TWI327038B - Precise sleep timer using a low-cost and low-accuracy clock - Google Patents

Precise sleep timer using a low-cost and low-accuracy clock Download PDF

Info

Publication number
TWI327038B
TWI327038B TW094123814A TW94123814A TWI327038B TW I327038 B TWI327038 B TW I327038B TW 094123814 A TW094123814 A TW 094123814A TW 94123814 A TW94123814 A TW 94123814A TW I327038 B TWI327038 B TW I327038B
Authority
TW
Taiwan
Prior art keywords
mode
low
rtc
synchronization
frequency
Prior art date
Application number
TW094123814A
Other languages
Chinese (zh)
Other versions
TW200633555A (en
Inventor
Bultan Aykut
W Haim John
Kazakevich Leonid
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW200633555A publication Critical patent/TW200633555A/en
Application granted granted Critical
Publication of TWI327038B publication Critical patent/TWI327038B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)
  • Telephone Function (AREA)

Description

°?7〇38 i> ^ 九、發明說明: 【發明所屬之技術領域】 本發明侧於無線通訊裝置的參考振盤器,及更特別是關於此 種參考振盪器的功率消耗控制。 【先前技術】 存在以關於高精確性時鐘,亦稱為主時鐘,校正低财性時鐘 的演算法。此允許鮮確_鐘產生好與辦鐘__樣精確的計 日守,這些技術具-件朗的事情—定期地關於主時鐘校正低精雜 時鐘。 ' …線傳送/接收單元(WTRUs)及其他移 _神絲叫長魏壽較料重制。應設計在 ==的繼卿·切罐,村_活動時間 孤獨降低的功率消耗而延長電池壽命,在此時間間隔躺某 购作。構形 ,:其_連_行時, 最小化其功_的不活動時間二:== 喚醒刹之_環。在__,⑼料功料財法及硬體BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is directed to a reference dial of a wireless communication device, and more particularly to power consumption control of such a reference oscillator. [Prior Art] There is an algorithm for correcting a low-cost clock with respect to a high-precision clock, also called a master clock. This allows the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ '...line transmission/receiving units (WTRUs) and other mobile _ gods called Chang Weishou. Should be designed in == Jiqing · canning, village _ activity time alone to reduce the power consumption and extend battery life, lying in a certain interval at this time. Configuration, : When it is _ even _ line, minimize the inactivity time of its function _: == wake up the brake _ ring. In __, (9) materials and financial methods and hardware

5 2關斷。在喚_f4 ’需要維制步化及與其蝴基地台通訊的 這些方法及硬體被暫時回復為開啟。 現今大多數手持WTRUs除了高精確性主鐘還包括低精確 I7Μ夺鐘(RTC)。主時鐘典型上朗溫度控制晶體振龍 ,行。RTC典型上絲耥取〇賴量為少魏量,此使 件希望使請C取代τ〇ω財DRX _娜計時功能。然而, 在DRX躺朗饥於計日轉在四侧題,第―,RTC典型上 =與ταω相較顯著降低的速度(如处獅千碱比76·8百萬赫 兹)=作。第二’ RTC的頻率精確性與TCx〇的頻率準確性相較為 非吊低的。第三,因不同環境原因如溫度變化,rtc的頻移大於 ταω的頻移。第四’ RTC典型上與Tcx〇不同步地操作。因為 ^•些原因’在DRX綱典型的肌不足轉獨提供計時功能。 【發明内容】 WTRU包括高轉消耗、高速度、高準雜及高穩定性參考振 盈器如TCXO與較低功率消耗、較低速度、較低準確性及較低穩定 性RTC。TCXO象徵性地提供WT_計時功能。RTC本身無法提 供WTRU足夠精確及準確的計時功能。為最小化功率消耗並使用 不連縯接收(DRX)操作’ TCXQ被周雛糊斷,在這些關斷次數 期間RTC提供WTRU的計時功能。在TCX〇及RTC之間的校正及同 jHb ^RTC·提供輯時功能為足夠精確及 準確的。 【實施方式】 如此處所使用,名稱,,無線傳送/接收 於用戶設備、站、移動站、固定& 产4移動用戶元、傳呼機、或能夠 在無_境下㈣的任何其_她置背基地 B-節點、基站㈣m轉在鱗環境下的任何其他型 式的接觸面裝置。顧-些缝魏觸料三代猶專郎卿 糸統合併解釋,它們可應用於其他無m > 根據本㈣’高功率及高準確性振盪財_模式期間關 斷及使用與睡眠計時器演算法合併_代低解及低準確性錄 ^由使用低功率振盪n,可達到較長的電池壽命1型上,低 :力率及低準確性振盪器操作於較高功率高準雜振盪器為低的頻 率數量級。例如,在—個示例具體實施例中,用做低功率時鐘的 咖操作於工業鮮32768千_,與高辨及高準確性振廬器 相^ ’該RTC操作於降低速度。儘管RTC於手持WTRUs的使用 為普遍的,此具體實施織供使用RTC獅類式操作的能力。 睡眠計時器(ST)演算法被用於進行DRX計時及允許主 TCX〇被闕斷’為降低備用WTRU的功率消耗,TCX〇在DRX 睡眠時間間隔期間可被關斷。當TCXO被關斷,低功率晶體振盪 1327038 器或RTC被用於控制Drx計時直到TCX〇再次開機。為進行此 目的,以工業標準水晶為基礎的即時時鐘或其他標準時鐘電路用 做RTC。該RTC與睡眠計時器演算法合併,其克服在使用於drx 模式的RTC之問題’舰計啦演算法之賴域顧率測量及 調度解決此兩個問題。RTC可為任何合適的振盪器或是時鐘,此 不改變演算法;僅改變其參數。 本發明應用係關於DRX敘述之,其明確地提供用於UMTS 標準。然而,本發明可用於具與標準無關的睡眠模式的wtru, 例如DRX的具體實施例及以非標準為基礎的睡眠時間間隔的另 一種具體實施例。 第1圖為顯示在主動11及DRX 12的操作模式的WTRU 操作之流糊’在絲模式u,WTRU提供崎置Η所表 示的王通1功&。儘官在部份通信訊框期間存在省電模式,一般, WTRU完全操作的、主動地使用TCX〇 17由同步化裝置μ具其 同步化及由料裝置15計…可操作由RTC裝置18所執行的 功月&,但通信裝置13主要是依賴TCX〇 17。 田WTRU為DRX模式⑵同步化及計時功能為由同步4 裝置24及計時裝置μ所說明但在降低位準而表示。魏㈣ 能夠辨識轉主__模紅料,及由触健Μ維持制 至有限程度’此細降低_步化及計時能力而完成,此降似 用TCXO 27的需求,及使得可依賴RTC 28。第i圖表示相 置的不同#作模式,及所錢明的不同TCX〇s P、27及a、 28的物理組件係由相同物理裝置執行。 在睡眠模式期間執行的操作包括尋找傳呼通道、執行胞元 再選擇測量及檢查用戶活性,飾在傳呼,則請⑽開睡眠= 式及進入將要被敘述的主動模式。 、 睡眠計時器能夠控制其主動及DRX組件及根據演算法進 入同步化更新。魏計時器演算法包括主_環組件,-般係盘 主動循環㈣-致及DRX組件及與DRX操作—如在主動循環, 主動循環組件維持在TCXQ下的操作及維持轉移至RTC的操作之 能力。 主動循環組件包括同步化更新,及WTRU是否應進入 DRX模式之決定。WTRU是否應進入DRX模式之決定係依據預 先決定的不活動賴決定,進人DRX模式的準狀實例包括對話 的結束、狀時關_不活動、未定位足夠錢_元搜尋活 動的預料間間隔及連續未成功胞元鱗活動的預定次數。特定 準則為WTRU的函數。 在特定具體實施例中,RTC頻率测量被執行。然而,RTC 頻率測量可被避免因為此可在DR組件執行。當在決定時相對不 1327038 活動時間間隔係由WTRU辨識時WTRU進入DRx模式。 在DRX |且件’ RTC頻率測量以周期基準執行以維持同步 化,及進行關於是否回到主動模式之決定。 第3及4圖的組件可使用積體電路,如依特殊應用所訂製 的積體電路(觀)、多重ICs、分離元件、或忙⑻及分離元件的 組合’而實現。第2圖為睡眠計辆演算㈣所朗的輸入及輸 出信號之方麵’主時鐘及DRX職長度為輸Μ制脱頻 率測量83 ’計算88接著為喚醒及睡眠位置而執行,其最終用於產 生喚醒次數93。τοω開機、τοω關機及下—個傳呼機會_ 或同步化更新為演算法80的輸出。 扣 睡眠si'時讀其他接收器演算法的交互作職示出做為 第3圖的方塊®。魏計時n本祕根據於後文敘述的睡眠計時 器方法控制’第3 ®的方塊關示睡眠計喃與其他接收器同步 化方法的父互作用。組件包括計時管理員、ADC電路、 AGC電路113接收;慮波器電路η*、頻率估計電路ns、迴路慮 波器116、數位類比轉換器(DAC)117及TCXO 118。亦示出訊框 計時修正(FTC)電路121,及主時鐘126、RTC 127及睡眠計時器 128。此電路實現負責獲得及維持接受器的訊框同步化之演算法。 ADC電路112、AGC電路in、接收濾波器電路114、頻率估計 電路115、迴路濾波器116、DAC 117及TCXO 118形成頻率估計 1327038 迴路131。計時管理員m、ADC電路112、AGC電路113、接收 遽波器電路114及FTC電路121提供訊框同步化迴路132。在此 特別具體實施例中’睡眠計時器128接收來自主時鐘126及RTC 127的信號,其最終提供開起及關斷TCX〇 118的信號。 輸入係如下:1)主時鐘(MC)如具76.8百萬赫茲(20X晶片 率)標稱頻率;及2)RTC如具32,768赫茲標稱頻率。控制方面係如 下· 1)以訊框方式的DRX周期長度被提供做為演算法之輸入;2) 下一個事件為傳呼區塊或同步化更新區塊的二進輸入;及3)p〇起 始為PO的第一MC脈衝。 輸出係如下.l)TCX〇關機顯示tcx〇電源應被關斷的時 間’ 2)TCX〇開機顯不以RTC脈衝方式的Tcx〇電源開起時間; 及3)下-個;PO或同步更新位置:依據所考量的傳呼區塊,下一 個喚醒時間可為PO或同步化更新期間。此輸出以MC脈衝(通 晶片率)的方式顯示這些事件的開始。 在睡眠模式_所執行賴作騎找傳呼通道、執行胞元 再選擇測里及檢知戶活性,若存在傳呼,則w娜離開睡眠模 式及進入主動模式。就再選擇為在傳呼區塊躺於任何已知時 間測量最強胞元的連續方法,如第4圖所示。 第4圖為在DRX模式令層 1處理的時序圖,睡眠計時器 m獅縣作。顧細私抑料娜細個不同部 時門=rrRTc鮮測量,此演算崎分在每-鋼步更新 時間間11¾插作,1千协筮5 2 Shut down. These methods and hardware that are required to maintain the _f4 ’ step and communicate with the base station are temporarily turned back on. Most handheld WTRUs today include a low-precision I7 slamming clock (RTC) in addition to the high-precision master clock. The main clock is typically controlled by the temperature of the crystal oscillator. The RTC is typically used to reduce the amount of Wei on the amount of Wei, and this component hopes to replace the τ〇ω财DRX_Na timing function. However, in DRX lying hunger on the four sides, the first, RTC typically = significantly lower than ταω (such as the lion-base ratio of 76. 8 million Hz) = work. The frequency accuracy of the second 'RTC' is not as low as the frequency accuracy of the TCx〇. Third, due to different environmental reasons such as temperature changes, the frequency shift of rtc is greater than the frequency shift of ταω. The fourth 'RTC typically operates asynchronously with Tcx. Because of some reasons, the typical dysfunction of the DRX class provides a timing function. SUMMARY OF THE INVENTION WTRUs include high-consumption, high-speed, high-precision, and high-stability reference oscillators such as TCXO with lower power consumption, lower speed, lower accuracy, and lower stability RTC. The TCXO symbolically provides the WT_Timekeeping function. The RTC itself does not provide sufficient timing and accurate timing capabilities for the WTRU. To minimize power consumption and use non-continuous reception (DRX) operations, TCXQ is confusing, and the RTC provides the WTRU's timing function during these shutdown times. Correction between TCX〇 and RTC and the same jHb^RTC·provided timekeeping function are sufficiently accurate and accurate. [Embodiment] As used herein, the name, wirelessly transmitted/received in a user equipment, station, mobile station, fixed & production 4 mobile subscriber element, pager, or any other capable of being in the absence of (4) Any other type of contact surface device in which the back base B-node and the base station (4) m are rotated in a scale environment. Gu-Sew-seam--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Method combination _ low solution and low accuracy record ^ by using low power oscillation n, can achieve longer battery life type 1, low: force rate and low accuracy oscillator operation in higher power high quasi-hybrid oscillator It is of the order of low frequency. For example, in an exemplary embodiment, the coffee maker operating as a low power clock operates at an industrial high of 32,768 kilometers, and the RTC operates to reduce speed. Although the use of RTCs for handheld WTRUs is common, this implementation is woven into the ability to use RTC lion-like operations. The sleep timer (ST) algorithm is used to perform DRX timing and to allow the primary TCX to be throttled' to reduce the power consumption of the standby WTRU, TCX(R) can be turned off during the DRX sleep interval. When the TCXO is turned off, the low power crystal oscillator 1327038 or RTC is used to control the Drx timing until the TCX is turned back on. For this purpose, an instant clock based on an industry standard crystal or other standard clock circuit is used as the RTC. The RTC is combined with a sleep timer algorithm that overcomes the problem of RTC used in the drx mode. The RTC can be any suitable oscillator or clock, which does not change the algorithm; only its parameters are changed. The application of the invention is described in relation to DRX, which is explicitly provided for the UMTS standard. However, the present invention is applicable to wtru with standard-independent sleep modes, such as a specific embodiment of DRX and another specific embodiment of a non-standard based sleep interval. Figure 1 is a diagram showing the WTRU operation in the active mode of the active 11 and the DRX 12 in the silk mode u, the WTRU provides the Wang Tong 1 work & There is a power saving mode during the partial communication frame. Generally, the WTRU is fully operational, actively uses the TCX 〇 17 to be synchronized by the synchronization device, and is operated by the device 15... operable by the RTC device 18 The power of the month &, but the communication device 13 mainly relies on the TCX〇17. The field WTRU is in the DRX mode (2) synchronization and timing function is indicated by the synchronous 4 device 24 and the timing device μ but is represented by decreasing the level. Wei (4) is able to identify the __ model red material, and the maintenance process to a limited extent 'this fine reduction _ step and timing ability to complete, this drop seems to use TCXO 27's needs, and makes it possible to rely on RTC 28 . The i-th diagram shows the difference in phase, and the physical components of the different TCX〇s P, 27 and a, 28 of the money are executed by the same physical device. The operations performed during the sleep mode include finding the paging channel, performing the cell reselection measurement, and checking the user activity. When adorning the page, please (10) turn on sleep = and enter the active mode to be described. The sleep timer can control its active and DRX components and enter synchronized updates based on the algorithm. The Wei timer algorithm includes the main_loop component, the general-system active loop (four)-and the DRX component and the DRX operation—such as in the active loop, the active loop component maintains the operation under the TCXQ and maintains the operation of transferring to the RTC. ability. The active loop component includes a synchronization update and a decision as to whether the WTRU should enter the DRX mode. The decision of whether the WTRU should enter the DRX mode is based on a predetermined inactivity decision. The quasi-like examples of entering the DRX mode include the end of the conversation, the time-off _ inactivity, and the untargeted enough _ meta-search activity. And the predetermined number of consecutive unsuccessful cell scale activities. The specific criteria are a function of the WTRU. In a particular embodiment, the RTC frequency measurement is performed. However, RTC frequency measurements can be avoided as this can be performed at the DR component. The WTRU enters DRx mode when it is determined that the active time interval is not recognized by the WTRU. The DRX | and 'RTC frequency measurements are performed on a periodic basis to maintain synchronization and a decision as to whether to return to the active mode. The components of Figures 3 and 4 can be implemented using integrated circuits, such as integrated circuits (views), multiple ICs, discrete components, or a combination of busy (8) and discrete components tailored to a particular application. Figure 2 shows the input and output signals of the sleep meter calculation (4). The master clock and the DRX job length are measured by the transmission frequency. 83 The calculation 88 is then performed for the wake-up and sleep positions, which is ultimately used to generate The number of wakeups is 93. The τοω boot, τοω shutdown, and the next paging opportunity _ or synchronization update to the output of the algorithm 80. The interaction of reading other receiver algorithms while sleeping si' is shown as Box® in Figure 3. Wei Jingn's secret is based on the sleep timer method described later. The 3rd ® block shows the parent interaction of the sleep meter and other receiver synchronization methods. The components include a timing manager, an ADC circuit, an AGC circuit 113 reception, a filter circuit η*, a frequency estimation circuit ns, a loop filter 116, a digital analog converter (DAC) 117, and a TCXO 118. A frame timing correction (FTC) circuit 121, and a master clock 126, an RTC 127, and a sleep timer 128 are also shown. This circuit implements an algorithm responsible for obtaining and maintaining frame synchronization of the receiver. The ADC circuit 112, the AGC circuit in, the receive filter circuit 114, the frequency estimation circuit 115, the loop filter 116, the DAC 117, and the TCXO 118 form a frequency estimate 1327038 loop 131. Timing manager m, ADC circuit 112, AGC circuit 113, receive chopper circuit 114, and FTC circuit 121 provide frame synchronization loop 132. In this particular embodiment, the sleep timer 128 receives signals from the master clock 126 and the RTC 127, which ultimately provide signals to turn the TCX 〇 118 on and off. The input system is as follows: 1) the master clock (MC) has a nominal frequency of 76.8 megahertz (20X chip rate); and 2) the RTC has a nominal frequency of 32,768 Hz. The control aspects are as follows: 1) The frame-wise DRX cycle length is provided as an input to the algorithm; 2) the next event is the binary input of the paging block or the synchronized update block; and 3) The first MC pulse starting with PO. The output is as follows. l) TCX 〇 shutdown shows tcx 时间 power should be turned off ' 2) TCX 〇 boot does not show RTC pulse mode Tcx 〇 power on time; and 3) next - one; PO or synchronous update Location: Depending on the paging block being considered, the next wakeup time can be PO or synchronized during the update. This output shows the beginning of these events in MC pulses (through rate). In the sleep mode _ the execution of the ride to find the paging channel, the execution of the cell re-selection test and the detection of household activity, if there is a paging, then w na leave the sleep mode and enter the active mode. A continuous method of measuring the strongest cells at any known time in the paging block is then selected, as shown in FIG. Figure 4 is a timing diagram of the processing of the layer 1 in the DRX mode, the sleep timer m Lion County. Gu Jing privately suppresses Na's different parts. The door = rrRTc fresh measurement, this calculation is divided into 11⁄4 in each steel step update time, 1 thousand 筮

/、不㈣4圖’頻率測量亦僅在WTRU進入DRX 詈Γ:呆八,凉异法的第二部分為負責顯示P〇或同步化更新位 '在心刀在DRX循環期間對每一個p〇操作。此兩部分演算法 被視為計算上讀姐的演算法,_可額其他演算法。 在由圖式所示的特定實例中,訊框偏移之後為同步化更新 期間,其之後為同步化更新區塊脱。一系列傳呼區塊i7i损被 =出。午夕RX麵期181_183被示出’其一般在其他活動如傳呼 區塊172、173或同步更新區塊164之前。睡眠期間,如睡眠期間 19卜在RX預熱期购83之前。同步化更新期間⑹在同步化 更新區塊164之前。 狀_預熱為胁提早約5毫糊起TCXQ的參數以使 tcxo預熱’其約略等於在5毫秒的MC(2〇取衝數,在此具體 實施例的脈衝數被設定為384000。 DRX思欲辨識相對不活動的期間’其由關斷在醫的 各種祕組似制”睡目㈣提供保存解的齡。WTRU被告 知其必須喚醒以接收傳輪資料的時機。 DRX被用於空間模式及用於經連接模式的CELL PCH及 1327038 ·« > m-pch狀態的連接模式。在DRX期間,當由RRC(無線電資 源控制器)基於系統資料設定命令時,WTRU必須在P〇s喚醒。p〇 顯示傳呼區塊的開始’對這些步驟的每一個,RRC負責調度何時、 多久及通道層1必須聽從哪一個。對特定WTRU在兩個P〇s間的 時間差稱為DRX周期長度。 —個PO對應於一個傳呼區塊,傳呼區塊係由許多框架組 成及包含:1)由2或4個傳呼指引(Pis)訊框所組成的傳呼指引通道 (PICH)區塊;2)由2、4、或8個訊框所組成的間隙期,於此物理 資源可由其他通道使用;及3)由一至八個傳呼組的2至個傳呼 内容的訊框所組成的傳呼通道(PCH)區塊。 當使用DRX時,已提供WTRU在每DRX循環僅需要監 測一個PO中的一個PI,傳呼區塊的時序圖係示於第4圖。 周期長度可自8至512個訊框變化,如在空閒模式,可能DRX周 期長度為 0.64、1.28、2.56 及 5.12 秒;及在 CELL/URA—PCH 狀態, 可能 DRX 周期長度為 〇.〇8、0.16、0.32、0.64、1.28、2.56 及 5 12 秒。/, no (four) 4 picture 'frequency measurement is also only in the WTRU into DRX 詈Γ: stay eight, the second part of the cool method is responsible for displaying P 〇 or synchronization update bit 'in the heart knife during the DRX cycle for each p 〇 operation . This two-part algorithm is considered to calculate the algorithm of the reader, and other algorithms can be used. In the particular example shown by the figure, the frame offset is followed by a synchronization update period, followed by a synchronization update block. A series of paging blocks i7i loss is = out. The midnight RX face period 181_183 is shown 'which is generally preceded by other activities such as paging blocks 172, 173 or synchronous update block 164. During sleep, such as during sleep, before the purchase of 83 during the RX warm-up period. The synchronization update period (6) is before the synchronization update block 164. The _ preheating is about 5 gram of TCXQ parameters to make tcxo warm up 'it is approximately equal to 5 milliseconds of MC (2 冲 impulse, the number of pulses in this embodiment is set to 384000. DRX The desire to identify the period of relative inactivity 'which is shut down by the various secrets of the medical profession'. The sleepy (4) provides the age of the save. The WTRU is told that it must wake up to receive the timing of the transfer data. DRX is used for space Mode and connection mode for CELL PCH and 1327038 ·« > m-pch state in connected mode. During DRX, when the command is set by RRC (Radio Resource Controller) based on system data, the WTRU must be in P〇s Wake up. p〇 shows the beginning of the paging block. 'For each of these steps, the RRC is responsible for scheduling when, how long, and which channel layer 1 must listen to. The time difference between two P〇s for a particular WTRU is called the length of the DRX cycle. - PO corresponds to a paging block, and the paging block is composed of a number of frames and includes: 1) a paging guidance channel (PICH) block consisting of 2 or 4 paging guides (Pis); 2) The gap period consisting of 2, 4, or 8 frames, Physical resources may be used by other channels; and 3) paging channel (PCH) blocks consisting of 2 to paging content frames of one to eight paging groups. When using DRX, the WTRU is only required to be required per DRX cycle. Monitor one PI in a PO, and the timing diagram of the paging block is shown in Figure 4. The period length can vary from 8 to 512 frames. For example, in idle mode, the DRX period length may be 0.64, 1.28, 2.56, and 5.12. Seconds; and in the CELL/URA-PCH state, the possible DRX cycle lengths are 〇.〇8, 0.16, 0.32, 0.64, 1.28, 2.56, and 5 12 seconds.

在DRX期間WTRU應定期更新其訊框及計時同步化以能 夠成功讀取Pis及執行胞元再選擇測量。所以,層i的周期DRX 活動包括胞元再選擇及相關測量,監測PIs ;及維持訊框及計時同 步化。 13 1327038 *· \During DRX, the WTRU should periodically update its frame and timing synchronization to be able to successfully read Pis and perform cell reselection measurements. Therefore, the periodic DRX activity of layer i includes cell reselection and related measurements, monitoring PIs, and maintaining frame and timing synchronization. 13 1327038 *· \

若該WTRU偵測到其經由相關PI被傳呼,其讀取1^只、 存取傳呼内容,否則,其返回睡眠。 U 若TCXO連續操作,其會自3 〇伏特標稱Dc電源供废器 或6.0毫瓦特電源消耗2 〇亳安培最大電流.為額外省電,丁匸父°〇 可在DRX睡眠期間關斷。當TCX〇關斷,使用嘩眠計時器以對 p〇s或同步化更新期間的開始調度tcxo的喚醒次數。與Tcx〇 相較RTC的功率消耗典型上糾顯著的,在丨毫安培大小自3 〇 伏特DC供應器或3.〇毫瓦特。 . 使用RTC伴隨著三個問題,首先,RTC的分辨率不滿足 些無線系統的要求,例如寬頻分工多重存取(Wcdma)時分雙 工(TDD)模式,RTC的典型頻率為赫茲此對應於邛幻 微秒的最小分辨率或117.19晶片或2,343·8個狐樣品⑽百萬 赫兹)。第二個問題^ RTC _率準確性,RTC咐喿作頻率與標 翻率不同,差距多至應百萬分之一的最大偏差。第三,咖 „幻生為低的。因此問題,假設頻移率不會較叫〇3百萬 二=每刀|里或0.005百萬分之一每秒鐘為快,此頻移率典型上為 至”體#x|H(RTXC))的最職況,翻較差的溫度敏感度而使 特別刀割的晶體。因為這些振盪器並未如具特別外殼, 故它們成本較低。 睡眠叶時减算法包括兩個部分1TC鮮測量及睡眠計 14 ⑧ 時器排程。頻率測量在DRX 4盾環期間周期地執行以克服頻率準確 峻及頻率穩雜的問題’調度部分符合资奶的分解要求以當 TCXO關斷時準確地調度DRX事件。 對RTC丨需要任何頻率校正,僅必須準確地測量RTC的 頰率,在线連接模^不需魏行孤鮮晰,目為TCX〇 一 直為ON ’ RTC鮮·僅在_ DRX循環之前及在DRX期間 為需要的。更新率應為使得總頻率準確性應在約〇1百萬分之一。 睡眠計時H演算法與計時管理員功能交互作用,下一個 p〇或同步化更新輸出辨識與喚醒之後的阳《同步化更新的開始 同時的計時管理s MC脈衝。自計時管理員的p〇開始輸人辨識喚 醒之後的PQ開始至_計時器法’若FTC在同步更新之後 改變訊框計時’騎指* Ρ〇開始時間侧於_更新計時。 : 喊計時11演算紐較㈣時鐘鮮測量及睡眠計時器 調j。關於即時時鐘頻率測量,第5圖為根據本發明rtc鮮估 計窗的時序圖。為準確地測量RTC頻率主鐘脈衝⑺的數目於長 、夺門d間272轉。主鐘具768百萬赫兹的頻率,其為篇晶 ^率,因纽婦、_至τ〇ω ’其最差神雜為⑸百萬分之 二因為沒有至RTC的校正,TCX〇的準確性不會影響rtc頻率 測里準確性,結果,RTC頻率測量準確性可由增加頻率估計窗大 小而依所欲增加。對〇1百萬分之一的咖頻率估計準雜,必 1327038 須計量10百萬的主鐘(MC)脈衝271。 當選擇該頻率估計窗長度為4096 RTC脈衝(”tics,,),其對 32,768赫茲的標稱RTC頻率及76·8百萬赫茲的主鐘頻率包括 9,600,0G0 MC脈衝❶頻率估計窗的開始及結束皆由RTC脈衝27 iIf the WTRU detects that it is paged via the associated PI, it reads 1^, accesses the paging content, otherwise it returns to sleep. U If the TCXO is operated continuously, it will consume 2 amps maximum current from 3 volts nominal DC power supply or 6.0 milliwatt power supply. For additional power saving, Ding 匸 〇 can be turned off during DRX sleep. When TCX〇 is turned off, the sleep timer is used to schedule the wake-up times of tcxo for the start of the p〇s or synchronization update period. The power consumption of the RTC compared to the Tcx〇 is typically significant, at a mA amp size from a 3 volt volt DC supply or 3. 〇 milliwatts. The use of RTC is accompanied by three problems. First, the resolution of the RTC does not meet the requirements of some wireless systems, such as the Wideband Division Multiple Access (Wcdma) Time Division Duplex (TDD) mode. The typical frequency of the RTC is Hertz. The minimum resolution of the illusion microsecond or 117.19 wafer or 2,343·8 fox samples (10) megahertz). The second question ^ RTC _ rate accuracy, RTC production frequency is different from the standard conversion rate, the gap is as much as one millionth of the maximum deviation. Third, the coffee is low. Therefore, the problem is that the frequency shift rate will not be more than 〇3 million two = per knife | or 0.005 millionth per second is fast, this frequency shift rate is typical On the top of the "body #x|H (RTXC)), the poor temperature sensitivity makes the special knife cut crystal. Because these oscillators are not as special as they are, they are less expensive. The sleep leaf subtraction algorithm consists of two parts, 1TC fresh measurement and sleep meter scheduling. Frequency measurements are periodically performed during the DRX 4 shield ring to overcome the problem of frequency accuracy and frequency stability. The scheduling section meets the milk decomposition requirements to accurately schedule DRX events when the TCXO is turned off. For RTC丨, any frequency correction is required. It is only necessary to accurately measure the cheek rate of the RTC. The online connection module does not need to be clear and clear, and the TCX〇 is always ON. RTC fresh only before the _DRX cycle and during the DRX period. For what is needed. The update rate should be such that the total frequency accuracy should be around 1 million. The sleep timing H algorithm interacts with the timing administrator function, and the next p〇 or synchronized update output recognizes the timing management s MC pulse at the same time as the start of the synchronization update after the wakeup. Since the timing administrator's p〇 starts the input identification, the PQ starts after the wakeup to the _timer method. If the FTC changes the frame timing after the synchronization update, the riding finger* Ρ〇 start time side is the _ update timing. : Shouting timing 11 calculations New comparison (four) clock fresh measurement and sleep timer tune j. Regarding the instant clock frequency measurement, Fig. 5 is a timing chart of the rtc fresh estimation window according to the present invention. In order to accurately measure the RTC frequency, the number of main clock pulses (7) is 272 rpm between the long and the gates d. The main clock has a frequency of 768 megahertz, which is the rate of the crystal, because the New York woman, _ to τ 〇 ω 'the worst difference is (5) two million because there is no correction to the RTC, the accuracy of the TCX 〇 Sex does not affect the accuracy of the rtc frequency measurement. As a result, the accuracy of the RTC frequency measurement can be increased as desired by increasing the frequency estimation window size. For the estimated 1 millionth of the coffee frequency, the 1327038 must measure 10 million of the main clock (MC) pulse 271. When the frequency estimation window is selected to be 4096 RTC pulses ("tics,,"), its nominal RTC frequency of 32,768 Hz and the main clock frequency of 76·8 Hz include the beginning of the 9,600,0G0 MC pulse ❶ frequency estimation window. And end by RTC pulse 27 i

觸發’ RTC脈衝271的開始起始mc脈衝計數。在第4096個RTC 脈衝271 _始,Mc計數停止,及使用MC計數器值於頻率估 計。 頻率估計窗維持約125毫秒或13個訊框,在主動連接模 式’此頻率估計未執行,除了僅在進人DRX循環之前。在此情況 下’頻率測里在進入DRX循環之前於最後1〇〇觀框的任何地方 發生°在DRX觸_,醉測量在每-細錢新期間内執 仃’頻率測1及處理應铜步化更峨_最後13他框發生, 使得TCXO具最大可_咖確定。驗更新頻雜計用於下一 個傳呼區塊。 關於睡眠。十時益排程,第6圖為顯示睡眠計時器調度的時 序圖睡眠树5決絲—仙狀魏㈣侧娜件;似〇 1 下一個喚醒時間;及下—個⑽或下—侧步化更新區塊開始, 二哪:個^下―個事件,的_(特定mc脈衝),為在無取〇 :下疋位1_事件’存在一種測量及許多方法以應用簡單計算 去。在第6圖下方示出事件的時序圖。. 16 1327038 ' TICA : PO 後的第一個 RTCTic。 TIC B=BRTC :開機 TCX0 的 RTC tic,BRTC 訂定自 P0 開始的RTC tics數目(所計算每一個同步化更新或DRX周期長度 變化)。 TIC C=CRTC :在用於定位下一個P〇或同步化更新區塊 開始的DRX期間的RTC tic(每一個同步化更新所計真)。 KRTC(=4096):以RTCtics數目的方式表示的頻率估計窗 的期間(常數)。 DRXP :此參數表示以訊框方式的自目前pQ至下一個事 件的距離,其依據下一個事件輸入及DRX周期長度而具不同值, 這些值提供於表1。 KMC :每DRX期間的MC(2〇X)脈衝數(對所有DRX周期 長度列表)。 ’ KRTC :在頻率估計期間所使用的RTC脈衝數,其被設定 為 4096。 MMC:在RTC鮮估計窗的經測量MC脈衝數目(每一個 同步更新期間所測量)。The start mc pulse count of the start of the 'RTC pulse 271' is triggered. At the beginning of the 4096th RTC pulse 271, the Mc count is stopped and the MC counter value is used to estimate the frequency. The frequency estimation window is maintained for approximately 125 milliseconds or 13 frames, and this frequency estimation is not performed in the active connection mode, except only before entering the DRX cycle. In this case, the 'frequency measurement occurs anywhere in the last frame before entering the DRX cycle. ° In the DRX touch _, the drunk measurement is executed during the new period of every fine money. 'Frequency measurement 1 and treatment should be copper. The step is more 峨 _ last 13 his box occurs, making TCXO the most ok. The update frequency meter is used for the next paging block. About sleep. The tenth time schedule, the sixth picture shows the timing chart of the sleep timer scheduling sleep tree 5 decided silk - Xian Wei (four) side Na pieces; like 〇 1 next wake time; and the next - (10) or down - side steps The beginning of the update block, the second: a ^ lower - an event, the _ (specific mc pulse), there is a measurement in the no-failure: the lower position 1_event' and many methods to apply simple calculations. A timing diagram of the event is shown at the bottom of Figure 6. 16 1327038 ' TICA : The first RTCTic after PO. TIC B=BRTC : Turn on RTC tic of TCX0, BRTC sets the number of RTC tics starting from P0 (calculated for each synchronization update or DRX cycle length change). TIC C=CRTC : RTC tic during the DRX used to locate the next P〇 or synchronize the update block (every synchronization update is counted). KRTC (= 4096): The period (constant) of the frequency estimation window expressed in terms of the number of RTCtics. DRXP: This parameter indicates the distance from the current pQ to the next event in frame mode, which has different values depending on the next event input and the length of the DRX cycle. These values are provided in Table 1. KMC: MC (2〇X) pulses per DRX (for all DRX cycle length lists). ' KRTC : The number of RTC pulses used during frequency estimation, which is set to 4096. MMC: The number of measured MC pulses in the RTC fresh estimate window (measured during each synchronous update).

17 1327038 » * AMC :自目前p〇的開始至Tic A的經測量Mc脈衝數目 (每一個DRX循環所測量)。17 1327038 » * AMC: Number of measured Mc pulses from the beginning of the current p〇 to Tic A (measured per DRX cycle).

I BRTC ’在下一個p〇或同步化更新區塊開始前,以rtc 脈衝的方式表示的TCX时醒時間,其約略等於5毫秒(表示為164 RTC tics) ° CMC·自CRTC(TicC)至下一個傳呼區塊或同步化更新區 塊開始的經計算MC tics數目,CMC脈衝的開始與下一個傳呼區 塊或同步化更新區塊的第一晶片之開始幾乎同時。 在每一個傳呼區塊開始時,下一個喚醒時間被計算,此可 如下完成:1)測量自p〇至下一個RTC脈衝(TIC入)的Mc脈衝數 目’ AMC ; 2)由表i發現_ ;及3)使用在方程式的公式計算 BRTC、CRTC 及 CMC。 第7圖為在DRX期間TCX0關機步驟的流程圖3〇〇。在 傳呼區塊開始(步驟301)之後為測量amc(步驟302),之後為 BRTC、CRTC及CMC之計算(步驟3〇3),這些計算之後為讀取 PICH(步驟304),接著為決定傳呼指示器(ρι)是否為正值(步驟 305),若PI為正值,該WTRU被傳呼或是在一些由BCCH指示 的設定改變,所以,若PI為正值該WTRU會讀取pCH通道以發 現PI正值所指為何。若PI為正值,pCH被讀取(步驟311),及進 ⑧ 132703.8 行關於自該PCH所讀取資料是否指示經傳呼或%^修正之決定 (步驟312)。若自該PCH所讀取資料指示經傳呼或BCCH修正如 在步驟312所決定’ TCX0維持操作,或是DRX模式結束(步驟 313)。若Π不為正值如在步驟3〇5所決定,或是pch未指示經傳 呼1或BCCH修正如在步驟312所決定,則進行關於目前p〇是否 正確地依循同步更新之決定(步驟321),若目前p〇正確地依循同 步更新’該方法等待直到AFC及TFC收斂(步驟322),及當AFC 及TFC收斂決定是否自AFC/TFC收斂聲明至下一個事件開始的 距離大於1個訊框(步驟323)。若自AFC/TFC收斂聲明至下一個 事件開始的距離大於1個訊框,則TCX〇關斷及〇1〇^模式繼續(步 驟324) ’若自AFC/TFC收斂聲明至下一個事件開始的距離不大於 1個訊框如在步驟323所決定,則TCXO維持操作但DRX模式繼 續。 若該目前PO未依循同步化更新,如在步驟321所決定, 進行鄰近搜尋測量直到完成(步驟341) ’及進行關於是否自目前p〇 至下一個同步更新開始的距離小於17個訊框之決定(步驟342), 若自目前PO至下一個同步更新開始的距離小於17個訊框,則 TCXO關斷及DRX模式繼續(步驟324),若自目前p〇至下一個同 步更新開始的距離不小於17個訊框,則TCX〇維持操作但DRx 模式繼續。I BRTC 'When the next p〇 or synchronization update block starts, the TCX wake-up time is expressed as rtc pulse, which is approximately equal to 5 milliseconds (expressed as 164 RTC tics) ° CMC · from CRTC (TicC) to the next The number of calculated MC tics from the start of a paging block or synchronization update block, the beginning of the CMC pulse is almost simultaneous with the beginning of the first paging block or the first wafer of the synchronization update block. At the beginning of each paging block, the next wake-up time is calculated, which can be done as follows: 1) measure the number of Mc pulses from p〇 to the next RTC pulse (TIC in) ' AMC ; 2) found by table i ; and 3) Calculate BRTC, CRTC, and CMC using the equations in the equation. Figure 7 is a flow chart of the TCX0 shutdown procedure during DRX. After the paging block starts (step 301), it is measured amc (step 302), followed by BRTC, CRTC, and CMC (step 3〇3). These calculations are followed by reading the PICH (step 304), followed by the decision paging. Whether the indicator (ρι) is positive (step 305), if the PI is positive, the WTRU is paged or changed in some settings indicated by the BCCH, so if the PI is positive, the WTRU reads the pCH channel to Find out what the positive value of PI is. If PI is a positive value, pCH is read (step 311), and a decision is made as to whether the data read from the PCH indicates a paged or %^ correction (step 312). If the data read from the PCH indicates that the paging or BCCH correction is as determined in step 312, the TCX0 maintenance operation or the DRX mode ends (step 313). If the value is not positive as determined in step 3〇5, or if pch does not indicate that paging 1 or BCCH correction is as determined in step 312, then a decision is made as to whether the current p〇 correctly follows the synchronization update (step 321). If the current p〇 correctly follows the synchronous update 'this method waits until the AFC and TFC converge (step 322), and when the AFC and TFC convergence decide whether the distance from the AFC/TFC convergence statement to the next event is greater than 1 message Box (step 323). If the distance from the AFC/TFC convergence statement to the start of the next event is greater than 1 frame, the TCX〇OFF and 〇1〇^ modes continue (step 324) 'If the AFC/TFC convergence statement begins to the next event If the distance is no more than 1 frame as determined in step 323, the TCXO remains operational but the DRX mode continues. If the current PO does not follow the synchronization update, as determined in step 321, the proximity search measurement is performed until completion (step 341) 'and the distance between the current p〇 and the next synchronization update is less than 17 frames. Deciding (step 342), if the distance from the current PO to the next synchronous update is less than 17 frames, the TCXO is turned off and the DRX mode continues (step 324), if the distance from the current p〇 to the next synchronous update begins Not less than 17 frames, the TCX remains operational but the DRx mode continues.

19 1327038 在操作時’下一個睡眠計時器事件為調度TCXO關斷,其 略述於流程圖。如在流程圖所見,每一個DRX循環有三個最後調 度狀況:l)TCXO關斷,WTRU維持在DRX及應用睡眠計時器演 异法;2)TCXO因為在流程圖所示條件而維持操作及wtrU維持 在DRX ’所使用時脈參考為TCXO及未使用睡眠計時器演算法; 及3) TCXO維持操作及WTRU必須離開Drx。在此情況下, WTRU已被傳呼或BCCH修正資料存在。 表1 DRXp比下一個事件 ---------- DRX期間長度(訊框 下一個事件 DRXP(訊框) 32,64,128,256, 512 傳呼區塊 DRX周期長度_16 8,16 同步化更新區塊 DRX周期長度 傳呼區塊 —ULiL化f新區埤Ί DRX周期長度 Ν/ΑΓ*)__ (*)如上所解釋對此情況TCX〇為已開機 。亥方法的最後步驟為下一個事件的喚醒,喚醒方法係如 下.1)於時間BRTC開啟TCX〇 ’ BRJC在最後一個p〇後脈衝; 2)等待直到時間CRTC ; 3)自咖開始計算置主時鐘脈衝; )在CMC主時鐘脈衝’時間約略與下一個事件的開始相同,亦即 I個事件的第-時間插槽的第一晶片;及5)重複每一個咖循 環的方法直到WTRU_ DRX循環。19 1327038 In operation, the next sleep timer event is to schedule the TCXO shutdown, which is outlined in the flowchart. As seen in the flow chart, there are three final scheduling conditions for each DRX cycle: l) TCXO is turned off, the WTRU maintains the DRX and applies the sleep timer algorithm; 2) TCXO maintains operation and wtrU because of the conditions shown in the flowchart The clock reference used to maintain the DRX' is TCXO and the sleep timer algorithm is not used; and 3) the TCXO maintains operation and the WTRU must leave Drx. In this case, the WTRU has been paged or BCCH correction data is present. Table 1 DRXp vs. Next Event ----------- Length of DRX (frame next event DRXP (frame) 32, 64, 128, 256, 512 paging block DRX cycle length _16 8, 16 Synchronization Update Block DRX Cycle Length Paging Block—ULiLization f New Zone 埤Ί DRX Cycle Length Ν/ΑΓ*)__ (*) As explained above, TCX〇 is powered on. The final step of the Hai method is the wake-up of the next event. The wake-up method is as follows: 1) Turn on TCX〇 at the time BRTC〇 BRJC after the last p〇 pulse; 2) Wait until time CRTC; 3) Calculate the owner from the coffee Clock pulse; ) The CMC master clock pulse 'time is approximately the same as the start of the next event, ie the first chip of the first time slot of the I event; and 5) the method of repeating each coffee cycle until the WTRU_ DRX cycle .

20 — 本發明的一個優點為其實施非常簡單的方法,此方法避免 2時鐘;^正的需求,計時準雜可由改變測量時咖隔長度或 ^ f鐘頻率而控制^此簡易係來自該方法具體實施例不校正 °亥低準確度時鐘而是僅測量其頻率之事實。 【圖式簡單說明】 第1圖為顯示在主動1及DRX12的操作模式的WTRU操作之 流程圖; 第2圖為睡眠計時器演算法所使用的輸入及輸出信號之方 塊圖; 第3圖為顯不睡眠計時器與其他接收器同步演算法的交互 作用之方塊圖; 第4圖為層1處理的時序圖; 弟5圖為RTC頻率估計窗的圖; 第6圖為睡眠計時器調度事件的時序圖; 第7圖為在DRX期間振盪器關機步驟的流程圖。 【主要元件符號說明】 12DRX模式 14、24同步化裝置20 - An advantage of the present invention is that it implements a very simple method, which avoids 2 clocks; the need for positive timing, the timing quasi-mixing can be controlled by changing the length of the coffee compartment or the frequency of the clock, which is controlled by the method. The specific embodiment does not correct the fact that the low-accuracy clock is measured but only its frequency is measured. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing the operation of the WTRU in the active mode of the active 1 and the DRX 12; FIG. 2 is a block diagram of the input and output signals used by the sleep timer algorithm; Block diagram of the interaction between the sleep timer and other receiver synchronous algorithms; Figure 4 is the timing diagram of layer 1 processing; Figure 5 is the plot of the RTC frequency estimation window; Figure 6 is the sleep timer scheduling event Timing diagram; Figure 7 is a flow chart of the oscillator shutdown procedure during DRX. [Main component symbol description] 12DRX mode 14, 24 synchronization device

17、27 TCXO 80睡眠計時器演算法 88計算喚醒及睡眠位置 21 1 主動模式 13、23通信裝置 15、25計時裝置 U、28RTC裝置 83RTC頻率測量 1327038 - · 93產生喚醒次數 111計時管理員 112 ADC電路 113AGC電路 114接收濾波器電路 115頻率估計電路 116迴路濾、波器 117 DAC 118TCXO 121 FTC 126主時鐘 127 RTC 128睡眠計時器 131頻率估計迴路 132訊框同步化迴路 164同步化更新區塊 171-174傳呼區塊 181-183 RX預熱期間 191睡眠期間 271主鐘脈衝 272長的時間期間 2217, 27 TCXO 80 sleep timer algorithm 88 calculate wake-up and sleep position 21 1 active mode 13, 23 communication device 15, 25 timing device U, 28RTC device 83RTC frequency measurement 1327038 - · 93 generate wake-up times 111 timing administrator 112 ADC Circuit 113 AGC circuit 114 receive filter circuit 115 frequency estimation circuit 116 loop filter, wave 117 DAC 118TCXO 121 FTC 126 master clock 127 RTC 128 sleep timer 131 frequency estimation loop 132 frame synchronization loop 164 synchronization update block 171- 174 paging block 181-183 RX warm-up period 191 during sleep period 271 main clock 272 long time period 22

Claims (1)

13270381327038 /»〇 十、申請專利範圍: L 一種使用者設備,該使用者設備包括: 一溫度控制晶體振盪器(TCX0),該溫度控制晶體振 於提供-標準頻率用以通訊的同步化; u ^ ⑽"7卩Γ時雖TC) ’其經配置用独遠低於該溫_ “體振盪器 所需的能量運作; 基於該即時時鐘進行一即時時鐘標準頻率的一第一電路· -控制器,用以提供-絲操作模式及_低功率操作模式,藉以該 主動模式係仙該TCXQ滅ϋ及該低功糊式雜料自 標準頻率;以及 Λ 一第二電路,驗至少在該低功率模式_作動從該咖的同步 化之頻率調整,藉以符合預先決定的同步化準則。 2. 如申請專利範圍第1項之使用者設備,其中 該低功率模式包括不連續接收(DRX)其中: 該ταω經配置用於作用為一高功率及高準確性的顧器; 該RTC經配置用於作用為一低功率及低準確性的振盈器以及 該控制驗配麵於執行—_計喃演算法, 的進行以及控制該主動操作模式和該低功率操作模式二二: =贼職τοω振㈣,而在該低功雜式朗不制該mo 3. 如申請專利細第1項或第2項之使用者賴,其中該脱包括一 C S) 23 1327038 室溫晶體振盪器(RTXO)。 4. 如申請專利範圍第1項之使用者設備,其中: 該控制ϋ經配置用以提供在該低功率模式_,舰蚊事件是 否符合該預先決定的同步化準則的一決定;以及 該控制器經配置用以在未符合該同步化判時執行產生—頻率調 整的一指令,以用於從該RTC所獲得的同步化。 5. 如申請專利範圍第4項之使用者設備,其中: 該控制II經配置用以將該低功率模式過渡至該主動模式㈣應一傳呼 機會(ΡΟ)或一同步化更新。 6. 第5奴翻者設備,該低解模式包括不連續接收 該TCXO經配置以作用為一高功率及高準確性的缝哭; 該RTC經配置以作用為一低功率及低準確性的缝器;以及 该控制ϋ經配置用以執行―_科器演算法,啸制DRX計時 楔= 丁以及控制該主動操作模式和該低功率操作模式,以便在該主動 使職τοω,喊舰㈣__使贱獅。 .^請專利細第4、5或6項之使时設備,其中該rtc包括一室 /现曰日體振盪器(RTX0) 〇 體輕^使用者*備(UE)之方法,該使用者設備具有-溫度控制晶 置用時鐘阐,該碰紙晴器經配 /、、〜通訊的-頻率標準,該即時時鐘經配置用於以遠 < S 24 1327038/»〇10、Application scope: L A user equipment, including: a temperature controlled crystal oscillator (TCX0), which controls the crystal oscillator to provide a standard frequency for communication synchronization; u ^ (10) "7卩Γ TC) 'It is configured to operate far below the temperature _ "the energy required by the body oscillator; a first circuit based on the instant clock to perform an instant clock standard frequency - controller Providing a wire operation mode and a low power operation mode, whereby the active mode is the TCXQ annihilation and the low power paste type shard from the standard frequency; and Λ a second circuit, at least at the low power The mode_actuation is adjusted from the frequency of synchronization of the coffee to meet predetermined synchronization criteria. 2. The user equipment of claim 1, wherein the low power mode comprises discontinuous reception (DRX): The ταω is configured to function as a high power and high accuracy device; the RTC is configured to function as a low power and low accuracy oscillator and the control fitting surface is executed - The algorithm, the progress and control of the active mode of operation and the low-power mode of operation 22: = thief τοω vibration (four), and in the low-power miscellaneous type does not make the mo 3. If the patent application fine item 1 or 2 The user of the item, which includes a CS) 23 1327038 room temperature crystal oscillator (RTXO). 4. The user equipment of claim 1, wherein: the control unit is configured to provide a low power mode, a decision of whether the mosquito event meets the predetermined synchronization criteria; and the controller is configured to perform an instruction to generate a frequency adjustment when the synchronization decision is not met for use in Synchronization obtained by the RTC. 5. The user equipment of claim 4, wherein: the control II is configured to transition the low power mode to the active mode (4) to a paging opportunity (ΡΟ) or A synchronization update. 6. The fifth mode of the device, the low solution mode includes discontinuous reception of the TCXO configured to act as a high power and high accuracy seam crying; the RTC is configured to function as a low power And low accuracy And the control is configured to perform a "---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- _ 贱 贱 . . . Please patent the fourth, fifth or sixth timing device, where the rtc includes a one-chamber / current 曰 振荡器 振荡器 RT (RTX0) 〇 body light ^ user * preparation (UE) Method, the user equipment has a temperature control crystal clock, the paper picker is equipped with /, ~ ~ communication - frequency standard, the instant clock is configured for far < S 24 1327038 低於該溫度㈣晶體縫騎需的能量運作,財法勺括. 執行以該即時時鐘為基礎的—即時時鐘頻率標準;匕. 率操作^使 率準及該低功率模式使用該即時時鐘頻 作動-頻率調整’以用於至少在該低 '步化,從而符合職較_純钟。、洲絲㈣時鐘同 9. ΖΓΓ圍第曰8項之方法,該低功率模式包括不連續接收 以酿度控f!|日日體振u她置以 的顧器,該㈣時鐘經配置 力枝料確性 該方法更包含執行一睡眠計時心準確性_器, r及_主_模式和該低功_二不== ::τ制晶軸’―模式不綱溫- 定事第1項之方法’更包含判斷在該低功率模式期間預 否付合該預先決定的同步化準則,以及,若該控制器判斷並 禾符δ该同步化準則,則執 即時時鐘所獲得的同步化。動鮮5周正的一心令,以用於從該 主=專利城第1G項之方法,更包含將該低功率模式過渡至該 動模式以回應-傳呼機會㈣或—同步化更新。 如申清專利範圍第11項之方法,該低功率模式包括不連續接收 25 的振盧器’辦卩時時鐘魏置則㈣為為1辨喊準確性 該方法更包含執行—睡眠計時雜 及辩確性的缝器, 行以及控_主轉鮮t ’u控淋_触計時的進 …_倾式和該低轉操作模式,以便在該主動模式 期間使H度控術日體振盪器,而在魏功率模式不使_溫度控 制晶體振盪器。 13.如申請專利範圍第8項之方法,更包含將該低功率模式過渡至該主 動模式以回應一傳呼機會(Ρ0)或一同步化更新。 26 1327038 式 圖 CSI / Ιϊ /Below this temperature (4) the energy operation of the crystal seam ride, the financial method includes: the instant clock frequency standard based on the instant clock; 率. rate operation ^ the rate and the low power mode use the instant clock frequency Actuation-frequency adjustment 'for at least the low' step, thus meeting the job _ pure clock. , 洲丝(四)clock is the same as 9. The method of 曰8曰, the low-power mode includes discontinuous reception to control the f!| The reliability of the method further includes performing a sleep chronograph heart accuracy _, r and _ main _ mode and the low work _ two no == :: τ crystal axis '- mode non-class temperature - the first item The method 'further includes determining whether the predetermined synchronization criterion is prepaid during the low power mode, and if the controller determines the synchronization criterion, the synchronization obtained by the instant clock is performed. A five-week positive order for the method from the main = Patent City 1G item, including the transition of the low power mode to the dynamic mode in response to the paging opportunity (four) or - synchronization update. For example, in the method of claim 11 of the patent scope, the low-power mode includes a discontinuous reception of 25 vibrators. When the clock is set, the clock is set to 4. The accuracy of the method is more than 1. The method includes execution-sleep timing. Argumental stitching, line and control _ main turn fresh t 'u control _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ While the Wei power mode does not make the _ temperature control crystal oscillator. 13. The method of claim 8, further comprising transitioning the low power mode to the active mode in response to a paging opportunity (Ρ0) or a synchronized update. 26 1327038 Style Figure CSI / Ιϊ / I» 1327038I» 1327038 13270381327038 1327038 sl· i ^s -νδιι II S-T-* sv SB :·'·: (觀餐圏)蠢z ss L9l· • * εζ!7τ 丨-31-s 寸卜Τ'1327038 sl· i ^s -νδιι II S-T-* sv SB :·'·: (viewing meal) stupid z ss L9l· • * εζ!7τ 丨-31-s inch Τ Τ' :¾ 翠I 物I .11' PGW FACH 丨傅_2 CO FGhV FACH 25·./:3⁄4 翠I I.11' PGW FACH _2傅_2 CO FGhV FACH 25·./ mum.! η遐 —CNItn锊g>9;CSJlro9l 9類ss£. Mlm 昏敏 麗 Ηοα.- Hovd § /HOci SS· Is^ld Is 蠢 、.> CD 藏了 OJ v ** V i f X X r φ CJ t_ Γ訊框! PICH r-^*ί PICH .1 〇d yt.·習 Ή~ 鹰 life 々· 卜 η ! 运 _ 1.0..s>nyi//i ,¾. 1327038 頻率佐計窗(KrtO) = 4096Mum.! η遐—CNItn锊g>9;CSJlro9l 9 ss£. Mlm 昏敏丽Ηοα.- Hovd § /HOci SS· Is^ld Is stupid,.> CD hides OJ v ** V if XX r φ CJ t_ Γ 框! PICH r-^* P PICH .1 〇d yt.·习Ή~ 鹰生活 々· η η ! _ 1.0..s>nyi//i ,3⁄4. 1327038 Frequency Window (KrtO) = 4096 :P〇 PO或同步化 更新織 RTC脈衝 (Tics) (32,768 HZ) TIC C (〇RTC): 最後TIC以定 位下一MPO X 同步化 更新區 塊的第 —晶片 MC麵 [7^,8 MHz}' ΑΙνΐσ^' A 水 間 TIC A -Η Κ-c, 丁 CXO: 關機 TIC B (Brtc)'· TCXO 開機 第6圖 300 3011327038 傳呼區塊' 開始 —~ 測置AiviC 計算BRtc crtc 及 a_./ic '302 - 303 -304 諝取RCH /305:P〇PO or Synchronized Update Weaving RTC Pulse (Tics) (32,768 HZ) TIC C (〇RTC): Last TIC to locate the next MPO X Synchronization Update Block's Chip-MC Surface [7^, 8 MHz }' ΑΙνΐσ^' A TIC A -Η Κ-c, D CXO: Shutdown TIC B (Brtc)'· TCXO Startup Figure 6 300 3011327038 Paging Block 'Start-~ Measure AiviC Calculate BRtc crtc and a_. /ic '302 - 303 -304 Select RCH /305 否 是否爲正値 I ^321 /'(、 ί前TO是否·έ\、、是No Is it correct? I ^321 /'(, ί前TO, έ\,, yes /’自目獅至卞v/ —個周步化更' \\新開始的距離 、於】7遛訊曝 322 ’>FC及TFC收斂7/'From the lion to the 卞v/- a step by step, the distance of the new start \\, 7 遛 曝 322 ‘> FC and TFC convergence 7 自AFCOTC柩 斂翻至下 —.個事俘開 始的距離大 1個訊框?, TCX0維持操炉 \pRX模式結束+ 、313 324 第7圖From AFCOTC柩 to the next – the distance from the start of the incident is 1 frame? , TCX0 maintenance furnace \pRX mode end +, 313 324 Figure 7 關飯TCX0 繼頴DRX ..~~fGuan rice TCX0 succession DRX ..~~f
TW094123814A 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock TWI327038B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US53176203P 2003-12-22 2003-12-22

Publications (2)

Publication Number Publication Date
TW200633555A TW200633555A (en) 2006-09-16
TWI327038B true TWI327038B (en) 2010-07-01

Family

ID=44871367

Family Applications (4)

Application Number Title Priority Date Filing Date
TW094123814A TWI306718B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW093139916A TWI307245B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW094123814A TWI327038B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW098102096A TWI377856B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW094123814A TWI306718B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW093139916A TWI307245B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW098102096A TWI377856B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock

Country Status (1)

Country Link
TW (4) TWI306718B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI3840523T3 (en) 2007-01-30 2024-01-03 Interdigital Tech Corp Implicit drx cycle length adjustment control in lte_active mode

Also Published As

Publication number Publication date
TWI306718B (en) 2009-02-21
TW200950541A (en) 2009-12-01
TW200633555A (en) 2006-09-16
TWI377856B (en) 2012-11-21
TW200526053A (en) 2005-08-01
TWI307245B (en) 2009-03-01

Similar Documents

Publication Publication Date Title
JP4503616B2 (en) Precise sleep timer using low-cost and low-accuracy clock
TW527840B (en) Synchronization of a low power oscillator with a reference oscillator in a wireless communication device utilizing slotted paging
JP4387473B2 (en) Method for clock calibration for radiotelephone and slotted paging mode in a CDMA radiotelephone system
US10045296B2 (en) Method and apparatus to controlling sleep time for Bluetooth device and Bluetooth enabled device
JP5289449B2 (en) Single multimode clock source for wireless devices
AU776533B2 (en) Method and apparatus for activating a high frequency clock following a sleep mode within a mobile station operating in a slotted paging mode
US7680071B2 (en) Method and apparatus for managing power during a discontinuous reception mode
US6311081B1 (en) Low power operation in a radiotelephone
CN101155355A (en) Control method, device and equipment for sleeping mode of user's set
TW200830899A (en) Dynamic warm-up time for a wireless device in idle mode
US20140021997A1 (en) Method and Apparatus for Calibrating Low Frequency Clock
JP2005500745A (en) Dual mode Bluetooth / wireless device with power conservation characteristics
BRPI0309906B1 (en) method of synchronizing the activation of a common clock for the main processor and the second processor in an electronic device having a low power mode
JP3287398B2 (en) CDMA receiver and intermittent reception method in CDMA receiver
TWI327038B (en) Precise sleep timer using a low-cost and low-accuracy clock
US20010053681A1 (en) System and method for reducing power consumption in waiting mode
JP2002368676A (en) Intermittent reception method, intermittent receiver and mobile communication terminal capable of utilizing them
JPH10145467A (en) Portable terminal equipment
MXPA06007169A (en) Precise sleep timer using a low-cost and low-accuracy clock
JPH10145446A (en) Portable terminal equipment

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees