JP4806742B2 - Magnetic field generator and nuclear magnetic resonance apparatus - Google Patents
Magnetic field generator and nuclear magnetic resonance apparatus Download PDFInfo
- Publication number
- JP4806742B2 JP4806742B2 JP2005322556A JP2005322556A JP4806742B2 JP 4806742 B2 JP4806742 B2 JP 4806742B2 JP 2005322556 A JP2005322556 A JP 2005322556A JP 2005322556 A JP2005322556 A JP 2005322556A JP 4806742 B2 JP4806742 B2 JP 4806742B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- superconducting bulk
- bulk body
- superconducting
- field generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Description
本発明は、磁場発生装置とそれを用いた核磁気共鳴装置とに関する。更に詳しくは、液体ヘリウムを用いることなく、従来の超電導磁石に匹敵する強い静磁場を均一な分布で発生させる磁場発生装置とそれを用いた核磁気共鳴装置とに関する。 The present invention relates to a magnetic field generator and a nuclear magnetic resonance apparatus using the same. More particularly, the present invention relates to a magnetic field generator that generates a strong static magnetic field with a uniform distribution comparable to that of a conventional superconducting magnet without using liquid helium, and a nuclear magnetic resonance apparatus using the same.
本発明の出願人は、先に超伝導バルク体を用いた磁場発生装置を備える核磁気共鳴装置を提案した(特許文献1参照)。この核磁気共鳴装置は、真空断熱容器内で超伝導遷移温度以下に冷却される中空円筒形又は中空円筒部を有するカップ状の超伝導バルク体をその軸方向に着磁し、これにより中空円筒部に円筒軸方向に静磁場を発生させる磁場発生装置を用いて、この磁場内におかれた被測定物体のNMR信号を検出コイルとスペクトロメータとで検出するようにしたものである。 The applicant of the present invention has previously proposed a nuclear magnetic resonance apparatus including a magnetic field generation apparatus using a superconducting bulk body (see Patent Document 1). This nuclear magnetic resonance apparatus magnetizes a cup-shaped superconducting bulk body having a hollow cylindrical shape or a hollow cylindrical portion cooled in a vacuum heat insulating container to a temperature not higher than the superconducting transition temperature in the axial direction. A magnetic field generator that generates a static magnetic field in the direction of the cylindrical axis is used to detect an NMR signal of an object to be measured in the magnetic field with a detection coil and a spectrometer.
このような磁場発生装置では、塊状の超伝導バルク体がピン止め効果により与えられた磁束を保持する性質を利用して磁場を発生させる。このピン止め効果は、主として超伝導相の中に分散する微細な絶縁相粒子の存在によっており、絶縁相粒子が微細であるほど、また、ある限度以下では絶縁相粒子が多いほどその効果が高い。また、ピン止め効果が強いほど臨界電流密度が高くなる。理想的には与えた磁場が均一であれば捕捉された磁場もある範囲では均一であり、着磁された超伝導バルク体内では、このような磁場分布を保つように電流の分布が自動的に形成される。しかし、実際には捕捉された磁束が徐々に動いて磁場が減少していくクリープという現象(磁束クリープという)が起こり、磁場分布は変化する。この磁束クリープは、超伝導バルク体の軸方向の両端部に近づくほど大きくなるため、一般に捕捉された磁場の分布は、円筒形状の軸方向において中心付近で最も強く、両端に近づくにつれて弱くなる。 In such a magnetic field generator, a magnetic field is generated by utilizing the property that a massive superconducting bulk body retains a magnetic flux provided by a pinning effect. This pinning effect is mainly due to the presence of fine insulating phase particles dispersed in the superconducting phase. The finer the insulating phase particles, the higher the insulating phase particles below a certain limit, the higher the effect. . Also, the stronger the pinning effect, the higher the critical current density. Ideally, if the applied magnetic field is uniform, the captured magnetic field is also uniform within a certain range, and the current distribution is automatically maintained in the magnetized superconducting bulk to maintain such a magnetic field distribution. It is formed. However, in reality, a phenomenon called creep (called magnetic flux creep) occurs in which the trapped magnetic flux gradually moves and the magnetic field decreases, and the magnetic field distribution changes. Since the magnetic flux creep increases as it approaches the both ends of the superconducting bulk body in the axial direction, the distribution of the trapped magnetic field is generally strongest near the center in the axial direction of the cylindrical shape and weakens as it approaches both ends.
このため、従来のNMR信号の観測に必要な磁場の均一度が得られないかその範囲が狭くなる。そしてこのような磁場発生装置を備えた核磁気共鳴装置では、磁場内に置かれた被測定物のNMR信号のスペクトル幅が広くなり、図11に示すように、磁束クリープ現象が生じて、時間の経過に伴って感度と分解能とが低下するという問題があった。 For this reason, the uniformity of the magnetic field necessary for the observation of the conventional NMR signal cannot be obtained, or the range becomes narrow. In a nuclear magnetic resonance apparatus equipped with such a magnetic field generator, the spectrum width of the NMR signal of the object to be measured placed in the magnetic field is widened, and as shown in FIG. There was a problem that the sensitivity and resolution decreased with the passage of time.
図11は、2個のGd−Ba−Cu−Oを主成分とするGd系の超伝導バルク体G0、G0を積層して外径60mm×内径10mm×厚さ40mmの中空円筒の超伝導バルク体120(図10参照)を形成し、この超伝導バルク体120に所定の手順で着磁した時の静磁場の分布を示す概念図である。図11の横軸は中空円筒部120aの軸方向における位置であり、縦軸はその位置における磁場強度を示す。実線カで示す着磁直後の磁場分布は、軸方向の中央部Cで高く両端部に向かうにつれて低下する分布となっている。そして、時間の経過とともに磁束クリープによって磁場分布は実線カから破線キ、さらに点線クのように変化する。図11から、超伝導バルク体120では中央部Cにおける磁場強度の低下は小さいが両端部での磁場強度の低下が大きいことが分かる。このため磁場強度の均一な範囲が狭くなり、このような磁場中でプロトンのNMRスペクトルを測定したところ、そのピーク幅は約20ppmであり、満足できる感度と分解能とを示すものではなかった。
本発明は以上のような問題を解決するためになされたものであり、超伝導バルク体の中央部付近における均一磁場の範囲が広い磁場発生装置を提供し、それを用いてNMR信号のピーク幅が狭く高感度で高分解能を有する核磁気共鳴装置を提供することを課題とする。 The present invention has been made to solve the above problems, and provides a magnetic field generator having a wide uniform magnetic field range near the central portion of a superconducting bulk body, and using it, the peak width of an NMR signal is provided. It is an object of the present invention to provide a nuclear magnetic resonance apparatus having a narrow, high sensitivity and high resolution.
高温超伝導材料においては、臨界温度(Tc)の高い材料ほどその臨界電流密度(Jc)は高い。より具体的には、超伝導バルク体が主成分がRE−Ba−Cu−Oで表せる酸化物超伝導バルク体である場合には、REのイオン半径(混合系の時は平均イオン半径)が大きいほど臨界温度(Tc)が高く、超伝導相REBa2Cu3O7-δ(0<δ<1)のδが小さいほど臨界温度(Tc)が高い。また、ピン止め点となる絶縁相の量や粒径によっても臨界電流密度(Jc)は変化し、絶縁相の粒径が小さいほど、あるいは、所定の限度内で絶縁相の量が多いほど臨界電流密度(Jc)の高いことが知られている。 In a high temperature superconducting material, a material having a higher critical temperature (Tc) has a higher critical current density (Jc). More specifically, when the superconducting bulk body is an oxide superconducting bulk body whose main component can be represented by RE-Ba-Cu-O, the ionic radius of RE (average ionic radius in the case of a mixed system) is The larger the value, the higher the critical temperature (Tc), and the smaller the value of δ in the superconducting phase REBa 2 Cu 3 O 7- δ (0 <δ <1), the higher the critical temperature (Tc). The critical current density (Jc) also changes depending on the amount and particle size of the insulating phase that becomes the pinning point. The smaller the particle size of the insulating phase, or the larger the amount of insulating phase within a predetermined limit, the more critical It is known that the current density (Jc) is high.
また、高温超伝導材料は温度が低いほどその臨界電流密度(Jc)は高いことも知られている。 It is also known that the high temperature superconducting material has a higher critical current density (Jc) as the temperature is lower.
本発明者は、これらの要素を超伝導バルク体の両端部と中央部とで変化させることにより目的を達成できることに着目した。すなわち、特性の異なる複数の超伝導バルク体を組み合わせることや、部分的に異なる特性を持つ超伝導バルク体を用いることであり、あるいは、着磁の際に超伝導バルク体に部分的に温度差を付与することである。 The inventor has paid attention to the fact that the object can be achieved by changing these elements between both ends and the center of the superconducting bulk material. That is, a combination of a plurality of superconducting bulk bodies having different characteristics, a superconducting bulk body having partially different characteristics, or a partial temperature difference in the superconducting bulk body during magnetization. It is to give.
つまり、上記のような円筒形状の超伝導バルク体を用いた磁場発生装置において、磁束クリープを低減して均一な磁場範囲を増大させるには、中央部に比較して両端部が高い磁場分布を捕捉するように着磁させれば、磁束クリープが生じても広い均一磁場を保持できるわけである。 That is, in the magnetic field generator using the cylindrical superconducting bulk as described above, in order to reduce the magnetic flux creep and increase the uniform magnetic field range, the magnetic field distribution at both ends is higher than that at the center. If magnetized so as to be captured, a wide uniform magnetic field can be maintained even if magnetic flux creep occurs.
本発明の磁場発生装置は、真空容器内で超伝導遷移温度以下に冷却される中空円筒状の超伝導バルク体に磁場を捕捉させて超伝導バルク体の中空部に磁場を発生させる磁場発生装置において、前記超伝導バルク体は、この超伝導バルク体の軸方向両端部が軸方向中央部よりも臨界電流密度が高い状態で磁場を捕捉させ、着磁後の磁場強度が軸方向中央部よりも軸方向両端部の方が高い磁場分布を示すことを特徴とする。 A magnetic field generator according to the present invention generates a magnetic field in a hollow portion of a superconducting bulk body by capturing the magnetic field in a hollow cylindrical superconducting bulk body cooled to a superconducting transition temperature or lower in a vacuum vessel. in the superconducting bulk body, the opposite axial ends of the superconducting bulk body is trapped magnetic field in a state not critical current density is higher than the axial center portion, the magnetic field strength after magnetization axial central portion It is characterized in that the axial both ends show a higher magnetic field distribution .
本発明の磁場発生装置は、超伝導遷移温度以下で着磁されて中央部に磁場を捕捉する中空円筒状の超伝導バルク体と、この超伝導バルク体を冷却する冷却装置と、超伝導バルク体を収容する真空容器とを備えることが望ましい。 A magnetic field generator of the present invention includes a hollow cylindrical superconducting bulk body that is magnetized at a superconducting transition temperature or less and captures a magnetic field in the center, a cooling device that cools the superconducting bulk body, and a superconducting bulk. It is desirable to provide a vacuum container for housing the body.
本発明の磁場発生装置の好ましい態様として、超伝導バルク体は、その超伝導バルク体の両端部が中央部よりも高い臨界温度を有する材料で構成されている。 As a preferred embodiment of the magnetic field generator of the present invention, the superconducting bulk body is made of a material having a critical temperature higher at both ends of the superconducting bulk body than at the central portion.
また、本発明の磁場発生装置の好ましい他の態様は、超伝導バルク体を着磁する際に両端部を中央部よりも低温とする温度調節手段を有する。このような温度調節手段は、中央部を加熱するヒータ、あるいは、超伝導バルク体を挟持してその両端部を冷却する冷却部材であることが望ましい。 Moreover, the other preferable aspect of the magnetic field generator of this invention has a temperature control means which makes both ends temperature lower than a center part, when magnetizing a superconducting bulk body. Such temperature adjusting means is desirably a heater for heating the central portion or a cooling member for sandwiching the superconducting bulk body and cooling both ends thereof.
ここで、超伝導バルク体は、その主成分がRE−Ba−Cu−Oで表せる酸化物超伝導体であり、銀あるいは白金あるいはセリウムのうち1種あるいは複数種を0ないし50質量%含み、REはイットリウム(元素記号Y)、サマリウム(Sm)、ランタン(La)、ネオジウム(Nd)、ユーロピウム(Eu)、ガドリニウム(Gd)、エルビウム(Er)、イッテルビウム(Yb)、ジスプロシウム(Dy)、ホルミウム(Ho)のうち少なくとも1種または2種以上を合わせてなるものであって、絶対温度90度Kないし96度Kの超伝導遷移温度をもつ超伝導相とその内部にあって同素体の絶縁相を50μm以下、望ましくは10μm以下の粒度で分散した組織を含むことが好ましい。 Here, the superconducting bulk material is an oxide superconductor whose main component can be represented by RE-Ba-Cu-O, and contains one or more of silver, platinum, or cerium in an amount of 0 to 50 mass%, RE is yttrium (element symbol Y), samarium (Sm), lanthanum (La), neodymium (Nd), europium (Eu), gadolinium (Gd), erbium (Er), ytterbium (Yb), dysprosium (Dy), holmium (Ho) is a combination of at least one or two or more of them, and has a superconducting phase having a superconducting transition temperature of 90 ° K to 96 ° K in absolute temperature and an insulating allotrope in the super conducting phase. It is preferable to include a structure dispersed with a particle size of 50 μm or less, desirably 10 μm or less.
本発明の磁場発生装置において、超伝導バルク体は、この超伝導バルク体の両端部が中央部よりも前記REの平均イオン半径が大きい元素を含む材料で構成することができる。あるいは、超伝導バルク体は、超伝導バルク体の両端部が中央部よりも平均粒径が小さい絶縁相を含む材料で構成してもよく、さらに、超伝導バルク体は、その超伝導バルク体の両端部が中央部よりも絶縁相の体積分率が大きい材料で構成することもできる。このような超伝導バルク体は、全体の超伝導バルク体の厚さを100%としたときに、中央部の厚さが30〜70%であることが望ましい。 In the magnetic field generator of the present invention, the superconducting bulk body can be made of a material containing an element having an average ionic radius of the RE larger than that of the central portion at both ends of the superconducting bulk body. Alternatively, the superconducting bulk body may be made of a material including an insulating phase in which both end portions of the superconducting bulk body have an average particle size smaller than that of the central portion. It is also possible to configure the both ends of the material with a material having a larger volume fraction of the insulating phase than the central portion. In such a superconducting bulk body, the thickness of the central portion is preferably 30 to 70% when the thickness of the entire superconducting bulk body is 100%.
本発明の核磁気共鳴装置は、超伝導遷移温度以下で着磁されて中空部に磁場を捕捉する中空円筒状の超伝導バルク体と、超伝導バルク体を冷却する冷却装置と、この超伝導バルク体を収容する真空容器とを備えた磁場発生装置と、前記超伝導バルク体の中空部に挿入される被測定物のNMR信号を検出する検出コイルとを備え、前記超伝導バルク体は、この超伝導バルク体の軸方向両端部が軸方向中央部よりも臨界電流密度が高い状態で磁場を捕捉させ、着磁後の磁場強度が軸方向中央部よりも軸方向両端部の方が高い磁場分布を示すことを特徴とする。なお、本発明の核磁気共鳴装置における磁場発生装置は、上記の本発明の磁場発生装置であることが望ましい。 A nuclear magnetic resonance apparatus of the present invention includes a hollow cylindrical superconducting bulk body that is magnetized at a superconducting transition temperature or less and traps a magnetic field in a hollow portion, a cooling apparatus that cools the superconducting bulk body, and the superconducting apparatus. A magnetic field generator including a vacuum container that accommodates a bulk body, and a detection coil that detects an NMR signal of an object to be measured inserted into a hollow portion of the superconducting bulk body, the superconducting bulk body comprising: the axial ends of the superconducting bulk body is trapped magnetic field in a state not high critical current density than the central portion in the axial direction, is more field strength after magnetization of both axial ends than the central portion in the axial direction It is characterized by showing a high magnetic field distribution . The magnetic field generator in the nuclear magnetic resonance apparatus of the present invention is preferably the magnetic field generator of the present invention described above.
本発明の磁場発生装置によれば、超伝導バルク体に両端部の臨界電流密度が高い状態で磁場を捕捉させると、超伝導バルク体の両端部が中央部に比べて強度の高い磁場分布となる。このため磁束クリープが生じても、両端部では中央部よりも高いピークをもつ磁場分布を維持することができるので、中央部付近における磁場の均一度が向上する。 According to the magnetic field generator of the present invention, when a superconducting bulk body captures a magnetic field in a state where the critical current density at both ends is high, both ends of the superconducting bulk body have a higher magnetic field distribution than the central portion. Become. For this reason, even if magnetic flux creep occurs, the magnetic field distribution having a higher peak than the central portion can be maintained at both ends, so that the uniformity of the magnetic field in the vicinity of the central portion is improved.
従って、本発明の核磁気共鳴装置は、このように均一な範囲が広い磁場を用いることができるので、従来よりも感度と分解能とを向上することができる。 Therefore, the nuclear magnetic resonance apparatus of the present invention can use a magnetic field having a wide uniform range as described above, and therefore can improve sensitivity and resolution as compared with the conventional technique.
また、両端部よりも中央部が低い形状の磁場分布では、中央部にコイルを置くことにより磁場分布の均一度をより高めることが容易であるから、高分解能核磁気共鳴装置として使用する場合に必要な補正コイルの製作が容易になり、より高分解能を有する核磁気共鳴装置を提供することができる。 Also, in the case of magnetic field distribution with a shape that is lower in the center than at both ends, it is easy to increase the uniformity of the magnetic field distribution by placing a coil in the center, so when using as a high-resolution nuclear magnetic resonance apparatus A necessary correction coil can be easily manufactured, and a nuclear magnetic resonance apparatus having higher resolution can be provided.
以下、本発明の好ましい実施形態を図面を参照して説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
(1)磁場発生装置の第1の実施の形態
図1は、本発明の核磁気共鳴装置1の全体構成を示す図であり、点線の範囲が本発明の好適な態様の磁場発生装置10である。
(1) First Embodiment of Magnetic Field Generating Device FIG. 1 is a diagram showing the overall configuration of the nuclear
磁場発生装置10において、超伝導バルク体20は、真空容器22内に収容され、銅製のロッドを介してパルス管冷凍機25の冷却部23に接続されている。冷却装置としてパルス管冷凍機25を使用することで、超伝導バルク体20の振動を小さくすることができ、それによるNMR信号への影響を抑制することができる。
In the
超伝導バルク体20を収容した真空容器22は、超伝導バルク体20に磁場を印可する超伝導マグネット28の中空部に、超伝導バルク体20の軸心が磁場中心に合致するように配置されている。
The
真空容器22は真空ポンプ24により排気することができ、また、圧縮機26を運転してパルス管冷凍機25により超伝導バルク体20をその臨界温度以下に冷却することができる。
The
このような構成を有する磁場発生装置10では、超伝導バルク体20に超伝導マグネット28の発生磁場を印可するとともに、超伝導バルク体20を臨界温度以下の所定の温度に冷却して保持し、その後徐々に超伝導マグネット28の発生磁場を減少させ、最終的に0とすることで超伝導バルク体20に着磁することができる。そして、パルス管冷凍機25により超伝導バルク体20の温度をさらに使用温度にまで低下させ、超伝導バルク体20の中空部に軸方向に均一で強力な静磁場を発生させることができる。つまり、超伝導バルク体20はピン止め効果により磁場を捕捉し、中空円筒部20aの空間には最初に超伝導マグネット28が発生していたのとほぼ同じ大きさの磁場が維持されるわけである。
In the magnetic
上記のような磁気発生装置において、第1の実施の形態は、後述の具体例1〜5で詳述するように、超伝導バルク体20を特性の異なる複数の超伝導バルク体(S、G、Dなど)で構成したものであり、超伝導バルク体20の両端部に中央部の超伝導バルク体よりも高い臨界温度Tcを有する超伝導バルク体を配置して積層したものである。
In the magnetic generator as described above, in the first embodiment, as will be described in detail in specific examples 1 to 5 described later, the
(具体例1)
具体例1は、図2の断面模式図に示す超伝導バルク体201であり、超伝導バルク体Sで超伝導バルク体Gを挟持するように構成されている。この超伝導バルク体201は2個の超伝導バルク体Sと1個の超伝導バルク体Gとからなり、超伝導バルク体Sは、Sm、Ba、Cu、Oを主成分とするSm系の超伝導バルク体で、外径60mm×内径10mm×厚さ10mmの中空円筒(穴あき円盤形状)である。また、超伝導バルク体Gは、Gd、Ba、Cu、Oを主成分とするGd系の超伝導バルク体で、外径60mm×内径10mm×厚さ20mmの中空円筒(穴あき円盤形状)である。Sm系はGd系に比べてそのイオン半径が大きいので臨界温度(Tc)が高く、同じ温度でも臨界電流密度(Jc)が高い。これらを図2のように軸方向に超伝導バルク体S−超伝導バルク体G−超伝導バルク体Sの順に積層して、外径60mm×内径10mm×厚さ40mmの中空円筒を形成した。
(Specific example 1)
Specific example 1 is superconducting
この超伝導バルク体201を図1の真空容器22内に設置し、真空容器22を排気して、3Tの超伝導マグネット28の発生磁場中でパルス管冷凍機25により超伝導バルク体201を50Kに冷却した。その後、超伝導マグネット28の発生磁場を徐々に減少させて最終的に0とし、更に超伝導バルク体201を冷凍機の最低到達温度である40Kまで低下させた。
The
以上のようにして着磁された超伝導バルク体201の中空部20aにおける軸L方向の磁場の分布をガウスメータで測定した。結果を図3に示す。図3では、横軸は軸L方向の測定位置であり、縦軸はその位置における磁場強度である。また、実線アは着磁直後の磁場分布であり、破線イは磁束クリープ途中の磁場分布であり、点線ウはほぼ磁束クリープが終息したときの磁場分布を示す。
The distribution of the magnetic field in the direction of the axis L in the
超伝導バルク体201では、図3のように着磁直後には両端部(超伝導バルク体S)にピークPをもつ磁場分布アが形成され、磁束クリープによって両端部(S)の磁場が低下しても、中央部分(超伝導バルク体G)の磁場の強さは、多少は低下するものの超伝導バルク体Gの厚さ方向で均一に保持されることが分かる。
In the
以上のような磁場強度分布を示す超伝導バルク体201の臨界電流密度(Jc)の軸方向の分布を図4に模式的に示す。各超伝導バルク体S、Gの内部組織は、軸方向では略均一であるので、臨界電流密度(Jc)は各超伝導バルク体S、Gの軸方向では略一定であり、両側の超伝導バルク体Sよりも中央部の超伝導バルク体Gの方が低い段差のある凹型の分布となる。また、超伝導バルク体の製造方法によっては、各超伝導バルク体の内部組織が軸方向に均一ではない場合もあり得るが、この場合でも臨界電流密度の軸方向の分布を凹型とすることにより、本発明の効果を得ることができる。
FIG. 4 schematically shows the axial distribution of the critical current density (Jc) of the
次に、この均一磁場(図3Gの範囲)中にエタノールを入れた試験管とプローブとを挿入してプロトンのNMR信号を測定した。結果を図5に示す。図5から3種類の結合相手の異なる水素の化学シフトの差に由来する3個の独立したピークP1,P2,P3が判別できる。そして、各ピークの半値幅はおよそ3ppmであり、極めて高い分解能を示していることが分かった。 Next, a test tube containing ethanol and a probe were inserted into the uniform magnetic field (range of FIG. 3G), and the NMR signal of proton was measured. The results are shown in FIG. From FIG. 5, three independent peaks P1, P2 and P3 derived from differences in chemical shifts of hydrogen of three different binding partners can be discriminated. And the half width of each peak was about 3 ppm, and it turned out that very high resolution is shown.
(具体例2)
具体例2の超伝導バルク体202(図示せず)は、具体例1と同様に3個の超伝導バルク体からなり、両端部は、外径60mm×内径10mm×厚さ10mmの(Nd,Eu,Gd)−Ba−Cu−O(Nd,Eu,Gdの原子比1:1:1)を主成分とするNEG系の超伝導バルク体Nからなり、中央部は、外径60mm×内径10mm×厚さ25mmのDy−Ba−Cu−Oを主成分とするDy系の超伝導バルク体Dからなる。NEG系の超伝導バルク体NはDy系の超伝導バルク体Dに比べて臨界温度(Tc)が高く、かつ微細な絶縁相が析出するため臨界電流密度(Jc)が高い。従って、超伝導バルク体202は、具体例1と同様の手順で着磁することで、図3と同様の磁場分布と、図4と同様の臨界電流密度分布とを示す。
(Specific example 2)
Superconducting bulk body 202 (not shown) of specific example 2 is composed of three superconducting bulk bodies as in specific example 1, and both end portions have an outer diameter of 60 mm × inner diameter of 10 mm × thickness of 10 mm (Nd, Eu, Gd) -Ba-Cu-O (Nd, Eu, Gd atomic ratio 1: 1: 1) as a main component, NEG-based superconducting bulk body N, the central part is an outer diameter 60 mm × inner diameter It consists of a Dy-based superconducting bulk body D whose main component is 10 mm × 25 mm thick Dy—Ba—Cu—O. The NEG-based superconducting bulk body N has a higher critical temperature (Tc) than the Dy-based superconducting bulk body D, and a high critical current density (Jc) because a fine insulating phase is precipitated. Accordingly, the superconducting bulk body 202 is magnetized in the same procedure as in the first specific example, thereby exhibiting a magnetic field distribution similar to FIG. 3 and a critical current density distribution similar to FIG.
(具体例3)
具体例3の超伝導バルク体203(図示せず)は、3個の超伝導バルク体が全てDy−Ba−Cu−Oを主成分とするDy系の超伝導バルク体からなり、絶縁相であるDy2BaCuO5粒子を含むものである。両端部は、平均粒径が約1μmの絶縁相粒子を含む外径60mm×内径10mm×厚さ15mmの超伝導バルク体D1であり、中央部は、平均粒径が約5μmの絶縁相粒子を含む外径60mm×内径10mm×厚さ20mmの超伝導バルク体D2である。すでに述べたように絶縁相の粒子が小さい両端部の超伝導バルク体D1の方が臨界電流密度(Jc)が高い。従って、超伝導バルク体203は、具体例1と同様の手順で着磁することで、図3と同様の磁場分布と、図4と同様の臨界電流密度分布とを示す。
(Specific example 3)
The superconducting bulk body 203 (not shown) of Example 3 is composed of a Dy-based superconducting bulk body in which all three superconducting bulk bodies are mainly composed of Dy-Ba-Cu-O. It contains certain Dy 2 BaCuO 5 particles. Both end portions are superconducting bulk bodies D1 having an outer diameter of 60 mm, an inner diameter of 10 mm, and a thickness of 15 mm including insulating phase particles having an average particle diameter of about 1 μm, and the central portion includes insulating phase particles having an average particle diameter of about 5 μm. A superconducting bulk body D2 having an outer diameter of 60 mm, an inner diameter of 10 mm, and a thickness of 20 mm. As already described, the critical current density (Jc) is higher in the superconducting bulk body D1 at both ends where the particles of the insulating phase are small. Accordingly, the superconducting bulk body 203 is magnetized in the same procedure as in the first specific example, thereby showing a magnetic field distribution similar to FIG. 3 and a critical current density distribution similar to FIG.
(具体例4)
具体例4の超伝導バルク体204(図示せず)は、3個の超伝導バルク体が全てSm−Ba−Cu−Oを主成分とするSm系の超伝導バルク体からなり、絶縁相であるSm2BaCuO5粒子を含むものである。両端部は、この絶縁相粒子を体積分率で16.5%含む外径50mm×内径10mm×厚さ15mmの超伝導バルク体S1であり、中央部はこの絶縁相粒子を体積分率で10.5%含む外径50mm×内径10mm×厚さ25mmの超伝導バルク体S2である。すでに述べたように絶縁相の粒子を多く含む両端部の超伝導バルク体S1の方が臨界電流密度(Jc)が高い。従って、超伝導バルク体204は、具体例1と同様の手順で着磁することで、図3と同様の磁場分布と、図4と同様の臨界電流密度分布とを示す。
(Specific example 4)
The superconducting bulk material 204 (not shown) of Example 4 is composed of an Sm-based superconducting bulk material in which all three superconducting bulk materials are mainly composed of Sm—Ba—Cu—O, and is an insulating phase. It contains some Sm 2 BaCuO 5 particles. Both end portions are superconducting bulk bodies S1 having an outer diameter of 50 mm, an inner diameter of 10 mm, and a thickness of 15 mm containing 16.5% of the volume fraction of the insulating phase particles, and the central portion has the volume fraction of the insulating phase particles of 10%. It is a superconducting bulk body S2 having an outer diameter of 50%, an inner diameter of 10 mm, and a thickness of 25 mm. As already described, the critical current density (Jc) is higher in the superconducting bulk S1 at both ends containing a large number of particles of the insulating phase. Therefore, the superconducting bulk material 204 is magnetized in the same procedure as in the first specific example, thereby showing a magnetic field distribution similar to that in FIG. 3 and a critical current density distribution similar to that in FIG.
(具体例5)
具体例5の超伝導バルク体205は、上記の第1の実施の形態を変形したものであり、図6に示すように、同一特性を持つ2個の超伝導バルク体S3、S3を当接して構成される。すなわち、超伝導バルク体S3は厚さt方向において、下面S3bから上面S3aに向かうにつれて(矢印Y)臨界電流密度(Jc)が次第に高くなるように形成されている。そしてその下面S3bを互いに当接する向きに積層して超伝導バルク体205を構成する。
(Specific example 5)
The
例えば、超伝導バルク体S3は、外径60mm×内径16mm×厚さ20mmのSm−Ba−Cu−Oを主成分とするSm系の超伝導バルク体からなり、絶縁相であるSm2BaCuO5粒子を含むものである。そして、下面S3b側から上面S3a側に向かって絶縁相粒子の体積分率が増大するように超伝導バルク体S3を形成し、各々の下面S3b同士を当接するように配置する。超伝導バルク体205は、具体例1と同様の手順で着磁することで、図7に模式的に示すように、軸方向において中央部よりも両端部で高くなるように連続して変化する臨界電流密度(Jc)分布を呈し、図3と同様の磁場分布を示すことができる。
For example, the superconducting bulk S3 is composed of an Sm-based superconducting bulk mainly composed of Sm—Ba—Cu—O having an outer diameter of 60 mm, an inner diameter of 16 mm, and a thickness of 20 mm, and is an insulating phase of Sm 2 BaCuO 5. It contains particles. Then, the superconducting bulk body S3 is formed so that the volume fraction of the insulating phase particles increases from the lower surface S3b side toward the upper surface S3a side, and the lower surface S3b is disposed so as to contact each other. The
以上のような具体例1〜5の超伝導バルク体では、臨界電流密度(Jc)が低い中央部の厚さが超伝導バルク体の全体の厚さの30〜70%であることが望ましい。中央部の厚さが30%未満では、磁場のピーク位置が中央部に寄り過ぎるために良好な広い均一磁場を得ることができない。また、中央部の厚さが70%を越えると、中央部にピークをもつ凸状に高い磁場分布が形成されることがあるので望ましくない。中央部の厚さは、より好ましくは40〜60%である。 In the superconducting bulk bodies of Specific Examples 1 to 5 as described above, it is desirable that the thickness of the central portion where the critical current density (Jc) is low is 30 to 70% of the total thickness of the superconducting bulk body. If the thickness of the central portion is less than 30%, the peak position of the magnetic field is too close to the central portion, so that a good wide uniform magnetic field cannot be obtained. On the other hand, if the thickness of the central portion exceeds 70%, a high magnetic field distribution having a peak in the central portion may be formed, which is not desirable. The thickness of the central part is more preferably 40 to 60%.
(2)磁場発生装置の第2の実施の形態
同じ組成をもつ超伝導バルク体では着磁温度が低いほど臨界電流密度(Jc)が大きい。すなわち、第2の実施形態の磁場発生装置は、超伝導バルク体を着磁する際に両端部を中央部よりも低温とする温度調節手段を有する。
(2) Second Embodiment of Magnetic Field Generator In a superconducting bulk body having the same composition, the critical current density (Jc) increases as the magnetization temperature decreases. That is, the magnetic field generator of the second embodiment has temperature adjusting means for lowering both ends of the superconducting bulk body at a temperature lower than that of the central portion.
図8は、温度調節手段40aを装着した超伝導バルク体206を示す断面模式図であり、図8において温度調節手段40aは、超伝導バルク体206の中央部を加熱するヒータHである。
FIG. 8 is a schematic cross-sectional view showing the
一例を挙げると、超伝導バルク体206は全てGd−Ba−Cu−Oを主成分とするGd系の超伝導バルク体からなり、外径60mm×内径10mm×厚さ15mmの3個のバルク超伝導体G1、G2、G3を積層したものである。そして、中央部の超伝導バルク体G2の外周に0.2mmφのニクロム線を所定回数巻回したヒータHを備えている。
For example, the
この磁場発生装置では、前記の具体例1と同様の手順で着磁を行う際に、超伝導マグネット28の発生磁場中で超伝導バルク体206を50Kに冷却したとき、ヒータHにより超伝導バルク体G2の温度を両端部(G1、G3)に比べて5K高くなるように維持した。その後、超伝導マグネット28を消磁してヒータ電源を切り、全体を40Kに冷却して着磁を完了した。これにより図7のように中央部G2の臨界電流密度(Jc)を両端部G1、G3よりも低くすることができるので、超伝導バルク体206は図3と同様の磁場分布を示すことができる。
In this magnetic field generator, when the
また、超伝導バルク体の中央部を加熱する代わりに両端部を冷却する温度調節手段としてもよい。図9に、両端部を冷却する温度調節手段40bの一例を示す。 Moreover, it is good also as a temperature control means to cool both ends instead of heating the center part of a superconducting bulk body. FIG. 9 shows an example of temperature adjusting means 40b for cooling both ends.
図9は、磁場発生装置10’の主要部断面概要図である。図9で、温度調節手段40bは銅製の冷却ケース44であり、超伝導バルク体207の上面20fに当接して銅製の冷却ステージ42とともに超伝導バルク体207を挟持して収容している。冷却ステージ42は、銅製のロッド49を介してパルス管冷凍機の冷却部23に接続されている。温度調整手段40bの温度は温度センサ48で監視し、ヒータ46に与える電流を調整することで制御することができる。
FIG. 9 is a schematic cross-sectional view of the main part of the
この磁場発生装置では、前記の具体例1と同様の手順で着磁を行う際に、超伝導マグネット28の発生磁場中で超伝導バルク体207を50Kに冷却したとき、温度調整手段40bによって超伝導バルク体207の両端部が熱伝導によって冷却されるため、中央部は両端部よりも略5K高温であった。その後、超伝導マグネット28を消磁して全体を40Kに冷却して着磁を完了した。これにより両端部の臨界電流密度(Jc)を中央部よりも高くすることができるので、超伝導バルク体207は図3と同様の磁場分布を示すことができる。
In this magnetic field generator, when the
なお、図9において、50は被測定物を挿入する試料空間であり、この空間における温度は室温であり、気圧は大気圧である。
In FIG. 9,
(3)核磁気共鳴装置の実施の形態
本発明の磁場発生装置10を備えた核磁気共鳴装置の一例を図1に、また、その検出部を図9に併記して示す。図1において、13は高周波発生装置、14はパルスプログラマ(送信器)、15は高周波増幅器、16はプリアンプ(信号増幅器)、17は位相検波器(受信器)、18はアナログデジタル変換器、19はコンピュータである。
(3) Embodiment of Nuclear Magnetic Resonance Apparatus FIG. 1 shows an example of a nuclear magnetic resonance apparatus provided with the
また、図9において、被測定物11は、その周りに巻かれた検出コイル12の内部にある。高周波発信器13とそれをパルスに成形するGATE部と、その高周波パルスを増幅するパワーアンプ15により、パルスが送信コイルを通して被測定物11に与えられ、そのパルスの直後より発生する自由誘導減衰を受信コイルにより受信し、増幅器、位相検波器を通し、AD変換された信号がコンピュータ19に保存される。このデータをフーリエ変換することにより、NMRの分析結果がコンピュータ19上に表示され、あるいはMRIとしてマッピングされた情報とすることができる。
In FIG. 9, the
なお、本発明は上述した実施の形態に限定されず、本発明の主旨を逸脱しない範囲で自由に変更できる。例えば、具体例5では、下面S3b側から上面S3a側に向かって絶縁相粒子の体積分率が増大するように超伝導バルク体S3を形成して各々の下面S3b同士を当接するように配置したが、絶縁粒子の大きさが下面S3b側から上面S3a側に向かって小さくなるように超伝導バルク体S3’を形成してもよい。また、下面S3b側から上面S3a側に向かってイオン半径の大きいRE元素の濃度が増大するように形成してもよい。 The present invention is not limited to the above-described embodiment, and can be freely changed without departing from the gist of the present invention. For example, in Example 5, the superconducting bulk body S3 is formed so that the volume fraction of the insulating phase particles increases from the lower surface S3b side toward the upper surface S3a side, and the lower surface S3b is disposed so as to contact each other. However, the superconducting bulk body S3 ′ may be formed so that the size of the insulating particles decreases from the lower surface S3b side toward the upper surface S3a side. Alternatively, it may be formed so that the concentration of the RE element having a large ion radius increases from the lower surface S3b side toward the upper surface S3a side.
また、前記の実施の形態では超伝導バルク体の冷却手段を冷凍機としたが、液体ヘリウムなどの冷媒を使用してもよい。このような極低温の冷媒を用いる磁場発生装置では、万一の停電など電源供給が停止した場合にも静磁場を維持することできる。 In the above embodiment, the cooling means for the superconducting bulk body is a refrigerator, but a refrigerant such as liquid helium may be used. In such a magnetic field generator using a cryogenic refrigerant, a static magnetic field can be maintained even when the power supply is stopped, such as in the event of a power failure.
本発明の磁場発生装置は、強力な静磁場を均一な分布で発生させることができるので核磁気共鳴装置の磁場発生装置として好適である。また、本発明の核磁気共鳴装置は、高感度で高分解能を備えるので、医療分野におけるMRI装置や、工業用素材や農作物などの成分及び構造分析などに好適に用いることができる。 The magnetic field generator of the present invention is suitable as a magnetic field generator for a nuclear magnetic resonance apparatus because it can generate a strong static magnetic field with a uniform distribution. In addition, since the nuclear magnetic resonance apparatus of the present invention has high sensitivity and high resolution, it can be suitably used for MRI apparatus in the medical field, components of industrial materials, agricultural products, and structural analysis.
1:核磁気共鳴装置 10:磁場発生装置 11:被測定物 12:検出コイル20:超伝導バルク体 20a:中空部 22:真空容器 23:冷却部 25:パルス管冷凍機 40:温度調節手段 42:冷却ステージ 44:冷却ケース 46:ヒータ 48:温度センサ 50:試料空間
DESCRIPTION OF SYMBOLS 1: Nuclear magnetic resonance apparatus 10: Magnetic field generator 11: To-be-measured object 12: Detection coil 20: Superconducting
Claims (13)
前記超伝導バルク体は、該超伝導バルク体の軸方向両端部が軸方向中央部よりも臨界電流密度が高い状態で磁場を捕捉させ、着磁後の磁場強度が該軸方向中央部よりも該軸方向両端部の方が高い磁場分布を示すことを特徴とする磁場発生装置。 In a magnetic field generator for capturing a magnetic field in a hollow cylindrical superconducting bulk body cooled to a superconducting transition temperature or lower in a vacuum vessel and generating a magnetic field in a hollow portion of the superconducting bulk body,
The superconducting bulk body, both axial ends of the superconducting bulk body is trapped magnetic field in a state not critical current density is higher than the axial center portion, the magnetic field strength after magnetization is from said axial center portion The magnetic field generator is characterized in that both end portions in the axial direction show a higher magnetic field distribution .
前記超伝導バルク体は、該超伝導バルク体の軸方向両端部が軸方向中央部よりも臨界電流密度が高い状態で磁場を捕捉させ、着磁後の磁場強度が該軸方向中央部よりも該軸方向両端部の方が高い磁場分布を示すことを特徴とする核磁気共鳴装置。 A hollow cylindrical superconducting bulk body that is magnetized below the superconducting transition temperature and captures a magnetic field in the hollow portion, a cooling device that cools the superconducting bulk body, and a vacuum vessel that houses the superconducting bulk body And a detection coil for detecting an NMR signal of an object to be measured inserted into the hollow portion of the superconducting bulk body,
The superconducting bulk body, both axial ends of the superconducting bulk body is trapped magnetic field in a state not critical current density is higher than the axial center portion, the magnetic field strength after magnetization is from said axial center portion A nuclear magnetic resonance apparatus characterized in that both end portions in the axial direction show a higher magnetic field distribution .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005322556A JP4806742B2 (en) | 2005-11-07 | 2005-11-07 | Magnetic field generator and nuclear magnetic resonance apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005322556A JP4806742B2 (en) | 2005-11-07 | 2005-11-07 | Magnetic field generator and nuclear magnetic resonance apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007129158A JP2007129158A (en) | 2007-05-24 |
JP4806742B2 true JP4806742B2 (en) | 2011-11-02 |
Family
ID=38151539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005322556A Expired - Fee Related JP4806742B2 (en) | 2005-11-07 | 2005-11-07 | Magnetic field generator and nuclear magnetic resonance apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4806742B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4895714B2 (en) * | 2006-07-31 | 2012-03-14 | アイシン精機株式会社 | Superconductor, superconducting magnetic field generator, superconducting magnetic field generator, and nuclear magnetic resonance apparatus |
JP5360638B2 (en) * | 2007-12-27 | 2013-12-04 | 株式会社イムラ材料開発研究所 | Superconducting magnetic field generator, method of magnetizing superconducting magnetic field generator, and nuclear magnetic resonance apparatus |
JP5583501B2 (en) * | 2010-07-14 | 2014-09-03 | 公益財団法人鉄道総合技術研究所 | Simple superconducting magnet and manufacturing method thereof |
JP5583502B2 (en) * | 2010-07-14 | 2014-09-03 | 公益財団法人鉄道総合技術研究所 | High magnetic field small superconducting magnet |
JP6090557B2 (en) * | 2012-09-07 | 2017-03-08 | アイシン精機株式会社 | Superconductor, superconducting magnet, superconducting magnetic field generator and nuclear magnetic resonance apparatus |
JP6369851B2 (en) * | 2014-03-04 | 2018-08-08 | 国立大学法人 新潟大学 | Magnetic field generation apparatus and magnetic field generation method |
EP3493226A4 (en) | 2016-07-27 | 2020-01-22 | Nippon Steel Corporation | Bulk magnet structure and bulk magnet system for nmr |
EP3492941A4 (en) * | 2016-07-27 | 2020-04-01 | Nippon Steel Corporation | Bulk magnet structure, magnet system for nmr using said bulk magnet structure, and magnetization method for bulk magnet structure |
JP7114881B2 (en) * | 2017-11-15 | 2022-08-09 | 株式会社アイシン | Superconducting magnetic field generator and nuclear magnetic resonance device |
EP4177624B1 (en) * | 2021-11-09 | 2024-06-12 | Bruker Switzerland AG | A method for homogenizing a magnetic field profile of a superconductor magnet system with feedback by a measured magnetic field profile |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0787138B2 (en) * | 1987-05-15 | 1995-09-20 | 株式会社日立製作所 | Superconducting coil device |
JP2838742B2 (en) * | 1991-12-20 | 1998-12-16 | 新日本製鐵株式会社 | Oxide bulk superconductor and method of manufacturing the same |
JPH06219739A (en) * | 1992-12-04 | 1994-08-09 | Nippon Steel Corp | Oxide superconductor having high critical current density and its production |
JPH07211538A (en) * | 1994-01-20 | 1995-08-11 | Hitachi Ltd | Superconductive bulk magnet |
JP3962107B2 (en) * | 1996-03-22 | 2007-08-22 | 財団法人国際超電導産業技術研究センター | Oxide superconducting composite, method for producing the same, oxide superconducting magnet, and superconducting coil device |
JP3332148B2 (en) * | 1997-09-08 | 2002-10-07 | 財団法人鉄道総合技術研究所 | Superconducting bulk material and superconducting bulk magnet |
JP2001358007A (en) * | 2000-06-13 | 2001-12-26 | Nippon Steel Corp | Superconducting oxide bulk magnet |
JP2002008917A (en) * | 2000-06-26 | 2002-01-11 | Inst Of Physical & Chemical Res | Control method of superconductor magnetic field application apparatus, nuclear magnetic resonance apparatus using the same, and superconducting magnet apparatus |
JP4317646B2 (en) * | 2000-06-26 | 2009-08-19 | 独立行政法人理化学研究所 | Nuclear magnetic resonance apparatus |
JP2004091872A (en) * | 2002-08-30 | 2004-03-25 | Aisin Seiki Co Ltd | Superconducting magnetic field generator and sputtering system |
-
2005
- 2005-11-07 JP JP2005322556A patent/JP4806742B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007129158A (en) | 2007-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4806742B2 (en) | Magnetic field generator and nuclear magnetic resonance apparatus | |
JP4317646B2 (en) | Nuclear magnetic resonance apparatus | |
US7084635B2 (en) | Probe for NMR apparatus using magnesium diboride | |
US7218115B2 (en) | Superconductor probe coil for NMR apparatus | |
US6169402B1 (en) | Nuclear magnetic resonance spectrometer | |
US6545474B2 (en) | Controlling method of superconductor magnetic field application apparatus, and nuclear magnetic resonance apparatus and superconducting magnet apparatus using the method | |
Feng et al. | A compact bellows-driven diamond anvil cell for high-pressure, low-temperature magnetic measurements | |
US10162028B2 (en) | Low magnetic field, ultra-low magnetic field nuclear magnetic resonance and magnetic resonance image apparatus | |
Dutz et al. | An internal superconducting “holding-coil” for frozen spin targets | |
Geithner et al. | A non-destructive beam monitoring system based on an LTS-SQUID | |
Zhang et al. | Research on Stability of ${\rm MgB} _ {2} $ Superconducting Magnet for MRI | |
Ebrahimi et al. | Superconducting radio-frequency resonator in magnetic fields up to 6 T | |
Lambert et al. | High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat | |
JP6735619B2 (en) | Method for manufacturing detection coil for magnetic resonance measurement | |
Chen et al. | A superconducting magnetization system with hybrid superconducting wire for the study and application of superconductivity | |
Palma | Magnetic cooling and on-chip thermometry for nanoelectronics below 10 mK | |
Gehring et al. | First use of an internal superconducting ‘holding magnet’in an η-photoproduction experiment | |
Dougherty et al. | Synthesis of a YBa₂ Cu₃ O₍ ₇₋ ₔ₎ Superconductor and the Analysis of the Meissner Effect Using Mutually Inducting Coils | |
JP2008083065A (en) | Probe for nmr apparatus using magnesium diboride | |
Sultan | A contribution to the AC losses of technical low temperature multifilament superconducting wires | |
Hunik | Two-stage nuclear refrigeration with enhanced nuclear moments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080825 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110621 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110705 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4806742 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |