WO2006092872A1 - 駆動力算出装置、駆動力算出方法、筋力補助装置、プログラム、及びコンピュータ読み取り可能な記録媒体 - Google Patents

駆動力算出装置、駆動力算出方法、筋力補助装置、プログラム、及びコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2006092872A1
WO2006092872A1 PCT/JP2005/014346 JP2005014346W WO2006092872A1 WO 2006092872 A1 WO2006092872 A1 WO 2006092872A1 JP 2005014346 W JP2005014346 W JP 2005014346W WO 2006092872 A1 WO2006092872 A1 WO 2006092872A1
Authority
WO
WIPO (PCT)
Prior art keywords
muscle
driving force
strength
force
joint
Prior art date
Application number
PCT/JP2005/014346
Other languages
English (en)
French (fr)
Inventor
Jun Ueda
Tsukasa Ogasawara
Original Assignee
National University Corporation NARA Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation NARA Institute of Science and Technology filed Critical National University Corporation NARA Institute of Science and Technology
Priority to JP2007505793A priority Critical patent/JP4742278B2/ja
Priority to US11/885,072 priority patent/US7981059B2/en
Publication of WO2006092872A1 publication Critical patent/WO2006092872A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/008Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using hydraulic or pneumatic force-resisters
    • A63B21/0085Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using hydraulic or pneumatic force-resisters using pneumatic force-resisters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00181Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices comprising additional means assisting the user to overcome part of the resisting force, i.e. assisted-active exercising
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4001Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4023Interfaces with the user related to strength training; Details thereof the user operating the resistance directly, without additional interface
    • A63B21/4025Resistance devices worn on the user's body
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4041Interfaces with the user related to strength training; Details thereof characterised by the movements of the interface
    • A63B21/4047Pivoting movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1071Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring angles, e.g. using goniometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • A61B5/224Measuring muscular strength
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00058Mechanical means for varying the resistance
    • A63B21/00069Setting or adjusting the resistance level; Compensating for a preload prior to use, e.g. changing length of resistance or adjusting a valve
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/54Torque
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/12Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for upper limbs or related muscles, e.g. chest, upper back or shoulder muscles
    • A63B23/1281Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for upper limbs or related muscles, e.g. chest, upper back or shoulder muscles primarily by articulating the elbow joint

Definitions

  • the present invention is a muscular force that supports and Z or hinders the rotational movement of a joint by a drive unit that is worn by a living body having a skeleton including a joint and a muscle, and is fixed to the skeleton of the living body across the joint.
  • the present invention relates to a driving force calculation device and a driving force calculation method for calculating the driving force of an auxiliary device.
  • the present invention also relates to a muscle force assisting device using the driving force calculation method or the driving force calculation device.
  • Document 1 describes a muscular strength assisting device for nursing care that is operated by a lightweight and small pneumatic actuator.
  • Reference 2 describes a power assist device that reduces the burden on a person's muscles and reduces the overall configuration.
  • HAL from CYBERDYNE.
  • These muscle force assist devices are also effective in performing strength training while reducing or increasing the muscle load in the field of sports engineering and rehabilitation engineering.
  • a muscle force wearing device worn by a caregiver can individually adjust the load on each muscle while considering the strength characteristics so that the burden on the caregiver becomes natural. .
  • the driving force calculation means calculates the driving force based on the set muscle force input from the muscle force input unit and the joint torque necessary for the rotation operation. Therefore, the calculated driving force is a driving force that takes into account the set muscle strength that is not only the driving force necessary to support the turning operation. As a result, when the muscle force assisting device is driven by the calculated driving force during the turning operation, the muscle to which the muscle strength is set generates a muscle force corresponding to the set muscle strength. In this way, the driving force calculation device is a muscular strength assist device. The driving force can be calculated so that the load on the muscle becomes the desired load when assisting and / or obstructing a given movement.
  • FIG. 6 shows an embodiment of the present invention and is a diagram visualizing a skeleton model.
  • the comparison unit 17 compares the muscular strength calculated by the muscular strength recalculation unit 16 with the set muscular strength input to the muscular strength input unit 14.
  • the muscle model data 22 further includes information on the physiological cross section of each muscle.
  • the muscle model data 22 may further include information on muscle mass and information on Z or moment of inertia.
  • the motion data 31 includes the motion information acquired by the motion information acquisition unit 11, and specifically includes information on the joint angle, angular velocity, and angular acceleration at each moment of the rotational motion. It is out. Therefore, the motion data 31 is a table of time and angle, angular velocity, and angular acceleration.
  • the post-assist estimated muscle strength table 36 includes information on muscle strength necessary for the rotation operation in a state where the drive unit is driven based on the drive force table 35 to support the rotation operation. Specifically, it includes information on the muscular strength necessary at each moment of the turning operation. Therefore, the post-assist estimated muscle strength table 36 is a table showing correspondence between time and muscle strength. Note that the post-assist estimated muscle strength table 36 stores the values calculated by the muscle strength recalculating unit 16.
  • the muscular strength calculation unit 13 calculates the muscular strength necessary for performing the rotation operation without attaching the muscular strength assisting device (step S3).
  • the calculated strength is used to set the subsequent strength.
  • the muscle strength calculation unit 13 calculates the necessary muscle strength of each muscle based on the skeletal muscle model data 24 and the joint torque table 32 stored in the storage unit 3. The muscle strength is calculated at each moment, and the obtained muscle strength (estimated muscle strength) is stored in the storage unit 3 as the estimated muscle strength table 33 in association with time.
  • i is the joint number, and is the joint torque at joint i
  • j is the number of the muscle or drive unit straddling joint i
  • r is the muscle j or drive unit j.
  • the value of torque ⁇ refers to the joint torque table 32 of the storage unit 3, and the value of the moment arm r can be calculated from the muscle Z artificial muscle integrated model data 25. Furthermore, the value of the muscle strength f of the muscle for which the strength is set out of f is obtained from the set strength table 34.
  • Equation (3) is further defined as a constraint condition.
  • the muscular strength of the muscular force for which the muscular strength is not set and the driving force f of each driving unit are calculated. Then, the driving force calculation unit 15 performs this calculation for each moment of the rotation operation.
  • the driving force of each driving unit obtained in this way is stored in the storage unit 3 as a driving force table 35 which is a correspondence table with time.
  • the comparison unit 17 compares whether or not the muscle strength in the support state calculated by the muscle force recalculation unit 16 is different from the set muscle strength set by the muscle force input unit 14 (step). S7). Specifically, the set strength table 34 and the estimated post-assist strength table 36 are compared. Then, if the muscle strength in the support state substantially matches the set muscle strength, the whole process is finished. On the other hand, if it is different, the set muscle strength is considered to be inappropriate, so the process returns to step S4 and the muscle strength is input again.
  • the muscle strength in the support state does not necessarily completely match the set muscle strength.
  • the muscle strength in the support state falls within the range of the set muscle strength ⁇ A%. All steps may be completed. In this case, the above A% may be set variously according to the purpose.
  • the power evaluated for the sum of the squares of f ZA for example, the sum of the powers of 3 or even the power of 100 May be the sum of In other words, the sum of the muscular strength around the unit cross-sectional area of each muscle to the power of m (m is an integer of 2 or more) You should evaluate.
  • the muscle force assisting apparatus 100 that includes the above-described driving force calculation apparatus 1 and that drives the drive unit with the driving force calculated by the driving force calculation apparatus 1 will be described.
  • the muscle force assisting apparatus 100 according to the present embodiment includes the driving force calculation apparatus 1, a plurality of driving units 101, and a driving force control unit 102.
  • the muscle force assisting device 100 is worn by a living body (human) having a skeleton including a joint and a muscle. Each drive unit 101 is fixed across a joint to a living body (human) skeleton. A supporter tape or the like is used to fix the driving unit 101 to the human body.
  • FIG. 15 shows a force that is an example of the muscle assisting device 100. The present invention is not limited to this.
  • each drive unit 101 is not particularly limited, but may be, for example, a shape imitating human muscles, that is, an extendable rod-shaped actuator.
  • Each drive unit 101 may be, for example, an elastic fiber composite type pneumatic rubber artificial muscle as shown in FIG.
  • FIG. 3 is a functional block diagram of the muscular strength assisting device 100. Reduce or increase the load!
  • the driving force calculating device 1 force The driving force for assisting is calculated.
  • the driving force control unit 102 drives each driving unit 101 with the calculated driving force.
  • the driving unit 101 generates a driving force
  • a driving force is applied to the fixed portion of the driving unit 101 at the front and rear of the joint, and torque about the rotation axis is generated at the joint. In this way, the muscle force assisting device 100 can assist the rotation operation.
  • each member constituting the driving force calculation device 1 is realized by “an arithmetic means such as a CPU executes a program code stored in a recording medium such as a ROM or RAM”.
  • an arithmetic means such as a CPU executes a program code stored in a recording medium such as a ROM or RAM.
  • the case of “functional block” has been described as an example, but it may be realized by hardware that performs the same processing. It can also be realized by combining hardware that performs a part of the processing and the arithmetic means that executes the program code for controlling the hardware and the remaining processing.
  • the calculation means may be a single unit, or a plurality of calculation means connected via a bus inside the apparatus or various communication paths may execute the program code jointly.
  • the storage unit 3 among the above members may be a storage device itself such as a memory.
  • the program code itself that can be directly executed by the arithmetic means, or a program as data that can generate the program code by a process such as unzipping described later, is stored in the recording medium. And the recording medium is distributed, or the program is transmitted by a communication means for transmitting via a wired or wireless communication path, and is executed by the arithmetic means.
  • each transmission medium constituting the communication path propagates a signal sequence indicating a program, whereby the program is transmitted via the communication path.
  • the transmission device may superimpose the signal sequence on the carrier by modulating the carrier with the signal sequence indicating the program. In this case, the signal sequence is restored by the receiving apparatus demodulating the carrier wave.
  • the transmission device may divide the signal sequence as a digital data sequence and transmit it. In this case, the receiving apparatus concatenates the received packet groups and restores the signal sequence.
  • the transmission device may multiplex and transmit the signal sequence with another signal sequence by a method such as time division Z frequency division Z code division.
  • the receiving apparatus extracts and restores individual signal sequences from the multiplexed signal sequence. In either case, the same effect can be obtained if the program can be transmitted via the communication channel.
  • the recording medium for distributing the program is removable, but it does not matter whether the recording medium after distributing the program is removable.
  • the recording medium may be rewritten (written), volatile, recording method, and shape as long as a program is stored.
  • Examples of recording media include magnetic tapes, force set tapes, etc., floppy disks (registered trademark), magnetic disks, such as node disks, CD-ROMs, magneto-optical disks (MO), mini disks (MD) ) And digital versatile discs (DVD).
  • the recording medium may be a card such as an IC card or an optical card, or a semiconductor memory such as a mask ROM, EPROM, EEP ROM, or flash ROM. Alternatively, it may be a memory formed in a calculation means such as a CPU.
  • the program code may be a code for instructing the arithmetic means of all the procedures of the processes, or may be executed by a predetermined procedure to execute a part or all of the processes. If a possible basic program (for example, operating system or library) already exists, replace all or part of the above procedure with code or pointers that instruct the arithmetic means to call the basic program.
  • a possible basic program for example, operating system or library
  • the format for storing the program in the recording medium may be a storage format that can be accessed and executed by the arithmetic means, for example, as in a state where the program is stored in the real memory. From the storage format after installation on a local recording medium that is always accessible by the computing means (for example, real memory or a node disk) before being placed in the memory, or from a network or transportable recording medium. It may be the storage format before installing on a local recording medium.
  • the program may be stored as source code that is not limited to the object code after con- taining, or as intermediate code generated during interpretation or compilation.
  • the above calculation is performed by a process such as decompression of compressed information, decoding of encoded information, interpretation, compilation, linking, allocation to real memory, or a combination of processes. If the means can be converted into an executable format, the same effect can be obtained regardless of the format in which the program is stored in the recording medium.
  • the muscle force assisting device 200 of the present embodiment is worn by humans and used for the same purpose as the muscle force assisting device 100 of the first embodiment, but is described instead of the driving force calculating device 1. It differs from the muscle strength assisting apparatus 100 in that the recording medium 201 is provided, the driving force control unit 202 is provided instead of the driving force control unit 102, and the input unit 203 is further provided.
  • Figure 5 shows this embodiment. 3 is a functional block diagram of the muscle strength assisting apparatus 200 in a state.
  • the recording medium 201 is a computer-readable recording medium. Specifically, the same recording medium as that for recording the program of the first embodiment can be used. This recording medium 201 records a driving force database 205 in which a plurality of driving force tables 35... Are stored.
  • Each driving force table 35 is calculated by the driving force calculation device 1 of the first embodiment, and is the same as the driving force table 35 of the first embodiment.
  • These driving force tables 35 ... Have different set muscle strengths used for calculation, and are stored in the drive power database 205 in association with the set muscle strengths. That is, the driving force database 205 is a database that can acquire the driving force table 35 corresponding to the desired set muscle strength.
  • the input unit 203 is for inputting information on the set muscle strength when supporting a predetermined rotation operation.
  • the set muscle strength information input to the input unit 203 is an option for a plurality of set muscle strengths prepared in advance. Accordingly, the user of the muscle strength assisting device can easily specify the set muscle strength.
  • the driving force control unit 202 includes a CPU, a RAM, and a reading device for the recording medium 201, and is a computer that can read the recording medium 201.
  • the driving force control unit 202 reads the driving force table 35 corresponding to the input set muscle force from the recording medium 201 based on the set muscle force information input from the input unit 203, and reads the driving force table that has been read. 35 controls the driving force of each driving unit 101 based on the driving force data included in 35.
  • a certain driving force table 35 is a driving force table used for supporting a predetermined movement, and the set muscle strength is calculated by the muscle strength calculation unit (estimated muscle strength). In contrast, the driving force table is 150%.
  • Another driving force table 35 is a driving force table used when supporting the same operation as described above, and is a driving force table when the set muscle strength is 200% of the estimated muscle strength. Since these driving force tables 35 are stored in the driving force database 205 in association with the set muscle force information, the driving force control unit 202 is input from the input unit 203. The driving force table 35 corresponding to the set muscle strength information can be searched from the driving force database 205.
  • the drive force control unit 202 sets the drive force of the set muscle force ⁇ 50% from the plurality of drive force tables 35.
  • the table 35 is searched, and each driving unit 101 is driven based on the driving data included in the searched driving force table 35.
  • the muscle force assisting device 200 generates driving force so that the user's muscle strength is 150% compared to when the muscle force assisting device is not worn.
  • the present invention is not limited to this. It is preferable that information for specifying and information for specifying a muscle for which muscle strength is set are further input.
  • the driving force table 35 stored in the driving force database 205 is associated with not only the set muscle strength information but also the information on the motion to be supported and the muscle information that sets the muscle strength. It only has to be stored.
  • the driving force control unit 202 is input from the driving force database 205. Then, the driving force table 35 corresponding to the above three pieces of information is searched, and the driving force of each of the drive units 101 is controlled based on the searched driving force table 35.
  • the information on the operation to be supported input from the input unit 203 may be selection information for selection items regarding a plurality of prepared operations, or may be attached to a motion capture device or a joint.
  • the motion of the user may be detected by the detected sensor, and the detected motion may be input to the input unit 203 as a symmetric motion to be supported.
  • the muscle force assisting apparatus 200 has the driving table 35 corresponding to various driving conditions such as the assisting operation, the muscle to be set for the muscle strength, and the muscle strength set for the muscle. Are provided in the driving force database 205 in advance. Therefore, since it is not necessary to perform complicated calculation processing, the operation can be quickly supported.
  • the driving force database 205 described in the case where the driving force database 205 is recorded on the recording medium 201 is stored in the RAM, ROM, or the like. It ’s memorized in the memory.
  • Figure 6 shows a rigid link model that mimics the skeleton of a living body.
  • a rigid link model that mimics the skeleton of a living body was simplified with 5 links and 13 degrees of freedom, with the hip, neck, shoulders, elbows, and wrists as joints for the right part of the upper body of a person.
  • a link model was used.
  • the link model data includes information on the length, mass, and moment of inertia of each link. Specific values of each information were set with reference to a publicly available database (MotCo project: http: ⁇ www.motco.dir.bg/). More specifically, by searching the database using height and weight, data on the length, mass, and moment of inertia of each link was acquired, and these data were set as the above information.
  • the center of gravity is the midpoint of each link.
  • FIG. 7 is a model in which human muscles are applied to the skeleton model.
  • the muscles in the musculoskeletal model anatomically represent the attachment points (start point / end point) of the muscles (41 points) straddling the elbow or wrist and the via points that interfere with a part of the bone. Arranged based on knowledge.
  • the placed muscles are large pectoral muscle 1, 2, latissimus dorsal muscle 1, 2, 3, subscapular muscle, deltoid muscle frontal, deltoid muscle outer head, deltoid muscle occipital, supraspinatus, subspinous muscle, great circular muscle, small muscle Circular muscle, incisor arm muscle, biceps (long head / short head), brachial muscle, brachial muscle, triceps brachii (long head / interior / external), elbow, ulnar carpal flexor, Radix flexor, long palm, superficial digital flexor 1, 2, deep digital flexor, long thumb flexor, square dorsum, long thumb abductor, circular gyrus, ulnar carpal extensor, long These are the heel side carpal extensor, the short carpal side extensor, and the total finger extensor.
  • the muscle model data includes information on the length of each muscle and information on the position attached to the skeleton. The values obtained from the above database were entered for these parameters.
  • Fig. 8 shows the muscle Z artificial muscle system, which is the musculoskeletal model of the living body plus the artificial muscle of the muscle strength assisting device. It is a figure which shows a combined model.
  • the artificial muscle as shown in Fig. 8, six artificial muscles (AFM1 to 6) that support flexion and extension of the elbow were used.
  • Each artificial muscle model is modeled as a wire with no weight passing through the part (start point / end point and via point) attached to the bone, like the above muscle.
  • the artificial muscle model data includes information on the length of each artificial muscle and information on the position attached to the skeleton. Using the artificial muscle model data and the skeletal model data, the moment arm of the artificial muscle can be calculated based on the joint angle.
  • an artificial muscle driving force was designed to change the load on a specific muscle during the elbow extension / bending motion (pronation / external fixation). This exercise is to keep the forearm and wrist rotating while stretching and bending the elbow. In this example, the above-described stretching and bending motion was repeated four times.
  • VICON manufactured by Vicon Motion Systems: VICON512
  • VICON512 the motion information acquisition unit
  • the extension / bending motion of the elbow was measured at a sampling frequency of 120 Hz.
  • Figure 9 shows a visualization of the obtained motion information.
  • a correspondence table (joint torque table) between time and joint torque was stored in the storage unit.
  • Fig. 10 shows the joint torque table as a graph.
  • Each joint is a joint i (i is an integer between 1 and 5), and there are j muscles that straddle the joint i. From the rotation center axis of the joint i to the attachment point of the muscle j that straddles the joint i and via points If the distance is, and the muscle strength of muscle j is f, the torque ⁇ at joint i is
  • Fig. 11 is a graph showing the estimated strength table of the 11 muscles required for the flexion movement.
  • the muscular strength of the upper arm and brachial muscles is half (0
  • the muscle strength was set so that the muscle strength was the same as that calculated in the muscle strength calculation process (estimated muscle strength). That is, based on the muscular strength obtained in the muscular strength calculation process, calculation is performed so that only the muscular strength of the humeral and brachial muscles is halved (0.5 times).
  • Set muscle strength For other muscles, the estimated muscle strength was used as the set strength.
  • a correspondence table (set strength table) between time and set strength was stored in the storage unit.
  • Fig. 12 is a graph of the set strength table. Fig. 12 shows the main muscles that generate muscle strength when the elbow is extended and bent, and the muscle strength of other muscles is always zero.
  • the joint torque obtained in the joint torque calculation step and the muscle force set in the muscle strength setting step are constrained. As a result, the muscle strength of the artificial muscle was calculated.
  • each joint is assumed to be a joint i (i is an integer of 1 to 5), and there are j muscles and artificial muscles that straddle the joint i, and the rotational center axial force of the joint i is a muscle that straddles the joint i or If r is the distance to the attachment point and via point of artificial muscle j, and f is the muscle strength of muscle j or the driving force of artificial muscle j, then
  • the torque in node i is expressed by equation (1). Then, using this equation (1), the muscle strength f set in the muscle strength setting step, and equation (2) as constraints, each artificial muscle is driven such that the following evaluation function u (f) is minimized. The force f was calculated.
  • Equation (4) f is the driving force of the artificial muscle j, and A is the cross-sectional area of the artificial muscle.
  • FIG. 13 shows a graph of the driving force table.
  • the maximum driving force that can be generated by each artificial muscle is proportional to the number of actuators.
  • the load applied to each artificial muscle is inversely proportional to the number of actuators (cross-sectional area of the driving unit).
  • the driving force of each artificial muscle was optimized by the above equation (4). That is, according to Equation (4), the driving force of each artificial muscle is optimized so that the sum of the squares of ⁇ (artificial muscle driving force) Z (artificial muscle cross-sectional area) ⁇ is minimized. Therefore, according to Equation (4), the driving force per actuator included in each artificial muscle is optimized to be as even and small as possible. This can reduce the burden on each actuator.
  • the muscle strength of the living body muscle is determined using the joint torque obtained in the joint torque calculation step and the driving force of the artificial muscle calculated in the driving force calculation step as constraints. It was calculated again.
  • Equation (3) the muscle strength f of each muscle in the living body was calculated so that the evaluation function u (f) in Equation (3) was minimized.
  • a correspondence table (time assist estimated muscle strength table) between the time and the calculated muscle strength was stored in the storage unit.
  • Fig. 14 shows the post-assist estimated muscle strength table as a graph.
  • the muscular strength of each muscle set in the muscular strength setting step was compared with the muscular strength of each muscle calculated in the muscular strength recalculation step. Specifically, the set strength table and the post-assist strength table were compared to determine whether the post-assist strength table was significantly different from the set strength table. As shown in Fig. 12 and Fig. 14, it was found that the muscular strength after the assist was almost the same as the set strength. That is, the muscular strength after the assist was about half that of the brachial muscle and brachial peroneal muscle compared to the muscle strength before the assist, while the other muscles remained substantially the same. From the above, it was proved that the driving force calculation method and the driving force calculation device of this example function properly.
  • the driving force calculation device supports the rotation operation and Z or obstruction.
  • the muscular force input unit to which the set muscular strength that is to be generated at the time of input is input, and the setting muscular force and the driving force of the driving unit generate the joint torque necessary for the rotational operation.
  • the driving force calculating means calculates the driving force of the driving unit using three-dimensional configuration information including at least position information of the skeleton and muscles of the living body and the driving unit of the muscle force assisting device,
  • the joint torque is
  • Arm, f is the muscle strength of muscle j or the driving force of drive unit j)
  • the joint torque ⁇ i is a joint torque necessary for the rotation operation. Then, the values of the moment arm r of the muscle j and the drive part j can also obtain the three-dimensional configuration information power. Therefore, the relational expression of f can be derived from this expression.
  • the driving force calculation means uses the set muscle force input to the muscle force input unit and the joint torque necessary for the rotational motion as constraint conditions, and uses the following evaluation function u (f)
  • n is the sum of the number of muscles that did not receive the set muscle strength input to the muscle force input unit and the number of drive units
  • j represents the force that the set muscle strength was not input to the muscle force input unit.
  • the muscle or drive number is the muscle strength of the jth muscle or the drive force of the jth drive
  • A is the physiological cross-sectional area of the muscle if j is a muscle
  • j is the drive (The value is based on the maximum driving force of the drive unit, and m is an arbitrary integer of 2 or more)
  • the driving force calculation means can determine the value of the muscle strength of each muscle and the driving force of each drive unit by optimizing f using the above evaluation function u (f).
  • the driving force calculation device uses the muscle force necessary for the rotation operation when the muscle force assisting device does not support and prevent the rotation operation, and the torque of the joint necessary for the rotation operation. It is preferable that a muscular strength calculation unit that calculates the muscular strength based on the muscular strength calculation unit is input to the muscular strength input unit.
  • the muscular strength calculating means can calculate the muscular strength required for each muscle when performing the rotation operation without the muscular strength assisting device. Based on the calculated muscle strength, the set muscle strength is input to the muscle strength input unit, so the user can set the muscle strength by setting the magnification to the muscle strength, for example, when the muscle strength assist device is not attached. Can do. Accordingly, the muscle strength can be set easily.
  • the driving force calculation device uses the driving force calculated by the driving force calculation means as the muscle force necessary for the rotation operation when the muscle force assisting device supports or prevents the rotation operation.
  • the muscular strength recalculating means that is calculated based on the joint torque required for the rotational motion, the muscular strength calculated by the muscular strength recalculating means, and the set muscular strength that is input to the muscular strength input unit are compared. It is preferable to further comprise a comparison means.
  • the driving force calculation device further includes joint torque calculation means for calculating a torque of a joint necessary for the rotation operation based on the operation information regarding the rotation operation, and at least one of each of the above-mentioned each It is preferable that the joint torque calculated by the joint torque calculating means is used for calculating the driving force or the muscular force in the calculating means.
  • the muscle force assisting device can calculate the torque of each joint based on the motion information related to the rotational motion. Therefore, it is not necessary to calculate the joint torque using other means, and the user can easily use it.
  • the driving force calculation device further includes operation information acquisition means for acquiring operation information related to the rotation operation, and the joint torque calculation means uses the operation information acquired by the operation information acquisition means. Based on this, it is preferable to calculate the joint torque necessary for the rotational operation.
  • each means of the driving force calculation device may be realized by hardware, or may be realized by causing a computer to execute a program.
  • the program according to the present invention is a program for causing a computer to operate as each means of any one of the driving force calculation devices, and the recording medium according to the present invention records the program. Recording medium.
  • the driving force calculation method includes a muscle strength setting step for setting a desired muscle strength for a muscle, the muscle strength set in the muscle strength setting step, and the driving force of the drive unit.
  • the driving force of the driving unit is calculated using three-dimensional configuration information including at least positional information of the skeleton and muscles of the living body and the driving unit of the muscle force assisting device.
  • the joint torque is
  • i is the joint number, and is the joint torque at joint i
  • j is the number of the muscle or drive unit straddling joint i
  • r is the muscle j or drive unit j.
  • Moment arm f is the strength of muscle j or the driving force of drive unit j
  • the joint torque ⁇ i is a joint torque necessary for the rotation operation. Then, the values of the moment arm r of the muscle j and the drive part j can also obtain the three-dimensional configuration information power. Therefore, the relational expression of f can be derived from this expression.
  • the following evaluation function u (f) is performed with the muscle strength set in the muscle strength setting step and the joint torque necessary for the rotational motion as constraint conditions.
  • n is the sum of the number of muscles that did not set muscle strength in the muscle strength setting step and the number of drive units
  • j is the muscle that did not receive the set muscle strength input to the muscle force input unit.
  • f is the muscle strength of the jth muscle or the drive force of the jth drive unit
  • A is the physiological cross-sectional area of muscle when j is a muscle, and is the value based on the maximum driving force of the driving unit when j is a driving unit, and m is an arbitrary integer of 2 or more)
  • the driving force of the driving unit when the muscular strength assisting device supports or obstructs the rotation operation is calculated by calculating f that can minimize the above.
  • the muscle force necessary for the rotation operation when the muscle force assisting device does not support or interfere with the rotation operation is calculated using the joint torque necessary for the rotation operation.
  • a muscular strength calculation step for calculating the muscular strength is further provided, and in the muscular strength setting step, a desired muscular strength is set for the muscle based on the muscular strength calculated in the muscular strength calculation step.
  • the muscular strength required for each muscle when performing the rotation operation without the muscular strength assisting device. Since the user only has to input the set muscle strength based on the calculated muscle strength, for example, the user can set the muscle strength by setting a magnification or the like for a state in which the muscle strength assist device is not attached. Therefore, the muscle strength can be set easily.
  • the driving force calculation method includes a driving method in which the muscle strength necessary for the rotation operation when the muscle force assisting device supports or prevents the rotation operation is calculated in the driving force calculation step.
  • the muscular strength recalculation step calculated based on the force and the joint torque required for the rotation operation, the muscular strength calculated in the muscular strength recalculation step, and the muscular strength set in the muscular strength setting step are compared. It is preferable to further include a comparison step.
  • the driving force calculation method further includes a joint torque calculation step of calculating a torque of a joint necessary for the rotation operation based on the operation information related to the rotation operation, and includes at least one of each of the above It is preferable to use the joint torque calculated in the joint torque calculation step in calculating the driving force or muscle strength in the calculation step.
  • the torque of each joint can be calculated based on the motion information related to the rotation motion.
  • the muscle force assisting apparatus includes a storage unit that stores the driving force data calculated by the driving force calculation device described above or the driving force calculation method described above.
  • the muscle force assisting apparatus further includes an input unit, and the storage unit stores a plurality of pieces of driving force data in association with information on the rotational operation used in the calculation,
  • the information input to the input unit is information on a rotation operation, and the driving force control unit is configured to determine the driving force corresponding to the storage unit force based on the information on the rotation operation input to the input unit. It is preferable to retrieve data and control the drive unit based on the retrieved drive force data.
  • the driving force control portion searches for the driving force data corresponding to the input rotation operation information, and the searched drive The drive unit is controlled based on the force data. Therefore, the muscular strength assisting device can support a desired rotation operation among a plurality of rotation operations prepared in advance.
  • the storage unit stores a plurality of driving force data in association with information on muscle strength (set muscle strength) set in the muscle strength setting step.
  • the information input to the unit is information on the muscular strength set for the muscle, and the driving force control unit performs driving corresponding to the storage unit based on the muscular strength information input to the input unit. It is preferable to search the force data and control the driving unit based on the searched driving force data.
  • the driving force control unit searches for driving force data corresponding to the input setting muscle strength information, and The drive unit is controlled based on the data. Therefore, the muscle force assisting device can support the rotation operation so as to obtain a desired set muscle strength among a plurality of set muscle strengths prepared in advance.
  • the recording medium according to the present invention is a computer-readable recording medium on which the driving force data is used, which is used as a storage unit of the above-described muscle force assisting device.
  • the drive control unit performs control based on the driving force data recorded on the recording medium, thereby supporting the turning operation while adjusting the load on the muscle when the turning operation of the joint is performed.
  • a muscle force assisting device can be realized.
  • the present invention is used in a muscle force assisting device, a desired load can be applied to muscles in a specific region. Therefore, it is possible to efficiently perform strength training and rehabilitation. Depending on the content of the rehabilitation, it can also be carried out at home. Thus, the present invention can be expected to be sufficiently used in the sports field and the medical field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Biophysics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rehabilitation Therapy (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)
  • Rehabilitation Tools (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Invalid Beds And Related Equipment (AREA)
  • Prostheses (AREA)

Abstract

 筋力補助装置が所定の動作を支援及び/又は妨害する際に、筋肉にかかる負荷が所望の負荷になるような駆動力を算出できる駆動力算出装置を実現する。駆動力算出装置(1)に備えられる駆動力算出部(15)は、回動動作に必要な関節トルクのデータである関節トルクテーブル(32)と、筋力入力部(14)から入力された設定筋力のデータである設定筋力テーブル(34)とに基づいて、各駆動部の駆動力を算出する。ここで、各駆動部の駆動力の算出には、ヒトの骨格筋モデルのデータである骨格筋モデルデータ(24)と、筋力補助装置の人工筋モデルである人工筋モデルデータ(23)とを統合した、筋/人工筋統合モデルデータ(25)を用いる。そして、関節トルクと設定筋力とを拘束条件として、Crowninshieldの評価関数を用いて最適化することによって駆動力を算出する。

Description

明 細 書
駆動力算出装置、駆動力算出方法、筋力補助装置、プログラム、及びコ ンピュータ読み取り可能な記録媒体
技術分野
[0001] 本発明は、関節を含む骨格と筋肉とを有する生体によって装着され、この生体の骨 格に関節を跨いで固定される駆動部によって関節の回動動作を支援及び Z又は妨 害する筋力補助装置の駆動力を算出するための駆動力算出装置及び駆動力算出 方法に関するものである。また、本発明は、上記駆動力算出方法又は駆動力算出装 置を利用した筋力補助装置に関するものでもある。
背景技術
[0002] 近年の急激な高齢化社会への移行に伴って、福祉分野では、高齢者の介護を支 接する福祉支援機器に対するニーズが高まっている。介護において最も負担の係る 作業は、被介護者の移動や姿勢調節である。このような作業時に介護者の筋力負担 を軽減する介護用筋力補助装置が注目されている。
[0003] 例えば、文献 1には、軽量かつ小型の空気圧ァクチユエータにより作動する、介護 用筋力補助装置について記載されている。また、文献 2には、人の筋肉の負担を軽 減し、全体の構成を小型化したパワーアシスト機器について記載されている。さらに 他のものとしては、 CYBERDYNE社製の HAL等がある。
[0004] これらの筋力補助装置は、スポーツ工学分野やリハビリテーション工学分野におい ても、筋肉の負担の軽減や増加を行いつつ筋力トレーニングを行うために有効であ る。
[0005] ところで、スポーツ工学分野やリハビリテーション工学分野では、新たな運動能力の 評価方法やリハビリテーション方法を開発するために、人間の運動中の筋活動を推 定することに関して活発に研究されている。例えば、文献 3には、被験者が運動装置 を駆動した時の運動特性を計測し、逆解析手法を用いて生体の筋力を推定する技 術について記載されている。また、推定を行うためのソフトウェアとして、 Gsport社の 3 Dマッスルシミュレータ「アルモ」や、 Musculographics社製の全身筋骨格モデル「SIM M」等が販売されている。
[0006] ところで、介護者が装着する筋力装着装置としては、介護者にかかる負担が自然な ものになるように、筋力特性を考慮しながら各筋肉にかかる負担を個別に調節できる ことが望まれる。
[0007] また、身障者のリハビリテーション効果を向上させるためには、負荷をかけるべき筋 肉とかけな 、方が好ま 、筋肉とを特定して、負荷をかけな 、方が好ま 、筋肉の筋 力を重点的に支援するように、各筋肉にかかる負担を調節できることが望まれる。筋 カトレーユングについても同様に、負荷をかけるべき筋肉に対して重点的に負荷が かかるように調節できることが望まれる。
[0008] し力しながら、文献 1, 2, 3には、筋力補助装置が所定の動作を支援する際に、各 筋肉にかかる負荷を調節する技術について何ら記載されていない。例えば、特許文 献 1に記載された筋力補助装置は、関節部分に回動自在なジョイントを設け、そのジ ョイントを回動させるためのァクチユエータを備えている。し力しながら、個々の筋肉が 発生するべき筋力が所望の値になるように、このァクチユエータの駆動力を調節する 方法につ 、ては記載されて 、な 、。
[0009] また、文献 2に記載されたパワーアシスト機器は、人が動作時に受ける作用カをセ ンサ部で測定することによって補助力を決定するように構成されている。しかしながら 、補助力を決定する際に、個々の筋肉が発生するべき筋力を調節する方法について は記載されていない。これは、 CYBERDYNE社製の HALについても同様である。
[0010] 一方、文献 3に記載された生体筋力特性の測定法は、通常の状態、すなわち筋力 補助装置を装着して!/、な!、状態での、所定の動作に必要な筋力特性を測定するた めの方法であり、筋力補助装置を装着した状態で個別の筋肉の筋力が所望の値に なるように、筋力補助装置の駆動力を制御するものではない。これは、 Gsport社の 3 Dマッスルシミュレータ「アルモ」や、 Musculographics社製の全身筋骨格モデル「SIM M」につ!/ヽても同様である。
[0011] [文献 1]
特開 2000 - 51289公報(平成 12年 (2000)2月 22日公開) 特開 2004— 105261公報(平成 16年 (2004)4月 8日公開)
[文献 3]
特開平 7— 313495号公報(平成 7年 (1995) 12月 5日公開)
発明の開示
[0012] 本発明は上記課題に鑑みてなされたものであり、その目的は、筋力補助装置が所 定の動作を支援及び Z又は妨害する際に、筋肉にかかる負荷が所望の負荷になる ような駆動力を算出できる駆動力算出装置及び駆動力算出方法を実現することにあ る。
[0013] また、本発明の別の目的は、所定の動作を行う際の筋肉にかかる負荷を調節でき る筋力補助装置を実現することにある。
[0014] 上記課題を解決するために、本発明に係る駆動力算出装置は、関節を含む骨格と 筋肉とを有する生体に装着され、上記生体の骨格に関節を跨いで固定される駆動部 によって上記関節の回動動作を支援及び Z又は妨害する筋力補助装置の駆動部の 駆動力を算出する駆動力算出装置であって、上記回動動作を支援及び Z又は妨害 する際に発生させるべき筋力である設定筋力が入力される筋力入力部と、上記設定 筋力と上記駆動部の駆動力とが上記回動動作に必要な関節のトルクを発生させるよ うに、上記設定筋力と上記回動動作に必要な関節のトルクとに基づいて、上記駆動 部の駆動力を算出する駆動力算出手段とを備えていることを特徴とする。
[0015] 従来の駆動力算出装置では、回動動作に必要な駆動力を、回動動作に必要な関 節のトルクのみに基づいて算出していた。つまり、筋肉にかかる負荷については考慮 せずに駆動力を算出していた。従って、算出された駆動力によって筋力補助装置を 駆動した際に、筋肉にかかる負荷を自在に制御することはできな力つた。
[0016] しかし、本発明の構成によれば、駆動力算出手段が、筋力入力部から入力された 設定筋力と、回動動作に必要な関節のトルクとに基づいて駆動力を算出する。よって 、算出された駆動力は、回動動作を支援するために必要な駆動力であるだけでなぐ 設定筋力を考慮した駆動力となっている。これにより、回動動作時に、算出された駆 動力によって筋力補助装置を駆動すると、筋力が設定された筋肉は、設定筋力に応 じた筋力を発生させることになる。このように、駆動力算出装置は、筋力補助装置が 所定の動作を支援及び z又は妨害する際に、筋肉にかかる負荷が所望の負荷にな るような駆動力を算出することができる。
[0017] 本発明に係る駆動力算出方法は、上記課題を解決するために、関節を含む骨格と 筋肉とを有する生体に装着され、上記生体の骨格に関節を跨いで固定される駆動部 によって上記関節の回動動作を支援及び Z又は妨害する筋力補助装置の駆動部の 駆動力を算出する駆動力算出方法であって、筋肉に対して所望の筋力を設定する 筋力設定工程と、上記筋力設定工程において設定した筋力と上記駆動部の駆動力 とが上記回動動作に必要な関節のトルクを発生させるように、上記設定した筋力と上 記回動動作に必要な関節のトルクとに基づいて、上記駆動部の駆動力を算出する駆 動力算出工程とを備えていることを特徴とする。
[0018] 上記構成によれば、筋力設定工程において設定した筋力 (設定筋力)と、回動動作 に必要な関節のトルクとに基づいて駆動力を算出する。よって、算出された駆動力は 、回動動作を支援するために必要な駆動力であるだけでなぐ設定筋力を考慮した 駆動力となる。これにより、回動動作時に、算出された駆動力によって筋力補助装置 を駆動すると、筋力が設定された筋肉は、設定筋力に応じた筋力を発生させることに なる。このように、筋力補助装置が所定の動作を支援及び Z又は妨害する際に、筋 肉にかかる負荷が所望の負荷になるような駆動力を算出することができる。
[0019] 本発明に係る筋力補助装置は、関節を含む骨格と筋肉とを有する生体によって装 着され、上記関節の回動動作を支援及び Z又は妨害する筋力補助装置であって、 上述した駆動力算出装置と、上記生体の骨格に関節を跨いで固定される駆動部と、 上記駆動部の駆動力を制御する駆動力制御部とを備え、上記駆動力制御部は、上 記駆動力算出装置によって算出された駆動力に基づいて上記駆動部の駆動力を制 御することを特徴とする。
[0020] 上記構成によれば、駆動力制御部は、上述した駆動力算出装置が算出した駆動 力に基づいて駆動部を制御する。ここで、駆動力算出装置は、筋力補助装置が所定 の動作を支援又は妨害する際に、筋肉にかかる負荷が所望の負荷になるような駆動 力を算出できるので、筋力補助装置は、所定の動作を行う際の筋肉にかかる負荷を 調節できる。 [0021] 本発明に係る筋力補助装置は、関節を含む骨格と筋肉とを有する生体によって装 着され、上記関節の回動動作を支援及び Z又は妨害する筋力補助装置であって、 上述した駆動力算出方法によって算出された駆動力のデータが格納された記憶部と 、上記生体の骨格に関節を跨いで固定される駆動部と、上記駆動部の駆動力を制 御する駆動力制御部とを備え、上記駆動力制御部が、上記記憶部に格納された駆 動力に基づ 、て、上記駆動部の駆動力を制御することを特徴とする。
[0022] 上記構成によれば、筋力補助装置は、上述した駆動力算出方法によって算出した 駆動力のデータを有している。従って、駆動力制御部が、この駆動力のデータに基 づいて駆動部を制御することにより、筋力補助装置は、所定の動作を行う際の筋肉に 力かる負荷を調節することができる。さらに、筋力補助装置は、駆動力のデータを予 め有しているため、駆動力の算出に時間を労することなぐ迅速に回動動作を支援す ることがでさる。
[0023] 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分か るであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであ ろう。
図面の簡単な説明
[0024] [図 1]本発明の一実施形態を示すものであり、駆動力算出装置の要部構成を示すブ ロック図である。
[図 2]本発明の一実施形態を示すものであり、駆動力算出装置の処理工程を示すフ ロー図である。
[図 3]本発明の一実施形態を示すものであり、筋力補助装置の要部構成を示すプロ ック図である。
[図 4]本発明の実施形態を示すものであり、筋力補助装置に備えられるァクチユエ一 タの一例を示す図である。
[図 5]本発明の別の実施形態を示すものであり、筋力補助装置の要部構成を示すブ ロック図である。
[図 6]本発明の一実施例を示すものであり、骨格モデルを可視化した図である。
[図 7]本発明の一実施例を示すものであり、骨格筋モデルを可視化した図である。 [図 8]本発明の一実施例を示すものであり、筋 Z人工筋統合モデルを可視化した図 である。
[図 9]本発明の一実施例を示すものであり、肘の伸展屈曲動作力 得られた情報を 可視化した図である。
[図 10]本発明の一実施例を示すものであり、関節トルクテーブルをグラフとして示した 図である。
[図 11]本発明の一実施例を示すものであり、推定筋力テーブルをグラフとして示した 図である。
[図 12]本発明の一実施例を示すものであり、設定筋力テーブルをグラフとして示した 図である。
[図 13]本発明の一実施例を示すものであり、駆動力テーブルをグラフとして示した図 である。
[図 14]本発明の一実施例を示すものであり、アシスト後推定筋力テーブルをグラフと して示した図である。
[図 15]本発明の一実施形態を示すものであり、筋力補助装置の要部構成を示す概 略構成図である。
発明を実施するための最良の形態
[0025] 〔実施形態 1〕
本発明の一実施形態について図 1から 5を用いて説明すると以下の通りである。本 実施形態では、筋力補助装置に備えられ、筋力補助装置の駆動力を算出する駆動 力算出装置 1について説明する。
[0026] まず、本実施形態の駆動力算出装置が駆動力を算出する対象となる筋力補助装 置について説明する。上記の筋力補助装置は、関節を含む骨格と筋肉とを有する生 体 (本実施形態ではヒト)によって装着されるものである。この筋力補助装置には、複 数の駆動部(以下、「人工筋」ともいう)が備えられており、各駆動部は、生体 (ヒト)の 骨格に関節を跨 、で固定されて 、る。
[0027] 各駆動部の構成は特に限定されるものではないが、例えば、図 4に示すように、ヒト の筋肉を模した形状、すなわち、長手方向に伸縮可能なァクチユエータとなっていて もよい。また、より具体的には、ゴムチューブとそれを覆うカーボン製の網力 なって いてもよい。この場合、ァクチユエータ 1本が生体の筋肉 1本に相当し、各駆動部の 駆動力は、ァクチユエータに注入される空気圧と断面積とに比例する。つまり、各ァク チユエータに注入される最大空気圧が同一である場合には、各駆動部の最大駆動 力は、ゴムチューブの伸縮方向と垂直な方向における断面の断面積に比例する。
[0028] そして、この駆動部が駆動力を発生させることによって、関節の前後にある駆動部 の固定部分に駆動力がかかり、関節に回動軸を中心としたトルクが発生する。筋力補 助装置は、このトルクによって関節の回動動作を支援及び Z又は妨害する。回動動 作を支援する場合としては、例えば、介護やリハビリテーション等を行う場合が想定さ れ、また、回動動作を妨害する場合としては、例えば、筋力トレーニング等を行う場合 が想定される。
[0029] 次に、本実施形態の駆動力算出装置 1について説明する。図 1は、駆動力算出装 置 1の機能ブロック図である。駆動力算出装置 1は、制御部 2及び記憶部 3を備えて いる。
[0030] 制御部 2は、 CPU、 RAM,及び各種入出力インターフェースで構成されて 、る。各 種入出力インターフェースとしては特に限定されるものではないが、例えば、キーボ ード、タツチパネル、マウス、検知センサ、カメラ等の入力インターフェース、ディスプ レイ、プリンタ等の出力インターフェース、及び再生記録装置等との双方向インターフ エースが挙げられる。
[0031] 記憶部 3は、後述する各工程にお!、て必要なデータ及び各工程お!/、て得られたデ ータを格納するためのものであり、例えば、 RAM又は HDD等で構成される。
[0032] 制御部 2は、図 1に示すように、動作情報取得部 (動作情報取得手段) 11、関節ト ルク算出部(関節トルク算出手段) 12、筋力算出部 (筋力算出手段) 13、筋力入力部 14、駆動力算出部 (駆動力算出手段) 15、筋力再算出部 (筋力再算出手段) 16、比 較部 (比較手段) 17、及び出力部 18を備えている。
[0033] 動作情報取得部 11は、生体の動作から動作情報を取得するものであり、本実施形 態では、筋力補助装置が支援する対象となるヒトの関節における回動動作力も動作 情報を取得するためのものである。動作情報取得部 11は、実際の関節の回動動作 を基に、各瞬間における回動動作に関する情報を取得する。取得する情報としては 、例えば、関節の角度や回動する角速度及び角加速度等の情報が挙げられる。動 作情報取得部 11は、関節の回動動作の動作情報を取得できるものであれば特に限 定されるものではなぐ例えば、カメラによって回動動作の画像を取得し、動作情報を 抽出するものであってもよいし、センサによって回動動作を検知し、動作情報を抽出 するものであってもよい。具体的には、所謂モーションキヤプチャ装置であってもよい し、フォースプレート又は加速度計を利用した装置であってもよい。あるいは、予め得 られている画像データ等を取り込んで、そこ力も動作情報を抽出するものであっても よい。さらに、動作情報取得部 11には、既に得られた動作情報がそのまま入力され てもよい。なお、動作情報取得部 11は、実際の回動動作力も複数の関節について一 度に動作情報を取得できることが好まし 、。
[0034] 関節トルク算出部 12は、回動動作に必要な関節トルクを関節毎に算出するための ものである。なお、関節トルクとは、関節を回動させるトルクのことをいう。
[0035] 筋力算出部 13は、回動動作に必要な関節トルクに基づいて、筋力補助装置を装 着しない状態で関節を回動させるのに必要な筋力を筋肉毎に算出するためのもので ある。なお、筋力の算出に用いる関節トルクは、関節トルク算出部 12によって算出さ れたものを用いる。
[0036] 筋力入力部 14は、筋肉に対して設定される筋力である設定筋力が入力されるため のものである。筋力入力部 14としては、例えば、キーボード、マウス又はタツチパネル 等の入力インターフェースであってもよ 、し、 HDDやネットワーク接続部等の外部装 置との入出力インターフェースであってもよ!/、。
[0037] なお、筋力入力部 14に入力される設定筋力は、具体的な筋力の値であってもよい し、詳細は後述するが、筋力算出部 13によって算出された筋力に対する倍率等でも よい。また、筋力を設定する筋肉は単一の筋肉であってもよいが、本実施形態では、 好ま 、実施形態として、複数の所望の筋肉に対して所望の筋力を設定できるように 構成されている。従って、筋力入力部 14には、設定対象となる筋肉の情報と、これに 設定される筋力の情報とが入力されるものとする。
[0038] 駆動力算出部 15は、筋力入力部 14に入力された設定筋力と、回動動作に必要な 関節トルクとに基づいて、上記駆動部の駆動力を算出するものである。本実施形態 では、筋力入力部 14に入力された、設定対象となる複数の筋肉とその筋力とに基づ いて、駆動力を算出する。また、駆動力の算出に用いる関節トルクは、関節トルク算 出部 12によって算出されたものを用いる。
[0039] 筋力再算出部 16は、駆動力算出部 15によって算出された駆動力と、回動動作に 必要な関節トルクとに基づいて、回動動作に必要な筋力を算出するためのものであ る。なお、筋力の算出に用いる関節トルクは、関節トルク算出部 12によって算出され たものを用いる。
[0040] 比較部 17は、筋力再算出部 16によって算出された筋力と、筋力入力部 14に入力 された設定筋力とを比較するものである。
[0041] 出力部 18は、算出した駆動力のデータを外部に伝送するためのものである。出力 部 18としては、ディスプレイ、プリンタ等の出力インターフェース、及び再生記録装置 等との双方向インターフェース等が挙げられる。
[0042] 記憶部 3は、図 1に示すように、骨格モデルデータ 21、筋肉モデルデータ 22、及び 人工筋モデルデータ 23を予め格納しており、さらに、動作データ 31、関節トルクテー ブル 32、推定筋力テーブル 33、設定筋力テーブル 34、駆動力テーブル 35、及びァ シスト後推定筋力テーブル 36を格納できるようになって 、る。
[0043] 骨格モデルデータ 21は、生体 (ヒト)の骨格に関する立体構成情報を含んでいる。
具体的には、骨格モデルデータ 21は、各骨の長さの情報、各骨の太さの情報、骨同 士の空間配置の情報、各骨の重さの情報、各骨の慣性モーメントの情報、関節にお ける回動軸の相対的な位置の情報を含んでいる。本実施形態では、骨格モデルデ ータ 21は、固定の回動軸を中心に回動する関節によって多数の骨が結合されたリン クモデルとなっている力 これに限定されるものではなぐ関節の回動に伴って回動 軸が関節に対して変化するモデルとしてもよい。この場合、関節部分に短い仮想的 なリンクを追加すれば、人間のような回転軸の移動があるような骨格を再現することが できる。また、骨格モデルデータに用いられる骨格は、全身の骨格であってもよいし、 上肢又は下肢等、身体の一部分における骨格であってもよい。この骨格モデルデー タ 21により、ヒトの骨格モデルを再現することができる。 [0044] 筋肉モデルデータ 22は、生体 (ヒト)の筋肉に関する立体構成情報を含んでいる。 具体的には、筋肉モデルデータ 22は、各筋肉の長さの情報、骨格に付着する位置 の情報を含んでいる。このように、筋肉は、重さのないワイヤとしてモデルィ匕されてい る。この筋肉モデルデータ 22を骨格モデルデータ 21と組み合わせることにより、骨格 筋モデルデータ 24となる。骨格筋モデルデータ 24により、ヒトの骨格上に筋肉を重 ねた骨格筋モデルを再現できる。また、筋肉モデルデータ 22は、各筋肉の生理断面 積の情報をさらに含んでいる。なお、筋肉モデルデータ 22は、さらに、筋肉の質量の 情報及び Z又は慣性モーメントの情報等を含んで 、てもよ 、。筋肉の質量の情報や 筋肉の慣性モーメントの情報を含めたモデルとすることにより、再現された骨格筋モ デルは一層現実のものに近づくことになる。
[0045] 人工筋モデルデータ 23は、筋力補助装置の駆動部に関する立体構成情報を含ん でいる。具体的には、人工筋モデルデータ 23は、駆動部の長さの情報、ヒトが装着し た状態にぉ 、て駆動部の端部が骨格に付着する位置の情報を含んで 、る。これによ り、駆動部は、重さのないワイヤとしてモデルィ匕される。この人工筋モデルデータ 23 を骨格筋モデルデータ 24と組み合わせることにより、筋 Z人工筋統合モデルデータ 25となる。筋 Z人工筋統合モデルデータ 25により、ヒトの骨格上に筋肉及び駆動部 を重ねた筋 Z人工筋統合モデルを再現できる。また、人工筋モデルデータ 23は、駆 動部の伸縮方向に垂直な断面積の情報をさらに含んでいる。本実施形態では、この 断面積の情報力 最大駆動力を求めることができるが、断面積の情報の代わりに最 大駆動力の情報を含んでいてもよい。なお、人工筋モデルデータ 23は、さらに、駆 動部の質量の情報、及び Z又は慣性モーメントの情報等を含んで 、てもよ 、。
[0046] 動作データ 31は、動作情報取得部 11によって取得された動作情報を含んでおり、 具体的には、回動動作の各瞬間における関節の角度、角速度、及び角加速度の情 報を含んでいる。従って、動作データ 31は、時間と角度、角速度、及び角加速度との テーブルとなっている。
[0047] 関節トルクテーブル 32は、関節トルク算出部 12によって算出された、関節の回動 動作に必要な関節トルクの情報を含んでおり、具体的には、回動動作の各瞬間にお いて必要な関節トルクの情報を含んでいる。従って、関節トルクテーブル 32は、時間 と関節トルクとの対応を示すテーブルとなっている。
[0048] 推定筋力テーブル 33は、筋力算出部 13によって算出された、筋力補助装置による 支援がない場合の、関節の回動動作に必要な筋力の情報を含んでおり、具体的に は、回動動作の各瞬間において必要な筋力の情報を含んでいる。従って、推定筋力 テーブル 33は、時間と筋力との対応を示すテーブルとなっている。
[0049] 設定筋力テーブル 34は、筋力入力部 14から入力された設定筋力の情報を含んで おり、具体的には、回動動作の各瞬間における設定筋力の情報を含んでいる。従つ て、設定筋力テーブル 34は、時間と設定筋力との対応を示すテーブルとなっている
[0050] 駆動力テーブル 35は、駆動力算出部 15によって算出された、筋力補助装置の駆 動部の駆動力の情報を含んでおり、具体的には、回動動作の各瞬間において必要 な駆動力の情報を含んでいる。従って、駆動力テーブル 35は、時間の駆動力との対 応を示すテーブルになって 、る。
[0051] アシスト後推定筋力テーブル 36は、駆動力テーブル 35に基づいて駆動部を駆動 させて回動動作を支援している状態での、回動動作に必要な筋力の情報を含んで おり、具体的には、回動動作の各瞬間において必要な筋力の情報を含んでいる。従 つて、アシスト後推定筋力テーブル 36は、時間と筋力との対応を示すテーブルとなつ ている。なお、アシスト後推定筋力テーブル 36には、筋力再算出部 16によって算出 された値が格納されて 、る。
[0052] 次に、駆動力算出装置の動作について説明する。図 2は、本実施形態の筋力算出 方法の工程図である。
[0053] まず、関節の回動動作を被験者が実演する。そして、この回動動作を動作情報取 得部 11がカメラ等により取り込み、取り込んだ画像情報から動作情報を抽出する (ス テツプ Sl)。画像情報力 動作情報を抽出する際、画像情報における関節の位置や 骨格の特定に、記憶部 3の骨格モデルデータ 21を用いてもよい。また、動作情報は 、回動動作の開始から終了までの複数の瞬間において取得されるものとする。動作 情報としては、各瞬間における関節の角度、角速度、及び角加速度が取得される。 そして、取得された動作情報は、時間と、角度、角速度、及び角加速度との対応を示 すテーブルにまとめられ、動作データ 31として記憶部 3に格納される。
[0054] 次に、関節トルク算出部 12が、記憶部 3に格納された動作データ 31に基づいて、 回動動作に必要な関節トルクを関節毎に算出する (ステップ S2)。具体的には、関節 トルク算出部 12は、動作データ 31に含まれる関節の角度、角速度、角加速度、及び 重力加速度と、骨格モデルデータ 21に含まれる骨に力かる質量及び慣性モーメント とから、ニュートンオイラ法ゃラグランジュ法等の動力学計算によって、回動動作を実 現する関節トルクを算出する。この関節トルクの算出は各瞬間毎に行われる。そして、 各関節毎に算出された関節トルクは時間と対応付けられ、関節トルクテーブル 32とし て記憶部 3に格納される。
[0055] 続いて、筋力算出部 13が、筋力補助装置をつけない状態で回動動作を行う際に 必要な筋力を算出する (ステップ S3)。算出された筋力は、後続の筋力を設定するた めに利用される。具体的に説明すると、筋力算出部 13は、記憶部 3に格納された骨 格筋モデルデータ 24及び関節トルクテーブル 32に基づ 、て、必要な各筋肉の筋力 を算出する。また、筋力の算出は各瞬間毎に行われ、得られた筋力 (推定筋力)は、 時間と対応付けられて、推定筋力テーブル 33として記憶部 3に格納される。
[0056] 推定筋力の算出方法について詳細に説明すると以下の通りである。各関節を関節 i とし、関節 iを跨ぐ筋肉が j本あり、筋肉 jのモーメントアーム(関節 iの回動中心軸から 関節 iを跨いでいる筋肉 jの付着点までの距離)を rとし、筋肉 jの筋力を fとすると、関 節 iにおけるトルク τは、
[数 1] て, 二
Figure imgf000014_0001
· Χ ,ゾ … ( 1 )
J と表される。ここで、トルクての値は、上記の関節トルク算出部 12によって既に算出さ れ、記憶部 3に関節トルクデータとして格納されている。また、 rは、骨格筋モデルデ ータ 24から算出することができる。従って、式(1)の τ 、 rに数値を代入することにな る力 fが複数あるため、各 fの値を求めることができない。
[0057] ここで、 fの値を決定するために、本実施形態では、 Crowninshieldが提唱した最 適化計算式を利用する。すなわち、ある動作を行うとき、各筋肉の筋力 fは、次の評 価関数 U (f)
[数 2]
Figure imgf000015_0001
が最小になるように、筋力が分配されるというものである。なお、式(2)において、 nは 筋肉の本数であり、 Aは筋肉 jの生理断面積である。この式によれば、各筋肉の単位 断面積辺りの筋力の 2乗の総和が最小になるように筋力が分配される。
[0058] 筋力算出部 13は、式(2)が最小となるように fを最適化する。この場合、関節トルク テーブル 32に格納されているトルクてと、骨格筋モデルデータ 24から算出されるモ 一メントアーム rと、各筋力 fとが式(1)を満たす条件下で、式 (2)が最小となる筋力 f
J J J
を算出する。換言すれば、筋力算出部 13は、式(1)で表されるトルク τ ;及び ^を拘束 条件として、式 (2)が最小となるような fを算出する。なお、 fの最適化計算に必要な 生理断面積 Aの値は、筋肉モデルデータ 22に含まれている。
[0059] また、式(2)による最適化計算を行うにあたって、さらに拘束条件を加えてもよい。
例えば、各筋肉が発生できる筋力 fは次の式 (3)
0≤f≤kA · '· (3)
(ただし、式(3)中、 k=0. 7 X 106[N/m2]、 Aは筋肉 jの生理的断面積である)
J
に示す範囲に含まれることが知られている。従って、拘束条件として、さらに式(3)を 用いることが好ましい。これにより、生体の筋肉が実際には発生できない筋力を除外 することができる。
[0060] 上記の最適化計算により、各筋肉の筋力 fが算出される。そして、筋力算出部 13は この算出を回動動作の各瞬間につ 、て行う。このようにして得られた各筋肉の筋力は 、時間との対応テーブルである推定筋力テーブル 33として、記憶部 3に格納される。
[0061] 次に、筋力入力部 14に、筋力を設定したい筋肉と、その筋肉に設定する筋力とが 入力される (ステップ S4)。ここで、筋力を設定する際に、所望の筋力を自由な波形と して入力してもよ ヽが、推定筋力テーブル 33に格納された筋力に対する倍率を用い て設定してもよい。後者の場合、ある動作に必要な筋力に対する所望の倍率として筋 力を設定できるので、使用者は、筋力補助装置の支援量を簡便に設定することが可 能となる。
[0062] 倍率によって筋力を設定する場合、筋力入力部 14には、筋力の設定対象となる筋 肉を特定する情報と、その筋肉に対して設定したい筋力の倍率とが入力される。筋力 入力部 14は、推定筋力テーブル 33を参照して、設定対象となる筋肉の筋力データ を抽出し、抽出した筋力データに対して、入力された倍率を乗数として乗算を行う。 乗算された筋力は設定筋力となり、時間との対応テーブルである設定筋力テーブル 34として記憶部 3に格納される。
[0063] 続いて、駆動力算出部 15が、筋力入力部 14に入力された筋力に基づいて、回動 動作時に駆動部が発生させるべき駆動力を算出する (ステップ S5)。ここで、駆動力 算出部 15は、骨格筋モデルデータ 24と人工筋モデルデータ 23とを統合した、筋 Z 人工筋統合モデルデータ 25を利用する。具体的には、上述した式(1)、(2)におけ る筋肉の筋力を、筋肉の筋力及び駆動部の駆動力に拡張する。そして、関節トルクと 、設定筋力とを拘束条件として、式(1)を用いて最適化することによって fを算出する
[0064] 具体的に説明すると、関節 iにおけるトルクては、
[数 3]
Ti =∑rj X ff … (4 )
(ただし、上記式において、 iは関節の番号であり、 ては関節 iにおける関節トルクであ り、 jは関節 iを跨ぐ筋肉又は駆動部の番号であり、 rは筋肉 j又は駆動部 jのモーメント
j
アームであり、 fは筋肉 jの筋力又は駆動部 jの駆動力である)
J
である。ここで、トルク τの値は、記憶部 3の関節トルクテーブル 32を参照し、モーメ ントアーム rの値は、筋 Z人工筋統合モデルデータ 25から算出することができる。さら に、 fのうち、筋力を設定した筋肉の筋力 fの値については、設定筋力テーブル 34か ら得られる。
[0065] そして、筋力を設定しな力つた筋肉の筋力及び駆動部の駆動力 fが式 (4)を満たす 条件下で、次の評価関数 U (f)
Figure imgf000017_0001
… )
(ただし、上記評価関数において、 nは筋力入力部によって筋力が設定されな力つた 筋肉の数と駆動部の数との和であり、 jは筋力入力部によって筋力が設定されなかつ た筋肉及び駆動部の番号であり、 fは j番目の筋肉の筋力又は駆動部の駆動力であ り、 Aは jが筋肉の場合は筋肉の生理断面積であり、 jが駆動部の場合は駆動部の最 大駆動力に基づく値である)
が最小となる fを算出する。なお、 jが駆動部の場合に設定する Aの内容は、実験結 果に基づ 、て最適なものを選べばよ 、が、駆動部 jの最大駆動力に比例する値であ ることが好ましい。本実施形態では、駆動部の最大駆動力が駆動部の断面積に比例 するため、駆動部の断面積を Aとして用いることとする。もちろん、駆動部の断面積の 代わりに最大駆動力を Aとして用いてもよいことは言うまでもない。また、この算出ェ 程にぉ 、ても、上述した式(3)をさらに拘束条件としてカ卩えることが好ま 、。
[0066] この最適化計算により、筋力が設定されな力つた筋肉の筋力及び各駆動部の駆動 力 fが算出される。そして、駆動力算出部 15はこの算出を回動動作の各瞬間につい て行う。このようにして得られた各駆動部の駆動力は、時間との対応テーブルである 駆動力テーブル 35として、記憶部 3に格納される。
[0067] 続いて、筋力再算出部 16は、筋力補助装置が駆動力テーブル 35に保存された駆 動力によって関節の回動を支援した場合の、筋肉が発生させるべき筋力を算出する (ステップ S6)。今度は、筋力再算出部 16は、設定筋力の代わりに駆動部の駆動力 を拘束条件とする。
[0068] すなわち、上述した式 (4)と、駆動力テーブル 35に保存された駆動部の駆動力とを 拘束条件として、次の評価関数 u (f)
[数 5]
Figure imgf000018_0001
(ただし、上記評価関数において、 nは筋肉の数であり、 jは筋肉の番号であり、 は筋 肉 jの筋力であり、 Aは筋肉 jの生理断面積である)
が最小となる筋力 fを算出する。また、この算出工程においても、上述した式(3)をさ らに拘束条件としてカ卩えることが好ましい。
[0069] この最適化計算により、筋力補助装置によって回動動作を支援された状態での、全 筋肉の筋力 fが算出される。そして、筋力再算出部 16はこの算出を回動動作の各瞬 間について行う。このようにして得られた筋力は、時間との対応テーブルであるアシス ト後推定筋力テーブル 36として、記憶部 3に格納される。
[0070] 次に、比較部 17は、筋力再算出部 16によって算出された支援状態での筋力が、 先ほど筋力入力部 14によって設定された設定筋力と相違していないかどうかを比較 する (ステップ S7)。具体的には、設定筋力テーブル 34とアシスト後推定筋力テープ ル 36とを比較する。そして、支援状態での筋力が設定筋力と略一致すれば全工程を 終了する。一方、異なる場合は、設定筋力が不適切であったと考えられるため、ステ ップ S4に戻り、もう一度、筋力の入力が行われる。
[0071] なお、全工程を終了する条件として、支援状態での筋力が設定筋力と必ずしも完 全に一致する必要はなぐ例えば、支援状態での筋力が設定筋力 ±A%の範囲内 に収まる場合に全工程を終了してもよい。この場合、上記の A%は、目的に応じて様 々に設定すればよい。
[0072] 本実施形態の駆動力算出装置 1は、以上のように、駆動力算出部 15が、設定筋力 を拘束条件として駆動部の駆動力を算出するため、算出された駆動力を用いて駆動 部を駆動すれば、筋力を設定した筋肉が設定筋力となるように、回動動作を支援す ることがでさる。
[0073] なお、上述した評価関数(2)、 (5)、(6)では、 f ZAの 2乗の総和について評価し た力 例えば、 3乗の総和であってもよぐさらには 100乗の総和であってもよい。す なわち、各筋肉の単位断面積辺りの筋力の m乗 (mは 2以上の整数)の総和について 評価すればよい。
[0074] 次に、上記の駆動力算出装置 1を備え、駆動力算出装置 1が算出した駆動力によ つて駆動部が駆動される筋力補助装置 100について説明する。本実施形態の筋力 補助装置 100は、駆動力算出装置 1と、複数の駆動部 101…と、駆動力制御部 102 とを備えている。
[0075] 筋力補助装置 100は、関節を含む骨格と筋肉とを有する生体 (ヒト)によって装着さ れるものである。各駆動部 101は、生体 (ヒト)の骨格に関節を跨いで固定される。駆 動部 101の人体への固定には、サポータゃテープ等が用いられる。図 15は、筋肉補 助装置 100の一実施例である力 本発明はこれに限定されるものではない。
[0076] 各駆動部 101の構成は特に限定されるものではないが、例えば、ヒトの筋肉を模し た形状、すなわち、伸縮可能な棒状のァクチユエータであってもよい。各駆動部 101 は、例えば、図 4に示すような、弾性繊維複合型空気圧ゴム人工筋であってもよい。
[0077] 図 3は、筋力補助装置 100の機能ブロック図である。負荷を減少又は増力!]させたい 筋肉に対する設定筋力が筋力補助装置 100の駆動力算出装置 1に入力され、筋力 補助装置 100を装着したヒトが支援してもらいたい動作を行うと、駆動力算出装置 1 力 その動作を支援するための駆動力を算出する。そして、駆動力制御部 102は、 算出された駆動力によって、各駆動部 101を駆動する。この駆動部 101が駆動力を 発生させることによって、関節の前後にある駆動部 101の固定部分に駆動力がかか り、関節に回動軸を中心としたトルクが発生する。このようにして、筋力補助装置 100 は、回動動作を支援することができる。
[0078] 本実施形態の筋力補助装置 100は、駆動力算出装置 1を備えているため、回動動 作を支援する際に、装着した人間の筋力を筋肉毎に制御することができる。
[0079] なお、上記実施形態では、駆動力算出装置 1を構成する各部材が、「CPUなどの 演算手段が ROMや RAMなどの記録媒体に格納されたプログラムコードを実行する ことで実現される機能ブロックである」場合を例にして説明したが、同様の処理を行う ハードウェアで実現してもよい。また、処理の一部を行うハードウェアと、当該ハードウ エアの制御や残余の処理を行うプログラムコードを実行する上記演算手段とを組み 合わせても実現することもできる。さらに、上記各部材のうち、ハードウェアとして説明 した部材であっても、処理の一部を行うハードウェアと、当該ハードウェアの制御や残 余の処理を行うプログラムコードを実行する上記演算手段とを組み合わせても実現 することもできる。なお、上記演算手段は、単体であってもよいし、装置内部のバスや 種々の通信路を介して接続された複数の演算手段が共同してプログラムコードを実 行してもよい。また、上記各部材のうちの記憶部 3は、メモリなどの記憶装置自体であ つてもよい。
[0080] 上記演算手段によって直接実行可能なプログラムコード自体、または、後述する解 凍などの処理によってプログラムコードを生成可能なデータとしてのプログラムは、当 該プログラム(プログラムコードまたは上記データ)を記録媒体に格納し、当該記録媒 体を配付したり、あるいは、上記プログラムを、有線または無線の通信路を介して伝 送するための通信手段で送信したりして配付され、上記演算手段で実行される。
[0081] なお、通信路を介して伝送する場合、通信路を構成する各伝送媒体が、プログラム を示す信号列を伝搬し合うことによって、当該通信路を介して、上記プログラムが伝 送される。また、信号列を伝送する際、送信装置が、プログラムを示す信号列により 搬送波を変調することによって、上記信号列を搬送波に重畳してもよい。この場合、 受信装置が搬送波を復調することによって信号列が復元される。一方、上記信号列 を伝送する際、送信装置が、デジタルデータ列としての信号列をパケット分割して伝 送してもよい。この場合、受信装置は、受信したパケット群を連結して、上記信号列を 復元する。また、送信装置が、信号列を送信する際、時分割 Z周波数分割 Z符号分 割などの方法で、信号列を他の信号列と多重化して伝送してもよい。この場合、受信 装置は、多重化された信号列から、個々の信号列を抽出して復元する。いずれの場 合であっても、通信路を介してプログラムを伝送できれば、同様の効果が得られる。
[0082] ここで、プログラムを配付する際の記録媒体は、取外し可能である方が好ましいが、 プログラムを配付した後の記録媒体は、取外し可能か否かを問わない。また、上記記 録媒体は、プログラムが記憶されていれば、書換え (書き込み)可能か否か、揮発性 か否か、記録方法および形状を問わない。記録媒体の一例として、磁気テープや力 セットテープなどのテープ、あるいは、フロッピー(登録商標)ディスクゃノヽードディスク などの磁気ディスク、または、 CD— ROMや光磁気ディスク(MO)、ミニディスク(MD )やデジタルバーサタイルディスク(DVD)などのディスクが挙げられる。また、記録媒 体は、 ICカードや光カードのようなカード、あるいは、マスク ROMや EPROM、 EEP ROMまたはフラッシュ ROMなどのような半導体メモリであってもよい。あるいは、 CP Uなどの演算手段内に形成されたメモリであってもよい。
[0083] なお、上記プログラムコードは、上記各処理の全手順を上記演算手段へ指示する コードであってもよいし、所定の手順で呼び出すことで、上記各処理の一部または全 部を実行可能な基本プログラム (例えば、オペレーティングシステムやライブラリなど) が既に存在して 、れば、当該基本プログラムの呼び出しを上記演算手段へ指示する コードやポインタなどで、上記全手順の一部または全部を置き換えてもよ 、。
[0084] また、上記記録媒体にプログラムを格納する際の形式は、例えば、実メモリに配置 した状態のように、演算手段がアクセスして実行可能な格納形式であってもよ 、し、 実メモリに配置する前で、演算手段が常時アクセス可能なローカルな記録媒体 (例え ば、実メモリゃノヽードディスクなど)にインストールした後の格納形式、あるいは、ネット ワークや搬送可能な記録媒体などから上記ローカルな記録媒体にインストールする 前の格納形式などであってもよい。また、プログラムは、コンノィル後のオブジェクトコ ードに限るものではなぐソースコードや、インタプリトまたはコンパイルの途中で生成 される中間コードとして格納されていてもよい。いずれの場合であっても、圧縮された 情報の解凍、符号化された情報の復号、インタプリト、コンパイル、リンク、または、実 メモリへの配置などの処理、あるいは、各処理の組み合わせによって、上記演算手段 が実行可能な形式に変換可能であれば、プログラムを記録媒体に格納する際の形 式に拘わらず、同様の効果を得ることができる。
[0085] 〔実施形態 2〕
本発明の他の実施形態について図 5を用いて説明すると以下の通りである。なお、 実施形態 1と同様の部材については同じ符号を付し、説明を省略する。
[0086] 本実施形態の筋力補助装置 200は、実施形態 1の筋力補助装置 100と同様に人 間に装着され、同じ目的に利用されるものであるが、駆動力算出装置 1の代わりに記 録媒体 201を備え、駆動力制御部 102の代わりに駆動力制御部 202を備え、さらに 入力部 203を備えている点が筋力補助装置 100と異なっている。図 5は、本実施形 態の筋力補助装置 200の機能ブロック図である。
[0087] 記録媒体 201は、コンピュータ読み取り可能な記録媒体であり、具体的には、実施 形態 1のプログラムが記録されるための記録媒体と同様のものを用いることができる。 この記録媒体 201には、複数の駆動力テーブル 35…が収められた駆動力データべ ース 205が記録されて!、る。
[0088] 各駆動力テーブル 35は、実施形態 1の駆動力算出装置 1によって算出されたもの であり、実施形態 1の駆動力テーブル 35と同じものである。これらの駆動力テーブル 35…は、算出に用いられた設定筋力が異なっており、設定筋力と関連付けられて駆 動力データベース 205内に格納されている。すなわち、駆動力データベース 205は 、所望の設定筋力に対応する駆動力テーブル 35を取得できるデータベースとなって いる。
[0089] 入力部 203は、所定の回動動作を支援する際の、設定筋力の情報を入力するため のものである。なお、入力部 203に入力される設定筋力の情報は、予め用意された 複数の設定筋力に対する選択肢となっている。これにより、筋力補助装置の利用者 は、簡便に設定筋力を指定することができる。
[0090] 駆動力制御部 202は、 CPU、 RAM,及び記録媒体 201の読み取り装置を備え、 記録媒体 201を読み取ることができるコンピュータとなっている。駆動力制御部 202 は、入力部 203から入力された設定筋力の情報に基づいて、記録媒体 201から、入 力された設定筋力に対応する駆動力テーブル 35を読み取り、読み取った駆動力テ 一ブル 35に含まれる駆動力データに基づいて各駆動部 101…の駆動力を制御する
[0091] 一例を挙げると、ある駆動力テーブル 35は、所定の動作を支援する際に用いられ る駆動力テーブルであって、設定筋力が、筋力算出部によって算出された筋力 (推 定筋力)に対して 150%の場合の駆動力テーブルとなっている。そして、別の駆動力 テーブル 35は、上記と同じ動作を支援する際に用いられる駆動力テーブルであって 、設定筋力が推定筋力に対して 200%の場合の駆動力テーブルとなっている。これ らの駆動力テーブル 35…は、駆動力データベース 205内に設定筋力の情報と関連 付けられて格納されているため、駆動力制御部 202は、入力部 203から入力された 設定筋力の情報に対応する駆動力テーブル 35を駆動力データベース 205から検索 することができる。例えば、入力部 203に、設定筋力を 150%にするための指示情報 が入力されると、駆動力制御部 202は、複数の駆動力テーブル 35· ··から設定筋力 力^ 50%の駆動力テーブル 35を検索し、検索した駆動力テーブル 35に含まれる駆 動力データに基づいて各駆動部 101を駆動する。これにより、筋力補助装置 200は 、使用者の筋力が、筋力補助装置を装着しない場合に比べて 150%となるように駆 動力を発生させる。
[0092] なお、上記の説明では入力部 203から入力される情報力 設定筋力の情報のみで ある場合について説明した力 本発明はこれに限定されるものではなぐ入力部 203 から、支援する動作を特定する情報や、筋力を設定する対象となる筋肉を特定する 情報がさらに入力されることが好ましい。
[0093] この場合、駆動力データベース 205に格納される駆動力テーブル 35…は、設定筋 力の情報に加えて、支援する動作の情報や、筋力を設定する筋肉の情報とも関連付 けられて格納されていればよい。これにより、入力部 203から、筋力補助装置によつ て支援する動作の情報、筋力を設定する筋肉の情報、及び設定筋力が入力されると 、駆動力制御部 202は、駆動力データベース 205から、上記 3つの情報に対応する 駆動力テーブル 35を検索し、検索した駆動力テーブル 35に基づいて、各駆動部 10 1…の駆動力を制御する。
[0094] なお、入力部 203から入力される、支援する動作の情報としては、用意された複数 の動作に関する選択項目に対する選択情報等であってもよいし、あるいは、モーショ ンキヤプチャ装置や関節に取り付けられたセンサで使用者の動作を検出し、検出し た動作が、支援する対称となる動作として入力部 203に入力されてもよい。
[0095] このように、本実施形態の筋力補助装置 200は、支援する動作、筋力を設定する対 象となる筋肉、及びその筋肉に対する設定筋力等の様々な駆動条件に対応する駆 動力テーブル 35· ··を、予め駆動力データベース 205内に備えている。従って、複雑 な算出処理を行う必要がないため、動作を迅速に支援することができる。
[0096] なお、上記の説明では、駆動力データベース 205が記録媒体 201に記録されて 、 る場合について説明した力 駆動力データベース 205は、 RAM又は ROM等の記 憶部に記憶されて 、てもよ 、。
[0097] 〔実施例〕
本発明の一実施例について図 6〜14を用いて説明すると以下の通りである。なお、 本発明は以下の実施例に限定されるものではない。
[0098] (筋骨格モデル及び筋 Z人工筋統合モデル)
図 6は、生体の骨格を模した剛体リンクモデルである。生体の骨格を模した剛体リン クモデルとしては、図 6に示すように、人の上半身の右部分に関して、腰、首、肩、肘 、手首を関節とした 5リンク 13自由度に簡略ィ匕したリンクモデルを用いた。リンクモデ ルのデータには、各リンクの長さ、質量、及び慣性モーメントの情報が含まれている。 各情報の具体値は公表されているデータベース(MotCo project: http:〃 www.motco .dir.bg/)を参照して設定した。より具体的には、身長及び体重を用いてデータベース を検索することによって、各リンクの長さ、質量、及び慣性モーメントのデータを取得し 、これらのデータを上記の情報として設定した。なお、重心位置は各リンクの中点とし た。
[0099] 図 7は、上記の骨格モデルにヒトの筋肉を適用したモデルである。筋骨格モデルに おける筋肉は、図 7に示すように、肘または手首を跨ぐ筋肉 (41本)の筋肉の付着点( 始点 ·終点)と骨の一部分に干渉する経由点とを解剖学的な知見に基づ 、て配置し た。配置した筋肉は、大胸筋 1, 2、広背筋 1, 2, 3、肩甲下筋、三角筋前頭、三角筋 外頭、三角筋後頭、棘上筋、棘下筋、大円筋、小円筋、烏口腕筋、上腕二頭筋 (長 頭 ·短頭)、上腕筋、腕橈骨筋、上腕三頭筋 (長頭 ·内頭 ·外頭)、肘筋、尺側手根屈 筋、橈側手根屈筋、長掌筋、浅指屈筋 1, 2、深指屈筋、長母指屈筋、方形回内筋、 長母指外転筋、円回内筋、尺側手根伸筋、長橈側手根伸筋、短橈側手根伸筋、及 び総指伸筋である。各筋肉は骨に付着した部分 (始点 ·終点および経由点)を通る重 さの無いワイヤとしてモデルィ匕した。筋肉モデルデータには、各筋肉の長さの情報、 骨格に付着する位置の情報が含まれて 、る。これらのパラメタに上記データベースか ら得られた値を入力した。この筋肉モデルデータと上記骨格モデルデータとを用いれ ば、関節角度に基づいて筋肉のモーメントアームを算出できる。
[0100] 図 8は、生体の筋骨格モデルに、筋力補助装置の人工筋を加えた筋 Z人工筋統 合モデルを示す図である。人工筋としては、図 8に示すように、肘の屈曲及び伸展を 支援する人工筋 6本 (AFM1〜6)を用いた。各人工筋肉のモデルは上記の筋肉同 様、骨に付着した部分 (始点 ·終点および経由点)を通る重さの無 、ワイヤとしてモデ ルイ匕されている。人工筋モデルデータには、各人工筋の長さの情報、骨格に付着す る位置の情報が含まれて 、る。この人工筋モデルデータと上記骨格モデルデータと を用いれば、関節角度に基づいて人工筋のモーメントアームが算出できる。
[0101] (動作情報取得工程、動作情報取得手段)
本実施例では、肘の伸展屈曲動作(回内外固定)時における、特定筋肉の負荷を 変更する人工筋の駆動力設計を行った。この運動は、肘の伸展屈曲を行いながら、 前腕と手首の回転を保持するという運動である。本実施例では上記の伸展屈曲動作 を 4回繰り返した。
[0102] そして、動作情報取得部として VICON (Vicon Motion Systems製: VICON512)を 用い、サンプリング周波数 120Hzで肘の伸展屈曲動作を計測した。得られた動作情 報を可視化したものを図 9に示す。
[0103] (関節トルク算出工程、関節トルク算出手段)
計測によって得られた動作情報から、各関節の角度、角速度、及び角加速度を特 定し、逆動力学を解くことで各関節に力かる関節トルクを算出した。この関節トルクは 各瞬間毎に算出した。そして、時間と関節トルクとの対応テーブル(関節トルクテープ ル)を記憶部に格納した。図 10は、関節トルクテーブルをグラフとして表したものであ る。
[0104] (筋力算出工程、筋力算出手段)
各関節を関節 i (iは 1以上 5以下の整数)とし、関節 iを跨ぐ筋肉が j本あり、関節 iの 回転中心軸から関節 iを跨いでいる筋肉 jの付着点および経由点までの距離 とし、 筋肉 jの筋力を fとすると、関節 iにおけるトルク τは、
[数 6] て 二∑ . X /ゾ · ( と表される。また、各筋肉の筋力 fjは、取りうる値の範囲から
0≤f≤kA · ' · (2)
(ただし、式(2)中、 k=0. 7 X 106[N/m2]、 Aは筋肉 jの生理的断面積であり、 Aの 値は下記の文献 4から 6に記載されて ヽる値を使用した。)
と表すことができる。
[0105] 関節トルクに関する式(1)と、筋力の取り得る範囲に関する式(2)とを拘束条件とし て、次の評価関数 u (f)
[数 7]
"(/)二 ( 3 )
Figure imgf000026_0001
が最小になるような各筋肉の筋力 fを算出した。なお、 u (f)の最小化には、 MATLA B (登録商標)の Optimization Toolboxに含まれる quadprog関数を使用した。こ の fを各瞬間毎に算出し、時間と算出した筋力との対応テーブル (推定筋力テーブル )を記憶部に格納した。図 11は、進展屈曲動作に必要な 11本の筋肉の推定筋力テ 一ブルをグラフとして表したものである。
[0106] [文献 4]
J. Biggs et al.: A three-dimensional kinematic model of the human long nnger and t he muscles that actuate it", Medical Engineering & Physics, 21(9), pp.625- 639, 199 9.
[文献 5]
MotCo project: http://www.motco.dir.bg/Data/PCSA.html
[文献 6]
H.E.J. Veeger et al.: 'Inertia and muscle contraction parameters for musculoskelet al modelling of the shoulder mechanism", J. Biomechanics, 24, 7, pp.615— 629, 1991.
[0107] (筋力設定工程、筋力入力部)
本実施例では、上記の 41本の筋肉のうち、上腕筋及び腕橈骨筋の筋力が半分 (0 . 5倍)になり、他の筋肉については筋力算出工程において算出した筋力 (推定筋力 )と同じ筋力となるように筋力の設定を行った。すなわち、筋力算出工程において得ら れた筋力を基に、上腕筋及び腕橈骨筋の筋力のみが半分 (0. 5倍)になるように算 出を行い、この筋力を上腕筋及び腕橈骨筋の設定筋力とした。また、他の筋肉につ いては推定筋力をそのまま設定筋力とした。そして、時間と設定筋力との対応テープ ル (設定筋力テーブル)を記憶部に格納した。図 12は、設定筋力テーブルをグラフに 表したものである。なお、図 12は、肘の伸展屈曲を行う際に筋力を発生する主な筋 肉について示したものであり、その他の筋肉の筋力は常にゼロである。
[0108] (駆動力算出工程、駆動力算出手段)
次に、 41本の筋肉に 6本の人工筋を加えた筋 Z人工筋統合モデルについて、上 記関節トルク算出工程において求めた関節トルクと、上記筋力設定工程において設 定した筋力とを拘束条件として、人工筋の筋力を算出した。
[0109] すなわち、各関節を関節 i(iは 1以上 5以下の整数)とし、関節 iを跨ぐ筋肉及び人工 筋が j本あり、関節 iの回転中心軸力も関節 iを跨いでいる筋肉又は人工筋 jの付着点 および経由点までの距離を rとし、筋肉 jの筋力又は人工筋 jの駆動力を fとすると、関
J J
節 iにおけるトルクては、式(1)と表される。そして、この式(1)と、筋力設定工程にお いて設定した筋力 fと、式 (2)とを拘束条件として、下記の評価関数 u (f)が最小となる ような各人工筋の駆動力 fを算出した。
Figure imgf000027_0001
ただし、式 (4)中、 fは人工筋 jの駆動力であり、 Aは人工筋の断面積である。
[0110] この fを各瞬間毎に算出し、時間と算出した人工筋の駆動力との対応テーブル (駆 動力テーブル)を記憶部に格納した。図 13は、駆動力テーブルをグラフとして表した ものである。
本実施例の人工筋は、同一のァクチユエータが束になったものを想定して 、るため 、各人工筋が発生できる最大駆動力はァクチユエータの数に比例する。また、各人 ェ筋が同じ駆動力を発生させた場合、各人工筋に力かる負担はァクチユエ一タの数 (駆動部の断面積)に反比例することになる。本実施例では、各人工筋の駆動力を、 上記の式 (4)によって最適化した。すなわち、式 (4)によれば、 { (人工筋の駆動力) Z (人工筋の断面積) }の自乗の総和が、最小になるように各人工筋の駆動力が最適 化される。従って、式 (4)によれば、各人工筋に含まれるァクチユエータ 1本あたりの 駆動力がなるべく均等に、かつ、小さくなるように最適化される。これにより、各ァクチ ユエータにかかる負担を低減させることができる。
[0112] (筋力再算出工程、筋力再算出手段)
続いて、上記の筋 Z人工筋統合モデルについて、上記関節トルク算出工程におい て求めた関節トルクと、駆動力算出工程において算出した人工筋の駆動力とを拘束 条件として、生体の筋肉の筋力を再び算出した。
[0113] 具体的には、式(1)と、駆動力算出工程において算出した人工筋の駆動力 fと、式
(2)とを拘束条件として、式 (3)の評価関数 u (f)が最小となるような生体の各筋肉の 筋力 fを算出した。
[0114] そして、時間と算出した筋力との対応テーブル (アシスト後推定筋力テーブル)を記 憶部に格納した。図 14は、アシスト後推定筋力テーブルをグラフとして表したもので ある。
[0115] (比較工程、比較手段)
筋力設定工程において設定した各筋肉の筋力と、筋力再算出工程において算出 した各筋肉の筋力とを比較して評価した。具体的には、設定筋力テーブルとアシスト 後筋力テーブルとを比較して、アシスト後筋力テーブルが設定筋力テーブルと大きく 相違していないかどうかを調べた。図 12と図 14とを比較して分力るように、アシスト後 の筋力が設定筋力と略同様であることが明らかとなった。すなわち、アシスト後の筋力 は、アシスト前の筋力と比べて、上腕筋及び腕橈骨筋の筋力が約半分になる一方で 、他の筋肉については略同じ筋力のままであった。以上のことから、本実施例の駆動 力算出方法及び駆動力算出装置が適切に機能していることが実証された。
[0116] 〔補足〕
以上のように、本発明に係る駆動力算出装置は、回動動作を支援及び Z又は妨害 する際に発生させるべき筋力である設定筋力が入力される筋力入力部と、上記設定 筋力と上記駆動部の駆動力とが上記回動動作に必要な関節のトルクを発生させるよ うに、上記設定筋力と上記回動動作に必要な関節のトルクとに基づいて、上記上記 駆動部の駆動力を算出する駆動力算出手段とを備えた構成となっている。
[0117] 従って、上述したように、筋力補助装置が所定の動作を支援又は妨害する際に筋 肉にかかる負荷が所望の負荷になるような駆動力を算出できるという効果を奏する。
[0118] また、上記駆動力算出手段は、上記生体の骨格及び筋肉と上記筋力補助装置の 駆動部との位置情報を少なくとも含む立体構成情報を用いて上記駆動部の駆動力 を算出し、上記関節のトルクは、
Figure imgf000029_0001
(ただし、上記式において、 iは関節の番号であり、 τは関節 iにおける関節トルクであ り、 jは関節 iを跨ぐ筋肉又は駆動部の番号であり、 rは筋肉 j又は駆動部 jのモーメント
j
アームであり、 fは筋肉 jの筋力又は駆動部 jの駆動力である)
J
と表されることが好ましい。
[0119] ここで、関節トルク τ iは、回動動作に必要な関節トルクである。そして、筋肉 j及び駆 動部 jのモーメントアーム rの値は、立体構成情報力も得ることができる。よって、この 式から、 fの関係式を導くことができる。
[0120] また、上記駆動力算出手段は、上記筋力入力部に入力された設定筋力と、上記回 動動作に必要な関節のトルクとを拘束条件として、次の評価関数 u (f)
[数 10]
Figure imgf000029_0002
(ただし、上記評価関数において、 nは筋力入力部に設定筋力が入力されな力つた 筋肉の数と駆動部の数との和であり、 jは筋力入力部に設定筋力が入力されな力つた 筋肉又は駆動部の番号であり、 は j番目の筋肉の筋力又は j番目の駆動部の駆動力 であり、 Aは jが筋肉の場合は筋肉の生理断面積であり jが駆動部の場合は駆動部の 最大駆動力に基づく値であり、 mは 2以上の任意の整数である)
が最小となり得る fを算出することによって、上記筋力補助装置が上記回動動作を支 援又は妨害する際の上記駆動部の駆動力を算出するものであってもよい。
[0121] 筋力を求めるべき筋肉は複数あるため、関節トルク力 直接個々の筋力(すなわち f
)について固定解を得ることはできない。しかし、駆動力算出手段は、上記の評価関 数 u (f)を用いて fを最適化することによって、各筋肉の筋力及び各駆動部の駆動力 の値を決定することができる。
[0122] また、上記駆動力算出装置は、上記筋力補助装置が上記回動動作を支援及び妨 害しない場合の上記回動動作に必要な筋力を、上記回動動作に必要な関節のトル クに基づいて算出する筋力算出手段をさらに備え、上記筋力入力部には、上記筋力 算出手段によって算出された筋力に基づいて設定筋力が入力されることが好ましい
[0123] 上記構成によれば、筋力算出手段は、筋力補助装置をつけない状態で回動動作 をする際に、各筋肉が必要とする筋力を算出することができる。この算出した筋力に 基づいて、筋力入力部に設定筋力が入力されるので、使用者は、例えば、筋力補助 装置をつけない状態における筋力に対する倍率等を設定することによって、筋力の 設定を行うことができる。従って、筋力の設定を簡便に行うことができるようになる。
[0124] また、上記駆動力算出装置は、上記筋力補助装置が上記回動動作を支援又は妨 害する際の上記回動動作に必要な筋力を、上記駆動力算出手段によって算出され た駆動力と、上記回動動作に必要な関節のトルクとに基づいて算出する筋力再算出 手段と、上記筋力再算出手段によって算出された筋力と、上記筋力入力部に入力さ れた設定筋力とを比較する比較手段とをさらに備えていることが好ましい。
[0125] 上記構成によれば、駆動力算出手段によって算出された駆動力を用いて筋力補助 装置が回動動作を支援及び Z又は妨害したときの各筋肉の筋力が、設定筋力と同じ 力どうかを比較して確認することができる。よって、意図しない誤動作を防止すること ができる。 [0126] また、上記駆動力算出装置は、上記回動動作に関する動作情報に基づいて、上記 回動動作に必要な関節のトルクを算出する関節トルク算出手段をさらに備え、少なく とも 1つの上記各算出手段における駆動力又は筋力の算出に、上記関節トルク算出 手段によって算出された関節のトルクが用いられることが好ま 、。
[0127] 上記構成によれば、筋力補助装置は、回動動作に関する動作情報に基づいて、各 関節のトルクを算出できる。従って、他の手段を用いて関節トルクを算出する必要が なくなり、使用者が容易に利用できるようになる。
[0128] また、上記駆動力算出装置は、上記回動動作に関する動作情報を取得する動作 情報取得手段をさらに備え、上記関節トルク算出手段は、上記動作情報取得手段に よって取得された動作情報を基に、上記回動動作に必要な関節のトルクを算出する ことが好ましい。
[0129] 上記構成によれば、使用者は、実際に回動動作を実演するだけで、その回動動作 に必要な関節のトルクを筋力補助装置が算出する。従って、回動動作の設定がより 簡単になる。
[0130] ところで、上記駆動力算出装置の各手段は、ハードウェアで実現してもよいし、プロ グラムをコンピュータに実行させることによって実現してもよい。具体的には、本発明 に係るプログラムは、上記何れかの駆動力算出装置の各手段としてコンピュータを動 作させるためのプログラムであり、また、本発明に係る記録媒体は、当該プログラムが 記録された記録媒体である。
[0131] これらのプログラムがコンピュータによって実行されると、当該コンピュータは、上記 駆動力算出装置の各手段として動作する。従って、関節の回動動作を行う際に筋肉 にかかる負荷を調節する駆動力算出手段を実現することができる。
[0132] また、本発明に係る駆動力算出方法は、筋肉に対して所望の筋力を設定する筋力 設定工程と、上記筋力設定工程において設定した筋力と上記駆動部の駆動力とが 上記回動動作に必要な関節のトルクを発生させるように、上記設定した筋力と上記回 動動作に必要な関節のトルクとに基づいて、上記上記駆動部の駆動力を算出する駆 動力算出工程とを備えた構成となっている。
[0133] 従って、上述したように、筋力補助装置が所定の動作を支援又は妨害する際に筋 肉にかかる負荷が所望の負荷になるような駆動力を算出できるという効果を奏する。
[0134] また、上記駆動力算出工程では、上記生体の骨格及び筋肉と上記筋力補助装置 の駆動部との位置情報を少なくとも含む立体構成情報を用いて上記駆動部の駆動 力を算出し、上記関節のトルクは、
[数 11] て'. 二
Figure imgf000032_0001
. X
J
(ただし、上記式において、 iは関節の番号であり、 ては関節 iにおける関節トルクであ り、 jは関節 iを跨ぐ筋肉又は駆動部の番号であり、 rは筋肉 j又は駆動部 jのモーメント アームであり、 fは筋肉 jの筋力又は駆動部 jの駆動力である)
と表されることが好ましい。
[0135] ここで、関節トルク τ iは、回動動作に必要な関節トルクである。そして、筋肉 j及び駆 動部 jのモーメントアーム rの値は、立体構成情報力も得ることができる。よって、この 式から、 fの関係式を導くことができる。
[0136] また、上記駆動力算出工程では、上記筋力設定工程において設定した筋肉の筋 力と、上記回動動作に必要な関節のトルクとを拘束条件として、次の評価関数 u (f)
[数 12]
Figure imgf000032_0002
(ただし、上記評価関数において、 nは筋力設定工程において筋力を設定しな力つた 筋肉の数と駆動部の数との和であり、 jは筋力入力部に設定筋力が入力されな力つた 筋肉又は駆動部の番号であり、 fは j番目の筋肉の筋力又は j番目の駆動部の駆動力
J
であり、 Aは jが筋肉の場合は筋肉の生理断面積であり jが駆動部の場合は駆動部の 最大駆動力に基づく値であり、 mは 2以上の任意の整数である)
が最小となり得る fを算出することによって、上記筋力補助装置が上記回動動作を支 援又は妨害する際の上記駆動部の駆動力を算出することが好ましい。 [0137] また、上記駆動力算出方法は、上記筋力補助装置が上記回動動作を支援又は妨 害しない場合の上記回動動作に必要な筋力を、上記回動動作に必要な関節のトル クに基づいて算出する筋力算出工程をさらに備え、上記筋力設定工程では、上記筋 力算出工程において算出した筋力に基づいて、筋肉に対して所望の筋力を設定す ることが好ましい。
[0138] 上記構成によれば、筋力補助装置をつけない状態で回動動作をする際に、各筋肉 が必要とする筋力を算出することができる。使用者は、この算出した筋力に基づいて 設定筋力を入力すればよいので、例えば、筋力補助装置をつけない状態に対しての 倍率等を設定することによって、筋力の設定を行うことができる。従って、筋力の設定 を簡便に行うことができるようになる。
[0139] また、上記駆動力算出方法は、上記筋力補助装置が上記回動動作を支援又は妨 害する際の上記回動動作に必要な筋肉の筋力を、上記駆動力算出工程において算 出した駆動力と、上記回動動作に必要な関節のトルクとに基づいて算出する筋力再 算出工程と、上記筋力再算出工程において算出した筋力と、上記筋力設定工程に おいて設定した筋力とを比較する比較工程とをさらに備えていることが好ましい。
[0140] 上記構成によれば、駆動力算出工程において算出した駆動力を用いて筋力補助 装置が回動動作を支援及び Z又は妨害したときの各筋肉の筋力が、設定筋力と同じ 力どうかを比較することができる。よって、意図しない誤動作を防止することができる。
[0141] また、上記駆動力算出方法は、上記回動動作に関する動作情報に基づいて、上記 回動動作に必要な関節のトルクを算出する関節トルク算出工程をさらに備え、少なく とも 1つの上記各算出工程における駆動力又は筋力の算出に、上記関節トルク算出 工程にお 、て算出した関節のトルクを用いることが好ま 、。
[0142] 上記構成によれば、回動動作に関する動作情報に基づいて、各関節のトルクを算 出できるようになる。
[0143] また、本発明に係る筋力補助装置は、上述した駆動力算出装置、又は、上述した 駆動力算出方法によって算出された駆動力のデータが格納された記憶部を備えて いる。
[0144] 従って、所定の動作を行う際の筋肉にかかる負荷を調節できるという効果を奏する [0145] また、上記筋力補助装置は、入力部をさらに備え、上記記憶部には、複数の駆動 力のデータが、算出の際に用いられた回動動作の情報と関連付けられて格納され、 上記入力部に入力される情報は、回動動作の情報であり、上記駆動力制御部は、上 記入力部に入力された回動動作の情報に基づいて上記記憶部力 対応する駆動力 のデータを検索し、検索した駆動力のデータに基づ 、て上記駆動部を制御すること が好ましい。
[0146] 上記構成によれば、入力部力 回動動作の情報が入力されると、駆動力制御部が 入力された回動動作の情報に対応する駆動力のデータを検索し、検索した駆動力 のデータに基づいて駆動部を制御する。従って、筋力補助装置は、予め用意された 複数の回動動作の中の所望の回動動作に対して支援することができる。
[0147] また、上記筋力補助装置は、上記記憶部には、複数の駆動力のデータが、上記筋 力設定工程において設定された筋力 (設定筋力)の情報と関連付けられて格納され 、上記入力部に入力される情報は、筋肉に対して設定される筋力の情報であり、上 記駆動力制御部は、上記入力部に入力された筋力の情報に基づいて上記記憶部か ら対応する駆動力のデータを検索し、検索した駆動力のデータに基づいて上記駆動 部を制御することが好まし 、。
[0148] 上記構成によれば、入力部から設定筋力の情報が入力されると、駆動力制御部が 入力された設定筋力の情報に対応する駆動力のデータを検索し、検索した駆動力 のデータに基づいて駆動部を制御する。従って、筋力補助装置は、予め用意された 複数の設定筋力の中の所望の設定筋力になるように、回動動作を支援することがで きる。
[0149] また、本発明に係る記録媒体は、上述した筋力補助装置の記憶部として用いられる 上記駆動力のデータが記録されたコンピュータ読み取り可能な記録媒体である。駆 動力制御部がこの記録媒体に記録された駆動力のデータに基づ 、て制御を行うに より、関節の回動動作を行う際に筋肉にかかる負荷を調節しながら回動動作を支援 する筋力補助装置を実現することができる。
[0150] なお、本発明は上述した各実施形態及び各実施例に限定されるものではなぐ請 求項に示した範囲で種々の変更が可能であり、異なる実施形態及び実施例にそれ ぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発 明の技術的範囲に含まれる。
[0151] また、本明細書で示した数値範囲以外であっても、本発明の趣旨に反しない合理 的な範囲であれば、本発明〖こ含まれることは!ヽうまでもな!/、。
産業上の利用の可能性
[0152] 本発明を筋力補助装置に利用すれば、特定部位の筋肉に所望の負荷をかけること ができる。よって、筋力トレーニングやリハビリテーションを効率的に実施することが可 能になる。また、リハビリテーションの内容によっては、家庭で実施することも可能にな る。このように、本発明は、スポーツ分野や医療分野において充分に利用が期待でき るものである。

Claims

請求の範囲
[1] 関節を含む骨格と筋肉とを有する生体に装着され、上記生体の骨格に関節を跨い で固定される駆動部によって上記関節の回動動作を支援及び Z又は妨害する筋力 補助装置の駆動部の駆動力を算出する駆動力算出装置であって、
上記回動動作を支援及び Z又は妨害する際に発生させるべき筋力である設定筋 力が入力される筋力入力部と、
上記設定筋力と上記駆動部の駆動力とが上記回動動作に必要な関節のトルクを発 生させるように、上記設定筋力と上記回動動作に必要な関節のトルクとに基づいて、 上記駆動部の駆動力を算出する駆動力算出手段とを備えていることを特徴とする、 駆動力算出装置。
[2] 上記駆動力算出手段は、上記生体の骨格及び筋肉と上記筋力補助装置の駆動部 との位置情報を少なくとも含む立体構成情報を用いて、上記設定筋力及び上記回動 動作に必要な関節のトルクから上記駆動部の駆動力を算出することを特徴とする、請 求項 1に記載の駆動力算出装置。
[3] 上記駆動力算出手段は、上記生体の骨格及び筋肉と上記筋力補助装置の駆動部 との位置情報を少なくとも含む立体構成情報を用いて上記駆動部の駆動力を算出し 上記関節のトルクは、
[数 1]
て/二
Figure imgf000036_0001
' X
J
(ただし、上記式において、 iは関節の番号であり、 ては関節 iにおける関節トルクであ り、 jは関節 iを跨ぐ筋肉又は駆動部の番号であり、 rは筋肉 j又は駆動部 jのモーメント j
アームであり、 fは筋肉 jの筋力又は駆動部 jの駆動力である)
J
と表されることを特徴とする、請求項 1に記載の駆動力算出装置。
[4] 上記駆動力算出手段は、 Crowninshieldの最適化計算式を用いて、上記駆動部 の駆動力を算出することを特徴とする、請求項 1から 3の何れか 1項に記載の駆動力 算出装置。
上記駆動力算出手段は、上記設定筋力と、上記回動動作に必要な関節のトルクと を拘束条件として、次の評価関数 U (f)
[数 2]
Figure imgf000037_0001
(ただし、上記評価関数において、 nは筋力入力部に設定筋力が入力されな力つた 筋肉の数と駆動部の数との和であり、 jは筋力入力部に設定筋力が入力されな力つた 筋肉又は駆動部の番号であり、 fは j番目の筋肉の筋力又は j番目の駆動部の駆動力 であり、 Aは jが筋肉の場合は筋肉の生理断面積であり jが駆動部の場合は最大駆動 力に基づく値であり、 mは 2以上の任意の整数である)
が最小となり得る fを算出することによって、上記駆動部の駆動力を算出することを特 徴とする、請求項 1から 4の何れか 1項に記載の駆動力算出装置。
[6] 上記筋力補助装置が上記回動動作を支援及び妨害しな!、場合の上記回動動作 に必要な筋力を、上記回動動作に必要な関節のトルクに基づいて算出する筋力算 出手段をさらに備え、
上記筋力入力部には、上記筋力算出手段によって算出された筋力に基づいて設 定筋力が入力されることを特徴とする、請求項 1から 5の何れか 1項に記載の駆動力 算出装置。
[7] 上記筋力補助装置が上記回動動作を支援及び Z又は妨害する際の上記回動動 作に必要な筋力を、上記駆動力算出手段によって算出された駆動力と、上記回動動 作に必要な関節のトルクとに基づいて算出する筋力再算出手段と、
上記筋力再算出手段によって算出された筋力と、上記筋力入力部に入力された設 定筋力とを比較する比較手段とをさらに備えていることを特徴とする、請求項 1から 6 の何れか 1項に記載の駆動力算出装置。
[8] 上記回動動作に関する動作情報に基づいて、上記回動動作に必要な関節のトル クを算出する関節トルク算出手段をさらに備え、 少なくとも 1つの上記各算出手段における駆動力又は筋力の算出に、上記関節ト ルク算出手段によって算出された関節のトルクが用いられることを特徴とする、請求 項 1から 7の何れか 1項に記載の駆動力算出装置。
[9] 上記回動動作に関する動作情報を取得する動作情報取得手段をさらに備え、 上記関節トルク算出手段は、上記動作情報取得手段によって取得された動作情報 を基に、上記回動動作に必要な関節のトルクを算出することを特徴とする、請求項 8 に記載の駆動力算出装置。
[10] 請求項 1から 9の何れか 1項に記載の各手段として、コンピュータを動作させるため のプログラム。
[11] 請求項 10に記載のプログラムが記録されたコンピュータ読み取り可能な記録媒体。
[12] 関節を含む骨格と筋肉とを有する生体に装着され、上記生体の骨格に関節を跨い で固定される駆動部によって上記関節の回動動作を支援及び Z又は妨害する筋力 補助装置の駆動部の駆動力を算出する駆動力算出方法であって、
筋肉に対して所望の筋力を設定する筋力設定工程と、
上記筋力設定工程において設定した筋力と上記駆動部の駆動力とが上記回動動 作に必要な関節のトルクを発生させるように、上記設定した筋力と上記回動動作に必 要な関節のトルクとに基づいて、上記駆動部の駆動力を算出する駆動力算出工程と を備えていることを特徴とする、駆動力算出方法。
[13] 上記駆動力算出工程では、上記生体の骨格及び筋肉と上記筋力補助装置の駆動 部との位置情報を少なくとも含む立体構成情報を用いて、上記設定筋力及び上記回 動動作に必要な関節のトルクから上記駆動部の駆動力を算出することを特徴とする、 請求項 12に記載の駆動力算出方法。
[14] 上記駆動力算出工程では、上記生体の骨格及び筋肉と上記筋力補助装置の駆動 部との位置情報を少なくとも含む立体構成情報を用いて上記駆動部の駆動力を算 出し、
上記関節のトルクは、
[数 3]
Figure imgf000039_0001
(ただし、上記式において、 iは関節の番号であり、 τ ;は関節 iにおける関節トルクであ り、 jは関節 iを跨ぐ筋肉又は駆動部の番号であり、 rは筋肉 j又は駆動部 jのモーメント アームであり、 fは筋肉 jの筋力又は駆動部 jの駆動力である)
と表されることを特徴とする、請求項 12又は 13に記載の駆動力算出方法。
[15] 上記駆動力算出工程では、 Crowninshieldの最適化計算式を用いて、上記駆動 部の駆動力を算出することを特徴とする、請求項 12から 14の何れか 1項に記載の駆 動力算出方法。
[16] 上記駆動力算出工程では、上記筋力設定工程において設定した筋肉の筋力と、 上記回動動作に必要な関節のトルクとを拘束条件として、次の評価関数 u (f)
[数 4]
Figure imgf000039_0002
(ただし、上記評価関数において、 nは筋力設定工程において筋力を設定しな力つた 筋肉の数と駆動部の数との和であり、 jは筋力入力部に設定筋力が入力されな力つた 筋肉又は駆動部の番号であり、 fは j番目の筋肉の筋力又は j番目の駆動部の駆動力
J
であり、 Aは jが筋肉の場合は筋肉の生理断面積であり jが駆動部の場合は駆動部の
J
最大駆動力に基づく値であり、 mは 2以上の任意の整数である)
が最小となり得る fを算出することによって、上記筋力補助装置が上記回動動作を支 援又は妨害する際の上記駆動部の駆動力を算出することを特徴とする、請求項 12 から 15の何れか 1項に記載の駆動力算出方法。
上記筋力補助装置が上記回動動作を支援及び妨害しない場合の上記回動動作 に必要な筋力を、上記回動動作に必要な関節のトルクに基づいて算出する筋力算 出工程をさらに備え、
上記筋力設定工程では、上記筋力算出工程において算出した筋力に基づいて、 筋肉に対して所望の筋力を設定することを特徴とする、請求項 12から 16の何れか 1 項に記載の駆動力算出方法。
[18] 上記筋力補助装置が上記回動動作を支援及び Z又は妨害する際の上記回動動 作に必要な筋肉の筋力を、上記駆動力算出工程において算出した駆動力と、上記 回動動作に必要な関節のトルクとに基づいて算出する筋力再算出工程と、
上記筋力再算出工程において算出した筋力と、上記筋力設定工程において設定 した筋力とを比較する比較工程とをさらに備えていることを特徴とする、請求項 12か ら 17の何れ力 1項に記載の駆動力算出方法。
[19] 上記回動動作に関する動作情報に基づいて、上記回動動作に必要な関節のトル クを算出する関節トルク算出工程をさらに備え、
少なくとも 1つの上記各算出工程における駆動力又は筋力の算出に、上記関節ト ルク算出工程において算出した関節のトルクを用いることを特徴とする、請求項 12か ら 18の何れ力 1項に記載の駆動力算出方法。
[20] 関節を含む骨格と筋肉とを有する生体によって装着され、上記関節の回動動作を 支援及び Z又は妨害する筋力補助装置であって、
請求項 1から 9の何れか 1項に記載の駆動力算出装置と、
上記生体の骨格に関節を跨いで固定される駆動部と、
上記駆動部の駆動力を制御する駆動力制御部とを備え、
上記駆動力制御部は、上記駆動力算出装置によって算出された駆動力に基づい て上記駆動部の駆動力を制御することを特徴とする、筋力補助装置。
[21] 関節を含む骨格と筋肉とを有する生体によって装着され、上記関節の回動動作を 支援及び Z又は妨害する筋力補助装置であって、
請求項 12から 19の何れか 1項に記載の駆動力算出方法によって算出された駆動 力のデータが格納された記憶部と、
上記生体の骨格に関節を跨いで固定される駆動部と、
上記駆動部の駆動力を制御する駆動力制御部とを備え、
上記駆動力制御部が、上記記憶部に格納された駆動力に基づいて上記駆動部を 制御することを特徴とする、筋力補助装置。 [22] 入力部をさらに備え、
上記記憶部には、複数の駆動力のデータが、算出の際に用いられた回動動作の 情報と関連付けられて格納され、
上記入力部に入力される情報は、回動動作の情報であり、
上記駆動力制御部は、上記入力部に入力された回動動作の情報に基づいて上記 記憶部から対応する駆動力のデータを検索し、検索した駆動力のデータに基づいて 上記駆動部を制御することを特徴とする、請求項 21に記載の筋力補助装置。
[23] 上記記憶部には、複数の駆動力のデータが、上記筋力設定工程において設定さ れた筋力の情報と関連付けられて格納され、
上記入力部に入力される情報は、筋肉に対して設定される筋力の情報であり、 上記駆動力制御部は、上記入力部に入力された筋力の情報に基づいて上記記憶 部から対応する駆動力のデータを検索し、検索した駆動力のデータに基づいて上記 駆動部を制御することを特徴とする、請求項 21又は 22に記載の筋力補助装置。
[24] 請求項 21から 23の何れか 1項に記載の筋力補助装置の記憶部として用いられる 上記駆動力のデータが記録されたコンピュータ読み取り可能な記録媒体。
PCT/JP2005/014346 2005-02-28 2005-08-04 駆動力算出装置、駆動力算出方法、筋力補助装置、プログラム、及びコンピュータ読み取り可能な記録媒体 WO2006092872A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007505793A JP4742278B2 (ja) 2005-02-28 2005-08-04 駆動力算出装置、駆動力算出方法、筋力補助装置、プログラム、及びコンピュータ読み取り可能な記録媒体
US11/885,072 US7981059B2 (en) 2005-02-28 2005-08-04 Driving force calculating device, driving force calculating method, power assisting device, program, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005054961 2005-02-28
JP2005-054961 2005-02-28

Publications (1)

Publication Number Publication Date
WO2006092872A1 true WO2006092872A1 (ja) 2006-09-08

Family

ID=36940918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014346 WO2006092872A1 (ja) 2005-02-28 2005-08-04 駆動力算出装置、駆動力算出方法、筋力補助装置、プログラム、及びコンピュータ読み取り可能な記録媒体

Country Status (3)

Country Link
US (1) US7981059B2 (ja)
JP (1) JP4742278B2 (ja)
WO (1) WO2006092872A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194460A (ja) * 2007-02-08 2008-08-28 Nara Institute Of Science & Technology 駆動力算出装置、駆動力算出方法、筋力補助装置、駆動力算出プログラムおよびコンピュータ読み取り可能な記録媒体
JP2009219557A (ja) * 2008-03-13 2009-10-01 Panasonic Electric Works Co Ltd 他動訓練装置による運動作用のシミュレーション方法とその装置
JP2010094147A (ja) * 2008-10-14 2010-04-30 Leaps:Kk 筋力補助装置の設定装置
JP2011120787A (ja) * 2009-12-11 2011-06-23 Toyota Motor Corp 筋力予測方法と作業負荷予測装置
AT504269B1 (de) * 2006-09-27 2011-07-15 Paolo Dr Ferrara Gerät für die passive heilgymnastik
US8360997B2 (en) 2006-02-24 2013-01-29 Ferrobotics Compliant Robot Technology Gmbh Robot arm
JP2015011714A (ja) * 2013-06-26 2015-01-19 ダッソー システムズ シムリア コーポレイション 有限要素解析、プロセス統合、および設計最適化を用いた筋骨格モデリング
JP2017213319A (ja) * 2016-06-02 2017-12-07 株式会社ブリヂストン 関節トルクの測定方法、逆動力学計算システム及び関節トルクの測定プログラム
CN113397918A (zh) * 2021-07-21 2021-09-17 上海理工大学 一种穿戴式肘关节外骨骼康复控制系统
US11918534B2 (en) 2017-10-05 2024-03-05 Nec Corporation Optimum elastic strength calculation device, optimum elastic strength calculation system, motion assistance system, optimum elastic strength calculation method, and optimum elastic strength calculation program recording medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981059B2 (en) * 2005-02-28 2011-07-19 National University Corporation NARA Institute of Science and Technology Driving force calculating device, driving force calculating method, power assisting device, program, and computer-readable storage medium
GB2444679B (en) * 2005-10-11 2009-03-25 Matsushita Electric Ind Co Ltd Movement assisting device and movement assisting method
US9072463B2 (en) 2009-01-27 2015-07-07 University Of Washington Prosthetic limb monitoring system
US8671696B2 (en) * 2009-07-10 2014-03-18 Leonard M. Andersen Method and apparatus for increasing thrust or other useful energy output of a device with a rotating element
US20150148708A1 (en) * 2013-11-27 2015-05-28 Oregon Health & Science University Biofeedback during assisted movement rehabilitation therapy
EP3120256B1 (en) * 2014-03-17 2020-02-12 Core Sports Technology Group Method and system for delivering biomechanical feedback to human and object motion
JP2020146104A (ja) 2019-03-11 2020-09-17 本田技研工業株式会社 アシスト装置制御システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309184A (ja) * 1998-02-24 1999-11-09 Matsushita Electric Works Ltd 抱き上げ補助装置及びその制御方法
JP2003220102A (ja) * 2002-01-29 2003-08-05 Hitachi Ltd 動作支援装置
JP2004105261A (ja) * 2002-09-13 2004-04-08 Matsushita Electric Ind Co Ltd 身体装着型パワーアシスト機器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2710015B2 (ja) 1994-05-30 1998-02-10 光彦 長谷川 逆解析手法を用いた生体筋力の測定法
JP3771056B2 (ja) 1998-08-14 2006-04-26 圭治郎 山本 介護用筋力補助装置
JP4611580B2 (ja) * 2001-06-27 2011-01-12 本田技研工業株式会社 トルク付与システム
US7217247B2 (en) * 2002-09-23 2007-05-15 Honda Giken Kogyo Kabushiki Kaisha Gravity compensation method in a human assist system and a human assist system with gravity compensation control
US7402142B2 (en) * 2002-09-23 2008-07-22 Honda Giken Kogyo Kabushiki Kaisha Method and processor for obtaining moments and torques in a biped walking system
US7644628B2 (en) * 2005-12-16 2010-01-12 Loadstar Sensors, Inc. Resistive force sensing device and method with an advanced communication interface
JP4586465B2 (ja) * 2004-09-07 2010-11-24 横浜ゴム株式会社 作業性評価装置、作業性評価方法および作業性評価プログラム
JP4729723B2 (ja) * 2004-09-14 2011-07-20 国立大学法人 奈良先端科学技術大学院大学 触覚センサ、摩擦検査装置、把持装置及び滑り余裕計測方法
JP4178187B2 (ja) * 2005-01-26 2008-11-12 国立大学法人 筑波大学 装着式動作補助装置及び制御用プログラム
US7981059B2 (en) * 2005-02-28 2011-07-19 National University Corporation NARA Institute of Science and Technology Driving force calculating device, driving force calculating method, power assisting device, program, and computer-readable storage medium
JP5098114B2 (ja) * 2007-02-08 2012-12-12 国立大学法人 奈良先端科学技術大学院大学 駆動力算出装置、駆動力算出方法、筋力補助装置、駆動力算出プログラムおよびコンピュータ読み取り可能な記録媒体
EP2201621A1 (en) * 2007-10-25 2010-06-30 Massachusetts Institute of Technology Strain amplification devices and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309184A (ja) * 1998-02-24 1999-11-09 Matsushita Electric Works Ltd 抱き上げ補助装置及びその制御方法
JP2003220102A (ja) * 2002-01-29 2003-08-05 Hitachi Ltd 動作支援装置
JP2004105261A (ja) * 2002-09-13 2004-04-08 Matsushita Electric Ind Co Ltd 身体装着型パワーアシスト機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UEDA J. ET AL: "Jinkokin Togo Human Model ni yoru Shintai Undoji no Kinryoku Sekkei Shuho. (Muscle Force Design Method during Exercise Using Muscle/Artificial Muscle-integrated Human Model)", TECHNICAL REPORT OF IEICE, vol. 104, no. 348, 2004, pages 19 - 24, XP003002056 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8360997B2 (en) 2006-02-24 2013-01-29 Ferrobotics Compliant Robot Technology Gmbh Robot arm
AT504269B1 (de) * 2006-09-27 2011-07-15 Paolo Dr Ferrara Gerät für die passive heilgymnastik
US7529632B2 (en) 2007-02-08 2009-05-05 National University Corporation NARA Institute of Science and Technology Driving force calculating device, driving force calculating method, power assisting device, driving force calculating program, and computer-readable storage medium
JP2008194460A (ja) * 2007-02-08 2008-08-28 Nara Institute Of Science & Technology 駆動力算出装置、駆動力算出方法、筋力補助装置、駆動力算出プログラムおよびコンピュータ読み取り可能な記録媒体
JP2009219557A (ja) * 2008-03-13 2009-10-01 Panasonic Electric Works Co Ltd 他動訓練装置による運動作用のシミュレーション方法とその装置
JP2010094147A (ja) * 2008-10-14 2010-04-30 Leaps:Kk 筋力補助装置の設定装置
JP2011120787A (ja) * 2009-12-11 2011-06-23 Toyota Motor Corp 筋力予測方法と作業負荷予測装置
JP2015011714A (ja) * 2013-06-26 2015-01-19 ダッソー システムズ シムリア コーポレイション 有限要素解析、プロセス統合、および設計最適化を用いた筋骨格モデリング
US10402517B2 (en) 2013-06-26 2019-09-03 Dassault Systémes Simulia Corp. Musculo-skeletal modeling using finite element analysis, process integration, and design optimization
JP2017213319A (ja) * 2016-06-02 2017-12-07 株式会社ブリヂストン 関節トルクの測定方法、逆動力学計算システム及び関節トルクの測定プログラム
US11918534B2 (en) 2017-10-05 2024-03-05 Nec Corporation Optimum elastic strength calculation device, optimum elastic strength calculation system, motion assistance system, optimum elastic strength calculation method, and optimum elastic strength calculation program recording medium
CN113397918A (zh) * 2021-07-21 2021-09-17 上海理工大学 一种穿戴式肘关节外骨骼康复控制系统
CN113397918B (zh) * 2021-07-21 2023-02-07 上海理工大学 一种穿戴式肘关节外骨骼康复控制系统

Also Published As

Publication number Publication date
JPWO2006092872A1 (ja) 2008-08-07
JP4742278B2 (ja) 2011-08-10
US7981059B2 (en) 2011-07-19
US20090024061A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP4742278B2 (ja) 駆動力算出装置、駆動力算出方法、筋力補助装置、プログラム、及びコンピュータ読み取り可能な記録媒体
Bryan et al. A hip–knee–ankle exoskeleton emulator for studying gait assistance
Slade et al. An open-source and wearable system for measuring 3D human motion in real-time
Agarwal et al. An index finger exoskeleton with series elastic actuation for rehabilitation: Design, control and performance characterization
Zhou et al. Human motion tracking for rehabilitation—A survey
Bardi et al. Upper limb soft robotic wearable devices: a systematic review
Molet et al. A real time anatomical converter for human motion capture
Feng et al. Teaching training method of a lower limb rehabilitation robot
JP5098114B2 (ja) 駆動力算出装置、駆動力算出方法、筋力補助装置、駆動力算出プログラムおよびコンピュータ読み取り可能な記録媒体
JP7492722B2 (ja) 運動評価システム
Yeow et al. Cable-driven finger exercise device with extension return springs for recreating standard therapy exercises
Saggio et al. New scenarios in human trunk posture measurements for clinical applications
Stopforth Customizable rehabilitation lower limb exoskeleton system
Luo et al. An interactive therapy system for arm and hand rehabilitation
Lee et al. Development and evaluation of an optimization-based model for power-grip posture prediction
US11179065B2 (en) Systems, devices, and methods for determining an overall motion and flexibility envelope
Nasr et al. Scalable musculoskeletal model for dynamic simulations of upper body movement
Wang et al. Sensor glove implemented with artificial muscle set for hand rehabilitation
Gil-Agudo et al. Applications of upper limb biomechanical models in spinal cord injury patients
CN101868799A (zh) 用于生成个性化练习影片的系统和方法
Ramasamy et al. Soft actuators-based skill training wearables: a review on the interaction modes, feedback types, VR scenarios, sensors utilization and applications
Hossny et al. Musculoskeletal analysis of mining activities
Gattamelata et al. Accurate geometrical constraints for the computer aided modelling of the human upper limb
Abdel-Malek et al. Santos: A physics-based digital human simulation environment
Ji et al. The assessment of injury risk in the healthcare sector via integrating motion tracking techniques with digital human modelling ergonomic tools

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007505793

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05768908

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5768908

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11885072

Country of ref document: US