WO2006093297A1 - Intermittent reception control apparatus - Google Patents

Intermittent reception control apparatus Download PDF

Info

Publication number
WO2006093297A1
WO2006093297A1 PCT/JP2006/304169 JP2006304169W WO2006093297A1 WO 2006093297 A1 WO2006093297 A1 WO 2006093297A1 JP 2006304169 W JP2006304169 W JP 2006304169W WO 2006093297 A1 WO2006093297 A1 WO 2006093297A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
cell
reception
time
timing
Prior art date
Application number
PCT/JP2006/304169
Other languages
French (fr)
Japanese (ja)
Inventor
Naoyuki Yamamoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006093297A1 publication Critical patent/WO2006093297A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2662Arrangements for Wireless System Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver

Definitions

  • a necessary operation during standby of a mobile phone is to regularly receive a signal transmitted mainly using a paging channel (PCH: Paging Channel) of the base station power of the own cell.
  • PCH is allocated with a period of several hundred milliseconds and several seconds, and reception takes only several tens of milliseconds, and other times only maintain time synchronization. is there.
  • Receiving signals from the base station requires a high-speed and high-accuracy voltage-controlled temperature-compensated crystal oscillator (VCTCXO).
  • VCTCXO is also used to maintain time synchronization that occupies most of the waiting time. The time synchronization timer was circulated while it was running.
  • PCH signal of own cell A signal transmitted using local power PCH (hereinafter referred to as “PCH signal of own cell”) is received, and the received position of the synchronization word is calculated in the receiving window to calculate the received power. Time synchronization is maintained by performing time tracking based on the results.
  • the necessary operations during the standby of the mobile phone include a period of several tens of seconds or several minutes in addition to periodically receiving the PCH signal of the own cell as described above. You must also receive a signal from the base station.
  • GSM Global System for Mobile Communications
  • the field strength is reduced from up to six base stations in other cells.
  • Signals transmitted using the Chronization Channel (SCH) must be received once every 30 seconds, and broadcast control is performed from base stations of other cells with a maximum field strength of 6 Signals transmitted using the channel (BCCH broadcast Control Channel) (hereinafter referred to as “BCCH signals of other cells”) must be received once every 5 minutes.
  • BCCH broadcast Control Channel BCCH broadcast Control Channel
  • Patent Document 1 JP 2000-49682 A (Page 4)
  • the PCH signal of its own cell is received by activating the high-precision VCT CXO, and the time synchronization with the PCH signal of its own cell is highly accurate using VCTCXO. It is assumed that VCTCXO will be stopped in a state where it can be removed, so if the VC TCXO is stopped in a state where the BCCH signal and time synchronization of other cells are accurately taken using VCTCXO, The time synchronization with the PCH signal of the own cell is not accurate, and if this is repeated, the error components are accumulated and the error components are added, exceeding the time width of the reception window, and time synchronization is performed. It cannot be maintained.
  • An object of the present invention is to activate a high-speed and high-accuracy VCTCXO only when receiving a signal from a base station and extend a standby time even when receiving a signal from a base station of another cell. It is providing the intermittent reception control apparatus which can do.
  • the intermittent reception control apparatus provides a first control that is transmitted from a base station of the own cell using a paging channel in a part of the first period every first period of a predetermined length.
  • a communication terminal device that intermittently receives a signal and intermittently receives a second control signal transmitted from the base station power of another cell every second period longer than the first period, and has a relatively low speed and low accuracy.
  • the second control signal is Within the first period to be received, timing control means for controlling reception timing so as to start reception of the first control signal after completion of reception of the second control signal, and control of the timing control means Based on the cell switching means for switching the cell of the communication partner, and within the first period for receiving the second control signal, the reception start power of the second control signal until the reception of the first control signal is completed.
  • said high speed black A configuration that includes an activation means for activating the click, the.
  • the present invention in a short period of receiving a signal transmitted from a base station of another cell, immediately after receiving a signal transmitted from the base station of another cell, Receive the signal of the own cell, and activate the high-speed clock only during the period from the start of reception of the signal transmitted by the base station of another cell until the completion of reception of the signal transmitted by the base station of the own cell. can do.
  • high-precision VCTCXO can be activated, reducing power consumption and extending standby time.
  • FIG. 1 is a block diagram showing the configuration of an intermittent reception control apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing the configuration of a time synchronization timer according to Embodiment 1.
  • FIG. 3 is a timing diagram of the time synchronization timer at the start of the counter in the first embodiment.
  • FIG. 5 is a timing diagram of the time synchronization timer at the end of the counter in the first embodiment.
  • FIG. 6 is a block diagram showing a configuration of a sleep timer in the first embodiment
  • FIG. 7 is a timing diagram of the sleep timer in the first embodiment.
  • FIG. 8 is a block diagram showing a configuration of a frequency error measurement unit in the first embodiment.
  • FIG. 9 is a timing diagram of the frequency error measurement unit in the first embodiment.
  • FIG. 10 is a block diagram showing a CPU configuration in the first embodiment.
  • FIG. 11 Sequence diagram for receiving PCH signal of base station power of own cell in embodiment 1.
  • FIG. 12 Sequence diagram when receiving a BCCH signal of the base station of another cell in the first embodiment
  • FIG. 13 is a sequence diagram when a BCCH signal is received from a base station of another conventional cell.
  • FIG. 14 is a frame mapping diagram of a common control channel in GSM according to Embodiment 1 of the present invention.
  • FIG. 1 is a block diagram showing the configuration of the intermittent reception control apparatus of the present invention.
  • the intermittent reception control apparatus 100 is connected to the reception processing unit 113 shown in the figure via a bus.
  • the reception processing unit 113 receives a signal transmitted from a base station (not shown) via an antenna, and performs a radio reception process (such as AZD conversion and down-conversion) on the received signal to generate a baseband signal. Output to the intermittent reception control device 100.
  • a radio reception process such as AZD conversion and down-conversion
  • the intermittent reception control device 100 includes a high-speed clock 101, a time synchronization timer 102, a low-speed clock 103, a sleep timer 104, a frequency error measurement unit 105, and a CPU 106.
  • the sleep timer 104 uses the low-speed clock 103 as the clock source, the CPU start interrupt signal S108 to the CPU 106, the high-speed clock start signal S109 to the high-speed clock 101, the time synchronization timer start signal S110 to the time synchronization timer 102, and the frequency error measurement start
  • the signal S 111 is supplied to the frequency error measuring unit 105.
  • the high-speed clock 101 starts when the high-speed clock start signal S 109 from the sleep timer 104 is at the H (High) level, and stops when it is at the L (Low) level.
  • the time synchronization timer 102 starts when the time synchronization timer start signal S110 from the sleep timer 104 is at H level using the high-speed clock 101 as a clock source, and stops when it is at L level. While the time synchronization timer 102 is running, the frame interrupt signal S107 is sent to the CPU10. Supply to 6.
  • the frequency error measurement unit 105 uses the high-speed clock 101 and the low-speed clock 103 as the clock source and starts up with the H-level pulse of the frequency error measurement start signal S111, and sends the frequency error measurement end interrupt signal S112 to the CPU 106 when the frequency error measurement ends. Supply.
  • the CPU 106 receives the frame interrupt signal S107, the CPU start interrupt signal S108, and the frequency error measurement end interrupt signal S112, and also registers the time synchronization timer 102, sleep timer 104, and frequency error measurement unit 105. To access.
  • the frequency of the high-speed clock 101 is 26 MHz, which is common in the GSM system, and the frequency of the low-speed clock 103 is 32.768 kHz, which is common as a clock for clocks.
  • FIG. 2 is a block diagram showing the configuration of the time synchronization timer 102.
  • the time synchronization timer 102 includes a 1Z24 frequency divider 201, a rising edge detection unit 202, a time synchronization counter 203, a counter start time setting register 204, a counter end time register 205, a frame interrupt time setting register 206, Comparator 207 and flip-flop 208 are provided, and time synchronization counter 203 circulates from 0 to 4999 using 26 MHz, which is a high-speed clock, divided by 24 by 1Z24 frequency divider 201 using 1.083 MHz as a clock source.
  • the counter start time setting register 204, the counter end time register 205, and the frame interrupt time setting register 206 are connected to the CPU bus.
  • FIGS. Figure 3 shows the timing diagram of the time synchronization timer 102 at the start of the counter.
  • the data in the counter start time setting register 204 set through the CPU bus is loaded into the time synchronization counter 203, and the 1Z24 frequency divider 201 starts generating a 1.083 MHz signal.
  • the operation of the time synchronization counter 203 is started.
  • FIG. 4 shows a timing chart of the time synchronization timer 102 at the time of frame interruption. While the time synchronization timer start signal S110 is at the H level, the data of the frame interrupt time setting register 206 and the output of the time synchronization counter 203 are compared by the comparator 207. After the delay of one cycle of 1.083MHz by 208, Interrupt signal S107 is generated.
  • FIG. 5 shows a timing chart of the time synchronization timer 102 at the end of the counter.
  • the 1Z24 frequency divider 201 stops the 1.083 MHz signal generation, and the time synchronization counter 203 stops operating.
  • the CPU 106 can read the output of the time synchronization counter 203 from the counter end time register 205.
  • the time-synchronized timer start signal S110 is generated using a low-speed clock of 32.768 kHz as the clock source and is not synchronized with the high-speed clock of 26 MHz. Error 301 is generated.
  • 1.0833MHz which is a high-speed clock of 26MHz divided by 24, as shown in Fig. 5, an error 501 for one cycle of 1.008MHz at maximum occurs.
  • FIG. 7 shows a timing chart of the sleep timer 104.
  • the EN input signal 630 to the sleep counter 601 becomes H level, and the sleep counter 601 starts operation with a low-speed clock of 32.768 kHz as the clock source. Further, the high-speed clock start signal S109 and the time synchronization timer start signal S110 become L level.
  • the data in CPU start interrupt time setting register 604 and the output of sleep counter 601 are compared by comparator 609. When the two match, the flip flop 614 delays by one cycle of 32.768 kHz, and then the CPU start interrupt Signal S108 is generated.
  • FIG. 8 is a block diagram showing the configuration of the frequency error measurement unit 105.
  • the frequency error measurement unit 105 includes a low-speed clock counter 801, a 5 ⁇ multiplier 802, a high-speed clock counter 803, a power counter start setting register 804, a low-speed clock counter end time setting register 805, and a low-speed clock counter end time.
  • a register 806, a high-speed clock counter end time register 807, a comparator 808, and flip-flops 809 to 810 are included.
  • data is previously set by the CPU 106 through the CPU bus.
  • FIG. 9 shows a timing chart of the frequency error measurement unit 105.
  • the low-speed clock counter 801 starts operation using the low-speed clock 32.768 kHz as the clock source
  • the high-speed clock counter 803 clocks the high-speed clock 26 MHz multiplied by 5 times with the 5 ⁇ multiplier 802 to 130 Hz. Start operation as a source.
  • the data of low-speed clock counter end time setting register 805 and the output of low-speed clock counter 801 are compared by comparator 808, and when they match, the frequency error is measured after being delayed by one cycle of 32.768kHz by flip-flop 809. End interrupt signal Signal S 112 is generated, and both the low-speed clock counter 801 and the high-speed clock counter 803 stop operating. At this time, the outputs of the low-speed clock counter 801 and the high-speed clock counter 803 can be read by the CPU 106 from the low-speed clock counter end time register 806 and the high-speed clock counter end time register 807, respectively. Note that 32.768 kHz, which is the clock source of the low-speed clock counter 801, and 130 MHz, which is the clock source of the high-speed clock counter 803, are not synchronized. An error of the period (901 and 902) is generated.
  • FIG. 10 is a block diagram showing the configuration of the CPU 106.
  • the CPU 106 includes a demodulation processing unit 1001, a timing control unit 1002, a cell switching unit 1003, and an activation time calculation unit 1004.
  • the demodulation processing unit 1001 receives the frame interrupt signal S 107 and performs demodulation processing on the baseband signal output from the reception processing unit 113 through the CPU bus.
  • the timing control unit 1002 completes the reception of the BCCH signal of the other cell.
  • the reception timing of the PCH signal of the own cell is determined so that the reception of the PCH signal of the own cell is started immediately after the timing to perform.
  • the timing control unit 1002 sends the timing information indicating the timing of starting reception of the PCH signal of the own cell and the timing of starting reception of the BCCH signal of the other cell to the cell switching unit 1003 and the activation time calculating unit 1004. Output.
  • Cell switching section 1003 outputs cell switching signal S 114 to reception processing section 113 according to the timing information. Specifically, cell switching section 103 outputs cell switching signal S114 for switching the communication partner to its own cell to reception section 113 at the timing of starting reception of the PCH signal of its own cell, and receives PCH signals of other cells. The cell switching signal S114 for switching the communication partner to another cell at the timing of starting reception of the signal is output to the receiving unit 113. The reception processing unit 113 switches the communication partner to either the own cell or another cell in response to the cell switching signal S114.
  • the activation time calculation unit 1004 When the activation time calculation unit 1004 receives the PCH signal of its own cell, it calculates the number of frames that can sleep until the next received wave to be received (hereinafter referred to as "intermittent period"). Data corresponding to the intermittent period is stored in each register of the synchronous timer 102 and the sleep timer 104. Set via CPU bus.
  • FIGS. 11 to 13 the time axis is taken from left to right, and the low-speed clock 103, high-speed clock 101, sleep timer 104, CPU 106, CPU start interrupt signal 108, high-speed clock start signal S 109, time synchronization
  • the timing chart of timer start signal S110, frequency error measurement start signal Slll, frequency error measurement end interrupt signal S112, time synchronization timer 102, frame interrupt signal S107, reception window, and reception wave is shown. Further, the specific time of the low-speed clock will be described as (0), (1), (2), etc.
  • FIG. 11 is a sequence diagram when receiving the PCH signal of the own cell and further receiving the PCH signal of the own cell after a certain period.
  • the CPU activation interrupt signal S108 is generated and the CPU 106 is activated.
  • the timing control unit 1002 in the CPU 106 determines the timing for receiving the PCH signal of its own cell, and the activation time calculation unit 1004 determines the counter start time setting register of the time synchronization timer 102 from the reception timing.
  • the data to be set in the register 204 is calculated, and the calculated data is set in the counter start time setting register 204.
  • the calculation is based on the data of the low-speed clock counter end time register 806 of the frequency error measuring unit 105, the data of the high-speed clock counter end time register 807, and the counter of the time synchronization timer 102 obtained by the previous frequency error measurement. Calculates the force received in the reception window where the data received in the time register 205, the data set in the time synchronization timer activation time setting register 606 of the sleep timer 104, and the synchronization word reception position of the PCH signal received last time And calculated time tracking amount.
  • the activation time calculation unit 1004 determines how many clocks of 1.083 MHz corresponds to the interval in which the time synchronization timer activation signal S110 power level corresponds to the low-speed clock counter end time register 806 of the frequency error measurement unit 105. It is calculated from the ratio of the data and the data in the high-speed clock counter end time register 807, and is added to the data in the power counter end time register 205 of the time synchronization timer 102, and the time tracking amount is added. Calculate the remainder of 5000.
  • the high-speed clock activation signal S109 becomes H level and the high-speed clock 101 is activated.
  • the time synchronization timer start signal S110 becomes H level,
  • the value of the counter start time setting register 204 set by the time synchronization counter 203 at time (0) also starts counting.
  • frequency error measurement start signal S111 is generated and frequency error measurement is started.
  • the sleep timer 104 stops.
  • the frequency error measurement ends and a frequency error measurement end interrupt signal S 112 is generated.
  • the activation time calculation unit 1004 calculates how many frames can sleep (intermittent cycle).
  • activation time calculation section 1004 calculates the time from P1 to the next P1 in FIG. 11 as an intermittent period. Then, the activation time calculation unit 1004 includes a CPU activation interrupt time setting register 604, a high-speed clock activation time setting register 605, a time synchronous timer activation time setting register 606, a frequency error measurement activation time setting register 607, Data corresponding to the intermittent period is set in the leave counter end time setting register 608, and 1 is further set in the counter start setting register 602 of the sleep timer 104.
  • the sleep timer 104 is started, the high-speed clock start signal S 109 becomes L level and the high-speed clock stops, and the time synchronization timer start signal S 110 becomes L level and the time synchronization timer 102 stops. .
  • the demodulation processing unit 1001 in the CPU 106 stops itself.
  • the reception processing unit 113 receives four bursts of PCH signals shown from P1 to P4.
  • the size of the reception window at this time is the sum of the error shown in Figs. 3 and 5 and the error of the time synchronization timer calculated based on the frequency error measurement result in Fig. 9 for the received wave. It needs to be open more widely than it does.
  • FIG. 12 is a sequence diagram in the case of receiving a BCCH signal of another cell in a short period.
  • the present invention is based on receiving the PCH signal of the own cell and receiving the PCH signal of the own cell without receiving a gap after receiving the BCCH signal of the other cell.
  • the feature is that time synchronization is maintained. This will be described in detail below.
  • reception processing section 113 receives four bursts of BCCH signals of other cells shown in B1 to B4. After that, the reception processing unit 113 displays the PCH signal of its own cell shown in S1 to S4 in 4 bars.
  • the timing control unit 1002 determines the reception timing so that the cell switching signal S114 is output to the reception processing unit 113 according to the determined reception timing information, and the reception processing unit 113 receives the base station of its own cell phone. Receive a signal.
  • the activation time calculation unit 1004 in the CPU 106 calculates the data to be set in the counter start time setting register 204 of the next time synchronization timer 102.
  • the amount of tracking used for the calculation can be calculated using the reception timing of the PCH signal of the own cell. That is, after the reception processing unit 113 receives four bursts of the PCH signal of its own cell shown in S1 to S4, the same operation as the operation at time (6) and time (7) in FIG. 14 is performed at the time in FIG. This is done as (6) and time (7).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An intermittent reception control apparatus wherein only upon reception of a signal from any base station, a high-rate, highly precise VCTCXO is activated to elongate a standby time even in a case where a signal transmitted from the base station of another cell is received. In this apparatus, a timing control part (1002) decides a reception timing of the signal of PCH of the local cell such that the signal of PCH of the local cell is received immediately after the timing at which the signal of BCCH of the other cell is received. A cell switching part (1003) switches the cells of the other end of communication in accordance with the reception timing decided by the timing control part (1002). When receiving the radio wave from the local cell, an activation time setting part (1004) calculates how many frames of sleeps are possible until the next reception of received radio waves (i.e., an intermittent period), and sets data, which corresponds to the intermittent period, to the registers of a time synchronization timer and of a sleep timer via a CPU bus.

Description

明 細 書  Specification
間欠受信制御装置  Intermittent reception controller
技術分野  Technical field
[0001] 本発明は、携帯電話など無線端末通信装置に適用される間欠受信制御装置に関 する。  The present invention relates to an intermittent reception control device applied to a wireless terminal communication device such as a mobile phone.
背景技術  Background art
[0002] 携帯電話の待ち受け中に必要な動作は、主に自セルの基地局力 のページング チャネル (PCH: Paging Channel)を用いて送信された信号を定期的に受信すること である。 PCHは数百ミリ秒力 数秒の周期で割当てられ、またその受信には数ミリ秒 力も数十ミリ秒程度の時間を要するだけで、その他の時間は時間同期の維持を行つ ているだけである。基地局からの信号の受信には高速かつ高精度である電圧制御温 度補償型水晶発振器 (VCTCXO :Voltage Controlled TCXO)を必要とし、待ち受け 中の時間のほとんどを占める時間同期の維持にも VCTCXOを起動させたまま時間 同期タイマを周回させていた。しかし、近年待ち受け時間の伸張のために、時間同期 の維持には低速かつ低精度である時計用クロック (RTC : Real Time Clock)を使用し 、 VCTCXOは基地局力 の信号の受信時にのみ起動させる方法が提案されて 、る (例えば特許文献 1参照)。  [0002] A necessary operation during standby of a mobile phone is to regularly receive a signal transmitted mainly using a paging channel (PCH: Paging Channel) of the base station power of the own cell. PCH is allocated with a period of several hundred milliseconds and several seconds, and reception takes only several tens of milliseconds, and other times only maintain time synchronization. is there. Receiving signals from the base station requires a high-speed and high-accuracy voltage-controlled temperature-compensated crystal oscillator (VCTCXO). VCTCXO is also used to maintain time synchronization that occupies most of the waiting time. The time synchronization timer was circulated while it was running. However, due to the increase in standby time in recent years, the clock clock (RTC: Real Time Clock), which is low speed and low precision, is used to maintain time synchronization, and VCTCXO is activated only when receiving a signal from the base station. A method has been proposed (see, for example, Patent Document 1).
[0003] この基地局からの信号の受信時にのみ VCTCXOを起動させる方法では、高速クロ ックの停止によって生じる様々な誤差成分を受信窓の時間幅以内に抑え、最終的に は自セルの基地局力 PCHを用いて送信された信号(以下、「自セルの PCHの信号 」という)を受信し、その同期ワードの受信位置が受信窓中のどこで受信された力を計 算し、その計算結果をもとにタイムトラッキングを行うことで時間同期の維持を行って いる。  [0003] In this method of starting VCTCXO only when a signal is received from the base station, various error components caused by the stop of the high-speed clock are suppressed within the time width of the reception window, and finally the base of the own cell. A signal transmitted using local power PCH (hereinafter referred to as “PCH signal of own cell”) is received, and the received position of the synchronization word is calculated in the receiving window to calculate the received power. Time synchronization is maintained by performing time tracking based on the results.
[0004] 携帯電話の待ち受け中に必要な動作としては、上記のような自セルの PCHの信号 を定期的に受信すること以外に、数十秒あるいは数分という長周期ではあるが、他セ ルの基地局からの信号も受信しなければならない。例えば GSM (Global System for Mobile Communications)方式では、電界強度が最大 6つの他セルの基地局からシン クロナイゼーシヨンチャネル (SCH: Synchronization Channel)を用いて送信された信 号を、それぞれ 30秒に 1回受信しなければならず、また電界強度が最大 6つの他セ ルの基地局から報知制御チャネル(BCCH broadcast Control Channel)を用いて送 信された信号 (以下、「他セルの BCCHの信号」という)を、それぞれ 5分に 1回受信し なければならない。 [0004] The necessary operations during the standby of the mobile phone include a period of several tens of seconds or several minutes in addition to periodically receiving the PCH signal of the own cell as described above. You must also receive a signal from the base station. For example, in the GSM (Global System for Mobile Communications) method, the field strength is reduced from up to six base stations in other cells. Signals transmitted using the Chronization Channel (SCH) must be received once every 30 seconds, and broadcast control is performed from base stations of other cells with a maximum field strength of 6 Signals transmitted using the channel (BCCH broadcast Control Channel) (hereinafter referred to as “BCCH signals of other cells”) must be received once every 5 minutes.
特許文献 1 :特開 2000— 49682号公報 (第 4ページ)  Patent Document 1: JP 2000-49682 A (Page 4)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、時間同期の維持には低速かつ低精度の RTCを使用し、基地局から の信号の受信にのみ VCTCXOを起動させる方法を、他セルの基地局からの信号の 受信にそのまま適用すると、時間同期を維持することできないという問題がある。  [0005] However, a method of using a low-speed and low-accuracy RTC to maintain time synchronization and activating VCTCXO only for receiving signals from the base station, receiving signals from base stations in other cells. If applied as it is, time synchronization cannot be maintained.
[0006] すなわち、上述した時間同期の維持には、自セルの PCHの信号を高精度の VCT CXOを起動させて受信し、自セルの PCHの信号との時間同期が VCTCXOを用い て高精度に取れた状態で、 VCTCXOを停止させることが前提となっているため、他 セルの BCCHの信号と時間同期が VCTCXOを用いて高精度に取れた状態で、 VC TCXOを停止させてしまうと、自セルの PCHの信号とは時間同期が高精度に取れて いない状態となって、これが繰り返されると誤差成分が積算されて、誤差成分がいず れ受信窓の時間幅を超えて、時間同期を維持することができなくなる。  [0006] That is, in order to maintain the time synchronization described above, the PCH signal of its own cell is received by activating the high-precision VCT CXO, and the time synchronization with the PCH signal of its own cell is highly accurate using VCTCXO. It is assumed that VCTCXO will be stopped in a state where it can be removed, so if the VC TCXO is stopped in a state where the BCCH signal and time synchronization of other cells are accurately taken using VCTCXO, The time synchronization with the PCH signal of the own cell is not accurate, and if this is repeated, the error components are accumulated and the error components are added, exceeding the time width of the reception window, and time synchronization is performed. It cannot be maintained.
[0007] 従って、他セルの基地局からの信号を受信する場合には、自セルの基地局からの 信号を受信して力 他セルの基地局力 の信号を受信するまでの間、高速クロックを 停止することができず、この結果、消費電力を低減することができず、待ち受け時間 を伸張することができな!/、と!、う課題を有して!/ヽた。  [0007] Therefore, when receiving a signal from a base station in another cell, a high-speed clock is required until the signal from the base station in the own cell is received and the signal of the base station power in another cell is received. As a result, power consumption cannot be reduced and standby time cannot be extended! /,When! Have a challenge! /
[0008] 本発明の目的は、他セルの基地局からの信号を受信する場合にも、基地局からの 信号の受信時にのみ高速かつ高精度の VCTCXOを起動させ、待ち受け時間を伸 張することができる間欠受信制御装置を提供することである。  [0008] An object of the present invention is to activate a high-speed and high-accuracy VCTCXO only when receiving a signal from a base station and extend a standby time even when receiving a signal from a base station of another cell. It is providing the intermittent reception control apparatus which can do.
課題を解決するための手段  Means for solving the problem
[0009] 本発明に係る間欠受信制御装置は、所定長の第 1期間毎に前記第 1期間内の一 部の期間にて自セルの基地局からページングチャネルを用いて送信される第 1制御 信号を間欠受信し、前記第 1期間より長い第 2期間毎に他セルの基地局力 送信さ れる第 2制御信号を間欠受信する通信端末装置に備えられ、相対的に低速かつ低 精度の低速クロックを用いて時間同期の維持を図り、相対的に高速かつ高精度の高 速クロックを用いて前記第 1および第 2制御信号を受信する間欠受信制御装置にお いて、前記第 2制御信号を受信する前記第 1期間内には、前記第 2制御信号の受信 を完了した後に前記第 1制御信号の受信を開始するように受信タイミングを制御する タイミング制御手段と、前記タイミング制御手段の制御に基づ 、て通信相手のセルを 切替えるセル切替手段と、前記第 2制御信号を受信する前記第 1期間内には、前記 第 2制御信号の受信開始力 前記第 1制御信号の受信完了までの期間に前記高速 クロックを起動させる起動手段と、を具備する構成を採る。 [0009] The intermittent reception control apparatus according to the present invention provides a first control that is transmitted from a base station of the own cell using a paging channel in a part of the first period every first period of a predetermined length. Provided in a communication terminal device that intermittently receives a signal and intermittently receives a second control signal transmitted from the base station power of another cell every second period longer than the first period, and has a relatively low speed and low accuracy. In an intermittent reception control device that uses a clock to maintain time synchronization and receives the first and second control signals using a relatively high-speed and high-accuracy high-speed clock, the second control signal is Within the first period to be received, timing control means for controlling reception timing so as to start reception of the first control signal after completion of reception of the second control signal, and control of the timing control means Based on the cell switching means for switching the cell of the communication partner, and within the first period for receiving the second control signal, the reception start power of the second control signal until the reception of the first control signal is completed. In the period said high speed black A configuration that includes an activation means for activating the click, the.
発明の効果  The invention's effect
[0010] 本発明によれば、他セルの基地局から送信される信号を受信する短周期にお!/ヽて 、他セルの基地局カゝら送信される信号を受信してから直ちに、自セルの信号を受信 するようにし、他セルの基地局力 送信される信号の受信開始から、自セルの基地局 力 送信される信号の受信完了までの期間のみ、高速クロックを起動させるようにす ることができる。これにより、他セルの基地局から送信される信号を受信する場合にお いても、自セルの基地局から送信される信号を受信する場合と同様に、基地局から の信号の受信時にのみ高速かつ高精度の VCTCXOを起動させることができ、消費 電力を低減させて、待ち受け時間を伸張することができる。  [0010] According to the present invention, in a short period of receiving a signal transmitted from a base station of another cell, immediately after receiving a signal transmitted from the base station of another cell, Receive the signal of the own cell, and activate the high-speed clock only during the period from the start of reception of the signal transmitted by the base station of another cell until the completion of reception of the signal transmitted by the base station of the own cell. can do. As a result, even when a signal transmitted from a base station in another cell is received, as in the case of receiving a signal transmitted from the base station in its own cell, only when a signal is received from the base station, high speed is received. In addition, high-precision VCTCXO can be activated, reducing power consumption and extending standby time.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明の実施の形態 1における間欠受信制御装置の構成を示すブロック図 [図 2]実施の形態 1における時間同期タイマの構成を示すブロック図  FIG. 1 is a block diagram showing the configuration of an intermittent reception control apparatus according to Embodiment 1 of the present invention. FIG. 2 is a block diagram showing the configuration of a time synchronization timer according to Embodiment 1.
[図 3]実施の形態 1におけるカウンタ開始時の時間同期タイマのタイミング図  FIG. 3 is a timing diagram of the time synchronization timer at the start of the counter in the first embodiment.
[図 4]実施の形態 1におけるフレーム割込時の時間同期タイマのタイミング図  [FIG. 4] Timing diagram of time synchronization timer at frame interrupt in embodiment 1.
[図 5]実施の形態 1におけるカウンタ終了時の時間同期タイマのタイミング図  FIG. 5 is a timing diagram of the time synchronization timer at the end of the counter in the first embodiment.
[図 6]実施の形態 1におけるスリープタイマの構成を示すブロック図  FIG. 6 is a block diagram showing a configuration of a sleep timer in the first embodiment
[図 7]実施の形態 1におけるスリープタイマのタイミング図  FIG. 7 is a timing diagram of the sleep timer in the first embodiment.
[図 8]実施の形態 1における周波数誤差測定部の構成を示すブロック図 [図 9]実施の形態 1における周波数誤差測定部のタイミング図 FIG. 8 is a block diagram showing a configuration of a frequency error measurement unit in the first embodiment. FIG. 9 is a timing diagram of the frequency error measurement unit in the first embodiment.
[図 10]実施の形態 1における CPUの構成を示すブロック図  FIG. 10 is a block diagram showing a CPU configuration in the first embodiment.
[図 11]実施の形態 1における自セルの基地局力もの PCHの信号を受信する場合の シーケンス図  [Fig. 11] Sequence diagram for receiving PCH signal of base station power of own cell in embodiment 1.
[図 12]実施の形態 1における他セルの基地局力もの BCCHの信号を受信する場合 のシーケンス図  [FIG. 12] Sequence diagram when receiving a BCCH signal of the base station of another cell in the first embodiment
[図 13]従来の他セルの基地局からの BCCHの信号を受信する場合のシーケンス図 [図 14]本発明の実施の形態 1における GSMにおける共通制御チャネルのフレーム マッピング図  FIG. 13 is a sequence diagram when a BCCH signal is received from a base station of another conventional cell. FIG. 14 is a frame mapping diagram of a common control channel in GSM according to Embodiment 1 of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明を実施するための最良の形態について、図面を参照しながら説明す る。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
[0013] (実施の形態 1)  [0013] (Embodiment 1)
図 1に本発明の間欠受信制御装置の構成を示すブロック図を示す。同図に示すよ うに、間欠受信制御装置 100は、同図に示す受信処理部 113とバスを介して接続さ れている。なお、受信処理部 113は、図示せぬ基地局から送信される信号をアンテ ナを介して受信し、受信信号に対し無線受信処理 (AZD変換、ダウンコンバートな ど)を施しベースバンド信号を生成し、間欠受信制御装置 100へ出力する。  FIG. 1 is a block diagram showing the configuration of the intermittent reception control apparatus of the present invention. As shown in the figure, the intermittent reception control apparatus 100 is connected to the reception processing unit 113 shown in the figure via a bus. The reception processing unit 113 receives a signal transmitted from a base station (not shown) via an antenna, and performs a radio reception process (such as AZD conversion and down-conversion) on the received signal to generate a baseband signal. Output to the intermittent reception control device 100.
[0014] 間欠受信制御装置 100は、高速クロック 101と、時間同期タイマ 102と、低速クロッ ク 103と、スリープタイマ 104と、周波数誤差測定部 105と、 CPU106とを備えている 。スリープタイマ 104は低速クロック 103をクロック源として CPU起動割込信号 S108 を CPU106へ、高速クロック起動信号 S109を高速クロック 101へ、時間同期タイマ 起動信号 S 110を時間同期タイマ 102へ、周波数誤差測定起動信号 S 111を周波数 誤差測定部 105へ、それぞれ供給する。高速クロック 101はスリープタイマ 104から の高速クロック起動信号 S 109が H (High)レベルのときに起動し、 L (Low)レベルの ときに停止する。時間同期タイマ 102は高速クロック 101をクロック源としてスリープタ イマ 104からの時間同期タイマ起動信号 S110が Hレベルのとき起動し、 Lレベルのと き停止する。また時間同期タイマ 102の起動中はフレーム割込信号 S107を CPU10 6へ供給する。周波数誤差測定部 105は高速クロック 101と低速クロック 103をクロッ ク源として、周波数誤差測定起動信号 S111の Hレベルパルスで起動し、周波数誤 差測定終了時に周波数誤差測定終了割込信号 S112を CPU106へ供給する。 CP U106は、フレーム割込信号 S107と CPU起動割込信号 S108と周波数誤差測定終 了割込信号 S112とを受け付け、また、時間同期タイマ 102とスリープタイマ 104と周 波数誤差測定部 105の各レジスタへアクセスする。 The intermittent reception control device 100 includes a high-speed clock 101, a time synchronization timer 102, a low-speed clock 103, a sleep timer 104, a frequency error measurement unit 105, and a CPU 106. The sleep timer 104 uses the low-speed clock 103 as the clock source, the CPU start interrupt signal S108 to the CPU 106, the high-speed clock start signal S109 to the high-speed clock 101, the time synchronization timer start signal S110 to the time synchronization timer 102, and the frequency error measurement start The signal S 111 is supplied to the frequency error measuring unit 105. The high-speed clock 101 starts when the high-speed clock start signal S 109 from the sleep timer 104 is at the H (High) level, and stops when it is at the L (Low) level. The time synchronization timer 102 starts when the time synchronization timer start signal S110 from the sleep timer 104 is at H level using the high-speed clock 101 as a clock source, and stops when it is at L level. While the time synchronization timer 102 is running, the frame interrupt signal S107 is sent to the CPU10. Supply to 6. The frequency error measurement unit 105 uses the high-speed clock 101 and the low-speed clock 103 as the clock source and starts up with the H-level pulse of the frequency error measurement start signal S111, and sends the frequency error measurement end interrupt signal S112 to the CPU 106 when the frequency error measurement ends. Supply. The CPU 106 receives the frame interrupt signal S107, the CPU start interrupt signal S108, and the frequency error measurement end interrupt signal S112, and also registers the time synchronization timer 102, sleep timer 104, and frequency error measurement unit 105. To access.
[0015] 次に時間同期タイマ 102と、スリープタイマ 104と、周波数誤差測定部 105と、 CPU 106の詳細について、それぞれ図 2から図 10を用いて説明する。なお高速クロック 1 01の周波数は GSM方式において一般的である 26MHz、低速クロック 103の周波 数は時計用クロックとして一般的である 32. 768kHzとする。  Next, details of the time synchronization timer 102, the sleep timer 104, the frequency error measuring unit 105, and the CPU 106 will be described using FIG. 2 to FIG. 10, respectively. The frequency of the high-speed clock 101 is 26 MHz, which is common in the GSM system, and the frequency of the low-speed clock 103 is 32.768 kHz, which is common as a clock for clocks.
[0016] 図 2に時間同期タイマ 102の構成を示すブロック図を示す。時間同期タイマ 102は 、 1Z24分周器 201と、立上り検出部 202と、時間同期カウンタ 203と、カウンタ開始 時間設定レジスタ 204と、カウンタ終了時間レジスタ 205と、フレーム割込時間設定レ ジスタ 206と、比較器 207と、フリップフロップ 208とを有し、時間同期カウンタ 203は 高速クロックである 26MHzを 1Z24分周器 201で 24分周した 1. 083MHzをクロッ ク源として 0から 4999を周回する。またカウンタ開始時間設定レジスタ 204と、カウン タ終了時間レジスタ 205と、フレーム割込時間設定レジスタ 206は CPUバスにそれ ぞれ接続されている。  FIG. 2 is a block diagram showing the configuration of the time synchronization timer 102. The time synchronization timer 102 includes a 1Z24 frequency divider 201, a rising edge detection unit 202, a time synchronization counter 203, a counter start time setting register 204, a counter end time register 205, a frame interrupt time setting register 206, Comparator 207 and flip-flop 208 are provided, and time synchronization counter 203 circulates from 0 to 4999 using 26 MHz, which is a high-speed clock, divided by 24 by 1Z24 frequency divider 201 using 1.083 MHz as a clock source. The counter start time setting register 204, the counter end time register 205, and the frame interrupt time setting register 206 are connected to the CPU bus.
[0017] 時間同期タイマ 102の動作について図 3から図 5を用いて説明する。図 3にカウンタ 開始時における時間同期タイマ 102のタイミング図を示す。時間同期タイマ起動信号 S110の立上り時には、 CPUバスを通して設定されたカウンタ開始時間設定レジスタ 204のデータが時間同期カウンタ 203にロードされ、かつ 1Z24分周器 201におい て 1. 083MHzの信号生成が開始されて、時間同期カウンタ 203の動作が開始され る。  [0017] The operation of the time synchronization timer 102 will be described with reference to FIGS. Figure 3 shows the timing diagram of the time synchronization timer 102 at the start of the counter. At the rising edge of the time synchronization timer start signal S110, the data in the counter start time setting register 204 set through the CPU bus is loaded into the time synchronization counter 203, and the 1Z24 frequency divider 201 starts generating a 1.083 MHz signal. Thus, the operation of the time synchronization counter 203 is started.
[0018] 図 4にフレーム割込時における時間同期タイマ 102のタイミング図を示す。時間同 期タイマ起動信号 S110が Hレベルの間は、フレーム割込時間設定レジスタ 206のデ ータと時間同期カウンタ 203の出力が比較器 207によって比較され、両者が一致し たときに、フリップフロップ 208によって 1. 083MHzの 1周期分遅延された後にフレ ーム割込信号 S 107が発生する。 FIG. 4 shows a timing chart of the time synchronization timer 102 at the time of frame interruption. While the time synchronization timer start signal S110 is at the H level, the data of the frame interrupt time setting register 206 and the output of the time synchronization counter 203 are compared by the comparator 207. After the delay of one cycle of 1.083MHz by 208, Interrupt signal S107 is generated.
[0019] 図 5にカウンタ終了時における時間同期タイマ 102のタイミング図を示す。時間同期 タイマ起動信号 S110の立下り時には、 1Z24分周器 201において 1. 083MHzの 信号生成が停止され、時間同期カウンタ 203は動作を停止する。このとき時間同期力 ゥンタ 203の出力は、カウンタ終了時間レジスタ 205から CPU106が読むことができ る。なお時間同期タイマ起動信号 S110は低速クロックである 32. 768kHzをクロック 源として生成されており、高速クロックである 26MHzとは同期していないために、図 3 に示すように最大 26MHzの 1周期分の誤差 301を生じる。また高速クロックである 2 6MHzを 24分周した 1. 083MHzとも同期していないため、図 5に示すように最大 1. 083MHzの 1周期分の誤差 501も生じる。  FIG. 5 shows a timing chart of the time synchronization timer 102 at the end of the counter. At the fall of the time synchronization timer start signal S110, the 1Z24 frequency divider 201 stops the 1.083 MHz signal generation, and the time synchronization counter 203 stops operating. At this time, the CPU 106 can read the output of the time synchronization counter 203 from the counter end time register 205. The time-synchronized timer start signal S110 is generated using a low-speed clock of 32.768 kHz as the clock source and is not synchronized with the high-speed clock of 26 MHz. Error 301 is generated. In addition, because it is not synchronized with 1.0833MHz, which is a high-speed clock of 26MHz divided by 24, as shown in Fig. 5, an error 501 for one cycle of 1.008MHz at maximum occurs.
[0020] 図 6にスリープタイマ 104の構成を示すブロック図を示す。スリープタイマ 104は、ス リーブカウンタ 601と、カウンタ開始設定レジスタ 602と、立上り検出部 603と、 CPU 起動割込時間設定レジスタ 604と、高速クロック起動時間設定レジスタ 605と、時間 同期タイマ起動時間設定レジスタ 606と、周波数誤差測定起動時間設定レジスタ 60 7と、スリープカウンタ終了時間設定レジスタ 608と、比較器 609力ら 613と、フリップ フロップ 614から 620とで構成されている。 CPU起動割込時間設定レジスタ 604と、 高速クロック起動時間設定レジスタ 605と、時間同期タイマ起動時間設定レジスタ 60 6と、周波数誤差測定起動時間設定レジスタ 607と、スリープカウンタ終了時間設定 レジスタ 608へは、あらかじめ CPU106によってデータが設定されている。  FIG. 6 is a block diagram showing the configuration of the sleep timer 104. The sleep timer 104 includes a sleep counter 601, a counter start setting register 602, a rising edge detection unit 603, a CPU start interrupt time setting register 604, a high speed clock start time setting register 605, and a time synchronization timer start time setting register. 606, frequency error measurement start time setting register 607, sleep counter end time setting register 608, comparator 609 force 613, and flip-flops 614 to 620. CPU start interrupt time setting register 604, high-speed clock start time setting register 605, time synchronization timer start time setting register 606, frequency error measurement start time setting register 607, and sleep counter end time setting register 608 Data is set by the CPU 106 in advance.
[0021] 図 7にスリープタイマ 104のタイミング図を示す。 CPU106からカウンタ開始設定レ ジスタ 602に 1を設定することによってスリープカウンタ 601への EN入力信号 630が Hレベルとなり、スリープカウンタ 601は低速クロックである 32. 768kHzをクロック源 として動作を開始する。また高速クロック起動信号 S 109と時間同期タイマ起動信号 S 110は Lレベルとなる。 CPU起動割込時間設定レジスタ 604のデータとスリープカウ ンタ 601の出力が比較器 609によって比較され、両者が一致したときに、フリップフロ ップ 614によって 32. 768kHzの 1周期分遅延された後に CPU起動割込信号 S 108 が発生する。高速クロック起動時間設定レジスタ 605のデータとスリープカウンタ 601 の出力が比較器 610によって比較され、両者が一致したときに、フリップフロップ 615 によって 32. 768kHzの 1周期分遅延された後に高速クロック起動信号 S109が Hレ ベルとなる。時間同期タイマ起動時間設定レジスタ 606のデータとスリープカウンタ 6 01の出力が比較器 611によって比較され、両者が一致したときに、フリップフロップ 6 16によって 32. 768kHzの 1周期分遅延された後に時間同期タイマ起動信号 S 110 が Hレベルとなる。周波数誤差測定起動時間設定レジスタ 607のデータとスリープ力 ゥンタ 601の出力が比較器 612によって比較され、両者が一致したときに、フリップフ ロップ 617によって 32. 768kHzの 1周期分遅延された後に周波数誤差測定起動信 号 S111が発生する。スリープカウンタ終了時間設定レジスタ 608のデータとスリープ カウンタ 601の出力が比較器 613によって比較され、両者が一致したときに、フリップ フロップ 618によって 32. 768kHzの 1周期分遅延された後にカウンタ開始設定レジ スタ 602への RESET入力信号が発生する。それによりスリープカウンタ 601への EN 入力信号力 SLレベルとなることで、スリープカウンタ 601は動作を停止する。 FIG. 7 shows a timing chart of the sleep timer 104. By setting 1 to the counter start setting register 602 from the CPU 106, the EN input signal 630 to the sleep counter 601 becomes H level, and the sleep counter 601 starts operation with a low-speed clock of 32.768 kHz as the clock source. Further, the high-speed clock start signal S109 and the time synchronization timer start signal S110 become L level. The data in CPU start interrupt time setting register 604 and the output of sleep counter 601 are compared by comparator 609. When the two match, the flip flop 614 delays by one cycle of 32.768 kHz, and then the CPU start interrupt Signal S108 is generated. When the data of the high-speed clock start time setting register 605 and the output of the sleep counter 601 are compared by the comparator 610 and they match, the flip-flop 615 After that, the high-speed clock start signal S109 becomes H level after being delayed by one cycle of 32.768kHz. The data of the time synchronization timer start time setting register 606 and the output of the sleep counter 6 01 are compared by the comparator 611. When the two match, the flip-flop 6 16 delays by one cycle of 32.768 kHz and then time synchronization Timer start signal S110 becomes H level. Frequency error measurement Start-up time setting register 607 data and sleep power counter 601 output are compared by comparator 612. When they match, frequency error measurement is performed after a delay of 32.768 kHz by flip-flop 617. Activation signal S111 is generated. The data of the sleep counter end time setting register 608 and the output of the sleep counter 601 are compared by the comparator 613. When the two match, the counter is set by the flip-flop 618 and delayed by one cycle of 32.768 kHz. RESET input signal to 602 is generated. As a result, the EN input signal power S L level to the sleep counter 601 is set, and the sleep counter 601 stops its operation.
[0022] 図 8に周波数誤差測定部 105の構成を示すブロック図を示す。周波数誤差測定部 105は、低速クロックカウンタ 801と、 5遁倍器 802と、高速クロックカウンタ 803と、力 ゥンタ開始設定レジスタ 804と、低速クロックカウンタ終了時間設定レジスタ 805と、低 速クロックカウンタ終了時間レジスタ 806と、高速クロックカウンタ終了時間レジスタ 80 7と、比較器 808と、フリップフロップ 809から 810とで構成されている。低速クロック力 ゥンタ終了時間設定レジスタ 805には、あらかじめ CPUバスを通して CPU106によつ てデータが設定されている。  FIG. 8 is a block diagram showing the configuration of the frequency error measurement unit 105. The frequency error measurement unit 105 includes a low-speed clock counter 801, a 5 × multiplier 802, a high-speed clock counter 803, a power counter start setting register 804, a low-speed clock counter end time setting register 805, and a low-speed clock counter end time. A register 806, a high-speed clock counter end time register 807, a comparator 808, and flip-flops 809 to 810 are included. In the low-speed clock power counter end time setting register 805, data is previously set by the CPU 106 through the CPU bus.
[0023] 図 9に周波数誤差測定部 105のタイミング図を示す。 CPU106からカウンタ開始設 定レジスタ 804に 1を設定する力、周波数誤差測定起動信号 SI 11が Hレベルになる ことによって、低速クロックカウンタ 801および高速クロックカウンタ 803への EN入力 信号 S830が Hレベルとなる。それにより低速クロックカウンタ 801は低速クロックであ る 32. 768kHzをクロック源として動作を開始し、高速クロックカウンタ 803は高速クロ ックである 26MHzを 5遁倍器 802で 5遁倍した 130Hzをクロック源として動作を開始 する。低速クロックカウンタ終了時間設定レジスタ 805のデータと低速クロックカウンタ 801の出力が比較器 808によって比較され、両者が一致したときに、フリップフロップ 809によって 32. 768kHzの 1周期分遅延された後に周波数誤差測定終了割込信 号 S 112が発生し、低速クロックカウンタ 801と高速クロックカウンタ 803はともに動作 を停止する。このとき低速クロックカウンタ 801と高速クロックカウンタ 803の出力は、 それぞれ低速クロックカウンタ終了時間レジスタ 806と、高速クロックカウンタ終了時 間レジスタ 807から CPU106が読むことができる。なお低速クロックカウンタ 801のク ロック源である 32. 768kHzと高速クロックカウンタ 803のクロック源である 130MHz とは同期していないため、周波数誤差測定の開始時と終了時に、合わせて最大 130 MHzの 2周期分の誤差(901および 902)を生じる。 FIG. 9 shows a timing chart of the frequency error measurement unit 105. The power to set 1 to the counter start setting register 804 from the CPU 106, and the frequency error measurement start signal SI11 to H level, the EN input signal S830 to the low speed clock counter 801 and the high speed clock counter 803 becomes H level. . As a result, the low-speed clock counter 801 starts operation using the low-speed clock 32.768 kHz as the clock source, and the high-speed clock counter 803 clocks the high-speed clock 26 MHz multiplied by 5 times with the 5 × multiplier 802 to 130 Hz. Start operation as a source. The data of low-speed clock counter end time setting register 805 and the output of low-speed clock counter 801 are compared by comparator 808, and when they match, the frequency error is measured after being delayed by one cycle of 32.768kHz by flip-flop 809. End interrupt signal Signal S 112 is generated, and both the low-speed clock counter 801 and the high-speed clock counter 803 stop operating. At this time, the outputs of the low-speed clock counter 801 and the high-speed clock counter 803 can be read by the CPU 106 from the low-speed clock counter end time register 806 and the high-speed clock counter end time register 807, respectively. Note that 32.768 kHz, which is the clock source of the low-speed clock counter 801, and 130 MHz, which is the clock source of the high-speed clock counter 803, are not synchronized. An error of the period (901 and 902) is generated.
[0024] 図 10に CPU106の構成を示すブロック図を示す。 CPU106は、復調処理部 1001 と、タイミング制御部 1002と、セル切替部 1003と、起動時間算出部 1004とで構成さ れている。 FIG. 10 is a block diagram showing the configuration of the CPU 106. The CPU 106 includes a demodulation processing unit 1001, a timing control unit 1002, a cell switching unit 1003, and an activation time calculation unit 1004.
[0025] 復調処理部 1001は、フレーム割込信号 S 107を受けて、受信処理部 113から CP Uバスを通して出力されるベースバンド信号に対し復調処理を施す。  The demodulation processing unit 1001 receives the frame interrupt signal S 107 and performs demodulation processing on the baseband signal output from the reception processing unit 113 through the CPU bus.
[0026] タイミング制御部 1002は、自セルの PCHの信号が送信される短周期内に、他セル の BCCHの信号が送信されると判断した場合に、他セルの BCCHの信号の受信を 完了するタイミングの直後に自セルの PCHの信号の受信を開始するように、自セル の PCHの信号の受信タイミングを決定する。タイミング制御部 1002は、自セルの PC Hの信号の受信を開始するタイミングと、他セルの BCCHの信号の受信を開始する タイミングを示すタイミング情報を、セル切替部 1003及び起動時間算出部 1004へ 出力する。  [0026] When it is determined that the BCCH signal of the other cell is transmitted within the short period in which the PCH signal of the own cell is transmitted, the timing control unit 1002 completes the reception of the BCCH signal of the other cell. The reception timing of the PCH signal of the own cell is determined so that the reception of the PCH signal of the own cell is started immediately after the timing to perform. The timing control unit 1002 sends the timing information indicating the timing of starting reception of the PCH signal of the own cell and the timing of starting reception of the BCCH signal of the other cell to the cell switching unit 1003 and the activation time calculating unit 1004. Output.
[0027] セル切替部 1003は、タイミング情報に応じて、セル切替信号 S 114を受信処理部 1 13へ出力する。具体的には、セル切替部 103は、自セルの PCHの信号の受信を開 始するタイミングで通信相手を自セルに切り替えるセル切替信号 S114を受信部 113 へ出力し、他セルの PCHの信号の受信を開始するタイミングで通信相手を他セルに 切り替えるセル切替信号 S114を受信部 113へ出力する。受信理部 113は、セル切 替信号 S 114に応じて、通信相手を自セル又は他セルのどちらかに切り替える。  Cell switching section 1003 outputs cell switching signal S 114 to reception processing section 113 according to the timing information. Specifically, cell switching section 103 outputs cell switching signal S114 for switching the communication partner to its own cell to reception section 113 at the timing of starting reception of the PCH signal of its own cell, and receives PCH signals of other cells. The cell switching signal S114 for switching the communication partner to another cell at the timing of starting reception of the signal is output to the receiving unit 113. The reception processing unit 113 switches the communication partner to either the own cell or another cell in response to the cell switching signal S114.
[0028] 起動時間算出部 1004は、自セルの PCHの信号を受信した場合に、次に受信す べき受信波まで何フレーム分スリープできる力 (以下「間欠周期」という)を計算し、時 間同期タイマ 102と、スリープタイマ 104の各レジスタに間欠周期に対応したデータを CPUバスを介して設定する。 [0028] When the activation time calculation unit 1004 receives the PCH signal of its own cell, it calculates the number of frames that can sleep until the next received wave to be received (hereinafter referred to as "intermittent period"). Data corresponding to the intermittent period is stored in each register of the synchronous timer 102 and the sleep timer 104. Set via CPU bus.
[0029] 次いで、上記のように構成された間欠受信制御装置 100の動作について、図 11か ら図 13のシーケンス図を用いて説明する。なお、図 11から図 13では、左から右に時 間軸をとり、低速クロック 103、高速クロック 101、スリープタイマ 104、 CPU106、 CP U起動割込信号 108、高速クロック起動信号 S 109、時間同期タイマ起動信号 S 110 、周波数誤差測定起動信号 Sl l l、周波数誤差測定終了割込信号 S112、時間同 期タイマ 102、フレーム割込信号 S 107、受信窓、受信波のタイミング図を示す。また 、低速クロックの特定の時刻を (0)、 (1)、 (2)などと示して説明する。  Next, the operation of intermittent reception control apparatus 100 configured as described above will be described using the sequence diagrams of FIGS. 11 to 13. In FIGS. 11 to 13, the time axis is taken from left to right, and the low-speed clock 103, high-speed clock 101, sleep timer 104, CPU 106, CPU start interrupt signal 108, high-speed clock start signal S 109, time synchronization The timing chart of timer start signal S110, frequency error measurement start signal Slll, frequency error measurement end interrupt signal S112, time synchronization timer 102, frame interrupt signal S107, reception window, and reception wave is shown. Further, the specific time of the low-speed clock will be described as (0), (1), (2), etc.
[0030] 図 11は自セルの PCHの信号を受信し、一定の周期後、さらに自セルの PCHの信 号を受信する場合のシーケンス図である。時刻(0)において、 CPU起動割込信号 S 108が発生して CPU106が起動する。 CPU106内のタイミング制御部 1002はこの 割込信号により、自セルの PCHの信号を受信するタイミングを判断し、起動時間算 出部 1004は、受信タイミングから、時間同期タイマ 102のカウンタ開始時間設定レジ スタ 204に設定すべきデータを計算して、計算したデータをカウンタ開始時間設定レ ジスタ 204へ設定する。その計算は、前回行った周波数誤差測定によって得られた 周波数誤差測定部 105の低速クロックカウンタ終了時間レジスタ 806のデータと、高 速クロックカウンタ終了時間レジスタ 807のデータと、時間同期タイマ 102のカウンタ 終了時間レジスタ 205のデータと、スリープタイマ 104の時間同期タイマ起動時間設 定レジスタ 606に設定したデータと、前回受信した PCHの信号の同期ワードの受信 位置が受信窓中のどこで受信された力を計算したタイムトラッキング量とが用いられ て計算される。すなわち、起動時間算出部 1004は、時間同期タイマ起動信号 S110 力 レベルであった区間が 1. 083MHzの何クロック分に相当するのかを、周波数誤 差測定部 105の低速クロックカウンタ終了時間レジスタ 806のデータと、高速クロック カウンタ終了時間レジスタ 807のデータとの比から計算し、時間同期タイマ 102の力 ゥンタ終了時間レジスタ 205のデータに加算し、タイムトラッキング量を加算し、時間 同期カウンタ 203の周期である 5000の剰余を計算する。  FIG. 11 is a sequence diagram when receiving the PCH signal of the own cell and further receiving the PCH signal of the own cell after a certain period. At time (0), the CPU activation interrupt signal S108 is generated and the CPU 106 is activated. Based on this interrupt signal, the timing control unit 1002 in the CPU 106 determines the timing for receiving the PCH signal of its own cell, and the activation time calculation unit 1004 determines the counter start time setting register of the time synchronization timer 102 from the reception timing. The data to be set in the register 204 is calculated, and the calculated data is set in the counter start time setting register 204. The calculation is based on the data of the low-speed clock counter end time register 806 of the frequency error measuring unit 105, the data of the high-speed clock counter end time register 807, and the counter of the time synchronization timer 102 obtained by the previous frequency error measurement. Calculates the force received in the reception window where the data received in the time register 205, the data set in the time synchronization timer activation time setting register 606 of the sleep timer 104, and the synchronization word reception position of the PCH signal received last time And calculated time tracking amount. That is, the activation time calculation unit 1004 determines how many clocks of 1.083 MHz corresponds to the interval in which the time synchronization timer activation signal S110 power level corresponds to the low-speed clock counter end time register 806 of the frequency error measurement unit 105. It is calculated from the ratio of the data and the data in the high-speed clock counter end time register 807, and is added to the data in the power counter end time register 205 of the time synchronization timer 102, and the time tracking amount is added. Calculate the remainder of 5000.
[0031] 時刻(1)において、高速クロック起動信号 S109が Hレベルとなり高速クロック 101 が起動する。時刻(2)において、時間同期タイマ起動信号 S110が Hレベルとなり、 時間同期カウンタ 203が時刻 (0)で設定したカウンタ開始時間設定レジスタ 204の値 力もカウントを開始する。時刻 (3)において、周波数誤差測定起動信号 S111が発生 して周波数誤差測定が開始される。時刻(4)においてスリープタイマ 104が停止する 。時刻 (5)において周波数誤差測定が終了し、周波数誤差測定終了割込信号 S 11 2が発生する。時刻(6)において、 CPU106内のタイミング制御部 1002によって判 断された受信タイミングに関する情報から、起動時間算出部 1004は、何フレーム分 スリープできるか (間欠周期)計算する。図 11に示す例では、次に受信すべき受信波 が自セルの信号であるため、起動時間算出部 1004は、図 11中の P1から次の P1ま での時間を間欠周期として算出する。そして、起動時間算出部 1004は、 CPU起動 割込時間設定レジスタ 604と、高速クロック起動時間設定レジスタ 605と、時間同期タ イマ起動時間設定レジスタ 606と、周波数誤差測定起動時間設定レジスタ 607と、ス リーブカウンタ終了時間設定レジスタ 608とに対し、間欠周期に対応するデータを設 定し、さらに、スリープタイマ 104のカウンタ開始設定レジスタ 602に 1を設定する。こ れにより、スリープタイマ 104が起動し、高速クロック起動信号 S 109が Lレベルとなつ て高速クロックが停止し、時間同期タイマ起動信号 S 110が Lレベルとなって時間同 期タイマ 102が停止する。時刻(7)において CPU106内の復調処理部 1001は自ら を停止する。ここで時刻(2)から時刻(6)の間において、受信処理部 113が、 P1から P4に示す PCHの信号を 4バースト受信する。このときの受信窓の大きさは、受信波 に対して、図 3および図 5で示した誤差と、図 9における周波数誤差測定結果をもとに 計算された時間同期タイマの誤差を加算した値よりも広く開けられている必要があり、 そのようにしている。 [0031] At time (1), the high-speed clock activation signal S109 becomes H level and the high-speed clock 101 is activated. At time (2), the time synchronization timer start signal S110 becomes H level, The value of the counter start time setting register 204 set by the time synchronization counter 203 at time (0) also starts counting. At time (3), frequency error measurement start signal S111 is generated and frequency error measurement is started. At time (4), the sleep timer 104 stops. At time (5), the frequency error measurement ends, and a frequency error measurement end interrupt signal S 112 is generated. At time (6), from the information about the reception timing determined by the timing control unit 1002 in the CPU 106, the activation time calculation unit 1004 calculates how many frames can sleep (intermittent cycle). In the example shown in FIG. 11, since the received wave to be received next is the signal of the own cell, activation time calculation section 1004 calculates the time from P1 to the next P1 in FIG. 11 as an intermittent period. Then, the activation time calculation unit 1004 includes a CPU activation interrupt time setting register 604, a high-speed clock activation time setting register 605, a time synchronous timer activation time setting register 606, a frequency error measurement activation time setting register 607, Data corresponding to the intermittent period is set in the leave counter end time setting register 608, and 1 is further set in the counter start setting register 602 of the sleep timer 104. As a result, the sleep timer 104 is started, the high-speed clock start signal S 109 becomes L level and the high-speed clock stops, and the time synchronization timer start signal S 110 becomes L level and the time synchronization timer 102 stops. . At time (7), the demodulation processing unit 1001 in the CPU 106 stops itself. Here, from time (2) to time (6), the reception processing unit 113 receives four bursts of PCH signals shown from P1 to P4. The size of the reception window at this time is the sum of the error shown in Figs. 3 and 5 and the error of the time synchronization timer calculated based on the frequency error measurement result in Fig. 9 for the received wave. It needs to be open more widely than it does.
[0032] 図 12は、短期間周期に、他セルの BCCHの信号を受信する場合のシーケンス図 である。上述したように、本発明は、他セルの BCCHの信号を受信した後に、間を置 かずに、自セルの PCHの信号を受信して、自セルの PCHの信号を受信したことに基 づいて時間同期の維持を行うようにしている点に特徴がある。以下、詳しく説明する。  [0032] FIG. 12 is a sequence diagram in the case of receiving a BCCH signal of another cell in a short period. As described above, the present invention is based on receiving the PCH signal of the own cell and receiving the PCH signal of the own cell without receiving a gap after receiving the BCCH signal of the other cell. The feature is that time synchronization is maintained. This will be described in detail below.
[0033] 時刻 (0)から時刻 (5)までは図 14の場合と同様である。ここで時刻 (2)以降にぉ ヽ て、受信処理部 113が、 B1から B4に示す他セルの BCCHの信号を 4バースト受信 する。その後、受信処理部 113が、 S1から S4に示す自セルの PCHの信号を 4バー スト受信するようタイミング制御部 1002は、受信タイミングを決定し、決定した受信タ イミング情報に応じてセル切替信号 S114が受信処理部 113へ出力され、受信処理 部 113は、自セルカもの基地局の信号を受信する。そして、受信処理部 113が、自 セルの PCHの信号を受信することにより、 CPU106内の起動時間算出部 1004は、 次回時間同期タイマ 102のカウンタ開始時間設定レジスタ 204に設定するデータを 計算する際に用いるトラッキング量を、自セルの PCHの信号の受信タイミングを使つ て算出することができる。つまり、受信処理部 113が、 S1から S4に示す自セルの PC Hの信号を 4バースト受信した後に、図 14の時刻 (6)および時刻 (7)の動作と同じ動 作を図 15の時刻 (6)および時刻 (7)の動作として行っているのである。 [0033] From time (0) to time (5) is the same as in FIG. Here, after time (2), reception processing section 113 receives four bursts of BCCH signals of other cells shown in B1 to B4. After that, the reception processing unit 113 displays the PCH signal of its own cell shown in S1 to S4 in 4 bars. The timing control unit 1002 determines the reception timing so that the cell switching signal S114 is output to the reception processing unit 113 according to the determined reception timing information, and the reception processing unit 113 receives the base station of its own cell phone. Receive a signal. When the reception processing unit 113 receives the PCH signal of its own cell, the activation time calculation unit 1004 in the CPU 106 calculates the data to be set in the counter start time setting register 204 of the next time synchronization timer 102. The amount of tracking used for the calculation can be calculated using the reception timing of the PCH signal of the own cell. That is, after the reception processing unit 113 receives four bursts of the PCH signal of its own cell shown in S1 to S4, the same operation as the operation at time (6) and time (7) in FIG. 14 is performed at the time in FIG. This is done as (6) and time (7).
[0034] すなわち、本発明は時刻(2)から時刻 (5)において、受信処理部 113は、 B1力ら B 4に示す他セルの BCCHの信号を 4バースト受信する。その後、直ちに、セル切換部 1002によって、受信処理部 113へセル切替信号 S114が出力されて、受信処理部 1 13は、通信相手を他セルの基地局から自セルの基地局へ切り替えて、 S1力ら S4に 示す自セルの PCHの信号を 4バースト受信する。そして、時刻(6)において、 CPU1 06内の起動時間算出部 1004は、次に自セルの PCHの信号を受信するまでの間欠 周期を、自セルの PCHの信号を受信したタイミングを用いて計算し、間欠周期に対 応して、起動時間算出部 1004が、スリープタイマ 104を起動する。この結果、高速ク ロックが停止し、時間同期タイマが停止する。そして、時刻(7)において CPU内の復 調処理部 1001が停止する。  That is, according to the present invention, from time (2) to time (5), the reception processing unit 113 receives 4 bursts of BCCH signals of other cells indicated by B1 force and B4. Immediately thereafter, the cell switching unit 1002 outputs a cell switching signal S114 to the reception processing unit 113, and the reception processing unit 113 switches the communication partner from the base station of another cell to the base station of its own cell. It receives 4 bursts of the PCH signal of its own cell shown in S4. Then, at time (6), the activation time calculation unit 1004 in the CPU 106 calculates the intermittent period until the next reception of the PCH signal of the own cell using the timing at which the PCH signal of the own cell is received. In response to the intermittent period, the activation time calculation unit 1004 activates the sleep timer 104. As a result, the high-speed clock stops and the time synchronization timer stops. Then, at time (7), the demodulation processing unit 1001 in the CPU stops.
[0035] このことにより、時間同期の維持には低速かつ低精度である時計用クロック (RTC) を使用し、 VCTCXOは基地局からの信号の受信時のみに起動させる方法を、他セ ルの基地局力もの信号に対しても適用できる間欠受信制御装置を実現している。そ して、無線装置の待ち受け時間を伸張することを可能にしている。  [0035] As a result, the clock clock (RTC), which is low speed and low accuracy, is used to maintain time synchronization, and the VCTCXO is activated only when a signal is received from the base station. An intermittent reception control apparatus that can be applied to a signal having a base station power is realized. It also makes it possible to extend the standby time of wireless devices.
[0036] 一方、図 13は、短期周期内に、自セルの基地局からの信号を受信した後に他セル の基地局力ゝらの信号を受信する場合のシーケンス図を示す。つまり、図 13は、本発 明の特徴となる受信タイミングの調整がされて 、な 、場合の例である。 On the other hand, FIG. 13 shows a sequence diagram when a signal from the base station power of another cell is received after receiving a signal from the base station of the own cell within a short period. In other words, FIG. 13 shows an example in which the reception timing, which is a feature of the present invention, is not adjusted.
[0037] まず、時刻(0)ではスリープタイマ 104から CPU106に CPU起動割込信号 108が 入ると、 CPU106はアクティブ状態となる。次に、時刻(1)でスリープタイマ 104から 高速クロック起動信号 S109が入ると、高速クロック 101力起動する。時刻(2)でスリー プタイマ 104から時間同期タイマ起動信号 S110が入ると、時間同期タイマ 102がァ クティブになる。時刻(3)では周波数誤差測定起動信号 S111が発生し、周波数誤 差測定部 105において周波数誤差測定が開始される。そして、時刻 (4)においてスリ ープタイマ 104が停止して、時刻 (5)において周波数誤差測定が終了し、周波数誤 差測定終了割込信号 S112が発生する。時刻(6)では、スリープタイマ 104が起動し 、高速クロック起動信号 S109が Lレベルとなって高速クロック 101が停止し、時間同 期タイマ起動信号 S110が Lレベルとなって時間同期タイマ 102が停止する。そして 時刻 (7)において CPU106は自らを停止する。 [0037] First, at time (0), when the CPU activation interrupt signal 108 is input from the sleep timer 104 to the CPU 106, the CPU 106 becomes active. Next, from the sleep timer 104 at time (1) When the high-speed clock start signal S109 is input, the high-speed clock 101 is started. When the time synchronization timer start signal S110 is input from the sleep timer 104 at time (2), the time synchronization timer 102 becomes active. At time (3), the frequency error measurement activation signal S111 is generated, and the frequency error measurement unit 105 starts frequency error measurement. Then, the sleep timer 104 is stopped at time (4), the frequency error measurement is ended at time (5), and the frequency error measurement end interrupt signal S112 is generated. At time (6), the sleep timer 104 starts, the high-speed clock start signal S109 becomes L level and the high-speed clock 101 stops, and the time synchronization timer start signal S110 becomes L level and the time synchronization timer 102 stops. To do. At time (7), the CPU 106 stops itself.
[0038] 時刻(2)以降において、 P1から P4に示す自セルの PHの信号を 4バースト受信す る。そして次に受信すべき受信波が他セルの BCCHの信号であると CPU106内のタ イミング制御部 1002が判断した場合には、起動時間算出部 1004は、他セルの BC CHの信号を受信して力 次の自セルの PCHの信号を受信するまでの間を間欠周 期として算出する。この結果、高速クロック 101および時間同期タイマ 102は停止せ ず、 B1から B4に示す他セルの BCCHの信号を受信するフレームまでの間、動作し 続けることになる。すなわち、他セルの BCCHの信号を受信するまで高速クロック 10 1を停止することができず、消費電流が増大し、待ち受け時間を短縮することが困難 となる。 [0038] After time (2), 4 burst signals of the own cell PH shown in P1 to P4 are received. When the timing control unit 1002 in the CPU 106 determines that the next received wave to be received is the BCCH signal of another cell, the activation time calculation unit 1004 receives the BCCH signal of the other cell. The time until the next PCH signal of the own cell is received is calculated as the intermittent period. As a result, the high-speed clock 101 and the time synchronization timer 102 do not stop and continue to operate until a frame for receiving a BCCH signal of another cell shown in B1 to B4. That is, the high-speed clock 101 cannot be stopped until the BCCH signal of another cell is received, current consumption increases, and it becomes difficult to shorten the standby time.
[0039] 図 14に、 GSM方式における制御チャネルのフレームマッピング図を示す。 GSM 方式では、制御チャネルのフレームは 51サイクルで巡回し、同図中、 CCCHは共通 制御チャネル(Common Control Channel)で、 FCCHは周波数補正チャネル(Frequ ency Correction Channel)を示す。 BCCHおよび CCCHは、ノーマルバーストなので 、 自セルの基地局からの信号の 4バーストは、 BCCHの信号又は CCCHの信号であ ればどこを選択してもよい。例えばフレーム番号(# 5、 # 6、 # 7、 # 8)の 4バースト を選択してもよいし、(# 8、 # 9、 # 12、 # 13)の 4バーストを選択してもよい。あるい は 4ノーマルバーストの代わりに、 SCHの信号を 1バースト受信してタイムトラッキング 量を求めてもよぐ要するに、他セルからの BCCHの信号が受信されるタイミングの直 後に自セルからの PCHの信号が受信されるようになって!/、ればよ!/、。 [0040] 以上のように本発明によれば、他セルの基地局力 の信号を受信した後に自セル の基地局力 の信号を受信して時間同期の維持を行う構成とすることで、他セルの 基地局からの信号に対しても適用できる間欠受信制御装置が得られ、無線端末通信 装置の待ち受け時間を伸張することが可能となる。なお他セルの基地局に対しては、 あらかじめ同期獲得がなされて 、たものとする。 FIG. 14 shows a frame mapping diagram of the control channel in the GSM scheme. In the GSM system, the control channel frame circulates in 51 cycles. In the figure, CCCH is the common control channel and FCCH is the frequency correction channel. Since BCCH and CCCH are normal bursts, any of 4 bursts of signals from the base station of the own cell may be selected as long as they are BCCH signals or CCCH signals. For example, 4 bursts of frame numbers (# 5, # 6, # 7, # 8) may be selected, or 4 bursts of (# 8, # 9, # 12, # 13) may be selected. Alternatively, instead of using 4 normal bursts, it is possible to receive one burst of SCH signal and obtain the time tracking amount. In short, the PCH from the own cell immediately after the timing of receiving the BCCH signal from another cell. Is now received! /! [0040] As described above, according to the present invention, after receiving the signal of the base station power of another cell, the base station power signal of the own cell is received and the time synchronization is maintained. An intermittent reception control device that can also be applied to signals from the cell base station is obtained, and the standby time of the wireless terminal communication device can be extended. It is assumed that synchronization is acquired in advance for base stations in other cells.
[0041] また、本実施の形態では、 GSM方式を例としてクロック周波数などで具体的な数値 を用いて説明した力 本発明は GSM方式に限ったものではなく様々な通信方式に 適用できる。  [0041] In the present embodiment, the power described using specific numerical values such as clock frequency as an example of the GSM system is not limited to the GSM system, and can be applied to various communication systems.
[0042] 本明糸田書 ίま、 2005年 3月 4曰出願の特願 2005— 060148に基づく。この内容【ま すべてここに含めておく。  [0042] Based on Japanese Patent Application 2005—060148, filed on April 4, 2005. This content [all included here.
産業上の利用可能性  Industrial applicability
[0043] 本発明にかかる間欠受信制御装置は、他セルの基地局力もの信号に対しても適用 可能な間欠受信制御装置であり、待ち受け時間を伸張することができる無線端末通 信装置として有用である。 [0043] The intermittent reception control apparatus according to the present invention is an intermittent reception control apparatus that can be applied to a signal of a base station of another cell, and is useful as a wireless terminal communication apparatus that can extend the standby time. It is.

Claims

請求の範囲 The scope of the claims
[1] 所定長の第 1期間毎に前記第 1期間内の一部の期間にて自セルの基地局力もべ 一ジングチャネルを用いて送信される第 1制御信号を間欠受信し、前記第 1期間より 長い第 2期間毎に他セルの基地局力 送信される第 2制御信号を間欠受信する通信 端末装置に備えられ、  [1] intermittently receiving a first control signal transmitted using a base channel power of the own cell in a part of the first period for each first period of a predetermined length, Provided in a communication terminal device that intermittently receives a second control signal transmitted from the base station power of another cell every second period longer than one period,
相対的に低速かつ低精度の低速クロックを用いて時間同期の維持を図り、相対的 に高速かつ高精度の高速クロックを用いて前記第 1および第 2制御信号を受信する 間欠受信制御装置において、  In the intermittent reception control device for maintaining time synchronization using a relatively low-speed and low-accuracy low-speed clock and receiving the first and second control signals using a relatively high-speed and high-accuracy high-speed clock,
前記第 2制御信号を受信する前記第 1期間内には、前記第 2制御信号の受信を完 了した後に前記第 1制御信号の受信を開始するように受信タイミングを制御するタイミ ング制御手段と、  Timing control means for controlling reception timing so that reception of the first control signal is started after completion of reception of the second control signal within the first period of receiving the second control signal. ,
前記タイミング制御手段の制御に基づいて通信相手のセルを切替えるセル切替手 段と、  A cell switching means for switching a communication partner cell based on the control of the timing control means;
前記第 2制御信号を受信する前記第 1期間内には、前記第 2制御信号の受信開始 から前記第 1制御信号の受信完了までの期間に前記高速クロックを起動させる起動 手段と、  An activation means for activating the high-speed clock during a period from the start of reception of the second control signal to the completion of reception of the first control signal within the first period of receiving the second control signal;
を具備する間欠受信制御装置。  An intermittent reception control apparatus comprising:
[2] 前記第 2制御信号は、報知制御チャネル、共通制御チャネル、若しくは、シンクロナ ィゼーシヨンチャネルの信号である [2] The second control signal is a broadcast control channel, a common control channel, or a synchronization channel signal.
請求項 1に記載の間欠受信装置。  The intermittent receiving device according to claim 1.
PCT/JP2006/304169 2005-03-04 2006-03-03 Intermittent reception control apparatus WO2006093297A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-060148 2005-03-04
JP2005060148A JP2008124524A (en) 2005-03-04 2005-03-04 Intermittent reception control apparatus

Publications (1)

Publication Number Publication Date
WO2006093297A1 true WO2006093297A1 (en) 2006-09-08

Family

ID=36941327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304169 WO2006093297A1 (en) 2005-03-04 2006-03-03 Intermittent reception control apparatus

Country Status (2)

Country Link
JP (1) JP2008124524A (en)
WO (1) WO2006093297A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8391193B2 (en) 2009-01-09 2013-03-05 Sony Corporation Wireless communication device, wireless communication system, wireless communication method, and computer program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190568A (en) * 1996-12-27 1998-07-21 Matsushita Electric Ind Co Ltd Radio receiving device
JP2000224100A (en) * 1999-02-04 2000-08-11 Nec Saitama Ltd Communications equipment capable of efficiently controlling power supply, control method, and recording medium
JP2000278752A (en) * 1999-03-24 2000-10-06 Toshiba Corp Mobile radio terminal
WO2002098023A1 (en) * 2001-05-25 2002-12-05 Mitsubishi Denki Kabushiki Kaisha Timing control device and timing control method
JP2002368670A (en) * 2001-06-05 2002-12-20 Mitsubishi Electric Corp Radio communication equipment and method for estimating reception timing therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190568A (en) * 1996-12-27 1998-07-21 Matsushita Electric Ind Co Ltd Radio receiving device
JP2000224100A (en) * 1999-02-04 2000-08-11 Nec Saitama Ltd Communications equipment capable of efficiently controlling power supply, control method, and recording medium
JP2000278752A (en) * 1999-03-24 2000-10-06 Toshiba Corp Mobile radio terminal
WO2002098023A1 (en) * 2001-05-25 2002-12-05 Mitsubishi Denki Kabushiki Kaisha Timing control device and timing control method
JP2002368670A (en) * 2001-06-05 2002-12-20 Mitsubishi Electric Corp Radio communication equipment and method for estimating reception timing therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8391193B2 (en) 2009-01-09 2013-03-05 Sony Corporation Wireless communication device, wireless communication system, wireless communication method, and computer program

Also Published As

Publication number Publication date
JP2008124524A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
RU2195075C2 (en) Radiophone and method for time-interval calibration of page-mode clock signal in code- division multiple-access radiophone system
KR100577545B1 (en) Synchronisation of a low power clock in a wireless communication device
JP4503616B2 (en) Precise sleep timer using low-cost and low-accuracy clock
JP3504688B2 (en) Pulse generating apparatus and method
US5910944A (en) Radio telephone and method for operating a radiotelephone in slotted paging mode
US6311081B1 (en) Low power operation in a radiotelephone
JPH10190568A (en) Radio receiving device
US20070217562A1 (en) Aligning a frame pulse of a high frequency timer using a low frequency timer
US9307571B2 (en) Communication device and frequency offset calibrating method
JP3287398B2 (en) CDMA receiver and intermittent reception method in CDMA receiver
AU718828B2 (en) High resolution clock reconstruction for use in a mobile telecommunication device
US6807408B2 (en) Method for interrupting an idle state of a communication unit in a radio communication system
US6411830B2 (en) System and method for reducing power consumption in waiting mode
WO2006093297A1 (en) Intermittent reception control apparatus
JP2000278752A (en) Mobile radio terminal
US6176611B1 (en) System and method for reducing power consumption in waiting mode
JP4277084B2 (en) Local timer device
CN101321014B (en) Clock emendation method and terminal unit in discontinuous receiving course
JPH10257004A (en) Communication equipment
JP2003023369A (en) Device and method for communication for performing intermittent transmitting/receiving
JPH10215293A (en) Portable terminal
GB2450313A (en) Ring oscillator clock
TW200950541A (en) Precise sleep timer using a low-cost and low-accuracy clock
JPH09121198A (en) Controller for radio communication equipment
JPH10117164A (en) Intermittent reception controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP