WO2006095614A1 - Superconducting magnet excitation method and superconducting magnet device - Google Patents

Superconducting magnet excitation method and superconducting magnet device Download PDF

Info

Publication number
WO2006095614A1
WO2006095614A1 PCT/JP2006/303839 JP2006303839W WO2006095614A1 WO 2006095614 A1 WO2006095614 A1 WO 2006095614A1 JP 2006303839 W JP2006303839 W JP 2006303839W WO 2006095614 A1 WO2006095614 A1 WO 2006095614A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
superconducting magnet
magnetic field
current
superconducting
Prior art date
Application number
PCT/JP2006/303839
Other languages
French (fr)
Japanese (ja)
Inventor
Teruo Matsushita
Edmund Soji Otabe
Masaru Kiuchi
Nobuyoshi Sakamoto
Tadahiro Akune
Original Assignee
Kyushu Institute Of Technology
Nakamura Sangyo Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute Of Technology, Nakamura Sangyo Gakuen filed Critical Kyushu Institute Of Technology
Priority to JP2007507060A priority Critical patent/JP4201286B2/en
Publication of WO2006095614A1 publication Critical patent/WO2006095614A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/005Methods and means for increasing the stored energy in superconductive coils by increments (flux pumps)

Definitions

  • the present invention relates to a method of exciting a superconducting magnet, and more particularly to an exciting method for preventing or suppressing a magnetic flux creep phenomenon, and a superconducting magnet apparatus having such an effect.
  • a superconductor has the property of becoming a superconducting state with zero electrical resistance when it is cooled below its critical temperature. Therefore, if a wire is made using a superconductor and a coil is made using this wire, a superconducting magnet (electromagnet) can be made with very low loss below the critical temperature. Since this superconducting magnet has zero resistance, it is characterized in that there is no Joule loss during current conduction, no heat generation, and a high magnetic field can be generated.
  • a permanent current mode superconducting magnet is formed which can be applied for a long time.
  • the magnetic field changes due to a change in the power supply current, so the accuracy of the magnetic field of the superconducting magnet is not necessarily good, but when it shifts to permanent current mode, the stability of the magnetic field is greatly improved It is characterized by
  • MRI magnetic resonance imaging
  • NMR nuclear magnetic resonance
  • the fact that the superconductor has zero resistance means that the flux does not enter the superconductor strictly. State only, which is realized only at low magnetic fields.
  • the magnetic flux enters the superconductor and is in a mixed state.
  • the invading magnetic flux is trapped by impurities in the superconductor called a pinning center and becomes immobile. This force that captures magnetic flux is called a pinker.
  • Lorentz force, ie (magnitude of the magnetic field) x (magnitude of current density) is less than pin force, sometimes the flux line is trapped at the pinning center and the flux does not move, so the resistance is zero .
  • the superconductor does not generate resistance and does not lose current for the current density up to the critical current density (maximum current per unit area that can flow to a certain superconductor).
  • the critical current density has the property of being proportional to the pin force.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-164820
  • Patent Document 2 a compensation coil corresponding to a superconducting coil is used, and the magnetic flux of the magnetic field is compensated by Methods have been proposed to prevent attenuation.
  • Patent Document 2 attempts have been made to stabilize the permanent current by adjusting the temperature of the superconductor.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-1 164820
  • Patent Document 2 U.S. Pat. No. 5,270,291
  • the object of the present invention is to provide a method for effectively and easily preventing or suppressing the magnetic flux creep phenomenon by changing the magnetic flux distribution inside the superconducting magnet in the superconducting magnet.
  • Another object of the present invention is to provide a superconducting magnet device having such an effect.
  • the superconducting magnet is composed of a bias magnet in the outer layer and a magnet in the inner layer. It is an excitation method.
  • the invention according to claim 3 is characterized in that an oscillating current which vibrates up and down with respect to a predetermined current value is supplied to the superconducting magnet, and is set to a predetermined current value next time. It is an excitation method of the superconducting magnet according to claim 1 or 2.
  • the invention according to claim 4 is characterized in that, in a state where a magnetic field is applied to the bias magnet in the outer layer, an oscillating current is first applied to the magnet in the inner layer, and then a predetermined current value is set. It is an excitation method of the superconducting magnet according to claim 2.
  • a fifth aspect of the present invention in the state where a magnetic field higher than a predetermined magnetic field is applied to the bias magnet in the outer layer, current is supplied to the magnet in the inner layer and then the magnetic field of the bias magnet in the outer layer. 3.
  • the invention described in claim 6 of the present invention is a superconducting magnet apparatus, characterized in that a means for controlling the magnetic field outside the superconducting magnet is provided.
  • the bias magnet for the outer layer is used.
  • said superconductive magnet apparatus comprises:
  • the invention according to claim 8 is a means capable of supplying an oscillating current oscillating up and down with respect to a predetermined current value to means for controlling a magnetic field in a superconducting magnet.
  • 7 is the superconducting magnet device according to 7 above.
  • the invention according to claim 9 is a means for controlling the magnetic field, a means capable of applying a magnetic field to the bias magnet in the outer layer, and a means capable of flowing current or oscillating current to the magnet in the inner layer. It is a superconducting magnet device according to claim 7.
  • the invention according to claim 10 of the present invention is a superconducting magnet apparatus according to any one of claims 6 to 9, characterized in that a means for heating the superconducting magnet is provided. .
  • the prevention or suppression of the magnetic flux creep phenomenon of the superconducting magnet is achieved by a very simple procedure such as first flowing oscillating current which vibrates up and down, and then setting the current value to a predetermined value. can do. Therefore, the phenomenon that the magnetic field of the superconducting magnet is relaxed due to the magnetic flux creep can be prevented or suppressed, and as a result, the magnetic field of the superconducting magnet can be stably maintained constant.
  • the effect of suppressing the flux creep phenomenon is extremely high. For example, conventionally, the normal operation of the superconducting magnet in the permanent current mode can be performed only for 10 days. The extension will be easily realized.
  • FIG. 1 is a view showing how a superconducting magnet is operated in a permanent current mode by a permanent current switch.
  • FIG. 2 is a view showing how the magnet of the inner layer is excited by the current vibration method.
  • FIG. 3 is a view for explaining the relationship between magnetic flux distribution and magnetic flux creep in the current vibration method.
  • FIG. 4 is a view for explaining the relationship between magnetic flux distribution and magnetic flux in the current vibration method.
  • FIG. 5 is a diagram showing an example of measuring a time change of magnetic flux in an example of high magnetic field excitation method.
  • FIG. 6 is a view showing an example of the time change (relaxation) of the magnetic flux of the sample in the example of the high temperature excitation method.
  • a method (high temperature excitation method) of exciting at a high temperature is used as a method of preventing or suppressing the flux creep phenomenon by changing the magnetic flux distribution inside the superconducting magnet. is there. That is, the superconducting magnet is excited by applying a current at a temperature higher than a predetermined temperature, and then the superconducting magnet is shifted to a permanent current mode, and then the superconducting magnet is adjusted to a predetermined temperature.
  • the superconducting magnet is set to a temperature slightly higher than a predetermined temperature at which normal operation is performed, and current is supplied to excite the current. After that, it shifts to the permanent current mode and lowers the temperature to a predetermined temperature.
  • FIG. 1 is a diagram showing the operation of the superconducting magnet in the permanent current mode with the permanent current switch.
  • Fig. 1 (a) shows a state in which the superconducting magnet is directly excited by an external DC power supply.
  • Fig. 1 (b) shows a state where the permanent magnet switch is disconnected from the power supply by switching the permanent current switch, and a constant magnetic field is applied by the permanent current. Attenuation is very small because superconducting magnets have zero resistance. Also, because the power supply is disconnected, the stability is very high.
  • the temperature of a low temperature region cooled by a refrigerant such as liquid helium or liquid nitrogen is set to a predetermined temperature, ie, a predetermined operation temperature of the superconducting magnet.
  • a predetermined temperature ie, a predetermined operation temperature of the superconducting magnet.
  • the current is energized to excite.
  • the excited superconducting magnet is transferred to the permanent current mode shown in FIG. 1 (b), and then the superconducting magnet is cooled and adjusted to a predetermined operating temperature.
  • the degree of raising the temperature higher than the predetermined temperature is not particularly limited, but at most about 20 K is sufficient.
  • the means of temperature control ' is not particularly limited, and the temperature in the low temperature region can be adjusted by a known method and apparatus.
  • the superconducting magnet typically, it is simply one superconducting magnet. There are some that are configured, and some that are configured with an outer layer bias magnet disposed outside and an inner layer magnet inserted inside thereof.
  • the magnet of the latter structure is a form frequently used in NMR etc. as a structure for obtaining a high magnetic field.
  • the high temperature excitation method can be applied to the superconducting magnet of any of the above configurations.
  • the principle of the high temperature excitation method is considered to be as follows.
  • the pinning center has a remarkable magnetic flux creep phenomenon in which the force for capturing the magnetic flux inside the superconductor weakens, and the movement of the magnetic flux is large.
  • current is first applied, a magnetic field is applied, and magnetic flux creep allows movement of the magnetic flux to some extent, thereby relaxing the magnetic field to some extent.
  • the pinning center is now intensified in the ability to capture the magnetic flux, and the magnetic flux tends to stay in the superconductor. Therefore, the magnetic flux is strongly captured by the pinning center and the magnetic flux creep phenomenon is extremely weak, as compared with the simple application of the magnetic field.
  • This method is effective for superconducting magnets of either structure, using one superconducting magnet or superconducting magnet nets in the outer and inner layers.
  • the inner layer magnet is often made of a high temperature superconductor in order to generate a high magnetic field.
  • the outer layer magnet is made of a conventional metallic superconductor in order to make it inexpensive.
  • the operating temperature may be 4.2 K at normal pressure liquid helium temperature or superfluid liquid helium near 2 K under reduced pressure.
  • the operating temperature is 4.2 K or less, when first cooling to the normal pressure liquid helium temperature 4.2 K, the current is applied for excitation (high temperature excitation), and then the pressure is reduced. Cooling to around 2 K enables high-temperature excitation to be realized. In this case no special equipment is required.
  • the inventors of the present invention have conducted research on another viewpoint as a method of preventing or suppressing the magnetic flux creep phenomenon by changing the magnetic flux distribution inside the superconducting magnet by using the superconducting magnet, and the present invention is achieved. It is Among the present inventions, according to the first aspect of the present invention, in exciting the superconducting magnet, in order to previously change the magnetic flux distribution inside the superconducting magnet to a form in which magnetic flux creep is less likely to occur, The method of exciting a superconducting magnet characterized in that the magnetic field of the above is controlled. In addition, Satoshi Inogami, whose magnetic field outside the superconducting magnet was controlled 1 There are no particular limitations on the method and means used, and conditions such as current and magnetic field can be varied and controlled.
  • the invention according to claim 2 limits the superconducting magnet to a superconducting magnet composed of an outer layer bias magnet disposed outside and an inner layer magnet inserted inside the magnet.
  • a magnet with a structure of force is suitable for obtaining a high magnetic field.
  • the invention of claim 3 is characterized in that a vibration current which vibrates up and down with respect to a predetermined current value is supplied to the superconducting magnet, and the current is set to a predetermined current value in the following manner.
  • Method current oscillation method
  • this method is also applicable to both the one constituted simply by one superconducting magnet and the one constituted by the bias magnet of the outer layer disposed outside and the inner layer magnet inserted inside thereof.
  • Possible Forces In particular, as described in claim 4, the present invention can be suitably applied to a superconducting magnet composed of an outer layer bias magnet and an inner layer magnet inserted therein. And in that case, in the state where the magnetic field is applied to the negative magnet of the outer layer, an oscillating current is first applied to the magnet of the inner layer, and then the superconducting magnet is excited by setting to a predetermined current value. Do.
  • FIG. 2 is a diagram showing how the magnet of the inner layer is excited by the current oscillation method.
  • Fig. 2 (a) shows the situation when a current (I) is supplied to the superconducting magnet in the inner layer while the magnetic field is applied by the bias magnet in the outer layer. The current is made to flow up to a predetermined current value, ie, a current higher than the target current value of the superconducting magnet, and then it is repeatedly lowered and raised again, that is, the oscillating current is supplied to gradually increase the target current. Indicates the status to be set to the value. When the current is changed as shown in FIG. 2 (a), a magnetic field is applied to the coil.
  • the magnetic flux distribution of the magnetic flux density (B) inside the superconducting magnet is shown by the solid line in FIG. It is thought that In Fig. 2 (b), d indicates the distance to the center inside the superconductor. If this is affected by the flux creep phenomenon, the expected flux distribution as shown by the dotted line in (b) of Fig. 2 is the average of this And the solid line in Fig. 2 (b), it is almost the same as the distribution before the flux creep phenomenon, so the externally generated magnetic field is almost the same. Ultimately, the internal magnetic flux distribution has a jagged pattern, which is more susceptible to magnetic flux creep than when the current is simply increased to generate a magnetic field.
  • the invention according to claim 5 of the present invention relates to a superconducting magnet including a bias magnet in the outer layer and a magnet in the inner layer, and a state in which a magnetic field higher than a predetermined magnetic field is imprinted on the bias magnet in the outer layer.
  • a current is supplied to the magnet in the inner layer to generate a magnetic field, and then the magnetic field of the bias magnet in the outer layer is set to a predetermined magnetic field, ie, a target magnetic field. Excitation method).
  • the critical current density decreases monotonically with the increase of the magnetic field. Therefore, when the magnet in the inner layer is excited with a high magnetic field, the critical current density may be reduced by flowing current.
  • the critical current density in the magnet in the inner layer is increased (the pin force is also increased), so that the magnetic flux invading the inside of the superconductor can be stopped by the stronger pin force. It becomes difficult to move, resulting in weakening of the flux creep phenomenon.
  • the invention according to claim 6 of the present invention is a superconducting magnet apparatus characterized in that the superconducting magnet apparatus is provided with means for controlling the magnetic field outside the superconducting magnet.
  • the means for controlling the magnetic field is not particularly limited.
  • the invention according to claim 7 limits the superconducting magnet to one composed of the bias magnet in the outer layer and the magnet in the inner layer.
  • the invention according to claim 8 employs, as a means for controlling the magnetic field, a means capable of flowing an oscillating current which vibrates up and down with respect to a predetermined current value to the superconducting magnet.
  • the invention according to claim 9 is a superconducting magnet apparatus employing, as means for controlling a magnetic field, means capable of applying a magnetic field to a bias magnet in the outer layer, and means capable of flowing current or oscillating current into a magnet in the inner layer.
  • the invention according to claim 10 is a superconducting magnet apparatus provided with means for heating the superconducting magnet in addition to the means for controlling the magnetic field.
  • the coil is wound in a state where a superconducting coil portion cooled to a very low temperature, a means for supplying a current from an external excitation power supply thereto, and a required magnetic field are generated. It consists of a superconducting switch that shorts the beginning and end of the winding (see Figure 1).
  • the invention according to claims 6 to 10 is that in the superconducting magnet device under force, means for controlling the magnetic field outside the superconducting magnet is provided as an accessory device.
  • the various means can be any known or commercially available device that does not need to be special.
  • An NMR magnet of over 20 T which is used for structural analysis of proteins, etc., uses a magnet using a high-temperature oxide superconductor in the center to realize a high magnetic field.
  • the reason is that the high-temperature oxide superconductor can maintain the superconductivity even under a higher magnetic field than the metal-based superconductor.
  • the flux creep phenomenon in the high temperature oxide superconductor has determined the performance of the entire system.
  • the method and apparatus Z or apparatus of the present invention can be used in such a field.
  • the experiment was conducted using a superconducting magnet consisting of an outer layer bias magnet and an inner layer magnet. While the magnetic field was applied by the bias magnet in the outer layer, current (I) was passed through the superconducting magnet in the inner layer while changing the current as shown in (a) of FIG. The current The current is increased to a current higher than a predetermined current value (the target current value of the superconducting magnet), and then it is repeatedly set to the target current value by repeating the lowering and raising again, that is, flowing the oscillating current. . At this time, the magnetic flux density at the cross section of the superconducting magnet is as shown by the solid line in (b) of FIG. Ultimately, the internal magnetic flux density distribution has a jagged pattern, which makes it less susceptible to flux creep than when simply increasing the current to generate a magnetic field.
  • (1) (2) (3) (4) shows the internal magnetic flux distribution at each time 1, 2, 3 and 4 when the current shown in FIG. 2 (a) is increased or decreased.
  • the force immediately after the increase has a constant slope inside. This slope is proportional to the critical current density.
  • the distribution of dotted lines shifts to the distribution of solid lines. This is the force by which magnetic flux penetrates from the outside due to magnetic flux creep. Alternatively, it may be said that the critical current density has decreased.
  • the internal magnetization greatly changes, and the magnetic field changes outside.
  • the magnetization is a magnetic flux distribution (1) (2) (3) (4), that is, the force at which the time changes at times 2, 3 and 4 and the result of the numerical simulation It is shown in FIG.
  • the absolute value of the magnetic field ⁇ M standardized by the final saturation value M of the magnetization is at time 1, 2
  • An external magnetic field of 0.6 T is applied to the outer layer bias magnet (Y-based oxide superconductor) of the superconducting magnet composed of the outer layer bias magnet and the inner layer magnet, and current is supplied to the inner layer magnet. Then, an example of measuring the time change of the magnetic field of the inner layer magnet by setting the external magnetic field to 0.58 T is shown in FIG. It can be seen that the time change of the magnetic flux is very small. On the other hand, when the external magnetic field is measured at a constant 0.6 T, the magnetization is single. It turns out that it is increasing to the key. Therefore, it was possible to confirm that the flux magnetic phenomenon can be suppressed by setting the magnetic field to a high value.
  • the temperature of the Y-based oxide superconductor is raised by a temperature range of 60 K to a temperature range of ⁇ , a current is applied there to apply a magnetic field of 0.6 T (high temperature excitation), and then it is cooled to 60 K
  • the time change (relaxation) of the magnetic field of the sample was examined.
  • the results are shown in FIG.
  • OK, the magnetic flux changes with time and the absolute value decreases. That is, at first there is a gradient of the magnetic flux distribution and the absolute value of the magnetic flux is large, but since there is a magnetic flux creep phenomenon, the magnetic flux exceeds the pin force by the pinning center from time to time with the outside. Since the gradient of the magnetic flux distribution becomes smaller, the absolute value of the magnetic flux becomes smaller.
  • the phenomenon that the magnetic field of the superconducting magnet is relaxed due to the magnetic flux creep can be prevented or suppressed, and as a result, the magnetic field of the superconducting magnet can be stably maintained constant.
  • the method of preventing magnetic field relaxation has a large effect of preventing magnetic field relaxation, as compared with the complicated apparatus and method used in the conventional methods of preventing the magnetic flux creep. It can be obtained, and it can be readily incorporated into current devices which may or may not require additional equipment. And the effect is that the relaxation time can be extended to about 10 times that of the conventional one, and the influence on the industry is very large. For example, MRI (magnetic resonance imaging) or N MR (nuclear magnetic resonance) used in CT scan It is expected that one step use in the field of resonance).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

It is possible to provide a method for easily preventing or suppressing a magnetic flux creep phenomenon of a superconducting magnet and to provide a superconducting magnet device having such an effect. When exciting a superconducting magnet, the magnetic flux distribution in the superconducting magnet is deformed in advance into such a shape that the magnetic flux creep is substantially not caused. Thus, the superconducting magnet excitation method and device control a magnetic field outside the superconducting magnet. More specifically, for example, when the superconducting magnet is formed by a bias magnet as an external layer and a magnet as an internal layer, initial oscillation current is applied to the magnet of the internal layer while a magnetic field is applied to the external magnet. Next, the current is set to a predetermined value or a magnetic field higher than a predetermined magnetic field is applied to the magnet of the external layer when current is applied to the magnet of the internal layer. Next, the magnetic field of the magnet of the external layer is set to a predetermined magnetic field.

Description

明 細 書  Specification
超電導マグネットの励磁方法及び超電導マグネット装置  Method of exciting superconducting magnet and superconducting magnet apparatus
技術分野  Technical field
[0001] 本発明は、超電導マグネットの励磁方法、特に磁束クリープ現象を防止又は抑制 するための励磁方法、及び、その様な効果を有する超電導マグネット装置に関する。 背景技術  The present invention relates to a method of exciting a superconducting magnet, and more particularly to an exciting method for preventing or suppressing a magnetic flux creep phenomenon, and a superconducting magnet apparatus having such an effect. Background art
[0002] 超電導体は、臨界温度以下に冷却すると、電気抵抗がゼロの超電導状態になると いう性質を有する。従って、超電導体を用いて線材を作りこの線材を用いてコイルを 製作すると、臨界温度以下で損失が非常に少な 、超電導マグネット (電磁石)を作る ことができる。この超電導マグネットは抵抗がゼロであるので、電流通電中にジュール 損失が無く発熱を伴わず、且つ、高い磁界を発生させることができる等の特徴がある 。この超電導マグネットに永久電流スィッチという装置を付け、ー且流した電流を超電 導の閉回路にすると、超電導マグネットを電源力 切り離しても、電流は減少すること なく流れ続けるので、一定の磁界を長時間印加し続けることが出来る永久電流モード の超電導マグネットが形成される。電源を接続しているときは、電源電流の変化により 磁界が変化するので、超電導マグネットの磁界の精度は必ずしも良くはないが、ー且 永久電流モードに移行すると、磁界の安定度は格段に向上するという特徴がある。  A superconductor has the property of becoming a superconducting state with zero electrical resistance when it is cooled below its critical temperature. Therefore, if a wire is made using a superconductor and a coil is made using this wire, a superconducting magnet (electromagnet) can be made with very low loss below the critical temperature. Since this superconducting magnet has zero resistance, it is characterized in that there is no Joule loss during current conduction, no heat generation, and a high magnetic field can be generated. If a device called a permanent current switch is attached to this superconducting magnet and the current that flows is made a closed circuit of the superconducting, even if the power of the superconducting magnet is disconnected, the current continues to flow without decreasing, so a constant magnetic field can be generated. A permanent current mode superconducting magnet is formed which can be applied for a long time. When the power supply is connected, the magnetic field changes due to a change in the power supply current, so the accuracy of the magnetic field of the superconducting magnet is not necessarily good, but when it shifts to permanent current mode, the stability of the magnetic field is greatly improved It is characterized by
[0003] この様に、永久電流モードでは、長時間に亘つて安定度の良い高磁界を保つこと ができる。そのため、高い安定性を有する磁界が必要とされる分野、例えば、 CTスキ ヤンで使われる MRI (磁気共鳴映像)や NMR (核磁気共鳴)で、一定の磁界を印加す る目的に使用されている。力かる装置においては、磁界が変動すると共鳴周波数が 異なるために、結果として映像が乱れたり、間違った測定を行ってしまうので、特に安 定な磁界が必要とされるのである。  As described above, in the permanent current mode, a stable high magnetic field can be maintained for a long time. Therefore, it is used for the purpose of applying a constant magnetic field in fields where high stability magnetic fields are required, such as MRI (magnetic resonance imaging) and NMR (nuclear magnetic resonance) used in CT scans. There is. In a powerful device, when the magnetic field fluctuates, the resonance frequency is different, and as a result, the image is disturbed or an incorrect measurement is performed, so a particularly stable magnetic field is required.
[0004] ところで、超電導マグネットを永久電流モードで運転して一定の磁界を長時間得よ うとしても、実際には、磁束クリープ現象により永久電流が緩和するため、磁界は徐々 に小さくなつてしまう。この磁束クリープ現象は以下の様に説明される。  By the way, even if the superconducting magnet is operated in the permanent current mode to obtain a constant magnetic field for a long time, the magnetic field is gradually reduced because the permanent current is actually alleviated by the magnetic flux creep phenomenon. . This flux creep phenomenon is explained as follows.
[0005] 超電導体が抵抗ゼロであるのは、厳密には磁束が超電導体に入らないマイスナー 状態のみであり、これは低い磁界でのみ実現される。一方、高い磁界中では磁束は 超電導体に入り混合状態になる。侵入した磁束は、ピンニングセンターと呼ばれる超 電導体内の不純物に捕捉されて、動かない状態になる。磁束を捕捉するこのカをピ ンカという。ローレンツ力、即ち(磁界の大きさ) X (電流密度の大きさ)がピン力よりも 小さレ、ときには、磁束線はピンニングセンターに捕らわれており、磁束は動かないの で、抵抗はゼロである。従って、この状態では、臨界電流密度(ある超電導体に流し 得る単位面積当たりの最大電流)までの電流密度に対して、超電導体は抵抗を生じ ず、損失はない。なお、臨界電流密度はピン力に比例するという性質がある。 [0005] The fact that the superconductor has zero resistance means that the flux does not enter the superconductor strictly. State only, which is realized only at low magnetic fields. On the other hand, in a high magnetic field, the magnetic flux enters the superconductor and is in a mixed state. The invading magnetic flux is trapped by impurities in the superconductor called a pinning center and becomes immobile. This force that captures magnetic flux is called a pinker. Lorentz force, ie (magnitude of the magnetic field) x (magnitude of current density) is less than pin force, sometimes the flux line is trapped at the pinning center and the flux does not move, so the resistance is zero . Therefore, in this state, the superconductor does not generate resistance and does not lose current for the current density up to the critical current density (maximum current per unit area that can flow to a certain superconductor). The critical current density has the property of being proportional to the pin force.
[0006] 臨界電流密度以下の電流密度で磁束がピンニングセンターに捕捉され続ければ、 永久電流となる。しかし有限温度下では、確率的に、捕捉された磁束がピンニングセ ンタ一力も外れて移動することが起こる。これが磁束クリープ現象である。磁束クリー プ現象が起こると、磁束線が外部力 超電導体に更に侵入したり、条件によっては外 に少しずつ出ていってしまうので、磁界が変化することになる。従って、磁束クリープ 現象が起こると一定の磁界を保つことができなレ、。この様に磁界は磁束クリープ現象 で緩和してしまう。こうした磁束クリープ現象は、温度や磁界が高いと顕著となる。最 近注目されている高温酸化物超電導体では、使用温度が高いために、従来の極低 温で使われていた金属系超電導体に比べて磁束クリープの問題が深刻となるのであ る。従って、磁束クリープ現象を抑える何らかの方法 '手段が必要となる。  [0006] If magnetic flux continues to be trapped at the pinning center at a current density below the critical current density, it becomes a permanent current. However, under finite temperature, it is probable that the trapped magnetic flux moves out of the pinning center force. This is the flux creep phenomenon. When a magnetic flux creep phenomenon occurs, the magnetic flux lines change further into the external force superconductor or, depending on conditions, move out little by little, resulting in a change in the magnetic field. Therefore, the flux creep phenomenon can not maintain a constant magnetic field. In this way, the magnetic field is relaxed by the flux creep phenomenon. Such magnetic flux creep phenomenon becomes noticeable when the temperature and the magnetic field are high. The high temperature oxide superconductors that are attracting attention recently have a problem of flux creep compared to the conventional metallic superconductors used at extremely low temperatures due to the high service temperature. Therefore, some means of suppressing the flux creep phenomenon is needed.
[0007] 従来、一般的には、こうした磁束クリープ現象が生じて磁界が減少したときには、一 且永久電流モードを解レ、て電源をつなぎ直し、再度磁界を印加し直すとレ、う手法が 行われていた。その他にも、磁束クリープ現象を減少又は抑制する方法が提案され ている。例えば、特開平 11一 164820号 (特許文献 1)では、超電導コイルに対応し た補償コイルを用いて、磁束クリープで抜けた磁束だけ補償コイルで磁束を補充する (磁束ポンプ)方法で、磁界の減衰を防ぐ方法が提案されている。また、超電導体の 温度を調節することによって、永久電流を安定ィ匕する試みも提案されている(特許文 献 2)。しかし、これらの方法では、装置が複雑になるという欠点がある。  [0007] Conventionally, generally, when such a magnetic flux creep phenomenon occurs and the magnetic field decreases, the permanent current mode is released, the power is reconnected, and the magnetic field is applied again. It was done. Other methods have been proposed to reduce or suppress the flux creep phenomenon. For example, in Japanese Patent Application Laid-Open No. 11-164820 (Patent Document 1), a compensation coil corresponding to a superconducting coil is used, and the magnetic flux of the magnetic field is compensated by Methods have been proposed to prevent attenuation. In addition, attempts have been made to stabilize the permanent current by adjusting the temperature of the superconductor (Patent Document 2). However, these methods have the disadvantage that the device is complicated.
特許文献 1:特開平 11一 164820号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 11-1 164820
特許文献 2 :米国特許第 5270291号明細書  Patent Document 2: U.S. Pat. No. 5,270,291
訂正された甩紙 (規 ¾ 》 発明の開示 Corrected paper (rule 3⁄4) Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0008] 本発明の課題は、超電導マグネットにお 、て、超電導マグネット内部の磁束分布を 変化させて、磁束クリープ現象を効果的に且つ簡単に、防止又は抑制するための方 法を提供すること、及び、その様な効果を有する超電導マグネット装置を提供するこ とにある。  The object of the present invention is to provide a method for effectively and easily preventing or suppressing the magnetic flux creep phenomenon by changing the magnetic flux distribution inside the superconducting magnet in the superconducting magnet. Another object of the present invention is to provide a superconducting magnet device having such an effect.
課題を解決するための手段  Means to solve the problem
[0009] 本発明のうち請求項 1記載の発明は、超電導マグネットを励磁するに際し、予め、 超電導マグネット内部の磁束分布を、磁束クリープの起こりにくい形に変化させておく ために、超電導マグネットの外部の磁界をコントロールすることを特徴とする超電導マ グネットの励磁方法である。 Among the present inventions, according to claim 1 of the present invention, in exciting the superconducting magnet, in order to previously change the magnetic flux distribution inside the superconducting magnet into a form in which magnetic flux creep is unlikely to occur, the outside of the superconducting magnet It is a method of exciting a superconducting magnet characterized by controlling the magnetic field of
[0010] 本発明のうち請求項 2記載の発明は、超電導マグネットが、外層のバイアスマグネッ トと内層のマグネットから構成されたものであることを特徴とする請求項 1記載の超電 導マグネットの励磁方法である。 Among the present inventions, according to claim 2 of the present invention, the superconducting magnet is composed of a bias magnet in the outer layer and a magnet in the inner layer. It is an excitation method.
[0011] 本発明のうち請求項 3記載の発明は、超電導マグネットに、所定の電流値に対して 上下に振動する振動電流を流し、次 ヽで所定の電流値に設定することを特徴とする 請求項 1又は 2記載の超電導マグネットの励磁方法である。 Among the present inventions, the invention according to claim 3 is characterized in that an oscillating current which vibrates up and down with respect to a predetermined current value is supplied to the superconducting magnet, and is set to a predetermined current value next time. It is an excitation method of the superconducting magnet according to claim 1 or 2.
[0012] 本発明のうち請求項 4記載の発明は、外層のバイアスマグネットに磁界が印加され た状態で、内層のマグネットに、当初振動電流を流し、次いで所定の電流値に設定 することを特徴とする請求項 2記載の超電導マグネットの励磁方法である。 Among the present inventions, the invention according to claim 4 is characterized in that, in a state where a magnetic field is applied to the bias magnet in the outer layer, an oscillating current is first applied to the magnet in the inner layer, and then a predetermined current value is set. It is an excitation method of the superconducting magnet according to claim 2.
[0013] 本発明のうち請求項 5記載の発明は、外層のバイアスマグネットに所定の磁界よりも 高い磁界を印加した状態で、内層のマグネットに電流を流し、次いで、外層のバイァ スマグネットの磁界を所定の磁界に設定することを特徴とする請求項 2記載の超電導 マグネットの励磁方法である。 According to a fifth aspect of the present invention, in the state where a magnetic field higher than a predetermined magnetic field is applied to the bias magnet in the outer layer, current is supplied to the magnet in the inner layer and then the magnetic field of the bias magnet in the outer layer. 3. The method of exciting a superconducting magnet according to claim 2, wherein the magnetic field is set to a predetermined magnetic field.
[0014] 本発明のうち請求項 6記載の発明は、超電導マグネット装置において、超電導マグ ネットの外部の磁界をコントロールする手段を設けたことを特徴とする超電導マグネッ ト装置である。 [0014] The invention described in claim 6 of the present invention is a superconducting magnet apparatus, characterized in that a means for controlling the magnetic field outside the superconducting magnet is provided.
[0015] 本発明のうち請求項 7記載の発明は、超電導マグネットが、外層のバイアスマグネッ トと内層のマグネットから構成されたものであることを特徴とする請求項 6記載の超電 導マグネット装置である。 According to a seventh aspect of the present invention, in the superconducting magnet according to the seventh aspect of the present invention, the bias magnet for the outer layer is used. 7. A superconductive magnet apparatus according to claim 6, wherein said superconductive magnet apparatus comprises:
[0016] 本発明のうち請求項 8記載の発明は、磁界をコントロールする手段力 超電導マグ ネットに、所定の電流値に対して上下に振動する振動電流を流し得る手段である請 求項 6又は 7記載の超電導マグネット装置である。 Among the present inventions, the invention according to claim 8 is a means capable of supplying an oscillating current oscillating up and down with respect to a predetermined current value to means for controlling a magnetic field in a superconducting magnet. 7 is the superconducting magnet device according to 7 above.
[0017] 本発明のうち請求項 9記載の発明は、磁界をコントロールする手段力 外層のバイ ァスマグネットに磁界を印加し得る手段と、内層のマグネットに電流又は振動電流を 流し得る手段である請求項 7記載の超電導マグネット装置である。 Among the present inventions, the invention according to claim 9 is a means for controlling the magnetic field, a means capable of applying a magnetic field to the bias magnet in the outer layer, and a means capable of flowing current or oscillating current to the magnet in the inner layer. It is a superconducting magnet device according to claim 7.
[0018] そして、本発明のうち請求項 10記載の発明は、超電導マグネットを加温する手段を 設けたことを特徴とする請求項 6〜9のうちいずれか 1項記載の超電導マグネット装置 である。 The invention according to claim 10 of the present invention is a superconducting magnet apparatus according to any one of claims 6 to 9, characterized in that a means for heating the superconducting magnet is provided. .
発明の効果  Effect of the invention
[0019] 本発明によると、例えば、先ず、上下に振動する振動電流を流し、その後所定の電 流値に設定するなどのごく簡単な手順により、超電導マグネットの磁束クリープ現象 の防止又は抑制を達成することができる。従って、磁束クリープにより超電導マグネッ トの磁界が緩和してしまう現象を防止又は抑制することができ、結果として、超電導マ グネットの磁界を安定的に一定に維持することが可能となる。本発明によると、磁束ク リーブ現象を抑える効果は非常に高ぐ例えば、従来は、 10日間しか超電導マグネッ トの永久電流モードでの正常な運転ができな力つたのに対して、 100日間にも延ば すことが容易に実現できるようになる。  According to the present invention, for example, the prevention or suppression of the magnetic flux creep phenomenon of the superconducting magnet is achieved by a very simple procedure such as first flowing oscillating current which vibrates up and down, and then setting the current value to a predetermined value. can do. Therefore, the phenomenon that the magnetic field of the superconducting magnet is relaxed due to the magnetic flux creep can be prevented or suppressed, and as a result, the magnetic field of the superconducting magnet can be stably maintained constant. According to the present invention, the effect of suppressing the flux creep phenomenon is extremely high. For example, conventionally, the normal operation of the superconducting magnet in the permanent current mode can be performed only for 10 days. The extension will be easily realized.
図面の簡単な説明  Brief description of the drawings
[0020] [図 1]永久電流スィッチによる、超電導マグネットの永久電流モードでの運転の様子 を示す図である。  FIG. 1 is a view showing how a superconducting magnet is operated in a permanent current mode by a permanent current switch.
[図 2]電流振動法による、内層のマグネットの励磁の様子を示す図である。  FIG. 2 is a view showing how the magnet of the inner layer is excited by the current vibration method.
[図 3]電流振動法における磁束分布と磁束クリープの関係を説明するための図である  FIG. 3 is a view for explaining the relationship between magnetic flux distribution and magnetic flux creep in the current vibration method.
[図 4]電流振動法における磁束分布と磁ィ匕の関係を説明するための図である。 FIG. 4 is a view for explaining the relationship between magnetic flux distribution and magnetic flux in the current vibration method.
[図 5]高磁界励磁法の例において、磁ィ匕の時間変化を測定した例を示す図である。 [図 6]高温励磁法の例にぉ 、て、試料の磁ィ匕の時間変化 (緩和)の例を示す図である 発明を実施するための最良の形態 FIG. 5 is a diagram showing an example of measuring a time change of magnetic flux in an example of high magnetic field excitation method. FIG. 6 is a view showing an example of the time change (relaxation) of the magnetic flux of the sample in the example of the high temperature excitation method. BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明者の知見によると、超電導マグネットにおいて、超電導マグネット内部の磁 束分布を変化させて、磁束クリープ現象を防止又は抑制する方法として、高温で励 磁する方法 (高温励磁法)がある。即ち、超電導マグネットを、所定温度よりも高い温 度で電流を通電して励磁し、次いで、この超電導マグネットを永久電流モードに移行 し、その後、この超電導マグネットを所定温度に調整する方法である。この方法では、 先ず、超電導マグネットを、通常運転する所定の温度よりも若干高い温度に設定して 電流を通電し励磁する。その後、永久電流モードに移行して、温度を下げて行き所 定の温度にする。 According to the knowledge of the inventor of the present invention, in the superconducting magnet, a method (high temperature excitation method) of exciting at a high temperature is used as a method of preventing or suppressing the flux creep phenomenon by changing the magnetic flux distribution inside the superconducting magnet. is there. That is, the superconducting magnet is excited by applying a current at a temperature higher than a predetermined temperature, and then the superconducting magnet is shifted to a permanent current mode, and then the superconducting magnet is adjusted to a predetermined temperature. In this method, first, the superconducting magnet is set to a temperature slightly higher than a predetermined temperature at which normal operation is performed, and current is supplied to excite the current. After that, it shifts to the permanent current mode and lowers the temperature to a predetermined temperature.
[0022] 高温励磁法について図を用いて説明する。図 1は、永久電流スィッチによる超電導 マグネットの永久電流モードでの運転の様子を示す図である。図 1の(a)は、超電導 マグネットを外部の直流電源により直接励磁している状態を示している。図 1の (b)は 、永久電流スィッチを切り替えて、超電導マグネットは電源より切り離されており、永久 電流により一定の磁界を印加しつづけている状態を示している。超電導マグネットは 抵抗がゼロであるので、減衰は非常に少ない。また、電源力 切り離されているので 安定度が非常に高い。  The high temperature excitation method will be described with reference to the drawings. FIG. 1 is a diagram showing the operation of the superconducting magnet in the permanent current mode with the permanent current switch. Fig. 1 (a) shows a state in which the superconducting magnet is directly excited by an external DC power supply. Fig. 1 (b) shows a state where the permanent magnet switch is disconnected from the power supply by switching the permanent current switch, and a constant magnetic field is applied by the permanent current. Attenuation is very small because superconducting magnets have zero resistance. Also, because the power supply is disconnected, the stability is very high.
[0023] 超電導マグネットは、先ず、図 1の(a)の状態で、液体へリウムゃ液体窒素等の寒剤 で冷却される低温領域の温度を、所定温度、即ち、所定の超電導マグネットの運転 温度よりも高い温度にして、電流を通電して励磁される。次いで、励磁された超電導 マグネットは、図 1の(b)の永久電流モードに移行され、その後、超電導マグネットは 所定の運転温度に冷却'調整される。所定温度よりも高くする程度は、特に限定され るものではないが、高々 20K程度で十分である。その程度が高くなればなる程、所定 温度まで冷却 '調整するために熱損失が大きくなるので好ましくないし、また、 1K以 下では、磁束クリープの抑制効果が十分ではない。温度調節の手段'方法は特に限 定されるものではなぐ低温領域の温度を公知の方法 ·装置で調整できる。  In the superconducting magnet, first, in the state of FIG. 1A, the temperature of a low temperature region cooled by a refrigerant such as liquid helium or liquid nitrogen is set to a predetermined temperature, ie, a predetermined operation temperature of the superconducting magnet. At a higher temperature, the current is energized to excite. Next, the excited superconducting magnet is transferred to the permanent current mode shown in FIG. 1 (b), and then the superconducting magnet is cooled and adjusted to a predetermined operating temperature. The degree of raising the temperature higher than the predetermined temperature is not particularly limited, but at most about 20 K is sufficient. The higher the degree, the larger the heat loss in order to adjust the cooling temperature to a predetermined temperature, which is not preferable, and the effect of suppressing the flux creep is not sufficient below 1 K. The means of temperature control 'is not particularly limited, and the temperature in the low temperature region can be adjusted by a known method and apparatus.
[0024] 超電導マグネットの構造としては、典型的には、単純に一つの超電導マグネットで 構成されるものと、外に配置されている外層のバイアスマグネットとその内部に挿入さ れている内層マグネットで構成されるものがある。後者の構造のマグネットは、高磁界 を得るための構造として NMRなどでは頻繁に用いられる形態である。前記高温励磁 法は、上記のいずれの構成の超電導マグネットにも適用できる。 As a structure of the superconducting magnet, typically, it is simply one superconducting magnet. There are some that are configured, and some that are configured with an outer layer bias magnet disposed outside and an inner layer magnet inserted inside thereof. The magnet of the latter structure is a form frequently used in NMR etc. as a structure for obtaining a high magnetic field. The high temperature excitation method can be applied to the superconducting magnet of any of the above configurations.
[0025] 高温励磁法の原理は以下の通りであると考えられる。高い温度では、ピンニングセ ンターが、超電導体内部の磁束を捕捉する力が弱ぐ磁束クリープ現象が顕著であり 、磁束の移動が大きい。その状態でまず電流を流し、磁界を印加し、磁束クリープに よりある程度磁束の移動を許し、磁界をある程度緩和させてしまう。その後、温度を下 げると、今度は、ピンニングセンターが磁束を捕捉する力が強まり、磁束は超電導体 内にとどまりやすい状態になるものと考えられる。従って、単純に磁界を印加したのに 比べて、磁束は強くピンニングセンターに捕捉されており、磁束クリープ現象は極端 に弱くなる。この方法は、一つの超電導マグネット、あるいは外層と内層の超電導マ グネットを利用してレ、る、どちらの構造の超電導マグネットでも有効である。  The principle of the high temperature excitation method is considered to be as follows. At high temperatures, the pinning center has a remarkable magnetic flux creep phenomenon in which the force for capturing the magnetic flux inside the superconductor weakens, and the movement of the magnetic flux is large. In that state, current is first applied, a magnetic field is applied, and magnetic flux creep allows movement of the magnetic flux to some extent, thereby relaxing the magnetic field to some extent. After that, when the temperature is lowered, it is considered that the pinning center is now intensified in the ability to capture the magnetic flux, and the magnetic flux tends to stay in the superconductor. Therefore, the magnetic flux is strongly captured by the pinning center and the magnetic flux creep phenomenon is extremely weak, as compared with the simple application of the magnetic field. This method is effective for superconducting magnets of either structure, using one superconducting magnet or superconducting magnet nets in the outer and inner layers.
[0026] NMRマグネットの場合には、高磁界を発生させるために、内層マグネットが高温超 電導体で作られてレ、ることが多い。この場合、外層マグネットは低価格で作るために、 従来の金属超電導体で作られている。そのため、動作温度は、常圧の液体ヘリウム 温度の 4. 2Kか、あるいは減圧して 2K付近の超流動液体ヘリウムを使うこともある。こ のように、動作温度が 4. 2K以下であるときには、最初に常圧の液体ヘリウム温度 4. 2Kに冷却したときに、電流を通電して励磁を行い(高温励磁)、続いて減圧して 2K付 近に冷却すれば、高温励磁法が実現できることになる。この場合には特別な装置は 必要としない。  In the case of NMR magnets, the inner layer magnet is often made of a high temperature superconductor in order to generate a high magnetic field. In this case, the outer layer magnet is made of a conventional metallic superconductor in order to make it inexpensive. For this reason, the operating temperature may be 4.2 K at normal pressure liquid helium temperature or superfluid liquid helium near 2 K under reduced pressure. As described above, when the operating temperature is 4.2 K or less, when first cooling to the normal pressure liquid helium temperature 4.2 K, the current is applied for excitation (high temperature excitation), and then the pressure is reduced. Cooling to around 2 K enables high-temperature excitation to be realized. In this case no special equipment is required.
[0027] 本発明者は、超電導マグネットにおレ、て、超電導マグネット内部の磁束分布を変化 させて、磁束クリープ現象を防止又は抑制する方法として、別な観点力 研究を行い 、本発明に到達したものである。本発明のうち請求項 1記載の発明は、超電導マグネ ットを励磁するに際し、予め、超電導マグネット内部の磁束分布を、磁束クリープの起 こりにくい形に変化させておくために、超電導マグネットの外部の磁界をコントロール することを特徴とする超電導マグネットの励磁方法である力 前記のレ、ずれの構成の 超電導マグネットにも適用できる。また、超電導マグネットの外部の磁界をコントロー 1 された甩紙 敏 ルする方法,手段としては、特に制限はなぐ例えば、電流や磁界などの条件を変化 させてコントロールすることができる。 The inventors of the present invention have conducted research on another viewpoint as a method of preventing or suppressing the magnetic flux creep phenomenon by changing the magnetic flux distribution inside the superconducting magnet by using the superconducting magnet, and the present invention is achieved. It is Among the present inventions, according to the first aspect of the present invention, in exciting the superconducting magnet, in order to previously change the magnetic flux distribution inside the superconducting magnet to a form in which magnetic flux creep is less likely to occur, The method of exciting a superconducting magnet characterized in that the magnetic field of the above is controlled. In addition, Satoshi Inogami, whose magnetic field outside the superconducting magnet was controlled 1 There are no particular limitations on the method and means used, and conditions such as current and magnetic field can be varied and controlled.
[0028] 請求項 2記載の発明は、超電導マグネットを、外に配置されている外層のバイアス マグネットとその内部に挿入されている内層マグネットで構成される超電導マグネット に限定したものである。力かる構造のマグネットは、高磁界を得るために適している。  [0028] The invention according to claim 2 limits the superconducting magnet to a superconducting magnet composed of an outer layer bias magnet disposed outside and an inner layer magnet inserted inside the magnet. A magnet with a structure of force is suitable for obtaining a high magnetic field.
[0029] 本発明において、予め超電導マグネット内部の磁束分布を、磁束クリープの起こり にくい形に変化させておくために、超電導マグネットの外部の磁界をコントロールする 方法 '手段のうち好ましい例を、以下に具体的に説明する。  In the present invention, in order to change in advance the magnetic flux distribution inside the superconducting magnet to a form in which magnetic flux creep is unlikely to occur, a preferred example of the method of controlling the magnetic field outside the superconducting magnet will be described below. This will be described specifically.
[0030] 請求項 3の発明は、超電導マグネットに、所定の電流値に対して上下に振動する振 動電流を流し、次 、で所定の電流値に設定することを特徴とする超電導マグネットの 励磁方法である(電流振動法)。そして、この方法も、単純に一つの超電導マグネット で構成されたものと、外に配置されている外層のバイアスマグネットとその内部に挿 入されている内層マグネットで構成されたもののいずれにも適用が可能である力 特 に、請求項 4に記載された様に、外層のバイアスマグネットと、その内部に挿入されて いる内層のマグネットから構成された超電導マグネットに好適に適用できる。そして、 その場合には、外層のノィァスマグネットに磁界が印加された状態で、内層のマグネ ットに、当初振動電流を流し、次いで所定の電流値に設定することによって超電導マ グネットを励磁する。  [0030] The invention of claim 3 is characterized in that a vibration current which vibrates up and down with respect to a predetermined current value is supplied to the superconducting magnet, and the current is set to a predetermined current value in the following manner. Method (current oscillation method). And this method is also applicable to both the one constituted simply by one superconducting magnet and the one constituted by the bias magnet of the outer layer disposed outside and the inner layer magnet inserted inside thereof. Possible Forces In particular, as described in claim 4, the present invention can be suitably applied to a superconducting magnet composed of an outer layer bias magnet and an inner layer magnet inserted therein. And in that case, in the state where the magnetic field is applied to the negative magnet of the outer layer, an oscillating current is first applied to the magnet of the inner layer, and then the superconducting magnet is excited by setting to a predetermined current value. Do.
[0031] この方法の原理を、図を参照して説明する。図 2は、電流振動法による内層のマグ ネットの励磁の様子を示す図である。図 2の(a)は、外層のバイアスマグネットにより磁 界が印加された状態で、内層の超電導マグネットに電流 (I)を流すときの状況を示し ている。電流を所定の電流値、即ち、超電導マグネットの目的の電流値よりもー且高 い電流まで流し、次に下げ、また上げることを繰り返して、即ち、振動電流を流して、 徐々に目的の電流値に設定する状況を示している。図 2の(a)のように電流を変化さ せると、コイルに磁界が印加され、このとき、超電導マグネット内部の磁束密度 (B)の 磁束分布は、図 2の(b)の実線に示す様になると考えられる。図 2の(b)において、 d は超電導体の内部の中心までの距離を示している。これが磁束クリープ現象の影響 を受けると、図 2の (b)の点線の様な磁束分布になると予想される力 これは平均する と図 2の (b)の実線で示される、磁束クリープ現象以前の分布とほとんど変わらないこ とになり、従って、外部に発生している磁界はほとんど変化が無い。最終的には内部 の磁束分布はぎざぎざしたパターンになり、単純に電流を増加して磁界を発生させた ときに比べて磁束クリープに対して影響を受けに《なる。 The principle of this method will be described with reference to the drawings. FIG. 2 is a diagram showing how the magnet of the inner layer is excited by the current oscillation method. Fig. 2 (a) shows the situation when a current (I) is supplied to the superconducting magnet in the inner layer while the magnetic field is applied by the bias magnet in the outer layer. The current is made to flow up to a predetermined current value, ie, a current higher than the target current value of the superconducting magnet, and then it is repeatedly lowered and raised again, that is, the oscillating current is supplied to gradually increase the target current. Indicates the status to be set to the value. When the current is changed as shown in FIG. 2 (a), a magnetic field is applied to the coil. At this time, the magnetic flux distribution of the magnetic flux density (B) inside the superconducting magnet is shown by the solid line in FIG. It is thought that In Fig. 2 (b), d indicates the distance to the center inside the superconductor. If this is affected by the flux creep phenomenon, the expected flux distribution as shown by the dotted line in (b) of Fig. 2 is the average of this And the solid line in Fig. 2 (b), it is almost the same as the distribution before the flux creep phenomenon, so the externally generated magnetic field is almost the same. Ultimately, the internal magnetic flux distribution has a jagged pattern, which is more susceptible to magnetic flux creep than when the current is simply increased to generate a magnetic field.
[0032] 本発明の請求項 5記載の発明は、外層のバイアスマグネットと内層のマグネットから 構成された超電導マグネットに関するものであり、外層のバイアスマグネットに所定の 磁界よりも高い磁界を印カロした状態で、内層のマグネットに電流を流し磁界を発生さ せ、次いで、外層のバイアスマグネットの磁界を所定の磁界、即ち、目的の磁界に設 定することを特徴とする超電導マグネットの励磁方法 (高磁界励磁法)である。  The invention according to claim 5 of the present invention relates to a superconducting magnet including a bias magnet in the outer layer and a magnet in the inner layer, and a state in which a magnetic field higher than a predetermined magnetic field is imprinted on the bias magnet in the outer layer. In the method of exciting a superconducting magnet, a current is supplied to the magnet in the inner layer to generate a magnetic field, and then the magnetic field of the bias magnet in the outer layer is set to a predetermined magnetic field, ie, a target magnetic field. Excitation method).
[0033] この方法の原理は以下の様に考えられる。一般に、臨界電流密度は磁界の増加に より単調に減少する。従って、高磁界で内層のマグネットを励磁すると、臨界電流密 度が低 ヽ状態で電流を流して ヽること〖こなる。外層のバイアスマグネットを減磁するこ とにより、内層のマグネットでの臨界電流密度が高くなる (ピン力も高くなる)ので、超電 導体内部に侵入している磁束は、より強いピン力で止められて動きにくくなり、結果と して磁束クリープ現象は弱くなる。  The principle of this method is considered as follows. In general, the critical current density decreases monotonically with the increase of the magnetic field. Therefore, when the magnet in the inner layer is excited with a high magnetic field, the critical current density may be reduced by flowing current. By demagnetizing the bias magnet in the outer layer, the critical current density in the magnet in the inner layer is increased (the pin force is also increased), so that the magnetic flux invading the inside of the superconductor can be stopped by the stronger pin force. It becomes difficult to move, resulting in weakening of the flux creep phenomenon.
[0034] 本発明の請求項 6記載の発明は、超電導マグネット装置にぉ 、て、超電導マグネッ トの外部の磁界をコントロールする手段を設けたことを特徴とする超電導マグネット装 置である。磁界をコントロールする手段としては、特に限定されるものではない。そし て、請求項 7記載の発明は、超電導マグネットを、外層のバイアスマグネットと内層の マグネットから構成されたものに限定している。  [0034] The invention according to claim 6 of the present invention is a superconducting magnet apparatus characterized in that the superconducting magnet apparatus is provided with means for controlling the magnetic field outside the superconducting magnet. The means for controlling the magnetic field is not particularly limited. The invention according to claim 7 limits the superconducting magnet to one composed of the bias magnet in the outer layer and the magnet in the inner layer.
[0035] 請求項 8記載の発明は、磁界をコントロールする手段として、超電導マグネットに、 所定の電流値に対して上下に振動する振動電流を流し得る手段を採用したものであ る。請求項 9記載の発明は、磁界をコントロールする手段として、外層のバイアスマグ ネットに磁界を印加し得る手段と、内層のマグネットに電流又は振動電流を流し得る 手段を採用した超電導マグネット装置である。そして、請求項 10記載の発明は、磁界 をコントロールする手段に加えて、更に超電導マグネットを加温する手段を設けた超 電導マグネット装置である。  [0035] The invention according to claim 8 employs, as a means for controlling the magnetic field, a means capable of flowing an oscillating current which vibrates up and down with respect to a predetermined current value to the superconducting magnet. The invention according to claim 9 is a superconducting magnet apparatus employing, as means for controlling a magnetic field, means capable of applying a magnetic field to a bias magnet in the outer layer, and means capable of flowing current or oscillating current into a magnet in the inner layer. The invention according to claim 10 is a superconducting magnet apparatus provided with means for heating the superconducting magnet in addition to the means for controlling the magnetic field.
[0036] これまでに、各種の超電導マグネット装置及びその応用機器が開発されているが、 これらの超電導マグネット装置は、基本的に、極低温に冷却する超電導コイル部と、 これに外部励磁電源から電流を供給する手段と、所要の磁界を発生している状態に おいて、コイルの巻き始めと巻き終わりを短絡する超電導スィッチとから構成されてい る(図 1参照)。請求項 6〜10記載の発明は、力かる超電導マグネット装置において、 付属装置として、超電導マグネットの外部の磁界をコントロールする手段を設けたも のである。各種の手段は、特別なものである必要はなぐ公知あるいは市販の装置等 を用いることができる。 So far, various superconducting magnet devices and their application devices have been developed. In these superconducting magnet devices, basically, the coil is wound in a state where a superconducting coil portion cooled to a very low temperature, a means for supplying a current from an external excitation power supply thereto, and a required magnetic field are generated. It consists of a superconducting switch that shorts the beginning and end of the winding (see Figure 1). The invention according to claims 6 to 10 is that in the superconducting magnet device under force, means for controlling the magnetic field outside the superconducting magnet is provided as an accessory device. The various means can be any known or commercially available device that does not need to be special.
[0037] 現在、最も超電導マグネットが使われているのは、医療用の MRIマグネットである。  At present, superconducting magnets are most often used for medical MRI magnets.
これらは金属系超電導体が使われているので、使用温度が低く磁束クリープの影響 力 S小さい。それでも磁界の緩和を防ぐために、いくつかの付属装置を組み合わせて いるのが現実である。従って、本発明の方法及び Z又は装置を取り込めば、いくつも の付属装置を組み合わせる必要がなくなり、安価に安定した磁界を得ることができる  Since these are metal-based superconductors, the operating temperature is low and the influence of flux creep S is small. Even so, it is a reality that some auxiliary devices are combined to prevent the relaxation of the magnetic field. Therefore, by incorporating the method and Z or device of the present invention, it is not necessary to combine several accessory devices, and a stable magnetic field can be obtained inexpensively.
[0038] たんぱく質の構造解析などに使われる、 20Tを越えるような NMRマグネットでは、 高磁界を実現するために中心に高温酸ィ匕物超電導体を使ったマグネットを利用して いる。その理由は、高温酸化物超電導体が金属系超電導体に比べて、より高い磁界 の下でも、超電導性を保つことができるからである。しかし、高温酸化物超電導体を 使っているために、高温酸化物超電導体における磁束クリープ現象が、システム全 体の性能を決定してしまっている。従って、本発明の方法及び Z又は装置は、かかる 分野にも利用できる。 [0038] An NMR magnet of over 20 T, which is used for structural analysis of proteins, etc., uses a magnet using a high-temperature oxide superconductor in the center to realize a high magnetic field. The reason is that the high-temperature oxide superconductor can maintain the superconductivity even under a higher magnetic field than the metal-based superconductor. However, due to the use of a high temperature oxide superconductor, the flux creep phenomenon in the high temperature oxide superconductor has determined the performance of the entire system. Thus, the method and apparatus Z or apparatus of the present invention can be used in such a field.
[0039] また、近い将来、本格的に、高温酸化物超電導体を利用した超電導マグネットが作 られるようになると、磁束クリープ現象は深刻な問題となり、本発明の方法及び Z又は 装置は色々な分野で利用されるであろう。以下、実施例により本発明を詳述する。 実施例  Also, in the near future, when a superconducting magnet using high temperature oxide superconductor is to be produced in earnest, the magnetic flux creep phenomenon becomes a serious problem, and the method and Z or the device of the present invention are in various fields. Will be used by Hereinafter, the present invention will be described in detail by way of examples. Example
[0040] [実施例 1] (電流振動法の例)  [Example 1] (Example of current oscillation method)
外層のバイアスマグネットと内層マグネットから構成された超電導マグネットを用い て実験を行った。外層のバイアスマグネットにより磁界が印加された状態で、内層の 超電導マグネットに電流 (I)を、図 2の(a)のように電流を変化させて流した。電流を 所定の電流値 (超電導マグネットの目的の電流値)よりもー且高い電流まで流し、次 に下げ、また上げることを繰り返して、即ち、振動電流を流して、徐々に目的の電流 値に設定した。このとき、超電導マグネットの断面における磁束密度は、図 2の(b)の 実線のようになる。最終的には内部の磁束密度分布はぎざぎざしたパターンになり、 単純に電流を増加して磁界を発生させたときに比べて磁束クリープに対して影響を 受けにくくなる。 The experiment was conducted using a superconducting magnet consisting of an outer layer bias magnet and an inner layer magnet. While the magnetic field was applied by the bias magnet in the outer layer, current (I) was passed through the superconducting magnet in the inner layer while changing the current as shown in (a) of FIG. The current The current is increased to a current higher than a predetermined current value (the target current value of the superconducting magnet), and then it is repeatedly set to the target current value by repeating the lowering and raising again, that is, flowing the oscillating current. . At this time, the magnetic flux density at the cross section of the superconducting magnet is as shown by the solid line in (b) of FIG. Ultimately, the internal magnetic flux density distribution has a jagged pattern, which makes it less susceptible to flux creep than when simply increasing the current to generate a magnetic field.
[0041] このことを図 3で説明する。図 3において、(1) (2) (3) (4)は、図 2の(a)に示した電 流を増減した場合の、各時刻 1、 2、 3、 4における内部の磁束分布を、超電導体の中 心までの領域で示している。(1)では、増加した直後である力 内部では一定の勾配 を持っている。この勾配は臨界電流密度に比例する。このまま時間が経つと点線の 分布から実線の分布に移行する。これは磁束クリープにより、外部から磁束が侵入す る力 である。あるいは臨界電流密度が減少したといってもよい。この結果、内部の磁 化が大きく変化し、外部では磁界が変化することになる。  This is illustrated in FIG. In FIG. 3, (1) (2) (3) (4) shows the internal magnetic flux distribution at each time 1, 2, 3 and 4 when the current shown in FIG. 2 (a) is increased or decreased. In the region up to the center of the superconductor. In (1), the force immediately after the increase has a constant slope inside. This slope is proportional to the critical current density. As time passes, the distribution of dotted lines shifts to the distribution of solid lines. This is the force by which magnetic flux penetrates from the outside due to magnetic flux creep. Alternatively, it may be said that the critical current density has decreased. As a result, the internal magnetization greatly changes, and the magnetic field changes outside.
[0042] これに対して、 (2) (3)を経て (4)にする。電流を増減させると、磁束は超電導体表 面からしか出入りができないので、履歴が残り、最終的に (4)に示すような分布となる 。このようになると、磁束クリープにより磁束分布が変化しても、全体の平均である磁 化は変化しにくぐその結果外部の磁界も殆ど変化しないことになる。  On the other hand, (2) and (3) are passed to (4). When the current is increased or decreased, the magnetic flux can be moved in and out only from the surface of the superconductor, so the history remains and the distribution is finally as shown in (4). In this case, even if the magnetic flux distribution changes due to the magnetic flux creep, the overall average magnetization does not change, and as a result, the external magnetic field hardly changes.
[0043] 実際に磁化が、磁束分布が(1) (2) (3) (4)のとき、即ち、時刻 2、 3、 4のときど のくらい変化するもの力、数値シミュレーションをした結果を図 4に示す。これから分か るように、磁化の最終的な飽和値 Mで規格ィ匕した磁ィ匕 Mの絶対値は、時刻 1、 2で  Actually, the magnetization is a magnetic flux distribution (1) (2) (3) (4), that is, the force at which the time changes at times 2, 3 and 4 and the result of the numerical simulation It is shown in FIG. As will be understood from this, the absolute value of the magnetic field 規格 M standardized by the final saturation value M of the magnetization is at time 1, 2
0  0
は時間とともに大きく変化しているが、時刻 4になると殆ど変化しないことがわかる。 1 00秒も経つと時刻 4では殆ど一定に落ち着く。  Changes significantly with time, but it hardly changes at time 4. After 100 seconds, it settles almost constant at time 4.
[0044] [実施例 2] (高磁界励磁の例) Second Embodiment Example of High Magnetic Field Excitation
外層のバイアスマグネットと内層マグネットで構成される超電導マグネットの、外層 のバイアスマグネット (Y系酸ィ匕物超電導体)に、ー且 0. 6Tの外部磁界を印加し、内 層マグネットに電流を流し、次いで外部磁界を 0. 58Tにして、内層マグネットの磁ィ匕 の時間変化を測定した例を図 5に示した。磁ィ匕の時間変化が、非常に小さくなつてい ることが分かる。一方、外部磁界を 0. 6Tに一定にして測定した場合には、磁化は単 調に増加していることが分かる。従って、ー且高い磁界にすることにより、磁束タリー プ現象を抑制することができることを確認することができた。 An external magnetic field of 0.6 T is applied to the outer layer bias magnet (Y-based oxide superconductor) of the superconducting magnet composed of the outer layer bias magnet and the inner layer magnet, and current is supplied to the inner layer magnet. Then, an example of measuring the time change of the magnetic field of the inner layer magnet by setting the external magnetic field to 0.58 T is shown in FIG. It can be seen that the time change of the magnetic flux is very small. On the other hand, when the external magnetic field is measured at a constant 0.6 T, the magnetization is single. It turns out that it is increasing to the key. Therefore, it was possible to confirm that the flux magnetic phenomenon can be suppressed by setting the magnetic field to a high value.
[0045] [参考例] (高温励磁法の例)  Reference Example (Example of High-Temperature Excitation Method)
Y系酸化物超電導体の温度を、 60Kから ΔΤの温度幅だけ高い温度にして、そこ で電流を通電して 0. 6Tの磁界を印加し(高温励磁)、その後、冷却して 60Kにして、 試料の磁ィ匕の時間変化 (緩和)を調べた。結果は図 6に示した。図 6に示した様に、 ΔΤが OKであると、時間と共に磁ィ匕は変化して絶対値は小さくなつていく。つまり、最 初は磁束分布の勾配があり、磁ィ匕の絶対値は大きいが、磁束クリープ現象があるた めに、時間とともに外部から、磁束がピン止め中心によるピン力を超えて超電導体内 部に侵入していき、磁束分布の勾配が小さくなるために、磁ィ匕の絶対値は小さくなつ てしまっている。  The temperature of the Y-based oxide superconductor is raised by a temperature range of 60 K to a temperature range of ΔΤ, a current is applied there to apply a magnetic field of 0.6 T (high temperature excitation), and then it is cooled to 60 K The time change (relaxation) of the magnetic field of the sample was examined. The results are shown in FIG. As shown in FIG. 6, when ΔΤ is OK, the magnetic flux changes with time and the absolute value decreases. That is, at first there is a gradient of the magnetic flux distribution and the absolute value of the magnetic flux is large, but since there is a magnetic flux creep phenomenon, the magnetic flux exceeds the pin force by the pinning center from time to time with the outside. Since the gradient of the magnetic flux distribution becomes smaller, the absolute value of the magnetic flux becomes smaller.
[0046] しかし、 Δ Τが大きいと、磁界の時間に対する変化は極端に小さくなる。例えば、 7K 〜: LOKも高い温度で電流を通電して磁界を印加した際には、磁ィ匕の変化は殆ど観 測されない。これは高い温度ではピン力が小さぐ磁ィ匕の絶対値も小さかったが、所 定の温度まで冷却することにより、ピン力が大きくなり、超電導体内部に侵入している 磁束が、強くピン止めされるので、磁束線が動きに《なったためである。  However, when ΔΤ is large, the change of the magnetic field with respect to time becomes extremely small. For example, when a current is applied at a high temperature such as 7K to LOK and a magnetic field is applied, almost no change in magnetic field is observed. This is because the absolute value of the magnetic flux that the pin force is small at high temperatures is also small, but by cooling to the specified temperature, the pin force is increased, and the magnetic flux invading the inside of the superconductor is strongly pinned. Because it is stopped, it is because the flux line has become a movement.
産業上の利用可能性  Industrial applicability
[0047] 本発明によると、磁束クリープにより超電導マグネットの磁界が緩和してしまう現象を 防止又は抑制することができ、結果として、超電導マグネットの磁界を安定的に一定 に維持することが可能となる。そして、従来の磁束クリープの防止方法に用いられて いた複雑な装置や複雑な方法 '手順に比べて、本発明によると、ごく簡単な方法,手 順により、磁界緩和に対して大きな防止効果を得ることができ、また、そのための付加 的な装置を必要としない場合も多ぐ現在の装置でもすぐに取り入れることができる。 そして、その効果は、緩和時間を従来の 10倍程度に延ばすことができ、産業界に与 える影響は非常に大きぐ例えば、 CTスキャンで使われる MRI (磁気共鳴映像)や N MR (核磁気共鳴)の分野での一段の利用が期待される。 According to the present invention, the phenomenon that the magnetic field of the superconducting magnet is relaxed due to the magnetic flux creep can be prevented or suppressed, and as a result, the magnetic field of the superconducting magnet can be stably maintained constant. . And, according to the present invention, according to the present invention, the method of preventing magnetic field relaxation has a large effect of preventing magnetic field relaxation, as compared with the complicated apparatus and method used in the conventional methods of preventing the magnetic flux creep. It can be obtained, and it can be readily incorporated into current devices which may or may not require additional equipment. And the effect is that the relaxation time can be extended to about 10 times that of the conventional one, and the influence on the industry is very large. For example, MRI (magnetic resonance imaging) or N MR (nuclear magnetic resonance) used in CT scan It is expected that one step use in the field of resonance).

Claims

請求の範囲 The scope of the claims
[1] 超電導マグネットを励磁するに際し、予め、超電導マグネット内部の磁束分布を、磁 束クリープの起こりにくい形に変化させておくために、超電導マグネットの外部の磁界 をコントロールすることを特徴とする超電導マグネットの励磁方法。  [1] A superconducting magnet characterized by controlling an external magnetic field of the superconducting magnet in order to change the magnetic flux distribution inside the superconducting magnet to a form in which magnetic flux creep hardly occurs when exciting the superconducting magnet. How to excite the magnet.
[2] 超電導マグネットが、外層のバイアスマグネットと内層のマグネットから構成されたも のであることを特徴とする請求項 1記載の超電導マグネットの励磁方法。  [2] The method for exciting a superconducting magnet according to claim 1, wherein the superconducting magnet is composed of a bias magnet in the outer layer and a magnet in the inner layer.
[3] 超電導マグネットに、所定の電流値に対して上下に振動する振動電流を流し、次い で所定の電流値に設定することを特徴とする請求項 1又は 2記載の超電導マグネット の励磁方法。  [3] The method of exciting a superconducting magnet according to claim 1 or 2, characterized in that an oscillating current oscillating up and down with respect to a predetermined current value is supplied to the superconducting magnet and then set to a predetermined current value. .
[4] 外層のバイアスマグネットに磁界が印加された状態で、内層のマグネットに、当初振 動電流を流し、次 、で所定の電流値に設定することを特徴とする請求項 2記載の超 電導マグネットの励磁方法。  [4] The superconductivity according to claim 2, characterized in that, in a state where a magnetic field is applied to the bias magnet of the outer layer, an initial vibration current is supplied to the magnet of the inner layer and the current value is set to a predetermined current value. How to excite the magnet.
[5] 外層のバイアスマグネットに所定の磁界よりも高い磁界を印加した状態で、内層の マグネットに電流を流し、次いで、外層のバイアスマグネットの磁界を所定の磁界に 設定することを特徴とする請求項 2記載の超電導マグネットの励磁方法。 [5] While applying a magnetic field higher than a predetermined magnetic field to the bias magnet in the outer layer, a current is supplied to the magnet in the inner layer, and then the magnetic field of the bias magnet in the outer layer is set to a predetermined magnetic field. An excitation method of the superconducting magnet according to Item 2.
[6] 超電導マグネット装置において、超電導マグネットの外部の磁界をコントロールする 手段を設けたことを特徴とする超電導マグネット装置。 [6] A superconducting magnet apparatus comprising: means for controlling a magnetic field outside the superconducting magnet.
[7] 超電導マグネットが、外層のバイアスマグネットと内層のマグネットから構成されたも のであることを特徴とする請求項 6記載の超電導マグネット装置。 [7] The superconducting magnet apparatus according to claim 6, wherein the superconducting magnet is composed of an outer layer bias magnet and an inner layer magnet.
[8] 磁界をコントロールする手段が、超電導マグネットに、所定の電流値に対して上下 に振動する振動電流を流し得る手段である請求項 6又は 7記載の超電導マグネット 装置。 [8] The superconducting magnet device according to claim 6 or 7, wherein the means for controlling the magnetic field is a means capable of passing an oscillating current oscillating up and down with respect to a predetermined current value to the superconducting magnet.
[9] 磁界をコントロールする手段力 外層のバイアスマグネットに磁界を印加し得る手段 と、内層のマグネットに電流又は振動電流を流し得る手段である請求項 7記載の超電 導マグネット装置。  [9] A means for controlling a magnetic field A means capable of applying a magnetic field to a bias magnet in the outer layer, and a means capable of flowing current or oscillating current into the magnet in the inner layer.
[10] 超電導マグネットを加温する手段を設けたことを特徴とする請求項 6〜9のうちいず れか 1項記載の超電導マグネット装置。  [10] The superconducting magnet apparatus according to any one of claims 6 to 9, further comprising means for heating the superconducting magnet.
PCT/JP2006/303839 2005-03-08 2006-03-01 Superconducting magnet excitation method and superconducting magnet device WO2006095614A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007507060A JP4201286B2 (en) 2005-03-08 2006-03-01 Superconducting magnet excitation method and superconducting magnet apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-063567 2005-03-08
JP2005063567 2005-03-08

Publications (1)

Publication Number Publication Date
WO2006095614A1 true WO2006095614A1 (en) 2006-09-14

Family

ID=36953214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303839 WO2006095614A1 (en) 2005-03-08 2006-03-01 Superconducting magnet excitation method and superconducting magnet device

Country Status (2)

Country Link
JP (1) JP4201286B2 (en)
WO (1) WO2006095614A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124033A (en) * 2013-04-26 2014-10-29 上海联影医疗科技有限公司 Superconducting magnet circuit and magnet exercise method
JP2016143733A (en) * 2015-01-30 2016-08-08 国立大学法人九州大学 Method for operating superconducting coil
JP2017033977A (en) * 2015-07-29 2017-02-09 住友電気工業株式会社 Operation method of superconducting magnet device
JP2019169626A (en) * 2018-03-23 2019-10-03 アイシン精機株式会社 Magnetization method for superconducting bulk
JP2019204872A (en) * 2018-05-23 2019-11-28 株式会社東芝 Operation method of superconducting magnet device and superconducting magnet device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273921A (en) * 1995-04-03 1996-10-18 Nippon Steel Corp Method of magnetizing superconductor
JPH08279411A (en) * 1995-04-10 1996-10-22 Nippon Steel Corp Cylindrical superconducting magnet and magnetizing method thereof
JPH09260129A (en) * 1996-03-21 1997-10-03 Hitachi Medical Corp Superconductive magnetic device together with its magnetization control
JPH1074622A (en) * 1996-08-30 1998-03-17 Aisin Seiki Co Ltd Magnetizing method for superconductor and superconducting magnet device
JP2000133849A (en) * 1998-10-27 2000-05-12 Aisin Seiki Co Ltd Magnetizing method of superconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273921A (en) * 1995-04-03 1996-10-18 Nippon Steel Corp Method of magnetizing superconductor
JPH08279411A (en) * 1995-04-10 1996-10-22 Nippon Steel Corp Cylindrical superconducting magnet and magnetizing method thereof
JPH09260129A (en) * 1996-03-21 1997-10-03 Hitachi Medical Corp Superconductive magnetic device together with its magnetization control
JPH1074622A (en) * 1996-08-30 1998-03-17 Aisin Seiki Co Ltd Magnetizing method for superconductor and superconducting magnet device
JP2000133849A (en) * 1998-10-27 2000-05-12 Aisin Seiki Co Ltd Magnetizing method of superconductor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124033A (en) * 2013-04-26 2014-10-29 上海联影医疗科技有限公司 Superconducting magnet circuit and magnet exercise method
CN104124033B (en) * 2013-04-26 2017-04-19 深圳联影医疗科技有限公司 Superconducting magnet circuit and magnet exercise method
JP2016143733A (en) * 2015-01-30 2016-08-08 国立大学法人九州大学 Method for operating superconducting coil
JP2017033977A (en) * 2015-07-29 2017-02-09 住友電気工業株式会社 Operation method of superconducting magnet device
JP2019169626A (en) * 2018-03-23 2019-10-03 アイシン精機株式会社 Magnetization method for superconducting bulk
JP7131010B2 (en) 2018-03-23 2022-09-06 株式会社アイシン Superconducting bulk magnetization method
JP2019204872A (en) * 2018-05-23 2019-11-28 株式会社東芝 Operation method of superconducting magnet device and superconducting magnet device
JP7048413B2 (en) 2018-05-23 2022-04-05 株式会社東芝 How to operate the superconducting magnet device and the superconducting magnet device

Also Published As

Publication number Publication date
JP4201286B2 (en) 2008-12-24
JPWO2006095614A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
US11320502B2 (en) Magnetic resonance imaging system capable of rapid field ramping
CN107924744B (en) Apparatus and method for changing the magnetisation of a superconductor
Bai et al. A novel high temperature superconducting magnetic flux pump for MRI magnets
Terao et al. Newly designed 3 T MRI magnet wound with Bi-2223 tape conductors
Qiu et al. Experiment and numerical analysis on magnetic field stability of persistent current mode coil made of HTS-coated conductors
Yanagisawa et al. Reduction of screening current-induced magnetic field of REBCO coils by the use of multi-filamentary tapes
JP4896620B2 (en) Superconducting magnet
US6545474B2 (en) Controlling method of superconductor magnetic field application apparatus, and nuclear magnetic resonance apparatus and superconducting magnet apparatus using the method
WO2006095614A1 (en) Superconducting magnet excitation method and superconducting magnet device
JP6861263B2 (en) A method for magnetizing a superconducting bulk magnet by generating an auxiliary magnetic field in the superconducting bore
JP4806742B2 (en) Magnetic field generator and nuclear magnetic resonance apparatus
Bai et al. A newly developed pulse-type microampere magnetic flux pump
Yao et al. A Superconducting Joint Technique for ${\rm MgB} _ {2} $ Round Wires
US9715958B2 (en) Method for energizing a superconducting magnet arrangement
WO2011074092A1 (en) Superconducting magnet device, and method of imparting electric current into superconducting magnet
Hahn et al. Bulk and plate annulus stacks for compact NMR magnets: Trapped field characteristics and active shimming performance
Black et al. High temperature superconducting resonator for use in nuclear magnetic resonance microscopy
JP2018159637A (en) Magnetic field generating device, nmr analysis device, and mri device
Li et al. Design, development and experiment of a 1.5 T MgB2 superconducting test magnet
JP3540969B2 (en) Magnetization method of superconductor
JP2000262486A (en) Device and method for generating static magnetic field
Hwang et al. Feasibility study of a multipole electromagnet using a parallel iron-core structure
JP2005260279A (en) Polarization method of superconducting magnet device
JP3704549B2 (en) Method and apparatus for evaluating superconducting critical current characteristics of superconducting film
Yokoyama et al. Magnetizing performance evaluation of HTS bulk magnet using a 12 k refrigerator with high cooling capacity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007507060

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714958

Country of ref document: EP

Kind code of ref document: A1