WO2006095549A1 - Polymer actuator - Google Patents
Polymer actuator Download PDFInfo
- Publication number
- WO2006095549A1 WO2006095549A1 PCT/JP2006/302749 JP2006302749W WO2006095549A1 WO 2006095549 A1 WO2006095549 A1 WO 2006095549A1 JP 2006302749 W JP2006302749 W JP 2006302749W WO 2006095549 A1 WO2006095549 A1 WO 2006095549A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- conductive
- conductor
- conductors
- polymer actuator
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/002—Electrostatic motors
- H02N1/006—Electrostatic motors of the gap-closing type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N11/00—Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
- H02N11/006—Motors
Definitions
- the present invention relates to a polymer actuator having excellent energy efficiency and a driving method thereof.
- the conductive polymer film actuator includes a conductive polymer film and a metal electrode provided on the surface thereof.
- the metal electrode is formed on the surface of the conductive polymer film by methods such as chemical plating, electric plating, vacuum deposition, sputtering, coating, pressure bonding, and welding.
- a composite composed of a conductive polymer film and a metal electrode is made water-containing and a potential difference is applied between the electrodes, the conductive polymer film is bent or deformed, and this can be used as a driving force.
- Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-197069
- Patent Document 1 is an actuator including an operating part, a counter electrode and an electrolyte, and the operating part has a conductive polymer force produced by a predetermined electrolytic polymerization method. Things are listed.
- an actuator having a platinum plate as a counter electrode as described in the embodiment generates hydrogen when energized, which is dangerous and cannot be accommodated in a sealed container. is there.
- Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-350495 (Patent Document 2) describes an actuator comprising a pair of conductive polymer layers facing each other. When a voltage is applied between the two conductive polymer layers, one expands and the other contracts, so that this actuator bends.
- This actuator does not have a platinum electrode as a counter electrode, so there is no possibility of generating hydrogen when energized. However, it requires a large applied voltage to drive the actuator. In other words, there is a problem that this actuator does not show good energy efficiency.
- Patent Document 1 JP 2004-197069 A
- Patent Document 2 JP 2004-350495 A
- an object of the present invention is to provide a polymer actuator exhibiting excellent energy efficiency and a driving method thereof.
- the inventors of the present invention after driving the polymer actuator in one direction by energization, before energizing in the reverse direction and driving in the reverse direction, The inventors have found that the energy efficiency of the polymer actuator can be improved by short-circuiting the current between them, and have arrived at the present invention.
- the polymer actuator of the present invention includes a first conductor containing a conductive polymer and a dopant, a second conductor, and an ion in contact with the first and second conductors. And a circuit for applying a voltage to the first and second conductors, and a circuit for short-circuiting the current between the first and second conductors.
- the second conductor is more preferably composed of a conductive polymer and a dopant, which are preferably composed of a compound having oxidation-reduction ability.
- the first conductor or the conductive polymer contained in the first and second conductors is selected from the group consisting of polypyrrole, polythiophene, polyarine, polyacetylene, and derivatives thereof. At least one kind is preferable.
- the ion supplier is a solution, sol, gel or a combination thereof.
- the conductor may be in the form of a film, or may be a green compact having a conductive powder power containing a conductive polymer and a dopant. Further, (a) a solid or gel ion supplier may be sandwiched between the first conductor and the second conductor, and (b) a fluid ion supplier such as a solution or a sol. In addition, both conductors may be immersed.
- the first conductor and the second conductor may be accommodated in one cell, or may be accommodated in separate cells.
- an ion supplier is placed in each cell and both ion suppliers are electrically connected.
- the polymer actuator driving method of the present invention includes a circuit for applying the voltage. After applying a voltage so that one of the first and second conductors is a positive electrode and the other is a negative electrode, and before applying a voltage in the reverse direction to the first and second conductors, It is characterized in that the current is short-circuited between both conductors by a short-circuiting circuit.
- the polymer actuator of the present invention has a short circuit for discharging a conductor stored by driving.
- the polymer activator preferably has an electrode made of a conductive polymer or dopant or a compound having a redox ability as a counter electrode. Therefore, like a polymer actuator having a metal electrode, hydrogen and oxygen are generated on the counter electrode during driving, and a part of electric energy is consumed as chemical energy, resulting in a decrease in energy efficiency. In addition, since no gas is generated, there is no danger and it can be stored in a sealed container.
- FIG. 1 is a partial cross-sectional view showing an example of a polymer actuator of the present invention.
- FIG. 2 is a partial cross-sectional view showing the displacement of the polymer actuator.
- (A) shows a state in which the first conductive film is energized so as to become a positive electrode, and (b) shows a discharge with the short circuit closed. Indicates state
- (C) shows a state in which the first conductive film is energized so as to be a negative electrode.
- FIG. 3 is a partial cross-sectional view showing another example of the polymer actuator of the present invention.
- FIG. 4 is a graph showing a change in current with respect to a change in applied voltage, and a flow diagram showing the displacement of the polymer actuator.
- FIG. 5 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
- FIG. 6 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
- FIG. 7 is a graph showing a change in current with respect to a change in applied voltage, and a flow diagram showing the displacement of the polymer activator.
- FIG. 8 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
- FIG. 9 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
- FIG. 10 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
- FIG. 11 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
- FIG. 12 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
- FIG. 13 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
- FIG. 14 is a partial cross-sectional view showing the displacement of the polymer actuator.
- A shows a state in which the first conductive film is energized so as to become a positive electrode, and (b) shows a discharge with the short circuit closed.
- C shows a state in which the first conductive film is energized so as to be a negative electrode.
- FIG. 15 is a graph showing a current value and a displacement amount with respect to an applied voltage in the polymer actuator of Example 1.
- FIG. 16 is a graph showing a current value and a displacement amount with respect to an applied voltage in the polymer actuator of Example 2.
- FIG. 17 is a graph showing a current value and a displacement amount with respect to an applied voltage in the polymer actuator of Comparative Example 1.
- FIG. 18 is a graph showing the current value and the displacement with respect to the applied voltage in the polymer actuator of Comparative Example 2.
- FIG. 1 shows an example of a polymer actuator of the present invention.
- the polymer activator shown in FIG. 1 has an ion supply sandwiched between the first and second conductive films la and lb arranged in the longitudinal direction in the cell 3 and the conductive films la and lb. It has a body 2, a circuit 4 connected to the conductive films la and lb, and a short circuit 5 provided in the middle of the circuit 4.
- Both ends of the circuit 4 are connected to fixed ends of the first and second conductive films la and lb, respectively.
- Drive members 6a and 6b are attached to the movable end sides of the conductive films la and lb, respectively.
- the drive members 6a and 6b pass through the openings 31 and 31 of the cell 3, and are movably supported by bearings provided in the openings 31 and 31.
- the driving members 6a and 6b are also driven. Therefore, one end of the drive members 6a and 6b can be used as the drive portion.
- the first and second conductive films la and lb expand when oxidized, and contract when reduced. How to expand and contract the conductive membrane la, lb depends on the type of conductive polymer and ion supply 2 It may change. In other words, depending on the type of conductive polymer contained in the conductive films la and lb and the type of electrolyte in the ion supplier 2, the conductive films la and lb expand when reduced, and contract when oxidized. In some cases.
- the thickness of the conductive films la and lb is preferably about 0.1 ⁇ m to 1 mm. If it is less than 0.1 ⁇ m, the driving force of the polymer actuator is too small. Films over lmm take a very long time to make and are difficult to form uniformly.
- the conductive film la, lb contains a conductive polymer and a dopant.
- the conductive polymer preferably has a conjugated structure.
- the polypyrrole is more preferably at least one selected from the group consisting of polypyrrole, polythiophene, polyarine, polyacetylene, and derivatives thereof.
- the dopant contained in the conductive films la and lb may be p-type or n-type.
- the dopant is not particularly limited, and a general dopant can be used.
- p-type dopants include CI, Br, I, I
- Neurogens such as Cl, IC1, IBr and IF, Noreis acid such as PF, PF, BF, AsF and SbF, sulfuric acid,
- Acids perchloric acid, organic acids (such as P-toluenesulfonic acid), iron trichloride, titanium tetrachloride, iron sulfate, iron nitrate, iron perchlorate, iron phosphate, iron sulfonate, iron bromide,
- transition metal salts such as iron hydroxide, copper nitrate, copper sulfate, and copper chloride.
- the n-type dopant include alkali metals such as Li, Na, K, Rb, and Cs, alkaline earth metals such as Be, Mg, Ca, Sr, and Ba, Sc, Ag, Eu, and Yb.
- the film-like conductive polymer can be produced by electrolytic polymerization.
- a conductive polymer film containing a dopant can be formed on the electrode by immersing the plate-like electrode in an electrolytic solution containing a monomer and a conductive polymer and applying a voltage.
- the method of electropolymerization is not particularly limited, and may be any of a constant potential method, a constant current method, and an electric sweep method.
- the electrode used for electrolytic polymerization is not particularly limited, and may be a general one such as a Pt electrode, a Ti electrode, or a Ni electrode.
- the ion supply body 2 includes an electrolyte plate 21 and a lubricating electrolyte layer 22.
- Lubricating electrolyte layers 22 and 22 are provided on both surfaces of the electrolyte plate 21, and the conductive membranes la and lb are in contact with the lubricating electrolyte layers 22 and 22. Since the conductive films la and lb are provided on the electrolyte plate 21 via the lubricating electrolyte layer 22, the conductive films la and lb can be applied to the electrolyte plate 21 without causing large friction. Can be stretched along.
- the thickness of the electrolyte plate 21 is preferably 0.1 ⁇ m to 100 mm. If it exceeds 100 mm, the resistance is too large and the voltage to be applied to the conductive films la and lb is too large. If it is less than 0.1 / zm, the current is easily short-circuited.
- the lubricating electrolyte layer 22 only needs to be provided to such an extent that the friction generated during driving is not excessive.
- the thickness is preferably 10 nm to l ⁇ m.
- electrolyte contained in the electrolyte plate 21 and the lubricating electrolyte layer 22 examples include sodium chloride, NaPF, sodium p-toluenesulfonate, and sodium perchlorate.
- the plate 21 and the lubricating electrolyte layer 22 may contain a conductive polymer or a non-conductive polymer.
- a conductive polymer or a non-conductive polymer.
- preferred polymers include polyethylene glycol and polyacrylic acid.
- the electrolyte plate 21 is solid or gel, and the lubricating electrolyte layer 22 is gel, sol, or a combination thereof.
- preferred gel electrolytes include polyacrylamide, polyethylene glycol, and agar in which a salt such as sulfonate is dispersed.
- the circuit 4 has first and second switches 4a and 4b provided in parallel.
- the first switch 4 a connects the positive electrode of the external electrode 7 and the circuit 4
- the second switch 4 b connects the negative electrode and the circuit 4. Which of the first and second conductive films la and lb is used as the positive electrode can be appropriately set by the switches 4a and 4b.
- the short circuit 5 is provided in parallel with the first and second switches 4a, 4b.
- the switch 50 of the short circuit 5 is closed with the switches 4a and 4b opened, the first conductive film la and the second conductive film lb are electrically connected directly.
- FIG. 2 (a) shows a polymer actuator in which the external electrode 7 is connected to the circuit 4.
- the thin arrows in the figure represent the current flow.
- the first switch 4a is connected to the first conductive film la side and the second switch 4b is connected to the second conductive film lb side.
- the first switch 4a is connected to the first conductive film la side.
- the conductive film la is oxidized and takes in the ion supplier 2 and expands.
- the second conductive membrane lb is reduced and contracts by releasing the ion supplier 2.
- the driving member 6a moves to the right side in the figure by the extension of the first conductive film la, and the driving member 6b moves to the left side in the figure by contraction of the second conductive film lb. During this time, electric charges are stored in the conductive films la and lb. It becomes the state of the battery (secondary battery).
- the external electrode 7 is energized in the opposite direction.
- the first conductive film la contracts and the second conductive film lb expands.
- the drive members 6a and 6b also move as the conductive films la and lb expand and contract.
- both electrodes are made of a conductive film as in the polymer actuator shown in FIGS. 1 and 2, the reaction that occurs at both electrodes during conduction is a redox reaction of the conductive polymer. Therefore, since hydrogen, oxygen, etc. are not generated, the applied electric energy is not consumed as chemical energy, and it shows good energy efficiency.
- FIG. 3 shows another example of the polymer actuator of the present invention.
- the polymer activator shown in FIG. 3 is substantially the same as the example shown in FIG. 1 except that the first and second conductive membranes la and lb are immersed in the fluid ion supplier 20, so that the difference is the same. Only described below.
- the first and second conductive films la and lb are provided in parallel with the longitudinal direction of the cell 3.
- the conductive films la and lb are preferably a composite comprising a conductive polymer, a dopant, and elastic force. Since the composite including the polymer and the elastic body exhibits a large mechanical strength, the driving force can be easily transmitted to the driving members 6a and 6b when the conductive films la and lb are extended.
- the elastic body include film-like and net-like rubber and panel.
- a composite of an elastic body and a conductive polymer can be produced by attaching a conductive film to rubber.
- the ion supplier 20 needs to have a fluidity that does not excessively hinder the expansion and contraction of the conductive membranes la and lb.
- the fluid ion supplier 20 is preferably a solution, sol, gel, solution-nor mixture, sol-gel mixture, or solution-sol mixture. If the ion supplier 20 is a sol or gel or a mixture thereof, there is no risk of liquid leakage. Is preferable.
- the solvent and Z or dispersion medium contained in the ion supplier 20 are preferably water, a polar organic solvent, or an ionic liquid. When the solvent and Z or the dispersion medium are water, a polar organic solvent, or an ionic liquid, the ion supplier 20 exhibits high conductivity. When the solvent is water, the concentration of the aqueous electrolyte solution is preferably about 0.01 to 5 mol / L.
- FIG. 4 schematically shows the current with respect to the applied voltage and the expansion and contraction of the conductive films la and lb in the polymer actuator shown in FIG.
- a reference electrode R is immersed in the ion supplier 20.
- As the reference electrode R a general one such as a silver Z salt-silver electrode can be used.
- Voltmeter A and ammeter V are connected to measure the voltage and current applied by external electrode 7.
- the conductive film la, lb is not energized (Section I)
- the voltage value indicates a natural potential.
- the lengths of the conductive films la and lb are natural lengths.
- the switches 4a and 4b are inserted so that the first conductive film la becomes the negative electrode and the second conductive film lb becomes the positive electrode.
- a current in the opposite direction to II flows through circuit 4 to ion supplier 2 (section IV).
- the first conductive film la is reduced and contracts, and the second conductive film lb is oxidized and stretched.
- the switches 4a and 4b are turned off and the switch 50 of the short circuit 5 is turned on, the charges accumulated in the conductive films la and lb are short-circuited, and the conductive films la and lb return to their original lengths again (section V ).
- the polymer actuator shown in FIG. 6 is the same as the example shown in FIG. 3 except that the cell-shaped conductors 100 a and 10 Ob are provided in the longitudinal direction of the cell 3.
- Preferred V of the panel-like conductors 100a and 100b for example, a film having a conductive polymer film formed on a panel having shape memory alloy power.
- the conductive conductor 100a and 100b containing the conductive polymer and the dopant can be produced by electrolytic polymerization of the monomer using a metal panel as an electrode.
- FIG. 6 shows still another example of the polymer activator of the present invention.
- the polymer activator shown in FIG. 6 is substantially the same as the example shown in FIG. 1 except that it has a metal electrode 71 instead of the second conductive film lb, and only the differences will be described below.
- the metal electrode 71 is in contact with the electrolyte plate 21. When the external electrode 7 is connected to the circuit 4, a current flows between the first conductive film la and the metal electrode 71.
- the metal electrode 71 is not particularly limited, and a metal electrode having a general electrode material strength such as platinum, gold, silver, copper, nickel, stainless steel, and carbon can be used.
- FIG. 7 schematically shows the relationship between the current with respect to the applied voltage and the expansion and contraction of the conductive film la in the polymer actuator shown in FIG.
- the conductive film la has a natural length.
- switches 4a and 4b (not shown) are inserted so that the first conductive film la is the positive electrode and the metal electrode 71 is the negative electrode, current flows through circuit 4 (section 11), and the first conductive film Sexual membrane la is oxidized and stretched. During this time, electric charges accumulate in the conductive film la. On the metal electrode 71 side, a reduction reaction occurs.
- FIG. 8 shows still another example of the polymer activator of the present invention.
- the polymer activator shown in FIG. 8 has conductive laminates 10a and 10b including a green compact 11 made of conductive powder, and is shown in FIG. 1 except that a fluid ion supplier 20 is filled in the cell. Almost the same as the example shown Therefore, only the differences will be described below.
- Each of the conductive laminates 10a and 10b has three sets of the porous spacer 13, the green compact 11, and the thin layer electrode 12 in this order from the drive end side, and further the porous spacer 13 on the fixed end side. Pager 13 is overlaid.
- the force having three sets of the thin layer electrode 12 and the green compact 11 is not limited to this.
- Two sets of the thin layer electrode 12 and the green compact 11 may be laminated via the porous spacer 13, or four or more sets may be laminated.
- the thin layer electrode 12 and the green compact 11, the green compact 11 and the porous spacer 13, and the porous spacer 13 and the thin layer electrode 12 are bonded.
- the green compact 11 is preferably plate-shaped and preferably has a thickness of 0.1 to 20 mm. If the thickness is less than 0.1 mm, it is not preferable because it is easy to break and difficult to handle. If the thickness exceeds 20 mm, the electrolyte etc. are absorbed and released too slowly from the ion supplier 2, and the responsiveness of the green compact 11 is too bad.
- the green compact 11 may have a disk shape or a square plate shape.
- the green compact 11 is formed by compressing a conductive powder.
- a conductive powder For example, it can be prepared by putting conductive powder in a tablet tableting machine, then depressurizing the tableting machine, and pressurizing at 700 to 900 MPa for about 3 to 10 minutes.
- the conductive powder expands and contracts or contracts when energized in the flowable ion supply body 20. Therefore, when the conductive powder is compressed into a green compact, the expansion and contraction that occurs in the conductive powder is displaced by the actuator.
- the electrical resistance of the conductive powder is preferably a 10- 4 ⁇ 1 ⁇ ⁇ . In this specification, the electrical resistance of the conductive powder is a value measured by the 4-terminal method with an electrode spacing of 1.5 mm. If the electrical resistance exceeds 1 ⁇ ⁇ , the conductivity is too small and the efficiency of the actuator is too bad. The electric resistance of less than 10- 4 Omega is difficult manufacturing.
- the conductive powder contains a conductive polymer and a dopant.
- a conductive polymer and a dopant are the same as those of the conductive films la and lb described above.
- the content of the conductive polymer in the conductive powder is preferably 1 to 99.9% by mass, more preferably 30 to 70% by mass. If the conductive polymer is less than 1% by mass, the amount of electrolyte and water absorbed and released by the conductive powder is too small, and the displacement amount of the polymer actuator is too small. If it exceeds 99.9% by mass, the metal salt content is too small and the conductivity is too small.
- the average particle size of the conductive polymer is preferably 10 nm to lmm.
- the area force S in contact with the flowable ion supplier 20 is too small, which is not preferable because the response of the high molecular weight actuator is too low. Those with an average particle size of less than 10 nm are difficult to produce and handle.
- the conductive powder preferably contains at least one selected from the group consisting of metals, metal salts, and carbon in addition to the conductive polymer and the dopant.
- the conductive powder containing at least one selected from the group consisting of metal, metal salt, and force bon has high conductivity.
- metal iron, copper, nickel, titanium, zinc, chromium, aluminum, cobalt, gold, platinum, silver, manganese, tungsten, palladium, ruthenium, zirconium and the like are preferable.
- metal salts include iron trichloride and copper chloride.
- a method for producing conductive powder will be described by taking as an example the case of containing a conductive polymer, a dopant and a metal salt.
- the powdery conductive polymer can be efficiently synthesized by oxidative polymerization.
- the monomer By dropping the monomer into an aqueous solution containing the dopant and the metal salt and stirring, the monomer polymerizes while taking in the dopant and the metal salt.
- a conductive powder containing a dopant and a metal salt in the conductive polymer can be produced.
- Metal salts such as copper chloride and iron trichloride also function as an oxidation polymerization catalyst.
- Metal salt It is preferable to dissolve the metal salt in an aqueous solution, polar organic solution or ionic solution so that the molar ratio of Z monomer is about ⁇ to ⁇ .
- the thickness of the thin layer electrode 12 is preferably about 0.1 ⁇ m to 10 mm.
- the thin layer electrode 12 may be bonded to the green compact 11 with an adhesive, or may be formed on the green compact 11 by chemical bonding, electric bonding, vacuum deposition, or the like. Examples of the method for forming the thin layer electrode 12 on the green compact 11 include chemical plating, electric plating, vacuum deposition, sputtering, coating, pressure bonding, welding, and the like.
- the thin layer electrode 12 is preferably made of platinum, gold, silver, copper, nickel, stainless steel, or carbon.
- the porous spacer 13 on the drive end side is attached with drive members 6a, 6b comprising movable plates 61a, 61b and drive bars 62a, 62b connected perpendicularly to the movable plates 61a, 61b. ing.
- the openings 31 and 31 are sealed so that the flowable ion supplier 20 does not leak from the openings 31 and 31.
- the ion supplier 20 needs to have fluidity that does not hinder the expansion and contraction of the green compact 11.
- a preferred example of the flowable ion supplier 20 is the same as the example shown in FIG. [0052] When the green compact 11 is oxidized, it absorbs the ion supply body 20 and expands.
- the green compact 11 When the green compact 11 is reduced, the ion supply body 20 is released and contracts. Therefore, the green compact 11 becomes conductive by applying a voltage through the external electrode 7.
- the laminates 10a and 10b can be expanded and contracted to displace the drive members 6a and 6b to the left and right.
- the polymer actuator shown in FIG. 9 has a pair of cells 3a and 3b.
- the first conductive film la is accommodated in one cell 3a, and the second conductive film lb is accommodated in the other cell 3b. Since it is almost the same as the example shown in FIGS. 1 and 2 except for being accommodated, only the differences will be described below.
- Electrolyte plates 21 and 21 are accommodated in the cells 3a and 3b, respectively, and the first conductive film la and the second electrode are disposed on one surface of each of the electrolyte plates 21 and 21 via the lubricating electrolyte layers 22 and 22, respectively. Each of the conductive films lb is provided. The electrolyte plates 21 and 21 are connected by a salt bridge 23. Shiohashi 2 3 is flexible and is preferred.
- the polymer actuator shown in FIG. 10 is substantially the same as the example shown in FIG. 9 except that the conductive laminates 10a and 10b are accommodated in the pair of cells 3a and 3b, respectively. This will be described below.
- the conductive laminates 10a and 10b may be the same as the polymer activator shown in FIG. In the cells 3a and 3b, fluid ion suppliers 20 and 20 are placed, respectively. The ion suppliers 20 and 20 are connected by a salt bridge 23.
- the polymer actuator shown in FIG. 11 is substantially the same as the example shown in FIG. 9 except that the cells 3a and 3b have redox electrodes 72 and 72 provided in contact with the electrolyte plates 21 and 21, respectively. Therefore, only differences will be described below.
- the redox electrodes 72 and 72 are provided on the surface opposite to the conductive films la and lb.
- the redox electrodes 72 and 72 are connected by a conductive wire 24.
- the redox electrodes 72, 72 may be made of a high molecular compound as long as it is made of a material having redox ability, may have a low molecular weight organic compound force, and may have an inorganic substance force.
- Examples of the polymer compound having an acid reducing ability include polyacetylene, polythiophene, polypyrrole, polyaniline, polyparaphenylene, polyphenylene sulfide, polyphenylene oxide, polyphenylene vinylene, polyacene and derivatives thereof. It is done.
- inorganic substances include cyano complexes of transition metal elements such as iron, nickel, cobalt, ruthenium, and gold, ethylenediamine tetraacetic acid complexes, chloro complexes, and halogens such as iodine and bromine.
- organic compounds include viologens, porphyrins, phthalocyanines , Quinones, and thiolate compounds.
- the polymer actuator shown in FIG. 12 is an example shown in FIG. 10, except that the redox electrodes 72 and 72 are accommodated in the pair of cells 3a and 3b, respectively, and the conductive wire 24 is connected to the redox electrodes 72 and 72. Therefore, only the differences will be described below.
- the redox electrodes 72 and 72 are immersed in the ion supply bodies 20 and 20 placed in the cells 3a and 3b. Examples of the redox electrodes 72 and 72 are the same as the polymer actuator shown in FIG.
- FIG. 13 shows still another example of the polymer actuator of the present invention.
- first and second conductive films la and lb are provided in the cells 3a and 3b in the longitudinal direction, respectively, and fluid ions are supplied into the cells 3a and 3b. Since it is almost the same as the polymer actuator shown in FIG. 11 except that the body 20 is filled, only the differences will be described below.
- the fixed ends of the first and second conductive films la and lb are bonded to the inner surfaces of the cells 3a and 3b.
- the movable plates 61a and 61b of the drive members 6a and 6b are attached to the movable end portions of the first and second conductive films la and lb.
- Elastic bodies 8a and 8b are stretched between the movable plates 61a and 61b and the inner walls of the cells 3a and 3b.
- the first and second conductive films la and lb are stretched by the elastic bodies 8a and 8b. It is in the state that was. As shown in FIG.
- the movable plates 61a and 61b are stopped at a position where the elastic forces of the first and second conductive films la and lb and the elastic bodies 8a and 8b are balanced.
- the elastic bodies 8a and 8b include a string-like, film-like or net-like rubber, a panel having a shape memory alloy force, and a panel made of a metal other than the shape memory alloy.
- This polypyrrole film is used as a first conductive film la and a second conductive film lb (length: 10 mm, width: 5 mm), and a 1.0 M NaPF aqueous solution is used as the ion supplier 20 as shown in FIG. High minute
- the load (external load) applied to the conductive films la and lb was 5 g, respectively.
- the reference electrode R a silver electrode was used.
- Table 1 a voltage was applied from the external electrode 7, and the current value and voltage value of the circuit 4 and the amount of expansion and contraction of the first conductive film la were measured. The applied voltage was switched when the displacement of the first conductive film la reached the maximum. The results are shown in Table 1 and FIG.
- the displacement amount in FIGS. 15 to 18 indicates the displacement amount of the drive member 6a connected to the first conductive film la.
- a high molecular weight actuator is assembled in the same manner as in Example 1 except that a platinum electrode is used in place of the second conductive film lb, and a voltage is applied to apply the current and voltage values of the circuit 4 and the first conductive The amount of expansion / contraction of the sex membrane la was measured. The results are shown in Table 1 and FIG.
Landscapes
- Prostheses (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Disclosed is a polymer actuator characterized by comprising a first conductor (1a) containing a conductive polymer and a dopant, a second conductor (1b), an ion supplying body (2) arranged in contact with the first and second conductors (1a, 1b), a circuit (4) for applying a voltage to the first and second conductors (1a, 1b), and a circuit (5) for causing a short-circuit between the first and second conductors (1a, 1b).
Description
明 細 書 Specification
高分子ァクチユエータ Polymer actuator
技術分野 Technical field
[0001] 本発明は、優れたエネルギー効率を有する高分子ァクチユエータ及びその駆動方 法に関する。 TECHNICAL FIELD [0001] The present invention relates to a polymer actuator having excellent energy efficiency and a driving method thereof.
背景技術 Background art
[0002] 導電性高分子ゲル、導電性高分子膜等を用いた高分子ァクチユエータは、小型軽 量ィ匕が可能であるため、近年、注目を集めている。導電性高分子膜ァクチユエータの 例として、導電性高分子膜とその表面に設けた金属電極とからなるものが挙げられる 。金属電極は化学めつき、電気めつき、真空蒸着、スパッタリング、塗布、圧着、溶着 等の方法によって導電性高分子膜の表面に形成される。導電性高分子膜と金属電 極からなる複合体を含水状態にして電極間に電位差をかけると、導電性高分子膜に 湾曲や変形が生じるので、これを駆動力として利用することができる。 [0002] Polymer actuators using a conductive polymer gel, a conductive polymer film, and the like have attracted attention in recent years because they can be made small and light. An example of the conductive polymer film actuator includes a conductive polymer film and a metal electrode provided on the surface thereof. The metal electrode is formed on the surface of the conductive polymer film by methods such as chemical plating, electric plating, vacuum deposition, sputtering, coating, pressure bonding, and welding. When a composite composed of a conductive polymer film and a metal electrode is made water-containing and a potential difference is applied between the electrodes, the conductive polymer film is bent or deformed, and this can be used as a driving force.
[0003] 特開 2004-197069号 (特許文献 1)には、作動部、対極及び電解質を含むァクチュ エータであって、作動部が所定の電解重合法により製造された導電性高分子力 な るものが記載されている。このァクチユエータに通電すると、作動部が電気化学的酸 化還元によって伸縮する。しかし、実施例に記載のような白金プレートを対極としたァ クチユエータは、通電時に水素を発生してしまうため、危険を伴う上、密封容器内に 収容することはできな 、と 、う問題がある。 [0003] Japanese Unexamined Patent Application Publication No. 2004-197069 (Patent Document 1) is an actuator including an operating part, a counter electrode and an electrolyte, and the operating part has a conductive polymer force produced by a predetermined electrolytic polymerization method. Things are listed. When this actuator is energized, the working part expands and contracts by electrochemical oxidation and reduction. However, an actuator having a platinum plate as a counter electrode as described in the embodiment generates hydrogen when energized, which is dangerous and cannot be accommodated in a sealed container. is there.
[0004] 特開 2004-350495号 (特許文献 2)には、対向する一対の導電性高分子層を具備 するァクチユエータが記載されている。両導電性高分子層間に電圧を印加すると一 方は伸長し、他方は収縮するので、このァクチユエータは屈曲運動をする。このァク チユエータは白金電極を対極としたものではないので、通電時に水素を発生するお それがない。し力しながら、このァクチユエータを駆動させるには大きな印加電圧を要 する。つまり、このァクチユエータは良好なエネルギー効率を示すものではないという 問題がある。 [0004] Japanese Unexamined Patent Application Publication No. 2004-350495 (Patent Document 2) describes an actuator comprising a pair of conductive polymer layers facing each other. When a voltage is applied between the two conductive polymer layers, one expands and the other contracts, so that this actuator bends. This actuator does not have a platinum electrode as a counter electrode, so there is no possibility of generating hydrogen when energized. However, it requires a large applied voltage to drive the actuator. In other words, there is a problem that this actuator does not show good energy efficiency.
[0005] 特許文献 1:特開 2004-197069号公報
特許文献 2:特開 2004-350495号公報 [0005] Patent Document 1: JP 2004-197069 A Patent Document 2: JP 2004-350495 A
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0006] 従って、本発明の目的は、優れたエネルギー効率を示す高分子ァクチユエータ及 びその駆動方法を提供することである。 Accordingly, an object of the present invention is to provide a polymer actuator exhibiting excellent energy efficiency and a driving method thereof.
課題を解決するための手段 Means for solving the problem
[0007] 上記目的に鑑み鋭意研究の結果、本発明者らは、通電により高分子ァクチユエ一 タを一方向に駆動させた後、逆向きに通電して逆向きの駆動をさせる前に、電極間 で電流を短絡させることにより、高分子ァクチユエータのエネルギー効率を向上させ ることができることを発見し、本発明に想到した。 As a result of diligent research in view of the above object, the inventors of the present invention, after driving the polymer actuator in one direction by energization, before energizing in the reverse direction and driving in the reverse direction, The inventors have found that the energy efficiency of the polymer actuator can be improved by short-circuiting the current between them, and have arrived at the present invention.
[0008] すなわち本発明の高分子ァクチユエータは、導電性高分子及びドーパントを含有 する第一の導電体と、第二の導電体と、前記第一及び第二の導電体に接触したィォ ン供給体と、前記第一及び第二の導電体に電圧を印加する回路と、前記第一及び 第二の導電体間で電流を短絡させる回路とを具備することを特徴とする。 That is, the polymer actuator of the present invention includes a first conductor containing a conductive polymer and a dopant, a second conductor, and an ion in contact with the first and second conductors. And a circuit for applying a voltage to the first and second conductors, and a circuit for short-circuiting the current between the first and second conductors.
[0009] 前記第二の導電体は、酸化還元能を有する化合物からなるのが好ましぐ導電性 高分子及びドーパントからなるのがより好まし 、。 [0009] The second conductor is more preferably composed of a conductive polymer and a dopant, which are preferably composed of a compound having oxidation-reduction ability.
[0010] 第一の導電体、又は第一及び第二の導電体に含まれる導電性高分子は、ポリピロ ール、ポリチォフェン、ポリア-リン、ポリアセチレン及びこれらの誘導体からなる群よ り選ばれた少なくとも一種であるのが好ましい。イオン供給体は溶液、ゾル、ゲル又は これらの組合せであるのが好まし 、。 [0010] The first conductor or the conductive polymer contained in the first and second conductors is selected from the group consisting of polypyrrole, polythiophene, polyarine, polyacetylene, and derivatives thereof. At least one kind is preferable. Preferably, the ion supplier is a solution, sol, gel or a combination thereof.
[0011] 導電体は膜状であっても良いし、導電性高分子及びドーパントを含有する導電性 粉末力 なる圧粉体であっても良い。また (a)第一の導電体と第二の導電体との間に 固体又はゲル状のイオン供給体が挟まれていても良いし、 (b)溶液、ゾル等の流動性 のイオン供給体に、両導電体が浸漬されて 、ても良 、。 [0011] The conductor may be in the form of a film, or may be a green compact having a conductive powder power containing a conductive polymer and a dopant. Further, (a) a solid or gel ion supplier may be sandwiched between the first conductor and the second conductor, and (b) a fluid ion supplier such as a solution or a sol. In addition, both conductors may be immersed.
[0012] 第一の導電体と第二の導電体とは一つのセル内に収容されていても良いし、別々 のセルに収容されていても良い。別々のセルに収容されている場合、各セルにィォ ン供給体が入れられ、両イオン供給体が電気的に接続される。 [0012] The first conductor and the second conductor may be accommodated in one cell, or may be accommodated in separate cells. When housed in separate cells, an ion supplier is placed in each cell and both ion suppliers are electrically connected.
[0013] 本発明の高分子ァクチユエータの駆動方法は、前記電圧を印加する回路によって
、前記第一及び第二の導電体の一方が正極で他方が負極となるように電圧を印加し た後、前記第一及び第二の導電体に逆向きに電圧を印加する前に、前記短絡させ る回路によって両導電体間に電流を短絡させることを特徴とする。 [0013] The polymer actuator driving method of the present invention includes a circuit for applying the voltage. After applying a voltage so that one of the first and second conductors is a positive electrode and the other is a negative electrode, and before applying a voltage in the reverse direction to the first and second conductors, It is characterized in that the current is short-circuited between both conductors by a short-circuiting circuit.
発明の効果 The invention's effect
[0014] 本発明の高分子ァクチユエータは、駆動によって蓄電した導電体を放電させるため の短絡回路を有する。高分子ァクチユエータを一方向に駆動した後、その逆方向の 駆動をする際に、短絡回路を用いて予め電流を短絡させておくことで、蓄電状態の 導電体に逆向きの電圧を印加する過程を避けることができる。そのため、本発明の高 分子ァクチユエータは良好なエネルギー効率を示す。また好まし!/、高分子ァクチユエ ータは、対極として導電性高分子及びドーパントからなる導電体又は酸化還元能を 有する化合物からなる電極を有する。したがって、金属電極を有する高分子ァクチュ エータのように、駆動時に対極上で水素や酸素を発生し、電気エネルギーの一部を 化学エネルギーとして消費してエネルギー効率の低下を招くことがな 、。また気体を 発生しないため、危険性がない上、密封容器に収容することもできる。 [0014] The polymer actuator of the present invention has a short circuit for discharging a conductor stored by driving. The process of applying a reverse voltage to a charged conductor by short-circuiting the current in advance using a short circuit when driving the polymer actuator in one direction and then driving in the opposite direction. Can be avoided. Therefore, the high molecular weight actuator of the present invention exhibits good energy efficiency. In addition, the polymer activator preferably has an electrode made of a conductive polymer or dopant or a compound having a redox ability as a counter electrode. Therefore, like a polymer actuator having a metal electrode, hydrogen and oxygen are generated on the counter electrode during driving, and a part of electric energy is consumed as chemical energy, resulting in a decrease in energy efficiency. In addition, since no gas is generated, there is no danger and it can be stored in a sealed container.
図面の簡単な説明 Brief Description of Drawings
[0015] [図 1]本発明の高分子ァクチユエータの一例を示す部分断面図である。 FIG. 1 is a partial cross-sectional view showing an example of a polymer actuator of the present invention.
[図 2]高分子ァクチユエータの変位を示す部分断面図であり、 (a)は第一の導電性膜 が正極となるように通電した状態を示し、 (b)は短絡回路を閉じて放電した状態を示し FIG. 2 is a partial cross-sectional view showing the displacement of the polymer actuator. (A) shows a state in which the first conductive film is energized so as to become a positive electrode, and (b) shows a discharge with the short circuit closed. Indicates state
、 (c)は第一の導電成膜が負極となるように通電した状態を示す。 (C) shows a state in which the first conductive film is energized so as to be a negative electrode.
[図 3]本発明の高分子ァクチユエータの別の例を示す部分断面図である。 FIG. 3 is a partial cross-sectional view showing another example of the polymer actuator of the present invention.
[図 4]印加電圧の変化に対する電流変化を示すグラフと、高分子ァクチユエ一タの変 位を示すフロー図である。 FIG. 4 is a graph showing a change in current with respect to a change in applied voltage, and a flow diagram showing the displacement of the polymer actuator.
[図 5]本発明の高分子ァクチユエータのさらに別の例を示す部分断面図である。 FIG. 5 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
[図 6]本発明の高分子ァクチユエータのさらに別の例を示す部分断面図である。 FIG. 6 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
[図 7]印加電圧の変化に対する電流変化を示すグラフと、高分子ァクチユエ一タの変 位を示すフロー図である。 FIG. 7 is a graph showing a change in current with respect to a change in applied voltage, and a flow diagram showing the displacement of the polymer activator.
[図 8]本発明の高分子ァクチユエータのさらに別の例を示す部分断面図である。 FIG. 8 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
[図 9]本発明の高分子ァクチユエータのさらに別の例を示す部分断面図である。
[図 10]本発明の高分子ァクチユエータのさらに別の例を示す部分断面図である。 FIG. 9 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention. FIG. 10 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
[図 11]本発明の高分子ァクチユエータのさらに別の例を示す部分断面図である。 FIG. 11 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
[図 12]本発明の高分子ァクチユエータのさらに別の例を示す部分断面図である。 FIG. 12 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
[図 13]本発明の高分子ァクチユエータのさらに別の例を示す部分断面図である。 FIG. 13 is a partial cross-sectional view showing still another example of the polymer actuator of the present invention.
[図 14]高分子ァクチユエータの変位を示す部分断面図であり、 (a)は第一の導電性 膜が正極となるように通電した状態を示し、 (b)は短絡回路を閉じて放電した状態を 示し、 (c)は第一の導電成膜が負極となるように通電した状態を示す。 FIG. 14 is a partial cross-sectional view showing the displacement of the polymer actuator. (A) shows a state in which the first conductive film is energized so as to become a positive electrode, and (b) shows a discharge with the short circuit closed. (C) shows a state in which the first conductive film is energized so as to be a negative electrode.
[図 15]実施例 1の高分子ァクチユエータにおける印加電圧に対する電流値及び変位 量を示すグラフである。 FIG. 15 is a graph showing a current value and a displacement amount with respect to an applied voltage in the polymer actuator of Example 1.
[図 16]実施例 2の高分子ァクチユエータにおける印加電圧に対する電流値及び変位 量を示すグラフである。 FIG. 16 is a graph showing a current value and a displacement amount with respect to an applied voltage in the polymer actuator of Example 2.
[図 17]比較例 1の高分子ァクチユエータにおける印加電圧に対する電流値及び変位 量を示すグラフである。 FIG. 17 is a graph showing a current value and a displacement amount with respect to an applied voltage in the polymer actuator of Comparative Example 1.
[図 18]比較例 2の高分子ァクチユエータにおける印加電圧に対する電流値及び変位 量を示すグラフである。 FIG. 18 is a graph showing the current value and the displacement with respect to the applied voltage in the polymer actuator of Comparative Example 2.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 図 1は本発明の高分子ァクチユエータの一例を示す。図 1に示す高分子ァクチユエ ータは、セル 3内に長手方向に並設された第一及び第二の導電性膜 la, lbと、導電 性膜 la, lbの間に挟まれたイオン供給体 2と、導電性膜 la, lbに接続された回路 4と 、回路 4の途中に設けられた短絡回路 5とを有する。 [0016] FIG. 1 shows an example of a polymer actuator of the present invention. The polymer activator shown in FIG. 1 has an ion supply sandwiched between the first and second conductive films la and lb arranged in the longitudinal direction in the cell 3 and the conductive films la and lb. It has a body 2, a circuit 4 connected to the conductive films la and lb, and a short circuit 5 provided in the middle of the circuit 4.
[0017] 第一及び第二の導電性膜 la, lbの固定端部には、回路 4の両端がそれぞれ接続さ れている。導電性膜 la, lbの可動端側には、それぞれ駆動部材 6a, 6bが取り付けら れている。駆動部材 6a, 6bは、セル 3の開口部 31, 31を貫通しており、開口部 31, 31 に設けられたベアリングにより移動自在に支持されている。通電により導電性膜 la, 1 bが伸縮されると、駆動部材 6a, 6bも駆動される。従って、駆動部材 6a, 6bの一端を駆 動部とすることができる。 [0017] Both ends of the circuit 4 are connected to fixed ends of the first and second conductive films la and lb, respectively. Drive members 6a and 6b are attached to the movable end sides of the conductive films la and lb, respectively. The drive members 6a and 6b pass through the openings 31 and 31 of the cell 3, and are movably supported by bearings provided in the openings 31 and 31. When the conductive films la and 1b are expanded and contracted by energization, the driving members 6a and 6b are also driven. Therefore, one end of the drive members 6a and 6b can be used as the drive portion.
[0018] 第一及び第二の導電性膜 la, lbは酸化されると伸長し、還元されると収縮する。な お導電性膜 la, lbの伸縮の仕方は、導電性高分子やイオン供給体 2の種類によって
変わることがある。つまり導電性膜 la, lbに含まれる導電性高分子の種類やイオン供 給体 2中の電解質の種類によっては、導電性膜 la, lbが還元されると伸長し、酸化さ れると収縮する場合もある。 [0018] The first and second conductive films la and lb expand when oxidized, and contract when reduced. How to expand and contract the conductive membrane la, lb depends on the type of conductive polymer and ion supply 2 It may change. In other words, depending on the type of conductive polymer contained in the conductive films la and lb and the type of electrolyte in the ion supplier 2, the conductive films la and lb expand when reduced, and contract when oxidized. In some cases.
[0019] 導電性膜 la, lbの厚さは、 0.1 μ m〜 lmm程度であるのが好ましい。 0.1 μ m未満で あると、高分子ァクチユエータの駆動力が小さすぎる。 lmm超の膜は作製に非常に 時間がかかる上、均一に成膜し難過ぎる。導電性膜 la, lbは導電性高分子及びドー パントを含有する。導電性高分子は共役構造を有するのが好ましい。具体的にはポリ ピロール、ポリチォフェン、ポリア-リン、ポリアセチレン及びこれらの誘導体からなる 群より選ばれた少なくとも一種であるのが好ましぐポリピロールであるのがより好まし い。 [0019] The thickness of the conductive films la and lb is preferably about 0.1 μm to 1 mm. If it is less than 0.1 μm, the driving force of the polymer actuator is too small. Films over lmm take a very long time to make and are difficult to form uniformly. The conductive film la, lb contains a conductive polymer and a dopant. The conductive polymer preferably has a conjugated structure. Specifically, the polypyrrole is more preferably at least one selected from the group consisting of polypyrrole, polythiophene, polyarine, polyacetylene, and derivatives thereof.
[0020] 導電性膜 la, lbに含まれるドーパントは p型でも n型でも良い。ドーパントは特に限 定されず、一般的なものを使用することができる。 p型ドーパントとしては CI、 Br、 I、 I [0020] The dopant contained in the conductive films la and lb may be p-type or n-type. The dopant is not particularly limited, and a general dopant can be used. p-type dopants include CI, Br, I, I
2 2 2 2 2 2
Cl、 IC1、 IBr、 IF等のノヽロゲンや、 PF、 PF、 BF、 AsF、 SbF等のノレイス酸、硫酸、確Neurogens such as Cl, IC1, IBr and IF, Noreis acid such as PF, PF, BF, AsF and SbF, sulfuric acid,
3 3 5 6 4 5 5 3 3 5 6 4 5 5
酸、過塩素酸、有機酸 (P-トルエンスルホン酸等)、及び三塩化鉄、四塩化チタン、硫 酸鉄、硝酸鉄、過塩素酸鉄、リン酸鉄、スルホン酸鉄、臭化鉄、水酸化鉄、硝酸銅、 硫酸銅、塩化銅等の遷移金属塩が挙げられる。 n型ドーパントとしては Li、 Na、 K、 Rb 、 Cs等のアルカリ金属や、 Be、 Mg、 Ca、 Sr、 Ba等のアルカリ土類金属、 Sc、 Ag、 Eu、 Y b等が挙げられる。 Acids, perchloric acid, organic acids (such as P-toluenesulfonic acid), iron trichloride, titanium tetrachloride, iron sulfate, iron nitrate, iron perchlorate, iron phosphate, iron sulfonate, iron bromide, Examples include transition metal salts such as iron hydroxide, copper nitrate, copper sulfate, and copper chloride. Examples of the n-type dopant include alkali metals such as Li, Na, K, Rb, and Cs, alkaline earth metals such as Be, Mg, Ca, Sr, and Ba, Sc, Ag, Eu, and Yb.
[0021] 膜状の導電性高分子は電解重合によって作製することができる。導電性高分子の モノマーとドーパントを含む電解液に板状の電極を浸漬し、電圧を印加することによ つて、電極上にドーパントを含有する導電性高分子膜を形成させることができる。電 解重合の方法は特に限定されず、定電位法、定電流法及び電気掃引法のいずれに 依ってもよい。電解重合に使用する電極も特に限定されず、 Pt電極、 Ti電極、 Ni電極 等、一般的なものでよい。 [0021] The film-like conductive polymer can be produced by electrolytic polymerization. A conductive polymer film containing a dopant can be formed on the electrode by immersing the plate-like electrode in an electrolytic solution containing a monomer and a conductive polymer and applying a voltage. The method of electropolymerization is not particularly limited, and may be any of a constant potential method, a constant current method, and an electric sweep method. The electrode used for electrolytic polymerization is not particularly limited, and may be a general one such as a Pt electrode, a Ti electrode, or a Ni electrode.
[0022] イオン供給体 2は電解質板 21と、潤滑性電解質層 22とからなる。電解質板 21の両面 に潤滑性電解質層 22, 22が設けられており、潤滑性電解質層 22, 22に導電性膜 la, lbが接触している。電解質板 21上に潤滑性電解質層 22を介して導電性膜 la, lbが 設けられているので、導電性膜 la, lbは、大きな摩擦を生じることなく電解質板 21に
沿って伸縮することができる。 The ion supply body 2 includes an electrolyte plate 21 and a lubricating electrolyte layer 22. Lubricating electrolyte layers 22 and 22 are provided on both surfaces of the electrolyte plate 21, and the conductive membranes la and lb are in contact with the lubricating electrolyte layers 22 and 22. Since the conductive films la and lb are provided on the electrolyte plate 21 via the lubricating electrolyte layer 22, the conductive films la and lb can be applied to the electrolyte plate 21 without causing large friction. Can be stretched along.
[0023] 電解質板 21の厚さは 0.1 μ m〜100 mmであるのが好ましい。 100 mm超であると、抵 抗が大き過ぎて、導電性膜 la, lbに印加すべき電圧が大き過ぎる。 0.1 /z m未満であ ると、電流が短絡し易すぎる。潤滑性電解質層 22は、駆動時に生じる摩擦が大き過 ぎない程度に設けられていればよい。具体的には、厚さ 10 nm〜l μ mであるのが好 ましい。 [0023] The thickness of the electrolyte plate 21 is preferably 0.1 μm to 100 mm. If it exceeds 100 mm, the resistance is too large and the voltage to be applied to the conductive films la and lb is too large. If it is less than 0.1 / zm, the current is easily short-circuited. The lubricating electrolyte layer 22 only needs to be provided to such an extent that the friction generated during driving is not excessive. Specifically, the thickness is preferably 10 nm to l μm.
[0024] 電解質板 21及び潤滑性電解質層 22に含まれる電解質の例としては塩化ナトリウム 、 NaPF、 p-トルエンスルホン酸ナトリウム、過塩素酸ナトリウムが挙げられる。電解質 Examples of the electrolyte contained in the electrolyte plate 21 and the lubricating electrolyte layer 22 include sodium chloride, NaPF, sodium p-toluenesulfonate, and sodium perchlorate. Electrolytes
6 6
板 21及び潤滑性電解質層 22は、導電性高分子又は非導電性の高分子を含有しても よい。好ましい高分子の例として、ポリエチレングリコール、ポリアクリル酸が挙げられ る。 The plate 21 and the lubricating electrolyte layer 22 may contain a conductive polymer or a non-conductive polymer. Examples of preferred polymers include polyethylene glycol and polyacrylic acid.
[0025] 電解質板 21は固体又はゲル状であり、潤滑性電解質層 22はゲル状、ゾル状又はこ れらの組合せである。好ましいゲル電解質の例として、ポリアクリルアミド、ポリエチレ ングリコール、寒天にスルホン酸塩等の塩を分散させたものが挙げられる。 [0025] The electrolyte plate 21 is solid or gel, and the lubricating electrolyte layer 22 is gel, sol, or a combination thereof. Examples of preferred gel electrolytes include polyacrylamide, polyethylene glycol, and agar in which a salt such as sulfonate is dispersed.
[0026] 回路 4は、並列に設けられた第一及び第二のスィッチ 4a, 4bを有する。第一のスイツ チ 4aは外部電極 7の正極と回路 4とを接続するものであり、第二のスィッチ 4bは負極と 回路 4とを接続するものである。第一及び第二の導電性膜 la, lbのいずれを正極に するかは、スィッチ 4a, 4bによって適宜設定できる。 The circuit 4 has first and second switches 4a and 4b provided in parallel. The first switch 4 a connects the positive electrode of the external electrode 7 and the circuit 4, and the second switch 4 b connects the negative electrode and the circuit 4. Which of the first and second conductive films la and lb is used as the positive electrode can be appropriately set by the switches 4a and 4b.
[0027] 短絡回路 5は、第一及び第二のスィッチ 4a, 4bに並列に設けられている。スィッチ 4a , 4bを開いた状態で短絡回路 5のスィッチ 50を閉じると、第一の導電性膜 laと第二の 導電性膜 lbとは電気的に直接繋がる。 [0027] The short circuit 5 is provided in parallel with the first and second switches 4a, 4b. When the switch 50 of the short circuit 5 is closed with the switches 4a and 4b opened, the first conductive film la and the second conductive film lb are electrically connected directly.
[0028] 図 2(a)は、回路 4に外部電極 7を接続した高分子ァクチユエータを示す。図中の細 い矢印は、電流の流れを表す。図 2(a)に示すように、第一のスィッチ 4aを第一の導 電性膜 la側に接続し、第二のスィッチ 4bを第二の導電性膜 lb側に接続すると、第一 の導電性膜 laは酸化され、イオン供給体 2を取り込んで伸長する。一方、第二の導電 性膜 lbは還元され、イオン供給体 2を放出して収縮する。第一の導電性膜 laの伸長 によって駆動部材 6aは図中右側に移動し、第二の導電性膜 lbの収縮によって駆動 部材 6bは図中左側に移動する。この間に、導電性膜 la, lbには電荷が蓄えられ、コ
ンデンサー(二次電池)の状態になる。 FIG. 2 (a) shows a polymer actuator in which the external electrode 7 is connected to the circuit 4. The thin arrows in the figure represent the current flow. As shown in FIG. 2 (a), when the first switch 4a is connected to the first conductive film la side and the second switch 4b is connected to the second conductive film lb side, the first switch 4a is connected to the first conductive film la side. The conductive film la is oxidized and takes in the ion supplier 2 and expands. On the other hand, the second conductive membrane lb is reduced and contracts by releasing the ion supplier 2. The driving member 6a moves to the right side in the figure by the extension of the first conductive film la, and the driving member 6b moves to the left side in the figure by contraction of the second conductive film lb. During this time, electric charges are stored in the conductive films la and lb. It becomes the state of the battery (secondary battery).
[0029] 図 2(b)に示すように、スィッチ 4a, 4bを開 、て短絡回路 5のスィッチ 50を閉じると、第 二の導電性膜 lbに溜まった電荷が短絡回路 5を通って第一の導電性膜 laに流れる。 このように電流を短絡させることによって、両導電性膜 la, lbが電気的に中和される。 中和によって、第一の導電性膜 laが収縮するとともに、第二の導電性膜 lbは伸長し、 導電性膜 la, lbはほぼ元の長さに戻る。 [0029] As shown in FIG. 2 (b), when the switches 4a and 4b are opened and the switch 50 of the short circuit 5 is closed, the charge accumulated in the second conductive film lb passes through the short circuit 5 and passes through the second circuit 5b. Flows into one conductive film la. By short-circuiting the current in this way, both the conductive films la and lb are electrically neutralized. By neutralization, the first conductive film la contracts, the second conductive film lb expands, and the conductive films la and lb almost return to their original length.
[0030] 電流の短絡によって両導電性膜 la, lbを中和した後で、外部電極 7によって逆向き に通電する。図 2(c)に示すように、第二のスィッチ 4bを第一の導電性膜 la側に接続 し、第一のスィッチ 4aを第二の導電性膜 lb側に接続すると、第一の導電性膜 laは収 縮し、第二の導電性膜 lbは伸長する。もちろん、駆動部材 6a, 6bも導電性膜 la, lbの 伸縮に伴って移動する。 [0030] After the conductive films la and lb are neutralized by a short circuit of current, the external electrode 7 is energized in the opposite direction. As shown in FIG. 2 (c), when the second switch 4b is connected to the first conductive film la side and the first switch 4a is connected to the second conductive film lb side, the first conductive film The conductive film la contracts and the second conductive film lb expands. Of course, the drive members 6a and 6b also move as the conductive films la and lb expand and contract.
[0031] 図 1及び 2に示す高分子ァクチユエータのように、両極が導電性膜からなる場合、通 電時に両極で起こる反応は導電性高分子の酸化還元反応である。したがって、水素 や酸素等を発生しな 、ので、与えた電気エネルギーが化学エネルギーとして消費さ れず、良好なエネルギー効率を示す。 [0031] When both electrodes are made of a conductive film as in the polymer actuator shown in FIGS. 1 and 2, the reaction that occurs at both electrodes during conduction is a redox reaction of the conductive polymer. Therefore, since hydrogen, oxygen, etc. are not generated, the applied electric energy is not consumed as chemical energy, and it shows good energy efficiency.
[0032] 図 3は、本発明の高分子ァクチユエータの別の例を示す。図 3に示す高分子ァクチ ユエータは、第一及び第二の導電性膜 la, lbが流動性イオン供給体 20に浸漬されて いる以外、図 1に示す例とほぼ同じであるので、相違点のみ以下に説明する。 FIG. 3 shows another example of the polymer actuator of the present invention. The polymer activator shown in FIG. 3 is substantially the same as the example shown in FIG. 1 except that the first and second conductive membranes la and lb are immersed in the fluid ion supplier 20, so that the difference is the same. Only described below.
[0033] 第一及び第二の導電性膜 la, lbはセル 3の長手方向に、平行に設けられている。 The first and second conductive films la and lb are provided in parallel with the longitudinal direction of the cell 3.
導電性膜 la, lbは導電性高分子、ドーパント及び弾性体力 なる複合体であるのが 好ましい。高分子と弾性体を含む複合体は大きな機械的強度を示すので、導電性膜 la, lbの伸長時に、駆動部材 6a, 6bに駆動力を伝え易い。弾性体の例としては、膜 状、網状等のゴムやパネが挙げられる。例えばゴムに導電性膜を卷きつけることによ つて、弾性体と導電性高分子との複合体を作製可能である。 The conductive films la and lb are preferably a composite comprising a conductive polymer, a dopant, and elastic force. Since the composite including the polymer and the elastic body exhibits a large mechanical strength, the driving force can be easily transmitted to the driving members 6a and 6b when the conductive films la and lb are extended. Examples of the elastic body include film-like and net-like rubber and panel. For example, a composite of an elastic body and a conductive polymer can be produced by attaching a conductive film to rubber.
[0034] イオン供給体 20は、導電性膜 la, lbの伸張及び収縮を妨げ過ぎない程度の流動 性を有する必要がある。流動性イオン供給体 20は溶液、ゾル、ゲル、溶液どノルの混 合物、ゾルとゲルの混合物、又は溶液とゾルの混合物であるのが好ましい。イオン供 給体 20がゾル若しくはゲル又はこれらの混合物であると、液漏れのおそれが無 、の
で好ましい。イオン供給体 20が含有する溶媒及び Z又は分散媒は、水、極性有機溶 剤又はイオン性液体であるのが好ましい。溶媒及び Z又は分散媒が水、極性有機溶 剤又はイオン性液体であると、イオン供給体 20は大きな導電性を示す。溶媒が水の 場合、電解質水溶液の濃度は 0.01〜5mol/L程度であるのが好ましい。 [0034] The ion supplier 20 needs to have a fluidity that does not excessively hinder the expansion and contraction of the conductive membranes la and lb. The fluid ion supplier 20 is preferably a solution, sol, gel, solution-nor mixture, sol-gel mixture, or solution-sol mixture. If the ion supplier 20 is a sol or gel or a mixture thereof, there is no risk of liquid leakage. Is preferable. The solvent and Z or dispersion medium contained in the ion supplier 20 are preferably water, a polar organic solvent, or an ionic liquid. When the solvent and Z or the dispersion medium are water, a polar organic solvent, or an ionic liquid, the ion supplier 20 exhibits high conductivity. When the solvent is water, the concentration of the aqueous electrolyte solution is preferably about 0.01 to 5 mol / L.
[0035] 図 4は、図 3に示す高分子ァクチユエータにおける印加電圧に対する電流と、導電 性膜 la, lbの伸縮を概略的に示す。イオン供給体 20には参照電極 Rが浸漬されてい る。参照電極 Rには銀 Z塩ィ匕銀電極等、一般的なものを使用することができる。電圧 計 A及び電流計 Vは、外部電極 7によって印加された電圧及び電流を測定するように 接続されている。導電性膜 la, lbに通電していない状態(区間 I)では、電圧値は自然 電位を示す。導電性膜 la, lbの長さは、自然長である。 FIG. 4 schematically shows the current with respect to the applied voltage and the expansion and contraction of the conductive films la and lb in the polymer actuator shown in FIG. A reference electrode R is immersed in the ion supplier 20. As the reference electrode R, a general one such as a silver Z salt-silver electrode can be used. Voltmeter A and ammeter V are connected to measure the voltage and current applied by external electrode 7. When the conductive film la, lb is not energized (Section I), the voltage value indicates a natural potential. The lengths of the conductive films la and lb are natural lengths.
[0036] 第一の導電性膜 laが正極になって第二の導電性膜 lbが負極となるようにスィッチ 4 a, 4b (図示せず)を入れると、回路 4及び導電性膜 la, lbを通ってイオン供給体 20に 電流が流れる(区間 11)。通電した直後に、電流値は大きな値を示すものの、すぐに減 少する。これは第一の導電性膜 laに電荷が蓄積し、充電量が飽和に達したためであ ると考免られる。 When the switches 4 a and 4 b (not shown) are inserted so that the first conductive film la becomes the positive electrode and the second conductive film lb becomes the negative electrode, the circuit 4 and the conductive film la, A current flows through the lb to the ion supplier 20 (section 11). Immediately after energization, the current value shows a large value, but decreases immediately. It can be considered that this is because charges accumulated in the first conductive film la and the charge amount reached saturation.
[0037] 導電性膜 la, lbに蓄電された状態で、スィッチ 4a, 4bを開くとともに短絡回路 5を閉 じると、導電性膜 la, lbに溜められた電荷が短絡回路 5を流れる(区間 111)。電流の短 絡によって導電性膜 la, lbは電気的に中性になり、イオン供給体 20を吸収又は放出 して元の長さに戻る。 [0037] When the switches 4a and 4b are opened and the short circuit 5 is closed while being stored in the conductive films la and lb, the electric charge stored in the conductive films la and lb flows through the short circuit 5 ( (Section 111). Due to the short circuit of the current, the conductive films la and lb become electrically neutral, and the ion source 20 is absorbed or released and returns to its original length.
[0038] 短絡回路 5のスィッチ 50を開 、た後、第一の導電性膜 laが負極になって、第二の 導電性膜 lbが正極となるようにスィッチ 4a, 4bを入れると、区間 IIとは逆向きの電流が 回路 4を通ってイオン供給体 2に流れる(区間 IV)。この間に第一の導電性膜 laは還 元されて収縮し、第二の導電性膜 lbは酸化されて伸長する。その後、スィッチ 4a, 4b を切って短絡回路 5のスィッチ 50を入れると、導電性膜 la, lbに溜まった電荷が短絡 し、導電性膜 la, lbは再び元の長さに戻る(区間 V)。このように、逆向きの電圧を印 加する前に、蓄電した導電性膜 la, lbを短絡回路 5を用いて予め放電させておくこと によって、無駄な電力消費を避け、高分子ァクチユエータを効率的に駆動させること ができる。
[0039] 図 6に示す高分子ァクチユエータは、セル 3の長手方向にパネ状の導電体 100a, 10 Obを有している以外、図 3に示す例と同じである。パネ状導電体 100a, 100bの好まし V、例として、形状記憶合金力 なるパネに導電性高分子を成膜したものが挙げられ る。例えばモノマー及びドーパントを含有する溶液中で、金属製のパネを電極として モノマーを電解重合させることによって、導電性高分子及びドーパントを含有するバ ネ状導電体 100a, 100bを作製することができる。 [0038] After the switch 50 of the short circuit 5 is opened, the switches 4a and 4b are inserted so that the first conductive film la becomes the negative electrode and the second conductive film lb becomes the positive electrode. A current in the opposite direction to II flows through circuit 4 to ion supplier 2 (section IV). During this time, the first conductive film la is reduced and contracts, and the second conductive film lb is oxidized and stretched. After that, when the switches 4a and 4b are turned off and the switch 50 of the short circuit 5 is turned on, the charges accumulated in the conductive films la and lb are short-circuited, and the conductive films la and lb return to their original lengths again (section V ). In this way, before applying a reverse voltage, the stored conductive films la and lb are discharged in advance using the short circuit 5 to avoid unnecessary power consumption and make the polymer actuator more efficient. Can be driven automatically. The polymer actuator shown in FIG. 6 is the same as the example shown in FIG. 3 except that the cell-shaped conductors 100 a and 10 Ob are provided in the longitudinal direction of the cell 3. Preferred V of the panel-like conductors 100a and 100b, for example, a film having a conductive polymer film formed on a panel having shape memory alloy power. For example, in the solution containing the monomer and the dopant, the conductive conductor 100a and 100b containing the conductive polymer and the dopant can be produced by electrolytic polymerization of the monomer using a metal panel as an electrode.
[0040] 図 6は、本発明の高分子ァクチユエータのさらに別の例を示す。図 6に示す高分子 ァクチユエータは、第二の導電性膜 lbの代わりに金属電極 71を有している以外、図 1 に示す例とほぼ同じであるので、相違点のみ以下に説明する。金属電極 71は電解質 板 21に接触している。外部電極 7を回路 4に繋ぐと、第一の導電性膜 laと金属電極 71 との間に電流が流れる。金属電極 71はとしては特に限定されず、白金、金、銀、銅、 ニッケル、ステンレス、カーボン等、一般的な電極材料力もなるものを使用することが できる。 FIG. 6 shows still another example of the polymer activator of the present invention. The polymer activator shown in FIG. 6 is substantially the same as the example shown in FIG. 1 except that it has a metal electrode 71 instead of the second conductive film lb, and only the differences will be described below. The metal electrode 71 is in contact with the electrolyte plate 21. When the external electrode 7 is connected to the circuit 4, a current flows between the first conductive film la and the metal electrode 71. The metal electrode 71 is not particularly limited, and a metal electrode having a general electrode material strength such as platinum, gold, silver, copper, nickel, stainless steel, and carbon can be used.
[0041] 図 7は、図 6に示す高分子ァクチユエータにおける印加電圧に対する電流と、導電 性膜 laの伸縮との関係を概略的に示す。導電性膜 laと金属電極 71との間に通電して いない状態(区間 I)では、導電性膜 laは自然長である。第一の導電性膜 laを正極と し、金属電極 71を負極とするようにスィッチ 4a, 4b (図示せず)を入れると、回路 4に電 流が流れ (区間 11)、第一の導電性膜 laが酸化されて伸長する。この間に導電性膜 la には、電荷が溜まる。金属電極 71側では、還元反応が起こる。 FIG. 7 schematically shows the relationship between the current with respect to the applied voltage and the expansion and contraction of the conductive film la in the polymer actuator shown in FIG. In a state where no current is supplied between the conductive film la and the metal electrode 71 (section I), the conductive film la has a natural length. When switches 4a and 4b (not shown) are inserted so that the first conductive film la is the positive electrode and the metal electrode 71 is the negative electrode, current flows through circuit 4 (section 11), and the first conductive film Sexual membrane la is oxidized and stretched. During this time, electric charges accumulate in the conductive film la. On the metal electrode 71 side, a reduction reaction occurs.
[0042] 導電性膜 la及び金属電極 71に蓄電した状態で回路 4を開くとともに短絡回路 5を閉 じると、電荷が短絡回路 5を流れる(区間 111)。電流の短絡によって導電性膜 la及び 金属電極 71には電気的に中性になり、導電性膜 laはほぼ元の長さに戻る。放電後、 短絡回路 5のスィッチ 50を開き、第一の導電性膜 laを負極とし、金属電極 71を正極と するようにスィッチ 4a, 4bを入れると、区間 IIとは逆向きの電流が回路 4に流れる(区間 IV)。この間に第一の導電性膜 laは還元されて収縮する。 [0042] When the circuit 4 is opened and the short circuit 5 is closed while the conductive film la and the metal electrode 71 are charged, charge flows through the short circuit 5 (section 111). Due to the short circuit of the current, the conductive film la and the metal electrode 71 become electrically neutral, and the conductive film la returns to its original length. After the discharge, switch 50 of short circuit 5 is opened, and switches 4a and 4b are inserted so that the first conductive film la is the negative electrode and metal electrode 71 is the positive electrode. It flows to 4 (Section IV). During this time, the first conductive film la is reduced and contracts.
[0043] 図 8は、本発明の高分子ァクチユエータのさらに別の例を示す。図 8に示す高分子 ァクチユエータは、導電性粉末からなる圧粉体 11を含む導電性積層体 10a, 10bを有 し、セル内に流動性イオン供給体 20が充填されている以外、図 1に示す例とほぼ同じ
であるので、相違点のみ以下に説明する。 FIG. 8 shows still another example of the polymer activator of the present invention. The polymer activator shown in FIG. 8 has conductive laminates 10a and 10b including a green compact 11 made of conductive powder, and is shown in FIG. 1 except that a fluid ion supplier 20 is filled in the cell. Almost the same as the example shown Therefore, only the differences will be described below.
[0044] 導電性積層体 10a, 10bは、それぞれ駆動端側から多孔質スぺーサ 13、圧粉体 11及 び薄層電極 12をこの順に 3組み有し、固定端側にさらに多孔質スぺーサ 13が重ねら れている。図 8に示す例では、薄層電極 12及び圧粉体 11を 3組み有する力 本発明 はこれに限定されるものではない。薄層電極 12及び圧粉体 11が多孔質スぺーサ 13を 介して 2組積層されていても良いし、 4組以上積層されていても良い。薄層電極 12と 圧粉体 11、圧粉体 11と多孔質スぺーサ 13、及び多孔質スぺーサ 13と薄層電極 12は 接着されている。 [0044] Each of the conductive laminates 10a and 10b has three sets of the porous spacer 13, the green compact 11, and the thin layer electrode 12 in this order from the drive end side, and further the porous spacer 13 on the fixed end side. Pager 13 is overlaid. In the example shown in FIG. 8, the force having three sets of the thin layer electrode 12 and the green compact 11 is not limited to this. Two sets of the thin layer electrode 12 and the green compact 11 may be laminated via the porous spacer 13, or four or more sets may be laminated. The thin layer electrode 12 and the green compact 11, the green compact 11 and the porous spacer 13, and the porous spacer 13 and the thin layer electrode 12 are bonded.
[0045] 圧粉体 11は板状であるのが好ましぐ厚さ 0.1〜20 mmであるのが好ましい。厚さ 0.1 mm未満であると、割れ易く取扱いが難しすぎるので好ましくない。厚さ 20 mm超であ ると、イオン供給体 2から電解質等を吸収及び放出するのが遅過ぎて、圧粉体 11の 応答性が悪過ぎる。圧粉体 11は円板状でもよいし、角板状でもよい。 [0045] The green compact 11 is preferably plate-shaped and preferably has a thickness of 0.1 to 20 mm. If the thickness is less than 0.1 mm, it is not preferable because it is easy to break and difficult to handle. If the thickness exceeds 20 mm, the electrolyte etc. are absorbed and released too slowly from the ion supplier 2, and the responsiveness of the green compact 11 is too bad. The green compact 11 may have a disk shape or a square plate shape.
[0046] 圧粉体 11は、導電性粉末を圧縮することにより形成される。例えば錠剤用製錠器に 導電性粉末を入れた後、製錠器内を減圧し、 700〜900 MPaで 3〜10分程度加圧す ること〖こより作製できる。導電性粉末は流動性イオン供給体 20中で通電することによ つて膨張及び Z又は収縮するので、導電性粉末を圧粉体にすることで、導電性粉末 に生じる膨張及び収縮をァクチユエータの変位として利用しうる。導電性粉末の電気 抵抗は、 10— 4Ω〜1Μ Ωであるのが好ましい。本明細書中、導電性粉末の電気抵抗は 、電極間隔 1.5 mmの 4端子法によって測定した値とする。電気抵抗が 1Μ Ω超である と、導電性が小さすぎてァクチユエータの効率が悪すぎる。電気抵抗が 10— 4 Ω未満の ものは作製困難である。 [0046] The green compact 11 is formed by compressing a conductive powder. For example, it can be prepared by putting conductive powder in a tablet tableting machine, then depressurizing the tableting machine, and pressurizing at 700 to 900 MPa for about 3 to 10 minutes. The conductive powder expands and contracts or contracts when energized in the flowable ion supply body 20. Therefore, when the conductive powder is compressed into a green compact, the expansion and contraction that occurs in the conductive powder is displaced by the actuator. It can be used as The electrical resistance of the conductive powder is preferably a 10- 4 Ω~1Μ Ω. In this specification, the electrical resistance of the conductive powder is a value measured by the 4-terminal method with an electrode spacing of 1.5 mm. If the electrical resistance exceeds 1Μ Ω, the conductivity is too small and the efficiency of the actuator is too bad. The electric resistance of less than 10- 4 Omega is difficult manufacturing.
[0047] 導電性粉末は導電性高分子及びドーパントを含有する。好まし!/ヽ導電性高分子及 びドーパントの例は、上述の導電性膜 la, lbと同じである。導電性粉末中の導電性 高分子の含有量は 1〜99.9質量%であるのが好ましぐ 30〜70質量%であるのがより 好ましい。導電性高分子が 1質量%未満であると、導電性粉末が吸収及び放出する 電解質や水の量が少な過ぎて、高分子ァクチユエータの変位量が小さ過ぎる。 99.9 質量%超であると、金属塩の含有量が少な過ぎるために導電性が小さ過ぎる。導電 性高分子の平均粒径は 10 nm〜 lmmであるのが好ましい。平均粒径 lmm超であると
、導電性高分子が流動性イオン供給体 20に接触している面積力 S小さすぎるため、高 分子ァクチユエータの応答性が低過ぎるので好ましくない。平均粒径 10 nm未満のも のは、作製及び取扱いが困難である。 [0047] The conductive powder contains a conductive polymer and a dopant. I like it! Examples of conductive polymers and dopants are the same as those of the conductive films la and lb described above. The content of the conductive polymer in the conductive powder is preferably 1 to 99.9% by mass, more preferably 30 to 70% by mass. If the conductive polymer is less than 1% by mass, the amount of electrolyte and water absorbed and released by the conductive powder is too small, and the displacement amount of the polymer actuator is too small. If it exceeds 99.9% by mass, the metal salt content is too small and the conductivity is too small. The average particle size of the conductive polymer is preferably 10 nm to lmm. If the average particle size exceeds lmm The area force S in contact with the flowable ion supplier 20 is too small, which is not preferable because the response of the high molecular weight actuator is too low. Those with an average particle size of less than 10 nm are difficult to produce and handle.
[0048] 導電性粉末は導電性高分子及びドーパントの他に、金属、金属塩及びカーボンか らなる群より選ばれた少なくとも一種を含有するのが好ましい。金属、金属塩及び力 一ボンからなる群より選ばれた少なくとも一種を含有する導電性粉末は、高い導電性 を有する。金属としては鉄、銅、ニッケル、チタン、亜鉛、クロム、アルミニウム、コバル ト、金、白金、銀、マンガン、タングステン、パラジウム、ルテニウム、ジルコニウム等が 好ましい。金属塩の例としては、三塩化鉄、塩化銅が挙げられる。 [0048] The conductive powder preferably contains at least one selected from the group consisting of metals, metal salts, and carbon in addition to the conductive polymer and the dopant. The conductive powder containing at least one selected from the group consisting of metal, metal salt, and force bon has high conductivity. As the metal, iron, copper, nickel, titanium, zinc, chromium, aluminum, cobalt, gold, platinum, silver, manganese, tungsten, palladium, ruthenium, zirconium and the like are preferable. Examples of metal salts include iron trichloride and copper chloride.
[0049] 導電性高分子、ドーパント及び金属塩を含有する場合を例にとって、導電性粉末を 作製する方法を説明する。粉末状の導電性高分子は、酸化重合により効率的に合 成することができる。ドーパント及び金属塩を含む水溶液中にモノマーを滴下して撹 拌することにより、モノマーがドーパント及び金属塩を取り込みながら重合する。これ により、導電性高分子中にドーパント及び金属塩を含有する導電性粉末を作製する ことができる。塩化銅、三塩化鉄等の金属塩は酸化重合触媒としても機能する。金属 塩 Zモノマーのモル比が ιοΖΐ〜ΐΖΐοο程度となるように、水溶液、極性有機溶液 又はイオン性溶液中に金属塩を溶解しておくのが好ま U、。 [0049] A method for producing conductive powder will be described by taking as an example the case of containing a conductive polymer, a dopant and a metal salt. The powdery conductive polymer can be efficiently synthesized by oxidative polymerization. By dropping the monomer into an aqueous solution containing the dopant and the metal salt and stirring, the monomer polymerizes while taking in the dopant and the metal salt. As a result, a conductive powder containing a dopant and a metal salt in the conductive polymer can be produced. Metal salts such as copper chloride and iron trichloride also function as an oxidation polymerization catalyst. Metal salt It is preferable to dissolve the metal salt in an aqueous solution, polar organic solution or ionic solution so that the molar ratio of Z monomer is about ιοΖΐ to ΐΖΐοο.
[0050] 薄層電極 12の厚さは 0.1 μ m〜10 mm程度であるのが好ましい。薄層電極 12は接着 剤で圧粉体 11に接合されても良いし、化学めつき、電気めつき、真空蒸着等によって 圧粉体 11上に形成されても良い。圧粉体 11上に薄層電極 12を形成する方法としては 、化学めつき、電気めつき、真空蒸着、スパッタリング、塗布、圧着、溶着等が挙げら れる。薄層電極 12は白金、金、銀、銅、ニッケル、ステンレス、カーボンからなるのが 好ましい。 [0050] The thickness of the thin layer electrode 12 is preferably about 0.1 μm to 10 mm. The thin layer electrode 12 may be bonded to the green compact 11 with an adhesive, or may be formed on the green compact 11 by chemical bonding, electric bonding, vacuum deposition, or the like. Examples of the method for forming the thin layer electrode 12 on the green compact 11 include chemical plating, electric plating, vacuum deposition, sputtering, coating, pressure bonding, welding, and the like. The thin layer electrode 12 is preferably made of platinum, gold, silver, copper, nickel, stainless steel, or carbon.
[0051] 駆動端側の多孔質スぺーサ 13には、可動板 61a, 61bと、可動板 61a, 61bに垂直に 接続された駆動バー 62a, 62bとからなる駆動部材 6a, 6bが取り付けられている。流動 性イオン供給体 20が開口部 31, 31から漏出しないように、開口部 31, 31はシールされ ている。イオン供給体 20は圧粉体 11の伸張及び収縮を妨げない程度の流動性を有 する必要がある。流動性イオン供給体 20の好ましい例は、図 3に示す例と同じである
[0052] 圧粉体 11は酸化されるとイオン供給体 20を吸収して膨らみ、還元されるとイオン供 給体 20を放出して縮むので、外部電極 7によって電圧を印加することによって導電性 積層体 10a, 10bを伸縮させ、駆動部材 6a, 6bを左右に変位させることができる。 [0051] The porous spacer 13 on the drive end side is attached with drive members 6a, 6b comprising movable plates 61a, 61b and drive bars 62a, 62b connected perpendicularly to the movable plates 61a, 61b. ing. The openings 31 and 31 are sealed so that the flowable ion supplier 20 does not leak from the openings 31 and 31. The ion supplier 20 needs to have fluidity that does not hinder the expansion and contraction of the green compact 11. A preferred example of the flowable ion supplier 20 is the same as the example shown in FIG. [0052] When the green compact 11 is oxidized, it absorbs the ion supply body 20 and expands. When the green compact 11 is reduced, the ion supply body 20 is released and contracts. Therefore, the green compact 11 becomes conductive by applying a voltage through the external electrode 7. The laminates 10a and 10b can be expanded and contracted to displace the drive members 6a and 6b to the left and right.
[0053] 図 9に示す高分子ァクチユエータは一対のセル 3a, 3bを有し、一方のセル 3aに第一 の導電性膜 laが収容され、他方のセル 3bに第二の導電性膜 lbが収容されている以 外、図 1及び 2に示す例とほぼ同じであるので、相違点のみ以下に説明する。 [0053] The polymer actuator shown in FIG. 9 has a pair of cells 3a and 3b. The first conductive film la is accommodated in one cell 3a, and the second conductive film lb is accommodated in the other cell 3b. Since it is almost the same as the example shown in FIGS. 1 and 2 except for being accommodated, only the differences will be described below.
[0054] セル 3a, 3bにはそれぞれ電解質板 21, 21が収容されており、各電解質板 21, 21の 一面に潤滑性電解質層 22, 22を介して第一の導電性膜 la及び第二の導電性膜 lbが それぞれ設けられている。電解質板 21, 21は塩橋 23によって接続されている。塩橋 2 3は柔軟性を有して 、るのが好ま 、。 [0054] Electrolyte plates 21 and 21 are accommodated in the cells 3a and 3b, respectively, and the first conductive film la and the second electrode are disposed on one surface of each of the electrolyte plates 21 and 21 via the lubricating electrolyte layers 22 and 22, respectively. Each of the conductive films lb is provided. The electrolyte plates 21 and 21 are connected by a salt bridge 23. Shiohashi 2 3 is flexible and is preferred.
[0055] 図 10に示す高分子ァクチユエータは、一対のセル 3a, 3bにそれぞれ導電性積層体 10a, 10bがそれぞれ収容されている以外、図 9に示す例とほぼ同じであるので、相違 点のみ以下に説明する。導電性積層体 10a, 10bは、図 8に示す高分子ァクチユエ一 タと同じでよい。セル 3a, 3b内には、それぞれ流動性イオン供給体 20, 20が入れられ ている。イオン供給体 20, 20は塩橋 23で接続されている。 [0055] The polymer actuator shown in FIG. 10 is substantially the same as the example shown in FIG. 9 except that the conductive laminates 10a and 10b are accommodated in the pair of cells 3a and 3b, respectively. This will be described below. The conductive laminates 10a and 10b may be the same as the polymer activator shown in FIG. In the cells 3a and 3b, fluid ion suppliers 20 and 20 are placed, respectively. The ion suppliers 20 and 20 are connected by a salt bridge 23.
[0056] 図 11に示す高分子ァクチユエータは、セル 3a, 3b内に電解質板 21, 21に接触する ように設けられたレドックス電極 72, 72を有する以外、図 9に示す例とほぼ同じである ので、相違点のみ以下に説明する。レドックス電極 72, 72は、導電性膜 la, lbとは反 対側の面に設けられている。レドックス電極 72, 72は導線 24で接続されている。 [0056] The polymer actuator shown in FIG. 11 is substantially the same as the example shown in FIG. 9 except that the cells 3a and 3b have redox electrodes 72 and 72 provided in contact with the electrolyte plates 21 and 21, respectively. Therefore, only differences will be described below. The redox electrodes 72 and 72 are provided on the surface opposite to the conductive films la and lb. The redox electrodes 72 and 72 are connected by a conductive wire 24.
[0057] レドックス電極 72, 72は酸化還元能を有する材料からなればよぐ高分子化合物か らなっても良いし、低分子量の有機化合物力もなつても良いし、無機物力もなつてもよ い。酸ィ匕還元能を有する高分子化合物の例としてポリアセチレン、ポリチォフェン、ポ リピロール、ポリア二リン、ポリパラフエ二レン、ポリフエ二レンスルフイド、ポリフエ二レン ォキシド、ポリフエ-レンビ-レン、ポリアセン及びこれらの誘導体が挙げられる。無機 物の例としては鉄、ニッケル、コバルト、ルテニウム、金等の遷移金属元素のシァノ錯 体やエチレンジァミン四酢酸錯体、クロロ錯体、及び沃素や臭素等のハロゲンが挙げ られる。有機化合物の例としては、ビョローゲン類、ポルフィリン類、フタロシアニン類
、キノン類、チォレート化合物が挙げられる。 [0057] The redox electrodes 72, 72 may be made of a high molecular compound as long as it is made of a material having redox ability, may have a low molecular weight organic compound force, and may have an inorganic substance force. . Examples of the polymer compound having an acid reducing ability include polyacetylene, polythiophene, polypyrrole, polyaniline, polyparaphenylene, polyphenylene sulfide, polyphenylene oxide, polyphenylene vinylene, polyacene and derivatives thereof. It is done. Examples of inorganic substances include cyano complexes of transition metal elements such as iron, nickel, cobalt, ruthenium, and gold, ethylenediamine tetraacetic acid complexes, chloro complexes, and halogens such as iodine and bromine. Examples of organic compounds include viologens, porphyrins, phthalocyanines , Quinones, and thiolate compounds.
[0058] 図 12に示す高分子ァクチユエータは、一対のセル 3a, 3bにそれぞれレドックス電極 72, 72が収容され、両レドックス電極 72, 72に導線 24が接続されている以外、図 10に 示す例とほぼ同じであるので、相違点のみ以下に説明する。レドックス電極 72, 72は 、セル 3a, 3bに入れられたイオン供給体 20, 20に浸漬されている。レドックス電極 72, 72の例は、図 11に示す高分子ァクチユエータと同じである。 The polymer actuator shown in FIG. 12 is an example shown in FIG. 10, except that the redox electrodes 72 and 72 are accommodated in the pair of cells 3a and 3b, respectively, and the conductive wire 24 is connected to the redox electrodes 72 and 72. Therefore, only the differences will be described below. The redox electrodes 72 and 72 are immersed in the ion supply bodies 20 and 20 placed in the cells 3a and 3b. Examples of the redox electrodes 72 and 72 are the same as the polymer actuator shown in FIG.
[0059] 図 13は、本発明の高分子ァクチユエータのさらに別の例を示す。図 13に示す高分 子ァクチユエータは、セル 3a, 3b内にそれぞれ第一及び第二の導電性膜 la, lbが長 手方向に設けられており、セル 3a, 3b内に流動性のイオン供給体 20が充填されてい る以外、図 11に示す高分子ァクチユエータとほぼ同じであるので、相違点のみ以下 に説明する。 FIG. 13 shows still another example of the polymer actuator of the present invention. In the high molecular weight actuator shown in FIG. 13, first and second conductive films la and lb are provided in the cells 3a and 3b in the longitudinal direction, respectively, and fluid ions are supplied into the cells 3a and 3b. Since it is almost the same as the polymer actuator shown in FIG. 11 except that the body 20 is filled, only the differences will be described below.
[0060] 第一及び第二の導電性膜 la, lbの固定端部は、セル 3a, 3bの内面に接着されてい る。第一及び第二の導電性膜 la, lbの可動端部には、駆動部材 6a, 6bの可動板 61a , 61bが取り付けられている。可動板 61a, 61bとセル 3a, 3bの内壁との間に弾性体 8a, 8bが張設されており、第一及び第二の導電性膜 la, lbは弾性体 8a, 8bによって引つ 張られた状態になっている。図 13に示すように、通電していない状態では、可動板 61 a, 61bは第一及び第二の導電性膜 la, lbと弾性体 8a, 8bとの弾性力がつりあう位置 で静止している。弾性体 8a, 8bの好ましい例として、ひも状、膜状又は網状のゴム、形 状記憶合金力 なるパネ、形状記憶合金以外の金属からなるパネが挙げられる。 [0060] The fixed ends of the first and second conductive films la and lb are bonded to the inner surfaces of the cells 3a and 3b. The movable plates 61a and 61b of the drive members 6a and 6b are attached to the movable end portions of the first and second conductive films la and lb. Elastic bodies 8a and 8b are stretched between the movable plates 61a and 61b and the inner walls of the cells 3a and 3b. The first and second conductive films la and lb are stretched by the elastic bodies 8a and 8b. It is in the state that was. As shown in FIG. 13, in a state where current is not applied, the movable plates 61a and 61b are stopped at a position where the elastic forces of the first and second conductive films la and lb and the elastic bodies 8a and 8b are balanced. Yes. Preferable examples of the elastic bodies 8a and 8b include a string-like, film-like or net-like rubber, a panel having a shape memory alloy force, and a panel made of a metal other than the shape memory alloy.
[0061] 図 14(a)に示すように、第一の導電性膜 laが正極となるように電圧を印加すると、第 一の導電性膜 laは酸化されて伸長するので、弾性体 8aの弾性力によって可動板 61a は図中右側へ移動する。一方、第二の導電性膜 lbは還元されて、弾性体 8bに逆らつ て収縮する。そのため可動板 61bは、図中左側に移動する。スィッチ 4a, 4bを開いて 短絡回路 5のスィッチ 50を閉じると、可動板 61a, 61bは、導電性膜 la, lb及び弾性体 8a, 8bの弾性力がつりあう位置に戻る(図 14(b) ) o次いで逆向きに通電すると、図 14( c)に示すように、第一の導電性膜 laが還元されて収縮して可動板 61aは左側へ移動 し、第二の導電性膜 lbが伸長され、可動板 61bは右側へ移動する。 [0061] As shown in FIG. 14 (a), when a voltage is applied so that the first conductive film la becomes a positive electrode, the first conductive film la is oxidized and stretched. The movable plate 61a moves to the right side in the figure by the elastic force. On the other hand, the second conductive film lb is reduced and contracts against the elastic body 8b. Therefore, the movable plate 61b moves to the left side in the figure. When the switches 4a and 4b are opened and the switch 50 of the short circuit 5 is closed, the movable plates 61a and 61b return to the positions where the elastic forces of the conductive films la and lb and the elastic bodies 8a and 8b are balanced (FIG. 14 (b) ) Then, when energized in the opposite direction, as shown in FIG. 14 (c), the first conductive film la is reduced and contracts, the movable plate 61a moves to the left side, and the second conductive film lb As a result, the movable plate 61b moves to the right.
実施例
[0062] 本発明を以下の実施例によってさらに詳細に説明するが、本発明はそれらに限定 されるものではない。 Example [0062] The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
[0063] 実施例 1 [0063] Example 1
電解重合によって、ドーパントとして BF—を含有するポリピロール膜 (膜厚 20 m)を By electropolymerization, a polypyrrole film (thickness 20 m) containing BF— as a dopant was formed.
4 Four
得た。このポリピロ一ル膜を第一の導電性膜 la及び第二の導電性膜 lb (長さ 10 mm、 幅 5mm)とし、イオン供給体 20として 1.0 Mの NaPF水溶液を用いて、図 3に示す高分 Obtained. This polypyrrole film is used as a first conductive film la and a second conductive film lb (length: 10 mm, width: 5 mm), and a 1.0 M NaPF aqueous solution is used as the ion supplier 20 as shown in FIG. High minute
6 6
子ァクチユエータを組立てた。この時、導電性膜 la, lbにかかる負荷 (外部負荷)は、 それぞれ 5gであった。参照電極 Rとしては、銀電極を用いた。表 1に示すように外部 電極 7から電圧を印加し、回路 4の電流値及び電圧値、並びに第一の導電性膜 laの 伸縮量を測定した。印加電圧は、第一の導電性膜 laの変位量がほぼ最大に達したと ころで、切り替えた。結果を表 1及び図 15に示す。なお図 15〜18中の変位量は、第一 の導電性膜 laに接続された駆動部材 6aの変位量を示す。 I assembled a child actuator. At this time, the load (external load) applied to the conductive films la and lb was 5 g, respectively. As the reference electrode R, a silver electrode was used. As shown in Table 1, a voltage was applied from the external electrode 7, and the current value and voltage value of the circuit 4 and the amount of expansion and contraction of the first conductive film la were measured. The applied voltage was switched when the displacement of the first conductive film la reached the maximum. The results are shown in Table 1 and FIG. The displacement amount in FIGS. 15 to 18 indicates the displacement amount of the drive member 6a connected to the first conductive film la.
[0064] [表 1] [0064] [Table 1]
注 2 :下記式 (1)によって計算し、比較例 2を 1.00とした時の相対値を表に示した。式 ( 1)の右辺の分子は機械エネルギーを表し、分母は電気エネルギーを表す。 Note 2: Calculated by the following formula (1), and the relative values when Comparative Example 2 is 1.00 are shown in the table. The numerator on the right side of Equation (1) represents mechanical energy, and the denominator represents electrical energy.
[数 1]
外部員荷 X fe¾ … [Number 1] External load X fe¾…
電流 X電位 X印加時間 ' Current X potential X application time ''
[0065] 実施例 2 [0065] Example 2
第二の導電性膜 lbの代わりに白金電極を用いた以外、実施例 1と同様にして高分 子ァクチユエータを組み立て、電圧を印加して回路 4の電流値及び電圧値、並びに 第一の導電性膜 laの伸縮量を測定した。結果を表 1及び図 16に示す。 A high molecular weight actuator is assembled in the same manner as in Example 1 except that a platinum electrode is used in place of the second conductive film lb, and a voltage is applied to apply the current and voltage values of the circuit 4 and the first conductive The amount of expansion / contraction of the sex membrane la was measured. The results are shown in Table 1 and FIG.
[0066] 比較例 1 [0066] Comparative Example 1
実施例 1と同じ高分子ァクチユエータを用い、表 1に示すように、短絡工程を経ない ように電圧を印加して、回路 4の電流値及び電圧値、並びに第一の導電性膜 laの伸 縮量を測定した。結果を表 1及び図 17に示す。 Using the same polymer actuator as in Example 1, as shown in Table 1, voltage was applied so as not to go through the short-circuiting process, and the current value and voltage value of circuit 4 and the first conductive film la were expanded. Shrinkage was measured. The results are shown in Table 1 and FIG.
[0067] 比較例 2 [0067] Comparative Example 2
実施例 2と同じ高分子ァクチユエータを用い、表 1に示すように、短絡工程を経ない ように電圧を印加して、回路 4の電流値及び電圧値、並びに第一の導電性膜 laの伸 縮量を測定した。結果を表 1及び図 18に示す。
Using the same polymer actuator as in Example 2, as shown in Table 1, a voltage was applied so as not to go through the short-circuit process, and the current value and voltage value of circuit 4 and the first conductive film la were expanded. Shrinkage was measured. The results are shown in Table 1 and FIG.
Claims
[1] 導電性高分子及びドーパントを含有する第一の導電体と、第二の導電体と、前記 第一及び第二の導電体に接触したイオン供給体と、前記第一及び第二の導電体に 電圧を印加する回路と、前記第一及び第二の導電体間で電流を短絡させる回路とを 具備することを特徴とする高分子ァクチユエータ。 [1] A first conductor containing a conductive polymer and a dopant, a second conductor, an ion supplier in contact with the first and second conductors, and the first and second conductors A polymer actuator comprising: a circuit for applying a voltage to a conductor; and a circuit for short-circuiting a current between the first and second conductors.
[2] 請求項 1に記載の高分子ァクチユエータにおいて、前記第二の導電体が酸化還元 能を有する化合物力もなることを特徴とする高分子ァクチユエータ。 [2] The polymer activator according to claim 1, wherein the second conductor also has a compound power having an oxidation-reduction ability.
[3] 請求項 1又は 2に記載の高分子ァクチユエータにおいて、前記第二の導電体が導 電性高分子及びドーパントからなることを特徴とする高分子ァクチユエータ。 [3] The polymer actuator according to claim 1 or 2, wherein the second conductor comprises a conductive polymer and a dopant.
[4] 請求項 1〜3のいずれかに記載の高分子ァクチユエータにおいて、前記導電性高 分子がポリピロール、ポリチォフェン、ポリア-リン、ポリアセチレン及びこれらの誘導 体力 なる群より選ばれた少なくとも一種であることを特徴とする高分子ァクチユエ一 タ。 [4] The polymer activator according to any one of claims 1 to 3, wherein the conductive polymer is at least one selected from the group consisting of polypyrrole, polythiophene, polyarine, polyacetylene, and derivatives thereof. A high-performance polymer actuator.
[5] 請求項 1〜4のいずれかに記載の高分子ァクチユエータにおいて、前記イオン供給 体が溶液、ゾル、ゲル又はこれらの組合せであることを特徴とする高分子ァクチユエ ータ。 [5] The polymer activator according to any one of claims 1 to 4, wherein the ion supplier is a solution, a sol, a gel, or a combination thereof.
[6] 請求項 1〜5のいずれかに記載の高分子ァクチユエータにおいて、前記第一及び 第二の導電体が膜状であり、前記第一の導電体と前記第二の導電体との間に固体 及び Z又はゲル状のイオン供給体が挟まれていることを特徴とする高分子ァクチユエ ータ。 [6] The polymer actuator according to any one of [1] to [5], wherein the first and second electric conductors are in a film form, and the gap between the first electric conductor and the second electric conductor. A polymer activator characterized in that a solid and Z- or gel-like ion donor is sandwiched between them.
[7] 請求項 1〜5のいずれかに記載の高分子ァクチユエータにおいて、前記第一及び 第二の導電体の少なくとも一方が、導電性高分子及びドーパントを含有する導電性 粉末力 なる圧粉体であることを特徴とする高分子ァクチユエータ。 [7] The polymer actuator according to any one of claims 1 to 5, wherein at least one of the first and second conductors includes a conductive polymer and a dopant. A polymer activator characterized by
[8] 請求項 1〜7のいずれかに記載の高分子ァクチユエータにおいて、前記イオン供給 体が入れられた一対のセルを具備し、前記第一の導電体と第二の導電体が各セル に収容されており、各セルに入れられた前記イオン供給体が電気的に接続されて ヽ ることを特徴とする高分子ァクチユエータ。 [8] The polymer actuator according to any one of [1] to [7], comprising a pair of cells in which the ion supplier is placed, wherein the first conductor and the second conductor are in each cell. A polymer activator, which is accommodated and electrically connected to the ion supplier placed in each cell.
[9] 請求項 1〜8のいずれかに記載の高分子ァクチユエータを駆動させる方法であって
、前記電圧を印加する回路によって前記第一及び第二の導電体の一方が正極で他 方が負極となるように電圧を印カロした後、前記第一及び第二の導電体に逆向きに電 圧を印加する前に、前記短絡させる回路によって両導電体間で電流を短絡させるこ とを特徴とする方法。
[9] A method for driving the polymer actuator according to any one of claims 1 to 8, After applying a voltage so that one of the first and second conductors is a positive electrode and the other is a negative electrode by a circuit for applying the voltage, the first and second conductors are reversed. A method comprising short-circuiting a current between both conductors by the circuit to be short-circuited before applying a voltage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-061397 | 2005-03-04 | ||
JP2005061397A JP2006246659A (en) | 2005-03-04 | 2005-03-04 | High polymer actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006095549A1 true WO2006095549A1 (en) | 2006-09-14 |
Family
ID=36953151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/302749 WO2006095549A1 (en) | 2005-03-04 | 2006-02-16 | Polymer actuator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2006246659A (en) |
WO (1) | WO2006095549A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010041876A (en) * | 2008-08-07 | 2010-02-18 | Eamex Co | Polymer actuator element and driving method therefor |
JP4625545B2 (en) * | 2008-08-26 | 2011-02-02 | パナソニック株式会社 | Conductive polymer actuator device, control apparatus and control method for conductive polymer actuator |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008245428A (en) * | 2007-03-27 | 2008-10-09 | Furukawa Electric Co Ltd:The | Vibration and/or impact absorption element, vibration and/or impact absorber, and operation method of vibration and/or impact absorption element |
WO2010100907A1 (en) | 2009-03-04 | 2010-09-10 | パナソニック株式会社 | Polymer actuator |
CN105144323B (en) | 2013-04-25 | 2018-07-17 | 株式会社村田制作所 | Laminated ceramic capacitor and its manufacturing method |
JP5880594B2 (en) * | 2014-02-18 | 2016-03-09 | カシオ計算機株式会社 | Driving element and driving method |
WO2015045605A1 (en) * | 2013-09-27 | 2015-04-02 | カシオ計算機株式会社 | Drive component and driving method for drive component |
JP5962626B2 (en) * | 2013-09-27 | 2016-08-03 | カシオ計算機株式会社 | Driving element and driving method |
JP6324047B2 (en) * | 2013-12-10 | 2018-05-16 | 国立大学法人信州大学 | Gel actuator |
US11139426B2 (en) | 2015-12-21 | 2021-10-05 | Koninklijke Philips N.V. | Actuator device based on an electroactive polymer |
WO2017108489A1 (en) * | 2015-12-21 | 2017-06-29 | Koninklijke Philips N.V. | Actuator device based on an electroactive polymer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6244079A (en) * | 1985-08-20 | 1987-02-26 | Masafumi Yano | Energy converter |
JPH01186179A (en) * | 1988-01-21 | 1989-07-25 | Toshiba Corp | Electrostatic actuator |
JPH0432104A (en) * | 1990-05-25 | 1992-02-04 | Fuji Photo Film Co Ltd | New conductive high polymer and conductive material thereof |
JP2002025868A (en) * | 2000-07-10 | 2002-01-25 | Toyobo Co Ltd | Electric double-layer capacitor |
JP2003152234A (en) * | 2001-11-15 | 2003-05-23 | Sony Corp | Actuator and its manufacturing method |
JP2004197069A (en) * | 2002-08-09 | 2004-07-15 | Eamex Co | Method for producing conductive polymer, conductive polymer molded product, electrolytically stretching method, laminated product and use of the same |
-
2005
- 2005-03-04 JP JP2005061397A patent/JP2006246659A/en active Pending
-
2006
- 2006-02-16 WO PCT/JP2006/302749 patent/WO2006095549A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6244079A (en) * | 1985-08-20 | 1987-02-26 | Masafumi Yano | Energy converter |
JPH01186179A (en) * | 1988-01-21 | 1989-07-25 | Toshiba Corp | Electrostatic actuator |
JPH0432104A (en) * | 1990-05-25 | 1992-02-04 | Fuji Photo Film Co Ltd | New conductive high polymer and conductive material thereof |
JP2002025868A (en) * | 2000-07-10 | 2002-01-25 | Toyobo Co Ltd | Electric double-layer capacitor |
JP2003152234A (en) * | 2001-11-15 | 2003-05-23 | Sony Corp | Actuator and its manufacturing method |
JP2004197069A (en) * | 2002-08-09 | 2004-07-15 | Eamex Co | Method for producing conductive polymer, conductive polymer molded product, electrolytically stretching method, laminated product and use of the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010041876A (en) * | 2008-08-07 | 2010-02-18 | Eamex Co | Polymer actuator element and driving method therefor |
JP4625545B2 (en) * | 2008-08-26 | 2011-02-02 | パナソニック株式会社 | Conductive polymer actuator device, control apparatus and control method for conductive polymer actuator |
Also Published As
Publication number | Publication date |
---|---|
JP2006246659A (en) | 2006-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006095549A1 (en) | Polymer actuator | |
JP4038685B2 (en) | Actuator element | |
JP4433840B2 (en) | Polymer actuator | |
CN106688132B (en) | Silicon secondary battery | |
US7388321B2 (en) | Piezoelectric body, electric generator and polymer actuator | |
US8599534B2 (en) | Active electrolyte electrochemical capacitor | |
JP5473483B2 (en) | Actuator | |
JP4691703B2 (en) | Actuator element and manufacturing method thereof | |
TW541743B (en) | Pressure method for an electrode structure | |
Li et al. | Recently advances in flexible zinc ion batteries | |
TW572957B (en) | Pasty mass with nano-crystalline materials for electrochemical components and the layers produced therefrom and electrochemical components | |
JP4416200B2 (en) | Solid electrolyte and battery using the same | |
Wang et al. | Powering electronics by scavenging energy from external metals | |
Zhao et al. | Exploiting interfacial Cl–/Cl0 redox for a 1.8-V voltage plateau aqueous electrochemical capacitor | |
JP4848681B2 (en) | Polymer actuator | |
Song et al. | Cationic supercapacitance of carbon nanotubes covered with copper hexacyanoferrate | |
WO2020121799A1 (en) | Thermal battery | |
US7443087B2 (en) | Polymer actuator | |
US10886561B2 (en) | Adaptable electrical component | |
WO2005088825A1 (en) | Polymer actuator | |
JP2008117721A (en) | Secondary battery | |
JP2010124543A (en) | Polymer actuator | |
NL2030828B1 (en) | A thin film energy storage device | |
Mohan et al. | Self-Healing Gel Electrolytes for Flexible Supercapacitors | |
Ochoteco et al. | Assembled cation‐exchange/anion‐exchange polypyrrole layers as new simplified artificial muscles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06713890 Country of ref document: EP Kind code of ref document: A1 |