TW200950541A - Precise sleep timer using a low-cost and low-accuracy clock - Google Patents

Precise sleep timer using a low-cost and low-accuracy clock Download PDF

Info

Publication number
TW200950541A
TW200950541A TW098102096A TW98102096A TW200950541A TW 200950541 A TW200950541 A TW 200950541A TW 098102096 A TW098102096 A TW 098102096A TW 98102096 A TW98102096 A TW 98102096A TW 200950541 A TW200950541 A TW 200950541A
Authority
TW
Taiwan
Prior art keywords
reference oscillator
wtru
rtc
mode
low power
Prior art date
Application number
TW098102096A
Other languages
Chinese (zh)
Other versions
TWI377856B (en
Inventor
Aykut Bultan
John W Haim
Leonid Kazakevich
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW200950541A publication Critical patent/TW200950541A/en
Application granted granted Critical
Publication of TWI377856B publication Critical patent/TWI377856B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

A wireless transmit/receive unit (WTRU) uses an oscillator providing accuracy for synchronized communications parameters in an active mode, and operates at reduced power during a discontinuous reception (DRX) mode. A real time clock (RTC) is used as the frequency standard during the reduced power operation, and a frequency adjustment is effected while the RTC is used as the frequency standard. By effecting the frequency adjustment, the RTC is able to be used as the frequency standard for substantial time periods, thereby reducing power consumption of the WTRU during the DRX mode.

Description

200950541 六、發明說明: 【發明所屬之技術領域】 本發明係關於無線驗裝置的參考缝^,及更制是關於 此種參考振盪器的功率消耗控制。 【先前技術】 存在以關於絲雜時鐘,亦稱為主時鐘,校正低精雜時 鐘的演算法。此允許低準確性時鐘產生幾乎與主時鐘-樣精確的 ❿鱗,料肋具-件共_事情-賴賴触_校正低精 確性時鐘。 在電池驅動裝置如無線傳送/接收單元⑽则)及其他移動 裝置,限制功率消耗以延長電池壽命是非常重要的。應設計在 WTRU的演算法及硬體以最小化神雜,柯由在不活動時間 間隔期間降低的功率消耗而延長電池壽命,在此時間間隔期間某 些功能可被關斷或是以一些降低的功率模式之形式操作。構形 使得WTRU在不活動時關關間可崎低的功能操 作’當傳啤或其他專屬連接未進行時,WTRU僅需要偶爾地執行 某些功能以維持同步化及與其相關基地台的通信,此提供允許 WTRU最小彳b其功率消耗的不活鱗間間隔。此係由制不連續 接收(DRX)操作的WTRU而達到’其中該WTRu周期性地在" 睡眠”及"喚醒”期間之間循環。在睡眠期間,不需要的功率消耗方 法及硬體被關斷。在喚醒期間,需要維持同步化及與其相關基地 台通信的這些方法及硬體被暫時回復為開啟。 現今大多數手持WTRUs除了高精確性主鐘還包括低精確性 3 200950541 即時時鐘(RTC)。主時鐘典型上使用溫度控制晶體振盪器(TCX〇) 進行。RTC典型上消耗遠較TCX0所消耗能量為少的能量,此 使得希望使用RTC取代TCXO以在DRX期間提供計時功能。然200950541 VI. Description of the Invention: [Technical Field] The present invention relates to a reference slit for a wireless inspection device, and a control for power consumption control of such a reference oscillator. [Prior Art] There is an algorithm for correcting a low-precision clock with respect to a clutter clock, also called a master clock. This allows for a low-accuracy clock to produce almost the same precision as the master clock, and the ribs are all _ things-dependent _corrective low-precision clocks. In battery-driven devices such as wireless transmit/receive units (10) and other mobile devices, it is important to limit power consumption to extend battery life. The algorithm and hardware of the WTRU should be designed to minimize the complexity of the battery life by reducing the power consumption during periods of inactivity during which certain functions can be turned off or reduced. The operation of the power mode. The configuration allows the WTRU to operate at a low level during periods of inactivity. When the delivery of a beer or other proprietary connection is not made, the WTRU only needs to perform certain functions occasionally to maintain synchronization and communication with its associated base station. This provides an inactive interscale interval that allows the WTRU to minimize its power consumption. This is achieved by the WTRU making a discontinuous reception (DRX) operation where the WTRu periodically cycles between "sleep" and "wake'. Unwanted power consumption methods and hardware are turned off during sleep. During wake-up, these methods and hardware that need to maintain synchronization and communicate with their associated base stations are temporarily reverted to on. Most handheld WTRUs today include low accuracy 3 200950541 Instant Clock (RTC) in addition to the high accuracy master clock. The main clock is typically implemented using a temperature controlled crystal oscillator (TCX〇). RTC typically consumes far less energy than TCX0 consumes, which makes it desirable to use RTC instead of TCXO to provide timing functionality during DRX. Of course

而在DRX期間使用RTC於計時存在四個問題,第一,RTC 典型上於與tcxo相較顯著降低的速度(如32768千赫茲比76 8 百萬赫茲)操作。第二,RTC的頻率精確性與TCX〇的頻率準確 性相較為非常低的。第三’因不同環境如溫度變化,跳的 頻移大於tcxo的頻移。第四,RTC典型上與TCX〇不同步地 操作。因為這些原因,在DRX _典型的RTC不足以單獨提供 計時功能。 【發明内容】There are four problems with timing using RTC during DRX. First, RTC is typically operated at significantly lower speeds than tcxo (eg, 32768 kHz vs. 76 8 megahertz). Second, the frequency accuracy of the RTC is very low compared to the frequency accuracy of the TCX〇. Thirdly, due to different environments such as temperature changes, the frequency shift of the hop is greater than the frequency shift of tcxo. Fourth, RTC typically operates asynchronously with TCX〇. For these reasons, the typical RTC in the DRX_ is not sufficient to provide the timing function separately. [Summary of the Invention]

【實施方式】 如此處所使用, 名稱”無線傳送/接收單开[Embodiment] As used herein, the name "wireless transmission/reception single open"

邮無綠魏下操翻任何魏赋的裳置。 ’(WTRU)包括但不 元、傳呼機、或能 名稱”基地台”包括 200950541 但不限於B_節點、基站控儀、接人點或在缝環境下的 他型式的接觸面裝置。雖然 :―些具體實施例係以第三代夥宏 (3GPP)系統合併解釋,它們可應用於其他無線系統。 一 根據本㈣令力率及高準確鎌麵麵類式期間關斷 及使用與睡__演算法合併㈣代低辨及鱗確性振盈 器。由使用低辨缝H,可達到較長的電池壽命。典型上,低There is no green Wei under the slogan. The 'WTRU' includes but not limited to, the pager, or the name "base station" includes 200950541 but is not limited to a B_node, a base station controller, a pick-up point, or a type of contact surface device in a slotted environment. Although: "The specific embodiments are explained in conjunction with the third generation of macro (3GPP) systems, they can be applied to other wireless systems. According to this (4) force rate and high accuracy, the face type is closed and used in conjunction with the sleep __ algorithm (4) generation low recognition and scale correctness. Long battery life can be achieved by using a low-profiled seam H. Typically, low

