxide layer, more specifically, a method for forming a zinc oxide layer for growing a zinc oxide layer on a substrate, a zinc oxide layer forming apparatus used for the method, and the zinc oxide
  • the present invention relates to an acid / zinc layer formed by the method for forming an acid / zinc layer using a layer forming apparatus.
  • Blue light-emitting diodes can be used together with existing green light-emitting diodes and red light-emitting diodes to constitute means for emitting the three primary colors of light. This is because the wavelength of the light to be emitted is short, so that the spot diameter of the light can be reduced, and for example, the storage capacity when recording information on a DVD or the like can be significantly increased.
  • the blue light generated from the blue light emitting diode emits light when it hits the phosphor, and has a light emission efficiency that is significantly better than incandescent and fluorescent lamps and has a long life. This leads to energy saving on a national and international scale.
  • a blue light emitting diode has a GaN (gallium nitride) layer formed on the main surface of a sapphire substrate having a C surface as a main surface, and the formed GaN layer is used as a main film. It was manufactured by the method of forming by doing.
  • GaN gallium nitride
  • this conventional technique has a problem that, first of all, when manufacturing a wafer of a sapphire substrate having a C surface as a main surface, it is difficult to obtain a large wafer.
  • this conventional technique has a problem that, first of all, when manufacturing a wafer of a sapphire substrate having a C surface as a main surface, it is difficult to obtain a large wafer.
  • an oxide-zinc epitaxy layer is formed on a main surface of a sapphire substrate having an A surface as a main surface.
  • a wafer of a sapphire substrate having an A surface as a main surface is described above. It has the advantage that it can be easily made larger than a sapphire substrate wafer with the C-plane as the main surface. Specifically, it is possible to obtain a wafer with a diameter of 300 mm with the current semiconductor manufacturing technology. Needless to say, this greatly contributes to the improvement of product productivity.
  • MBE method evaporates the raw material in the form of molecules under ultra-high vacuum, and evaporates it This is a physical method of depositing a thin film on a heated substrate to form a thin film, but because the substrate size is slow and the substrate size is small, mass productivity is low, and the ultra-high vacuum equipment is very expensive. It is not suitable for industrial use to manufacture products in large quantities.
  • the CVD method is capable of growing an oxide-zinc epitaxy layer vapor-phase chemically and is excellent in mass productivity with a high deposition rate.
  • the material necessary for the formation of the layer is a vaporized zinc compound, such as zinc oxide, which is non-toxic as is apparent from its use as an anti-inflammatory agent. Therefore, there is no problem at all in terms of safety and economy.
  • the CVD method requires supplying a chemical raw material gas to be a thin film onto a heated substrate, but there is no gaseous zincy compound at room temperature.
  • Zinc compounds are readily available forces All are liquids or solids at room temperature.
  • Liquid zinc compound The substances dimethylzinc and jetylzinc are water-inhibiting compounds that react violently with water and ignite, and are difficult to handle in large quantities.
  • Non-Patent Document 1 “Applied Physics”, No. 72-6 (2003) pp. 705-710 “Recent Progress of ZnO Epitaxy”
  • the inventor of the present application has come up with the idea of using the technique to form an acid zinc layer.
  • the inventor further sought a method for forming a zinc oxide layer optimal for forming a zinc oxide layer and a zinc oxide layer forming apparatus used for the implementation under the idea.
  • the present invention provides a method for forming a zinc oxide layer capable of forming a zinc oxide layer with high productivity while using a solid zinc compound, and a zinc oxide layer forming apparatus used for the method.
  • the purpose is to provide.
  • the method for forming an acid-zinc layer according to claim 1 is characterized in that a solid zinc-containing compound solution [for example, Zn (DP M) + toluene] is vaporized with a vaporizer, and at least the zinc-containing compound is formed.
  • a solid zinc-containing compound solution for example, Zn (DP M) + toluene
  • a zinc oxide layer is grown on a heated substrate (for example, a sapphire substrate whose main surface is a c-plane or a silicon semiconductor substrate).
  • a heated substrate for example, a sapphire substrate whose main surface is a c-plane or a silicon semiconductor substrate.
  • a method for forming a zinc oxide layer according to claim 2 is the method for forming a zinc oxide layer according to claim 1, wherein an oxidizing gas is supplied to the vaporizer and the zinc compound supplied onto the substrate is supplied.
  • a feature is that an acid zinc layer is grown on the substrate by vaporizing the material solution and the acid gas.
  • a method for forming a zinc oxide layer according to claim 3 is the same as the method for forming a zinc oxide layer according to claim 1, wherein an oxidizing gas is supplied onto the substrate to which the vaporized zinc compound solution is supplied. It is characterized by growing an oxide zinc layer on the substrate by supplying.
  • a method for forming a zinc oxide layer according to claim 4 is the method for forming a zinc oxide layer according to claim 1, 2 or 3, wherein the substrate is placed in a certain range (for example, 200 to 650 ° C).
  • a zinc oxide layer on the surface [thickness, for example, 20 to 2000A (in the present specification, A is referred to as ondastroum.
  • angstrom has a small circle on A. The force represented by the symbol is not usable, so it is replaced by A.;)] is formed, and then the substrate is heated to a temperature higher than the above range and in the range (eg 400-1100 ° C.). Further, an acid zinc layer (thickness 1000 to 30000A) is further formed on the acid zinc layer.
  • the method for forming a zinc oxide layer according to claim 5 is the method for forming a zinc oxide layer according to claim 4, wherein the surface of the substrate is formed before the zinc oxide layer is formed on the surface of the substrate. It is characterized by being subjected to oxygen baking treatment.
  • the acid-zinc layer forming device receives at least the solid zinc-containing compound solution and the carrier gas through the valve, and the nozzle tip that ejects the received substance from the tip end thereof.
  • a CVD unit that receives a gas supplied by at least the vaporizer force and grows a zinc oxide layer on the substrate holding unit by CVD (Chemical Vapor Deposition).
  • the acid-zinc layer of claim 7 receives at least a zinc-containing compound solution and a carrier gas through a valve, and the tip of a nozzle that ejects the received substance is more noticeable than the inner diameter of the nozzle.
  • a zinc oxide layer forming apparatus comprising: a CVD unit that receives at least a gas supplied from the vaporizer and that causes CVD of an oxide zinc layer on the substrate on the substrate holding unit. Use, vaporize the zinc compound solution in the vaporizer, At least, a gas obtained by vaporizing a solution of the zinc-containing compound is supplied onto the substrate on the substrate holding portion, thereby being formed on the substrate.
  • the acid-zinc layer of claim 8 receives at least a zinc-containing compound solution and a carrier gas through a valve, and the tip of the nozzle that ejects the received substance is more conspicuous than the inner diameter of the nozzle.
  • a vaporizer that protrudes into the vaporization chamber having a wide inner diameter and receives the fine particle or mist-like substance ejected from the nozzle tip force in the vaporization chamber, and a substrate holding portion that holds the substrate inside the chamber
  • a zinc oxide layer forming apparatus comprising: a CVD unit that receives at least a gas supplied from the vaporizer and that causes CVD of an oxide zinc layer on the substrate on the substrate holding unit.
  • a gas containing a zinc compound solution is vaporized in the vaporizer, and at least a gas obtained by vaporizing the zinc compound solution is heated on a temperature within a certain range on the substrate holding unit. Formed on this substrate by supplying to A first zinc oxide layer and a second oxide zinc layer formed on the first oxide zinc layer by heating the substrate to a temperature in a range higher than the range. It is characterized by having a laminated structure.
  • the zinc oxide layer forming apparatus is a zinc oxide layer forming apparatus including a vaporizer that supplies a gas obtained by vaporizing a zinc compound solution into a chamber.
  • the oxide / zinc layer is formed on the substrate in the chamber by supplying a gas obtained by vaporizing the zinc compound solution to the chamber.
  • a vaporization chamber supply step for supplying to a vaporization chamber provided at an outlet of the carrier gas flow path; and a vaporization step for heating and vaporizing the zinc compound solution by a heating means of the vaporization chamber in the vaporization chamber. It is characterized by that.
  • the oxide / zinc layer is formed on the substrate in the chamber by supplying a gas obtained by vaporizing the zinc / compound solution to the chamber.
  • a carrier gas supply step for supplying a carrier gas to the chamber by flowing a carrier gas from an inlet to an outlet of the carrier gas channel;
  • a zinc compound solution supplying step for supplying the zinc compound solution, and the zinc compound solution are dispersed in the carrier gas in the form of fine particles or mist in the carrier gas flow path, so that the flow in the carrier gas flow path is reduced.
  • the substrate in the first zinc oxide layer forming step, is heated to a temperature of 200 to 650 ° C to form the first zinc oxide layer,
  • the second zinc oxide layer forming step is characterized in that the substrate is heated to a temperature of 400 to 1100 ° C. to form a second zinc oxide layer on the first zinc oxide layer.
  • a zinc-containing compound solution [eg, Zn (DPM) + toluene
  • a vaporizer for example, a sapphire substrate having a c-plane main surface or a silicon semiconductor substrate. Thereafter, it is possible to form a zinc oxide layer on the substrate by oxidizing.
  • the zinc oxide layer is formed by CVD even though the zinc compound is solid. It is possible to
  • an oxidizing gas is supplied to the vaporizer.
  • An acid zinc layer can be formed on the substrate with the zinc of the zinc compound mixed and supplied.
  • an oxidizing gas is supplied onto the substrate.
  • An acid zinc layer can be formed on the substrate by the supplied zinc of the zinc compound.
  • a zinc oxide layer (referred to as "first oxide zinc layer” for convenience) is formed on the surface of the substrate, and then the substrate Is heated to an appropriately higher temperature to further form an acid zinc layer (referred to as a “second zinc oxide layer” for convenience) on the first oxide zinc layer, and is affected by the substrate. Without this, the second zinc oxide layer can be grown.
  • the surface of the substrate is formed before the zinc oxide layer is formed on the surface of the substrate. Since the substrate is subjected to oxygen baking, the surface of the substrate can be made better. Therefore, the second oxide zinc layer can be grown without being affected by the substrate.
  • the solid zinc compound solution and the carrier gas are received through the valve, the vaporizer for vaporizing the solution, and the supply of the gas from the vaporizer are received. Since it has a CVD part that grows a CVD film on the substrate on the CVD substrate holding part, the gas from the vaporizer is introduced into the CVD part and then oxidized to hold it in the substrate holding part in the CVD part. A zinc oxide layer can be formed on the substrate. [0041] Therefore, it is possible to form a zinc oxide layer by CVD even though the zinc compound is solid.
  • the zinc oxide layer forming device of claim 6 is used, the zinc compound solution is vaporized by the vaporizer of the device, and at least the solution of the zinc compound is vaporized. Since the formed gas is supplied onto the substrate on the substrate holding part, it is formed on this substrate, so that it can be easily formed by CVD even though the zinc compound is solid.
  • the zinc oxide layer forming device of claim 6 is used, the zinc compound solution is vaporized by the vaporizer of the device, and at least the solution of the zinc compound is vaporized.
  • the first zinc oxide layer formed on the substrate and the substrate are moved beyond the range. Since the laminated structure is formed by the second oxide / zinc layer formed on the first oxide / zinc layer by heating to a high temperature range, the second oxidation is less affected by the substrate. It is possible to grow a zinc layer.
  • the zinc compound solution is instantaneously atomized by the high-speed carrier gas flow, and the zinc compound solution is easily vaporized by the heat of the heating means.
  • the zinc compound solution is easily vaporized by the heat of the heating means.
  • the zinc compound solution is vaporized by a vaporizer, and the gas vaporized from the zinc compound solution is supplied onto the substrate on the substrate holding part.
  • the zinc oxide layer is formed on this substrate, it can be easily formed by the CVD method even though the zinc compound is solid.
  • the zinc compound solution is vaporized by a vaporizer, and the gas vaporized from the zinc compound solution is deposited on the heated substrate on the substrate holding unit.
  • the first zinc oxide layer formed on the substrate and the second oxide layer formed on the first oxide zinc layer by heating the substrate to a higher temperature.
  • the second zinc oxide layer can be grown without being affected by the substrate. it can.
  • FIG. 1 is a configuration diagram showing a zinc oxide layer forming apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing an apparatus for forming a zinc oxide layer according to a second embodiment of the present invention.
  • FIG. 3 is a block diagram showing an apparatus for forming a zinc oxide layer according to a third embodiment of the present invention.
  • FIG. 4 is a block diagram showing an acid zinc oxide layer forming apparatus according to a fourth embodiment of the present invention.
  • FIG. 5 (A) to (C) are cross-sectional views showing different examples of the method for forming the zinc oxide layer according to the present invention.
  • FIG. 6 is a diagram showing the results of monitoring the change in carrier gas pressure over time when an oxide-zinc epitaxy layer is formed by a thermal CVD method.
  • FIG. 7 is a diagram showing a temporal change in carrier gas pressure when a plasma CVD unit is used as the CVD unit.
  • FIG. 8 is a diagram showing an example of an X-ray crystal diffraction result of a sample in which an acid-zinc zinc epitaxy layer having a thickness of about 1000 A is formed on the C surface of a sapphire substrate.
  • FIG. 9 is a diagram showing another example of an X-ray crystal diffraction result of a sample in which an acid-zinc zinc epitaxy layer having a thickness of about 1000 A is formed on the A surface of a sapphire substrate.
  • FIG. 10 is a view showing still another example of a result of X-ray crystal diffraction of a sample in which an acid / zinc zinc epitaxy layer having a thickness of about 500 A is formed on a silicon (111) substrate.
  • FIG. 11 is a view showing still another example of an X-ray crystal diffraction result of a sample in which an oxide zinc oxide epitaxy layer having a thickness of about 500 A is formed on a silicon (100) substrate.
  • FIG. 12 is a graph showing melting points and solubility in three types of solvents (toluene, butyrate, THF) for five types of zinc compounds (complexes).
  • FIG. 16 is a diagram showing the TG characteristics of four types of substances that were studied for use as Zn complexes.
  • FIG. 17 is a schematic view showing a detailed configuration of a vaporizer for CVD.
  • FIG. 18 is a schematic diagram showing the overall configuration of a roller-type plasma oxide zinc layer forming apparatus according to a fifth embodiment.
  • FIG. 19 is a schematic view showing an overall configuration of a roller-type plasma oxide zinc layer forming apparatus according to a sixth embodiment.
  • FIG. 20 is a schematic view showing an overall configuration of a roller-type hot acid zinc salt layer forming apparatus according to a seventh embodiment.
  • Substrate stage (substrate holder)
  • the acid / zinc layer in the present invention may be an acid / zinc epitaxy layer, a zinc oxide polycrystalline layer, or a zinc oxide amorphous layer.
  • Acid-zinc epitaxy layer As the acid zinc layer will be described in detail with specific examples.
  • a wafer-like sapphire substrate in which a sapphire is formed so that the main surface is the A-plane is suitable as a substrate on which an oxide zinc epitaxy layer is formed.
  • This is the ability to obtain an acid-zinc epitaxy layer having crystallinity substantially continuous with the crystallinity of the surface of the sapphire substrate.
  • the diameter of the wafer can be increased to 200-300 mm, for example.
  • the substrate is not limited to a sapphire substrate, and a silicon semiconductor substrate can be used as a substrate, and an oxide zinc epitaxy layer can also be formed on the surface directly or via another thin film.
  • the zinc compound used as the material of the obtained oxide-zinc epitaxy layer is a force suitable for Zn (DPM), Zn (TMOD), Zn (IBPM), Zn (DIBM
  • Toluene is preferred as a solvent to dissolve it. Because toluene is hot
  • oxygen gas which is indispensable for oxidizing zinc
  • the supply of oxygen gas is performed by using oxygen gas O as a carrier gas.
  • toluene is suitable as a solvent for dissolving zinc compounds, it is also suitable as a cleaning agent for cleaning the nozzle of the vaporizer.
  • the nozzle tip of the vaporizer is clogged, for example, in about 10 hours, so when the degree of clogging is detected by the pressure in the nozzle and the pressure becomes higher than a preset value, the zinc oxide epitaxy is detected. It is preferable to stop the formation of the layer and supply a cleaning liquid to the nozzle instead of the zinc compound solution, thereby washing the tip of the nozzle.
  • toluene is the optimum cleaning liquid. is there.
  • a carrier gas for transporting the zinc compound It is necessary to supply a carrier gas for transporting the zinc compound to the nozzle of the vaporizer.
  • the carrier gas nitrogen gas N, oxidizing gas O, or argon Ar is suitable.
  • the formation of the acid-zinc epitaxy layer requires not only a zinc-containing compound as a material but also an oxidizing gas o, which can supply the acid gas o as a carrier gas. And as described above.
  • Fig. 1 is a configuration diagram showing an acid / zinc / zinc layer forming apparatus according to a first embodiment of the present invention.
  • the zinc oxide epitaxy layer forming apparatus as the present zinc oxide layer forming apparatus is relatively small.
  • 2 is a vaporizer
  • 4 is a CVD unit
  • the present zinc oxide epitaxy layer forming apparatus is roughly constituted by the vaporizer 2 and the CVD unit.
  • the nozzle 6 of the vaporizer 2 has an inner diameter of, for example, about 1. Omm (the inner diameter at the tip is about 0.3 mm), and is provided substantially vertically with the tip from which the gas is jetted downward.
  • a carrier gas supply pipe 8 is located above the nozzle 6 and contains a carrier gas (for example, nitrogen gas N or acid gas O).
  • argon (Ar), and 10 is provided in the carrier gas supply pipe 8.
  • [0057] 12 is a pressure gauge for detecting the pressure in the nozzle 6 and is provided for detecting the degree of clogging at the tip of the nozzle 6.
  • the tip of the nozzle 6 is clogged, and if the clogging exceeds a certain limit, normal gas supply becomes impossible, and normal CVD is not possible. Since it becomes possible, it is necessary to clean it, but the degree of the clogging is detected by the pressure gauge 12. This utilizes the principle that clogging can be detected by pressure because the pressure increases when the tip of the nozzle 6 is clogged.
  • FIG. 6 shows the results of monitoring the temporal change in the carrier gas pressure when the zinc oxide epitaxy layer was formed by the thermal CVD method under the conditions shown in Table 1.
  • the gas pressure hardly changes, that is, no clogging occurs.
  • the chemical solution composition is Zn (DPM) 0.2 molZL, and the solvent is toluene.
  • FIG. 7 shows the conditions shown in Table 2 in which the plasma CVD part, which will be described later, is used as the CVD part.
  • Table 2 shows the results of monitoring the change over time in the carrier gas pressure when the zinc halide epitaxy layer was formed. In this case, clogging has occurred, and it can be said that after about 800 seconds, it is necessary to stop and clean the CVD.
  • the chemical solution composition is Zn (DPM) 0.2 mol ZL, and the solvent is toluene.
  • a valve unit 14 controls the supply of chemicals and solvents to be supplied to the nozzle 6.
  • 16 is a zinc compound, in this example, a solution cylinder for storing Zn (DPM) solution.
  • Toluene is used as the solvent.
  • the solution in 16 is pressurized with a pressurizing gas, for example, helium He, and supplied into the valve unit 14 through one valve of the valve unit 14.
  • a pressurizing gas for example, helium He
  • Reference numeral 18 denotes a cleaning liquid cylinder for storing a cleaning liquid, for example, toluene.
  • the toluene in the inside is pressurized by a pressurizing gas, for example, helium He, and is supplied into the nozzle 6 through another valve of the valve unit 14. To be supplied.
  • a pressurizing gas for example, helium He
  • Reference numeral 20 denotes a vaporizing tube constituting the vaporizer 2, which has a remarkably larger inner diameter than the nozzle 6, is provided in a vertical direction, and the tip of the nozzle 6 enters the upper end portion thereof.
  • the vaporizing tube 20 has a branching portion 22 that branches substantially horizontally at a portion closer to the top than the lower end.
  • the lower end of the vaporizing pipe 20 communicates with the vacuum pipe 26 via the vent valve 24.
  • the vacuum pipe 26 communicates with an exhaust vacuum pump 30 through an exhaust valve 28.
  • [0063] 32 is a heater provided on the surface of the vaporizing tube 20, and heats it to about 250 ° C, for example.
  • 34 is a chamber body of the CVD unit 4, and 36 is a heater provided on the outer surface of the chamber body 34. A part of the chamber body 34 also covers a raw material intake unit (58) to be described later. This contributes to maintaining the inside of the raw material intake (58) at a temperature of about 250 ° C, for example.
  • 38 is a chamber lid that covers the upper part of the chamber body 34
  • 40 is a quartz cover on the back surface of the chamber lid 38
  • 42 is a chamber support that supports the chamber body 34 at its lower part.
  • the chamber 44 and the chamber support 42 constitute a channel 44 that forms the main part of the CVD unit 4.
  • Reference numeral 46 denotes a substrate stage (substrate holding unit) that supports the substrate 48 inside the chamber 44, and includes a heater 50.
  • a substrate heater control unit 52 controls heating of the heater 50 of the substrate stage 46.
  • 54 is a temperature sensor and 56 is a heater wiring.
  • Reference numeral 58 denotes a tubular raw material intake portion formed integrally with the chamber main body 34, and communicates with the branching portion 22 of the vaporizing pipe 20 via the raw material supply valve 60. When opened, the inside of the chamber 44 communicates with the vaporizing tube 20.
  • 62 is an acid gas supply port provided in the chamber body 34, and the acid gas (oxygen gas O or oxygen gas) is supplied through the acid gas supply port 62.
  • V soot can supply water vapor (H 2 O) into the chamber.
  • 64 is a pressure gauge for measuring the pressure inside the chamber 44
  • 66 is an exhaust pipe for exhausting gas from the inside of the chamber 44
  • 68 is a trap provided in the exhaust pipe 66, and removes specific harmful components in the exhaust gas
  • reference numeral 70 denotes a chamber exhaust valve provided in the exhaust pipe 66, and the exhaust pipe 66 is connected to the exhaust valve 28 via the chamber exhaust valve 70. Therefore, the gas inside the chamber 44 is exhausted by the vacuum pump 30 through the exhaust pipe 66.
  • the substrate 48 is a wafer-like sapphire substrate formed so that the main surface is the A plane.
  • a pressurizing gas such as helium He
  • the carrier gas is supplied into the nozzle 6.
  • the vent valve 24 is kept closed.
  • the supplied zincy compound solution is vaporized (gasified) when the tip force of the nozzle 6 is also ejected into the vaporizing tube 20. Then, the zinc compound is sent into the chamber 44 through the opened raw material supply valve 60, and the zinc Zn is supplied on the substrate 48 through, for example, the oxidizing gas supply port 62. It reacts with the gas to become zinc oxide and deposits on the substrate 48.
  • the zinc oxide on the substrate 48 gradually grows while substantially inheriting the crystallinity of the surface of the substrate 48 (A surface of sapphire), and becomes an oxide-zinc epitaxy layer. And the thickness is a predetermined thickness When reaching (for example, 20 to: LOOOOA), the force on the substrate stage 46 in the chamber is also taken out of the substrate 48, another substrate 48 is set, and an acid-zinc epitaxy layer is grown on the surface.
  • the pressure in the nozzle 6 is monitored by the pressure gauge 12.
  • the CVD is stopped and the nozzle is cleaned.
  • a predetermined reference value for example 0.275 MPa
  • the valves 60 and 70 are closed, and the valve of the valve unit 14 for supplying the solution from the solution cylinder 16 into the nozzle 6 is also closed, and the cleaning liquid cylinder 18 is used for cleaning. Open the valve that allows toluene to pass through the nozzle 6 and also open the vent valve 24.
  • the toluene in the cleaning liquid cylinder 18 is pressurized by the helium gas He, which is a pressurizing gas, and is supplied into the nozzle 6 and is vaporized when the tip force is ejected, thereby removing clogging. .
  • the gas that contributed to the cleaning is exhausted from the vacuum pipe 26 by the vacuum pump 30.
  • a predetermined value for example, 0.15 MPa
  • FIG. 2 is a block diagram showing a zinc oxide layer forming apparatus according to a second embodiment of the present invention.
  • This embodiment is different from the embodiment shown in FIG. 1 only in that a plasma CVD portion 4a is used as the CVD portion, and the other points are common. Therefore, in FIG. 2, parts that are the same as those in FIG. 1 are given the same reference numerals, and descriptions of the common parts are omitted as appropriate.
  • reference numeral 80 denotes an RF (Radio Frequency) application electrode provided in the chamber 44, and a heater 82 is built in the surface portion, and the surface portion is spaced apart and placed above the substrate stage 46. It is arranged as follows.
  • the RF application electrode 80 is attached in a state where it is electrically insulated from the chamber lid 38 covering the chamber body 34 by an insulating material 84, and is also electrically connected to an external RF power source 88 through an external noise cut filter 86.
  • An RF power supply voltage is received between the substrate stage 46 connected and electrically grounded, and plasma is formed.
  • Reference numeral 90 denotes a heater control unit that controls the heater 82 on the surface of the RF application electrode 80.
  • FIG. 3 is a block diagram showing a zinc oxide layer forming apparatus according to a third embodiment of the present invention.
  • the raw material is supplied so that the substrate 48 on the substrate stage 46 can be directly showered, and the uniform film quality is obtained on the large-diameter wafer-like substrate.
  • an oxide-zinc epitaxy layer with a thickness can be formed, it has parts common to the embodiment shown in FIG. 1, and parts common to FIG. 1 in FIG. In addition, the description of the parts that have already been described will be omitted as appropriate.
  • reference numeral 20a denotes a vaporization pipe constituting the vaporizer 2
  • the vaporization pipe 20 shown in FIG. 1 is the inside of the chamber 44 of the CVD section (4b) described later via the raw material supply valve 60.
  • it is different in that it is designed to supply this upper force and communicate with the vacuum pipe 26 through the vent valve 24 through the branch 22a provided above the lower end. The same.
  • the basic configuration of the nozzle 6 is the same as that of Fig. 1, and since it has already been described, description thereof is omitted.
  • Reference numeral 4b denotes a shower plate type CVD unit, and a shower plate 100 is provided in the chamber 44 thereof.
  • This shower plate 100 has an internal space 102 for receiving the raw material gas from the raw material intake portion 58 inside, and a gas ejection hole 104 for ejecting the raw material gas supplied into the internal space 102 on the downward surface portion thereof.
  • a gas ejection hole 104 for ejecting the raw material gas supplied into the internal space 102 on the downward surface portion thereof.
  • the shower plate 100 has a chamber so that the downward surface on which the gas ejection holes 104, 104, ... are disposed is parallel to the substrate stage 46 in the upward direction. It is attached to the lid 38.
  • 106 is a gas vessel, for example, receiving oxygen gas O as a carrier gas and receiving H 2 O for example.
  • 108 is a shower plate heater provided on the upper surface of the shower plate 100
  • 110 is A control unit for controlling the shower plate heater
  • 112 is a temperature sensor
  • 114 is a heater wiring.
  • the shower plate heater 108 and other heaters 32 and 36 form an oxide zinc epitaxy layer on the substrate 48 at a temperature of 400 to 1000 ° C., for example.
  • reference numeral 116 denotes a chamber door formed in the chamber body 34, which is opened when the substrate 48 is taken in and out.
  • the source gas is supplied to the internal space 102 of the shower plate 100 that is opposed to the substrate stage 46 in the CVD unit 4b.
  • the gas blow holes 104, 104,... are blown directly onto the substrate stage 46, it is possible to obtain an oxide dumbbell epitaxy layer having a uniform film quality and thickness on a wafer-like substrate 48 having a large diameter.
  • an oxide zinc epitaxy layer can be formed on an 8-inch or 12-inch wafer-like substrate 48 without any trouble.
  • FIG. 4 is a block diagram showing a zinc oxide layer forming apparatus according to a fourth embodiment of the present invention.
  • This embodiment is different from the embodiment shown in FIG. 3 in that an RF voltage is applied between the shower plate 100 and the ground (substrate stage 46) to form plasma on the substrate 48. It is different but common in other points. Therefore, parts common to FIG. 3 in FIG. 4 are denoted by the same reference numerals, or illustrations thereof are omitted, and overlapping descriptions in the specification are appropriately omitted.
  • 4c is a shower plate type and plasma type CVD unit.
  • An RF electrode 80 is formed on the upper surface of the shower plate 100 via an insulating material 120, and a shower plate heater 108 is formed on the upper surface thereof. Is provided! /
  • the heating of the shower plate heater 108 is controlled by the heater control unit 110.
  • 112 is a temperature sensor, and 114 is a heater wiring force.
  • a noise cut filter 86 is interposed between the heater control unit 110 and the heater 108. This noise cut filter 86 is for preventing the RF voltage from entering the heater control unit 110.
  • the RF electrode 80 is made of, for example, aluminum, and is connected to an RF power source 88. In between, it receives RF voltage from its RF power supply 88.
  • FIG. 5 (A) to 5 (C) are cross-sectional views showing different examples of the method for forming the zinc oxide epitaxy layer of the present invention.
  • Fig. 5 (A) shows a method in which only one oxide-zinc epitaxy layer 200 is formed on a wafer-like sapphire substrate (sapphire substrate) 48 formed so that the A-plane becomes the main surface. Show.
  • the zinc oxide epitaxy layer 200 is formed by CV D under a high temperature of, for example, 400 to: L 100 ° C., and the thickness thereof is, for example, 1000 to 30000A.
  • FIG. 5 (B) shows that the first acid-zinc epitaxy layer 200a is first formed as a buffer layer on the sapphire substrate 48, and is excellent in crystallinity as the original acid-zinc epitaxy layer.
  • a method for forming the second oxide-zinc epitaxy layer 200b will be described.
  • a first oxide / zinc epitaxy layer 20 Oa is formed as a noffer layer, and a second oxide layer is formed thereon as an original zinc oxide epitaxy layer on which, for example, a blue light emitting diode is formed.
  • the zinc epitaxy layer 200b is formed.
  • the method for forming this oxide-zinc epitaxy layer will be specifically described.
  • the first oxide-zinc epitaxy layer 200a (thickness is formed by CVD at a relatively low temperature of 200 to 650 ° C. For example, 20 to 2000 A) is formed, and then a second oxide zinc epitaxy layer 200b (thickness is 1000 to 30000 A, for example) is formed by CVD at a high temperature of 400 to L 100 ° C.
  • the surface of the sapphire substrate 48 is formed on the surface of the sapphire substrate 48, for example, from 570 to L 100 before the formation of the first oxide-zinc epitaxy layer 200a in the method shown in FIG.
  • Oxygen baking is performed at a temperature of ° C. As a result, it is possible to obtain a better acid-zinc epitaxy layer 200a, 200b.
  • FIG. 6 shows various data obtained in the process of carrying out the present invention. The data shown in each figure will be described below.
  • Figs. 6 and 7 show the results of monitoring the temporal change in the carrier gas pressure when forming the force-oxide-epitaxy layer described above, and Fig. 6 shows the thermal CVD. The case by law is shown. In this case, the gas pressure hardly changes, that is, no clogging occurs.
  • Fig. 7 shows the change over time in the carrier gas pressure when the plasma CVD part is used as the CVD part.
  • the pressure is about 275 MPa
  • clogging that should stop the CVD occurs.
  • clogging that should stop CVD occurs after about 800 seconds.
  • cleaning is performed with, for example, a gasified cleaning solution of toluene, and when the carrier gas pressure returns to a lower value such as 0.13 MPa, the CVD is resumed.
  • a zinc oxide epitaxy layer having a thickness of about 500A to 1000A is formed on a sapphire C-plane substrate, a sapphire A-plane substrate, a silicon (111) substrate, and a silicon (100) substrate.
  • the X-ray crystal diffraction results of the sample are shown.
  • the signal indicating the zinc oxide crystal is only the diffraction line of (0002) appearing around 34.4 ° and the diffraction line of (0004) appearing around 72.6 °, and no other exponential diffraction lines. From these data shown in FIGS. 8 to 11, it can be understood that the zinc oxide crystals grown on any substrate are completely C-axis oriented with respect to the substrate surface. The surface of the zinc oxide crystal was extremely flat and free from cloudiness.
  • FIG. 12 is a graph showing melting points and solubility in three types of solvents (toluene, butyl acetate, THF) for five types of zinc compounds (complexes).
  • solvents toluene, butyl acetate, THF
  • Zn acac
  • Zn (DPM) is preferable from the viewpoint of solubility in a solvent.
  • toluene, butyl acetate, and THF it can be said that toluene and THF are superior in terms of solubility. Soot is generated in the chamber of the CVD unit.
  • toluene having the following advantages is optimal, and among those selected in FIG. 12 as zinc compounds, it is preferable to use Zn (DPM) as the solvent and toluene as the solvent.
  • a Zn complex is not necessarily limited to Zn (DPM).
  • DPM Zn
  • Figure 15 shows Zn (EDMDD) in a Zn complex that is chemically stable at room temperature! / TG-DT
  • FIG. 13 shows an argon Ar (760 Torr) atmosphere
  • FIG. 14 shows an oxygen O (76
  • FIG. 15 shows the case of an argon Ar (lOTorr) atmosphere.
  • Figure 13 shows that Zn (EDMDD) is approximately 100 at approximately 280 ° C in an argon Ar (760 Torr) atmosphere.
  • Figure 14 shows that about 300 ° C in the same oxygen O (760 Torr) atmosphere.
  • Fig. 15 shows that the same argon Ar (lOTorr) atmosphere evaporates by about 100% at 200 ° C.
  • the difference in the sublimation temperature between 300 ° C and 200 ° C at 100 ° C is considered to be due to the difference in pressure between 760Torr and lOTorr.
  • the temperature of the chemical tube should be set to 210 to 220 ° C.
  • Fig. 14 shows that there is no major problem even if oxygen is added in addition to the inert gas alone as the carrier gas flowing through the vaporization tube.
  • Fig. 16 shows the TG characteristics of the four types of substances that the inventors of the present application have studied using as a Zn complex for the formation of an acid-zinc epitaxy layer.
  • TMO D Zn
  • DPM Zn
  • IBPM Zn
  • DIBM Zn
  • any of these Zn complexes can be used to form an acid-zinc epitaxy layer.
  • the CV D vaporizer 2 includes a vaporization mechanism 320.
  • the vaporizer for CVD 2 uses the vaporization mechanism 32
  • the carrier gas is always supplied to the reaction chamber 44 as a chamber by 0, and almost all of the predetermined amount of zinc compound solution supplied from the zinc compound solution supply mechanism 321 is reliably vaporized by the vaporization mechanism 320 and reacted.
  • the chamber 44 is configured to be supplied.
  • a carrier gas flow path 322 for supplying various carrier gases such as nitrogen gas and argon into the reaction chamber 44 is formed by a carrier gas pipe 323 and an orifice pipe 324 as a nozzle.
  • a vaporization section 325 as a vaporization chamber is formed at the tip of the orifice pipe 324 (that is, the outlet 333 of the carrier gas flow path 322).
  • the vaporization mechanism 320 is configured such that the base end of the carrier gas supply pipe 323 (that is, the inlet of the carrier gas flow path 322) is connected to a supply mechanism (not shown) for supplying a carrier gas.
  • the distal end 330 of the carrier gas supply pipe 323 is connected to the base end 331 of the orifice pipe 324, whereby high-speed carrier gas can be supplied from the carrier gas supply pipe 323 to the orifice pipe 324.
  • a mass flow controller (not shown) is provided.
  • the carrier gas supply pipe 323 is attached with a pressure transducer 332 as a pressure gauge.
  • the pressure transducer 332 accurately measures the carrier gas pressure in the carrier gas supply pipe 323 and its fluctuation and constantly monitors it while recording it.
  • the pressure transducer 332 transmits an output signal having a signal level corresponding to the pressure level of the carrier gas to a control unit (not shown).
  • the pressure result of the carrier gas can be displayed on the display unit (not shown) by force based on the output signal so that the operator can monitor it. This allows the operator to monitor the clogging of the carrier gas flow path 322 based on the pressure result.
  • the inner diameter of the carrier gas supply pipe 323 is selected to be larger than the inner diameter of the orifice pipe 324 so that the flow velocity of the carrier gas supplied from the carrier gas supply pipe 323 to the orifice pipe 324 can be further increased. It is composed.
  • the orifice tube 324 is arranged in a vertical direction, and a convex portion having a trapezoidal cone shape at the tip 333 thereof. 334 is provided, and a fine hole 335 is provided at the top of the convex portion 334.
  • an inclined surface 334a is formed around the outer periphery of the spray port 336, which is the tip of the pore 335, and the residue is thereby formed in the spray port 336. This makes it difficult to collect and prevents the spray port 336 from being clogged.
  • the apex angle ⁇ of the convex portion 334 is formed at an acute angle of 45 ° to 135 °, particularly 30 ° to 45 °. It is possible to prevent the spray port 336 from being clogged with zinc compound.
  • the pore 335 of the spray port 336 is selected so that the inner diameter thereof is smaller than the inner diameter of the orifice pipe 324, and the flow velocity of the carrier gas supplied from the orifice pipe 324 to the pore 335 is further increased.
  • the tip of the pore 335 can be disposed so as to protrude into the internal space 338 of the vaporizing section 325 by inserting the convex portion 334 of the orifice pipe 324 into the proximal end 337 of the vaporizing section 325.
  • the orifice pipe 324 is connected to a plurality of (in this case, for example, five) connecting pipes 340a to 340e from the base end 331 to the convex portion 334 in connection with the powerful configuration.
  • Each of the connecting pipes 340a to 340e is provided with a zinc compound solution supply mechanism 321 described later.
  • the orifice pipe 324 is configured such that a predetermined amount of zinc compound solution can be supplied from the zinc compound solution supply mechanism 321 via the connection pipes 340a to 340e.
  • the orifice pipe 324 applies a carrier gas flowing at a high speed to the zinc compound solution supplied from the connection pipe 340a, and disperses the zinc compound solution in the carrier gas in the form of fine particles or mist. In this state, it is configured to spray at a high speed (230 mZ seconds to 350 mZ seconds) through the pores 335 into the vaporization section 325.
  • the orifice pipe 324 is selected to have an inner diameter of, for example, about ⁇ 1. Omm, and a longitudinal length extending in the vertical direction is selected to be about 100 mm.
  • the inner diameter is selected to be about ⁇ ⁇ . 2 to 0.7 mm, and the diameter is reduced from the base end 331 to the pore 335, so that the carrier gas can be made high-speed inside. .
  • the vaporizing section 325 connected to the orifice pipe 324 is tubular, and is arranged in the vertical direction similarly to the orifice pipe 324. As shown in FIG. By selecting significantly larger than the diameter, the pressure in the vaporization section 325 is formed to be smaller than the pressure in the orifice pipe 324!
  • the zinc compound solution and the carrier gas can be rapidly discharged from the orifice pipe 324 (for example, from 230 mZ sec. It is ejected at 350 mZ seconds) and can be expanded in the internal space 338.
  • the pressure in the vaporization section 325 is selected to be about lOTorr, for example, whereas the pressure in the orifice pipe 324 is selected to be about 500 to 1000 Torr, for example, A large pressure difference is provided between the portion 325 and the orifice tube 324.
  • the pressure of the carrier gas after the flow rate control is a force that increases or decreases depending on the carrier gas flow rate, the solution flow rate and the size of the pore 335.
  • the size of the spray port 336 is selected and the carrier gas pressure is increased. It is preferable to control to 500 to 1000 Torr.
  • a heater 342 as a heating means is attached between the base end 337 and the front end (that is, the connection portion with the reaction chamber 44).
  • the vaporizing section 325 can be heated to about 270 ° C., for example.
  • the base end 337 of the vaporizing section 325 is formed in a substantially hemispherical shape, the base end 337 side can be uniformly heated by the heater 342. ing.
  • the vaporizing unit 325 is configured to instantaneously vaporize the zinc compound solution dispersed and atomized by the high-speed carrier gas flow in the orifice pipe 324 by the heater 342. Has been. At this time, when the zinc compound solution is mixed in the orifice tube 324, the time until spraying in the force vaporizing section 325 is extremely short (preferably within 0.1 to 0.002 seconds). It is preferable. The zinc compound solution becomes fine immediately after being dispersed in the orifice pipe 324 by the high-speed carrier gas flow, and is instantly vaporized in the vaporizing section 325. Moreover, the phenomenon of vaporizing only the solvent is suppressed.
  • the mist size is reduced (the mist diameter is 1 m or less), and the evaporation area is increased.
  • the evaporation rate can be increased. If the fog size is reduced by an order of magnitude, the evaporation area will increase by an order of magnitude.
  • the mist ejected from the spray port 336 does not collide with the inner wall of the vaporizing section 325 so that the spray port 336 It is preferable to design the angle and the size of the vaporization part 325. This is because when the mist collides with the inner wall of the vaporizing section 325, it adheres to the wall surface, the evaporation area decreases by an order of magnitude, and the evaporation rate decreases. In addition, when the mist has adhered to the vaporization section 325 wall for a long time, there is a force that may be converted into a compound that does not evaporate due to thermal decomposition.
  • the vaporization unit 325 can lower the sublimation temperature of the zinc compound in each of the zinc compound solutions by reducing the pressure inside, and as a result, the heater 342 The zinc compound solution can be easily vaporized with heat from the heat!
  • the vaporizing unit 325 vaporizes the zinc compound solution, supplies the raw material gas to the reaction chamber 44, and forms an acid zinc epitaxy layer by the CVD method in the reaction chamber 44. It is made to get.
  • the base end 337 of the vaporizing section 325 has a heat insulating material 343 between the vaporizing section 325 and the heat insulating material 343 so that heat from the vaporizing section 325 is hardly transmitted to the orifice pipe 324. It is configured! Incidentally, the proximal end 337 of the vaporizing section 325 is hermetically sealed by an O-ring 344! /. Further, a heat insulating material 346 is also provided in the fastening member 345 that connects the orifice pipe 324 and the vaporizing section 325.
  • the mist sprayed from the pores 335 does not wet the inner wall of the vaporizing section 325.
  • the reason is that the evaporation area is reduced by orders of magnitude on wet walls compared to fog. That is, a structure in which the inner wall of the vaporizing section 325 is not dirty at all is preferable.
  • the vaporization part 325 wall is preferably mirror-finished so that the dirt on the inner wall of the vaporization part 325 can be easily evaluated.
  • Each of the connecting pipes 340a to 340e is connected to a zinc compound solution supply mechanism 321 for supplying a zinc compound solution.
  • the zinc compound solution supply mechanism 321 is connected to a zinc compound solution supplied to the orifice pipe 324.
  • the zinc compound solution supply mechanism 321 provided in the connection pipe 340a will be described because only the types of physical solutions are different and the configuration is the same.
  • connection pipes 340a to 340e are arranged in the orifice pipe 324 so that the openings do not face each other, so that, for example, the opening force of the connection pipe 340a is also supplied to the orifice pipe 324.
  • the zinc compound solution is surely prevented from flowing into the openings of the other connecting pipes 340b to 340e.
  • the zinc compound mixture solution stored in the zinc compound mixture solution cylinder 350 as a solution cylinder is passed through a predetermined zinc compound solution flow path 351.
  • the liquid mass flow controller (LMFC) 352 and the block valve 353 are sequentially supplied to the orifice pipe 324.
  • the liquid mass flow controller 352 controls the flow rate of the zinc compound solution flowing through the zinc compound solution flow path 351! Speak.
  • the block valve 353 includes first to fourth switching valves 355a to 355d, and these first to fourth switching valves 355a to 355d are generally controlled by a control unit (not shown). .
  • the zinc compound solution is supplied to the carrier gas flowing at high speed, and the zinc compound solution is made fine particles or mist by the carrier gas flowing at high speed.
  • the zinc compound solution can be dispersed in a carrier gas and supplied to the vaporizing section 425.
  • the block valve 353 force also supplies the zinc compound solution to the orifice pipe 324.
  • the liquid mass flow controller (LMFC) 359 and the connection pipe 340a are sequentially supplied to the orifice pipe 324. It is composed of
  • the control unit closes the first switching valve 355a, the third switching valve 355c, and the fourth switching valve 355d, and opens only the second switching valve 355b.
  • the solvent can be supplied to the orifice pipe 324 through the connection pipe 340a.
  • the force of the connecting pipe 340a can be removed by flowing only the solvent through the orifice pipe 324 so that the solid matter clogged in the connecting pipe 340a can be removed!
  • control unit includes the first switching valve 355a, the second switching valve 355b, and the fourth switching valve.
  • the switching valve 355d is closed and only the third switching valve 355c is opened, so that the solvent can be supplied to the vent pipe 361 via the block valve 353 and discarded.
  • the control unit closes the first switching valve 355a, the second switching valve 355b, and the third switching valve 355c, and opens the fourth switching valve 355d.
  • the zinc compound solution can be supplied to the vent pipe 361 via the block valve 353 and discarded.
  • the zinc compound solution is supplied to the carrier gas flow that always flows at high speed toward the reaction chamber 44 in the orifice tube 324, whereby the zinc compound solution is finely divided.
  • the gas is vaporized in the vaporizing section 425 and supplied to the reaction chamber 44 as it is.
  • the zinc compound solution is instantaneously atomized by the high-speed carrier gas flow, and the zinc compound solution is easily vaporized by the heat of the heater 342.
  • the zinc compound solution is easily vaporized by the heat of the heater 342.
  • the carrier gas pressurized in the carrier gas supply pipe 323 is introduced into the orifice pipe 324 at a high speed (for example, the carrier gas is 500 to 1000 Torr, 200 mlZmin to 2LZmin).
  • the carrier gas is 500 to 1000 Torr, 200 mlZmin to 2LZmin.
  • the zinc-containing compound solution dispersed in the carrier gas can be instantly vaporized in the vaporizing section 325, the zinc-rich compound is present in the vicinity of the pores 335 and 335. Since only the solvent in the solution can be prevented from vaporizing, clogging of the pores 335 can be prevented. Thus, the continuous use time of the CVD vaporizer 2 can be extended.
  • reference numeral 390 denotes a roller type plasma CVD apparatus as an acid / zinc / zinc layer forming apparatus, which has a configuration in which a plurality of the above-described CVD vaporizers 2 are provided in the roller type CVD unit 391.
  • roller type plasma CVD apparatus 390 a plurality of plasma generators 392a to 392e are provided in the roller type CVD unit 391, and the film-forming tape 393 is allowed to run in the forward direction F.
  • each of the plasma generators 392a to 392e can form a zinc oxide epitaxy layer!
  • this roller type plasma CVD apparatus 390 is provided with the CVD vaporizer 2 of the present invention for each of the plasma generators 392a to 392e, and has the same effect as the above-described Example 6. Obtainable.
  • a first take-up roller 396 and a second take-up roller 397 are arranged in a reaction chamber 394 with a film forming roller 395 sandwiched therebetween.
  • a first feed roller 398 and a first tension control port roller 399 are disposed on one side of the film formation roller 395
  • a second feed roller 400 and a first tension control roller 399 are disposed on the other side of the film formation roller 395.
  • a second tension control roller 401 is disposed.
  • the film forming roller 395 has a large diameter of 300 to 20000 mm, for example, and a width of 2 m, for example.
  • the first take-up roller 396 to the first feed roller 398, the first tension control roller 399, the film forming roller 395, the second tension control roller 401 and A travel path for traveling the film-forming tape 393 is formed on the second winding roller 387 via the second feed roller 400, and the film-forming tape 393 is moved along the travel path by the first winding roller 393. It can travel in the direction (forward direction F) from the take-up roller 396 to the second take-up roller 397, and the opposite direction R from the second take-up roller 397 to the first take-up roller 396. You can drive in the opposite direction.
  • each of the plasma generators 392a to 392e is provided corresponding to each area on the film forming roller 395, and a CVD gas is formed in a portion of the film forming tape 393 located on the area.
  • the fixture 2 can be operated to form an oxide zinc epitaxy layer.
  • each plasma generator 392a to 392e and CVD vaporizer 2 are controlled so that various CVD conditions can be set individually, so that the formed zinc oxide epitaxy layer can also be set individually. It is configured so that the film forming operation can be individually controlled or the film forming operation can be stopped individually.
  • a partition plate 405 is disposed between the plasma generators 392a to 392e adjacent to each other in order to prevent interference of the zinc compound gas.
  • 406 is an exhaust pipe
  • 407 is a deposition plate
  • 408 is a gas shower electrode
  • 409 is an RF power source.
  • the film forming roller 395 is turned off
  • the gas shower electrode 408 is connected to the terminal of the RF power source 409, and the potentials of the plasma generators 392a to 392e are increased!
  • 420 denotes a roller type plasma CVD apparatus as an acid / zinc layer forming apparatus, and this roller type plasma CVD apparatus 420 is described above.
  • the roller type plasma CVD apparatus 420 is different in that one end of one RF power source 421 is connected to the film forming roller 395 and the gas shower electrode 408 of each plasma generator 392a to 392e is grounded.
  • Such a roller type plasma CVD apparatus 420 is also provided with the CVD vaporizer 2 of the present invention, so that the same effect as that of the above-described Example 6 can be obtained.
  • 430 indicates a roller type thermal CVD apparatus as an acid / zinc / zinc layer forming apparatus, and this roller type thermal CVD apparatus 430 generates plasma.
  • the apparatus is not provided, and is different from the above-described embodiment 7 in that no voltage is applied between the gas shower plate portions 431a to 431e and the film forming roller 395.
  • the roller-type thermal CVD apparatus 430 is configured so that the film-forming tape 393 can be heated mainly by the film-forming roller 395.
  • the CVD air heater 2 of the present invention is provided for each of the gas shower plate portions 431a to 431e. The same effects as in Example 6 described above can be obtained.
  • the present invention forms a zinc oxide epitaxy layer (referred to as a "first oxide-zinc epitaxy layer" for convenience) on the surface of the substrate.
  • a zinc oxide epitaxy layer referred to as a "first oxide-zinc epitaxy layer” for convenience
  • the substrate is heated to a higher temperature as appropriate, and further on the first oxide-zinc epitaxy layer, an acid-zinc epitaxy layer (for convenience, a “second acid-zinc epitaxy layer”) is formed. Therefore, the first oxide-zinc epitaxy layer is used as a buffer layer that adjusts the difference in lattice constant between the substrate and the second oxide-zinc epitaxy layer.
  • this second acid / zinc epitaxy layer can be used as a natural crystal (epitaxy) layer, which is a good quality product such as a blue light emitting diode. Can be obtained.
  • the zinc-containing compound solution is vaporized by a vaporizer of the apparatus, and at least the zinc-containing compound is By supplying a gas obtained by vaporizing a solution of the substance onto the substrate heated to a certain temperature range on the substrate holding unit, the first zinc oxide epitaxy layer formed on the substrate and the substrate Since it was heated to a temperature in a range higher than the above range and formed into a laminated structure with the second oxide / zinc epitaxy layer formed on the first oxide / zinc epitaxy layer, it was directly applied to the surface of the substrate.
  • a carrier gas supply step for supplying a carrier gas to the chamber by flowing a carrier gas toward an inlet / outlet outlet of the carrier gas channel, and a zinc for supplying the zinc compound solution to the carrier gas channel.
  • a compound solution supplying step and the zinc compound solution is dispersed in the carrier gas in the form of fine particles or mist in the carrier gas flow path, and is supplied to the vaporization chamber provided at the outlet of the carrier gas flow path
  • a vaporizing chamber supplying step a vaporizing step in which the zinc compound solution is heated by the heating means of the vaporizing chamber in the vaporizing chamber, and a gas vaporized in the vaporizing step on the heated substrate.
  • a first zinc oxide layer forming step for forming a zinc oxide layer; and heating the substrate to a higher temperature to form a first layer on the first oxide zinc layer.
  • a second zinc oxide layer forming step for forming a second zinc oxide layer wherein the first zinc oxide layer forming step includes heating the substrate to a temperature of 200 to 650 ° C.
  • the substrate is heated to a temperature of 400 to 1100 ° C. to form a second acid / zinc layer on the first acid / zinc layer. Since the first oxide / zinc layer is formed, the first oxide / zinc epitaxy layer is used as a notch layer that adjusts the difference in lattice constant between the substrate and the second oxide / zinc epitaxy layer.
  • the second oxide-zinc epitaxy layer with extremely good properties can be obtained, and this second oxide-zinc epitaxy layer can be used as the original crystal (epitaxy) layer, which leads to a good quality product.
  • a blue light emitting diode or a piezo element can be obtained.
  • the thin film formed is described in the case of an oxide zinc epitaxy layer V.
  • the oxide zinc oxide is used.
  • a polycrystalline layer can be formed. The outline of the case of the zinc oxide polycrystalline layer will be described below.
  • Example 11 corresponds to Example 1 described above, and the pressure inside the nozzle 6 is measured by the pressure gauge 12 while forming a polycrystalline zinc oxide zinc layer on the surface of the substrate 48 as an object to be formed as shown in FIG. To do.
  • the pressure exceeds the reference value, the thin film forming process is stopped and the nozzle 6 is tallyed. This makes it possible to form a stable zinc oxide polycrystalline layer on the substrate 48.
  • This embodiment corresponds to the second embodiment, and in the zinc oxide layer forming apparatus shown in FIG. 2, the RF application electrode 80 provided in the reaction chamber 44 is electrically grounded to the substrate stage 46 and A plasma is formed between them. As described above, the plasma CVD unit 4a forms plasma on the substrate 48. Therefore, the thin film formation process is performed at a lower temperature than that in the CVD unit 4 as shown in FIG. A layer can be formed on the substrate 48. (2-3) Example 12
  • This embodiment corresponds to the above-described embodiment 3, and in the acid / zinc / zinc layer forming apparatus shown in FIG. Since the shower plate 100 is provided inside the reaction chamber 44 so that it can be easily formed, an oxide-zinc polycrystalline layer having a uniform film quality and thickness can be formed on the wafer-like substrate 48 having a large diameter. (2-4) Example 13
  • This example corresponds to Example 4 above, and in the zinc oxide layer forming apparatus shown in FIG. 4, an RF voltage is applied between the shower plate 100 and the substrate stage 46 to generate plasma on the substrate 48.
  • an RF voltage is applied between the shower plate 100 and the substrate stage 46 to generate plasma on the substrate 48.
  • This example corresponds to Example 5 above, and as shown in the method for forming the zinc oxide layer in FIG. 5A, for example, on the substrate 48 having a wafer-like sapphire force formed so that the A surface becomes the main surface.
  • the method of forming only one zinc oxide polycrystalline layer for example, 400 to: L is formed by CVD under a high temperature of 100 ° C., and a thin film having a thickness of 2500 to 1000 A, for example, can be formed. I'll do it.
  • the first oxide zinc polycrystalline layer 200a is formed as a buffer layer, and the second oxide zinc polycrystalline layer 200b is formed thereon. It is good also as forming.
  • the first acid-zinc zinc polycrystal in the method shown in FIG. 5 (B) Before the formation of the layer 200a, the surface of the sapphire substrate 48 is subjected to oxygen baking at a temperature of, for example, 570 to L100 ° C., to obtain the oxide zinc polycrystalline layers 200a and 200b.
  • oxygen baking at a temperature of, for example, 570 to L100 ° C.
  • the zinc compound solution is dispersed in the carrier gas in the form of fine particles or mist. Then, the gas is vaporized in the vaporization section 425 as it is, and this gas is supplied to the reaction chamber 44.
  • the zinc compound solution is instantaneously atomized by the high-speed carrier gas flow, and the zinc compound solution is easily vaporized by the heat of the heater 342.
  • the zincy compound solution obtained by dissolving the zincy compound in a solvent can be easily vaporized in the vaporizing section 325. Therefore, a thick (2500 to 1000 A) acid zinc zinc polycrystalline layer can be formed with good reproducibility.
  • reference numeral 390 denotes a roller type plasma CVD apparatus as an acid / zinc / zinc layer forming apparatus, which has a configuration in which a plurality of the above-described CVD vaporizers 2 are provided in the roller type CVD unit 391.
  • this roller type plasma CVD apparatus 390 a plurality of plasma generators 392a to 392e are provided in the roller type CVD unit 391, and the film forming tape 393 is moved in the forward direction F, or the By running in the direction R opposite to the forward direction F, a zinc oxide crystal layer can be formed in each of the plasma generators 392a to 392e!
  • this roller type plasma CVD apparatus 390 is provided with the CVD vaporizer 2 of the present invention for each of the plasma generators 392a to 392e, and has the same effect as the above-described Example 15. Obtainable.
  • 420 denotes a roller type plasma CVD apparatus as an acid / zinc layer forming apparatus, and this roller type plasma CVD apparatus 420 is described above.
  • This is different from the embodiment 16 in that the potential of the film forming roller 395 is high. That is, in the roller type plasma CVD apparatus 420, one end of one RF power source 421 is connected. The difference is that the gas shower electrode 408 of each plasma generator 392a to 392e is connected to the film forming roller 395 and grounded. Even in such a roller type plasma CVD apparatus 420, since the CVD vaporizer 2 of the present invention is provided, it is possible to obtain the same effects as those of the embodiment 15 described above.
  • 130 indicates a roller thermal CVD apparatus as an acid / zinc / zinc layer forming apparatus, and this roller CVD apparatus 430 has a plasma generating apparatus. It is not provided and differs from the above-described embodiment 16 in that no voltage is applied between the gas shower plate portions 431a to 431e and the film forming roller 95. Even in such a roller-type thermal CVD apparatus 430, the vaporizer for CVD 2 of the present invention is provided for each of the gas shower plate portions 431a to 431e, so that the same effect as that of the above-described Example 15 can be obtained. It is out.
  • the solution cylinder and the cleaning liquid cylinder may be a solution tank or a cleaning liquid tank.
  • the acid-zinc layer has been described with respect to an acid-zinc epitaxy layer and an acid-zinc polycrystalline layer, the present invention is not limited to this, and the thin-film formation conditions can be changed as appropriate. As a formation of an amorphous layer.
  • the present invention corresponds to claim 11, wherein the zinc compound solution is vaporized by a vaporizer, and the gas vaporized from the zinc compound solution is heated to a certain temperature range on the substrate holder.
  • the second zinc oxide layer formed on the surface of the substrate rather than the crystallinity of the first acid zinc layer formed directly on the surface of the substrate. The crystallinity of the layer can be improved.
  • the solution cylinder and the zinc compound mixture as the solution cylinder may be a solution tank or a zinc compound mixture tank.
  • cleaning The solvent cylinder as the liquid cylinder and the cleaning solution cylinder may be a cleaning liquid tank or a solvent tank.
  • the present invention is generally applicable to a method for forming a zinc oxide layer, an apparatus for forming an acid / zinc layer used in the method, and an acid / zinc layer formed using the apparatus.

Abstract

A method of forming a zinc oxide layer, in which a zinc oxide layer can be formed with high productivity with the use of a solid zinc compound; and a zinc oxide layer forming apparatus for use in the practice of the method. A solution of solid zinc compound [for example, Zn(DPM)2 + toluene] is vaporized by means of a vaporizer, and at least a vapor from the zinc compound solution is fed onto substrate (48) (for example, sapphire substrate with plane A as its main surface) heated in chamber (44) of CVD section. Thus, a zinc oxide layer is grown on the substrate (48).

Description

明 細 書  Specification
酸化亜鉛層の形成方法と、酸化亜鉛層形成装置と、酸化亜鉛層 技術分野  Zinc oxide layer forming method, zinc oxide layer forming apparatus, and zinc oxide layer
[0001] 本発明は酸化亜鉛層の形成方法、詳しくは、基板上に酸化亜鉛層を成長する酸化 亜鉛層の形成方法と、それの実施に用いる酸ィ匕亜鉛層形成装置と、この酸化亜鉛層 形成装置を用いて前記酸ィ匕亜鉛層の形成方法により形成された酸ィ匕亜鉛層に関す る。  [0001] The present invention relates to a method for forming a zinc oxide layer, more specifically, a method for forming a zinc oxide layer for growing a zinc oxide layer on a substrate, a zinc oxide layer forming apparatus used for the method, and the zinc oxide The present invention relates to an acid / zinc layer formed by the method for forming an acid / zinc layer using a layer forming apparatus.
背景技術  Background art
[0002] 基板上に酸ィ匕亜鉛層を形成する技術の重要性が高まりつつある。例えば、酸ィ匕亜 鈴エピタキシー層につ 、ては、「応用物理」第 72卷第 6号(2003)第 705頁〜第 710 頁「ZnOエピタキシー層の最近の進展」に詳細な記載がある。  [0002] The importance of a technique for forming an acid zinc layer on a substrate is increasing. For example, there is a detailed description of the “Oxidized gallon” epitaxy layer in “Applied Physics”, No. 72 卷 No. 6 (2003), p. 705 to p. 710, “Recent Progress of ZnO Epitaxy Layers”. .
[0003] しかし、ここでは、青色発光ダイオードの生産に大きく寄与するという面力 その重 要性について詳細に説明することとする。 [0003] However, here, we will explain in detail the importance of the surface power that greatly contributes to the production of blue light-emitting diodes.
[0004] 青色発光ダイオードは、既存の緑色発光ダイオード及び赤色発光ダイオードと共に 使用することにより光の三原色を発光する手段を構成することができ、用途が非常に 広がるのみならず、青色発光ダイオードの発生する光の波長が短いので、その光の スポット径を小さくすることができ、例えば DVD等に情報を記録する場合における記 憶容量を顕著に増やすことができるからである。 [0004] Blue light-emitting diodes can be used together with existing green light-emitting diodes and red light-emitting diodes to constitute means for emitting the three primary colors of light. This is because the wavelength of the light to be emitted is short, so that the spot diameter of the light can be reduced, and for example, the storage capacity when recording information on a DVD or the like can be significantly increased.
[0005] 更に、青色発光ダイオードから発生する青色の光は蛍光体に当たると発光し、白熱 電灯や蛍光灯に比較して発光効率が顕著に良ぐ且つ、寿命の長い光源となるから である。これは国家的、国際的規模での省エネに繋がる。 [0005] Furthermore, the blue light generated from the blue light emitting diode emits light when it hits the phosphor, and has a light emission efficiency that is significantly better than incandescent and fluorescent lamps and has a long life. This leads to energy saving on a national and international scale.
[0006] ところで、従来にお!、て青色発光ダイオードは、 C面を主表面とするサファイア基板 のその主表面上に GaN (窒化ガリウム)層を形成し、その形成した GaN層を主要膜と することにより形成するという方法で製造された。 [0006] By the way, in the past, a blue light emitting diode has a GaN (gallium nitride) layer formed on the main surface of a sapphire substrate having a C surface as a main surface, and the formed GaN layer is used as a main film. It was manufactured by the method of forming by doing.
[0007] しかし、この従来技術には、先ず第 1に、 C面を主表面とするサファイア基板のゥヱ ハを製造する場合、大きなウェハを得ることが難しいという問題がある。具体的には、However, this conventional technique has a problem that, first of all, when manufacturing a wafer of a sapphire substrate having a C surface as a main surface, it is difficult to obtain a large wafer. In particular,
100mm程度が実用上得られるウェハの最大径である。そして、ウェハの径が小さい と、製品の生産性を高めることが難しいので、低価格の青色発光ダイオードを提供す ることを難しくする要因になり、この問題は看過できない。 About 100 mm is the maximum wafer diameter that can be obtained in practice. And the diameter of the wafer is small It is difficult to increase the productivity of the product, which makes it difficult to provide a low-cost blue light-emitting diode, and this problem cannot be overlooked.
[0008] 第 2に、 GaN膜を成長させるには、水素ガス Hと、アンモニアガス NHを大量に供 Second, in order to grow a GaN film, a large amount of hydrogen gas H and ammonia gas NH are supplied.
2 3  twenty three
給する必要があり、これは排ガス処理を必要とし、安全性の面でも、経済性の面でも 看過できない重大な問題になり、コスト増の大きな要因になる。  This requires exhaust gas treatment, which is a serious problem that cannot be overlooked both in terms of safety and economy, and is a major factor in increasing costs.
[0009] それに対して、サファイア基板上に酸ィ匕亜鉛エピタキシー層を形成し、その形成し た層を主要膜として青色発光ダイオードを形成する技術がある。  [0009] On the other hand, there is a technique in which an oxide zinc epitaxy layer is formed on a sapphire substrate, and a blue light emitting diode is formed using the formed layer as a main film.
[0010] この技術は、 A面を主表面とするサファイア基板のその主表面上に酸ィ匕亜鉛ェピタ キシ一層を形成するものであり、 A面を主表面とするサファイア基板のウェハは上述し た C面を主表面とするサファイア基板のウェハよりも容易に大径にすることができると いう利点を有する。具体的には、現在の半導体製造技術でも直径 300mmのウェハ を得ることは充分に可能である。これは製品の生産性の向上に大きく寄与する点であ ることはいうまでもない。  [0010] In this technique, an oxide-zinc epitaxy layer is formed on a main surface of a sapphire substrate having an A surface as a main surface. A wafer of a sapphire substrate having an A surface as a main surface is described above. It has the advantage that it can be easily made larger than a sapphire substrate wafer with the C-plane as the main surface. Specifically, it is possible to obtain a wafer with a diameter of 300 mm with the current semiconductor manufacturing technology. Needless to say, this greatly contributes to the improvement of product productivity.
[0011] ところで、酸化亜鉛エピタキシー層の形成方法として、 MBE法と CVD(Chemical Va por Deposition)法とがあり、 MBE法は、超高真空下で原料を分子状に蒸発させ、そ の蒸発させたものを加熱した基板上に堆積させて薄膜を形成するという物理的方法 であるが、堆積速度が遅ぐ基板寸法が小さいので量産性が低いうえ、超高真空装 置が非常に高価なので、大量に製品を製造する工業的利用には向力ない。  [0011] By the way, there are MBE method and CVD (Chemical Vapor Deposition) method as the formation method of zinc oxide epitaxy layer. MBE method evaporates the raw material in the form of molecules under ultra-high vacuum, and evaporates it This is a physical method of depositing a thin film on a heated substrate to form a thin film, but because the substrate size is slow and the substrate size is small, mass productivity is low, and the ultra-high vacuum equipment is very expensive. It is not suitable for industrial use to manufacture products in large quantities.
[0012] それに対して、 CVD法は、気相化学的に酸ィ匕亜鉛エピタキシー層を成長させるこ とができ、堆積速度が速ぐ量産性に優れているが、更に、酸ィ匕亜鉛エピタキシー層 の形成に必要な材料は、亜鉛の化合物を気化したもの、例えばジンクオキサイドであ り、消炎剤として用いられることからも明らかなように無毒である。従って、安全性の面 でも、経済性の面でも全く問題がないのである。  [0012] In contrast, the CVD method is capable of growing an oxide-zinc epitaxy layer vapor-phase chemically and is excellent in mass productivity with a high deposition rate. The material necessary for the formation of the layer is a vaporized zinc compound, such as zinc oxide, which is non-toxic as is apparent from its use as an anti-inflammatory agent. Therefore, there is no problem at all in terms of safety and economy.
[0013] 以上が基板上に CVD法により酸ィ匕亜鉛エピタキシー層を形成する技術の有用性 の一つである。勿論、これ以外にも有用な広い用途がある。  [0013] The above is one of the usefulness of the technique for forming an oxide zinc epitaxy layer on a substrate by CVD. Of course, there are a wide variety of other useful applications.
[0014] ところが、 CVD法は薄膜となる化学原料ガスを加熱した基板上に供給することを必 要とするが、室温でガス状の亜鉛ィ匕合物は存在しないのである。亜鉛化合物は容易 に入手可能である力 すべて室温では液体又は固体なのである。液体の亜鉛化合 物ジメチル亜鉛、ジェチル亜鉛は、水と激しく反応して発火する禁水性ィ匕合物であり 、大量に取り扱うことは困難である。 [0014] However, the CVD method requires supplying a chemical raw material gas to be a thin film onto a heated substrate, but there is no gaseous zincy compound at room temperature. Zinc compounds are readily available forces All are liquids or solids at room temperature. Liquid zinc compound The substances dimethylzinc and jetylzinc are water-inhibiting compounds that react violently with water and ignite, and are difficult to handle in large quantities.
[0015] 勿論、固体を CVD膜形成用のガスとして用いて気相成長(CVD)を行うことは通常 の CVD技術では不可能である。 [0015] Of course, it is impossible to perform vapor phase growth (CVD) using a solid as a gas for forming a CVD film by ordinary CVD technology.
非特許文献 1:「応用物理」第 72卷第 6号 (2003)第 705頁〜第 710頁「ZnOェピタ キシ一層の最近の進展」  Non-Patent Document 1: “Applied Physics”, No. 72-6 (2003) pp. 705-710 “Recent Progress of ZnO Epitaxy”
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0016] しかし、最近、固体を CVD膜形成用のガスとして用いて気相成長を行う技術力、本 願発明者により開発され、それに関する種々の提案が例えば特願 2004— 290087 号等により為されている。 [0016] However, recently, the inventor of the present application has developed a technical capability of performing vapor phase growth using a solid as a gas for forming a CVD film. Has been.
[0017] そこで、本願発明者はその技術を利用して酸ィ匕亜鉛層を形成するという着想を得 た。そして、本願発明者は更にその着想の下、酸化亜鉛層の形成に最適な酸化亜 鉛層の形成方法及びその実施に用いる酸化亜鉛層形成装置を模索した。 [0017] Therefore, the inventor of the present application has come up with the idea of using the technique to form an acid zinc layer. The inventor further sought a method for forming a zinc oxide layer optimal for forming a zinc oxide layer and a zinc oxide layer forming apparatus used for the implementation under the idea.
[0018] 本発明はその模索の結果として為されたものである。 [0018] The present invention has been made as a result of the search.
[0019] 即ち、本発明は、固体の亜鉛ィ匕合物を用いながら、酸化亜鉛層を生産性良く形成 することができる酸化亜鉛層の形成方法と、その実施に用いる酸化亜鉛層形成装置 を提供することを目的とする。  That is, the present invention provides a method for forming a zinc oxide layer capable of forming a zinc oxide layer with high productivity while using a solid zinc compound, and a zinc oxide layer forming apparatus used for the method. The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0020] 請求項 1の酸ィ匕亜鉛層の形成方法は、固体の亜鉛ィ匕合物溶液 [例えば、 Zn(DP M) +トルエン]を気化器で気化し、少なくともその亜鉛ィ匕合物溶液を気化したものを[0020] The method for forming an acid-zinc layer according to claim 1 is characterized in that a solid zinc-containing compound solution [for example, Zn (DP M) + toluene] is vaporized with a vaporizer, and at least the zinc-containing compound is formed. The vaporized solution
2 2
加熱した基板 (例えば、主表面が c面のサファイア基板、或いはシリコン半導体基板 等)上に供給することにより、この基板上に酸化亜鉛層を成長させることを特徴とする  A zinc oxide layer is grown on a heated substrate (for example, a sapphire substrate whose main surface is a c-plane or a silicon semiconductor substrate).
[0021] 請求項 2の酸化亜鉛層の形成方法は、請求項 1記載の酸化亜鉛層の形成方法に おいて、前記気化器に酸化ガスを供給し、前記基板上に供給された前記亜鉛化合 物溶液を気化したものと、この酸ィ匕ガスとによりこの基板上に酸ィ匕亜鉛層を成長させ ることを特徴とする。 [0022] 請求項 3の酸化亜鉛層の形成方法は、請求項 1記載の酸化亜鉛層の形成方法に ぉ ヽて、前記亜鉛化合物溶液を気化したものが供給される前記基板上に酸化ガスを 供給することによりこの基板上に酸ィ匕亜鉛層を成長させることを特徴とする。 [0021] A method for forming a zinc oxide layer according to claim 2 is the method for forming a zinc oxide layer according to claim 1, wherein an oxidizing gas is supplied to the vaporizer and the zinc compound supplied onto the substrate is supplied. A feature is that an acid zinc layer is grown on the substrate by vaporizing the material solution and the acid gas. [0022] A method for forming a zinc oxide layer according to claim 3 is the same as the method for forming a zinc oxide layer according to claim 1, wherein an oxidizing gas is supplied onto the substrate to which the vaporized zinc compound solution is supplied. It is characterized by growing an oxide zinc layer on the substrate by supplying.
[0023] 請求項 4の酸ィ匕亜鉛層の形成方法は、請求項 1、 2又は 3記載の酸化亜鉛層の形 成方法において、前記基板を或る範囲(例えば 200〜650°C)の温度に加熱してそ の表面上に酸ィ匕亜鉛層 [厚さ例えば 20〜2000A (本明細書において、 Aを以てオン ダストロウムとする。本来、オングストロウムは Aの上に小さな〇を付けた符号で表す 力 それは使用不可能なので、 Aを以てそれに代えるのである。;) ]を形成し、その後 、前記基板を前記範囲よりも高!、範囲(例えば 400〜1100°C)の温度に加熱して前 記酸ィ匕亜鉛層上に更に酸ィ匕亜鉛層(厚さ 1000〜30000A)を形成することを特徴と する。  [0023] A method for forming a zinc oxide layer according to claim 4 is the method for forming a zinc oxide layer according to claim 1, 2 or 3, wherein the substrate is placed in a certain range (for example, 200 to 650 ° C). When heated to a temperature, a zinc oxide layer on the surface [thickness, for example, 20 to 2000A (in the present specification, A is referred to as ondastroum. Originally, angstrom has a small circle on A. The force represented by the symbol is not usable, so it is replaced by A.;)] is formed, and then the substrate is heated to a temperature higher than the above range and in the range (eg 400-1100 ° C.). Further, an acid zinc layer (thickness 1000 to 30000A) is further formed on the acid zinc layer.
[0024] 請求項 5の酸化亜鉛層の形成方法は、請求項 4記載の酸化亜鉛層の形成方法に おいて、前記基板の表面上に前記酸化亜鉛層を形成する前に、この基板の表面に 酸素べ一キング処理を施すことを特徴とする。  [0024] The method for forming a zinc oxide layer according to claim 5 is the method for forming a zinc oxide layer according to claim 4, wherein the surface of the substrate is formed before the zinc oxide layer is formed on the surface of the substrate. It is characterized by being subjected to oxygen baking treatment.
[0025] 請求項 6の酸ィ匕亜鉛層形成装置は、少なくとも固体亜鉛ィ匕合物溶液及びキャリア ガスをバルブを介して受け、受けた物質を先端カゝら噴出するノズルの先端をそのノズ ルの内径よりも顕著に広い内径を有する気化室内に突出させ、この気化室内にてこ のノズル先端から噴出された物質を気化する気化器と、チャンバ内部に基板を加熱 して保持する基板保持部を有し、少なくとも前記気化器力ゝらのガスの供給を受け、前 記基板保持部上の前記基板上に酸化亜鉛層を CVD(Chemical Vapor Deposition) 成長させる CVD部と、を備えたことを特徴とする。  [0025] The acid-zinc layer forming device according to claim 6 receives at least the solid zinc-containing compound solution and the carrier gas through the valve, and the nozzle tip that ejects the received substance from the tip end thereof. A vaporizer for projecting into a vaporizing chamber having an inner diameter that is significantly wider than the inner diameter of the rod, and vaporizing the substance ejected from the tip of the nozzle in the vaporizing chamber, and a substrate holding section for heating and holding the substrate inside the chamber And a CVD unit that receives a gas supplied by at least the vaporizer force and grows a zinc oxide layer on the substrate holding unit by CVD (Chemical Vapor Deposition). Features.
[0026] 請求項 7の酸ィ匕亜鉛層は、少なくとも亜鉛ィ匕合物溶液及びキャリアガスをバルブを 介して受け、受けた物質を先端力 噴出するノズルの先端をそのノズルの内径よりも 顕著に広い内径を有する気化室内に突出させ、このノズル先端力 噴出された微粒 子状又は霧状の物質をその気化室にて受けて気化する気化器と、チャンバ内部に 基板を保持する基板保持部を有し、少なくとも前記気化器力ゝらのガスの供給を受け、 前記基板保持部上の前記基板上に酸ィ匕亜鉛層を CVD成長させる CVD部と、を備 えた酸化亜鉛層形成装置を用いて、亜鉛化合物溶液を前記気化器で気化し、少な くとも前記亜鉛ィ匕合物の溶液を気化したガスを前記基板保持部上の前記基板上に 供給することにより、この基板上に形成されたことを特徴とする。 [0026] The acid-zinc layer of claim 7 receives at least a zinc-containing compound solution and a carrier gas through a valve, and the tip of a nozzle that ejects the received substance is more noticeable than the inner diameter of the nozzle. A vaporizer that protrudes into the vaporization chamber having a wide inner diameter and receives the fine particle or mist-like substance ejected from the nozzle tip force in the vaporization chamber, and a substrate holding portion that holds the substrate inside the chamber A zinc oxide layer forming apparatus comprising: a CVD unit that receives at least a gas supplied from the vaporizer and that causes CVD of an oxide zinc layer on the substrate on the substrate holding unit. Use, vaporize the zinc compound solution in the vaporizer, At least, a gas obtained by vaporizing a solution of the zinc-containing compound is supplied onto the substrate on the substrate holding portion, thereby being formed on the substrate.
[0027] 請求項 8の酸ィ匕亜鉛層は、少なくとも亜鉛ィ匕合物溶液及びキャリアガスをバルブを 介して受け、受けた物質を先端力 噴出するノズルの先端をそのノズルの内径よりも 顕著に広い内径を有する気化室内に突出させ、このノズル先端力 噴出された微粒 子状又は霧状の物質をその気化室にて受けて気化する気化器と、チャンバ内部に 基板を保持する基板保持部を有し、少なくとも前記気化器力ゝらのガスの供給を受け、 前記基板保持部上の前記基板上に酸ィ匕亜鉛層を CVD成長させる CVD部と、を備 えた酸化亜鉛層形成装置を用いて、亜鉛化合物溶液を前記気化器で気化し、少な くとも前記亜鉛ィ匕合物の溶液を気化したガスを前記基板保持部上の或る範囲内の温 度に加熱された前記基板上に供給することにより、この基板上に形成された第 1の酸 化亜鉛層と、前記基板を前記範囲よりも高い範囲の温度に加熱して前記第 1の酸ィ匕 亜鉛層上に形成された第 2の酸ィ匕亜鉛層とからなり、積層構造を有することを特徴と する。  [0027] The acid-zinc layer of claim 8 receives at least a zinc-containing compound solution and a carrier gas through a valve, and the tip of the nozzle that ejects the received substance is more conspicuous than the inner diameter of the nozzle. A vaporizer that protrudes into the vaporization chamber having a wide inner diameter and receives the fine particle or mist-like substance ejected from the nozzle tip force in the vaporization chamber, and a substrate holding portion that holds the substrate inside the chamber A zinc oxide layer forming apparatus comprising: a CVD unit that receives at least a gas supplied from the vaporizer and that causes CVD of an oxide zinc layer on the substrate on the substrate holding unit. A gas containing a zinc compound solution is vaporized in the vaporizer, and at least a gas obtained by vaporizing the zinc compound solution is heated on a temperature within a certain range on the substrate holding unit. Formed on this substrate by supplying to A first zinc oxide layer and a second oxide zinc layer formed on the first oxide zinc layer by heating the substrate to a temperature in a range higher than the range. It is characterized by having a laminated structure.
[0028] 請求項 9の酸化亜鉛層形成装置は、亜鉛ィ匕合物溶液を気化したガスをチャンバ〖こ 供給する気化器を備えた酸化亜鉛層形成装置において、前記気化器は、流入口か ら流出口に向けてキャリアガスが流れるキャリアガス流路と、前記キャリアガス流路に 前記亜鉛化合物溶液を供給する亜鉛化合物溶液流路と、前記キャリアガス流路の流 出口に設けられ、前記亜鉛化合物溶液流路から供給された前記亜鉛化合物溶液を 気化する気化室とを備え、前記キャリアガス流路は、前記キャリアガスが供給されるキ ャリアガス管と、該キャリアガス管力 前記キャリアガスが供給され、前記亜鉛化合物 溶液を微粒子状又は霧状にしてキャリアガス中に分散させて前記気化室に供給する ノズルとを備え、前記気化室は、前記キャリアガス中に分散させた亜鉛ィ匕合物溶液を 加熱して気化する加熱手段を備えていることを特徴とする。  [0028] The zinc oxide layer forming apparatus according to claim 9 is a zinc oxide layer forming apparatus including a vaporizer that supplies a gas obtained by vaporizing a zinc compound solution into a chamber. A carrier gas passage through which a carrier gas flows toward the outlet, a zinc compound solution passage for supplying the zinc compound solution to the carrier gas passage, and an outlet of the carrier gas passage. A vaporizing chamber for vaporizing the zinc compound solution supplied from the compound solution flow path, the carrier gas flow path supplying a carrier gas pipe to which the carrier gas is supplied, and the carrier gas pipe force supplying the carrier gas A nozzle for supplying the zinc compound solution in the form of fine particles or mist in a carrier gas and supplying it to the vaporizing chamber, and the vaporizing chamber is dispersed in the carrier gas. Characterized in that it comprises a heating means for heat vaporizing zinc I 匕合 product solution was.
[0029] 請求項 10の酸ィ匕亜鉛層の形成方法は、亜鉛ィ匕合物溶液を気化したガスをチャン バに供給することにより、前記チャンバ内の基板に酸ィ匕亜鉛層を形成する酸ィ匕亜鉛 層の形成方法において、キャリアガス流路の流入口から流出口に向けてキャリアガス を流すことにより、前記チャンバにキャリアガスを供給するキャリアガス供給ステップと 、前記キャリアガス流路に前記亜鉛化合物溶液を供給する亜鉛化合物溶液供給ステ ップと、前記亜鉛化合物溶液を、前記キャリアガス流路で微粒子状又は霧状にしてキ ャリアガス中に分散させて、前記キャリアガス流路の流出口に設けられた気化室に供 給する気化室供給ステップと、前記気化室で前記亜鉛化合物溶液を前記気化室の 加熱手段により加熱して気化する気化ステップとを備えたことを特徴とする。 [0029] In the method of forming an acid / zinc layer according to claim 10, the oxide / zinc layer is formed on the substrate in the chamber by supplying a gas obtained by vaporizing the zinc compound solution to the chamber. A carrier gas supply step of supplying the carrier gas to the chamber by flowing the carrier gas from the inlet to the outlet of the carrier gas flow path in the method of forming the zinc oxide layer; A zinc compound solution supplying step for supplying the zinc compound solution to the carrier gas channel, and the zinc compound solution is dispersed in the carrier gas in the form of fine particles or mist in the carrier gas channel, A vaporization chamber supply step for supplying to a vaporization chamber provided at an outlet of the carrier gas flow path; and a vaporization step for heating and vaporizing the zinc compound solution by a heating means of the vaporization chamber in the vaporization chamber. It is characterized by that.
[0030] 請求項 11の酸ィ匕亜鉛層の形成方法は、亜鉛ィ匕合物溶液を気化したガスをチャン バに供給することにより、前記チャンバ内の基板に酸ィ匕亜鉛層を形成する酸ィ匕亜鉛 層の形成方法において、キャリアガス流路の流入口から流出口に向けてキャリアガス を流すことにより、前記チャンバにキャリアガスを供給するキャリアガス供給ステップと 、前記キャリアガス流路に前記亜鉛化合物溶液を供給する亜鉛化合物溶液供給ステ ップと、前記亜鉛化合物溶液を、前記キャリアガス流路で微粒子状又は霧状にしてキ ャリアガス中に分散させて、前記キャリアガス流路の流出口に設けられた気化室に供 給する気化室供給ステップと、前記気化室で前記亜鉛化合物溶液を前記気化室の 加熱手段により加熱して気化する気化ステップと、加熱した前記基板上に前記気化 ステップで気化したガスにより第 1の酸ィ匕亜鉛層を形成する第 1の酸ィ匕亜鉛層形成ス テツプと、前記基板をより高い温度に加熱して前記第 1の酸ィ匕亜鉛層上に第 2の酸ィ匕 亜鉛層を形成する第 2の酸化亜鉛層形成ステップとを備えたことを特徴とする。  [0030] In the method of forming an acid / zinc layer according to claim 11, the oxide / zinc layer is formed on the substrate in the chamber by supplying a gas obtained by vaporizing the zinc / compound solution to the chamber. In the method for forming the zinc oxide layer, a carrier gas supply step for supplying a carrier gas to the chamber by flowing a carrier gas from an inlet to an outlet of the carrier gas channel; A zinc compound solution supplying step for supplying the zinc compound solution, and the zinc compound solution are dispersed in the carrier gas in the form of fine particles or mist in the carrier gas flow path, so that the flow in the carrier gas flow path is reduced. A vaporizing chamber supplying step for supplying to a vaporizing chamber provided at the outlet; a vaporizing step for heating the zinc compound solution in the vaporizing chamber by a heating means of the vaporizing chamber; A first oxide / zinc layer forming step for forming a first oxide / zinc layer with the gas vaporized in the vaporization step on the substrate; and heating the substrate to a higher temperature to form the first oxide / zinc layer. And a second zinc oxide layer forming step of forming a second acid zinc layer on the acid zinc layer.
[0031] 請求項 12の酸化亜鉛層形成方法は、前記第 1の酸化亜鉛層形成ステップが、前 記基板を 200〜650°Cの温度に加熱して第 1の酸化亜鉛層を形成し、前記第 2の酸 化亜鉛層形成ステップが、前記基板を 400〜1100°Cの温度に加熱して前記第 1の 酸化亜鉛層上に第 2の酸化亜鉛層を形成することを特徴とする。  [0031] In the zinc oxide layer forming method of claim 12, in the first zinc oxide layer forming step, the substrate is heated to a temperature of 200 to 650 ° C to form the first zinc oxide layer, The second zinc oxide layer forming step is characterized in that the substrate is heated to a temperature of 400 to 1100 ° C. to form a second zinc oxide layer on the first zinc oxide layer.
発明の効果  The invention's effect
[0032] 請求項 1の酸ィ匕亜鉛層の形成方法によれば、亜鉛ィ匕合物溶液 [例えば、 Zn(DPM ) +トルエン  [0032] According to the method for forming an acid-zinc layer according to claim 1, a zinc-containing compound solution [eg, Zn (DPM) + toluene
2 ]を気化器で気化し、少なくともその亜鉛ィ匕合物溶液を気化したものを加 熱した基板 (例えば、主表面が c面のサファイア基板、或いはシリコン半導体基板等) 上に供給するので、後は酸化することにより、基板上に酸化亜鉛層を形成することが 可能となる。  2] is vaporized by a vaporizer, and at least a solution obtained by vaporizing the zinc compound solution is supplied onto a heated substrate (for example, a sapphire substrate having a c-plane main surface or a silicon semiconductor substrate). Thereafter, it is possible to form a zinc oxide layer on the substrate by oxidizing.
[0033] 従って、亜鉛ィ匕合物が固体であるにも拘わらず、酸化亜鉛層を CVDにより形成す ることが可能となる。 [0033] Therefore, the zinc oxide layer is formed by CVD even though the zinc compound is solid. It is possible to
[0034] 請求項 2の酸ィ匕亜鉛層の形成方法によれば、請求項 1記載の酸化亜鉛層の形成 方法において、前記気化器に酸化ガスを供給するので、その酸ィ匕ガスと気化して供 給された前記亜鉛ィ匕合物の亜鉛とによりその基板上に酸ィ匕亜鉛層を形成することが できる。  [0034] According to the method for forming a zinc oxide layer according to claim 2, in the method for forming a zinc oxide layer according to claim 1, an oxidizing gas is supplied to the vaporizer. An acid zinc layer can be formed on the substrate with the zinc of the zinc compound mixed and supplied.
[0035] 従って、亜鉛ィ匕合物が固体であるにも拘わらず、酸化亜鉛層を CVDにより形成す ることが可能となる。  Therefore, it is possible to form a zinc oxide layer by CVD even though the zinc compound is solid.
[0036] 請求項 3の酸化亜鉛層の形成方法によれば、請求項 1記載の酸化亜鉛層の形成 方法において、前記基板上に酸化ガスを供給するので、その酸ィ匕ガスと気化して供 給された前記亜鉛ィ匕合物の亜鉛とによりその基板上に酸ィ匕亜鉛層を形成することが できる。  [0036] According to the method for forming a zinc oxide layer according to claim 3, in the method for forming a zinc oxide layer according to claim 1, an oxidizing gas is supplied onto the substrate. An acid zinc layer can be formed on the substrate by the supplied zinc of the zinc compound.
[0037] 従って、亜鉛ィ匕合物が固体であるにも拘わらず、酸化亜鉛層を CVDにより形成す ることが可能となる。  [0037] Therefore, it is possible to form a zinc oxide layer by CVD even though the zinc compound is solid.
[0038] 請求項 4の酸化亜鉛層の形成方法によれば、前記基板の表面上に酸化亜鉛層 ( 便宜上、「第 1の酸ィ匕亜鉛層」という。)を形成し、その後、その基板をより適宜高い温 度に加熱して第 1の酸ィ匕亜鉛層上に更に酸ィ匕亜鉛層(便宜上「第 2の酸化亜鉛層」と いう。)を形成するので、基板の影響を受けずに第 2の酸化亜鉛層を成長させること ができる。  [0038] According to the method for forming a zinc oxide layer of claim 4, a zinc oxide layer (referred to as "first oxide zinc layer" for convenience) is formed on the surface of the substrate, and then the substrate Is heated to an appropriately higher temperature to further form an acid zinc layer (referred to as a “second zinc oxide layer” for convenience) on the first oxide zinc layer, and is affected by the substrate. Without this, the second zinc oxide layer can be grown.
[0039] 請求項 5の酸化亜鉛層の形成方法によれば、請求項 4記載の酸化亜鉛層の形成 方法において、前記基板の表面上に前記酸化亜鉛層を形成する前に、この基板の 表面に酸素べ一キング処理を施すので、その基板の表面をより良好にすることがで きる。従って、基板の影響をより受けずに第 2の酸ィ匕亜鉛層を成長させることができる  [0039] According to the method of forming a zinc oxide layer of claim 5, in the method of forming a zinc oxide layer of claim 4, the surface of the substrate is formed before the zinc oxide layer is formed on the surface of the substrate. Since the substrate is subjected to oxygen baking, the surface of the substrate can be made better. Therefore, the second oxide zinc layer can be grown without being affected by the substrate.
[0040] 請求項 6の酸ィ匕亜鉛層形成装置によれば、固体亜鉛化合物溶液及びキャリアガス をバルブを介して受け、それを気化する気化器と、この気化器からのガスの供給を受 け CVD基板保持部上の基板上に CVD膜を成長させる CVD部を有するので、気化 器からのガスを CVD部内に導入し、後は酸化することにより、 CVD部内の基板保持 部に保持された基板上に酸化亜鉛層を形成することが可能となる。 [0041] 従って、亜鉛ィ匕合物が固体であるにも拘わらず、酸化亜鉛層を CVDにより形成す ることが可能となる。 [0040] According to the acid / zinc / zinc layer forming apparatus of claim 6, the solid zinc compound solution and the carrier gas are received through the valve, the vaporizer for vaporizing the solution, and the supply of the gas from the vaporizer are received. Since it has a CVD part that grows a CVD film on the substrate on the CVD substrate holding part, the gas from the vaporizer is introduced into the CVD part and then oxidized to hold it in the substrate holding part in the CVD part. A zinc oxide layer can be formed on the substrate. [0041] Therefore, it is possible to form a zinc oxide layer by CVD even though the zinc compound is solid.
[0042] 請求項 7の酸化亜鉛層によれば、請求項 6の酸化亜鉛層形成装置を用い、亜鉛ィ匕 合物溶液をその装置の気化器で気化し、少なくとも前記亜鉛化合物の溶液を気化し たガスを前記基板保持部上の前記基板上に供給することにより、この基板上に形成 されるので、亜鉛ィ匕合物が固体であるにも拘わらず、 CVDにより容易に形成され得る  [0042] According to the zinc oxide layer of claim 7, the zinc oxide layer forming device of claim 6 is used, the zinc compound solution is vaporized by the vaporizer of the device, and at least the solution of the zinc compound is vaporized. Since the formed gas is supplied onto the substrate on the substrate holding part, it is formed on this substrate, so that it can be easily formed by CVD even though the zinc compound is solid.
[0043] 請求項 8の酸化亜鉛層によれば、請求項 6の酸化亜鉛層形成装置を用い、亜鉛ィ匕 合物溶液をその装置の気化器で気化し、少なくとも前記亜鉛化合物の溶液を気化し たガスを前記基板保持部上の或る温度範囲に加熱された前記基板上に供給するこ とにより、この基板上に形成された第 1の酸化亜鉛層と、前記基板を前記範囲よりも 高い範囲の温度に加熱して前記第 1の酸ィ匕亜鉛層上に形成された第 2の酸ィ匕亜鉛 層とにより積層構造にしたので、基板の影響をより受けずに第 2の酸化亜鉛層を成長 させることがでさる。 [0043] According to the zinc oxide layer of claim 8, the zinc oxide layer forming device of claim 6 is used, the zinc compound solution is vaporized by the vaporizer of the device, and at least the solution of the zinc compound is vaporized. By supplying the converted gas onto the substrate heated to a certain temperature range on the substrate holding portion, the first zinc oxide layer formed on the substrate and the substrate are moved beyond the range. Since the laminated structure is formed by the second oxide / zinc layer formed on the first oxide / zinc layer by heating to a high temperature range, the second oxidation is less affected by the substrate. It is possible to grow a zinc layer.
請求項 9の酸ィ匕亜鉛層形成装置によれば、高速のキャリアガス流によって亜鉛ィ匕合 物溶液を瞬間的に霧化させて、加熱手段の熱で当該亜鉛化合物溶液を容易に気化 させ易 、ようにして 、ることにより、気化させ難 、亜鉛ィ匕合物を溶媒に溶力して得た 亜鉛ィ匕合物溶液であっても気化室において容易に気化できる。これにより、亜鉛ィ匕 合物を材料とする酸ィ匕亜鉛層を形成することができる。  According to the zinc oxide layer forming apparatus of claim 9, the zinc compound solution is instantaneously atomized by the high-speed carrier gas flow, and the zinc compound solution is easily vaporized by the heat of the heating means. Thus, it is difficult to vaporize, and even a zincy compound solution obtained by dissolving the zincy compound in a solvent can be easily vaporized in the vaporization chamber. Thereby, an acid zinc layer made of a zinc compound can be formed.
[0044] 請求項 10の酸化亜鉛層の形成方法によれば、亜鉛化合物溶液を気化器で気化し 、前記亜鉛化合物溶液を気化したガスを前記基板保持部上の前記基板上に供給す ることにより、この基板上に酸化亜鉛層を形成するので、亜鉛化合物が固体であるに も拘わらず、 CVD法により容易に形成され得る。  According to the method for forming a zinc oxide layer of claim 10, the zinc compound solution is vaporized by a vaporizer, and the gas vaporized from the zinc compound solution is supplied onto the substrate on the substrate holding part. Thus, since the zinc oxide layer is formed on this substrate, it can be easily formed by the CVD method even though the zinc compound is solid.
[0045] 請求項 11の酸ィ匕亜鉛層の形成方法によれば、亜鉛化合物溶液を気化器で気化し 、前記亜鉛化合物溶液を気化したガスを前記基板保持部上の加熱された基板上に 供給することにより、この基板上に形成された第 1の酸化亜鉛層と、前記基板をより高 い温度に加熱して前記第 1の酸ィ匕亜鉛層上に形成された第 2の酸ィ匕亜鉛層とにより 積層構造にしたので、基板の影響を受けずに第 2の酸化亜鉛層を成長させることが できる。 [0045] According to the method for forming the zinc oxide layer according to claim 11, the zinc compound solution is vaporized by a vaporizer, and the gas vaporized from the zinc compound solution is deposited on the heated substrate on the substrate holding unit. By supplying, the first zinc oxide layer formed on the substrate and the second oxide layer formed on the first oxide zinc layer by heating the substrate to a higher temperature.匕 Because it has a laminated structure with a zinc layer, the second zinc oxide layer can be grown without being affected by the substrate. it can.
[0046] 請求項 12の酸ィ匕亜鉛層の形成方法によれば、請求項 11の酸化亜鉛層形成方法 において、基板上に形成された第 1の酸化亜鉛層と、前記基板をより高い温度に加 熱して前記第 1の酸ィ匕亜鉛層上に形成された第 2の酸ィ匕亜鉛層とにより積層構造に したので、確実に基板の影響を受けずに第 2の酸ィ匕亜鉛層を成長させることができる 図面の簡単な説明  [0046] According to the method for forming a zinc oxide layer according to claim 12, in the method for forming a zinc oxide layer according to claim 11, the first zinc oxide layer formed on the substrate and the substrate at a higher temperature. And the second oxide zinc layer formed on the first oxide zinc layer was formed into a laminated structure, so that the second oxide zinc was surely not affected by the substrate. Can grow layers Brief description of the drawings
[0047] [図 1]本発明の第 1の実施例の酸化亜鉛層形成装置を示す構成図である。 FIG. 1 is a configuration diagram showing a zinc oxide layer forming apparatus according to a first embodiment of the present invention.
[図 2]本発明の第 2の実施例の酸ィ匕亜鉛層形成装置を示す構成図である。  FIG. 2 is a configuration diagram showing an apparatus for forming a zinc oxide layer according to a second embodiment of the present invention.
[図 3]本発明の第 3の実施例の酸ィ匕亜鉛層形成装置を示す構成図である。  FIG. 3 is a block diagram showing an apparatus for forming a zinc oxide layer according to a third embodiment of the present invention.
[図 4]本発明の第 4の実施例の酸ィ匕亜鉛層形成装置を示す構成図である。  FIG. 4 is a block diagram showing an acid zinc oxide layer forming apparatus according to a fourth embodiment of the present invention.
[図 5] (A)〜 (C)は本発明酸ィ匕亜鉛層の形成方法の各々別の実施例を示す断面図 である。  [FIG. 5] (A) to (C) are cross-sectional views showing different examples of the method for forming the zinc oxide layer according to the present invention.
[図 6]熱 CVD法により酸ィ匕亜鉛エピタキシー層の形成を行った際におけるキャリアガ ス圧の時間的変化をモニタした結果を示す図である。  FIG. 6 is a diagram showing the results of monitoring the change in carrier gas pressure over time when an oxide-zinc epitaxy layer is formed by a thermal CVD method.
[図 7]プラズマ CVD部を CVD部として用いた場合におけるキャリアガス圧の時間的 変化を示す図である。  FIG. 7 is a diagram showing a temporal change in carrier gas pressure when a plasma CVD unit is used as the CVD unit.
[図 8]サファイア基板の C面上に約 1000Aの厚さの酸ィ匕亜鉛エピタキシー層を形成 した試料の X線結晶回折結果の或る例を示す図である。  FIG. 8 is a diagram showing an example of an X-ray crystal diffraction result of a sample in which an acid-zinc zinc epitaxy layer having a thickness of about 1000 A is formed on the C surface of a sapphire substrate.
[図 9]サファイア基板の A面上に約 1000Aの厚さの酸ィ匕亜鉛エピタキシー層を形成 した試料の X線結晶回折結果の別の例を示す図である。  FIG. 9 is a diagram showing another example of an X-ray crystal diffraction result of a sample in which an acid-zinc zinc epitaxy layer having a thickness of about 1000 A is formed on the A surface of a sapphire substrate.
[図 10]シリコン(111)基板上に約 500Aの厚さの酸ィ匕亜鉛エピタキシー層を形成した 試料の X線結晶回折結果の更に別の例を示す図である。  FIG. 10 is a view showing still another example of a result of X-ray crystal diffraction of a sample in which an acid / zinc zinc epitaxy layer having a thickness of about 500 A is formed on a silicon (111) substrate.
[図 11]シリコン(100)基板上に約 500Aの厚さの酸ィ匕亜鉛エピタキシー層を形成した 試料の X線結晶回折結果の更に別の例を示す図である。  FIG. 11 is a view showing still another example of an X-ray crystal diffraction result of a sample in which an oxide zinc oxide epitaxy layer having a thickness of about 500 A is formed on a silicon (100) substrate.
[図 12]5種類の亜鉛ィ匕合物 (錯体)について融点と、三種類の溶媒(トルエン、酢酸ブ チル、 THF)に対する溶解性を示す図である。  FIG. 12 is a graph showing melting points and solubility in three types of solvents (toluene, butyrate, THF) for five types of zinc compounds (complexes).
[図 13]Zn (EDMDD) につ!/、てのアルゴン Ar (760Torr)雰囲気での TG - DTAチヤ ートである。 [Fig.13] Zn (EDMDD)! / TG-DTA in an Ar (760Torr) atmosphere It is
[図 14]Zn (EDMDD) についての酸素 O (760Torr)雰囲気での TG— DTAチヤ  [Fig.14] TG—DTA in oxygen O (760 Torr) atmosphere for Zn (EDMDD)
2 2 一 トである。  2 2
[図 15]Zn (EDMDD) につ!/、てのアルゴン Ar ( lOTorr)雰囲気での TG - DTAチヤ  [Fig.15] Zn (EDMDD)! / TG-DTA in an Ar (lOTorr) atmosphere
2  2
ートである。  It is
[図 16]Zn錯体として採用を検討した 4種類の物質の TG特性を示す図である。  FIG. 16 is a diagram showing the TG characteristics of four types of substances that were studied for use as Zn complexes.
[図 17]CVD用気化器の詳細構成を示す概略図である。  FIG. 17 is a schematic view showing a detailed configuration of a vaporizer for CVD.
[図 18]第 5の実施の形態によるローラ式プラズマ酸ィ匕亜鉛層形成装置の全体構成を 示す概略図である。  FIG. 18 is a schematic diagram showing the overall configuration of a roller-type plasma oxide zinc layer forming apparatus according to a fifth embodiment.
[図 19]第 6の実施の形態によるローラ式プラズマ酸ィ匕亜鉛層形成装置の全体構成を 示す概略図である。  FIG. 19 is a schematic view showing an overall configuration of a roller-type plasma oxide zinc layer forming apparatus according to a sixth embodiment.
[図 20]第 7の実施の形態によるローラ式熱酸ィ匕亜鉛層形成装置の全体構成を示す 概略図である。  FIG. 20 is a schematic view showing an overall configuration of a roller-type hot acid zinc salt layer forming apparatus according to a seventh embodiment.
符号の説明  Explanation of symbols
[0048] 2 気化器 [0048] 2 Vaporizer
4、 4a、 4b、 4c CVD部  4, 4a, 4b, 4c CVD section
6 ノズル、  6 nozzles,
46 基板ステージ (基板保持部)  46 Substrate stage (substrate holder)
48 基板 (A面を主表面とするウェハ状サファイア基板)  48 substrate (wafer-like sapphire substrate with A side as the main surface)
80 RF電極  80 RF electrode
100 シャワープレート  100 shower plate
200 酸化亜鉛層  200 Zinc oxide layer
200a 第 1の酸ィ匕亜鉛層(バッファ層)  200a First zinc oxide layer (buffer layer)
200b 第 2の酸ィ匕亜鉛層(本来の結晶層)  200b Second acid-zinc layer (original crystal layer)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0049] 本発明における酸ィ匕亜鉛層は、酸ィ匕亜鉛エピタキシー層、酸化亜鉛多結晶層、酸 化亜鉛アモルファス層が考えられる。 The acid / zinc layer in the present invention may be an acid / zinc epitaxy layer, a zinc oxide polycrystalline layer, or a zinc oxide amorphous layer.
(1)酸ィ匕亜鉛エピタキシー層 以下、酸ィ匕亜鉛層としての酸ィ匕亜鉛エピタキシー層につ 、て具体例を示して詳述 する。本発明において、酸ィ匕亜鉛エピタキシー層が形成される基板として、サフアイ ァを主表面が A面になるように形成したウェハ状のサファイア基板が好適である。サフ アイァ基板表面の結晶性と略連続した結晶性を有する酸ィ匕亜鉛エピタキシー層を得 ることができる力らである。因みに、ウェハの径は例えば 200〜300mmと大きくするこ とがでさる。 (1) Acid-zinc epitaxy layer Hereinafter, the acid zinc oxide epitaxy layer as the acid zinc layer will be described in detail with specific examples. In the present invention, a wafer-like sapphire substrate in which a sapphire is formed so that the main surface is the A-plane is suitable as a substrate on which an oxide zinc epitaxy layer is formed. This is the ability to obtain an acid-zinc epitaxy layer having crystallinity substantially continuous with the crystallinity of the surface of the sapphire substrate. Incidentally, the diameter of the wafer can be increased to 200-300 mm, for example.
[0050] 尚、本発明において基板はサファイア基板に限定されるわけではなぐシリコン半導 体基板を基板としてその表面に直接或いは他の薄膜を介して酸ィ匕亜鉛エピタキシー 層を形成することもでき得る酸ィ匕亜鉛エピタキシー層の材料となる亜鉛化合物は、例 えば、 Zn (DPM) が好適である力 他に、 Zn (TMOD) 、Zn(IBPM) 、Zn (DIBM  [0050] In the present invention, the substrate is not limited to a sapphire substrate, and a silicon semiconductor substrate can be used as a substrate, and an oxide zinc epitaxy layer can also be formed on the surface directly or via another thin film. For example, the zinc compound used as the material of the obtained oxide-zinc epitaxy layer is a force suitable for Zn (DPM), Zn (TMOD), Zn (IBPM), Zn (DIBM
2 2 2  2 2 2
) それを溶け込ます媒剤としてトルエンが好適である。というのは、トルエンが高温の ) Toluene is preferred as a solvent to dissolve it. Because toluene is hot
2 2
CVD部内に入っても煤が出ない、溶解度が大きい等の性質を持つからである。  This is because it has properties such as no wrinkle and high solubility even when entering the CVD part.
[0051] また、亜鉛を酸ィ匕するために不可欠な酸ィ匕ガスの供給は、酸素ガス Oをキャリアガ [0051] In addition, the supply of oxygen gas, which is indispensable for oxidizing zinc, is performed by using oxygen gas O as a carrier gas.
2  2
スとして気化器を構成するノズルに供給することにより、或いは、 CVD部のチャンバ 外部からチャンバ内部の基板上に酸素ガス O乃至水蒸気 H O等の酸ィヒ性ガスを供  By supplying oxygen gas O to water vapor H 2 O or the like on the substrate inside the chamber from the outside of the chamber of the CVD unit.
2 2  twenty two
給すること〖こより為し得る。  You can do more than just pay.
[0052] 尚、トルエンは亜鉛ィ匕合物を溶け込ます溶剤として好適であるが、更に、気化器の ノズルを洗浄する洗浄剤としても好適である。即ち、気化器のノズル先端は例えば十 数時間程度で目詰まりするので、 目詰まりの程度をノズル内の圧力により検出し、そ の圧力が予め設定した値よりも高くなると、酸ィ匕亜鉛エピタキシー層の形成を中止し 、亜鉛ィ匕合物の溶液に代えてクリーニング液をノズルに供給し、それによりノズル先 端を洗浄するということを行うことが好ましいが、そのクリーニング液としてトルエンが 最適である。 [0052] Although toluene is suitable as a solvent for dissolving zinc compounds, it is also suitable as a cleaning agent for cleaning the nozzle of the vaporizer. In other words, the nozzle tip of the vaporizer is clogged, for example, in about 10 hours, so when the degree of clogging is detected by the pressure in the nozzle and the pressure becomes higher than a preset value, the zinc oxide epitaxy is detected. It is preferable to stop the formation of the layer and supply a cleaning liquid to the nozzle instead of the zinc compound solution, thereby washing the tip of the nozzle. However, toluene is the optimum cleaning liquid. is there.
[0053] 気化器のノズルには、亜鉛ィ匕合物を運ぶキャリアガスを供給することが必要である 力 キャリアガスとしては窒素ガス N或いは酸化ガス O或いはアルゴン Arが好適で  [0053] It is necessary to supply a carrier gas for transporting the zinc compound to the nozzle of the vaporizer. As the carrier gas, nitrogen gas N, oxidizing gas O, or argon Ar is suitable.
2 2  twenty two
ある。  is there.
[0054] 酸ィ匕亜鉛エピタキシー層の形成には材料として亜鉛ィ匕合物のみならず、酸化ガス oが必要であるが、それは、キャリアガスとして酸ィ匕ガス oを供給することができるこ と前述の通りである。 [0054] The formation of the acid-zinc epitaxy layer requires not only a zinc-containing compound as a material but also an oxidizing gas o, which can supply the acid gas o as a carrier gas. And as described above.
(1 1)実施例 1  (1 1) Example 1
以下、本発明の詳細を図示実施例に基づいて説明する。  Hereinafter, the details of the present invention will be described based on illustrated embodiments.
[0055] 図 1は本発明の第 1の実施例の酸ィ匕亜鉛層形成装置を示す構成図である。本酸ィ匕 亜鉛層形成装置としての酸ィ匕亜鉛エピタキシー層形成装置は、比較的小型用のも のである。  [0055] Fig. 1 is a configuration diagram showing an acid / zinc / zinc layer forming apparatus according to a first embodiment of the present invention. The zinc oxide epitaxy layer forming apparatus as the present zinc oxide layer forming apparatus is relatively small.
[0056] 図 1において、 2は気化器、 4は CVD部であり、本酸ィ匕亜鉛エピタキシー層形成装 置は、大略、この気化器 2と CVD部により構成されている。 6は気化器 2のノズルで、 内径が例えば 1. Omm (先端における内径が 0. 3mm)程度で、ガスを噴出する先端 を下向きにして略垂直に設けられている。 8はキャリアガス供給管で、前記ノズル 6の 上側に位置し、このノズル 6内にキャリアガス(例えば、窒素ガス N或いは酸ィ匕ガス O  In FIG. 1, 2 is a vaporizer, 4 is a CVD unit, and the present zinc oxide epitaxy layer forming apparatus is roughly constituted by the vaporizer 2 and the CVD unit. The nozzle 6 of the vaporizer 2 has an inner diameter of, for example, about 1. Omm (the inner diameter at the tip is about 0.3 mm), and is provided substantially vertically with the tip from which the gas is jetted downward. A carrier gas supply pipe 8 is located above the nozzle 6 and contains a carrier gas (for example, nitrogen gas N or acid gas O).
2  2
或いはアルゴン Ar)を供給するものであり、 10はそのキャリアガス供給管 8に設けら Or argon (Ar), and 10 is provided in the carrier gas supply pipe 8.
2 2
れたガスバルブである。  Gas valve.
[0057] 12はノズル 6内の圧力を検出する圧力計で、ノズル 6先端の詰まりの度合いを検出 するために設けられている。即ち、本酸ィ匕亜鉛エピタキシー層形成装置は使用すると 、ノズル 6の先端に詰まりが生じ、その詰まりが一定限度を超すと正常なガス供給が 不可能になり、延いては正常な CVDが不可能になるので、クリーニングをする必要 があるが、その詰まりの程度を圧力計 12により検出するのである。これは、ノズル 6の 先端に詰まりが生じると圧力が高まることから圧力により詰まりを検出することができる という原理を利用している。  [0057] 12 is a pressure gauge for detecting the pressure in the nozzle 6 and is provided for detecting the degree of clogging at the tip of the nozzle 6. In other words, when the present zinc oxide epitaxy layer forming apparatus is used, the tip of the nozzle 6 is clogged, and if the clogging exceeds a certain limit, normal gas supply becomes impossible, and normal CVD is not possible. Since it becomes possible, it is necessary to clean it, but the degree of the clogging is detected by the pressure gauge 12. This utilizes the principle that clogging can be detected by pressure because the pressure increases when the tip of the nozzle 6 is clogged.
[0058] 図 6は、表 1に示す条件で熱 CVD法により酸化亜鉛エピタキシー層の形成を行つ た際におけるキャリアガス圧の時間的変化をモニタした結果を示すものである。この 場合はほとんどガス圧は変化しない、即ち、詰まりは生じていないといえる。尚、表 1 にお 、て、ケミカル溶液組成は、 Zn (DPM) 0. 2molZL、溶媒はトルエンである。  FIG. 6 shows the results of monitoring the temporal change in the carrier gas pressure when the zinc oxide epitaxy layer was formed by the thermal CVD method under the conditions shown in Table 1. In this case, the gas pressure hardly changes, that is, no clogging occurs. In Table 1, the chemical solution composition is Zn (DPM) 0.2 molZL, and the solvent is toluene.
2  2
[0059] [表 1]
Figure imgf000014_0001
[0059] [Table 1]
Figure imgf000014_0001
また、図 7は表 2に示す条件で後述するプラズマ CVD部を CVD部として用いて酸 化亜鉛エピタキシー層の形成を行った際におけるキャリアガス圧の時間的変化をモ ユタした結果を示すものである。この場合は、詰まりが生じており、 800秒程度経過後 、 CVDを停止し、洗浄をする必要があるといえる。尚、表 2において、ケミカル溶液組 成は、 Zn (DPM) 0. 2molZL、溶媒はトルエンである。 In addition, FIG. 7 shows the conditions shown in Table 2 in which the plasma CVD part, which will be described later, is used as the CVD part. This shows the results of monitoring the change over time in the carrier gas pressure when the zinc halide epitaxy layer was formed. In this case, clogging has occurred, and it can be said that after about 800 seconds, it is necessary to stop and clean the CVD. In Table 2, the chemical solution composition is Zn (DPM) 0.2 mol ZL, and the solvent is toluene.
2  2
[0060] [表 2]
Figure imgf000015_0001
[0060] [Table 2]
Figure imgf000015_0001
14はノズル 6に供給するケミカル、溶媒の供給を制御するバルブユニットである。 1 6は亜鉛ィ匕合物、本例では Zn (DPM) の溶液を溜める溶液ボンベであり、本例では  A valve unit 14 controls the supply of chemicals and solvents to be supplied to the nozzle 6. 16 is a zinc compound, in this example, a solution cylinder for storing Zn (DPM) solution.
2  2
その溶媒としてトルエンを用いている。トルエンに Zn (DPM) を溶かした溶液ボンべ  Toluene is used as the solvent. A solution cylinder with Zn (DPM) dissolved in toluene
2  2
16内の溶液は加圧用ガス、例えば、ヘリウム Heにより加圧され、バルブユニット 14の 一つのバルブを介してバルブユニット 14内に供給される。  The solution in 16 is pressurized with a pressurizing gas, for example, helium He, and supplied into the valve unit 14 through one valve of the valve unit 14.
[0061] 18はクリーニング液、例えばトルエンを溜めるクリーニング液ボンベで、その内部の トルエンは加圧用ガス、例えば、ヘリウム Heにより加圧され、バルブユニット 14の別 の一つのバルブを介してノズル 6内に供給される。  [0061] Reference numeral 18 denotes a cleaning liquid cylinder for storing a cleaning liquid, for example, toluene. The toluene in the inside is pressurized by a pressurizing gas, for example, helium He, and is supplied into the nozzle 6 through another valve of the valve unit 14. To be supplied.
[0062] 20は気化器 2を構成する気化管で、ノズル 6より顕著に大きい内径を有し、垂直の 向きに設けられており、その上端部にはそのノズル 6の先端が入り込んでいる。気化 管 20はその下端より稍上寄りの部分に略水平に分岐する分岐部 22を有する。尚、 気化管 20の下端はベントバルブ 24を介して真空配管 26に連通している。この真空 配管 26は排気バルブ 28を介して排気用真空ポンプ 30に連通している。  [0062] Reference numeral 20 denotes a vaporizing tube constituting the vaporizer 2, which has a remarkably larger inner diameter than the nozzle 6, is provided in a vertical direction, and the tip of the nozzle 6 enters the upper end portion thereof. The vaporizing tube 20 has a branching portion 22 that branches substantially horizontally at a portion closer to the top than the lower end. The lower end of the vaporizing pipe 20 communicates with the vacuum pipe 26 via the vent valve 24. The vacuum pipe 26 communicates with an exhaust vacuum pump 30 through an exhaust valve 28.
[0063] 32は気化管 20の表面に設けられたヒータであり、例えば 250°C程度に加熱する。  [0063] 32 is a heater provided on the surface of the vaporizing tube 20, and heats it to about 250 ° C, for example.
[0064] 34は CVD部 4のチャンバ本体、 36はそのチャンバ本体 34の外面に設けられたヒ ータで、一部は後述する原料取り入れ部(58)をも覆い、チャンバ本体 34内及びその 原料取り入れ部(58)内を例えば 250°C程度の温度に保つのに寄与する。 38はこの チャンバ本体 34の上部を覆うチャンバ蓋、 40は該チャンバ蓋 38の裏面の石英カバ 一、 42はチャンバ本体 34をその下部にて支えるチャンバ支持部であり、チャンバ本 体 34、チャンバ蓋 38及びチャンバ支持部 42によって CVD部 4の主要部を成すチヤ ンノ 44が構成される。 [0065] 46はチャンバ 44内部にて基板 48を支持する基板ステージ (基板保持部)であり、ヒ ータ 50を内蔵している。 52は基板ヒーター制御ユニットで、基板ステージ 46のヒータ 50を加熱制御するものである。 54は温度センサ、 56はヒーター配線である。 [0064] 34 is a chamber body of the CVD unit 4, and 36 is a heater provided on the outer surface of the chamber body 34. A part of the chamber body 34 also covers a raw material intake unit (58) to be described later. This contributes to maintaining the inside of the raw material intake (58) at a temperature of about 250 ° C, for example. 38 is a chamber lid that covers the upper part of the chamber body 34, 40 is a quartz cover on the back surface of the chamber lid 38, and 42 is a chamber support that supports the chamber body 34 at its lower part. The chamber 44 and the chamber support 42 constitute a channel 44 that forms the main part of the CVD unit 4. Reference numeral 46 denotes a substrate stage (substrate holding unit) that supports the substrate 48 inside the chamber 44, and includes a heater 50. A substrate heater control unit 52 controls heating of the heater 50 of the substrate stage 46. 54 is a temperature sensor and 56 is a heater wiring.
[0066] 58はチャンバ本体 34に一体に形成された管状の原料取り入り部で、原料供給バ ルブ 60を介して前記気化管 20の分岐部 22に連通しており、この原料供給バルブ 60 を開くと、チャンバ 44内部が気化管 20と連通する。 62はチャンバ本体 34に設けられ た酸ィ匕ガス供給口であり、この酸ィ匕ガス供給口 62を通じて酸ィ匕ガス (酸素ガス O或  [0066] Reference numeral 58 denotes a tubular raw material intake portion formed integrally with the chamber main body 34, and communicates with the branching portion 22 of the vaporizing pipe 20 via the raw material supply valve 60. When opened, the inside of the chamber 44 communicates with the vaporizing tube 20. 62 is an acid gas supply port provided in the chamber body 34, and the acid gas (oxygen gas O or oxygen gas) is supplied through the acid gas supply port 62.
2 2
Vヽは水蒸気 H O)をチャンバ内部に供給することができる。 V soot can supply water vapor (H 2 O) into the chamber.
2  2
[0067] 64はチャンバ 44内部の圧力を計る圧力計、 66はチャンバ 44内部からガスを排気 する排気管、 68は排気管 66に設けられたトラップで、排気ガス内の特定有害成分を 除去する。 70は同じく排気管 66に設けられたチャンバ排気バルブで、この排気管 66 はこのチャンバ排気バルブ 70を介して前記排気バルブ 28に連結されている。従って 、チャンバ 44内部のガスは排気管 66を通じて前記真空ポンプ 30により排気されるよ うになつている。  [0067] 64 is a pressure gauge for measuring the pressure inside the chamber 44, 66 is an exhaust pipe for exhausting gas from the inside of the chamber 44, 68 is a trap provided in the exhaust pipe 66, and removes specific harmful components in the exhaust gas . Similarly, reference numeral 70 denotes a chamber exhaust valve provided in the exhaust pipe 66, and the exhaust pipe 66 is connected to the exhaust valve 28 via the chamber exhaust valve 70. Therefore, the gas inside the chamber 44 is exhausted by the vacuum pump 30 through the exhaust pipe 66.
[0068] 尚、基板 48は本例においては、主表面が A面となるように形成されたウェハ状のサ ファイア基板である。 CVDを行う場合には、ノ レブユニット 14の操作により、溶液ボ ンべ 16内の亜鉛化合物の溶液を例えばヘリゥム He等の加圧用ガスで加圧してノズ ル 6内に供給すると共に、ガスバルブ 10を開 、てキャリアガスをノズル 6内に供給す る。尚、ベントバルブ 24は閉じた状態にしておく。  In this example, the substrate 48 is a wafer-like sapphire substrate formed so that the main surface is the A plane. When performing CVD, by operating the nozzle unit 14, the zinc compound solution in the solution cylinder 16 is pressurized with a pressurizing gas such as helium He and supplied into the nozzle 6, and the gas valve 10 Then, the carrier gas is supplied into the nozzle 6. The vent valve 24 is kept closed.
[0069] その供給された亜鉛ィ匕合物の溶液は、ノズル 6先端力も気化管 20内に噴出される とそれによって気化 (ガス化)する。そして、開状態にされた原料供給バルブ 60を経 由して亜鉛ィ匕合物がチャンバ 44内部に送られ、亜鉛 Znが前記基板 48上において 例えば酸化ガス供給口 62を通じて供給された酸ィ匕ガスと反応して酸ィ匕亜鉛となり、 基板 48上に堆積する。  [0069] The supplied zincy compound solution is vaporized (gasified) when the tip force of the nozzle 6 is also ejected into the vaporizing tube 20. Then, the zinc compound is sent into the chamber 44 through the opened raw material supply valve 60, and the zinc Zn is supplied on the substrate 48 through, for example, the oxidizing gas supply port 62. It reacts with the gas to become zinc oxide and deposits on the substrate 48.
[0070] 尚、チャンバ内部の反応を終えたガスは排気管 66を通じて真空ポンプ 30に送られ 、排気される。  Note that the gas that has finished the reaction inside the chamber is sent to the vacuum pump 30 through the exhaust pipe 66 and exhausted.
[0071] 基板 48上の酸化亜鉛は、その基板 48表面 (サファイアの A面)の結晶性を略受け 継いで徐々に成長し、酸ィ匕亜鉛エピタキシー層となる。そして、その厚さが所定の厚 さ(例えば、 20〜: LOOOOA)に達したら、チャンバ内部の基板ステージ 46上力もその 基板 48を取り出し、別の基板 48をセットし、その表面に酸ィ匕亜鉛エピタキシー層を成 長させる。 [0071] The zinc oxide on the substrate 48 gradually grows while substantially inheriting the crystallinity of the surface of the substrate 48 (A surface of sapphire), and becomes an oxide-zinc epitaxy layer. And the thickness is a predetermined thickness When reaching (for example, 20 to: LOOOOA), the force on the substrate stage 46 in the chamber is also taken out of the substrate 48, another substrate 48 is set, and an acid-zinc epitaxy layer is grown on the surface.
[0072] その動作の一方で、圧力計 12によりノズル 6内の圧力をモニタする。  On the other hand, the pressure in the nozzle 6 is monitored by the pressure gauge 12.
[0073] もし、その圧力が所定の基準値 (例えば 0. 275MPa)を越えたときは、 CVDを停止 し、ノズルをクリーニングする。具体的には、バルブ 60及び 70を閉じ、又、バルブュ ニット 14のうちの、溶液ボンべ 16からの溶液をノズル 6内に供給する経路のバルブも 閉じ、クリーニング液ボンべ 18内のクリーニング用トルエンをノズル 6内に通すバルブ を開き、また、ベントバルブ 24も開く。 [0073] If the pressure exceeds a predetermined reference value (for example, 0.275 MPa), the CVD is stopped and the nozzle is cleaned. Specifically, the valves 60 and 70 are closed, and the valve of the valve unit 14 for supplying the solution from the solution cylinder 16 into the nozzle 6 is also closed, and the cleaning liquid cylinder 18 is used for cleaning. Open the valve that allows toluene to pass through the nozzle 6 and also open the vent valve 24.
[0074] すると、クリーニング液ボンべ 18内のトルエンが加圧用ガスであるヘリウムガス Heに より加圧されてノズル 6内に供給され、その先端力 噴出される際に気化し、詰まりを 除去する。そのクリーニングに寄与したガスは真空配管 26から真空ポンプ 30により 排気される。そして、圧力計 12によりモニタされた圧力値が所定値 (例えば 0. 15MP a)に低くなるとクリーニングを終了し、 CVDを行う状態に酸ィ匕亜鉛エピタキシー層形 成装置の状態を切り換え、そして CVDを再開する。 [0074] Then, the toluene in the cleaning liquid cylinder 18 is pressurized by the helium gas He, which is a pressurizing gas, and is supplied into the nozzle 6 and is vaporized when the tip force is ejected, thereby removing clogging. . The gas that contributed to the cleaning is exhausted from the vacuum pipe 26 by the vacuum pump 30. When the pressure value monitored by the pressure gauge 12 becomes lower than a predetermined value (for example, 0.15 MPa), the cleaning is terminated, the state of the oxide zinc epitaxy layer forming apparatus is switched to the state where CVD is performed, and the CVD To resume.
(1 2)実施例 2  (1 2) Example 2
図 2は本発明の第 2の実施例の酸化亜鉛層形成装置を示す構成図である。本実施 例は、図 1に示した実施例とは、 CVD部として、プラズマ CVD部 4aを用いるようにし た点でのみ相違し、他の点は共通する。そこで、図 2においてはそれの図 1と共通す る部分については同じ符号を付すこととし、共通する部分についての説明は適宜省 略する。  FIG. 2 is a block diagram showing a zinc oxide layer forming apparatus according to a second embodiment of the present invention. This embodiment is different from the embodiment shown in FIG. 1 only in that a plasma CVD portion 4a is used as the CVD portion, and the other points are common. Therefore, in FIG. 2, parts that are the same as those in FIG. 1 are given the same reference numerals, and descriptions of the common parts are omitted as appropriate.
[0075] 図 2において、 80はチャンバ 44内部に設けられた RF (Radio Frequency)印加電極 で、表面部にヒータ 82を内蔵し、その表面部が基板ステージ 46の上方にて離間して 対置するように配置されて 、る。この RF印加電極 80はチャンバ本体 34を覆うチャン バ蓋 38から絶縁材 84により電気的に絶縁された状態で取り付けられ、外部のノイズ カットフィルタ 86を介して同じく外部の RF電源 88に電気的に接続され、電気的にァ ースとなる基板ステージ 46との間に RF電源電圧を受け、プラズマを形成する。  In FIG. 2, reference numeral 80 denotes an RF (Radio Frequency) application electrode provided in the chamber 44, and a heater 82 is built in the surface portion, and the surface portion is spaced apart and placed above the substrate stage 46. It is arranged as follows. The RF application electrode 80 is attached in a state where it is electrically insulated from the chamber lid 38 covering the chamber body 34 by an insulating material 84, and is also electrically connected to an external RF power source 88 through an external noise cut filter 86. An RF power supply voltage is received between the substrate stage 46 connected and electrically grounded, and plasma is formed.
[0076] 90は RF印加電極 80表面部のヒータ 82を制御するヒーター制御ユニットである。 [0077] この図 2に示すプラズマ CVD部 4aは、基板 48上にプラズマを形成するので、普通 の例えば図 1に示すような CVD部 4におけるよりも低い温度(例えば 100〜500°C) 下で、 CVDを行うことができる。 Reference numeral 90 denotes a heater control unit that controls the heater 82 on the surface of the RF application electrode 80. [0077] Since the plasma CVD unit 4a shown in FIG. 2 forms plasma on the substrate 48, the temperature is lower (eg, 100 to 500 ° C.) than that in the normal CVD unit 4 as shown in FIG. Then, CVD can be performed.
(1 3)実施例 3  (1 3) Example 3
図 3は本発明の第 3の実施例の酸化亜鉛層形成装置を示す構成図である。本実施 例は、原料供給を基板ステージ 46上の基板 48に対してその上カゝら直接シャワーを 浴びせるように行うようにしたものであり、大径のウェハ状基板に対して均一な膜質、 膜厚の酸ィ匕亜鉛エピタキシー層を形成することができるという利点を有するが、図 1 に示した実施例と共通する部分を有し、図 3の図 1と共通する部分には同じ符号を付 し、既に説明済みの部分の説明は適宜省略することとする。  FIG. 3 is a block diagram showing a zinc oxide layer forming apparatus according to a third embodiment of the present invention. In this embodiment, the raw material is supplied so that the substrate 48 on the substrate stage 46 can be directly showered, and the uniform film quality is obtained on the large-diameter wafer-like substrate. Although it has the advantage that an oxide-zinc epitaxy layer with a thickness can be formed, it has parts common to the embodiment shown in FIG. 1, and parts common to FIG. 1 in FIG. In addition, the description of the parts that have already been described will be omitted as appropriate.
[0078] 図 3において、 20aは気化器 2を構成する気化管で、図 1に示した気化管 20とは、 下端力も原料供給バルブ 60を介して後述する CVD部 (4b)のチャンバ 44内部にこ れの上側力 供給するようにされ、下端より稍上に設けた分岐部 22aを通じてベント バルブ 24越しに真空配管 26に連通されるようにされている点で相違するがそれ以外 の点では同じである。 In FIG. 3, reference numeral 20a denotes a vaporization pipe constituting the vaporizer 2, and the vaporization pipe 20 shown in FIG. 1 is the inside of the chamber 44 of the CVD section (4b) described later via the raw material supply valve 60. However, it is different in that it is designed to supply this upper force and communicate with the vacuum pipe 26 through the vent valve 24 through the branch 22a provided above the lower end. The same.
[0079] また、ノズル 6は図 1のものと基本的構成は同じであり、それについては既に説明済 みなので、説明は省略する。  [0079] Further, the basic configuration of the nozzle 6 is the same as that of Fig. 1, and since it has already been described, description thereof is omitted.
[0080] 4bはシャワープレート式の CVD部であり、そのチャンバ 44内部にシャワープレート 100が設けられている。このシャワープレート 100は原料取り入れ部 58からの原料ガ スを受け入れる内部空間 102を内部に有し、その下向きの表面部にはその内部空間 102内に供給された原料ガスを噴出するガス噴出孔 104が多数個 104、 104、 · · ·配 設されている。  [0080] Reference numeral 4b denotes a shower plate type CVD unit, and a shower plate 100 is provided in the chamber 44 thereof. This shower plate 100 has an internal space 102 for receiving the raw material gas from the raw material intake portion 58 inside, and a gas ejection hole 104 for ejecting the raw material gas supplied into the internal space 102 on the downward surface portion thereof. There are a large number of 104, 104, ....
[0081] そして、このシャワープレート 100は、そのガス噴出孔 104、 104、 · · ·が配設された 下向きの表面が基板ステージ 46に対してその上方にて平行に位置するように、チヤ ンバ蓋 38に取り付けられて 、る。  [0081] The shower plate 100 has a chamber so that the downward surface on which the gas ejection holes 104, 104, ... are disposed is parallel to the substrate stage 46 in the upward direction. It is attached to the lid 38.
[0082] 106は気ィ匕器で、例えば酸ィ匕ガス Oをキャリアガスとして受けて例えば H Oを気ィ匕 [0082] 106 is a gas vessel, for example, receiving oxygen gas O as a carrier gas and receiving H 2 O for example.
2 2 してシャワープレート 100の内部空間 102内に供給する。  2 2 and supply it into the interior space 102 of the shower plate 100.
[0083] 108はシャワープレート 100の上面部に設けられたシャワープレートヒータ、 110は このシャワープレートヒータを制御する制御ユニット、 112は温度センサ、 114はヒー ター配線である。 [0083] 108 is a shower plate heater provided on the upper surface of the shower plate 100, 110 is A control unit for controlling the shower plate heater, 112 is a temperature sensor, and 114 is a heater wiring.
[0084] このシャワープレートヒータ 108や他のヒータ 32、 36によって例えば 400〜1000°C の温度下にて基板 48上に酸ィ匕亜鉛エピタキシー層の形成を行うようにされている。  The shower plate heater 108 and other heaters 32 and 36 form an oxide zinc epitaxy layer on the substrate 48 at a temperature of 400 to 1000 ° C., for example.
[0085] 尚、 116はチャンバ本体 34に形成されたチャンバ扉で、基板 48の出し入れを行うと き開く。  Note that reference numeral 116 denotes a chamber door formed in the chamber body 34, which is opened when the substrate 48 is taken in and out.
[0086] この図 3に示す実施例の酸ィ匕亜鉛エピタキシー層形成装置によれば、原料ガスを CVD部 4b内の基板ステージ 46に上側に対置されたシャワープレート 100の内部空 間 102に供給し、そのガス噴出孔 104、 104、…から基板ステージ 46上に直接吹き 付ける構造なので、径の大きなウェハ状の基板 48に対して均一な膜質、膜厚の酸化 亜鈴エピタキシー層を得ることができる。例えば、 8インチ、 12インチのウェハ状基板 48に対する酸ィ匕亜鉛エピタキシー層の形成を支障なく為し得る。  According to the oxide-zinc epitaxy layer forming apparatus of the embodiment shown in FIG. 3, the source gas is supplied to the internal space 102 of the shower plate 100 that is opposed to the substrate stage 46 in the CVD unit 4b. In addition, since the gas blow holes 104, 104,... Are blown directly onto the substrate stage 46, it is possible to obtain an oxide dumbbell epitaxy layer having a uniform film quality and thickness on a wafer-like substrate 48 having a large diameter. . For example, an oxide zinc epitaxy layer can be formed on an 8-inch or 12-inch wafer-like substrate 48 without any trouble.
(1 4)実施例 4  (1 4) Example 4
図 4は本発明の第 4の実施例の酸化亜鉛層形成装置を示す構成図である。本実施 例は、図 3に示した実施例とは、シャワープレート 100に対してアース (基板ステージ 46)との間に RF電圧を印加してプラズマを基板 48上に形成するようにした点で相違 するが、それ以外の点では共通する。そこで、図 4の図 3と共通する部分については 同じ符号を付すか、図示を省略し、明細書における重複する説明は適宜省略するこ ととする。  FIG. 4 is a block diagram showing a zinc oxide layer forming apparatus according to a fourth embodiment of the present invention. This embodiment is different from the embodiment shown in FIG. 3 in that an RF voltage is applied between the shower plate 100 and the ground (substrate stage 46) to form plasma on the substrate 48. It is different but common in other points. Therefore, parts common to FIG. 3 in FIG. 4 are denoted by the same reference numerals, or illustrations thereof are omitted, and overlapping descriptions in the specification are appropriately omitted.
[0087] 図 4において、 4cはシャワープレート式で且つプラズマ方式の CVD部で、それのシ ャワープレート 100の上面には絶縁材 120を介して RF電極 80が形成され、その上面 にシャワープレートヒータ 108が設けられて!/、る。  [0087] In FIG. 4, 4c is a shower plate type and plasma type CVD unit. An RF electrode 80 is formed on the upper surface of the shower plate 100 via an insulating material 120, and a shower plate heater 108 is formed on the upper surface thereof. Is provided! /
[0088] そのシャワープレートヒータ 108の加熱はヒーター制御ユニット 110により加熱制御 される。 112は温度センサ、 114はヒーター配線である力 そのヒーター制御ユニット 110と、ヒータ 108との間にはノイズカットフィルタ 86が介在している。このノイズカット フィルタ 86はヒーター制御ユニット 110へ RF電圧が侵入するのを防止するためのも のである。  The heating of the shower plate heater 108 is controlled by the heater control unit 110. 112 is a temperature sensor, and 114 is a heater wiring force. A noise cut filter 86 is interposed between the heater control unit 110 and the heater 108. This noise cut filter 86 is for preventing the RF voltage from entering the heater control unit 110.
[0089] 前記 RF電極 80は例えばアルミニウムからなり、 RF電源 88に接続され、アースとの 間でその RF電源 88からの RF電圧を受ける。 [0089] The RF electrode 80 is made of, for example, aluminum, and is connected to an RF power source 88. In between, it receives RF voltage from its RF power supply 88.
[0090] このような酸ィ匕亜鉛エピタキシー層形成装置によれば、図 3に示した酸ィ匕亜鉛ェピ タキシ一層形成装置の大径のウェハ状基板 48に対して均一な膜質、膜厚の酸ィ匕亜 鉛エピタキシー層を形成することができるという効果を享受することができるのみなら ず、シャワープレート 100とアースとの間に RF電圧を印加するようにして基板ステー ジ 46上にプラズマを形成するので、比較的低い温度、例えば 100〜500°Cで酸ィ匕 亜鈴エピタキシー層を形成することができるという効果をも享受することができる。[0090] According to such an acid-zinc epitaxy layer forming apparatus, uniform film quality and film thickness with respect to the large-diameter wafer-like substrate 48 of the acid-zinc epitaxy single-layer forming apparatus shown in FIG. In addition to being able to enjoy the effect of being able to form a lead oxide layer of oxygen, a plasma is applied on the substrate stage 46 by applying an RF voltage between the shower plate 100 and the ground. Therefore, it is possible to enjoy the effect that the acid / dumbbell epitaxy layer can be formed at a relatively low temperature, for example, 100 to 500 ° C.
(1 5)実施例 5 (1 5) Example 5
図 5 (A)〜(C)は本発明酸ィ匕亜鉛エピタキシー層の形成方法の各々別の実施例を 示す断面図である。図 5 (A)は、例えば A面が主表面になるように形成されたウェハ 状のサファイア力もなる基板 (サファイア基板) 48上に一つの酸ィ匕亜鉛エピタキシー 層 200のみを形成するという方法を示す。  5 (A) to 5 (C) are cross-sectional views showing different examples of the method for forming the zinc oxide epitaxy layer of the present invention. Fig. 5 (A) shows a method in which only one oxide-zinc epitaxy layer 200 is formed on a wafer-like sapphire substrate (sapphire substrate) 48 formed so that the A-plane becomes the main surface. Show.
[0091] その酸化亜鉛エピタキシー層 200は、例えば 400〜: L 100°Cという高温下での CV Dにより形成され、その厚さは例えば 1000〜30000Aである。  The zinc oxide epitaxy layer 200 is formed by CV D under a high temperature of, for example, 400 to: L 100 ° C., and the thickness thereof is, for example, 1000 to 30000A.
[0092] 図 5 (B)は、サファイア基板 48上に先ず第 1の酸ィ匕亜鉛エピタキシー層 200aをバッ ファ層として形成し、その上に本来の酸ィ匕亜鉛エピタキシー層として結晶性に優れた 第 2の酸ィ匕亜鉛エピタキシー層 200bを形成する方法を示す。  [0092] FIG. 5 (B) shows that the first acid-zinc epitaxy layer 200a is first formed as a buffer layer on the sapphire substrate 48, and is excellent in crystallinity as the original acid-zinc epitaxy layer. A method for forming the second oxide-zinc epitaxy layer 200b will be described.
[0093] 即ち、酸ィ匕亜鉛エピタキシー層 200とサファイア基板 48とは格子定数が完全に一 致するわけではなぐ若干の狂いがあるので、酸ィ匕亜鉛エピタキシー層のサファイア 基板 48と直接接する部分及びその近傍の結晶は酸ィ匕亜鉛エピタキシー層本来の結 晶と若干の狂いが生じる。そこで、ノ ッファ層として第 1の酸ィ匕亜鉛エピタキシー層 20 Oaを形成し、その上に、本来の、即ち、例えば青色発光ダイオード等が形成される酸 化亜鉛エピタキシー層として第 2の酸ィ匕亜鉛エピタキシー層 200bを形成するのであ る。  That is, since the lattice constant of the acid-zinc epitaxy layer 200 and the sapphire substrate 48 is not exactly the same, the portion of the acid-zinc epitaxy layer that is in direct contact with the sapphire substrate 48 is slightly different. In addition, the crystal in the vicinity thereof is slightly out of alignment with the original crystal of the acid-zinc epitaxy layer. Therefore, a first oxide / zinc epitaxy layer 20 Oa is formed as a noffer layer, and a second oxide layer is formed thereon as an original zinc oxide epitaxy layer on which, for example, a blue light emitting diode is formed. The zinc epitaxy layer 200b is formed.
[0094] この酸ィ匕亜鉛エピタキシー層の形成方法を具体的に説明すると、先ず、 200〜65 0°Cの比較的低温下での CVDにより第 1の酸ィ匕亜鉛エピタキシー層 200a (厚さ例え ば 20〜2000A)を形成し、次に、例えば 400〜: L 100°Cという高温下での CVDによ り第 2の酸ィ匕亜鉛エピタキシー層 200b (厚さは例えば 1000〜30000A)を形成する [0095] 図 5 (C)に示す方法は、図 5 (B)に示した方法における第 1の酸ィ匕亜鉛ェピタキシ 一層 200aの形成前に、サファイア基板 48の表面を例えば 570〜: L 100°Cの温度下 で酸素べ一キング処理を施すものである。これにより、より良好な酸ィ匕亜鉛ェピタキシ 一層 200a、 200bを得ること力 Sできる。 [0094] The method for forming this oxide-zinc epitaxy layer will be specifically described. First, the first oxide-zinc epitaxy layer 200a (thickness is formed by CVD at a relatively low temperature of 200 to 650 ° C. For example, 20 to 2000 A) is formed, and then a second oxide zinc epitaxy layer 200b (thickness is 1000 to 30000 A, for example) is formed by CVD at a high temperature of 400 to L 100 ° C. Form [0095] In the method shown in FIG. 5C, the surface of the sapphire substrate 48 is formed on the surface of the sapphire substrate 48, for example, from 570 to L 100 before the formation of the first oxide-zinc epitaxy layer 200a in the method shown in FIG. Oxygen baking is performed at a temperature of ° C. As a result, it is possible to obtain a better acid-zinc epitaxy layer 200a, 200b.
[0096] 図 6以降の各図は本発明を為す過程で得られた各種データを示すもので、以下に その各図に示されたデータについて説明する。  [0096] Each figure after FIG. 6 shows various data obtained in the process of carrying out the present invention. The data shown in each figure will be described below.
[0097] 図 6、図 7は前にも述べた力 酸ィ匕亜 エピタキシー層の形成を行った際における キャリアガス圧の時間的変化をモニタした結果を示すものであり、図 6は熱 CVD法に よる場合を示す。この場合はほとんどガス圧は変化しない、即ち、詰まりが生じないと いえる。  [0097] Figs. 6 and 7 show the results of monitoring the temporal change in the carrier gas pressure when forming the force-oxide-epitaxy layer described above, and Fig. 6 shows the thermal CVD. The case by law is shown. In this case, the gas pressure hardly changes, that is, no clogging occurs.
[0098] 図 7はプラズマ CVD部を CVD部として用いた場合におけるキャリアガス圧の時間 的変化を示しており、本例では 0. 275MPa程度になると、 CVDを中止すべき詰まり が生じるとしている。この例では 800秒程度経過すると CVDを中止すべき詰まりが生 じる。 CVDを中止すると、例えばトルエンによるクリーニング液をガス化したものにより クリーニングし、キャリアガス圧が下の低い値、例えば 0. 13MPaに戻ると、 CVDを再 開することとなる。  [0098] Fig. 7 shows the change over time in the carrier gas pressure when the plasma CVD part is used as the CVD part. In this example, when the pressure is about 275 MPa, clogging that should stop the CVD occurs. In this example, clogging that should stop CVD occurs after about 800 seconds. When the CVD is stopped, cleaning is performed with, for example, a gasified cleaning solution of toluene, and when the carrier gas pressure returns to a lower value such as 0.13 MPa, the CVD is resumed.
[0099] 図 8〜図 11に、サファイア C面基板、サファイア A面基板、シリコン(111)基板、シリ コン(100)基板の上に約 500A〜1000Aの厚さの酸化亜鉛エピタキシー層を形成 した試料の X線結晶回折結果を示す。酸化亜鉛結晶を示す信号は、 34. 4° 付近に 現れる(0002)の回折線および 72. 6° 付近に現れる(0004)の回折線だけで、他 の指数面の回折線は現れていない。これら図 8〜図 11に示すデータから、いずれの 基板に成長させた酸ィ匕亜鉛結晶も基板面に対して完全に C軸配向していることが理 解できる。また、酸ィ匕亜鉛結晶表面は極めて平坦で曇りのないものであった。  [0099] In FIGS. 8 to 11, a zinc oxide epitaxy layer having a thickness of about 500A to 1000A is formed on a sapphire C-plane substrate, a sapphire A-plane substrate, a silicon (111) substrate, and a silicon (100) substrate. The X-ray crystal diffraction results of the sample are shown. The signal indicating the zinc oxide crystal is only the diffraction line of (0002) appearing around 34.4 ° and the diffraction line of (0004) appearing around 72.6 °, and no other exponential diffraction lines. From these data shown in FIGS. 8 to 11, it can be understood that the zinc oxide crystals grown on any substrate are completely C-axis oriented with respect to the substrate surface. The surface of the zinc oxide crystal was extremely flat and free from cloudiness.
[0100] 図 12は 5種類の亜鉛ィ匕合物 (錯体)について融点と、三種類の溶媒(トルエン、酢 酸ブチル、 THF)に対する溶解性を示す図である。融点の面からは、 141°Cの Zn (D PM) と、 Zn(acac) が酸化亜鉛エピタキシー層の CVDに好適であるといえ、そのう [0100] FIG. 12 is a graph showing melting points and solubility in three types of solvents (toluene, butyl acetate, THF) for five types of zinc compounds (complexes). In terms of melting point, 141 ° C Zn (DPM) and Zn (acac) are suitable for CVD of zinc oxide epitaxy layer.
2 2 twenty two
ち溶媒への溶解性の面から Zn (DPM) が好適であると言える。 [0101] また、亜鉛化合物を溶かす三種類の溶媒、トルエン、酢酸ブチル、 THFの内、トル ェン及び THFが溶解性の面で優れていると言える力 CVD部のチャンバ内におい て煤が発生しな 、等の利点を有するトルエンが最適であると言え、亜鉛ィ匕合物として この図 12で選ばれたものの中では、 Zn(DPM) を、溶媒としてトルエンを用いるのが In other words, Zn (DPM) is preferable from the viewpoint of solubility in a solvent. [0101] In addition, among the three types of solvents that dissolve zinc compounds, toluene, butyl acetate, and THF, it can be said that toluene and THF are superior in terms of solubility. Soot is generated in the chamber of the CVD unit. However, it can be said that toluene having the following advantages is optimal, and among those selected in FIG. 12 as zinc compounds, it is preferable to use Zn (DPM) as the solvent and toluene as the solvent.
2  2
最適と言える。  It is the best.
[0102] しかし、例えば Zn錯体は必ずしも Zn (DPM) に限定されるものではない。図 13〜  [0102] However, for example, a Zn complex is not necessarily limited to Zn (DPM). Fig. 13 ~
2  2
図 15は室温で化学的に安定な Zn錯体の内の Zn (EDMDD) につ!/、ての TG— DT  Figure 15 shows Zn (EDMDD) in a Zn complex that is chemically stable at room temperature! / TG-DT
2  2
Aチャートを示し、図 13はアルゴン Ar (760Torr)雰囲気の場合、図 14は酸素 O (76  An A chart is shown, FIG. 13 shows an argon Ar (760 Torr) atmosphere, and FIG. 14 shows an oxygen O (76
2 2
OTorr)雰囲気の場合、図 15はアルゴン Ar (lOTorr)雰囲気の場合を示す。 In the case of an OTorr atmosphere, FIG. 15 shows the case of an argon Ar (lOTorr) atmosphere.
[0103] 図 13は、 Zn (EDMDD) がアルゴン Ar (760Torr)雰囲気では、約 280°Cで略 100 [0103] Figure 13 shows that Zn (EDMDD) is approximately 100 at approximately 280 ° C in an argon Ar (760 Torr) atmosphere.
2  2
%程度蒸発することを、図 14は、同じぐ酸素 O (760Torr)雰囲気では、約 300°C  Figure 14 shows that about 300 ° C in the same oxygen O (760 Torr) atmosphere.
2  2
で略 100%程度蒸発することを示している。尚、 280°Cと 300°Cという蒸発温度の 20 It shows that about 100% evaporates. Note that the evaporation temperatures of 280 ° C and 300 ° C are 20%.
°Cの違いは、試料量の差異に起因すると思料される。 The difference in ° C is thought to be due to the difference in sample amount.
[0104] 図 15は、同じぐアルゴン Ar(lOTorr)雰囲気では、 200°Cで略 100%程度蒸発す ることを示している。この昇華温度が 300°Cと 200°Cという 100°Cの違いは、 760Torr と lOTorrという圧力の差異に起因すると考えられる。 [0104] Fig. 15 shows that the same argon Ar (lOTorr) atmosphere evaporates by about 100% at 200 ° C. The difference in the sublimation temperature between 300 ° C and 200 ° C at 100 ° C is considered to be due to the difference in pressure between 760Torr and lOTorr.
[0105] 尚、 Zn(DPM) と酸素を用いて酸化亜鉛エピタキシー層を形成する場合、減圧気 [0105] Note that when forming a zinc oxide epitaxy layer using Zn (DPM) and oxygen, a reduced pressure gas is used.
2  2
化管(圧力 lOTorr)の温度は、 210〜220°Cに設定すればよいと言える。また、図 14 カゝらは、気化管に流すキャリアガスは不活性ガスだけではなぐ酸素を入れても大き な問題がないことが解る。  It can be said that the temperature of the chemical tube (pressure lOTorr) should be set to 210 to 220 ° C. In addition, Fig. 14 shows that there is no major problem even if oxygen is added in addition to the inert gas alone as the carrier gas flowing through the vaporization tube.
[0106] 図 16は本願発明者が酸ィ匕亜鉛エピタキシー層の形成に Zn錯体として採用を検討 した 4種類の物質の TG特性を示すもので、 TG特性は!、ずれの Zn錯体 [Zn (TMO D) 、Zn (DPM) 、Zn (IBPM) 、Zn (DIBM) ]も大差がない。 [0106] Fig. 16 shows the TG characteristics of the four types of substances that the inventors of the present application have studied using as a Zn complex for the formation of an acid-zinc epitaxy layer. TMO D), Zn (DPM), Zn (IBPM), Zn (DIBM)] are not much different.
2 2 2 2  2 2 2 2
[0107] 従って、これ等のいずれの Zn錯体も酸ィ匕亜鉛エピタキシー層の形成に用いること ができ得ると言える。  [0107] Therefore, it can be said that any of these Zn complexes can be used to form an acid-zinc epitaxy layer.
(1 6)実施例 6  (1 6) Example 6
次に気化器としての CVD用気化器 2の詳細構成について以下説明する。この CV D用気化器 2は、気化機構 320を備える。この場合、 CVD用気化器 2は、気化機構 32 0によってキャリアガスを常にチャンバとしての反応室 44へ供給するとともに、亜鉛ィ匕 合物溶液供給機構 321から供給された所定量の亜鉛化合物溶液ほぼ全てを気化機 構 320で確実に気化して反応室 44に供給し得るように構成されて 、る。 Next, the detailed configuration of the CVD vaporizer 2 as a vaporizer will be described below. The CV D vaporizer 2 includes a vaporization mechanism 320. In this case, the vaporizer for CVD 2 uses the vaporization mechanism 32 The carrier gas is always supplied to the reaction chamber 44 as a chamber by 0, and almost all of the predetermined amount of zinc compound solution supplied from the zinc compound solution supply mechanism 321 is reliably vaporized by the vaporization mechanism 320 and reacted. The chamber 44 is configured to be supplied.
[0108] (1— 6— 1)気化機構の構成  [0108] (1— 6— 1) Composition of vaporization mechanism
ここで先ず初めに気化機構 320について説明する。図 17に示すように、気化機構 3 20は、窒素ガスやアルゴン等の各種キャリアガスを反応室 44内部に供給するキャリア ガス流路 322が、キャリアガス管 323、ノズルとしてのオリフィス管 324により形成され、ォ リフィス管 324の先端 (すなわちキャリアガス流路 322の流出口 333)に気化室としての 気化部 325が形成されて ヽる。  First, the vaporization mechanism 320 will be described. As shown in FIG. 17, in the vaporization mechanism 320, a carrier gas flow path 322 for supplying various carrier gases such as nitrogen gas and argon into the reaction chamber 44 is formed by a carrier gas pipe 323 and an orifice pipe 324 as a nozzle. Then, a vaporization section 325 as a vaporization chamber is formed at the tip of the orifice pipe 324 (that is, the outlet 333 of the carrier gas flow path 322).
[0109] 実際上、この気化機構 320は、キャリアガスを供給する供給機構(図示せず)にキヤ リアガス供給管 323の基端 (すなわちキャリアガス流路 322の流入口)が連結されて ヽ るとともに、キャリアガス供給管 323の先端 330がオリフィス管 324の基端 331に連結され 、これによりキャリアガス供給管 323からオリフィス管 324に高速のキャリアガスを供給し 得るように構成されている。  [0109] In practice, the vaporization mechanism 320 is configured such that the base end of the carrier gas supply pipe 323 (that is, the inlet of the carrier gas flow path 322) is connected to a supply mechanism (not shown) for supplying a carrier gas. At the same time, the distal end 330 of the carrier gas supply pipe 323 is connected to the base end 331 of the orifice pipe 324, whereby high-speed carrier gas can be supplied from the carrier gas supply pipe 323 to the orifice pipe 324.
[0110] 因みに、キャリアガス供給管 323の基端と供給機構との間には、 N供給バルブ及び  [0110] Incidentally, between the base end of the carrier gas supply pipe 323 and the supply mechanism, an N supply valve and
2  2
マスフローコントローラ(図示せず)が設けられている。またキャリアガス供給管 323に は、圧力計としての圧力トランスデューサ 332が取り付けられている。  A mass flow controller (not shown) is provided. The carrier gas supply pipe 323 is attached with a pressure transducer 332 as a pressure gauge.
[0111] なお、圧力トランスデューサ 332は、キャリアガス供給管 323内のキャリアガスの圧力 及びその変動を正確に測定し、記録しながら常時モニタする。圧力トランスデューサ 3 32は、キャリアガスの圧力レベルに応じた信号レベルを有する出力信号を制御部(図 示せず)に送信する。 It should be noted that the pressure transducer 332 accurately measures the carrier gas pressure in the carrier gas supply pipe 323 and its fluctuation and constantly monitors it while recording it. The pressure transducer 332 transmits an output signal having a signal level corresponding to the pressure level of the carrier gas to a control unit (not shown).
[0112] 力べして図示しない表示部に、キャリアガスの圧力結果を出力信号に基づいて表示 してオペレータにモニタさせ得るようになされている。これによりオペレータは、圧力 結果に基づ 、てキャリアガス流路 322の目詰まりをモニタできる。  [0112] The pressure result of the carrier gas can be displayed on the display unit (not shown) by force based on the output signal so that the operator can monitor it. This allows the operator to monitor the clogging of the carrier gas flow path 322 based on the pressure result.
[0113] ここでキャリアガス供給管 323は、その内径がオリフィス管 324の内径よりも大きく選定 され、キャリアガス供給管 323からオリフィス管 324に供給されるキャリアガスの流速を 一段と速くさせ得るように構成されて 、る。  Here, the inner diameter of the carrier gas supply pipe 323 is selected to be larger than the inner diameter of the orifice pipe 324 so that the flow velocity of the carrier gas supplied from the carrier gas supply pipe 323 to the orifice pipe 324 can be further increased. It is composed.
[0114] オリフィス管 324は、鉛直向きに配置され、その先端 333に台形円錐状でなる凸状部 334が設けられているとともに、この凸状部 334の頂部に細孔 335が設けられている。こ のようにオリフィス管 324では、先端に凸状部 334を設けたことにより、細孔 335の先端 たる噴霧口 336の外周周辺に傾斜面 334aを形成し、これにより残留物が噴霧口 336に 溜まり難くなり、噴霧口 336の目詰まりを抑止し得るようになされている。 [0114] The orifice tube 324 is arranged in a vertical direction, and a convex portion having a trapezoidal cone shape at the tip 333 thereof. 334 is provided, and a fine hole 335 is provided at the top of the convex portion 334. In this way, in the orifice pipe 324, by providing the convex portion 334 at the tip, an inclined surface 334a is formed around the outer periphery of the spray port 336, which is the tip of the pore 335, and the residue is thereby formed in the spray port 336. This makes it difficult to collect and prevents the spray port 336 from being clogged.
[0115] 因みに、この実施の形態の場合、凸状部 334の頂角 Θは、 45° 〜135° 、特に 30 ° 〜45° の鋭角に形成することが好ましぐこの場合、例えば析出した亜鉛ィ匕合物 によって噴霧口 336が詰まることを防止できる。  Incidentally, in the case of this embodiment, it is preferable that the apex angle Θ of the convex portion 334 is formed at an acute angle of 45 ° to 135 °, particularly 30 ° to 45 °. It is possible to prevent the spray port 336 from being clogged with zinc compound.
[0116] 噴霧口 336の細孔 335は、その内径がオリフィス管 324の内径よりも小さく選定され、 当該オリフィス管 324から細孔 335に供給されるキャリアガスの流速がさらに一段と速く なるように構成されている。ここで細孔 335の先端は、オリフィス管 324の凸状部 334が 気化部 325の基端 337に挿入されていることにより、気化部 325の内部空間 338に突出 するように配置され得る。  [0116] The pore 335 of the spray port 336 is selected so that the inner diameter thereof is smaller than the inner diameter of the orifice pipe 324, and the flow velocity of the carrier gas supplied from the orifice pipe 324 to the pore 335 is further increased. Has been. Here, the tip of the pore 335 can be disposed so as to protrude into the internal space 338 of the vaporizing section 325 by inserting the convex portion 334 of the orifice pipe 324 into the proximal end 337 of the vaporizing section 325.
[0117] 力かる構成にカ卩えてオリフィス管 324には、基端 331から凸状部 334までの間に複数 ( この場合、例えば 5つ)の接続管 340a〜340eが連通しており、この接続管 340a〜340e にそれぞれ後述する亜鉛化合物溶液供給機構 321が設けられている。これによりオリ フィス管 324は、所定量の亜鉛化合物溶液が亜鉛化合物溶液供給機構 321から接続 管 340a〜340eを介して供給され得るように構成されて!、る。  [0117] The orifice pipe 324 is connected to a plurality of (in this case, for example, five) connecting pipes 340a to 340e from the base end 331 to the convex portion 334 in connection with the powerful configuration. Each of the connecting pipes 340a to 340e is provided with a zinc compound solution supply mechanism 321 described later. Thus, the orifice pipe 324 is configured such that a predetermined amount of zinc compound solution can be supplied from the zinc compound solution supply mechanism 321 via the connection pipes 340a to 340e.
[0118] この場合、オリフィス管 324は、例えば接続管 340aから供給された亜鉛化合物溶液 に高速で流れるキャリアガスをあて、当該亜鉛化合物溶液を微粒子状又は霧状にさ せてキャリアガス中に分散させ、この状態のまま細孔 335を介して気化部 325内に高 速(230mZ秒〜 350mZ秒)で噴霧するように構成されて 、る。  In this case, for example, the orifice pipe 324 applies a carrier gas flowing at a high speed to the zinc compound solution supplied from the connection pipe 340a, and disperses the zinc compound solution in the carrier gas in the form of fine particles or mist. In this state, it is configured to spray at a high speed (230 mZ seconds to 350 mZ seconds) through the pores 335 into the vaporization section 325.
[0119] この実施の形態の場合、オリフィス管 324は、内径が例えば Φ 1. Omm程度に選定 されているとともに、鉛直向きに延びる長手方向の長さが 100mm程度に選定され、 さらに細孔 335の内径が Φ Ο. 2〜0. 7mm程度に選定されており、基端 331から細孔 335にゆくに従って縮径しており、その内部でキャリアガスを高速にさせ得るようになさ れている。  In the case of this embodiment, the orifice pipe 324 is selected to have an inner diameter of, for example, about Φ 1. Omm, and a longitudinal length extending in the vertical direction is selected to be about 100 mm. The inner diameter is selected to be about Φ Ο. 2 to 0.7 mm, and the diameter is reduced from the base end 331 to the pore 335, so that the carrier gas can be made high-speed inside. .
[0120] ここでオリフィス管 324に連結した気化部 325は、管状でなり、当該オリフィス管 324と 同様に鉛直向きに配置され、図 17に示したように、その内径がオリフィス管 324の内 径より顕著に大きく選定されていることにより、当該気化部 325内の圧力がオリフィス 管 324内の圧力よりも小さくなるように形成されて!、る。 Here, the vaporizing section 325 connected to the orifice pipe 324 is tubular, and is arranged in the vertical direction similarly to the orifice pipe 324. As shown in FIG. By selecting significantly larger than the diameter, the pressure in the vaporization section 325 is formed to be smaller than the pressure in the orifice pipe 324!
[0121] このように気化部 325では、オリフィス管 324との間で大きな圧力差が設けられている ことにより、亜鉛ィ匕合物溶液及びキャリアガスがオリフィス管 324から高速 (例えば 230 mZ秒〜 350mZ秒)で噴出し、内部空間 338にお 、て膨張させ得るようになされて いる。 [0121] In this way, in the vaporization section 325, since a large pressure difference is provided between the vaporization section 325 and the orifice pipe 324, the zinc compound solution and the carrier gas can be rapidly discharged from the orifice pipe 324 (for example, from 230 mZ sec. It is ejected at 350 mZ seconds) and can be expanded in the internal space 338.
[0122] 実際上、この実施の形態の場合、気化部 325内の圧力が例えば lOTorr程度に選 定されているのに対し、オリフィス管 324内の圧力が例えば 500〜1000Torr程度に 選定され、気化部 325とオリフィス管 324との間に大きな圧力差が設けられている。  [0122] Actually, in the case of this embodiment, the pressure in the vaporization section 325 is selected to be about lOTorr, for example, whereas the pressure in the orifice pipe 324 is selected to be about 500 to 1000 Torr, for example, A large pressure difference is provided between the portion 325 and the orifice tube 324.
[0123] 因みに、流量制御後のキャリアガスの圧力は、キャリアガスの流量、溶液流量及び 細孔 335の寸法によって増減する力 最終的には噴霧口 336の寸法を選定してキヤリ ァガスの圧力を制御し、 500〜1000Torrにすることが好ましい。  Incidentally, the pressure of the carrier gas after the flow rate control is a force that increases or decreases depending on the carrier gas flow rate, the solution flow rate and the size of the pore 335. Finally, the size of the spray port 336 is selected and the carrier gas pressure is increased. It is preferable to control to 500 to 1000 Torr.
[0124] これにカ卩えて気化部 325の外周には、基端 337及び先端 (すなわち反応室 44との接 続部分)の間に加熱手段としてのヒータ 342が取り付けられており、このヒータ 342によ つて気化部 325が例えば 270°C程度に加熱され得る。なお、この実施の形態の場合、 気化部 325の基端 337がほぼ半球形状に形成されていることにより、ヒータ 342によつ て当該基端 337側を均一に加熱することができるようになされている。  [0124] In addition to this, on the outer periphery of the vaporizing section 325, a heater 342 as a heating means is attached between the base end 337 and the front end (that is, the connection portion with the reaction chamber 44). Thus, the vaporizing section 325 can be heated to about 270 ° C., for example. In the case of this embodiment, since the base end 337 of the vaporizing section 325 is formed in a substantially hemispherical shape, the base end 337 side can be uniformly heated by the heater 342. ing.
[0125] 力べして気化部 325では、オリフィス管 324内で高速のキャリアガス流によって分散さ れ霧化した亜鉛化合物溶液を、ヒータ 342によって瞬時に加熱して瞬間的に気化す るように構成されている。このとき、亜鉛ィ匕合物溶液がオリフィス管 324内で混合され たとき力 気化部 325内に噴霧されるまでの時間は極めて短時間(好ましくは 0. 1〜0 . 002秒以内)であることが好ましい。亜鉛化合物溶液は、高速のキャリアガス流によ つて、オリフィス管 324内で分散させた直後に微細になり、瞬時に気化部 325内で気化 する。また、溶媒のみが気化する現象は抑制される。  [0125] The vaporizing unit 325 is configured to instantaneously vaporize the zinc compound solution dispersed and atomized by the high-speed carrier gas flow in the orifice pipe 324 by the heater 342. Has been. At this time, when the zinc compound solution is mixed in the orifice tube 324, the time until spraying in the force vaporizing section 325 is extremely short (preferably within 0.1 to 0.002 seconds). It is preferable. The zinc compound solution becomes fine immediately after being dispersed in the orifice pipe 324 by the high-speed carrier gas flow, and is instantly vaporized in the vaporizing section 325. Moreover, the phenomenon of vaporizing only the solvent is suppressed.
[0126] 因みに亜鉛ィ匕合物溶液及びキャリアガスを高速で気化部 325に噴霧することによつ て、霧の寸法が微細化 (霧の直径が 1 m以下)し、蒸発面積の増大と蒸発速度の増 大を図ることができる。なお霧の寸法が 1桁減少すると、蒸発面積は 1桁増大する。  [0126] By spraying the zinc compound solution and carrier gas onto the vaporizer 325 at a high speed, the mist size is reduced (the mist diameter is 1 m or less), and the evaporation area is increased. The evaporation rate can be increased. If the fog size is reduced by an order of magnitude, the evaporation area will increase by an order of magnitude.
[0127] なお噴霧口 336から噴出した霧が気化部 325の内壁に衝突しな 、ように、噴霧口 336 の角度と気化部 325の寸法を設計することが好ましい。霧が気化部 325の内壁に衝突 すると、壁面に付着し、蒸発面積が桁違いに減少して、蒸発速度が低下するからで ある。また、霧が長時間気化部 325壁に付着していると、熱分解して蒸発しない化合 物に変化する例もある力もである。 It should be noted that the mist ejected from the spray port 336 does not collide with the inner wall of the vaporizing section 325 so that the spray port 336 It is preferable to design the angle and the size of the vaporization part 325. This is because when the mist collides with the inner wall of the vaporizing section 325, it adheres to the wall surface, the evaporation area decreases by an order of magnitude, and the evaporation rate decreases. In addition, when the mist has adhered to the vaporization section 325 wall for a long time, there is a force that may be converted into a compound that does not evaporate due to thermal decomposition.
[0128] またこの場合、気化部 325は、その内部が減圧されていることにより亜鉛ィ匕合物溶液 それぞれに含まれる亜鉛ィ匕合物の昇華温度を低下させることができ、その結果ヒータ 342からの熱で亜鉛化合物溶液を容易に気化させ得るようになされて!ヽる。  [0128] In this case, the vaporization unit 325 can lower the sublimation temperature of the zinc compound in each of the zinc compound solutions by reducing the pressure inside, and as a result, the heater 342 The zinc compound solution can be easily vaporized with heat from the heat!
[0129] このようにして気化部 325は、亜鉛ィ匕合物溶液を気化し、この原料ガスを反応室 44 に供給し、この反応室 44で CVD法によって酸ィ匕亜鉛エピタキシー層を形成させ得る ようになされている。  In this way, the vaporizing unit 325 vaporizes the zinc compound solution, supplies the raw material gas to the reaction chamber 44, and forms an acid zinc epitaxy layer by the CVD method in the reaction chamber 44. It is made to get.
[0130] なお、気化部 325の基端 337は、オリフィス管 324との間に断熱材 343を有し、この断 熱材 343によって気化部 325からの熱がオリフィス管 324に伝達され難くなるように構成 されて!/、る。因みに気化部 325の基端 337は Oリング 344によって気密封止されて!/、る 。またオリフィス管 324と気化部 325とを連結する締結部材 345にも断熱材 346が設けら れている。  [0130] The base end 337 of the vaporizing section 325 has a heat insulating material 343 between the vaporizing section 325 and the heat insulating material 343 so that heat from the vaporizing section 325 is hardly transmitted to the orifice pipe 324. It is configured! Incidentally, the proximal end 337 of the vaporizing section 325 is hermetically sealed by an O-ring 344! /. Further, a heat insulating material 346 is also provided in the fastening member 345 that connects the orifice pipe 324 and the vaporizing section 325.
[0131] 因みに、細孔 335から噴霧された霧が気化部 325の内壁を濡らさないことが好ましい 。理由は、霧に比べて、濡れ壁では蒸発面積が桁違いに減少するからである。つまり 、気化部 325の内壁が全く汚れない構造が好ましい。また、気化部 325の内壁の汚れ が簡単に評価できるように、気化部 325壁は鏡面仕上げをすることが好ま 、。  Incidentally, it is preferable that the mist sprayed from the pores 335 does not wet the inner wall of the vaporizing section 325. The reason is that the evaporation area is reduced by orders of magnitude on wet walls compared to fog. That is, a structure in which the inner wall of the vaporizing section 325 is not dirty at all is preferable. In addition, the vaporization part 325 wall is preferably mirror-finished so that the dirt on the inner wall of the vaporization part 325 can be easily evaluated.
(1 - 6 - 2)亜鉛化合物溶液供給機構の構成  (1-6-2) Structure of zinc compound solution supply mechanism
次に上述した気化機構 320に設けられた亜鉛ィ匕合物溶液供給機構 321につ ヽて以 下説明する。なお、接続管 340a〜340eはそれぞれ亜鉛化合物溶液を供給する亜鉛 化合物溶液供給機構 321に接続されて ヽるが、当該亜鉛化合物溶液供給機構 321は 、オリフィス管 324に対して供給する亜鉛ィ匕合物溶液の種類が異なるだけで、その構 成は同一であることから、説明の便宜上、接続管 340aに設けられた亜鉛化合物溶液 供給機構 321につ 、てのみ説明する。  Next, the zinc compound solution supply mechanism 321 provided in the vaporization mechanism 320 will be described below. Each of the connecting pipes 340a to 340e is connected to a zinc compound solution supply mechanism 321 for supplying a zinc compound solution. The zinc compound solution supply mechanism 321 is connected to a zinc compound solution supplied to the orifice pipe 324. For the sake of convenience of explanation, only the zinc compound solution supply mechanism 321 provided in the connection pipe 340a will be described because only the types of physical solutions are different and the configuration is the same.
[0132] 因みに、接続管 340a〜340eは、互いに開口部が対向しないようにオリフィス管 324 に配置されていることにより、例えば接続管 340aの開口部力もオリフィス管 324に供給 される亜鉛化合物溶液が、他の接続管 340b〜340eの開口部に流入され得ることを確 実に防止し得るようになされて!、る。 [0132] Incidentally, the connection pipes 340a to 340e are arranged in the orifice pipe 324 so that the openings do not face each other, so that, for example, the opening force of the connection pipe 340a is also supplied to the orifice pipe 324. The zinc compound solution is surely prevented from flowing into the openings of the other connecting pipes 340b to 340e.
[0133] この場合、亜鉛化合物溶液供給機構 321では、溶液ボンベとしての亜鉛ィ匕合物溶 液用ボンべ 350に貯えられた亜鉛ィ匕合物溶液を、所定の亜鉛化合物溶液流路 351を 経由させることにより、液体マスフローコントローラ(LMFC) 352、ブロックバルブ 353 を順次介してオリフィス管 324に供給するように構成されている。なお、この液体マスフ ローコントローラ 352は、亜鉛化合物溶液流路 351を流れる亜鉛化合物溶液の流量を 制御するようになされて!ヽる。 In this case, in the zinc compound solution supply mechanism 321, the zinc compound mixture solution stored in the zinc compound mixture solution cylinder 350 as a solution cylinder is passed through a predetermined zinc compound solution flow path 351. By passing, the liquid mass flow controller (LMFC) 352 and the block valve 353 are sequentially supplied to the orifice pipe 324. The liquid mass flow controller 352 controls the flow rate of the zinc compound solution flowing through the zinc compound solution flow path 351! Speak.
[0134] ブロックバルブ 353は、第 1〜第 4の切換バルブ 355a〜355dからなり、これら第 1〜 第 4の切換バルブ 355a〜355dが図示しな 、制御部で統括的に制御されて 、る。 [0134] The block valve 353 includes first to fourth switching valves 355a to 355d, and these first to fourth switching valves 355a to 355d are generally controlled by a control unit (not shown). .
[0135] 実際上、亜鉛ィ匕合物溶液をオリフィス管 324に供給する場合、ブロックバルブ 353は[0135] In practice, when supplying zinc compound solution to orifice tube 324, block valve 353
、第 1の切換バルブ 355aのみを開状態として他の第 2〜第 4の切換バルブ 355b〜355 dを閉状態とする。 Only the first switching valve 355a is opened and the other second to fourth switching valves 355b to 355d are closed.
[0136] これにより、オリフィス管 324では、高速に流れるキャリアガスに対し、亜鉛化合物溶 液が供給され、この高速に流れるキャリアガスによって当該亜鉛ィ匕合物溶液を微粒 子状又は霧状にさせてキャリアガス中に分散させ、これを気化部 425に供給し得るよう になされている。  Thereby, in the orifice pipe 324, the zinc compound solution is supplied to the carrier gas flowing at high speed, and the zinc compound solution is made fine particles or mist by the carrier gas flowing at high speed. Thus, it can be dispersed in a carrier gas and supplied to the vaporizing section 425.
[0137] また、カゝかる構成に加えて亜鉛ィ匕合物溶液供給機構 321では、ブロックバルブ 353 力もオリフィス管 324に亜鉛ィ匕合物溶液を供給して 、な 、とき、クリーニング液用ボン ベとしての溶媒用ボンべ 357に貯えられた溶媒を、所定の溶媒流路 358を経由させる ことにより、液体マスフローコントローラ (LMFC) 359、接続管 340aを順次介してオリフ イス管 324に供給するように構成されて 、る。  [0137] In addition to the cover structure, in the zinc compound solution supply mechanism 321, the block valve 353 force also supplies the zinc compound solution to the orifice pipe 324. By supplying the solvent stored in the solvent cylinder 357 as a liquid via a predetermined solvent flow path 358, the liquid mass flow controller (LMFC) 359 and the connection pipe 340a are sequentially supplied to the orifice pipe 324. It is composed of
[0138] この場合、制御部は、第 1の切換バルブ 355a、第 3の切換バルブ 355c及び第 4の切 換バルブ 355dを閉状態とするとともに、第 2の切換バルブ 355bのみ開状態とすること により、接続管 340aを通過させてオリフィス管 324に溶媒を供給し得るようになされて いる。力べして接続管 340a力もオリフィス管 324に溶媒だけを流すことにより接続管 340 aに目詰まりした固形物を除去することができるようになされて!、る。  [0138] In this case, the control unit closes the first switching valve 355a, the third switching valve 355c, and the fourth switching valve 355d, and opens only the second switching valve 355b. Thus, the solvent can be supplied to the orifice pipe 324 through the connection pipe 340a. In addition, the force of the connecting pipe 340a can be removed by flowing only the solvent through the orifice pipe 324 so that the solid matter clogged in the connecting pipe 340a can be removed!
[0139] これに対して、制御部は、第 1の切換バルブ 355a、第 2の切換バルブ 355b及び第 4 の切換バルブ 355dを閉状態とするとともに、第 3の切換バルブ 355cのみを開状態と することにより、ブロックバルブ 353を介してベント管 361に溶媒を供給して廃棄し得る ようになされている。 [0139] In contrast, the control unit includes the first switching valve 355a, the second switching valve 355b, and the fourth switching valve. The switching valve 355d is closed and only the third switching valve 355c is opened, so that the solvent can be supplied to the vent pipe 361 via the block valve 353 and discarded.
[0140] なお、制御部は、第 1の切換バルブ 355a、第 2の切換バルブ 355b及び第 3の切換 バルブ 355cを閉状態とするとともに、第 4の切換バルブ 355dを開状態とすることにより 、ブロックバルブ 353を介してベント管 361に亜鉛ィ匕合物溶液を供給して廃棄し得るこ ともできるように構成されて 、る。  [0140] The control unit closes the first switching valve 355a, the second switching valve 355b, and the third switching valve 355c, and opens the fourth switching valve 355d. The zinc compound solution can be supplied to the vent pipe 361 via the block valve 353 and discarded.
[0141] 以上の構成において、 CVD部では、オリフィス管 324において反応室 44に向けて常 に高速で流れるキャリアガス流に、亜鉛ィ匕合物溶液を供給することにより、亜鉛化合 物溶液を微粒子状又は霧状にさせてキャリアガス中に分散させ、そのまま気化部 425 で気化しこのガスを反応室 44に供給する。  [0141] In the above configuration, in the CVD unit, the zinc compound solution is supplied to the carrier gas flow that always flows at high speed toward the reaction chamber 44 in the orifice tube 324, whereby the zinc compound solution is finely divided. The gas is vaporized in the vaporizing section 425 and supplied to the reaction chamber 44 as it is.
[0142] 力べして、気化機構 320では、高速のキャリアガス流によって亜鉛ィ匕合物溶液を瞬間 的に霧化させて、ヒータ 342の熱で当該亜鉛化合物溶液を容易に気化させ易 、ように して ヽること〖こより、気化させ難 、亜鉛ィ匕合物を溶媒に溶カゝして得た亜鉛ィ匕合物溶液 であっても気化部 325にお 、て容易に気化できる。  [0142] In the vaporization mechanism 320, the zinc compound solution is instantaneously atomized by the high-speed carrier gas flow, and the zinc compound solution is easily vaporized by the heat of the heater 342. Thus, it is difficult to vaporize, and even the zincy compound solution obtained by dissolving the zincy compound in a solvent can be easily vaporized in the vaporizing section 325.
[0143] また気化機構 320では、キャリアガス供給管 323において加圧されたキャリアガスを 高速にしてオリフィス管 324に導入するため(例えばキャリアガスは 500〜1000Torr で、 200mlZmin〜2LZmin)、オリフィス管 324において亜鉛化合物溶液の温度上 昇を抑制することができる。  Further, in the vaporization mechanism 320, the carrier gas pressurized in the carrier gas supply pipe 323 is introduced into the orifice pipe 324 at a high speed (for example, the carrier gas is 500 to 1000 Torr, 200 mlZmin to 2LZmin). Thus, the temperature rise of the zinc compound solution can be suppressed.
[0144] 従って、この気化機構 320では、オリフィス管 324において亜鉛ィ匕合物溶液中の溶 剤のみが蒸発気化することを抑制できるので、オリフィス管 324にお 、て亜鉛化合物 溶液が高濃度化することを防止でき、力べして粘度の上昇を抑制できるとともに、亜鉛 化合物が析出することを防止できる。  [0144] Therefore, in this vaporization mechanism 320, only the solvent in the zinc compound solution can be prevented from evaporating in the orifice tube 324, so that the concentration of the zinc compound solution in the orifice tube 324 is increased. It is possible to prevent the zinc compound from precipitating as well as to suppress the increase in viscosity.
[0145] さらに、気化機構 320では、キャリアガス中に分散した亜鉛ィ匕合物溶液を気化部 325 で瞬時に気化させることができるので、細孔 335や細孔 335付近に亜鉛ィヒ合物溶液中 の溶剤のみが気化することを抑止できるため、細孔 335の目詰まりを抑止できる。かく して CVD用気化器 2の連続使用時間を長くすることができる。  [0145] Furthermore, in the vaporization mechanism 320, since the zinc-containing compound solution dispersed in the carrier gas can be instantly vaporized in the vaporizing section 325, the zinc-rich compound is present in the vicinity of the pores 335 and 335. Since only the solvent in the solution can be prevented from vaporizing, clogging of the pores 335 can be prevented. Thus, the continuous use time of the CVD vaporizer 2 can be extended.
(1 7)実施例 7 図 18において、 390は酸ィ匕亜鉛層形成装置としてのローラ式プラズマ CVD装置を 示し、ローラ式 CVD部 391に上述した CVD用気化器 2が複数設けられた構成を有す る。 (1 7) Example 7 In FIG. 18, reference numeral 390 denotes a roller type plasma CVD apparatus as an acid / zinc / zinc layer forming apparatus, which has a configuration in which a plurality of the above-described CVD vaporizers 2 are provided in the roller type CVD unit 391.
[0146] このローラ式プラズマ CVD装置 390は、ローラ式 CVD部 391に複数のプラズマ発生 装置 392a〜392eが設けられており、被成膜テープ 393を正方向 Fに走行させたり、或 いは当該正方向 Fとは逆方向 Rに走行させることにより、各プラズマ発生装置 392a〜 392eにお 、て酸ィ匕亜鉛エピタキシー層を形成し得るようになされて!、る。  In this roller type plasma CVD apparatus 390, a plurality of plasma generators 392a to 392e are provided in the roller type CVD unit 391, and the film-forming tape 393 is allowed to run in the forward direction F. By running in the direction R opposite to the forward direction F, each of the plasma generators 392a to 392e can form a zinc oxide epitaxy layer!
[0147] 実際上、このローラ式プラズマ CVD装置 390では、各プラズマ発生装置 392a〜392 e毎に本願発明の CVD用気化器 2が設けられており、上述した実施例 6と同様の効 果を得ることができる。  [0147] In practice, this roller type plasma CVD apparatus 390 is provided with the CVD vaporizer 2 of the present invention for each of the plasma generators 392a to 392e, and has the same effect as the above-described Example 6. Obtainable.
[0148] 因みに、このローラ式プラズマ CVD装置 390は、反応室 394内に成膜ローラ 395を挟 んで第 1の巻き取りローラ 396及び第 2の巻き取りローラ 397が配置されて!、る。また、 成膜ローラ 395の一方側には第 1の送りローラ 398及び第 1のテンションコントロール口 ーラ 399が配置されているとともに、成膜ローラ 395の他方側には第 2の送りローラ 400 及び第 2のテンションコントロールローラ 401が配置されている。なお、成膜ローラ 395 は、直径が例えば 300〜20000mmと大径であり、幅が例えば 2mである。  Incidentally, in this roller type plasma CVD apparatus 390, a first take-up roller 396 and a second take-up roller 397 are arranged in a reaction chamber 394 with a film forming roller 395 sandwiched therebetween. In addition, a first feed roller 398 and a first tension control port roller 399 are disposed on one side of the film formation roller 395, and a second feed roller 400 and a first tension control roller 399 are disposed on the other side of the film formation roller 395. A second tension control roller 401 is disposed. The film forming roller 395 has a large diameter of 300 to 20000 mm, for example, and a width of 2 m, for example.
[0149] これによりローラ式プラズマ CVD装置 390では、第 1の巻き取りローラ 396から第 1の 送りローラ 398、第 1のテンションコントロールローラ 399、成膜ローラ 395、第 2のテンシ ヨンコントロールローラ 401及び第 2の送りローラ 400を経由して第 2の巻き取りローラ 39 7に被成膜テープ 393を走行させる走行経路が形成され、被成膜テープ 393がその走 行経路に沿って第 1の巻き取りローラ 396から第 2の巻き取りローラ 397に向力う方向( 正方向 F)に走行し得るとともに、その逆方向 Rたる第 2の巻き取りローラ 397から第 1 の巻き取りローラ 396に向力う方向に走行し得る。  Accordingly, in the roller type plasma CVD apparatus 390, the first take-up roller 396 to the first feed roller 398, the first tension control roller 399, the film forming roller 395, the second tension control roller 401 and A travel path for traveling the film-forming tape 393 is formed on the second winding roller 387 via the second feed roller 400, and the film-forming tape 393 is moved along the travel path by the first winding roller 393. It can travel in the direction (forward direction F) from the take-up roller 396 to the second take-up roller 397, and the opposite direction R from the second take-up roller 397 to the first take-up roller 396. You can drive in the opposite direction.
[0150] この場合、各プラズマ発生装置 392a〜392eは、成膜ローラ 395上の各エリアに対応 して設けられており、被成膜テープ 393のそのエリア上に位置する部分に CVD用気 ィ匕器 2を動作させて酸ィ匕亜鉛エピタキシー層を形成することができる。また、各プラズ マ発生装置 392a〜392e及び CVD用気化器 2はそれぞれ個別に各種 CVD条件を設 定できるように制御され、形成する酸ィ匕亜鉛エピタキシー層も個別に設定できるよう にされており、個別に成膜動作をさせたり、成膜動作を停止させたりする制御も個別 に行なえ得るように構成されて 、る。 [0150] In this case, each of the plasma generators 392a to 392e is provided corresponding to each area on the film forming roller 395, and a CVD gas is formed in a portion of the film forming tape 393 located on the area. The fixture 2 can be operated to form an oxide zinc epitaxy layer. In addition, each plasma generator 392a to 392e and CVD vaporizer 2 are controlled so that various CVD conditions can be set individually, so that the formed zinc oxide epitaxy layer can also be set individually. It is configured so that the film forming operation can be individually controlled or the film forming operation can be stopped individually.
[0151] なお、それぞれ隣接するプラズマ発生装置 392a〜392e間には亜鉛化合物ガスの干 渉を防止するため仕切板 405が配置されている。なお 406は排気管、 407は防着板、 4 08はガスシャワー電極、 409は RF電源である。本実施例では、成膜ローラ 395がァー スされ、ガスシャワー電極 408が RF電源 409の端子に接続されており、プラズマ発生 装置 392a〜392eの電位が高くなつて!/、る。  [0151] A partition plate 405 is disposed between the plasma generators 392a to 392e adjacent to each other in order to prevent interference of the zinc compound gas. 406 is an exhaust pipe, 407 is a deposition plate, 408 is a gas shower electrode, and 409 is an RF power source. In this embodiment, the film forming roller 395 is turned off, the gas shower electrode 408 is connected to the terminal of the RF power source 409, and the potentials of the plasma generators 392a to 392e are increased!
[0152] 力べしてこのようなローラ式プラズマ CVD装置 390では、被成膜テープ 393を正方向 Fに走行させたり、或いは逆方向 Rに走行させる動作を交互に繰り返し、例えば 50層 〜: LOOO層と 、う酸ィ匕亜鉛エピタキシー層を比較的効率的に形成できる。  [0152] In such a roller-type plasma CVD apparatus 390, the operation of causing the film-forming tape 393 to run in the forward direction F or in the reverse direction R is repeated alternately, for example, 50 layers to: LOOO The layer and the oxalic acid zinc epitaxy layer can be formed relatively efficiently.
(1 8)実施例 8  (1 8) Example 8
図 18との対応部分に同一符号を付して示す図 19において、 420は酸ィ匕亜鉛層形 成装置としてのローラ式プラズマ CVD装置を示し、このローラ式プラズマ CVD装置 4 20は、上述した実施例 7の形態とは成膜ローラ 395の電位が高くなつて 、る点で相違 する。すなわち、ローラ式プラズマ CVD装置 420では、 1つの RF電源 421の一端が成 膜ローラ 395に接続され、各プラズマ発生装置 392a〜392eのガスシャワー電極 408が アースされている点で異なる。このようなローラ式プラズマ CVD装置 420でも、本願発 明の CVD用気化器 2が設けられていることから、上述した実施例 6と同様の効果を得 ることがでさる。  In FIG. 19, in which parts corresponding to those in FIG. 18 are assigned the same reference numerals, 420 denotes a roller type plasma CVD apparatus as an acid / zinc layer forming apparatus, and this roller type plasma CVD apparatus 420 is described above. This is different from the embodiment 7 in that the film forming roller 395 has a higher potential. That is, the roller type plasma CVD apparatus 420 is different in that one end of one RF power source 421 is connected to the film forming roller 395 and the gas shower electrode 408 of each plasma generator 392a to 392e is grounded. Such a roller type plasma CVD apparatus 420 is also provided with the CVD vaporizer 2 of the present invention, so that the same effect as that of the above-described Example 6 can be obtained.
(1 9)実施例 9  (1 9) Example 9
図 18との対応部分に同一符号を付して示す図 20において、 430は酸ィ匕亜鉛層形 成装置としてのローラ式熱 CVD装置を示し、このローラ式熱 CVD装置 430は、プラズ マ発生装置が設けられておらず、ガスシャワープレート部 431a〜431eと成膜ローラ 39 5との間に電圧が力かっていない点で上述した実施例 7の形態と相違する。因みに、 このローラ式熱 CVD装置 430では主として成膜ローラ 395により被成膜テープ 393を 加熱し得るように構成されて 、る。  In FIG. 20, in which parts corresponding to those in FIG. 18 are assigned the same reference numerals, 430 indicates a roller type thermal CVD apparatus as an acid / zinc / zinc layer forming apparatus, and this roller type thermal CVD apparatus 430 generates plasma. The apparatus is not provided, and is different from the above-described embodiment 7 in that no voltage is applied between the gas shower plate portions 431a to 431e and the film forming roller 395. Incidentally, the roller-type thermal CVD apparatus 430 is configured so that the film-forming tape 393 can be heated mainly by the film-forming roller 395.
[0153] このような CVD膜生成処理を行うローラ式熱 CVD装置 430でも、各ガスシャワープ レート部 431a〜431e毎に本願発明の CVD用気ィ匕器 2が設けられていることから、上 述した実施例 6と同様の効果を得ることができる。 [0153] Even in the roller thermal CVD apparatus 430 that performs such a CVD film generation process, the CVD air heater 2 of the present invention is provided for each of the gas shower plate portions 431a to 431e. The same effects as in Example 6 described above can be obtained.
[0154] 上記したように本発明は、請求項 4に対応して、前記基板の表面上に酸化亜鉛ェピ タキシ一層(便宜上、「第 1の酸ィ匕亜鉛エピタキシー層」という。)を形成し、その後、そ の基板をより適宜高い温度に加熱して第 1の酸ィ匕亜鉛エピタキシー層上に更に酸ィ匕 亜鉛エピタキシー層(便宜上「第 2の酸ィ匕亜鉛エピタキシー層」と 、う。)を形成するの で、第 1の酸ィ匕亜鉛エピタキシー層を以て、基板と第 2の酸ィ匕亜鉛エピタキシー層と の格子定数の違いを調整するバッファ層とし、結晶性のきわめて良好な第 2の酸ィ匕 亜鈴エピタキシー層を得ることができ、この第 2の酸ィ匕亜鉛エピタキシー層を以て本 来の結晶(エピタキシー)層とすることができ、延いては良質の製品、例えば青色発光 ダイオードを得ることができる。  [0154] As described above, according to Claim 4, the present invention forms a zinc oxide epitaxy layer (referred to as a "first oxide-zinc epitaxy layer" for convenience) on the surface of the substrate. After that, the substrate is heated to a higher temperature as appropriate, and further on the first oxide-zinc epitaxy layer, an acid-zinc epitaxy layer (for convenience, a “second acid-zinc epitaxy layer”) is formed. Therefore, the first oxide-zinc epitaxy layer is used as a buffer layer that adjusts the difference in lattice constant between the substrate and the second oxide-zinc epitaxy layer. 2 oxide / bell tin epitaxy layer can be obtained, and this second acid / zinc epitaxy layer can be used as a natural crystal (epitaxy) layer, which is a good quality product such as a blue light emitting diode. Can be obtained.
[0155] また、請求項 5に対応して、請求項 4記載の酸ィ匕亜鉛エピタキシー層の形成方法に おいて、前記基板の表面上に前記酸化亜鉛エピタキシー層を形成する前に、この基 板の表面に酸素べ一キング処理を施すので、その基板の表面をより良好にすること ができる。従って、その基板の表面に直接形成される第 1の酸ィ匕亜鉛エピタキシー層 の結晶性をより良好にし、以て、更にその上に形成される第 2の酸ィ匕亜鉛ェピタキシ 一層の結晶性を更により良くすることができる。  [0155] Further, corresponding to claim 5, in the method for forming an zinc oxide epitaxy layer according to claim 4, before forming the zinc oxide epitaxy layer on the surface of the substrate, Since the surface of the plate is subjected to oxygen baking, the surface of the substrate can be made better. Therefore, the crystallinity of the first oxide / zinc epitaxy layer formed directly on the surface of the substrate is improved, and thus the second oxide / zinc epitaxy layer formed on the first oxide / zinc epitaxy layer is further crystallized. Can be made even better.
[0156] また、請求項 8に対応して、請求項 6の酸ィ匕亜鉛エピタキシー層形成装置を用い、 亜鉛ィ匕合物溶液をその装置の気化器で気化し、少なくとも前記亜鉛ィ匕合物の溶液を 気化したガスを前記基板保持部上の或る温度範囲に加熱された前記基板上に供給 することにより、この基板上に形成された第 1の酸化亜鉛エピタキシー層と、前記基板 を前記範囲よりも高い範囲の温度に加熱して前記第 1の酸ィ匕亜鉛エピタキシー層上 に形成された第 2の酸ィ匕亜鉛エピタキシー層とにより積層構造にしたので、その基板 の表面に直接形成される第 1の酸ィ匕亜鉛エピタキシー層の結晶性よりもその上に形 成される第 2の酸ィ匕亜鉛エピタキシー層の結晶性を良くすることができ、この第 2の酸 化亜鉛エピタキシー層を以て本来の結晶層とすることができる。従って、良質の製品 、例えば青色発光ダイオードを得ることができる。  [0156] Further, corresponding to claim 8, using the acid-zinc epitaxy layer forming apparatus of claim 6, the zinc-containing compound solution is vaporized by a vaporizer of the apparatus, and at least the zinc-containing compound is By supplying a gas obtained by vaporizing a solution of the substance onto the substrate heated to a certain temperature range on the substrate holding unit, the first zinc oxide epitaxy layer formed on the substrate and the substrate Since it was heated to a temperature in a range higher than the above range and formed into a laminated structure with the second oxide / zinc epitaxy layer formed on the first oxide / zinc epitaxy layer, it was directly applied to the surface of the substrate. It is possible to improve the crystallinity of the second acid-zinc epitaxy layer formed above the crystallinity of the first acid-zinc epitaxy layer to be formed. Making the original crystal layer with the epitaxy layer Can do. Therefore, a high-quality product such as a blue light emitting diode can be obtained.
[0157] また、請求項 12に対応して、亜鉛ィ匕合物溶液を気化したガスをチャンバに供給す ることにより、前記チャンバ内の基板に酸ィ匕亜鉛層を形成する酸ィ匕亜鉛層の形成方 法において、キャリアガス流路の流入ロカ 流出口に向けてキャリアガスを流すこと により、前記チャンバにキャリアガスを供給するキャリアガス供給ステップと、前記キヤ リアガス流路に前記亜鉛化合物溶液を供給する亜鉛化合物溶液供給ステップと、前 記亜鉛化合物溶液を、前記キャリアガス流路で微粒子状又は霧状にしてキャリアガス 中に分散させて、前記キャリアガス流路の流出口に設けられた気化室に供給する気 化室供給ステップと、前記気化室で前記亜鉛化合物溶液を前記気化室の加熱手段 により加熱して気化する気化ステップと、加熱した前記基板上に前記気化ステップで 気化したガスにより第 1の酸化亜鉛層を形成する第 1の酸化亜鉛層形成ステップと、 前記基板をより高い温度に加熱して前記第 1の酸ィ匕亜鉛層上に第 2の酸ィ匕亜鉛層を 形成する第 2の酸化亜鉛層形成ステップとを備え、前記第 1の酸化亜鉛層形成ステツ プは、前記基板を 200〜650°Cの温度に加熱して第 1の酸ィ匕亜鉛層を形成し、前記 第 2の酸ィ匕亜鉛層形成ステップは、前記基板を 400〜1100°Cの温度に加熱して前 記第 1の酸ィ匕亜鉛層上に第 2の酸ィ匕亜鉛層を形成するから、第 1の酸ィ匕亜鉛ェピタ キシ一層を以て、基板と第 2の酸ィ匕亜鉛エピタキシー層との格子定数の違いを調整 するノ ッファ層とし、結晶性のきわめて良好な第 2の酸ィ匕亜鉛エピタキシー層を得る ことができ、この第 2の酸ィ匕亜鉛エピタキシー層を以て本来の結晶(エピタキシー)層 とすることができ、延いては良質の製品、例えば青色発光ダイオードやピエゾ素子を 得ることができる。 [0157] Further, corresponding to claim 12, by supplying a gas obtained by vaporizing a zinc compound solution to the chamber, an acid zinc layer is formed on the substrate in the chamber. How to form a layer In the method, a carrier gas supply step for supplying a carrier gas to the chamber by flowing a carrier gas toward an inlet / outlet outlet of the carrier gas channel, and a zinc for supplying the zinc compound solution to the carrier gas channel. A compound solution supplying step, and the zinc compound solution is dispersed in the carrier gas in the form of fine particles or mist in the carrier gas flow path, and is supplied to the vaporization chamber provided at the outlet of the carrier gas flow path A vaporizing chamber supplying step, a vaporizing step in which the zinc compound solution is heated by the heating means of the vaporizing chamber in the vaporizing chamber, and a gas vaporized in the vaporizing step on the heated substrate. A first zinc oxide layer forming step for forming a zinc oxide layer; and heating the substrate to a higher temperature to form a first layer on the first oxide zinc layer. A second zinc oxide layer forming step for forming a second zinc oxide layer, wherein the first zinc oxide layer forming step includes heating the substrate to a temperature of 200 to 650 ° C. In the second acid / zinc layer forming step, the substrate is heated to a temperature of 400 to 1100 ° C. to form a second acid / zinc layer on the first acid / zinc layer. Since the first oxide / zinc layer is formed, the first oxide / zinc epitaxy layer is used as a notch layer that adjusts the difference in lattice constant between the substrate and the second oxide / zinc epitaxy layer. The second oxide-zinc epitaxy layer with extremely good properties can be obtained, and this second oxide-zinc epitaxy layer can be used as the original crystal (epitaxy) layer, which leads to a good quality product. For example, a blue light emitting diode or a piezo element can be obtained.
(2)酸化亜鉛多結晶層 (2) Zinc oxide polycrystalline layer
上記した実施例では形成される薄膜として、酸ィ匕亜鉛エピタキシー層の場合につ Vヽて説明したが、同じ酸化亜鉛層形成装置を用いて薄膜形成条件を適宜変更する ことによって酸ィ匕亜鉛多結晶層を形成することができる。以下、酸化亜鉛多結晶層の 場合について概略を説明する。  In the above-described embodiments, the thin film formed is described in the case of an oxide zinc epitaxy layer V. However, by using the same zinc oxide layer forming apparatus and changing the thin film formation conditions as appropriate, the oxide zinc oxide is used. A polycrystalline layer can be formed. The outline of the case of the zinc oxide polycrystalline layer will be described below.
(2— 1)実施例 10 (2-1) Example 10
本実施例は上記実施例 1に対応し、図 1に示す被薄膜形成対象物としての基板 48 表面に酸ィ匕亜鉛多結晶層を形成しながら、圧力計 12によりノズル 6内の圧力を測定 する。その圧力が基準値を超えたときは、薄膜形成処理を停止し、ノズル 6をタリー- ングする。これにより、安定した酸ィ匕亜鉛多結晶層を基板 48に形成することができる (2— 2)実施例 11 This example corresponds to Example 1 described above, and the pressure inside the nozzle 6 is measured by the pressure gauge 12 while forming a polycrystalline zinc oxide zinc layer on the surface of the substrate 48 as an object to be formed as shown in FIG. To do. When the pressure exceeds the reference value, the thin film forming process is stopped and the nozzle 6 is tallyed. This makes it possible to form a stable zinc oxide polycrystalline layer on the substrate 48. (2-2) Example 11
本実施例は上記実施例 2に対応し、図 2に示す酸ィ匕亜鉛層形成装置において、反 応室 44内部に設けられた RF印加電極 80で、電気的にアースとなる基板ステージ 46 との間でプラズマを形成する。このようにプラズマ CVD部 4aは、基板 48上にプラズマ を形成するので、普通の例えば図 1に示すような CVD部 4におけるよりも低い温度下 で薄膜形成処理を行ない、酸ィ匕亜鉛多結晶層を基板 48に形成することができる。 (2— 3)実施例 12  This embodiment corresponds to the second embodiment, and in the zinc oxide layer forming apparatus shown in FIG. 2, the RF application electrode 80 provided in the reaction chamber 44 is electrically grounded to the substrate stage 46 and A plasma is formed between them. As described above, the plasma CVD unit 4a forms plasma on the substrate 48. Therefore, the thin film formation process is performed at a lower temperature than that in the CVD unit 4 as shown in FIG. A layer can be formed on the substrate 48. (2-3) Example 12
本実施例は上記実施例 3に対応し、図 3に示す酸ィ匕亜鉛層形成装置において、亜 鉛ィ匕合物供給を基板ステージ 46上の基板 48に対してその上力 直接シャワーを浴 びせるようにシャワープレート 100を反応室 44内部に設けたから、径の大きなウェハ 状の基板 48に対し均一な膜質、膜厚の酸ィ匕亜鉛多結晶層を形成することができる。 (2— 4)実施例 13  This embodiment corresponds to the above-described embodiment 3, and in the acid / zinc / zinc layer forming apparatus shown in FIG. Since the shower plate 100 is provided inside the reaction chamber 44 so that it can be easily formed, an oxide-zinc polycrystalline layer having a uniform film quality and thickness can be formed on the wafer-like substrate 48 having a large diameter. (2-4) Example 13
本実施例は上記実施例 4に対応し、図 4に示す酸ィ匕亜鉛層形成装置において、シ ャワープレート 100に対して基板ステージ 46との間に RF電圧を印加してプラズマを 基板 48条に形成するので、大径のウェハ状基板 48に対して均一な膜質、膜厚の酸 化亜鉛多結晶層を形成することができるだけでなぐプラズマを形成することにより、 比較的低 、温度、例えば 100〜500°Cで酸ィ匕亜鉛多結晶層を形成することができる  This example corresponds to Example 4 above, and in the zinc oxide layer forming apparatus shown in FIG. 4, an RF voltage is applied between the shower plate 100 and the substrate stage 46 to generate plasma on the substrate 48. As a result, it is possible to form a zinc oxide polycrystalline layer having a uniform film quality and thickness on a large wafer-like substrate 48. Can form a zinc oxide polycrystalline layer at ~ 500 ° C
(2— 5)実施例 14 (2-5) Example 14
本実施例は上記実施例 5に対応し、図 5 (A)の酸化亜鉛層の形成方法に示すよう に、例えば A面が主表面なるように形成されたウェハ状のサファイア力もなる基板 48 上に一つの酸化亜鉛多結晶層のみを形成する方法では、例えば、 400〜: L 100°Cと いう高温下での CVDにより形成され、例えば 2500〜1000Aの厚さの薄膜を形成す ることがでさる。  This example corresponds to Example 5 above, and as shown in the method for forming the zinc oxide layer in FIG. 5A, for example, on the substrate 48 having a wafer-like sapphire force formed so that the A surface becomes the main surface. In the method of forming only one zinc oxide polycrystalline layer, for example, 400 to: L is formed by CVD under a high temperature of 100 ° C., and a thin film having a thickness of 2500 to 1000 A, for example, can be formed. I'll do it.
[0158] また、図 5 (B)に示すように、先ず、第 1の酸ィ匕亜鉛多結晶層 200aをバッファ層とし て形成し、その上に第 2の酸ィ匕亜鉛多結晶層 200bを形成することとしてもよい。  [0158] Also, as shown in FIG. 5B, first, the first oxide zinc polycrystalline layer 200a is formed as a buffer layer, and the second oxide zinc polycrystalline layer 200b is formed thereon. It is good also as forming.
[0159] また、図 5 (C)に示すように、図 5 (B)に示した方法における第 1の酸ィ匕亜鉛多結晶 層 200aの形成前にサファイア基板 48の表面を例えば 570〜: L100°Cの温度下で酸 素べ一キング処理を施し、酸ィ匕亜鉛多結晶層 200a, 200bを得ることができる。 (2— 6)実施例 15 In addition, as shown in FIG. 5 (C), the first acid-zinc zinc polycrystal in the method shown in FIG. 5 (B) Before the formation of the layer 200a, the surface of the sapphire substrate 48 is subjected to oxygen baking at a temperature of, for example, 570 to L100 ° C., to obtain the oxide zinc polycrystalline layers 200a and 200b. (2-6) Example 15
図 17に示すオリフィス管 324において反応室 44に向けて常に高速で流れるキャリア ガス流に、亜鉛化合物溶液を供給することにより、亜鉛化合物溶液を微粒子状又は 霧状にさせてキャリアガス中に分散させ、そのまま気化部 425で気化しこのガスを反応 室 44に供給する。  In the orifice pipe 324 shown in FIG. 17, by supplying the zinc compound solution to the carrier gas flow that always flows at a high speed toward the reaction chamber 44, the zinc compound solution is dispersed in the carrier gas in the form of fine particles or mist. Then, the gas is vaporized in the vaporization section 425 as it is, and this gas is supplied to the reaction chamber 44.
[0160] 力べして、気化機構 320では、高速のキャリアガス流によって亜鉛ィ匕合物溶液を瞬間 的に霧化させて、ヒータ 342の熱で当該亜鉛化合物溶液を容易に気化させ易 、ように して ヽること〖こより、気化させ難 、亜鉛ィ匕合物を溶媒に溶カゝして得た亜鉛ィ匕合物溶液 であっても気化部 325において容易に気化できる。したがって、膜厚の厚い(2500〜 1000A)酸ィ匕亜鉛多結晶層を再現性良く形成することができる。  [0160] By virtue of the vaporization mechanism 320, the zinc compound solution is instantaneously atomized by the high-speed carrier gas flow, and the zinc compound solution is easily vaporized by the heat of the heater 342. Thus, since it is difficult to vaporize, even the zincy compound solution obtained by dissolving the zincy compound in a solvent can be easily vaporized in the vaporizing section 325. Therefore, a thick (2500 to 1000 A) acid zinc zinc polycrystalline layer can be formed with good reproducibility.
(2— 7)実施例 16  (2-7) Example 16
図 18において、 390は酸ィ匕亜鉛層形成装置としてのローラ式プラズマ CVD装置を 示し、ローラ式 CVD部 391に上述した CVD用気化器 2が複数設けられた構成を有す る。  In FIG. 18, reference numeral 390 denotes a roller type plasma CVD apparatus as an acid / zinc / zinc layer forming apparatus, which has a configuration in which a plurality of the above-described CVD vaporizers 2 are provided in the roller type CVD unit 391.
[0161] このローラ式プラズマ CVD装置 390は、ローラ式 CVD部 391に複数のプラズマ発生 装置 392a〜392eが設けられており、被成膜テープ 393を正方向 Fに走行させたり、或 いは当該正方向 Fとは逆方向 Rに走行させることにより、各プラズマ発生装置 392a〜 392eにお ヽて酸化亜鉛結晶層を形成し得るようになされて!、る。  [0161] In this roller type plasma CVD apparatus 390, a plurality of plasma generators 392a to 392e are provided in the roller type CVD unit 391, and the film forming tape 393 is moved in the forward direction F, or the By running in the direction R opposite to the forward direction F, a zinc oxide crystal layer can be formed in each of the plasma generators 392a to 392e!
[0162] 実際上、このローラ式プラズマ CVD装置 390では、各プラズマ発生装置 392a〜392 e毎に本願発明の CVD用気化器 2が設けられており、上述した実施例 15と同様の効 果を得ることができる。  [0162] In practice, this roller type plasma CVD apparatus 390 is provided with the CVD vaporizer 2 of the present invention for each of the plasma generators 392a to 392e, and has the same effect as the above-described Example 15. Obtainable.
(2— 8)実施例 17  (2-8) Example 17
図 18との対応部分に同一符号を付して示す図 19において、 420は酸ィ匕亜鉛層形 成装置としてのローラ式プラズマ CVD装置を示し、このローラ式プラズマ CVD装置 4 20は、上述した実施例 16の形態とは成膜ローラ 395の電位が高くなつている点で相 違する。すなわち、ローラ式プラズマ CVD装置 420では、 1つの RF電源 421の一端が 成膜ローラ 395に接続され、各プラズマ発生装置 392a〜392eのガスシャワー電極 408 がアースされている点で異なる。このようなローラ式プラズマ CVD装置 420でも、本願 発明の CVD用気化器 2が設けられていることから、上述した実施例 15と同様の効果 を得ることができる。 In FIG. 19, in which parts corresponding to those in FIG. 18 are assigned the same reference numerals, 420 denotes a roller type plasma CVD apparatus as an acid / zinc layer forming apparatus, and this roller type plasma CVD apparatus 420 is described above. This is different from the embodiment 16 in that the potential of the film forming roller 395 is high. That is, in the roller type plasma CVD apparatus 420, one end of one RF power source 421 is connected. The difference is that the gas shower electrode 408 of each plasma generator 392a to 392e is connected to the film forming roller 395 and grounded. Even in such a roller type plasma CVD apparatus 420, since the CVD vaporizer 2 of the present invention is provided, it is possible to obtain the same effects as those of the embodiment 15 described above.
(2— 9)実施例 18  (2-9) Example 18
図 18との対応部分に同一符号を付して示す図 20において、 130は酸ィ匕亜鉛層形 成装置としてのローラ式熱 CVD装置を示し、このローラ式 CVD装置 430は、プラズマ 発生装置が設けられておらず、ガスシャワープレート部 431a〜431eと成膜ローラ 95と の間に電圧が力かっていない点で上述した実施例 16の形態と相違する。このような ローラ式熱 CVD装置 430でも、各ガスシャワープレート部 431a〜431e毎に本願発明 の CVD用気化器 2が設けられていることから、上述した実施例 15と同様の効果を得 ることがでさる。  In FIG. 20, in which parts corresponding to those in FIG. 18 are assigned the same reference numerals, 130 indicates a roller thermal CVD apparatus as an acid / zinc / zinc layer forming apparatus, and this roller CVD apparatus 430 has a plasma generating apparatus. It is not provided and differs from the above-described embodiment 16 in that no voltage is applied between the gas shower plate portions 431a to 431e and the film forming roller 95. Even in such a roller-type thermal CVD apparatus 430, the vaporizer for CVD 2 of the present invention is provided for each of the gas shower plate portions 431a to 431e, so that the same effect as that of the above-described Example 15 can be obtained. It is out.
[0163] 本発明は、本実施形態に限定されるものではなぐ本発明の要旨の範囲内で種々 の変形実施が可能である。例えば、溶液ボンべ及びクリーニング液ボンべは、溶液タ ンク、クリーニング液タンクとしてもよい。  The present invention is not limited to this embodiment, and various modifications can be made within the scope of the gist of the present invention. For example, the solution cylinder and the cleaning liquid cylinder may be a solution tank or a cleaning liquid tank.
[0164] また、酸ィ匕亜鉛層は、酸ィ匕亜鉛エピタキシー層、酸ィ匕亜鉛多結晶層について説明 したが、本発明はこれに限らず、薄膜形成条件を適宜変更して、酸化亜鉛ァモルフ ァス層を形成することとしてちょ 、。  [0164] Further, although the acid-zinc layer has been described with respect to an acid-zinc epitaxy layer and an acid-zinc polycrystalline layer, the present invention is not limited to this, and the thin-film formation conditions can be changed as appropriate. As a formation of an amorphous layer.
[0165] 上記したように本発明は請求項 11に対応して、亜鉛化合物溶液を気化器で気化し 、前記亜鉛化合物溶液を気化したガスを前記基板保持部上の或る温度範囲に加熱 された基板上に供給することにより、この基板上に形成された第 1の酸化亜鉛層と、 前記基板を前記範囲よりも高い範囲の温度に加熱して前記第 1の酸化亜鉛層上に 形成された第 2の酸化亜鉛層とにより積層構造にしたので、その基板の表面に直接 形成される第 1の酸ィ匕亜鉛層の結晶性よりもその上に形成される第 2の酸ィ匕亜鉛層 の結晶性を良くすることができる。  [0165] As described above, the present invention corresponds to claim 11, wherein the zinc compound solution is vaporized by a vaporizer, and the gas vaporized from the zinc compound solution is heated to a certain temperature range on the substrate holder. A first zinc oxide layer formed on the substrate, and heating the substrate to a temperature in a range higher than the range to form the first zinc oxide layer on the first substrate. And the second zinc oxide layer formed on the surface of the substrate rather than the crystallinity of the first acid zinc layer formed directly on the surface of the substrate. The crystallinity of the layer can be improved.
[0166] 本発明は、本実施形態に限定されるものではなぐ本発明の要旨の範囲内で種々 の変形実施が可能である。例えば、溶液ボンべ及び溶液ボンベとしての亜鉛ィ匕合物 溶液ボンべは、溶液タンク、亜鉛ィ匕合物溶液用タンクとしてもよい。また、クリーニング 液ボンべ及びクリーニング溶液ボンベとしての溶媒用ボンべは、クリーニング液タンク 、溶媒用タンクとしてもよい。 [0166] The present invention is not limited to this embodiment, and various modifications can be made within the scope of the present invention. For example, the solution cylinder and the zinc compound mixture as the solution cylinder may be a solution tank or a zinc compound mixture tank. Also cleaning The solvent cylinder as the liquid cylinder and the cleaning solution cylinder may be a cleaning liquid tank or a solvent tank.
本発明は、酸化亜鉛層の形成方法、その実施に用いる酸ィ匕亜鉛層の形成装置、 その装置を用いて形成した酸ィ匕亜鉛層にお 、て一般に利用可能性がある。  INDUSTRIAL APPLICABILITY The present invention is generally applicable to a method for forming a zinc oxide layer, an apparatus for forming an acid / zinc layer used in the method, and an acid / zinc layer formed using the apparatus.

Claims

請求の範囲 The scope of the claims
[1] 亜鉛化合物溶液を気化器で気化し、  [1] Vaporize the zinc compound solution with a vaporizer,
少なくとも前記亜鉛ィ匕合物の溶液を気化したガスを基板上に供給することにより、こ の基板上に酸ィ匕亜鉛層を成長させる  An oxide zinc layer is grown on the substrate by supplying a gas obtained by vaporizing at least the zinc compound solution onto the substrate.
ことを特徴とする酸化亜鉛層の形成方法。  A method for forming a zinc oxide layer.
[2] 前記気化器に酸化ガスを供給し、前記基板上に供給された前記亜鉛化合物溶液 を気化したものと、この酸化ガスとによりこの基板上に酸化亜鉛層を成長させる ことを特徴とする請求項 1記載の酸化亜鉛層の形成方法。  [2] An oxidizing gas is supplied to the vaporizer, and a zinc oxide layer is grown on the substrate by vaporizing the zinc compound solution supplied on the substrate and the oxidizing gas. The method for forming a zinc oxide layer according to claim 1.
[3] 前記亜鉛化合物溶液を気化したものが供給される前記基板上に酸化ガスを供給す ることによりこの基板上に酸ィ匕亜鉛層を成長させる [3] A zinc oxide layer is grown on the substrate by supplying an oxidizing gas onto the substrate to which the vaporized zinc compound solution is supplied.
ことを特徴とする請求項 1記載の酸化亜鉛層の形成方法。  The method for forming a zinc oxide layer according to claim 1, wherein:
[4] 前記基板を或る範囲内の温度に加熱してその表面上に酸化亜鉛層を形成し、 その後、前記基板を前記範囲よりも高い範囲の温度に加熱して前記酸化亜鉛層上 に更に酸化亜鉛層を形成する [4] The substrate is heated to a temperature within a certain range to form a zinc oxide layer on the surface, and then the substrate is heated to a temperature higher than the range above the zinc oxide layer. Further, a zinc oxide layer is formed
ことを特徴とする請求項 1、 2又は 3記載の酸化亜鉛層の形成方法。  The method for forming a zinc oxide layer according to claim 1, 2 or 3.
[5] 前記基板の表面上に前記酸化亜鉛層を形成する前に、この基板の表面に酸素べ 一キング処理を施す [5] Before forming the zinc oxide layer on the surface of the substrate, subject the surface of the substrate to oxygen baking.
ことを特徴とする請求項 4記載の酸化亜鉛層の形成方法。  The method for forming a zinc oxide layer according to claim 4, wherein:
[6] 少なくとも亜鉛ィ匕合物溶液及びキャリアガスをバルブを介して受け、受けた物質を 先端から噴出するノズルの先端をそのノズルの内径よりも顕著に広い内径を有する 気化室内に突出させ、このノズル先端力 噴出された微粒子状又は霧状の物質をそ の気化室にて受けて気化する気化器と、 [6] At least a zinc compound solution and a carrier gas are received through a valve, and the tip of a nozzle that ejects the received substance from the tip is protruded into a vaporization chamber having an inner diameter that is significantly wider than the inner diameter of the nozzle, A vaporizer for receiving and evaporating fine particles or mist-like substances ejected from the nozzle tip force in the vaporization chamber;
チャンバ内部に基板を保持する基板保持部を有し、少なくとも前記気化器からのガ スの供給を受け、前記基板保持部上の前記基板上に酸ィ匕亜鉛層を CVD成長させる CVD部と、  A CVD unit that has a substrate holding unit for holding the substrate inside the chamber, receives at least a gas supply from the vaporizer, and causes the oxide-zinc layer to grow on the substrate on the substrate holding unit;
を備えたことを特徴とする酸化亜鉛層形成装置。  A device for forming a zinc oxide layer, comprising:
[7] 少なくとも亜鉛ィ匕合物溶液及びキャリアガスをバルブを介して受け、受けた物質を 先端から噴出するノズルの先端をそのノズルの内径よりも顕著に広い内径を有する 気化室内に突出させ、このノズル先端力 噴出された微粒子状又は霧状の物質をそ の気化室にて受けて気化する気化器と、チャンバ内部に基板を保持する基板保持 部を有し、少なくとも前記気化器力ものガスの供給を受け、前記基板保持部上の前 記基板上に酸化亜鉛層を CVD成長させる CVD部と、を備えた酸化亜鉛層形成装 置を用いて、亜鉛化合物溶液を前記気化器で気化し、少なくとも前記亜鉛化合物の 溶液を気化したガスを前記基板保持部上の前記基板上に供給することにより、この 基板上に形成された [7] At least a zinc compound solution and a carrier gas are received through a valve, and the tip of a nozzle that ejects the received substance from the tip has an inner diameter that is significantly wider than the inner diameter of the nozzle. A vaporizer that protrudes into the vaporization chamber and receives the vaporized fine particle or mist substance ejected from the nozzle tip force in the vaporization chamber, and has a substrate holding portion for holding the substrate inside the chamber, and at least A zinc compound solution is formed using a zinc oxide layer forming apparatus that includes a CVD unit that receives the supply of the gas having the vaporizer power and performs CVD growth of a zinc oxide layer on the substrate on the substrate holding unit. Formed on the substrate by supplying a gas obtained by vaporizing at least the zinc compound solution to the substrate on the substrate holding unit.
ことを特徴とする酸化亜鉛層。  A zinc oxide layer characterized by that.
[8] 少なくとも亜鉛ィ匕合物溶液及びキャリアガスをバルブを介して受け、受けた物質を 先端から噴出するノズルの先端をそのノズルの内径よりも顕著に広い内径を有する 気化室内に突出させ、このノズル先端力 噴出された微粒子状又は霧状の物質をそ の気化室にて受けて気化する気化器と、チャンバ内部に基板を保持する基板保持 部を有し、少なくとも前記気化器力ものガスの供給を受け、前記基板保持部上の前 記基板上に酸化亜鉛層を CVD成長させる CVD部と、を備えた酸化亜鉛層形成装 置を用いて、亜鉛化合物溶液を前記気化器で気化し、少なくとも前記亜鉛化合物の 溶液を気化したガスを前記基板保持部上の或る範囲内の温度に加熱された前記基 板上に供給することにより、この基板上に形成された第 1の酸化亜鉛層と、 [8] At least a zinc compound solution and a carrier gas are received through a valve, and the tip of a nozzle that ejects the received substance from the tip is protruded into a vaporization chamber having an inner diameter that is significantly larger than the inner diameter of the nozzle, This nozzle tip force has a vaporizer that receives the vaporized particulate or mist-like substance in its vaporization chamber and vaporizes it, and a substrate holding portion that holds the substrate inside the chamber, and at least the gas having the vaporizer power The zinc compound solution is vaporized by the vaporizer using a zinc oxide layer forming apparatus that includes a CVD unit that receives the supply of the chemical vapor and grows a zinc oxide layer on the substrate holding unit by CVD. Supplying a gas obtained by vaporizing at least a solution of the zinc compound onto the substrate heated to a temperature within a certain range on the substrate holding unit, thereby forming a first zinc oxide formed on the substrate. Layers,
前記基板を前記範囲よりも高い範囲の温度に加熱して前記第 1の酸化亜鉛層上に 形成された第 2の酸化亜鉛層と、  A second zinc oxide layer formed on the first zinc oxide layer by heating the substrate to a temperature in a range higher than the range;
からなることを特徴とする積層構造の酸化亜鉛層。  A zinc oxide layer having a laminated structure comprising:
[9] 亜鉛ィ匕合物溶液を気化したガスをチャンバに供給する気化器を備えた酸ィ匕亜鉛層 形成装置において、 [9] In an acid / zinc layer forming apparatus including a vaporizer that supplies a gas obtained by vaporizing a zinc compound solution to a chamber,
前記気化器は、  The vaporizer is
流入口から流出口に向けてキャリアガスが流れるキャリアガス流路と、  A carrier gas flow path through which the carrier gas flows from the inlet to the outlet;
前記キャリアガス流路に前記亜鉛化合物溶液を供給する亜鉛化合物溶液流路と、 前記キャリアガス流路の流出口に設けられ、前記亜鉛化合物溶液流路から供給さ れた前記亜鉛化合物溶液を気化する気化室とを備え、  A zinc compound solution flow path for supplying the zinc compound solution to the carrier gas flow path; and a vaporization of the zinc compound solution supplied from the zinc compound solution flow path provided at an outlet of the carrier gas flow path With a vaporization chamber,
前記キャリアガス流路は、 前記キャリアガスが供給されるキャリアガス管と、 The carrier gas flow path is A carrier gas pipe to which the carrier gas is supplied;
該キャリアガス管カゝら前記キャリアガスが供給され、前記亜鉛化合物溶液を微粒子 状又は霧状にしてキャリアガス中に分散させて前記気化室に供給するノズルとを備え 前記気化室は、前記キャリアガス中に分散させた亜鉛化合物溶液を加熱して気化 する加熱手段を備えている  The carrier gas is supplied from the carrier gas pipe, and the zinc compound solution is dispersed in a carrier gas in the form of fine particles or mist and supplied to the vaporization chamber. The vaporization chamber includes the carrier Equipped with heating means to heat and vaporize the zinc compound solution dispersed in the gas
ことを特徴とする酸化亜鉛層形成装置。  A device for forming a zinc oxide layer.
[10] 亜鉛ィ匕合物溶液を気化したガスをチャンバに供給することにより、前記チャンバ内 の基板に酸ィ匕亜鉛層を形成する酸ィ匕亜鉛層の形成方法において、  [10] In the method of forming an acid zinc layer on the substrate in the chamber by supplying a gas obtained by vaporizing the zinc compound solution to the chamber,
キャリアガス流路の流入ロカ 流出口に向けてキャリアガスを流すことにより、前記 チャンバにキャリアガスを供給するキャリアガス供給ステップと、  A carrier gas supply step of supplying the carrier gas to the chamber by flowing the carrier gas toward the inlet loca outlet of the carrier gas channel;
前記キャリアガス流路に前記亜鉛化合物溶液を供給する亜鉛化合物溶液供給ステ ップと、  A zinc compound solution supply step for supplying the zinc compound solution to the carrier gas channel;
前記亜鉛化合物溶液を、前記キャリアガス流路で微粒子状又は霧状にしてキャリア ガス中に分散させて、前記キャリアガス流路の流出口に設けられた気化室に供給す る気化室供給ステップと、  A vaporization chamber supply step of dispersing the zinc compound solution in a carrier gas flow path in the form of fine particles or mist and supplying the zinc compound solution to a vaporization chamber provided at an outlet of the carrier gas flow path; ,
前記気化室で前記亜鉛化合物溶液を前記気化室の加熱手段により加熱して気化 する気化ステップとを備えた  A vaporizing step in which the zinc compound solution is heated by the heating means of the vaporizing chamber and vaporized in the vaporizing chamber.
ことを特徴とする酸化亜鉛層の形成方法。  A method for forming a zinc oxide layer.
[11] 亜鉛ィ匕合物溶液を気化したガスをチャンバに供給することにより、前記チャンバ内 の基板に酸ィ匕亜鉛層を形成する酸ィ匕亜鉛層の形成方法において、  [11] In the method for forming an acid / zinc layer, wherein a gas obtained by vaporizing the zinc / compound solution is supplied to the chamber to form an acid / zinc layer on the substrate in the chamber.
キャリアガス流路の流入ロカ 流出口に向けてキャリアガスを流すことにより、前記 チャンバにキャリアガスを供給するキャリアガス供給ステップと、  A carrier gas supply step of supplying the carrier gas to the chamber by flowing the carrier gas toward the inlet loca outlet of the carrier gas channel;
前記キャリアガス流路に前記亜鉛化合物溶液を供給する亜鉛化合物溶液供給ステ ップと、  A zinc compound solution supply step for supplying the zinc compound solution to the carrier gas channel;
前記亜鉛化合物溶液を、前記キャリアガス流路で微粒子状又は霧状にしてキャリア ガス中に分散させて、前記キャリアガス流路の流出口に設けられた気化室に供給す る気化室供給ステップと、 前記気化室で前記亜鉛化合物溶液を前記気化室の加熱手段により加熱して気化 する気化ステップと、 A vaporization chamber supply step of dispersing the zinc compound solution in a carrier gas flow path in the form of fine particles or mist and supplying the zinc compound solution to a vaporization chamber provided at an outlet of the carrier gas flow path; , A vaporizing step in which the zinc compound solution is heated and vaporized by heating means of the vaporizing chamber in the vaporizing chamber;
加熱した前記基板上に前記気化ステップで気化したガスにより第 1の酸化亜鉛層を 形成する第 1の酸化亜鉛層形成ステップと、  A first zinc oxide layer forming step of forming a first zinc oxide layer on the heated substrate by the gas vaporized in the vaporization step;
前記基板をより高い温度に加熱して前記第 1の酸ィ匕亜鉛層上に第 2の酸ィ匕亜鉛層 を形成する第 2の酸化亜鉛層形成ステップとを備えた  A second zinc oxide layer forming step of heating the substrate to a higher temperature to form a second acid zinc layer on the first acid zinc layer.
ことを特徴とする酸化亜鉛層の形成方法。  A method for forming a zinc oxide layer.
前記第 1の酸ィ匕亜鉛層形成ステップは、前記基板を 200〜650°Cの温度に加熱し て第 1の酸化亜鉛層を形成し、  In the first zinc oxide layer forming step, the substrate is heated to a temperature of 200 to 650 ° C. to form a first zinc oxide layer,
前記第 2の酸ィ匕亜鉛層形成ステップは、前記基板を 400〜1100°Cの温度に加熱 して前記第 1の酸ィ匕亜鉛層上に第 2の酸ィ匕亜鉛層を形成することを特徴とする請求 項 11記載の酸化亜鉛層の形成方法。  In the second oxide / zinc layer forming step, the substrate is heated to a temperature of 400 to 1100 ° C. to form a second oxide / zinc layer on the first oxide / zinc layer. The method for forming a zinc oxide layer according to claim 11.
PCT/JP2006/304475 2005-03-10 2006-03-08 Method of forming zinc oxide layer, zinc oxide layer forming apparatus and zinc oxide layer WO2006095772A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007507149A JPWO2006095772A1 (en) 2005-03-10 2006-03-08 Zinc oxide layer forming method, zinc oxide layer forming apparatus, and zinc oxide layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005066479 2005-03-10
JP2005-066479 2005-03-10

Publications (1)

Publication Number Publication Date
WO2006095772A1 true WO2006095772A1 (en) 2006-09-14

Family

ID=36953366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304475 WO2006095772A1 (en) 2005-03-10 2006-03-08 Method of forming zinc oxide layer, zinc oxide layer forming apparatus and zinc oxide layer

Country Status (2)

Country Link
JP (1) JPWO2006095772A1 (en)
WO (1) WO2006095772A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003975A (en) * 2008-06-23 2010-01-07 Stanley Electric Co Ltd Film forming apparatus, and method of manufacturing semiconductor element
JP2010003974A (en) * 2008-06-23 2010-01-07 Stanley Electric Co Ltd Film deposition device and fabrication process of semiconductor device
JP2010070398A (en) * 2008-09-16 2010-04-02 Stanley Electric Co Ltd Method for growing zinc oxide single crystal layer
JP2010129627A (en) * 2008-11-26 2010-06-10 Stanley Electric Co Ltd Method of growing zinc oxide semiconductor, and method of manufacturing semiconductor element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147529A (en) * 2001-11-12 2003-05-21 Tohoku Ricoh Co Ltd Method of manufacturing thin metal oxide film and apparatus for manufacturing the same
JP2003268552A (en) * 2002-03-18 2003-09-25 Watanabe Shoko:Kk Vaporizer and various kinds of apparatus using the same, and vaporization method
JP2003332243A (en) * 2002-05-13 2003-11-21 Japan Pionics Co Ltd Vaporizer and vapor feeding apparatus
JP2004084001A (en) * 2002-08-27 2004-03-18 Sumitomo Electric Ind Ltd Method for growing zinc oxide crystalline film
JP2005298874A (en) * 2004-04-08 2005-10-27 Japan Pionics Co Ltd Cvd raw material, vaporization feed method, and film deposition method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147529A (en) * 2001-11-12 2003-05-21 Tohoku Ricoh Co Ltd Method of manufacturing thin metal oxide film and apparatus for manufacturing the same
JP2003268552A (en) * 2002-03-18 2003-09-25 Watanabe Shoko:Kk Vaporizer and various kinds of apparatus using the same, and vaporization method
JP2003332243A (en) * 2002-05-13 2003-11-21 Japan Pionics Co Ltd Vaporizer and vapor feeding apparatus
JP2004084001A (en) * 2002-08-27 2004-03-18 Sumitomo Electric Ind Ltd Method for growing zinc oxide crystalline film
JP2005298874A (en) * 2004-04-08 2005-10-27 Japan Pionics Co Ltd Cvd raw material, vaporization feed method, and film deposition method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003975A (en) * 2008-06-23 2010-01-07 Stanley Electric Co Ltd Film forming apparatus, and method of manufacturing semiconductor element
JP2010003974A (en) * 2008-06-23 2010-01-07 Stanley Electric Co Ltd Film deposition device and fabrication process of semiconductor device
JP2010070398A (en) * 2008-09-16 2010-04-02 Stanley Electric Co Ltd Method for growing zinc oxide single crystal layer
JP2010129627A (en) * 2008-11-26 2010-06-10 Stanley Electric Co Ltd Method of growing zinc oxide semiconductor, and method of manufacturing semiconductor element

Also Published As

Publication number Publication date
JPWO2006095772A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP3390517B2 (en) Liquid source CVD equipment
JP3335492B2 (en) Thin film deposition equipment
JP5397794B1 (en) Method for producing oxide crystal thin film
JP4580323B2 (en) Catalytic chemical vapor deposition equipment
US5776254A (en) Apparatus for forming thin film by chemical vapor deposition
WO2011070945A1 (en) Thin film manufacturing apparatus, thin film manufacturing method, and method for manufacturing semiconductor device
JPWO2007097024A1 (en) Vaporizer, semiconductor manufacturing apparatus and semiconductor manufacturing method
KR20010103563A (en) Misted precursor deposition apparatus and method with improved mist and mist flow
US20060070575A1 (en) Solution-vaporization type CVD apparatus
WO2006095772A1 (en) Method of forming zinc oxide layer, zinc oxide layer forming apparatus and zinc oxide layer
US20080064227A1 (en) Apparatus For Chemical Vapor Deposition and Method For Cleaning Injector Included in the Apparatus
JP5029966B2 (en) Deposition equipment
US20090169727A1 (en) Copper film forming method and manufacturing method of multi-layer wiring substrate
JP2000513500A (en) Method and apparatus for depositing material using primers
JP2014084494A (en) Crystal orientation control device, and film deposition apparatus and annealing apparatus having the same, and crystal orientation control method
JP5688911B2 (en) Film forming apparatus, system, and film forming method
JP5040004B2 (en) Film forming apparatus and semiconductor element manufacturing method
JP4110576B2 (en) Vaporizer for CVD, solution vaporization type CVD apparatus, and vaporization method for CVD
JP5051023B2 (en) Film forming apparatus and semiconductor element manufacturing method
JP5281371B2 (en) Zinc oxide-based semiconductor growth method and semiconductor device manufacturing method
KR100425672B1 (en) Cvd apparatus with ultrasonic oscillator and evaporator for manufacturing improved composite oxide thin film without clogging of transfer part
JP3991815B2 (en) Method for growing zinc oxide crystal film
JP2005029885A (en) Thin film deposition method, thin film deposition system and semiconductor device
CN116288256B (en) Atomized vapor deposition device and atomized vapor deposition method
JP7473591B2 (en) Film forming apparatus and film forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507149

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715395

Country of ref document: EP

Kind code of ref document: A1