m 功率及低準確性振㈣操作於較高功率高準確性振i器為低的 頻率數量級。例如,在—個賴具體實施财,低功率時鐘 的RTC操作於工業標ψ 32.768千赫兹,與高功率及高準確性振 盡器相較,該RTC操作於降低速度。儘管RTC於手持WTRUs 的使用為普遍的,此具體實施例提供使用RTC於睡眠模式操作 的能力。 睡眠計時器(ST)演算法被用於進行DRX計時及允許主 TCX〇被關斷,為降低備用WTRU的功率消耗,TCX〇在DRX 睡眠時Μ隔_可棚斷。當TCXO被_,低功率晶體振逵 器或RTC被用於控制DRX計時直到TCX〇再次開機。為進行此 目的,以工業標準水晶為基礎的即時時鐘或其他標準時鐘電路用 做RTC。該RTC與睡眠計時器演算法合併,其克服在使用於DRX 模式的RTC之問題,睡眠計時器演算法之使用由應用頻率測量 及調度解決此兩個問題。RTC可為任何合適的振盪器或是時鐘, 此不改變演算法;僅改變其參數。 本發明應用係關於DRX敘述之,其明確地提供用於UMTS 標準。然而’本發明可用於具與標準無關的睡眠模式的WTRU, 5 200950541 例如DRX的親實關及以非鮮絲礎_眠酬間隔的另 一種具體實施例。 第1圖為顯示在主動u及DRX U的操作模式的微⑽ 作之流程圖’在主動模式u,资如提供由通信裝置13所表示 的全通信雜。儘管在部份通信赌綱存在省賴式,一般, WTRU完全操作的、主動地使用TCX〇 17由同步化裝置μ且其 料裝置15計時。可操作由rtc裝置18所祕的 TC功此,但通信裝置13主要是依賴TCXO 17。 田wreu為DRX模式12,同步化及計時功能為由同步化 24及„十時裝置25所說明但在降低位準而表示。肪必須 能夠辨識需要主_操倾式之料,及崎錄置Μ維持通 此係崎低朗步化及鱗能力而完成,此降低 i f 1 求,及使得可飾咖28。第1圖表示相同 裝置的不同操作模式,及所以說明的不同Tcx〇si7、mrcs 18、28的物理組件係由相同物理裝置執行。 =_式_執行簡作包括尋找料通道、執行胞元再 及檢查用戶活性,若存在傳呼,貝,】评而離開睡眠模 式及進入將要被敘述的主動模式。 同步ΓΓΓ時器能夠控制其主動及DRx'組件絲據演算法進入 ^德環;睡眠构11演算法包括絲循環組件,—般係與主 ==作-致及DRX組件及與D狀操作—致。在主動循環, 之能=¼組件維持在TCX〇下的操作及維持轉移至rtc的操作 200950541m power and low accuracy vibration (4) operate at higher power and high accuracy oscillators at a lower frequency order. For example, in a specific implementation, the low-power clock RTC operates at an industrial standard of 32.768 kHz, which is reduced in speed compared to high-power and high-accuracy oscillators. While the use of RTCs for handheld WTRUs is common, this embodiment provides the ability to operate in sleep mode using RTC. The sleep timer (ST) algorithm is used to perform DRX timing and allows the primary TCX to be turned off. To reduce the power consumption of the standby WTRU, the TCX is stunned during DRX sleep. When the TCXO is _, the low power crystal oscillator or RTC is used to control the DRX timing until the TCX is turned back on. For this purpose, an instant clock based on an industry standard crystal or other standard clock circuit is used as the RTC. The RTC is combined with a sleep timer algorithm that overcomes the problem of RTC used in DRX mode, and the use of the sleep timer algorithm addresses both of these issues by application frequency measurement and scheduling. The RTC can be any suitable oscillator or clock, which does not change the algorithm; only its parameters are changed. The application of the invention is described in relation to DRX, which is explicitly provided for the UMTS standard. However, the present invention is applicable to WTRUs having a sleep mode that is independent of the standard, 5 200950541, for example, DRX's pro- ing and other specific embodiments of non-fresh. Fig. 1 is a flow chart showing the micro (10) operation mode of the active u and the DRX U. In the active mode u, the full communication miscellaneous represented by the communication device 13 is provided. Although there is a dependency in some communication gambling, in general, the WTRU is fully operational, actively using the TCX 〇 17 by the synchronization device μ and its device 15 is clocked. The TC that is secreted by the rtc device 18 is operable, but the communication device 13 is primarily reliant on the TCXO 17. Tian wreu is the DRX mode 12, the synchronization and timing functions are indicated by the synchronization 24 and „10 o'clock device 25 but are shown in the lowering level. The fat must be able to identify the main _ tilting material, and the record Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if if The physical components of 18, 28 are executed by the same physical device. =_式_Execution is performed by searching for the material channel, executing the cell and checking the user activity. If there is a paging, the shell, and leaving the sleep mode and entering will be The active mode of the description. The synchronous timer can control its active and DRx' component wire algorithm to enter the German ring; the sleep structure 11 algorithm includes the wire cycle component, the general system and the main == for the DRX component and With the D-like operation - in the active cycle, the energy = 1⁄4 component maintains the operation under TCX〇 and maintains the operation of transferring to rtc 200950541

主動循環組件包括同步化更新,及WTRU是否應進入DRX 模式之歧。WTRU是麵取DRX模式之歧雜據預先決 疋的不活動準則決定,進入DRX模式的準則之實例包括對話的 結束、預定時間間隔的不活動、未定位足夠信號的胞元搜尋活動 的預疋時間間隔及連續未成功胞元搜尋活動的預定次數。特定準 則為WTRU的函數。The active loop component includes synchronization updates and whether the WTRU should enter the DRX mode. The WTRU is determined by the inactivity criteria of the DRX mode. Examples of criteria for entering the DRX mode include the end of the session, the inactivity of the predetermined time interval, and the prediction of the cell search activity for which no sufficient signal is located. The time interval and the predetermined number of consecutive unsuccessful cell search activities. A particular criterion is a function of the WTRU.

在特定具體實_中,RTC頻相量被齡。然而,RTC 頻率測量可被避免因為此可在DR組件執行。當在決定時相對不 活動時間間隔係由WTRU辨識時WTRU進入DRX模式。 在DRX組件,RTC頻率測量以周期基準執行以維持同步 化,及進行關於是否回到主動模式之決定。 第3及4圖的組件可使用積體電路,如依特殊應用所訂製的 積體電路(ASIC)、多重ICs、分離元件、或汇⑻及分離元件的电 合,而實現。S 2圖為睡眠計時器演算法⑹所使用的輸入及輸 出信號之方删’辦鐘及DRX職長度騎Μ制肌頻 率測量83,計算88接著為俩及睡輸置而執行,其最終用於 產生喚醒次數93。ταω職、TCXQ關機及下—個傳呼機會 或同步化更新為演算法80的輸出。 曰 睡眠計時器與其他接收器演算法的交互作用被示出做為第3 圖的方塊®。睡眠計時器本身餘據於後文敘述的_計時 法控制H的方塊關示贱計時器與其他魏 法的交互作用。組件包括計時管理員⑴、紙電路ιΐ2 電路113、接收慮波器電路114、頻率估計電路115、迴路渡波器 7 200950541 116、數位類比轉換器(DAC)117&TCX0 n8。亦示出訊框計時 修正(FTC)電路121 ’及主時鐘126、RTC 127及睡眠計時器128。In a specific concrete case, the RTC frequency phasor is aged. However, RTC frequency measurements can be avoided as this can be performed at the DR component. The WTRU enters the DRX mode when the relative inactivity interval is determined by the WTRU when deciding. In the DRX component, the RTC frequency measurements are performed on a periodic basis to maintain synchronization and a decision as to whether to return to active mode. The components of Figures 3 and 4 can be implemented using integrated circuits, such as integrated circuits (ASICs), multiple ICs, discrete components, or sinks (8) and separate components that are customized for a particular application. The S 2 picture is the input and output signals used by the sleep timer algorithm (6). The clock and the DRX position length riding muscle frequency measurement 83 are calculated. The calculation 88 is then performed for both the sleep and the sleep, and the final use is performed. The number of wakeups is 93. Ταω job, TCXQ shutdown and next-page paging opportunity or synchronization update to the output of algorithm 80.交互 The interaction of the sleep timer with other receiver algorithms is shown as the square of Figure 3. The sleep timer itself is based on the _ timing method described later. The block of H controls the interaction of the timer with other Wei methods. The components include a timing manager (1), a paper circuit ι2 circuit 113, a receive filter circuit 114, a frequency estimation circuit 115, a loop waver 7 200950541 116, and a digital analog converter (DAC) 117 & TCX0 n8. A frame timing correction (FTC) circuit 121' and a master clock 126, an RTC 127, and a sleep timer 128 are also shown.

此電路實現負責獲得及維持接受器的訊框同步化之演算法。ADC 電路112、AGC電路113、接收濾波器電路114、頻率估計電路 115、迴路濾波器116、DAC 117及TCXO 118形成頻率估計迴 路m。計時管理員1U、aqc電路112、AGC電路113、接收 濾波器電路114及FTC電路121提供訊框同步化迴路132。在此This circuit implements an algorithm responsible for obtaining and maintaining frame synchronization of the receiver. The ADC circuit 112, the AGC circuit 113, the receive filter circuit 114, the frequency estimation circuit 115, the loop filter 116, the DAC 117, and the TCXO 118 form a frequency estimation loop m. The timing manager 1U, the aqc circuit 112, the AGC circuit 113, the receive filter circuit 114, and the FTC circuit 121 provide a frame synchronization loop 132. here

特別具體實施例中,睡眠計時器128接收來自主時鐘126及RTC 127的信號,其最終提供開起及關斷TCX〇118的信號。 輸入係如下:1)主時鐘(MC)如具76 8百萬赫茲(2〇χ晶片率) 標稱頻率;及2)RTC如具32,768赫兹標稱頻率。控制方面係如 下· 1)以訊框方式# DRX周期長度被提供做為演算法之輸入; 2)下個事件為傳哞區塊或同步化更新區塊的二進輸人;及3)卩〇 起始為PO的第一 MC脈衝。 .輪出係如下.i)tcx〇關機顯示TCX〇電源應^^關斷的時 間’2)TCX〇開機顯示以RTC脈衝方式的tcx〇電源開起時間; 及3)下-個P〇或同步更新位置:依據所考量的傳呼區塊,下一 個噢醒時間可為p〇或同步化更新期間。此輸出以MC脈衝(2〇χ 晶片率)的方式顯示這些事件的開始。 2目_式_所執行的操作鱗找傳呼通道、執行胞元再 B =置及檢查用戶活性’若存在傳呼,則WTRU離開睡眠模 “二i動模式。胞元再選擇為在傳呼區塊期間於任何已知時 間測置最強胞元的連續方法,如第4圖所示。 Ο ❹ 200950541 D_二二 丄,睡眠計時器在 分,第一部分為RT「键裤#作的兩個不同部 新時間間隔操作,1-於量此肩算法部分在每一個同步更 DRX猶環前操作,演進入In a particular embodiment, sleep timer 128 receives signals from master clock 126 and RTC 127, which ultimately provide signals to turn TCX 〇 118 on and off. The input system is as follows: 1) the master clock (MC) has a nominal frequency of 76 8 megahertz (2 〇χ chip rate); and 2) the RTC has a nominal frequency of 32,768 Hz. The control aspects are as follows: 1) in frame mode # DRX cycle length is provided as input to the algorithm; 2) the next event is a binary block or a synchronized update block of the binary input; and 3) 〇 Starts with the first MC pulse of PO. The round is as follows. i) tcx 〇 shutdown shows TCX 〇 power should be ^ ^ off time '2) TCX 〇 boot display tcx 〇 power on time in RTC pulse mode; and 3) next - P 〇 or Synchronous update location: According to the considered paging block, the next wake-up time can be p〇 or synchronized update period. This output shows the beginning of these events in MC pulses (2 晶片 chip rate). 2 _ _ _ the operation scales performed to find the paging channel, execute the cell and then B = set and check the user activity 'If there is a paging, the WTRU leaves the sleep mode "second mode". The cell is then selected as the paging block. A continuous method of measuring the strongest cells at any known time, as shown in Figure 4. Ο ❹ 200950541 D_二二丄, the sleep timer is in minutes, the first part is RT "key pants # two different The new time interval operation, 1-in the amount of this shoulder algorithm part in each synchronization before the DRX yue ring operation, play into

_ ’此部分在DRX r被視為計算上非常有效的演算法,雖然== =士所示的特定實例中,訊框偏移之後為同步化更新期 中=步化更新區塊164。一系列傳啤區塊⑺指被 二t夕RX預細181_183被示出,其一般在其他活動如傳 呼區塊172、173或同步更新區塊164之前。睡眠期間,如睡眠 月門91在狀預熱期181-183之前。同步化更新期間162在 同步化更新區塊164之前。 RX一預熱為用於提早約5毫秒開起TCXO的參數以使TCX〇 預熱’其約略等於在5絲、的MC(2QX)脈驗,在此具體實施例 的脈衝數被設定為384,000。 DRX意欲辨識相對不活動的期間,其由關斷在WTRu的各 種面板組件及進到”睡眠”而提供保存功率的機會。WTRU被告知 其必須喚醒以接收傳輸資料的時機。 DRX被用於空閒模式及用於經連接模式的cell_PCH及 URA一PCH狀態的連接模式。在DRX期間,當由rrC(無線電資 源控制器)基於系統資料設定命令時,WTRU必須在p〇s喚醒。 9 200950541 P0顯示傳呼區塊的開始,對這些步驟的每一個,RRC負責調度 何時、多久及通道層1必須聽從哪一個。對特定WTRU在兩個 POs間的時間差稱為DRX周期長度。 一個PO對應於一個傳呼區塊’傳呼區塊係由許多框架組成 及包含:1)由2或4個傳呼指引(Pis)訊框所組成的傳呼指引通道 (PICH)區塊;2)由2、4、或8個訊框所組成的間隙期,於此物理 資源可由其他通道使用;及3)由一至八個傳呼·組的2至16個傳 呼内容的訊框所組成的傳呼通道(PCH)區塊。_ 'This part is considered to be a very computationally efficient algorithm in DRX r, although in the particular instance shown by == =, the frame offset is followed by the synchronization update period = step update block 164. A series of beer blocks (7) are indicated by the second RX pre-fine 181_183, which is generally preceded by other activities such as paging blocks 172, 173 or synchronous update block 164. During sleep, such as sleep Moongate 91 is before the preheating period 181-183. The synchronization update period 162 precedes the synchronization update block 164. The RX-preheating is a parameter for opening the TCXO about 5 milliseconds early to make the TCX〇 preheat 'which is approximately equal to the MC (2QX) pulse at 5 filaments, and the number of pulses in this embodiment is set to 384,000. . DRX intends to identify periods of relative inactivity that provide opportunities to conserve power by shutting down various panel components of WTRu and entering "sleep". The WTRU is informed of the timing at which it must wake up to receive the transmitted data. The DRX is used in the idle mode and the connection mode for the cell_PCH and URA-PCH states of the connected mode. During DRX, when a command is set by rrC (Radio Resource Controller) based on system data, the WTRU must wake up at p〇s. 9 200950541 P0 shows the start of the paging block. For each of these steps, the RRC is responsible for scheduling when, how long, and which channel layer 1 must listen to. The time difference between two POs for a particular WTRU is called the DRX cycle length. A PO corresponds to a paging block. The paging block consists of a number of frames and contains: 1) a paging guidance channel (PICH) block consisting of 2 or 4 paging guides (Pis) frames; 2) by 2 a gap period consisting of 4, or 8 frames, where the physical resources can be used by other channels; and 3) a paging channel consisting of frames of 2 to 16 paging contents of one to eight paging groups (PCH) ) Block.

當使用DRX時’已提供WTRU在每DRX循環僅需要監測 一個PO中的一個PI,傳呼區塊的時序圖係示於第4圖。drx 周期長度可自8至512個訊框變化,如在空閒模式,可能DRX 周期長度為 0.64、1.28、2.56 及 5.12 秒,·及在 cell/ura PCH 狀態’可能 DRX 周期長度為 0.08、0.16、0.32、α64、128^2 56 及5.12秒。 在DRX期間WTRU應定期更新其訊框及計時同步化以能夠 成功讀取Pis及執行胞元再選擇測量。所以,層1的周期 活動包括胞元再選擇及相關測量,監測PIs ;及維持訊框及計時 同步化。 。、 若該WTRIH貞測到其經由相關ΡΙ被傳呼,其讀取pCH以存 取傳呼内容,否則,其返回睡眠。 菪TCJ入迷躓探作 /、„ Η 〜僻電源供應器 6.0毫瓦特電源消耗2·0毫安培最大電流。為額外省電, 在DRX睡眠期間關斷。當TCXO關斷,使用睡眠計時器以對扒 200950541 或同步化更新期間的開始調度TCXO的喚醒次數。與Tcx〇相 較RTC的功率消耗典型上為不顯著的,在i毫安培大小自3 〇 伏特DC供應器或3.0毫瓦特。 · 使用RTC伴隨著三個問題,首先,RTC的分辨率不滿足一 些無線系統的要求’例如寬頻分工多重存取(W-CDMA)時分雙工 (TDD)模式’ RTC的典型頻率為32,768赫兹,此對應於3〇 52微 秒2最小分辨率或1Π.19晶片或2,343.8個20X樣品(76 8百萬 赫兹)。第二個問題為RTC的頻率準雜,RTC的操作頻率盘禪 稱頻率不同,差距多至励百萬分之一的最大偏差。第三,r= 的頻率穩定料低的。jg關題,假設讎林會較[+/_]〇 3百 萬分之-每分鐘或_5百萬分之一每秒鐘為快此頻移率典型 上為室溫晶體振盪器(RTXO)的最壞情況,其因較差的溫度ς感 度而使用特別切割的晶體。因為這些振盈器並未如TCXO具特別 外殼,故它們成本較低。 _計時料算法包括兩個部分:肌鮮_及睡眠計時 器排程頻率測量在DRX循環期間周期地執行以克服頻率準確 性及頻率穩定性的問題,調度部分符合WTRU的分辨率要求以 當TCXO關斷時準確地調度DRX事件。 對RTC不而要任何頻率校正’僅必須準確地測量^^的頻 率在主動連接模式不需要進行RTC頻率測量因為一 直^ ON,RTC頻率測量僅在_職猶環之前及在 DRX期間When using DRX, the WTRU has been provided to monitor only one PI in a PO per DRX cycle, and the timing diagram of the paging block is shown in Figure 4. The drx cycle length can vary from 8 to 512 frames. For example, in idle mode, the DRX cycle length may be 0.64, 1.28, 2.56, and 5.12 seconds, and in the cell/ura PCH state, the possible DRX cycle length is 0.08, 0.16. 0.32, α64, 128^2 56 and 5.12 seconds. During DRX, the WTRU should periodically update its frame and timing synchronization to be able to successfully read Pis and perform cell reselection measurements. Therefore, the periodic activities of Layer 1 include cell reselection and related measurements, monitoring PIs, and maintaining frame and timing synchronization. . If the WTRIH detects that it is paged via the associated port, it reads the pCH to access the paging content, otherwise it returns to sleep.菪 TCJ into the fascination /, „ Η 僻 僻 僻 电源 电源 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 The number of wake-ups for TCXO is scheduled for the beginning of the 200950541 or synchronization update. The power consumption of the RTC is typically insignificant compared to Tcx〇, which is at 3 amps from a 3 volt DC supply or 3.0 milliwatts. The use of RTC is accompanied by three problems. First, the resolution of the RTC does not meet the requirements of some wireless systems. For example, the Broadband Division Multiple Access (W-CDMA) Time Division Duplex (TDD) mode RTC has a typical frequency of 32,768 Hz. This corresponds to a minimum resolution of 3〇52 microseconds or 1Π.19 wafer or 2,343.8 20X samples (76 8 megahertz). The second problem is the frequency quasi-hybrid of the RTC, and the operating frequency of the RTC is different. The gap is as much as the maximum deviation of one millionth. Thirdly, the frequency stability of r= is low. The jg is the same, assuming that Yulin will be more than [+/_] 〇 3 parts per minute or _5 parts per million is faster per second. This frequency shift rate is typically room temperature. The worst case of the body oscillator (RTXO), which uses specially cut crystals due to poor temperature sensitivity. Because these vibrators are not as special as the TCXO, they are less expensive. Part: Muscle Freshness_ and Sleep Timer Schedule Frequency Measurements are periodically performed during the DRX cycle to overcome frequency accuracy and frequency stability issues. The scheduling portion meets the WTRU's resolution requirements to accurately schedule when the TCXO is turned off. DRX event. No frequency correction is required for RTC. 'The frequency must be accurately measured only ^^ In the active connection mode, RTC frequency measurement is not required. Since it is always ON, the RTC frequency measurement is only before the _ job and during the DRX period.

為而要的。更神應為使得_轉雜縣約(U百萬分之-。 睡眠計時11演算法與計時管理員功能交互_,下-個PO 11 200950541 或同步化更新輸出辨識與喚醒之後的p〇或同步化更新的開始同 時的計時管理員MC脈衝。自計時管理員的P〇開始輸入辨識喚 醒之後的P〇開始至睡眠計時器演算法,若FTC在同步更新之後 改變訊框計時,則所指示PO開始時間係關於該經更新計時。 睡眠°十時器演鼻法比較即時時鐘頻率測量及睡眠計時器調 關於即時時鐘頻率測量’第5圖為根據本發明RTC頻率估 冲窗的時序圖。為準確地測量RTC鮮主鐘脈衝Π的數目於 ,的時間_ 272計算。主鐘具76 8百萬赫_頻率,其為狐❹ =片率,因為此鐘係鎖相至TCX〇,其最差的準確性為〇1百萬 分之一,因為沒有至Rtc的校正’ tcxo的準確性不會影響RTc f率測量準確性’結果’ RTC頻率測量準確性可由增加頻率估計 ®大小而麵欲增加。對G1百萬分之—的RTC 性= 撕㈣百萬的主鐘_脈衝271。 當選擇該頻率估計窗長度為4〇% RTC脈衝("tics”),其對 32,768赫兹的標稱RTC頻率及⑽百萬赫兹的主鐘頻率包括 =〇,〇〇〇 Mc脈衝。頻率估計窗的開始及結束皆由脈衝⑺❹ 婦’Rtc脈衝功的開始起始MC脈衝計數。在第娜個 衝271的開始’ Mc計數停止,及使用Mc計數器值於頻率估 此獅糾1自轉約125毫秒或13倾框,在絲連接模式, 頻率測^執行’除了僅在進入駆循環之前。在此情況下, 峰二、1置在進入DRX循環之前於最S廟觀框的任何地方發 。在DRX循環_ ’頻率測量在每一個同步更新期間内執行: 12 200950541 頻率測篁及處理應在同步化更新期間的最後13個訊框發生,使 得TCXO具最大可能時間以確定。該經更新頻率估計用於下一個 傳呼區塊。 ❹For what you want. More God should make _ turn the county about (U million points - sleep timer 11 algorithm and timing administrator function interaction _, next - PO 11 200950541 or synchronized update output identification and wake up after p〇 or Simultaneously update the start of the simultaneous timing administrator MC pulse. The P〇 of the timed administrator starts inputting the P〇 after the wakeup is recognized to the sleep timer algorithm, and if the FTC changes the frame timing after the synchronous update, the indication is The PO start time is related to the updated timing. The sleep time is compared to the instant clock frequency measurement and the sleep timer is adjusted with respect to the instantaneous clock frequency measurement. FIG. 5 is a timing chart of the RTC frequency estimation window according to the present invention. In order to accurately measure the number of RTC fresh master clock Π, the time _ 272 is calculated. The main clock is 76 8 megahertz _ frequency, which is the fox = chip rate, because this clock is phase locked to TCX 〇, its The worst accuracy is 〇 1 part per million, because there is no correction to Rtc ' tcxo accuracy will not affect RTc f rate measurement accuracy 'results' RTC frequency measurement accuracy can be increased by increasing frequency estimate о size Want to increase RTC for G1 parts - tearing (four) million of the main clock _ pulse 271. When selecting this frequency estimation window length is 4〇% RTC pulse ("tics"), its nominal RTC to 32,768 Hz The frequency and the main clock frequency of (10) megahertz include =〇, 〇〇〇Mc pulse. The start and end of the frequency estimation window are all counted by the pulse (7) ' 'Rtc pulse power start MC pulse count. In Dina rush 271 The beginning of the 'Mc count stops, and uses the Mc counter value to estimate the frequency of this lion to correct 1 rotation for about 125 milliseconds or 13 tilt boxes, in the wire connection mode, the frequency measurement ^ executes 'except only before entering the 駆 cycle. In this case Peaks 2 and 1 are placed anywhere in the most S-view box before entering the DRX cycle. The DRX cycle _ 'frequency measurement is performed during each synchronization update period: 12 200950541 Frequency measurement and processing should be synchronized The last 13 frames of the period occur, allowing the TCXO to have the maximum possible time to determine. The updated frequency estimate is used for the next paging block.

關於睡眠计時器排程,第6圖為顯示睡眠計時器調度的時序 圖。睡眠計時器決定每一個DRX循環的兩個周期事 的下-個嗔醒時間;及下-個PO或下—個同步化更新區塊開 始’無論哪-個是下-個事件,的時間(特定MC脈衝),為在無 =ΧΟ情況下定位·事件’存在—糊量及許乡方法以應用簡 單計算方法。在第6圖下方示出事件的時序圖。 TIC A : ΡΟ 後的第一個 RTC Tic。 TIC b=brtc :開機 TCXO 的 RTC tic,Brtc 訂定自 p〇 開始 的RTC tics數目(所計算每一個同步化更新< DRX職長度變 TICC=Crtc :在用於定位下一個;p〇或同步化更新區塊開始 的DRX期間的RTCtic(每一個同步化更新所叶算)。 _^夠:趙⑽數目的方式表示的頻率估計窗的 目前PO至下一個事件 周期長度而具不同值, DRXP .此參數表示以訊框方式的自 的距離,其依據下一個事件輸入及DRX 這些值提供於表1。Regarding the sleep timer schedule, Figure 6 is a timing diagram showing the sleep timer schedule. The sleep timer determines the next-wake time of the two cycles of each DRX cycle; and the time after the next-PO or the next-synchronized update block starts 'whatever is the next event' ( The specific MC pulse) is used to locate and event 'in the absence of ΧΟ — - the amount of paste and the method of Xu Xiang to apply a simple calculation method. A timing diagram of the event is shown at the bottom of Figure 6. TIC A : The first RTC Tic after ΡΟ. TIC b=brtc : RTC tic of boot TCXO, Brtc sets the number of RTC tics starting from p〇 (each sync update calculated < DRX job length change TICC=Crtc: used to locate the next one; p〇 or Synchronize the RTCtic during the DRX start of the update block (each synchronization update is calculated). _^Enough: Zhao (10) number indicates the current PO of the frequency estimation window to the next event cycle length with different values, DRXP. This parameter indicates the distance from the frame, which is provided in Table 1 based on the next event input and DRX.

Kmc · 度列表)。 每DRX期間的MC(20X)脈衝數(對所有順周期長Kmc · degree list). Number of MC (20X) pulses per DRX (for all pro-cycles)

KK

RTCRTC

:在頻率估計期間所使用的RTC 脈衝數’其被設定為 13 200950541 4096。: The number of RTC pulses used during frequency estimation' is set to 13 200950541 4096.

Mmc :在RTC頻率估計窗的經測量MC脈衝數目(每一個同 步更新期間所測量)。 AMC :自目前PO的開始至Tic A的經測量MC脈衝數目(每 一個DRX循環所測量)。Mmc: The number of measured MC pulses in the RTC frequency estimation window (measured during each synchronization update). AMC: Number of measured MC pulses from the beginning of the current PO to Tic A (measured per DRX cycle).

Brtc :在下一個PO或同步化更新區塊開始前,以RTC脈衝 的方式表示的TCXO喚醒時間,其約略等於5毫秒(表示為164 RTC ties)。Brtc: The TCXO wake-up time expressed as an RTC pulse before the start of the next PO or synchronization update block, which is approximately equal to 5 milliseconds (expressed as 164 RTC ties).

Cmc:自CRTC(TicC)至下一個傳呼區塊或同步化更新區塊開 始的經計算MC tics數目’ cMC脈衝的開始與下一個傳呼區塊或 同步化更新區塊的第一晶片之開始幾乎同時。 在每一個傳呼區塊開始時,下一個喚醒時間被計算,此可如 下完成:1)測量自PO至下一個RTC脈衝(TIC A)的MC脈衝數 目’ AMC ; 2)由表1發現DRXp ;及3)使用在方程式的公式計算 BrtC、Crtc 及 Cmc。 第7圖為在DRX期間tCX〇關機步驟的流程圖3〇〇。在傳 呼區塊開始(步驟301)之後為測量Amc(步驟3〇2),之後為Brtc、 CRTC及CMC之計算(步驟3〇3),這些計算之後為讀取piCH(步驟 304) ’接著為決定傳,指示器(ρι)是否為正值(步驟3〇5),若ρι 為正值,該WTRU被傳呼或是在—些由Β(χΉ^的設定改變, 所以,若pi為正值該WTRU會讀取PCH通道以發現Η正值所 指為何。若ΡΙ為正值’ PCH被讀取(步驟3丨i),及進行關於自該 PCH所讀取資料是否指示經傳呼或BCCH修正之決定(步驟 200950541 312)。若自該PCH所讀取資料指示經傳呼或BCCH修正如在步 驟312所決定,TCX0維持操作,或是DRX模式結束(步驟313)。 若PI不為正值如在步驟305所決定,或是PCH未指示經傳呼或 BCCH修正如在步驟312所決定’則進行關於目前p〇是否正碟 地依循同步更新之決定(步驟321),若目前p〇正確地依循同步更 新,該方法等待直到AFC及TFC收斂(步驟322),及當AFC及 TFC收斂決定是否自AFC/TFC收斂聲明至下一個事件開始的距 ❹ 離大於1個訊框(步驟323)。若自AFC/TFC收斂聲明至下一個事 件開始的距離大於1個訊框’則TCX〇關斷及DRX模式繼續(步 驟324),若自AFC/TFC收斂聲明至下一個事件開始的距離不大 於1個訊框如在步驟323所決定,則TCXO維持操作但DRX模 式繼續。 若該目前PO未依循同步化更新,如在步驟321所決定,進 行鄰近搜尋測量直到完成(步驟341),及進行關於是否自目前p〇 至下一個同步更新開始的距離小於17個訊框之決定(步驟342), 參 若自目前P〇至下一個同步更新開始的距離小於17個訊框,則 TCXO關斷及DRX模式繼續(步驟324),若自目前p〇至下一個 同步更新開始的距離不小於17個訊框,則TCXO維持操作但 DRX模式繼續。 在操作時,下一個睡眠計時器事件為調度TCX〇關斷,其略 述於流程圖。如在流程圖所見,每一個DRX循環有三個最後調 度狀況:l)TCXO關斷,WTRU維持在DRX及應用睡眠計時器 演算法;2)TCXO因為在流程圖所示條件而維持操作及WTRU維 15 200950541 持在DRX ’所使用時脈參考為TCXO及未使用睡眠計時器演算 法’·及3) TCXO維持操作及WTRU必須離開DRX。在此情況下, WTRU已被傳呼或BCCH修正資料存在。 表1 DRXp比下一個事件 DRX期間長度(訊框) 下一個事件DRXP(訊框) 32 ’ 64 ’ 128 ’ 256 ’ 512傳呼區塊 DRX周期長度_16 同步化更新區塊 DRX周期長度 〇 傳呼區塊 DRX周期長度 同步化更新區塊 N/A(*) (*)如上所解釋對此情況TCX〇為已開機 該方法的最後步驟為下一個事件的喚醒,喚醒方法係如下: 1)於時間brtc開啟TCXO ’ Brtc在最後一個 直到時間CRTC ; 3)自CRTC開始計算Cmc主時鐘脈衝";在 主時鐘脈衝,時間約略與下-個事件關始姻,亦即下一個事Cmc: Number of calculated MC tics starting from CRTC (TicC) to the next paging block or synchronization update block 'The start of the cMC pulse and the beginning of the first chip of the next paging block or synchronization update block almost Simultaneously. At the beginning of each paging block, the next wake-up time is calculated, which can be done as follows: 1) measure the number of MC pulses from PO to the next RTC pulse (TIC A) ' AMC; 2) find DRXp from Table 1; And 3) Calculate BrtC, Crtc, and Cmc using the equations in the equation. Figure 7 is a flow chart of the tCX〇 shutdown procedure during DRX. After the paging block starts (step 301), it is measured Amc (step 3〇2), then calculated for Brtc, CRTC and CMC (step 3〇3), and these calculations are followed by reading piCH (step 304)' followed by Decide whether the indicator (ρι) is positive (step 3〇5). If ρι is positive, the WTRU is called or is changed by Β(χΉ^, so if pi is positive The WTRU will read the PCH channel to find out what the positive value is. If ΡΙ is positive, 'PCH is read (step 3丨i), and whether the data read from the PCH indicates paging or BCCH correction The decision (step 200950541 312). If the data read from the PCH indicates that the paging or BCCH correction is as determined in step 312, TCX0 maintains the operation, or the DRX mode ends (step 313). If the PI is not positive, If it is determined in step 305, or if the PCH does not indicate that the paging or BCCH correction is determined as determined in step 312, then a decision is made as to whether the current page is synchronized with the current update (step 321), if the current p〇 is correctly followed Synchronous update, the method waits until AFC and TFC converge (step 322), and when AFC and TFC converge Determine whether the distance from the AFC/TFC convergence statement to the start of the next event is greater than 1 frame (step 323). If the distance from the AFC/TFC convergence statement to the start of the next event is greater than 1 frame, then TCX〇 The shutdown and DRX modes continue (step 324). If the distance from the AFC/TFC convergence statement to the start of the next event is no more than one frame as determined in step 323, the TCXO maintains operation but the DRX mode continues. The PO does not follow the synchronization update, as determined in step 321, the proximity search measurement is performed until completion (step 341), and a decision is made as to whether the distance from the current p〇 to the next synchronization update is less than 17 frames (steps) 342), if the distance from the current P〇 to the next synchronous update is less than 17 frames, the TCXO is turned off and the DRX mode continues (step 324), if the distance from the current p〇 to the next synchronous update is not If the frame is less than 17 frames, the TCXO maintains the operation but the DRX mode continues. In operation, the next sleep timer event is scheduled TCX〇, which is outlined in the flowchart. As seen in the flowchart, each DRX cycle has three One Post-scheduling conditions: l) TCXO is turned off, the WTRU maintains the DRX and applies the sleep timer algorithm; 2) TCXO maintains operation and WTRU dimension 15 because of the conditions shown in the flowchart, 200950541 is used in DRX' TCXO and unused sleep timer algorithms '· and 3) TCXO maintains operation and the WTRU must leave DRX. In this case, the WTRU has been paged or BCCH correction data is present. Table 1 DRXp is longer than the next event DRX period (frame) Next event DRXP (frame) 32 ' 64 ' 128 ' 256 ' 512 paging block DRX cycle length _16 Synchronization update block DRX cycle length 〇 paging area Block DRX cycle length synchronization update block N/A(*) (*) As explained above, TCX〇 is powered on. The last step of the method is the wake-up of the next event. The wake-up method is as follows: 1) At time Brtc turns on TCXO 'Brtc in the last one until time CRTC; 3) calculates the Cmc main clock pulse from CRTC "; in the main clock pulse, the time is approximately the next event, that is, the next thing

件的第-時間域的第H及5)重複每—個循環的方 法直到WTRU離開DRX循環。 ±本發明的一個優點為其實施非常簡單的方法,此方法避免實 校正的需求’計轉雜可由改_量時_隔長度或是 鐘頻率而控制。此簡易絲自該方法具體實施例不校正該 氐準確度時鐘而是僅測量其頻率之事實。 16 200950541 【圖式簡單說明】 =圖為顯不在主動11及DRX12的操作模式的刪操作之流 之方 圖為睡眠°十^器演算法所使用的輸入及輸出信號 塊圖。 =3圖為顯輸眠計時器與其他接收器同步演算法的交互 作用之方塊圖。 第4圖為層1處理的時序圖。 第5圖為RTC頻率估計窗的圖。 第6圖為睡眠計時器調度事件的時序圖。 第7圖為在DRX期間振蘆器關機步驟的流程圖。 【主要元件符號說明】 DAC 數位類比轉換器 FTC 訊框計時修正電路 PCH 傳呼通道 PICH傳呼指引通道 RTC 即時時鐘 TCXO溫度控制晶體振盪器 DRX不連續接收 MC 主時鐘 pi 傳呼指引 PO 傳呼機會 WTRU無線傳送/接收單元 Tics 脈衝The H and 5) of the first time domain of the device repeat the method of each cycle until the WTRU leaves the DRX cycle. An advantage of the present invention is that it implements a very simple method which avoids the need for real corrections to be controlled by varying the length or the clock frequency. This simple filament does not correct the accuracy clock but the fact that only its frequency is not corrected by the method embodiment. 16 200950541 [Simple description of the diagram] = The graph shows the flow of the deletion operation in the operation mode of the active 11 and DRX12. The figure shows the input and output signal block diagram used by the sleep °10 processor algorithm. The =3 diagram is a block diagram of the interaction between the in-sleep timer and other receiver synchronous algorithms. Figure 4 is a timing diagram of Layer 1 processing. Figure 5 is a diagram of the RTC frequency estimation window. Figure 6 is a timing diagram of the sleep timer scheduling event. Figure 7 is a flow chart showing the steps of shutting down the vibrator during DRX. [Main component symbol description] DAC digital analog converter FTC frame timing correction circuit PCH paging channel PICH paging guidance channel RTC instant clock TCXO temperature control crystal oscillator DRX discontinuous reception MC master clock pi paging guidance PO paging opportunity WTRU wireless transmission / Receiving unit Tics pulse

Amc 自目前PO的開始至Tic A的經測量]VIC脈衝數目(每—個Amc measured from the beginning of the current PO to Tic A] number of VIC pulses (per-

Brtc DRX循環所測量)。 在下一個PO或同步更新區塊開始前, 以RTC脈衝的方式 17 200950541 表示的TCXO喚醒時間,其約略等於5毫秒(表示為164 RTC tics) 〇Measured by the Brtc DRX cycle). Before the start of the next PO or synchronous update block, the TCXO wake-up time represented by the RTC pulse 17 200950541 is approximately equal to 5 milliseconds (expressed as 164 RTC tics) 〇

Cmc自CRTC(Tic c)至下一個傳呼區塊或同步更新區塊開始 的經計算MC tics數目,CMC脈衝的開始與下一個傳呼區 塊或同步更新區塊的第一晶片之開始幾乎同時。 DRXP此參數表示以訊框方式的自目前p〇至下一個事件的距 離,其依據下一個事件輸入及DRX周期長度而具不同 ❹ 值,這些值提供於表1。 KMC每DRX期間的MC(20X)脈衝數(對所有DRX周期長度列 表)。 KRTC在頻率估計期間所使用的RTC脈衝數,其被設定為4〇96。The number of calculated MC tics from the CRTC (Tic c) to the next paging block or synchronous update block, the beginning of the CMC pulse is almost simultaneous with the beginning of the first paging block or the first wafer of the synchronous update block. DRXP This parameter indicates the distance from the current p〇 to the next event in frame mode, which has different values depending on the next event input and the length of the DRX cycle. These values are provided in Table 1. The number of MC (20X) pulses per KX during KMC (listed for all DRX cycle lengths). The number of RTC pulses used by the KRTC during frequency estimation, which is set to 4〇96.

Mmc在rtc頻率估計窗的經測量MC脈衝數目(每一個同步更 新期間所測量)。 TIC A PO後的第一個RTC Tic。 ❹Mmc is the number of measured MC pulses in the rtc frequency estimation window (measured during each synchronization update). The first RTC Tic after TIC A PO. ❹

TIC B=BRTC 開機TCXO 的 RTC tic ’ BRTC訂定自 P〇 開始的 RTC tics數目(所計算每一個同步更新或DRX周期長度變化)。 TIC OCRTC在用於定位下一個p〇或同步更新區塊開始的DRX 期間的RTC tic(每一個同步更新所計算)。 11 主動模式 12 DRX模式 13、23 通信裝置 14、24 同步化裝置 18 200950541TIC B=BRTC Turn on the TCXO's RTC tic 'BRTC to set the number of RTC tics starting from P〇 (calculated for each sync update or DRX cycle length change). The TIC OCRTC is the RTC tic (calculated for each synchronization update) during the DRX used to locate the next p〇 or synchronous update block. 11 Active mode 12 DRX mode 13, 23 communication device 14, 24 synchronization device 18 200950541

15 > 25 計時裝置 17、 27 TCXO 18、28 RTC裝置 80 睡眠計時器演算法 83 RTC頻率測量 88 計算喚醒及睡眠位置 93 產生喚醒次數 111 計時管理員 112 ADC電路 113 AGC電路 114 接收濾波器電路 115 頻率估計電路 116 迴路濾波器 117 DAC 118 TCXO 121 FTC 126 主時鐘 127 RTC 128 睡眠計時器 131 頻率估計迴路 132 訊框同步化迴路 164 同步化更新區塊 171-174 傳呼區塊 181-183 RX預熱期間 191 睡眠期間 271 主鐘脈衝 272 長的時間期間 1915 > 25 Timing device 17, 27 TCXO 18, 28 RTC device 80 Sleep timer algorithm 83 RTC frequency measurement 88 Calculating wake-up and sleep position 93 Generating wake-up times 111 Timing administrator 112 ADC circuit 113 AGC circuit 114 Receive filter circuit 115 Frequency Estimation Circuit 116 Loop Filter 117 DAC 118 TCXO 121 FTC 126 Master Clock 127 RTC 128 Sleep Timer 131 Frequency Estimation Loop 132 Frame Synchronization Loop 164 Synchronization Update Block 171-174 Paging Block 181-183 RX Pre Hot period 191 during sleep 271 main clock pulse 272 long time period 19

Claims (1)

200950541 七、申請專利範圍: L無線傳送/接收方法(WTRU),包括: 參考振盡器,提供用於同步化通信的—頻率標準; 即時時鐘(RTC),被配置用於以較該參考振盪器顯著低的 功率進行操作; * -控制器’被配置用於提供一主動操作模式及一低功率操 作模式,於該主動操作模式中使用該參考振盈器,以及在該低 功率操作模式中使用該RTC並選擇性地使用該參考振蓋器;以❹ 及 該控制器被配置用於藉由判定使用該參考振盡器的一程序 的完成與要求使用該參考振盪器的一下一個程序之間的一差異 來控制在該低功率操作模式期間該參考振盪器的使用且被配 置用於在該判定的差異大於一選定的臨界值時關閉該參考振盪 器。 2.如申明專利範圍第1項所述的無線傳送/接收單元(wtru),其中❹ 該參考振盪器是一溫度控制的晶體振盪器(TCX〇)以及該RTC 包括一室溫晶體振盪器(RTXO)。 3’如申印專利範圍第1項所述的無線傳送/接收單元(wtru),該 WTRU被配置用於使用格式化的時間訊框來建立無線通信,其 中: 該控制器被配置用於提供包括一不連續接收(DRX)的一低 20 200950541 功率操作模式; 該參考振i器疋一尚功率及高準確性振烫器; 該控制n被配置聽在該低功钱作模式綱使用該參考 振盡器以進行同步化更新;以及 該控制器被配置驗根據-自動頻率控制(AFQ以及一訊 框計時修iE(FTC)敝斂來判定―同步化更細完成,以及用於 β 利用一個時間訊框作為該選定的臨界值。 4·如申請專利範圍第3項所述的無線傳送/接收單元(WTRU),其中 〜考振i器疋- /盈度控制的晶體振I器(tcx〇);該rtc包括 -室溫晶體缝紗ΤΧ〇);以及該控_被配置躲在該低功 率操作模式期間使用該TCX0以回應一傳呼機會㈣或是一同 步化更新。 5. 如申請專利範圍第!項的無線傳送/接收單元(wtru),其中該控 ❿ ㈣被配置用於在該低功率操侧式_使用該參考振盈器二 執行一胞元再選擇測量。 6. 如申請專利範圍第5項所述的無線傳送/接收單元⑽肪),該 WTRU被配置用於使用格式化的時間訊框來建立無線通信,Z 中: 。 該控制器被配置用於在該低功率操作模式期間 振盪器以進行同步化更新;以及 5 ^ 21 200950541 該控制器被配置用於根據一自動頻率控制(AFC)以及一訊 框計時修正(FTC)的收斂來判定-同步化更新的完成,以及用於 針對該同步化更新的完成與要求使用該參考振盪器的一下一個 程序之間的差異而利用一個時間訊框作為該選定的臨界值,且 用於針對該胞元再選擇測量的完成與要求使用該參考振盪器的 一下-個程序之_差異而_十七個時間訊框作為該選定的 臨界值。 7·如申請專利範圍第6項所述的無線傳送/接收單元(wtru),其中 該參考振盪器是一溫度控制的晶體振盪器(TCX〇);該RTC包括 一室溫晶體紐器(RTXO);以及該控制器被酉己置用於在該低功 率操作模式期間使用該TCXO以回應一傳呼機會(PO)。 8.如申請專利範圍第1-7項中任一項所述的無線傳送/接收單元 (WTRU),其中該wtRU被配置為用於一第三代夥伴專案押) 相容系統的一使用者設備。 9·一種無線通信的方法,包括: 提供一無線傳送/接收單元(WTRU),該^肪具有用於同 步化通信的一參考振盪器、一即時時鐘(RTC)、_主動操作模式 及一低功率操作模式’其中,於該主動操作模式中使用該參^ 振盪器,以及在該低功率操作模式中使用該RTC並選擇性地使 用該參考振盪器;以及 22 200950541 在該低功率操作模式期間,藉由判定使用該參考振盪器的 程序的π成與要求朗該參考振盪器的—下—個程序之間的 -差異來選擇性地關P猶參考振盪器,且在該判定的差異大於 選疋的臨界值時,關閉該參考振盪器。 10.如申6月專利範圍第9項所述的方法,其中,提供該一溫度 控制的BB體振l_S(TCXC))ix作為該參考振蘯器。 〇 11.如申請專利範圍第9項所述的方法,其中: 以格式化的時間訊框來建立該無線通信; 該低功率操作模式包括-不賴接收(DRX); 該參考振盪器在該低功率操作模式期間用於同步化更新; 根據自動頻率控制(AFC)以及一訊框計時修正(ftq的收 敛來判定一同步化更新的完成;以及 在1¾步化更新完成後’使用一個時間訊框作為該選定的 ® B界值以判定_該參考振盈器。 12, 如申料利細第11項所述的方法,其巾,提供該WTRU-溫 度控制的晶體振逢器(TCX0)以作為該參考振i器;以及在該低 功率操作模式期間使用該TCX〇以回應一傳啤機會㈣或是一 同步化更新。 13. 如申請專利範圍第9項的方法,其中在該低功率操作模式期間使 用該參考振盪器以執行一胞元再選擇測量。 23 200950541 14, 如申請專利細第13項所述的方法,其中. 以格式化的時間訊框來建立該無線通作. 在該低功率操作模式_,侧該參^振 化更新; 逢器以進行同步 訊框計時修正(FTC)的收 根據一自動頻率控制(AFC)以及, 斂來判定一同步化更新的完成; ❹ ⑽峨_她物繼的一下 之間的差異’使用-個時間訊框作為該選定的臨界 值;以及 針對該胞元再選擇測量的完成與要求使用該參考振盪器的 -下-健序之咖差異,使斜七__框作為該選定的 臨界值。 15. 如申睛專利關第14項所述的方法,其中,提供礙蕭一溫 度控制的明體振靈器(TCX〇)以作為該參考振盈器;以及在該低〇 功率操作模式期間使用該TCX0以回應一傳呼機會(p〇)。 16. 如申明專利範圍第9_15項中任一項所述的方法其中該wtru 被提供為用於-第三代夥伴專案(3Gpp)相容系統的一使用者設 備。 24200950541 VII. Patent Application Range: L wireless transmit/receive method (WTRU), comprising: a reference oscillator providing a frequency standard for synchronizing communication; an instant clock (RTC) configured to oscillate with respect to the reference Operating at significantly low power; * - the controller ' is configured to provide an active mode of operation and a low power mode of operation in which the reference oscillator is used, and in the low power mode of operation Using the RTC and selectively using the reference vibrator; and the controller is configured to determine the completion of a program using the reference vibrator and the next procedure requiring the reference oscillator to be used A difference therebetween controls the use of the reference oscillator during the low power mode of operation and is configured to turn off the reference oscillator when the difference in the decision is greater than a selected threshold. 2. The wireless transmit/receive unit (wtru) of claim 1, wherein the reference oscillator is a temperature controlled crystal oscillator (TCX〇) and the RTC comprises a room temperature crystal oscillator ( RTXO). 3' The wireless transmit/receive unit (wtru) of claim 1, wherein the WTRU is configured to establish a wireless communication using a formatted time frame, wherein: the controller is configured to provide Including a discontinuous reception (DRX) of a low 20 200950541 power operation mode; the reference oscillator is a power and high accuracy flasher; the control n is configured to listen to the low power mode Refer to the vibrator for synchronization update; and the controller is configured to be based on - automatic frequency control (AFQ and frame timing repair iE (FTC) convergence to determine - synchronization is finer, and for beta utilization A time frame is used as the selected threshold. 4. The wireless transmit/receive unit (WTRU) as described in claim 3, wherein the tester ー-/the degree-controlled crystal oscillator ( Tcx〇); the rtc includes a - room temperature crystal stitch ΤΧ〇); and the control is configured to use the TCX0 during the low power mode of operation in response to a paging opportunity (four) or a synchronized update. 5. If you apply for a patent scope! A wireless transmit/receive unit (wtru), wherein the control (4) is configured to perform a cell reselection measurement at the low power side using the reference oscillator 2. 6. The WTRU is configured to establish a wireless communication using a formatted time frame, as in the wireless transmitting/receiving unit (10) of claim 5, wherein: The controller is configured to synchronize the update during the low power mode of operation; and 5^21 200950541 the controller is configured to perform an automatic frequency control (AFC) and a frame timing correction (FTC) Convergence to determine the completion of the synchronization update, and to utilize a time frame as the selected threshold for the difference between the completion of the synchronization update and the next procedure requiring the reference oscillator to be used, And for the completion of the cell reselection measurement and the use of the reference oscillator to use the difference - the seventeen time frame as the selected threshold. 7. The wireless transmitting/receiving unit (wtru) according to claim 6, wherein the reference oscillator is a temperature controlled crystal oscillator (TCX〇); the RTC comprises a room temperature crystal button (RTXO) And the controller is set to use the TCXO during the low power mode of operation in response to a paging opportunity (PO). 8. The wireless transmit/receive unit (WTRU) of any of claims 1-7, wherein the wtRU is configured for use by a user of a third generation partner project) compatible system device. 9. A method of wireless communication, comprising: providing a wireless transmit/receive unit (WTRU) having a reference oscillator for synchronizing communications, an instant clock (RTC), an active mode of operation, and a low a power mode of operation 'where the parameter oscillator is used in the active mode of operation, and the RTC is used in the low power mode of operation and selectively using the reference oscillator; and 22 200950541 during the low power mode of operation Selectively turning off the P-reference oscillator by determining the difference between the π of the program using the reference oscillator and the -below program requiring the reference oscillator, and the difference in the determination is greater than When the critical value of the gate is selected, the reference oscillator is turned off. 10. The method of claim 9, wherein the temperature controlled BB body vibration l_S (TCXC) ix is provided as the reference vibrator. The method of claim 9, wherein: the wireless communication is established in a formatted time frame; the low power operation mode comprises - not receiving (DRX); the reference oscillator is at the low Used to synchronize updates during power operation mode; determine the completion of a synchronized update based on automatic frequency control (AFC) and frame timing correction (the convergence of ftq; and use a time frame after the 13⁄4 step update is completed) As the selected ® B threshold to determine the reference oscillator. 12, as described in claim 11, the towel, providing the WTRU-temperature controlled crystal oscillator (TCX0) to As the reference oscillator; and using the TCX in the low power mode of operation in response to a beer opportunity (four) or a synchronization update. 13. The method of claim 9, wherein the low power The reference oscillator is used during operation mode to perform a cell reselection measurement. 23 200950541 14. The method of claim 13, wherein the wireless communication is established by a formatted time frame. The low-power operation mode _, the side is oscillated and updated; the device performs the synchronization frame timing correction (FTC) according to the automatic frequency control (AFC) and the convergence to determine the completion of a synchronization update; (10) 峨 _ her difference between the following ones using 'a time frame as the selected threshold; and the completion of the measurement for the cell and the requirement to use the reference oscillator - down-student The coffee difference is such that the oblique __ frame is used as the selected critical value. 15. The method according to claim 14, wherein the physical vibration device (TCX〇) which provides the temperature control of Xiaoyi is provided. As the reference oscillator; and using the TCX0 during the low-power operation mode in response to a paging opportunity (p〇). The method of any of claim 9-15, wherein the wtru is Provided as a user device for the -3rd Generation Partnership Project (3Gpp) compatible system.
TW098102096A 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock TWI377856B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US53176203P 2003-12-22 2003-12-22

Publications (2)

Publication Number Publication Date
TW200950541A true TW200950541A (en) 2009-12-01
TWI377856B TWI377856B (en) 2012-11-21

Family

ID=44871367

Family Applications (4)

Application Number Title Priority Date Filing Date
TW094123814A TWI327038B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW094123814A TWI306718B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW093139916A TWI307245B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW098102096A TWI377856B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW094123814A TWI327038B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW094123814A TWI306718B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW093139916A TWI307245B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock

Country Status (1)

Country Link
TW (4) TWI327038B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101293812B1 (en) 2007-01-30 2013-08-06 인터디지탈 테크날러지 코포레이션 Implicit drx cycle length adjustment control in lte_active mode

Also Published As

Publication number Publication date
TWI327038B (en) 2010-07-01
TWI306718B (en) 2009-02-21
TW200633555A (en) 2006-09-16
TW200526053A (en) 2005-08-01
TWI377856B (en) 2012-11-21
TWI307245B (en) 2009-03-01

Similar Documents

Publication Publication Date Title
JP4503616B2 (en) Precise sleep timer using low-cost and low-accuracy clock
TW527840B (en) Synchronization of a low power oscillator with a reference oscillator in a wireless communication device utilizing slotted paging
JP4387473B2 (en) Method for clock calibration for radiotelephone and slotted paging mode in a CDMA radiotelephone system
EP2047699B1 (en) Dynamic warm-up time for a wireless device in idle mode
US8872548B2 (en) Method and apparatus for calibrating low frequency clock
US6311081B1 (en) Low power operation in a radiotelephone
US9307571B2 (en) Communication device and frequency offset calibrating method
WO2002098023A1 (en) Timing control device and timing control method
CN101155355A (en) Control method, device and equipment for sleeping mode of user's set
TW202013923A (en) Terminal state transition method, network device and terminal
JP3636097B2 (en) Wireless communication apparatus and reception timing estimation method thereof
JP3287398B2 (en) CDMA receiver and intermittent reception method in CDMA receiver
EP0924947A1 (en) Power saving in a digital cellular system terminal
WO2020221659A1 (en) A nb-iot user equipment, ue, and a method for operating the nb-iot ue
TW200950541A (en) Precise sleep timer using a low-cost and low-accuracy clock
MXPA06007169A (en) Precise sleep timer using a low-cost and low-accuracy clock
JP2008124524A (en) Intermittent reception control apparatus
GB2421660A (en) Clock calibration in a mobile communications device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees