WO2006090775A1 - Coating film, article covered with coating film, and method for corrosion-resistant coating - Google Patents

Coating film, article covered with coating film, and method for corrosion-resistant coating Download PDF

Info

Publication number
WO2006090775A1
WO2006090775A1 PCT/JP2006/303261 JP2006303261W WO2006090775A1 WO 2006090775 A1 WO2006090775 A1 WO 2006090775A1 JP 2006303261 W JP2006303261 W JP 2006303261W WO 2006090775 A1 WO2006090775 A1 WO 2006090775A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
film
coating film
plating solution
tank
Prior art date
Application number
PCT/JP2006/303261
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhisa Fujii
Takabumi Nagai
Hideaki Asai
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2006090775A1 publication Critical patent/WO2006090775A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/003Electroplating using gases, e.g. pressure influence

Definitions

  • the present invention relates to a coating film for ensuring corrosion resistance, an article coated with the coating film, and a corrosion-resistant coating method.
  • the surface of an article is often coated with another substance.
  • a synthetic resin is used as a corrosion-resistant coating material.
  • synthetic resins are not as heat conductive as conductive materials. Therefore, when the article is required to have conductivity or thermal conductivity, the article surface is often covered with a noble metal.
  • Patent Document 1 discloses a plating technique using a supercritical substance and an electrolyte solution (plating solution). In this case, the plating bath contains a substance in a supercritical state, which promotes the diffusion of ions contained in the plating solution and provides a high-quality coating film.
  • Patent Document 1 Japanese Patent No. 3571627
  • the corrosion resistance of the coating film has been improved by forming a thick film by plating and eliminating pinholes.
  • a method of increasing the thickness of the film increases the amount of noble metal used and increases the cost required for forming the coating film.
  • An object of the present invention is to provide a coating film excellent in corrosion resistance without increasing the manufacturing cost !, an article coated with the coating film, and a corrosion-resistant coating method.
  • a coating film for covering an object and ensuring corrosion resistance includes a noble metal film, , Formed by plating using a plating solution and a diffusion fluid that enhances the diffusing power of the plating solution c
  • a coating film for covering an object and ensuring corrosion resistance, provided on the surface of the object, and a plating solution and a diffusion of the plating solution A base film formed by a first staking process using a diffusion fluid that enhances force, and a noble metal film provided on the base film and formed by a second staking process.
  • a good base film having a flat surface and no pinholes By forming the noble metal film on the base film having no pinhole, the corrosion resistance of the object can be ensured even if the noble metal film is formed thin. Accordingly, since the amount of noble metal used is small, a coating film having excellent corrosion resistance can be manufactured at low cost.
  • the second tacking process is a substitution tacking process.
  • the surface portion of the base film is replaced to form the noble metal, the surface of the noble metal film can be formed flat if the surface of the base film is flat.
  • a coating film excellent in corrosion resistance can be formed with fewer noble metals.
  • a cyan bath is used to form a noble metal film, it is not necessary to make the plating solution high in pressure, so that generation of cyan gas can be suppressed.
  • the thickness of the base film is lOnm or more.
  • the grain size (particle size) of a metal is about several nanometers.
  • the diffusion fluid is preferably a supercritical fluid or a subcritical fluid. In that case, since the diffusion of the plating solution is effectively promoted, a coating film having more excellent corrosion resistance can be formed.
  • the diffusion fluid is preferably carbon dioxide. In that case, CO dissolves the hydrogen produced by the side reaction of plating.
  • the coating film in the plating treatment using a diffusion fluid, it is desirable to add a dispersion accelerator that also serves as a fluorine-based compound and promotes dispersion of the plating solution.
  • a dispersion accelerator that also serves as a fluorine-based compound and promotes dispersion of the plating solution.
  • the surface of the plating film becomes smoother and a coating film having excellent corrosion resistance can be formed.
  • a third aspect of the present invention is an article whose surface is coated with a coating film in order to ensure corrosion resistance, the coating film comprising a plating solution for forming a noble metal film, and diffusion of a plating solution It is formed by a plating process using a diffusion fluid that enhances the force.
  • a noble metal film without pinholes can be formed thinner than before. Therefore, since the amount of precious metal used is small, a coating film with excellent corrosion resistance can be manufactured at low cost.
  • a fourth aspect of the present invention is an article whose surface is coated with a coating film to ensure corrosion resistance, wherein the coating film enhances the diffusing power of the plating solution and the plating solution.
  • a noble metal film formed on the undercoat film and formed on the undercoat film by the second sticking process In that case, it is possible to form a good base film having a flat surface and no pinholes. Further, by forming the noble metal film on the base film without the pinhole, the corrosion resistance of the object can be ensured even if the noble metal film is formed thin. Therefore, since the amount of noble metal used is small, a coating film excellent in corrosion resistance can be manufactured at low cost.
  • a dispersion accelerator made of a fluorine compound and accelerating dispersion of the staking solution is added, so that the base film becomes It is desirable to be formed.
  • the surface of the plating film becomes smoother and a coating film having excellent corrosion resistance can be formed.
  • a fifth aspect of the present invention includes a noble metal film or an undercoat film, and the thickness of the clasp film is 10 ⁇ . It is desirable to coat with a coating film that is at least m. Normally, the grain size (particle size) of a metal is about several nanometers. By ensuring the thickness of the underlying layer is at least lOnm, a good underlying film without pinholes can be formed, which in turn improves corrosion resistance. An excellent coating film can be formed thin.
  • a sixth aspect of the present invention is a method of forming a coating film for covering an object and ensuring corrosion resistance, using a plating solution and a diffusion fluid that enhances the diffusing power of the plating solution.
  • a first step of forming a base metal film on the object by an irritating process and a second step of forming a noble metal film on the base metal film using a replacement plating process.
  • the corrosion resistance of the object can be ensured even if the noble metal film is formed thin. Therefore, since the amount of noble metal used is small, a coating film with excellent corrosion resistance can be produced at low cost.
  • the base film in the first step, may be formed by adding a dispersion accelerator that is made of a fluorine-based compound and that promotes dispersion of the tacking liquid. desirable. In that case, compared with the case where a dispersion accelerator is not used or the case where a hydrocarbon surfactant is used, the surface of the plating film becomes smoother and a coating film having excellent corrosion resistance can be formed.
  • FIG. 1 is a schematic diagram showing the overall configuration of a plating apparatus according to the present embodiment.
  • FIG. 2 is a flowchart showing a coating film forming process according to the embodiment.
  • FIG. 3 is an optical micrograph of the coating film of Example 3.
  • FIG. 4 is an optical micrograph of the coating film of Comparative Example 3.
  • CO carbon dioxide in a supercritical state
  • the critical point is 7.4 MPa at 31 ° C.
  • a conventional supercritical plating apparatus is used.
  • the plating equipment is equipped with a pressure-resistant plating tank.
  • the plating bath is placed in a thermostatic layer maintained at about 50 ° C.
  • a plating solution and a dispersion accelerator are enclosed in the plating tank.
  • the plating tank is provided with a stirring bar, and the stirring bar is rotated by a stirrer installed outside. The rotation speed of the stirrer is set to 600 rpm.
  • a brass plate serving as a cathode is disposed in the plating tank.
  • the plating tank is connected to a supply pipe that supplies supercritical CO.
  • the plating tank is connected to the discharge pipe,
  • a pressure regulator for adjusting the pressure in the plating tank is disposed in the discharge pipe.
  • the plating solution a commercially available acidic gold plating bath (Au Purity Chemical Laboratory, Au-Metsuki Solution K-24EA10) was used.
  • the plating solution fluorine-based as compound (F (CF (CF) CFO ) CF (CF) COOCH CH OCH) was 0.5 wt 0/0 added to CO. This
  • This fluorine compound is a fluorine compound having a nonionic hydrophilic group.
  • the volume ratio of supercritical CO to the solution is 7: 3, bath temperature
  • Nickel plating was performed in supercritical C02 using a brass plate for the cathode and a nickel plate for the anode.
  • nickel sulfate 280 gZL, nickel chloride 60 g / L, boric acid 50 gZL, and a Watt bath with an appropriate amount of brightener power were used.
  • the Watts bath, (F (CF (CF) CF O) CF (CF) COOCH CH OCH) as a fluorine-based compound were added 0.5 wt 0/0 to CO.
  • the volume ratio of critical CO to acidic gold bath is 7: 3, the bath temperature is 50 ° C, and the bath pressure is lOMPa.
  • a commercially available plating bath (Au Purity Chemical Laboratory, Au-Mekking Solution K-24N) was used as the substitution gold plating solution. Then, the bath temperature was set to 70 ° C., and the brass plate was immersed in the plating bath for 10 minutes for plating treatment. Thereafter, the brass plate was washed with water.
  • Nickel plating was performed using a brass plate as the cathode and a nickel plate as the anode.
  • the plating solution used was a Watt bath consisting of 280 gZL of nickel sulfate, 60 g, L of nickel chloride, 50 gZL of boric acid, and an appropriate amount of a fluorescent agent.
  • the bath temperature was set to 50 ° C., and the plating was performed by energizing with a current density of 5AZdm 2 for 80 seconds. As a result, a nickel plating film with a thickness of about 1 ⁇ m was formed on the brass plate.
  • substitution brassing was performed on the brass plate on which the nickel plating film was formed.
  • a commercially available plating bath (Au High Liquid Chemical Laboratory Au-Mekking Solution K-24N) was used as the replacement plating solution. Then, the bath temperature was set to 70 ° C., and the brass plate was immersed in the plating bath for 10 minutes to perform the gold plating process. Thereafter, the brass plate was washed with water.
  • Gold plating was performed in supercritical C02 using a brass plate as the cathode and a titanium plate coated with platinum as the anode.
  • a commercially available acid gold plating bath (Au Pure Solution K-24EA10, Purity Chemical Laboratory Co., Ltd.) was used.
  • a brass plate for the cathode and a titanium plate coated with platinum for the anode normal gold plating was performed.
  • the plating solution a commercially available plating bath (Au Purity Chemicals Co., Ltd. Au plating solution K-24EA10) was used. The bath temperature was set to 50 ° C., and a current density of 0.5 AZdm 2 was applied for 60 seconds to perform plating. As a result, a gold plating film having a thickness of about 0.3 m was formed on the brass plate.
  • Example 1 The brass plate coating obtained in Example 1 was immersed in lmolZL hydrochloric acid, lmolZL nitric acid, and ImolZL sulfuric acid for 24 hours.
  • the brass plate coatings obtained in Example 2 and Comparative Examples 1 and 2 were immersed in lmolZL hydrochloric acid, lmolZL nitric acid, and ImolZU sulfuric acid for 24 hours.
  • the brass plate coating of Example 2 showed no change in any of hydrochloric acid, nitric acid and sulfuric acid.
  • corrosion was confirmed in the brass plate coatings of Comparative Examples 1 and 2 in all cases of hydrochloric acid, nitric acid, and sulfuric acid.
  • Example 3 the brass plate coating bodies obtained in Example 3 and Comparative Example 3 were immersed in 1 mol ZL of sulfuric acid aqueous solution at room temperature for 24 hours. Thereafter, the coating films of Example 3 and Comparative Example 3 were observed using an optical microscope. As shown in the optical micrograph of FIG. 3, the coating film of Example 3 was strong without any corrosion. From this result, it can be seen that according to the present invention, excellent corrosion resistance is exhibited even when the thickness of the gold plating film is less than 1 ⁇ m. On the other hand, the coating film of Comparative Example 3 was confirmed to be corroded, as shown in FIG.
  • a nickel (Ni) film is formed as a base film, and a gold (Au) film is formed thereon. Similar to the first embodiment, the nickel film is electrolyzed using supercritical CO as the diffusion fluid.
  • the plating apparatus comprises a cleaning liquid tank 11, a high-purity CO tank 21, and a dispersion promoting
  • the cleaning liquid tank 11 stores the cleaning liquid. Pure water is used as the cleaning liquid.
  • the cleaning liquid tank 11 is connected to the mixing and dispersing unit 60 via a cleaning liquid supply pipe.
  • the cleaning liquid supply pipe includes a liquid pump 12, a heating unit 13, and a supply valve 14.
  • the liquid pump 12 pressurizes the cleaning liquid.
  • the heating unit 13 heats the cleaning liquid.
  • the supply valve 14 communicates and shuts off the cleaning liquid tank 11 and the mixing and dispersing unit 60. That is, the supply of the cleaning liquid to the mixing / dispersing unit 60 or the supply of the cleaning liquid is stopped by opening / closing control of the supply valve 14.
  • the high-purity CO tank 21 contains CO as a diffusion fluid. High purity CO tank 21
  • the high purity CO tank 21 is connected via a CO supply pipe.
  • the CO supply pipe consists of a liquid pump 22, a heating unit 23 and
  • the liquid pump 22 pressurizes CO.
  • the heating unit 23 heats CO.
  • the supply valve 24 communicates and shuts off the high-purity CO tank 21 and the mixing and dispersing unit 60.
  • CO is supplied to the mixing / dispersing section 60, or
  • the dispersion accelerator tank 31 contains a dispersion accelerator.
  • a fluorine-based compound is used as a dispersion accelerator.
  • the fluorine-based compound includes a fluorine group and a hydrophilic portion. High pressure C as a fluorine compound
  • a fluorine-based compound having an aqueous group is used.
  • examples of the fluorine group include those having a hetero atom in a carbon chain such as a perfluoroalkyl group having a straight chain or a branched chain, or a perfluoropolyether group.
  • perfluoroalkyl groups having about 3 to 15 carbon atoms are used, and those containing a hetero atom in the carbon chain, those having about 3 to 50 carbon atoms are used.
  • hydrophilic group examples include polar groups such as ether, ester, alcohol, thioether, thioester, and amide.
  • fluorine surfactants in which the fluorine group is a perfluoropolyether group and the hydrophilic group is a short-chain polyethylene glycol group are particularly excellent.
  • a hydrocarbon-based surfactant that is a conventional dispersion accelerator is a long-chain polyethylene glycol. It has a problem that it contains a single group and is chemically unstable. In contrast, fluorine compounds are chemically stable, and therefore, their dispersion promoting action can be maintained over a long period of time. In addition, the possibility of foreign substances derived from hydrocarbon-based decomposition products is reduced.
  • the fluorine-based compound is a hydrophobic fluorine group. Therefore, dispersion of CO and plating liquid
  • the time during which the state can be maintained (dispersion holding time) is short. This means that the plating solution and CO can be separated easily.
  • the dispersion of the plating solution can be separated into CO and a plating solution in about several seconds to several tens of seconds when the dispersion operation is stopped.
  • the dispersion accelerator tank 31 is connected to the mixing tank 30.
  • Mixing tank 30 consists of CO supplied from high-purity CO tank 21 and dispersion promotion supplied from dispersion promoter tank 31.
  • the mixing tank 30 is connected to the mixing and dispersing unit 60 through a supply pipe.
  • the supply pipe includes a liquid pump 32, a heating unit 33, and a supply valve 34.
  • the liquid pump 32 raises the pressure of the mixed liquid supplied from the dispersion accelerator tank 31 and sends it out to the heating unit 33.
  • the heating unit 33 heats the mixed liquid of CO and the dispersion accelerator.
  • Supply valve 34
  • the mixing tank 30 and the mixing / dispersing section 60 are communicated and disconnected. By controlling the opening and closing of the supply valve 34, the mixed liquid of CO and the dispersion accelerator is supplied to the mixing / dispersing unit 60, or the mixed liquid is mixed.
  • the Ni plating solution tank 41 stores a Ni plating solution.
  • the Ni plating solution tank 41 is provided with a heating and heat retaining means for heating the Ni plating solution at a predetermined temperature (eg, about 50 ° C).
  • the Ni plating solution tank 41 is connected to the mixing / dispersing unit 60 via a base plating solution supply pipe.
  • the undercoat liquid supply pipe includes a liquid pump 42 and a supply valve 44.
  • the liquid pump 42 pressurizes the Ni plating solution and sends it to the mixing and dispersing unit 60.
  • the supply valve 44 communicates and shuts off the Ni plating solution tank 41 and the mixing and dispersing unit 60. In other words, the Ni plating solution is supplied to the mixing and dispersing unit 60 or the supply of the Ni plating solution is stopped by opening / closing control of the supply valve 44.
  • the mixing and dispersing unit 60 mixes the mixed solution and the Ni plating solution to obtain a dispersed state.
  • a mixer is disposed in the mixing and dispersing unit 60, and a disperser is connected to the downstream side of the mixer.
  • Ni Me The plating solution and the mixture of CO and dispersion accelerator are supplied to the mixer to produce the plating mixture.
  • the disperser includes a stirring bar. When the plating mixture is supplied to the disperser from the mixer, the stirrer rotates and the components in the mixture are uniformly dispersed.
  • the Au plating solution tank 51 stores an Au plating solution.
  • the Au plating solution tank 51 is provided with a heating and heat retaining means for heating the Au plating solution to a predetermined temperature (for example, about 50 ° C.) and keeping it warm.
  • the Au plating solution tank 51 is connected to a plating tank 61 through a noble metal plating solution supply pipe.
  • the noble metal plating liquid supply pipe includes a liquid pump 52 and a supply valve 54.
  • the liquid pump 52 pressurizes the Au plating solution and sends it out to the plating tank 61.
  • the supply valve 54 communicates and shuts off the Au plating solution tank 51 and the mating tank 61. That is, by the opening / closing control of the supply valve 54, the power for supplying the Au plating solution to the plating tank 61 or the supply of the Au plating solution is stopped.
  • the plating tank 61 a plating process for forming a coating film is performed.
  • the substrate W is accommodated as an object to be coated.
  • the plating tank 61 includes a pair of electrodes. One of the two electrodes is a negative electrode and is connected to the substrate W. Further, the plating tank 61 includes a block heater (not shown). The block heater heats the inside of the plating tank 61 to adjust the plating dispersion to a predetermined temperature. When the Ni film is attached, the liquid temperature is set to about 50 ° C so that CO is in a supercritical state.
  • the plating tank 61 is connected to the separation tank 65 via a discharge pipe including a shutoff valve 64.
  • the shutoff valve 64 communicates and shuts off the mixing and dispersing unit 60 and the separation tank 65. By controlling the opening / closing of the shut-off valve 64, the force for discharging the used plating solution to the outside or the discharge of the plating solution is stopped.
  • the separation tank 65 separates the CO-powered liquid containing the dispersion accelerator.
  • CO is water
  • the Ni plating solution is discharged to a Ni plating solution regenerating device, an Au plating solution regenerating device or a waste solution tank (not shown) via a discharge switching valve.
  • the Ni plating solution regenerator each component in the Ni plating solution is adjusted after impurities are removed.
  • the regenerated Ni plating solution is returned to the Ni plating solution tank 41 again.
  • the Au plating solution regenerator each component in the Au plating solution is adjusted after impurities in the Au plating solution are removed.
  • the Au plating solution regenerated in this way is A u Returned to the plating solution tank 51 again. Furthermore, used cleaning liquid and unrecycled Ni plating solution are discharged to the waste liquid tank.
  • the plating apparatus includes a process control unit (not shown) as control means.
  • the process control unit is composed of CPU, RAM, ROM, etc., and according to the stored program, each liquid pump 12, 22, 32, 42, 52, each caloric heat unit 13, 23, 33, each supply valve 14, 24, 34, 44
  • shut-off valve 64 and electrodes are controlled.
  • a Ni film is formed as a base for the Au film.
  • the process control unit opens the supply valves 3 4 and 44, heats the heating unit 33, and drives the liquid pumps 32 and 42.
  • the process control unit drives the disperser of the mixing / dispersing unit 60.
  • the liquid is supplied to the mixing and dispersing unit 60 in a pressurized and heated state.
  • the disperser of the mixing and dispersing unit 60 the plating mixed solution is stirred and uniformly dispersed.
  • the plating mixture is supplied to the plating tank 61 in a uniformly dispersed state.
  • CO carbon dioxide
  • the process control unit can control each liquid pump 32 so that the dispersion dispersed in the mixer can flow through the plating tank 61 within the dispersion holding time. , 42 is controlled.
  • the electrodes are energized and electroplating is performed by the plating dispersion.
  • the Ni film 101 is formed on the surface of the substrate W.
  • the shutoff valve 64 is open.
  • the plating dispersion is discharged from the plating tank 61 to the separation tank 65 before the dispersion holding time elapses.
  • the plating solution is discharged into the separation tank 65, CO containing a dispersion accelerator and Ni plating
  • CO and dispersion promoters are used after gases such as hydrogen and oxygen are removed
  • the mixture is refluxed to the mixing tank 30.
  • the remaining Ni plating solution is discharged to the Ni plating solution regenerator.
  • each component contained in the plating solution is adjusted.
  • the Ni plating solution is regenerated in this way, it is returned to the Ni plating solution tank 41. [0056] Thereafter, the driving of the liquid pumps 32 and 42 and the heating of the heating unit 33 are continued, and the supply of the plating dispersion to the mating tank 61 and the discharge from the metching tank 61 are continued.
  • the process control unit stops energization of the electrode of the plating tank 61, closes the supply valve 44, and stops the driving of the liquid pump 42. As a result, the supply of the Ni plating solution to the mixing and dispersing unit 60 is stopped, and the CO
  • the process control unit opens the supply valve 14 and drives the liquid pump 12.
  • the cleaning liquid is supplied from the cleaning liquid tank 11 to the mixing and dispersing unit 60, and the inside of the plating tank 61 is cleaned.
  • the process control unit closes the supply valve 14 and stops driving the liquid pump 12. As a result, the supply of the cleaning liquid is stopped, and the CO mixed liquid containing the dispersion accelerator is supplied to the plating tank 61. This mixed solution flows through the plating tank 61.
  • the cleaning liquid is discharged from the plating tank 61.
  • the process control unit drives the liquid pump 52, opens the supply valve 54, and closes the shut-off valve 64. Then, the Au plating solution is supplied from the Au plating solution tank 51 and stored in the plating tank 61. When the plating bath 61 is filled with the Au plating solution, the process control unit stops the solution pump 52 and closes the supply valve 54. At this time, in the plating tank 61, electrons are received from the Ni film 101 having a higher ionization tendency than the Au ion force Au ions in the Au plating solution. As a result, on the surface of the substrate W, Ni is replaced with Au, and the Au film 102 is formed.
  • the process control unit closes the supply valve 54 and opens the shut-off valve 64 when the force has also passed for a predetermined time. Then, the Au plating solution in the plating tank 61 is discharged to the separation tank 65, and discharged from the separation tank 65 to the waste liquid tank at once. Thus, the plating process is completed.
  • a Ni film 101 is formed on the substrate W by using a powder. In that case, the supercritical state of CO
  • the diffusion force promotes the diffusion of the Ni plating solution and improves the adhesion of the Ni film 101. You can. Therefore, the Ni film 101 without a pinhole can be formed. Then, by forming the Au film 102 on the Ni film 101 having no pinholes, the corrosion resistance of the substrate W can be ensured even if the Au film 102 is formed thin. Therefore, since the amount of Au used is small, a coating film having excellent corrosion resistance can be manufactured at low cost.
  • the hydrogen generated during the plating process dissolves in the supercritical state of CO.
  • Hydrogen which is a cause of generation of holes, can be removed from the surface of the substrate W. Further, the Ni film 101 is formed by continuously supplying the swell dispersion from the mixing / dispersing part 60 to the staking bath 61 and continuously discharging it from the staking bath 61. In this case, CO containing hydrogen
  • Fluorine compounds are used.
  • the surface of the Ni film 101 can be made flatter than when a dispersion accelerator is not used or when a conventional hydrocarbon surfactant is used.
  • the corrosion resistance of the substrate W can be ensured even if the Au film 102 is formed thin. Therefore, the amount of Au used is small.
  • the Au film 102 is formed by using substitution fitting.
  • replacement plating the Ni film 101 is replaced with Au while the surface shape of the Ni film 101 is maintained. Therefore, if the Ni film 101 of the base film is flat, the Au film 102 formed by replacing the Ni film 101 can be flattened. Therefore, the Au film 102 as a noble metal film can be formed extremely thin, and a coating film excellent in corrosion resistance can be formed with fewer noble metals.
  • substitution welding when substitution on the surface of the Ni film 101 is completed, the reaction may be stopped or the reaction may be delayed. Therefore, the Au film 102 is not formed thicker than necessary, and the noble metal Au is not wasted.
  • the process control unit includes a plating dispersion containing CO, a dispersion accelerator, and a Ni plating solution.
  • each liquid pump 32, 42 is controlled so that it passes through the plating tank 61 and is supplied to the separation tank 65 within the dispersion holding time.
  • the plating dispersion is supplied to the plating tank 61 while maintaining the dispersion state. For this reason, it is possible to make the thickness of the Ni film 101 applied to the substrate W uniform.
  • the Ni film 101 is formed by continuously supplying a plating dispersion containing a Ni plating solution to the plating tank 61 and continuously discharging it from the plating tank 61. In this case, hydrogen generated during the plating process or foreign matter peeled off from the substrate W can be quickly discharged from the plating tank 61. Therefore, the Ni film 101 that does not include foreign matter or pinholes can be formed, and a good coating film can be formed.
  • the thickness of the Ni film 101 formed using supercritical CO is about 1 ⁇ m.
  • the Ni film 101 without pinholes can be formed by securing the thickness of the Ni film 101 to 10 nm or more.
  • the size of bubbles (hydrogen) is around 5 ⁇ m, it has been difficult to form a film of 4 ⁇ m or less.
  • the Ni film 101 without pinholes can be formed with a thickness of 1 / zm or less, and as a result, a high-quality Au film 102 can be formed.
  • any other fluorine-based compound containing a fluorine group may be used instead.
  • a dispersion accelerator an organic compound other than a fluorine-based compound may be used, or a dispersion accelerator may be omitted.
  • replacement plating was performed after the Au plating solution was sealed in the plating tank 61. Instead, replacement was performed while continuously supplying the Au plating solution to the plating tank 61. Me You may go on. From this, a good quality Au film 102 can be formed. In addition, it is possible to suppress an increase in manufacturing cost by regenerating the Au plating solution. In this case, the substitution plating may be performed while stirring the Au plating solution. As a result, the Au film 102 is formed in a shorter time, and the productivity is improved.
  • the Ni film 101 is formed using supercritical CO, and the substitution is performed thereon.
  • the Au film 102 may be formed by using a wet film forming method such as electrolytic plating or electroless plating, or a dry film forming method. Also in this case, since the surface of the Ni film 101 serving as the base film becomes flatter, the Au film 102 can be formed thin and with a uniform thickness. Therefore, a coating film having excellent corrosion resistance can be produced at a low cost.
  • the Ni film 101 is formed on the substrate W as a base film when the Au film 102 is formed.
  • supercritical CO and Au plating solution are used instead.
  • the Au film 102 may be formed directly on the substrate W using the plating dispersion dispersed by the above. In this case, by using supercritical CO, a good quality Au film without pinholes 10
  • a noble metal film such as silver (Ag) or platinum (Pt) may be formed instead of the Au film 102.
  • another metal film may be formed as a base film.

Abstract

In a mixing/dispersing part, CO2, a surfactant, and a nickel plating liquid are mixed and dispersed to produce a plating dispersion. The plating dispersion is fed into a plating tank provided with a pair of electrodes. In the plating tank, CO2 is brought to a supercritical state, and voltage is applied to the electrodes for electroplating. After the formation of a nickel film on a substrate, a gold plating liquid is fed into the plating tank for electroless plating. As a result, the nickel film is replaced by gold in the gold plating liquid to form a gold film.

Description

コーティング膜、コーティング膜で被覆された物品及び耐食性コーティン グ方法  Coating film, article coated with coating film and corrosion-resistant coating method
技術分野  Technical field
[0001] 本発明は、耐食性を確保するためのコーティング膜、コーティング膜で被覆された 物品及び耐食性コーティング方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a coating film for ensuring corrosion resistance, an article coated with the coating film, and a corrosion-resistant coating method.
背景技術  Background art
[0002] 腐食や変色を防止するため、物品の表面を他の物質により被覆 (コーティング)する ことがよく行われる。一般に、耐食性のコーティング材として、合成樹脂が使用される 。しかし、合成樹脂は、導電性材料ではなぐ熱伝導性も良くない。そこで、物品に導 電性ゃ熱伝導性などが要求される場合、物品の表面を貴金属により被覆することが よく行われる。  [0002] In order to prevent corrosion and discoloration, the surface of an article is often coated with another substance. Generally, a synthetic resin is used as a corrosion-resistant coating material. However, synthetic resins are not as heat conductive as conductive materials. Therefore, when the article is required to have conductivity or thermal conductivity, the article surface is often covered with a noble metal.
[0003] コーティング膜の形成方法として、例えば、めっき処理がある。また、特許文献 1に は、超臨界状態の物質と、電解質溶液 (めっき液)とを用いるめっき技術が開示され ている。この場合、めっき浴中には超臨界状態の物質が含まれており、それにより、 めっき液に含まれるイオンの拡散が促進されて、良質なコーティング膜が得られる。 特許文献 1 :特許第 3571627号公報  As a method for forming a coating film, for example, there is a plating process. Patent Document 1 discloses a plating technique using a supercritical substance and an electrolyte solution (plating solution). In this case, the plating bath contains a substance in a supercritical state, which promotes the diffusion of ions contained in the plating solution and provides a high-quality coating film. Patent Document 1: Japanese Patent No. 3571627
発明の開示  Disclosure of the invention
[0004] ところで、めっき処理を行う場合、コーティング膜にピンホールやクラックが形成され たり、表面が粗くなる等の問題が発生する虞がある。貴金属めつきにピンホールが形 成されると、そのピンホールを介して、めっき液中の物質が地金の卑金属と化学反応 し、腐食が引き起こされ易くなる。  [0004] By the way, when plating is performed, problems such as pinholes and cracks formed in the coating film, and a rough surface may occur. When a pinhole is formed on a noble metal, the material in the plating solution chemically reacts with the base metal of the metal through the pinhole, and corrosion is likely to occur.
[0005] そこで、めっきにより膜を厚く形成して、ピンホールを消失させることにより、コーティ ング膜の耐食性を高めていた。しかし、このような膜を厚くする方法では、貴金属の使 用量が多くなり、コーティング膜の形成に要するコストが増大する。  [0005] Therefore, the corrosion resistance of the coating film has been improved by forming a thick film by plating and eliminating pinholes. However, such a method of increasing the thickness of the film increases the amount of noble metal used and increases the cost required for forming the coating film.
[0006] 本発明の目的は、製造コストを増力!]させずに耐食性に優れたコーティング膜、コー ティング膜で被覆された物品及び耐食性コーティング方法を提供することにある。 [0007] 上記の課題を解決するため、本発明の第一の態様によれば、対象物を被覆し、耐 食性を確保するためのコーティング膜であって、貴金属膜を含み、その貴金属膜は、 めっき液と、めっき液の拡散力を高める拡散流体とを用いてめっき処理を行うことによ り形成される c [0006] An object of the present invention is to provide a coating film excellent in corrosion resistance without increasing the manufacturing cost !, an article coated with the coating film, and a corrosion-resistant coating method. [0007] In order to solve the above problems, according to a first aspect of the present invention, a coating film for covering an object and ensuring corrosion resistance includes a noble metal film, , Formed by plating using a plating solution and a diffusion fluid that enhances the diffusing power of the plating solution c
[0008] 上記のように構成したことにより、ピンホールのない貴金属膜を従来よりも薄く形成 することができる。よって、貴金属の使用量が少なくて済むことから、耐食性に優れる コーティング膜を低コストで製造できる。  [0008] With the above configuration, a noble metal film having no pinhole can be formed thinner than the conventional one. Therefore, since the amount of noble metal used is small, a coating film having excellent corrosion resistance can be manufactured at low cost.
[0009] 本発明の第二の態様によれば、対象物を被覆し、耐食性を確保するためのコーテ イング膜であって、前記対象物の表面に設けられ、めっき液と、めっき液の拡散力を 高める拡散流体とを用いた第 1のめつき処理により形成される下地膜と、その下地膜 上に設けられ、第 2のめつき処理により形成される貴金属膜とを含む。その場合、表 面が平坦で、かつピンホールのない良質な下地膜を形成することができる。そして、 ピンホールのない下地膜上に貴金属膜を形成することで、同貴金属膜を薄く形成し ても、対象物の耐食性を確保することができる。よって、貴金属の使用量が少なくて 済むことから、耐食性に優れるコーティング膜を低コストで製造できる。  [0009] According to a second aspect of the present invention, there is provided a coating film for covering an object and ensuring corrosion resistance, provided on the surface of the object, and a plating solution and a diffusion of the plating solution A base film formed by a first staking process using a diffusion fluid that enhances force, and a noble metal film provided on the base film and formed by a second staking process. In that case, it is possible to form a good base film having a flat surface and no pinholes. By forming the noble metal film on the base film having no pinhole, the corrosion resistance of the object can be ensured even if the noble metal film is formed thin. Accordingly, since the amount of noble metal used is small, a coating film having excellent corrosion resistance can be manufactured at low cost.
[0010] 上記のコーティング膜において、第 2のめつき処理は置換めつき処理であることが望 ましい。その場合、下地膜の表面部分が置換されて貴金属が形成されるため、下地 膜の表面が平坦であれば、貴金属膜の表面も平坦に形成することができる。これによ り、より少ない貴金属で、耐食性に優れるコーティング膜を形成することができる。ま た、貴金属膜を形成するためシアン浴を用いる場合、めっき液を高圧にする必要が な 、ため、シアンガスの発生を抑制することもできる。  [0010] In the above coating film, it is desirable that the second tacking process is a substitution tacking process. In that case, since the surface portion of the base film is replaced to form the noble metal, the surface of the noble metal film can be formed flat if the surface of the base film is flat. As a result, a coating film excellent in corrosion resistance can be formed with fewer noble metals. In addition, when a cyan bath is used to form a noble metal film, it is not necessary to make the plating solution high in pressure, so that generation of cyan gas can be suppressed.
[0011] 上記のコーティング膜において、下地膜の厚さは、 lOnm以上であることが望ましい 。通常、金属のグレインサイズ (粒径)は数 nm程度であるため、下地層の厚さを 10η m以上確保することで、ピンホールのない良質な下地膜を形成することができ、ひい ては、耐食性に優れるコーティング膜を薄く形成することができる。  [0011] In the above coating film, it is desirable that the thickness of the base film is lOnm or more. Normally, the grain size (particle size) of a metal is about several nanometers. By ensuring the thickness of the underlayer to be at least 10 ηm, a good underlayer without pinholes can be formed. A coating film having excellent corrosion resistance can be formed thinly.
[0012] 上記のコーティング膜において、拡散流体は、超臨界流体又は亜臨界流体である ことが望ましい。その場合、めっき液の拡散が効果的に促進されるため、より耐食性 に優れるコーティング膜を形成することができる。 [0013] 上記のコーティング膜にぉ 、て、拡散流体は、二酸ィ匕炭素であることが望ま 、。 その場合、 COは、めっきの副反応により生成される水素を溶解するため、ピンホー [0012] In the coating film, the diffusion fluid is preferably a supercritical fluid or a subcritical fluid. In that case, since the diffusion of the plating solution is effectively promoted, a coating film having more excellent corrosion resistance can be formed. [0013] In the above coating film, the diffusion fluid is preferably carbon dioxide. In that case, CO dissolves the hydrogen produced by the side reaction of plating.
2  2
ルの発生を一層抑制することができる。  Generation can be further suppressed.
[0014] 上記コーティング膜において、拡散流体を用いるめっき処理では、フッ素系化合物 力もなり、前記めつき液の分散を促進する分散促進剤が添加されることが望ましい。 その場合、分散促進剤を用いない場合や、炭化水素系界面活性剤を用いる場合な どと比べて、めっき膜の表面がより平滑になり、耐食性に優れるコーティング膜を形成 することができる。 [0014] In the coating film, in the plating treatment using a diffusion fluid, it is desirable to add a dispersion accelerator that also serves as a fluorine-based compound and promotes dispersion of the plating solution. In that case, compared with the case where a dispersion accelerator is not used or the case where a hydrocarbon surfactant is used, the surface of the plating film becomes smoother and a coating film having excellent corrosion resistance can be formed.
[0015] 本発明の第三の態様は、耐食性を確保するために表面をコーティング膜で被覆さ れた物品であって、前記コーティング膜は、貴金属膜を形成するめつき液と、めっき 液の拡散力を高める拡散流体とを用いためっき処理により形成される。その場合、ピ ンホールのない貴金属膜を従来よりも薄く形成することができる。よって、貴金属の使 用量が少なくて済むことから、耐食性に優れるコーティング膜を低コストで製造できる  [0015] A third aspect of the present invention is an article whose surface is coated with a coating film in order to ensure corrosion resistance, the coating film comprising a plating solution for forming a noble metal film, and diffusion of a plating solution It is formed by a plating process using a diffusion fluid that enhances the force. In that case, a noble metal film without pinholes can be formed thinner than before. Therefore, since the amount of precious metal used is small, a coating film with excellent corrosion resistance can be manufactured at low cost.
[0016] 本発明の第四の態様は、耐食性を確保するために表面をコーティング膜で被覆さ れた物品であって、前記コーティング膜が、めっき液と、めっき液の拡散力を高める 拡散流体とを用いた第 1のめつき処理により形成される下地膜と、その下地膜上に設 けられ、第 2のめつき処理により形成される貴金属膜とを含む。その場合、表面が平 坦で、かつピンホールのない良質な下地膜を形成することができる。そして、ピンホー ルのない下地膜上に貴金属膜を形成することで、貴金属膜を薄く形成しても、対象 物の耐食性を確保することができる。よって、貴金属の使用量が少なくて済むことから 、耐食性に優れるコーティング膜を低コストで製造できる。 [0016] A fourth aspect of the present invention is an article whose surface is coated with a coating film to ensure corrosion resistance, wherein the coating film enhances the diffusing power of the plating solution and the plating solution. And a noble metal film formed on the undercoat film and formed on the undercoat film by the second sticking process. In that case, it is possible to form a good base film having a flat surface and no pinholes. Further, by forming the noble metal film on the base film without the pinhole, the corrosion resistance of the object can be ensured even if the noble metal film is formed thin. Therefore, since the amount of noble metal used is small, a coating film excellent in corrosion resistance can be manufactured at low cost.
[0017] 上記コーティング膜で被覆された物品において、前記第 1のめつき処理において、 フッ素系化合物からなり、前記めつき液の分散を促進する分散促進剤を添加して、前 記下地膜が形成されることが望ましい。その場合、分散促進剤を用いない場合や、 炭化水素系界面活性剤を用いる場合などと比べて、めっき膜の表面がより平滑にな り、耐食性に優れるコーティング膜を形成することができる。  [0017] In the article coated with the coating film, in the first staking treatment, a dispersion accelerator made of a fluorine compound and accelerating dispersion of the staking solution is added, so that the base film becomes It is desirable to be formed. In that case, compared with the case where a dispersion accelerator is not used or the case where a hydrocarbon surfactant is used, the surface of the plating film becomes smoother and a coating film having excellent corrosion resistance can be formed.
[0018] 本発明の第五の態様は、貴金属膜又は下地膜を含み、かつめつき膜の厚さが 10η m以上であるコーティング膜により被覆されることが望ましい。通常、金属のグレイン サイズ (粒径)は数 nm程度であるため、下地層の厚さを lOnm以上確保することで、 ピンホールのない良質な下地膜を形成することができ、ひいては、耐食性に優れるコ 一ティング膜を薄く形成することができる。 [0018] A fifth aspect of the present invention includes a noble metal film or an undercoat film, and the thickness of the clasp film is 10η. It is desirable to coat with a coating film that is at least m. Normally, the grain size (particle size) of a metal is about several nanometers. By ensuring the thickness of the underlying layer is at least lOnm, a good underlying film without pinholes can be formed, which in turn improves corrosion resistance. An excellent coating film can be formed thin.
[0019] 本発明の第六の態様は、対象物を被覆し、耐食性を確保するためのコーティング 膜を形成する方法であって、めっき液と、めっき液の拡散力を高める拡散流体とを用 いためつき処理により、前記対象物に対して下地金属膜を形成する第 1の工程と、置 換めっき処理を用いて、前記下地金属膜に対して貴金属膜を形成する第 2の工程と を含む。その場合、表面が平坦であり、かつピンホールのない良質な下地膜を形成 することができる。そして、ピンホールのない下地膜上に貴金属膜を形成することで、 貴金属膜を薄く形成しても、対象物の耐食性を確保することができる。よって、貴金 属の使用量が少なくて済むことから、耐食性に優れるコーティング膜を低コストで製 造できる。 [0019] A sixth aspect of the present invention is a method of forming a coating film for covering an object and ensuring corrosion resistance, using a plating solution and a diffusion fluid that enhances the diffusing power of the plating solution. A first step of forming a base metal film on the object by an irritating process; and a second step of forming a noble metal film on the base metal film using a replacement plating process. . In that case, it is possible to form a good base film having a flat surface and no pinholes. By forming the noble metal film on the base film without pinholes, the corrosion resistance of the object can be ensured even if the noble metal film is formed thin. Therefore, since the amount of noble metal used is small, a coating film with excellent corrosion resistance can be produced at low cost.
[0020] 上記コーティング膜を形成する方法において、前記第 1の工程において、フッ素系 化合物からなり、前記めつき液の分散を促進する分散促進剤を添加して、前記下地 膜を形成することが望ましい。その場合、分散促進剤を用いない場合や、炭化水素 系界面活性剤を用いる場合などと比べて、めっき膜の表面がより平滑になり、耐食性 に優れるコーティング膜を形成することができる。  [0020] In the method of forming the coating film, in the first step, the base film may be formed by adding a dispersion accelerator that is made of a fluorine-based compound and that promotes dispersion of the tacking liquid. desirable. In that case, compared with the case where a dispersion accelerator is not used or the case where a hydrocarbon surfactant is used, the surface of the plating film becomes smoother and a coating film having excellent corrosion resistance can be formed.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本実施形態に係るめっき装置の全体構成を示す概略図。 FIG. 1 is a schematic diagram showing the overall configuration of a plating apparatus according to the present embodiment.
[図 2]本実施形態に係るコーティング膜の形成工程を示すフロー図。  FIG. 2 is a flowchart showing a coating film forming process according to the embodiment.
[図 3]実施例 3のコーティング膜の光学顕微鏡写真。  FIG. 3 is an optical micrograph of the coating film of Example 3.
[図 4]比較例 3のコーティング膜の光学顕微鏡写真。  FIG. 4 is an optical micrograph of the coating film of Comparative Example 3.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] (第 1実施形態) [0022] (First embodiment)
以下、本発明を具体化した第 1実施形態について説明する。実施形態では、拡散 流体として、超臨界状態の二酸化炭素(以下、超臨界 COと称す)を用いる。 COの  Hereinafter, a first embodiment of the present invention will be described. In the embodiment, carbon dioxide in a supercritical state (hereinafter referred to as supercritical CO) is used as the diffusion fluid. CO
2 2 臨界点は、 31°Cで 7. 4MPaである。 [0023] 本実施形態では、従来の超臨界めつき装置を用いる。めっき装置は、耐圧性のめ つき槽を備える。めっき槽は、約 50°Cに保たれた恒温層の中に配置される。めっき槽 には、めっき液及び分散促進剤が封入される。めっき槽には、撹拌子が備えられ、該 撹拌子は、外部に設置されるスターラーにより回転する。撹拌子の回転数は、 600rp mに設定される。めっき槽には、陰極となる真鍮板が配置されている。めっき槽は、超 臨界 COを供給する供給管に接続されている。また、めっき槽は排出管に接続され、2 2 The critical point is 7.4 MPa at 31 ° C. In the present embodiment, a conventional supercritical plating apparatus is used. The plating equipment is equipped with a pressure-resistant plating tank. The plating bath is placed in a thermostatic layer maintained at about 50 ° C. A plating solution and a dispersion accelerator are enclosed in the plating tank. The plating tank is provided with a stirring bar, and the stirring bar is rotated by a stirrer installed outside. The rotation speed of the stirrer is set to 600 rpm. A brass plate serving as a cathode is disposed in the plating tank. The plating tank is connected to a supply pipe that supplies supercritical CO. The plating tank is connected to the discharge pipe,
2 2
更に、この排出管には、めっき槽内の圧力を調整する圧力調整器が配設されている  Furthermore, a pressure regulator for adjusting the pressure in the plating tank is disposed in the discharge pipe.
[0024] (実施例 1) [0024] (Example 1)
陰極に真鍮板、陽極に白金がコーティングされたチタン板を用いて、超臨界 CO中  In supercritical CO, using a brass plate for the cathode and a titanium plate coated with platinum for the anode
2 で金めつきを行った。めっき液には、市販の酸性金めつき浴((株)高純度化学研究 所 Auメツキ液 K—24EA10)を用いた。めっき液には、フッ素系化合物として(F( CF(CF )C F O) CF(CF )COOCH CH OCH )を COに対して 0. 5重量0 /0加えた。こ2 made a money. As the plating solution, a commercially available acidic gold plating bath (Au Purity Chemical Laboratory, Au-Metsuki Solution K-24EA10) was used. The plating solution, fluorine-based as compound (F (CF (CF) CFO ) CF (CF) COOCH CH OCH) was 0.5 wt 0/0 added to CO. This
3 2 3 3 2 2 3 2 3 2 3 3 2 2 3 2
のフッ素系化合物は、非イオン性親水性基を有するフッ素系化合物である。このフッ 素系化合物を用いることで、高圧の CO  This fluorine compound is a fluorine compound having a nonionic hydrophilic group. By using this fluorine compound, high pressure CO
2と水分 (めっき液)とに分散促進作用が働き、 良質な金属皮膜が形成される。超臨界 COとめつき液との体積比率を 7 : 3とし、浴温  2 and moisture (plating solution) act to promote dispersion, and a high-quality metal film is formed. The volume ratio of supercritical CO to the solution is 7: 3, bath temperature
2  2
を 50°C、槽圧力を lOMPaとし、電流密度 0. 5AZdm2で 200秒間通電して、めっき 処理を行った。この結果、陰極の真鍮板には、約 1 μ mの厚さの金めつき皮膜が形成 された。 Was plated at a temperature of 50 ° C, a bath pressure of lOMPa, and a current density of 0.5 AZdm 2 for 200 seconds. As a result, a gold plating film having a thickness of about 1 μm was formed on the brass plate of the cathode.
[0025] (実施例 2) [Example 2]
陰極に真鍮板、陽極にニッケル板を用いて、超臨界 C02中でニッケルめっきを行 つた。めっき液には、硫酸ニッケル 280gZL、塩化ニッケル 60g/L、ホウ酸 50gZL 、及び適量の光沢剤力もなるワット浴を用いた。ワット浴には、フッ素系化合物として( F(CF(CF )CF O) CF(CF )COOCH CH OCH )を COに対し 0. 5重量0 /0加えた。超 Nickel plating was performed in supercritical C02 using a brass plate for the cathode and a nickel plate for the anode. As the plating solution, nickel sulfate 280 gZL, nickel chloride 60 g / L, boric acid 50 gZL, and a Watt bath with an appropriate amount of brightener power were used. The Watts bath, (F (CF (CF) CF O) CF (CF) COOCH CH OCH) as a fluorine-based compound were added 0.5 wt 0/0 to CO. Super
3 2 3 3 2 2 3 2  3 2 3 3 2 2 3 2
臨界 COと酸性金めつき浴との体積比率を 7 : 3とし、浴温を 50°C、槽圧力を lOMPa The volume ratio of critical CO to acidic gold bath is 7: 3, the bath temperature is 50 ° C, and the bath pressure is lOMPa.
2 2
とした。そして、めっき浴を撹拌しながら、電流密度 5AZdm2で 80秒間通電して、め つき処理を行った。この結果、真鍮板には、約 1 μ mの厚さのニッケルめっき皮膜が 形成された。 [0026] 続いて、ニッケルめっき皮膜が形成された真鍮板に対し置換金めつきを行った。置 換金めつき液には、市販のめっき浴((株)高純度化学研究所 Auメツキ液 K- 24 N)を用いた。そして、浴温が 70°Cとし、めっき浴に真鍮板を 10分間浸漬し、金めつ き処理を行った。その後、真鍮板を水洗した。 It was. Then, while the plating bath was stirred, current application was performed at a current density of 5AZdm 2 for 80 seconds to perform the plating process. As a result, a nickel plating film with a thickness of about 1 μm was formed on the brass plate. [0026] Subsequently, substitution brassing was performed on the brass plate on which the nickel plating film was formed. A commercially available plating bath (Au High Liquid Chemical Laboratory Au-Mekking Solution K-24N) was used as the replacement plating solution. Then, the bath temperature was set to 70 ° C., and a brass plate was immersed in the plating bath for 10 minutes to perform a gold plating process. Thereafter, the brass plate was washed with water.
[0027] (比較例 1)  [0027] (Comparative Example 1)
真鍮板に対し置換金めつき処理を行った。置換金めつき液には、市販のめっき浴( (株)高純度化学研究所 Auメツキ液 K— 24N)を用いた。そして、浴温を 70°Cとし 、めっき浴に真鍮板を 10分間浸漬して、めっき処理を行った。その後、真鍮板を水洗 した。  Replacement brass plating was performed on the brass plate. A commercially available plating bath (Au Purity Chemical Laboratory, Au-Mekking Solution K-24N) was used as the substitution gold plating solution. Then, the bath temperature was set to 70 ° C., and the brass plate was immersed in the plating bath for 10 minutes for plating treatment. Thereafter, the brass plate was washed with water.
[0028] (比較例 2)  [0028] (Comparative Example 2)
陰極に真鍮板、陽極にニッケル板を用いて、ニッケルめっき処理を行った。めっき 液には、硫酸ニッケル 280gZL、塩化ニッケル 60g,L、ホウ酸 50gZL、適量の光 沢剤からなるワット浴を用いた。浴温を 50°Cとし、電流密度 5AZdm2で 80秒間通電 して、めっき処理を行った。この結果、真鍮板には、約 1 μ mの厚さのニッケルめっき 皮膜が形成された。 Nickel plating was performed using a brass plate as the cathode and a nickel plate as the anode. The plating solution used was a Watt bath consisting of 280 gZL of nickel sulfate, 60 g, L of nickel chloride, 50 gZL of boric acid, and an appropriate amount of a fluorescent agent. The bath temperature was set to 50 ° C., and the plating was performed by energizing with a current density of 5AZdm 2 for 80 seconds. As a result, a nickel plating film with a thickness of about 1 μm was formed on the brass plate.
[0029] 続いて、ニッケルめっき皮膜が形成された真鍮板に対し置換金めつきを行った。置 換金めつき液には、市販のめっき浴((株)高純度化学研究所 Auメツキ液 K- 24 N)を用いた。そして、浴温を 70°Cとし、めっき浴に真鍮板を 10分間浸漬して、金め つき処理を行った。その後、真鍮板を水洗した。  [0029] Subsequently, substitution brassing was performed on the brass plate on which the nickel plating film was formed. A commercially available plating bath (Au High Liquid Chemical Laboratory Au-Mekking Solution K-24N) was used as the replacement plating solution. Then, the bath temperature was set to 70 ° C., and the brass plate was immersed in the plating bath for 10 minutes to perform the gold plating process. Thereafter, the brass plate was washed with water.
[0030] (実施例 3)  [0030] (Example 3)
陰極に真鍮板、陽極に白金でコーティングしたチタン板を用いて、超臨界 C02中 で金めつきを行った。めっき液には、市販の酸性金めつき浴((株)高純度化学研究 所 Auメツキ液 K— 24EA10)を用いた。酸性金めつき浴には、フッ素系化合物と して(F(CF(CF )CF O) CF(CF )COOCH CH OCH )を COに対して 0. 5重量0 /0Gold plating was performed in supercritical C02 using a brass plate as the cathode and a titanium plate coated with platinum as the anode. As the plating solution, a commercially available acid gold plating bath (Au Pure Solution K-24EA10, Purity Chemical Laboratory Co., Ltd.) was used. The acidic gold plated bath, and a fluorine-based compound (F (CF (CF) CF O) CF (CF) COOCH CH OCH) 0. 5 wt 0/0 pressurized against CO
3 2 3 3 2 2 3 2  3 2 3 3 2 2 3 2
えた。超臨界 COと酸性金めつき浴との体積比率を 7 : 3とし、浴温を 50°C、槽圧力を  Yeah. The volume ratio of supercritical CO to acidic gold bath is 7: 3, the bath temperature is 50 ° C, and the bath pressure is
2  2
lOMPaとした。そして、めっき浴を撹拌しながら、電流密度 0. 5AZdm2で 60秒間 通電して、めっき処理を行った。この結果、真鍮板には、約 0. 3 mの厚さの金めつ き皮膜が形成された。 [0031] (比較例 3) lOMPa. Then, while stirring the plating bath, a current was applied at a current density of 0.5 AZdm 2 for 60 seconds to perform plating. As a result, a gold plating film having a thickness of about 0.3 m was formed on the brass plate. [0031] (Comparative Example 3)
陰極に真鍮板、陽極に白金でコーティングしたチタン板を用いて、通常の金めつき を行った。めっき液には、市販のめっき浴((株)高純度化学研究所 Auメツキ液 K — 24EA10)を用いた。浴温を 50°Cとし、電流密度 0. 5AZdm2で 60秒間通電して 、めっき処理を行った。この結果、真鍮板には、約 0. 3 mの厚さの金めつき皮膜が 形成された。 Using a brass plate for the cathode and a titanium plate coated with platinum for the anode, normal gold plating was performed. As the plating solution, a commercially available plating bath (Au Purity Chemicals Co., Ltd. Au plating solution K-24EA10) was used. The bath temperature was set to 50 ° C., and a current density of 0.5 AZdm 2 was applied for 60 seconds to perform plating. As a result, a gold plating film having a thickness of about 0.3 m was formed on the brass plate.
[0032] 実施例 1で得られた真鍮板のコーティング体を、塩酸 lmolZL、硝酸 lmolZL、硫 酸 ImolZLにそれぞれ 24時間浸漬した。同様に、実施例 2、比較例 1及び 2で得ら れた真鍮板のコーティング体を、塩酸 lmolZL、硝酸 lmolZL、硫酸 ImolZUこそ れぞれ 24時間浸漬した。その結果、実施例 2の真鍮板のコーティング体では、塩 酸、硝酸及び硫酸のいずれの場合にも変化が見られなかった。これに対して、比較 例 1, 2の真鍮板のコーティング体では、塩酸、硝酸及び硫酸のいずれの場合にも腐 食が確認された。  [0032] The brass plate coating obtained in Example 1 was immersed in lmolZL hydrochloric acid, lmolZL nitric acid, and ImolZL sulfuric acid for 24 hours. Similarly, the brass plate coatings obtained in Example 2 and Comparative Examples 1 and 2 were immersed in lmolZL hydrochloric acid, lmolZL nitric acid, and ImolZU sulfuric acid for 24 hours. As a result, the brass plate coating of Example 2 showed no change in any of hydrochloric acid, nitric acid and sulfuric acid. In contrast, corrosion was confirmed in the brass plate coatings of Comparative Examples 1 and 2 in all cases of hydrochloric acid, nitric acid, and sulfuric acid.
[0033] 次に、実施例 3及び比較例 3で得られた真鍮板のコーティング体を、硫酸水溶液 1 molZLに室温で 24時間浸漬した。その後、実施例 3及び比較例 3のコーティング膜 を光学顕微鏡を用いて観察した。図 3の光学顕微鏡写真カゝらゎカゝるように、実施例 3 のコーティング膜には腐食が確認されな力つた。この結果より、本発明によれば、金 めっき皮膜の厚さが 1 μ m未満であっても、優れた耐食性が発揮されることがわかる。 一方、図 4の光学顕微鏡写真力 わ力るように、比較例 3のコーティング膜には腐食 が確認された。  [0033] Next, the brass plate coating bodies obtained in Example 3 and Comparative Example 3 were immersed in 1 mol ZL of sulfuric acid aqueous solution at room temperature for 24 hours. Thereafter, the coating films of Example 3 and Comparative Example 3 were observed using an optical microscope. As shown in the optical micrograph of FIG. 3, the coating film of Example 3 was strong without any corrosion. From this result, it can be seen that according to the present invention, excellent corrosion resistance is exhibited even when the thickness of the gold plating film is less than 1 μm. On the other hand, the coating film of Comparative Example 3 was confirmed to be corroded, as shown in FIG.
[0034] (第 2実施形態) [0034] (Second embodiment)
次に、本発明を具体ィ匕した第 2実施形態を図 1及び図 2に基づいて説明する。本実 施形態では、下地膜としてニッケル (Ni)膜を形成し、その上に金 (Au)膜を形成する 。ニッケル膜は、第 1実施形態と同様に、拡散流体として超臨界 COを用いた電解め  Next, a second embodiment embodying the present invention will be described with reference to FIGS. In this embodiment, a nickel (Ni) film is formed as a base film, and a gold (Au) film is formed thereon. Similar to the first embodiment, the nickel film is electrolyzed using supercritical CO as the diffusion fluid.
2  2
つきにより形成する。  It is formed by spitting.
[0035] 図 1に示すように、めっき装置は、洗浄液タンク 11、高純度 COタンク 21、分散促  [0035] As shown in FIG. 1, the plating apparatus comprises a cleaning liquid tank 11, a high-purity CO tank 21, and a dispersion promoting
2  2
進剤タンク 31、 Niめっき液タンク 41及び Auめっき液タンク 51を有する。更に、めっき 装置は、混合タンク 30、混合分散部 60及びめつき槽 61を有する。 [0036] 洗浄液タンク 11は、洗浄液を収容する。洗浄液として、純水が用いられる。洗浄液 タンク 11は、洗浄液供給管を介して混合分散部 60に接続されている。洗浄液供給 管は、液ポンプ 12、加熱部 13及び供給弁 14を含む。液ポンプ 12は、洗浄液を加圧 する。加熱部 13は、洗浄液を加熱する。供給弁 14は、洗浄液タンク 11と混合分散部 60との連通及び遮断を行う。つまり、供給弁 14の開閉制御によって、混合分散部 60 に洗浄液が供給されるカゝ、或いは、洗浄液の供給が停止される。 It has an accelerator tank 31, a Ni plating solution tank 41, and an Au plating solution tank 51. Further, the plating apparatus has a mixing tank 30, a mixing / dispersing section 60, and a tub 61. [0036] The cleaning liquid tank 11 stores the cleaning liquid. Pure water is used as the cleaning liquid. The cleaning liquid tank 11 is connected to the mixing and dispersing unit 60 via a cleaning liquid supply pipe. The cleaning liquid supply pipe includes a liquid pump 12, a heating unit 13, and a supply valve 14. The liquid pump 12 pressurizes the cleaning liquid. The heating unit 13 heats the cleaning liquid. The supply valve 14 communicates and shuts off the cleaning liquid tank 11 and the mixing and dispersing unit 60. That is, the supply of the cleaning liquid to the mixing / dispersing unit 60 or the supply of the cleaning liquid is stopped by opening / closing control of the supply valve 14.
[0037] 高純度 COタンク 21は、拡散流体としての COを収容する。高純度 COタンク 21  [0037] The high-purity CO tank 21 contains CO as a diffusion fluid. High purity CO tank 21
2 2 2 は、混合タンク 30に接続されている。また、高純度 COタンク 21は、 CO供給管を介  2 2 2 is connected to the mixing tank 30. The high purity CO tank 21 is connected via a CO supply pipe.
2 2 して混合分散部 60に接続されている。 CO供給管は、液ポンプ 22、加熱部 23及び  2 2 and connected to the mixing and dispersing unit 60. The CO supply pipe consists of a liquid pump 22, a heating unit 23 and
2  2
供給弁 24を含む。液ポンプ 22は、 COを加圧する。加熱部 23は、 COを加熱する。  Includes supply valve 24. The liquid pump 22 pressurizes CO. The heating unit 23 heats CO.
2 2  twenty two
供給弁 24は、高純度 COタンク 21と混合分散部 60との連通及び遮断を行う。供給  The supply valve 24 communicates and shuts off the high-purity CO tank 21 and the mixing and dispersing unit 60. Supply
2  2
弁 24の開閉制御によって、混合分散部 60への COの供給されるか、或いは COの  By controlling the opening / closing of the valve 24, CO is supplied to the mixing / dispersing section 60, or
2 2 供給が停止される。  2 2 Supply is stopped.
[0038] また、分散促進剤タンク 31は、分散促進剤を収容する。分散促進剤として、フッ素 系化合物が用いられる。  [0038] Further, the dispersion accelerator tank 31 contains a dispersion accelerator. A fluorine-based compound is used as a dispersion accelerator.
[0039] フッ素系化合物は、フッ素基と親水性部分とを含む。フッ素系化合物として、高圧 C[0039] The fluorine-based compound includes a fluorine group and a hydrophilic portion. High pressure C as a fluorine compound
O中でも分散促進作用を十分に発揮するという観点から、好ましくは、非イオン性親From the viewpoint of sufficiently exhibiting the dispersion promoting action even in O, preferably the nonionic parent
2 2
水性基を有するフッ素系化合物が用いられる。  A fluorine-based compound having an aqueous group is used.
[0040] また、フッ素基として、直鎖や分岐鎖を有するペルフルォロアルキル基、或いはべ ルフルォロポリエーテル基を始めとした炭素鎖中にヘテロ原子を含むものが挙げられ る。これらのうち、ペルフルォロアルキル基では、炭素数が 3〜15程度のものが使用 され、炭素鎖中にヘテロ原子を含むものでは、炭素数が 3〜50程度のものが使用さ れる。 [0040] Further, examples of the fluorine group include those having a hetero atom in a carbon chain such as a perfluoroalkyl group having a straight chain or a branched chain, or a perfluoropolyether group. Among these, perfluoroalkyl groups having about 3 to 15 carbon atoms are used, and those containing a hetero atom in the carbon chain, those having about 3 to 50 carbon atoms are used.
[0041] また、親水性基として、エーテル、エステル、アルコール、チォエーテル、チォエス テル、アミド等の極性基が挙げられる。これらのうち、フッ素基がペルフルォロポリエ 一テル基であり、親水性基が短鎖のポリエチレングリコール基であるフッ素系界面活 性剤が特に優れる。  [0041] Examples of the hydrophilic group include polar groups such as ether, ester, alcohol, thioether, thioester, and amide. Of these, fluorine surfactants in which the fluorine group is a perfluoropolyether group and the hydrophilic group is a short-chain polyethylene glycol group are particularly excellent.
[0042] 従来の分散促進剤である炭化水素系の界面活性剤は、長鎖のポリエチレングリコ 一ル基を含み、化学的に不安定であるといった課題を有していた。これに比べて、フ ッ素系化合物は、化学的に安定であるため、その分散促進作用を長期に亘り維持す ることができる。また、炭化水素系の分解物由来の異物が混入される可能性も低くな る。 [0042] A hydrocarbon-based surfactant that is a conventional dispersion accelerator is a long-chain polyethylene glycol. It has a problem that it contains a single group and is chemically unstable. In contrast, fluorine compounds are chemically stable, and therefore, their dispersion promoting action can be maintained over a long period of time. In addition, the possibility of foreign substances derived from hydrocarbon-based decomposition products is reduced.
[0043] フッ素系化合物は、疎水性のフッ素基である。そのため、 CO及びめつき液の分散  [0043] The fluorine-based compound is a hydrophobic fluorine group. Therefore, dispersion of CO and plating liquid
2  2
状態を維持できる時間 (分散保持時間)は短い。つまり、めっき液と COとが容易に分  The time during which the state can be maintained (dispersion holding time) is short. This means that the plating solution and CO can be separated easily.
2  2
離するため、取り扱い性の面でも優れている。このフッ素系化合物を用いた場合、め つき分散体は、分散操作を停止すれば、数秒〜数十秒程度で COとめつき液とに分  Because it separates, it is excellent in handling. When this fluorine-based compound is used, the dispersion of the plating solution can be separated into CO and a plating solution in about several seconds to several tens of seconds when the dispersion operation is stopped.
2  2
離する。  Release.
[0044] 分散促進剤タンク 31は、混合タンク 30に接続されている。混合タンク 30は、高純度 COタンク 21から供給される COと、分散促進剤タンク 31から供給される分散促進 The dispersion accelerator tank 31 is connected to the mixing tank 30. Mixing tank 30 consists of CO supplied from high-purity CO tank 21 and dispersion promotion supplied from dispersion promoter tank 31.
2 2 twenty two
剤との混合液を収容するタンクである。混合タンク 30は、供給管を介して混合分散部 60に接続されている。この供給管は、液ポンプ 32、加熱部 33及び供給弁 34を含む 。液ポンプ 32は、分散促進剤タンク 31から供給される混合液を昇圧して、加熱部 33 に送り出す。加熱部 33は、 COと分散促進剤との混合液を加熱する。供給弁 34は、  It is a tank that contains a liquid mixture with the agent. The mixing tank 30 is connected to the mixing and dispersing unit 60 through a supply pipe. The supply pipe includes a liquid pump 32, a heating unit 33, and a supply valve 34. The liquid pump 32 raises the pressure of the mixed liquid supplied from the dispersion accelerator tank 31 and sends it out to the heating unit 33. The heating unit 33 heats the mixed liquid of CO and the dispersion accelerator. Supply valve 34
2  2
混合タンク 30と混合分散部 60との連通及び遮断を行う。供給弁 34の開閉制御によ つて、 COと分散促進剤との混合液が混合分散部 60に供給されるか、或いは、該混  The mixing tank 30 and the mixing / dispersing section 60 are communicated and disconnected. By controlling the opening and closing of the supply valve 34, the mixed liquid of CO and the dispersion accelerator is supplied to the mixing / dispersing unit 60, or the mixed liquid is mixed.
2  2
合液の供給が停止される。  Supply of the mixed solution is stopped.
[0045] Niめっき液タンク 41は、 Niめっき液を収容する。 Niめっき液タンク 41は、 Niめっき 液を所定の温度 (例えば 50°C程度)〖こ加熱して保温するための加熱 ·保温手段を備 える。 Niめっき液タンク 41は、下地めつき液供給管を介して混合分散部 60に接続さ れている。下地めつき液供給管は、液ポンプ 42及び供給弁 44を含む。液ポンプ 42 は、 Niめっき液を昇圧して混合分散部 60に送り出す。供給弁 44は、 Niめっき液タン ク 41と混合分散部 60との連通及び遮断を行う。つまり、供給弁 44の開閉制御によつ て、 Niめっき液が混合分散部 60に供給されるか、或いは、 Niめっき液の供給が停止 される。 [0045] The Ni plating solution tank 41 stores a Ni plating solution. The Ni plating solution tank 41 is provided with a heating and heat retaining means for heating the Ni plating solution at a predetermined temperature (eg, about 50 ° C). The Ni plating solution tank 41 is connected to the mixing / dispersing unit 60 via a base plating solution supply pipe. The undercoat liquid supply pipe includes a liquid pump 42 and a supply valve 44. The liquid pump 42 pressurizes the Ni plating solution and sends it to the mixing and dispersing unit 60. The supply valve 44 communicates and shuts off the Ni plating solution tank 41 and the mixing and dispersing unit 60. In other words, the Ni plating solution is supplied to the mixing and dispersing unit 60 or the supply of the Ni plating solution is stopped by opening / closing control of the supply valve 44.
[0046] 混合分散部 60は、混合液と Niめっき液とを混合し、分散状態にする。混合分散部 60には混合器が配設され、混合器の下流側には、分散機が接続されている。 Niめ つき液と CO及び分散促進剤の混合液とが混合器に供給されて、めっき混合液が生[0046] The mixing and dispersing unit 60 mixes the mixed solution and the Ni plating solution to obtain a dispersed state. A mixer is disposed in the mixing and dispersing unit 60, and a disperser is connected to the downstream side of the mixer. Ni Me The plating solution and the mixture of CO and dispersion accelerator are supplied to the mixer to produce the plating mixture.
2 2
成される。分散機は、撹拌子を備える。混合器カゝらめっき混合液が分散機に供給さ れると、撹拌子が回転し、混合液中の成分が均一に分散する。  Made. The disperser includes a stirring bar. When the plating mixture is supplied to the disperser from the mixer, the stirrer rotates and the components in the mixture are uniformly dispersed.
[0047] Auめっき液タンク 51は、 Auめっき液を収容する。 Auめっき液タンク 51は、 Auめつ き液を所定の温度 (例えば 50°C程度)に加熱して保温するための加熱'保温手段を 備える。 Auめっき液タンク 51は、貴金属めつき液供給管を介してめつき槽 61に接続 されている。貴金属めつき液供給管は、液ポンプ 52及び供給弁 54を含む。液ポンプ 52は、 Auめっき液を昇圧してめっき槽 61に送り出す。供給弁 54は、 Auめっき液タ ンク 51とめつき槽 61との連通及び遮断を行う。つまり、供給弁 54の開閉制御によつ て、 Auめっき液がめっき槽 61に供給される力 或いは、 Auめっき液の供給が停止さ れる。  [0047] The Au plating solution tank 51 stores an Au plating solution. The Au plating solution tank 51 is provided with a heating and heat retaining means for heating the Au plating solution to a predetermined temperature (for example, about 50 ° C.) and keeping it warm. The Au plating solution tank 51 is connected to a plating tank 61 through a noble metal plating solution supply pipe. The noble metal plating liquid supply pipe includes a liquid pump 52 and a supply valve 54. The liquid pump 52 pressurizes the Au plating solution and sends it out to the plating tank 61. The supply valve 54 communicates and shuts off the Au plating solution tank 51 and the mating tank 61. That is, by the opening / closing control of the supply valve 54, the power for supplying the Au plating solution to the plating tank 61 or the supply of the Au plating solution is stopped.
[0048] めっき槽 61では、コーティング膜を形成するためのめっき処理が行われる。めっき 槽 61〖こは、コーティングが施される対象物として基板 Wが収容される。また、めっき槽 61は、一対の電極を備えている。両電極のうち一方がマイナス電極であり、基板 Wに 接続されている。更に、めっき槽 61は、ブロックヒータ(図示せず)を備えている。ブロ ックヒータは、めっき槽 61内を加熱して、めっき分散体を所定の温度に調節する。 Ni 膜をめつきする場合、 COが超臨界状態となるように、液温を 50°C程度に設定する。  [0048] In the plating tank 61, a plating process for forming a coating film is performed. In the plating tank 61, the substrate W is accommodated as an object to be coated. The plating tank 61 includes a pair of electrodes. One of the two electrodes is a negative electrode and is connected to the substrate W. Further, the plating tank 61 includes a block heater (not shown). The block heater heats the inside of the plating tank 61 to adjust the plating dispersion to a predetermined temperature. When the Ni film is attached, the liquid temperature is set to about 50 ° C so that CO is in a supercritical state.
2  2
[0049] めっき槽 61は、遮断弁 64を含む排出管を介して分離槽 65に接続されている。遮 断弁 64は、混合分散部 60と分離槽 65との連通及び遮断を行う。遮断弁 64の開閉 制御によって、使用済みのめっき液が外部に排出される力 或いは、該めっき液の排 出が停止される。  The plating tank 61 is connected to the separation tank 65 via a discharge pipe including a shutoff valve 64. The shutoff valve 64 communicates and shuts off the mixing and dispersing unit 60 and the separation tank 65. By controlling the opening / closing of the shut-off valve 64, the force for discharging the used plating solution to the outside or the discharge of the plating solution is stopped.
[0050] 分離槽 65は、分散促進剤を含む CO力もめつき液を分離する。そして、 COは、水  [0050] The separation tank 65 separates the CO-powered liquid containing the dispersion accelerator. And CO is water
2 2 素や酸素などが除去されて力も混合タンク 30に供給される。一方、 Niめっき液は、排 出切換弁を介して、図示しない Niめっき液再生装置、 Auめっき液再生装置又は廃 液タンクに排出される。 Niめっき液再生装置では、不純物が除去された後、 Niめっき 液中の各成分が調整される。こうして再生された Niめっき液は、 Niめっき液タンク 41 に再び戻される。また、 Auめっき液再生装置では、 Auめっき液中の不純物が除去さ れた後、 Auめっき液中の各成分が調整される。こうして再生された Auめっき液は、 A uめっき液タンク 51に再び戻される。更に、廃液タンクには、使用済みの洗浄液や再 生されな!ヽ Niめっき液などが排出される。 2 2 Element and oxygen are removed, and the power is supplied to the mixing tank 30. On the other hand, the Ni plating solution is discharged to a Ni plating solution regenerating device, an Au plating solution regenerating device or a waste solution tank (not shown) via a discharge switching valve. In the Ni plating solution regenerator, each component in the Ni plating solution is adjusted after impurities are removed. The regenerated Ni plating solution is returned to the Ni plating solution tank 41 again. In the Au plating solution regenerator, each component in the Au plating solution is adjusted after impurities in the Au plating solution are removed. The Au plating solution regenerated in this way is A u Returned to the plating solution tank 51 again. Furthermore, used cleaning liquid and unrecycled Ni plating solution are discharged to the waste liquid tank.
[0051] また、めっき装置は、制御手段としてのプロセス制御部(図示せず)を備える。プロ セス制御部は、 CPU、 RAM, ROM等から構成され、格納されたプログラムに従い、 各液ポンプ 12, 22, 32, 42, 52、各カロ熱部 13, 23, 33、各供給弁 14, 24, 34, 44In addition, the plating apparatus includes a process control unit (not shown) as control means. The process control unit is composed of CPU, RAM, ROM, etc., and according to the stored program, each liquid pump 12, 22, 32, 42, 52, each caloric heat unit 13, 23, 33, each supply valve 14, 24, 34, 44
, 54、遮断弁 64及び電極等の制御を行う。 , 54, shut-off valve 64 and electrodes are controlled.
[0052] 次に、上記めつき装置を用いためっき方法について図 1及び図 2を参照して説明す る。 Next, a plating method using the above-described plating apparatus will be described with reference to FIGS. 1 and 2.
[0053] まず、 Au膜の下地となる Ni膜を形成する。その際、プロセス制御部は、各供給弁 3 4, 44を開き、加熱部 33にて加熱を行い、各液ポンプ 32, 42を駆動する。また、プロ セス制御部は、混合分散部 60の分散機を駆動する。すると、混合タンク 30から供給 される CO及び分散促進剤の混合液と、 Niめっき液タンク 41から供給される Niめつ  First, a Ni film is formed as a base for the Au film. At that time, the process control unit opens the supply valves 3 4 and 44, heats the heating unit 33, and drives the liquid pumps 32 and 42. The process control unit drives the disperser of the mixing / dispersing unit 60. Then, the mixed solution of CO and dispersion accelerator supplied from the mixing tank 30 and the Ni solution supplied from the Ni plating solution tank 41
2  2
き液とが、加圧及び加熱された状態で混合分散部 60に供給される。混合分散部 60 の分散機では、めっき混合液が撹拌され、均一に分散される。そして、めっき混合液 は、均一に分散された状態でめっき槽 61に供給される。本実施形態では、 CO、分  The liquid is supplied to the mixing and dispersing unit 60 in a pressurized and heated state. In the disperser of the mixing and dispersing unit 60, the plating mixed solution is stirred and uniformly dispersed. The plating mixture is supplied to the plating tank 61 in a uniformly dispersed state. In this embodiment, CO, minutes
2 散促進剤及び Niめっき液の分散保持時間が短いため、プロセス制御部は、混合器 で生成されるめつき分散体が分散保持時間内でめっき槽 61を流れきるように、各液 ポンプ 32, 42の駆動を制御する。  2 Because the dispersion holding time of the dispersion accelerator and Ni plating solution is short, the process control unit can control each liquid pump 32 so that the dispersion dispersed in the mixer can flow through the plating tank 61 within the dispersion holding time. , 42 is controlled.
[0054] 同時に、めっき槽 61では、電極の通電を行い、めっき分散体による電解めつきが行 われる。その結果、基板 Wの表面には、 Ni膜 101が形成される。その間、遮断弁 64 は開いている。 [0054] At the same time, in the plating tank 61, the electrodes are energized and electroplating is performed by the plating dispersion. As a result, the Ni film 101 is formed on the surface of the substrate W. Meanwhile, the shutoff valve 64 is open.
[0055] めっき分散体は、分散保持時間を経過する前に、めっき槽 61から分離槽 65に排出 される。めっき液は、分離槽 65に排出されると、分散促進剤を含む COと、 Niめっき  [0055] The plating dispersion is discharged from the plating tank 61 to the separation tank 65 before the dispersion holding time elapses. When the plating solution is discharged into the separation tank 65, CO containing a dispersion accelerator and Ni plating
2  2
液とに分離される。 CO及び分散促進剤は、水素や酸素などのガスが除去された後  Separated into liquid. CO and dispersion promoters are used after gases such as hydrogen and oxygen are removed
2  2
、混合タンク 30に還流される。一方、残りの Niめっき液は、 Niめっき液再生装置に排 出される。 Niめっき液は、不純物が除去された後、めっき液に含まれる各成分が調整 される。 Niめっき液は、このようにして再生された後、 Niめっき液タンク 41に還流され る。 [0056] その後、各液ポンプ 32, 42の駆動、及び加熱部 33の加熱を継続し、めっき分散体 のめつき槽 61への供給、及びめつき槽 61からの排出を継続する。 The mixture is refluxed to the mixing tank 30. On the other hand, the remaining Ni plating solution is discharged to the Ni plating solution regenerator. In the Ni plating solution, after impurities are removed, each component contained in the plating solution is adjusted. After the Ni plating solution is regenerated in this way, it is returned to the Ni plating solution tank 41. [0056] Thereafter, the driving of the liquid pumps 32 and 42 and the heating of the heating unit 33 are continued, and the supply of the plating dispersion to the mating tank 61 and the discharge from the metching tank 61 are continued.
[0057] 次に、 Ni膜 101が所定の膜厚 (例えば 1 μ m)に形成された後、無電解めつき (置換 めっき)により Au膜 102を形成する。プロセス制御部は、所定の時間が経過した場合 、めっき槽 61の電極の通電を停止すると共に、供給弁 44を閉じ、液ポンプ 42の駆動 を停止する。これにより、 Niめっき液の混合分散部 60への供給が停止され、 CO混  Next, after the Ni film 101 is formed to a predetermined thickness (eg, 1 μm), the Au film 102 is formed by electroless plating (substitution plating). When a predetermined time has elapsed, the process control unit stops energization of the electrode of the plating tank 61, closes the supply valve 44, and stops the driving of the liquid pump 42. As a result, the supply of the Ni plating solution to the mixing and dispersing unit 60 is stopped, and the CO
2 合液のみが、混合分散部 60を介してめつき槽 61に供給される。 CO混合液の供給  2 Only the mixed solution is supplied to the messenger tank 61 via the mixing and dispersing unit 60. Supply of CO mixture
2  2
を所定時間継続することで、めっき槽 61に残存する Niめっき液が完全に排出される 。続いて、プロセス制御部は、供給弁 14を開き、液ポンプ 12を駆動する。これにより、 洗浄液タンク 11から洗浄液が混合分散部 60に供給され、めっき槽 61の内部が洗浄 される。洗浄液の供給を所定時間継続した後、プロセス制御部は、供給弁 14を閉じ 、液ポンプ 12の駆動を停止する。これにより、洗浄液の供給が停止され、分散促進 剤を含む CO混合液がめっき槽 61に供給される。この混合液がめっき槽 61内を流  By continuing for a predetermined time, the Ni plating solution remaining in the plating tank 61 is completely discharged. Subsequently, the process control unit opens the supply valve 14 and drives the liquid pump 12. Thus, the cleaning liquid is supplied from the cleaning liquid tank 11 to the mixing and dispersing unit 60, and the inside of the plating tank 61 is cleaned. After supplying the cleaning liquid for a predetermined time, the process control unit closes the supply valve 14 and stops driving the liquid pump 12. As a result, the supply of the cleaning liquid is stopped, and the CO mixed liquid containing the dispersion accelerator is supplied to the plating tank 61. This mixed solution flows through the plating tank 61.
2  2
れることで、めっき槽 61から洗浄液が排出される。  As a result, the cleaning liquid is discharged from the plating tank 61.
[0058] その後、プロセス制御部は、液ポンプ 52を駆動すると共に、供給弁 54を開き、遮断 弁 64を閉じる。すると、めっき槽 61には、 Auめっき液タンク 51から Auめっき液が供 給されて、蓄えられる。めっき槽 61に Auめっき液が満たされると、プロセス制御部は 、液ポンプ 52を停止し、供給弁 54を閉じる。このとき、めっき槽 61内では、 Auめっき 液中の Auイオン力 Auイオンよりもイオン化傾向の大きい Ni膜 101から電子を受け 取る。その結果、基板 Wの表面では、 Niが Auに置換されて、 Au膜 102が形成され る。 [0058] Thereafter, the process control unit drives the liquid pump 52, opens the supply valve 54, and closes the shut-off valve 64. Then, the Au plating solution is supplied from the Au plating solution tank 51 and stored in the plating tank 61. When the plating bath 61 is filled with the Au plating solution, the process control unit stops the solution pump 52 and closes the supply valve 54. At this time, in the plating tank 61, electrons are received from the Ni film 101 having a higher ionization tendency than the Au ion force Au ions in the Au plating solution. As a result, on the surface of the substrate W, Ni is replaced with Au, and the Au film 102 is formed.
[0059] プロセス制御部は、供給弁 54を閉じて力も所定時間が経過したときに遮断弁 64を 開く。すると、めっき槽 61内の Auめっき液が分離槽 65に排出され、分離槽 65から廃 液タンクに一度に排出される。以上により、めっき処理を完了する。  [0059] The process control unit closes the supply valve 54 and opens the shut-off valve 64 when the force has also passed for a predetermined time. Then, the Au plating solution in the plating tank 61 is discharged to the separation tank 65, and discharged from the separation tank 65 to the waste liquid tank at once. Thus, the plating process is completed.
[0060] 本実施形態によれば、以下のような効果を得ることができる。 [0060] According to the present embodiment, the following effects can be obtained.
[0061] (l)Au膜 102を形成する前に、超臨界状態の COと Niめっき液とを含むめっき分 [0061] (l) Before forming the Au film 102, a plating component containing CO and Ni plating solution in a supercritical state
2  2
散体を用いて、基板 W上に Ni膜 101が形成される。その場合、超臨界状態の COの  A Ni film 101 is formed on the substrate W by using a powder. In that case, the supercritical state of CO
2 拡散力によって、 Niめっき液の拡散を促進させ、 Ni膜 101の付き回りを向上させるこ とができる。よって、ピンホールのない Ni膜 101を形成することができる。そして、ピン ホールのない Ni膜 101上に Au膜 102を形成することにより、 Au膜 102を薄く形成し ても、基板 Wの耐食性を確保することができる。よって、 Auの使用量が少なくて済む ことから、耐食性に優れるコーティング膜を低コストで製造できる。 2 The diffusion force promotes the diffusion of the Ni plating solution and improves the adhesion of the Ni film 101. You can. Therefore, the Ni film 101 without a pinhole can be formed. Then, by forming the Au film 102 on the Ni film 101 having no pinholes, the corrosion resistance of the substrate W can be ensured even if the Au film 102 is formed thin. Therefore, since the amount of Au used is small, a coating film having excellent corrosion resistance can be manufactured at low cost.
[0062] (2) Ni膜 101を形成するときに、拡散流体として超臨界状態の COが用いられる。 (2) When forming the Ni film 101, supercritical CO is used as a diffusion fluid.
2  2
その場合、めっき処理中に発生した水素が超臨界状態の COに溶解するため、ピン  In that case, the hydrogen generated during the plating process dissolves in the supercritical state of CO.
2  2
ホールの発生要因である水素を基板 Wの表面から取り除くことができる。更に、 Ni膜 101は、混合分散部 60からめつき槽 61にめつき分散体が連続的に供給され、かつ 同めつき槽 61から連続的に排出されて形成される。この場合、水素を含む COがめ  Hydrogen, which is a cause of generation of holes, can be removed from the surface of the substrate W. Further, the Ni film 101 is formed by continuously supplying the swell dispersion from the mixing / dispersing part 60 to the staking bath 61 and continuously discharging it from the staking bath 61. In this case, CO containing hydrogen
2 つき槽 61から速やかに排出されるため、基板 Wの表面への気泡の再付着を回避す ることができる。よって、 Ni膜 101にピンホールが形成されることをより一層抑止できる 。また、めっき槽 61の内圧が高く維持されているため、水素ガスの体積を小さく抑え ることができる。よって、基板 Wの表面に気泡が付着し、その付着部分にめっきが形 成されても、ピンホールを消失させることができる。  2 Since it is quickly discharged from the tank 61, it is possible to avoid reattachment of bubbles to the surface of the substrate W. Therefore, the formation of pin holes in the Ni film 101 can be further suppressed. Further, since the internal pressure of the plating tank 61 is maintained high, the volume of hydrogen gas can be kept small. Therefore, even if air bubbles adhere to the surface of the substrate W and plating is formed on the attached portion, the pinhole can be eliminated.
[0063] (3)超臨界状態の COと、 Niめっき液とを混合分散させるために、分散促進剤とし [0063] (3) In order to mix and disperse CO in a supercritical state and Ni plating solution,
2  2
てフッ素系化合物が用いられる。その結果、分散促進剤を用いない場合や、従来の 炭化水素系界面活性剤を用いた場合に比べて、 Ni膜 101の表面をより平坦にするこ とができる。そして、その平坦な Ni膜 101の表面に Au膜 102を形成することにより、 Au膜 102を薄く形成しても、基板 Wの耐食性を確保することができる。従って、 Auの 使用量が少なくて済む。  Fluorine compounds are used. As a result, the surface of the Ni film 101 can be made flatter than when a dispersion accelerator is not used or when a conventional hydrocarbon surfactant is used. Then, by forming the Au film 102 on the surface of the flat Ni film 101, the corrosion resistance of the substrate W can be ensured even if the Au film 102 is formed thin. Therefore, the amount of Au used is small.
[0064] (4)置換めつきを用いて Au膜 102を形成する。置換めつきでは、 Ni膜 101の表面 形状を維持しつつ、 Ni膜 101が Auに置換される。このため、下地膜の Ni膜 101が平 坦であれば、 Ni膜 101が置換されて形成される Au膜 102を平坦にすることができる 。よって、貴金属膜としての Au膜 102を極めて薄く形成することができ、耐食性に優 れるコーティング膜をより少ない貴金属で形成できる。また、置換めつきでは、 Ni膜 1 01の表面での置換が完了すると、反応が停止したり、或いは反応が遅くなる場合が ある。よって、 Au膜 102が必要以上に厚く形成されず、貴金属である Auが無駄に消 費されることもない。 [0065] (5)プロセス制御部は、 CO、分散促進剤及び Niめっき液を含むめっき分散体が、 [0064] (4) The Au film 102 is formed by using substitution fitting. In replacement plating, the Ni film 101 is replaced with Au while the surface shape of the Ni film 101 is maintained. Therefore, if the Ni film 101 of the base film is flat, the Au film 102 formed by replacing the Ni film 101 can be flattened. Therefore, the Au film 102 as a noble metal film can be formed extremely thin, and a coating film excellent in corrosion resistance can be formed with fewer noble metals. In addition, in substitution welding, when substitution on the surface of the Ni film 101 is completed, the reaction may be stopped or the reaction may be delayed. Therefore, the Au film 102 is not formed thicker than necessary, and the noble metal Au is not wasted. [0065] (5) The process control unit includes a plating dispersion containing CO, a dispersion accelerator, and a Ni plating solution.
2  2
分散保持時間内にめっき槽 61を通過して分離槽 65に供給されるように、各液ポンプ 32, 42の駆動を制御する。これにより、めっき分散体は、その分散状態を保ちつつ めっき槽 61に供給される。そのため、基板 Wに施される Ni膜 101の膜厚を均一にす ることがでさる。  The drive of each liquid pump 32, 42 is controlled so that it passes through the plating tank 61 and is supplied to the separation tank 65 within the dispersion holding time. Thus, the plating dispersion is supplied to the plating tank 61 while maintaining the dispersion state. For this reason, it is possible to make the thickness of the Ni film 101 applied to the substrate W uniform.
[0066] (6) Ni膜 101は、 Niめっき液を含むめっき分散体がめっき槽 61に連続的に供給さ れ、かつ同めつき槽 61から連続的に排出されて形成される。この場合、めっき処理中 に発生した水素や、基板 Wから剥離した異物などを、めっき槽 61から速やかに排出 することができる。よって、異物やピンホールなどを含まない Ni膜 101を形成でき、良 質なコーティング膜を形成することができる。  (6) The Ni film 101 is formed by continuously supplying a plating dispersion containing a Ni plating solution to the plating tank 61 and continuously discharging it from the plating tank 61. In this case, hydrogen generated during the plating process or foreign matter peeled off from the substrate W can be quickly discharged from the plating tank 61. Therefore, the Ni film 101 that does not include foreign matter or pinholes can be formed, and a good coating film can be formed.
[0067] (7)遮断弁 64を閉じて、めっき槽 61に Auめっき液が封入されて力 置換めつきが 行われる。そして、置換めつき処理が終了した後、使用済みの Auめっき液が一度に 排出される。このため、 Auめっき液は、めっき槽 61に封入される量だけ使用されるた め、高価な Auめっき液の使用量を極力少なくすることができる。  [0067] (7) The shut-off valve 64 is closed, and the Au plating solution is sealed in the plating tank 61, so that force displacement tacking is performed. After the replacement staking process is completed, the used Au plating solution is discharged at once. For this reason, since the Au plating solution is used in an amount enclosed in the plating tank 61, the amount of expensive Au plating solution used can be reduced as much as possible.
[0068] (8)超臨界 COを用いて形成される Ni膜 101の厚さは 1 μ m程度である。通常、 Ni  [8] (8) The thickness of the Ni film 101 formed using supercritical CO is about 1 μm. Usually Ni
2  2
等の金属のグレインサイゾ (粒径)は数 nm程度であるため、 Ni膜 101の厚さを 10nm 以上確保することにより、ピンホールのない Ni膜 101を形成することができる。また、 気泡(水素)の大きさが 5 μ m前後であるため、従来では 4 μ m以下の膜を形成するこ とが困難であった。本発明によれば、ピンホールのない Ni膜 101を l /z m以下の厚さ で形成することができ、ひいては、良質な Au膜 102を形成することができる。  Since the grain size (particle size) of such a metal is about several nm, the Ni film 101 without pinholes can be formed by securing the thickness of the Ni film 101 to 10 nm or more. In addition, since the size of bubbles (hydrogen) is around 5 μm, it has been difficult to form a film of 4 μm or less. According to the present invention, the Ni film 101 without pinholes can be formed with a thickness of 1 / zm or less, and as a result, a high-quality Au film 102 can be formed.
[0069] 上記各実施形態は以下のように変更してもよ!/、。 [0069] The above embodiments may be changed as follows! /.
[0070] ·第 1実施形態において、超臨界 COとめつき液とを分散させるため、フッ素系化合  [0070] In the first embodiment, in order to disperse the supercritical CO and the solution, the fluorine-based compound
2  2
物として非イオン性親水性基を有するフッ素系化合物を用いたが、これに代えて、フ ッ素基を含む他のあらゆるフッ素系化合物を用いてもよい。更に、分散促進剤として 、フッ素系化合物以外の有機化合物を使用してもよぐ分散促進剤を省略してもよい  Although a fluorine-based compound having a nonionic hydrophilic group is used as the product, any other fluorine-based compound containing a fluorine group may be used instead. Further, as a dispersion accelerator, an organic compound other than a fluorine-based compound may be used, or a dispersion accelerator may be omitted.
[0071] ·第 2実施形態において、めっき槽 61に Auめっき液を封入した後に置換めつきを 行ったが、これに代えて、 Auめっき液をめつき槽 61に連続的に供給しながら置換め つきを行ってもよい。これ〖こより、良質な Au膜 102を形成することができる。また、 Au めっき液を再生することで、製造コストの上昇を抑えることもできる。また、この場合、 Auめっき液を撹拌しながら、上記置換めつきを行ってもよい。これにより、より短時間 で Au膜 102が形成されて、生産性が向上する。 [0071] · In the second embodiment, replacement plating was performed after the Au plating solution was sealed in the plating tank 61. Instead, replacement was performed while continuously supplying the Au plating solution to the plating tank 61. Me You may go on. From this, a good quality Au film 102 can be formed. In addition, it is possible to suppress an increase in manufacturing cost by regenerating the Au plating solution. In this case, the substitution plating may be performed while stirring the Au plating solution. As a result, the Au film 102 is formed in a shorter time, and the productivity is improved.
[0072] '第 2実施形態において、超臨界 COを用いて Ni膜 101を形成し、その上に、置換 [0072] 'In the second embodiment, the Ni film 101 is formed using supercritical CO, and the substitution is performed thereon.
2  2
めっきにより Au膜 102を形成した力 これに代えて、電解めつき、無電解めつき等の 湿式の膜形成法や、乾式の膜形成法などを用いて Au膜 102を形成してもよい。この 場合も、下地膜となる Ni膜 101の表面がより平坦になるため、 Au膜 102を薄ぐかつ 均一な厚さに形成することができる。従って、耐食性に優れるコーティング膜を低コス トで製造できる。  Force for forming the Au film 102 by plating Instead of this, the Au film 102 may be formed by using a wet film forming method such as electrolytic plating or electroless plating, or a dry film forming method. Also in this case, since the surface of the Ni film 101 serving as the base film becomes flatter, the Au film 102 can be formed thin and with a uniform thickness. Therefore, a coating film having excellent corrosion resistance can be produced at a low cost.
[0073] '第 2実施形態おいて、 Au膜 102を形成する場合の下地膜として Ni膜 101を基板 W上に形成したが、これに代えて、超臨界状態の COと Auめっき液とを分散促進剤  [0073] In the second embodiment, the Ni film 101 is formed on the substrate W as a base film when the Au film 102 is formed. Instead, supercritical CO and Au plating solution are used instead. Dispersion accelerator
2  2
により分散させためっき分散体を用いて、基板 W上に直接 Au膜 102を形成してもよ い。この場合、超臨界状態の COを用いることで、ピンホールのない良質な Au膜 10  The Au film 102 may be formed directly on the substrate W using the plating dispersion dispersed by the above. In this case, by using supercritical CO, a good quality Au film without pinholes 10
2  2
2を、従来よりも薄く形成することができる。よって、 Auの使用量が少なくて済むことか ら、耐食性に優れるコーティング膜を低コストで製造できる。この場合、 Niめっき液タ ンク 41に代えて、 Auめっき液を収容した Auめっき液タンク 51を設ける。よって、めつ き装置の全体構成が簡素化される。  2 can be formed thinner than before. Therefore, since the amount of Au used is small, a coating film with excellent corrosion resistance can be manufactured at low cost. In this case, an Au plating solution tank 51 containing an Au plating solution is provided in place of the Ni plating solution tank 41. Therefore, the overall configuration of the eyelash device is simplified.
[0074] ·上記各実施形態において、 Au膜 102に代えて、銀 (Ag)や白金 (Pt)などの貴金 属膜を形成してもよい。 In each of the above embodiments, a noble metal film such as silver (Ag) or platinum (Pt) may be formed instead of the Au film 102.
[0075] '上記各実施形態において、 Ni膜 101に代えて、他の金属製の膜を下地膜として 形成してちょい。  [0075] 'In each of the above embodiments, instead of the Ni film 101, another metal film may be formed as a base film.
[0076] ·上記各実施形態において、超臨界状態の COに代えて、亜臨界状態の COや、  [0076] In each of the above embodiments, instead of supercritical CO, subcritical CO,
2 2 亜臨界又は超臨界状態の他の流体を拡散流体として用いてもょ 、。  2 2 Other fluids in subcritical or supercritical state may be used as diffusion fluids.

Claims

請求の範囲 The scope of the claims
[1] 対象物を被覆し、耐食性を確保するためのコーティング膜であって、  [1] A coating film for covering an object and ensuring corrosion resistance,
貴金属膜を含み、その貴金属膜は、めっき液と、めっき液の拡散力を高める拡散流 体とを用いてめっき処理を行うことにより形成されることを特徴とするコーティング膜。  A coating film comprising a noble metal film, wherein the noble metal film is formed by performing a plating process using a plating solution and a diffusion fluid that enhances the diffusing power of the plating solution.
[2] 対象物を被覆し、耐食性を確保するためのコーティング膜であって、  [2] A coating film for covering an object and ensuring corrosion resistance,
前記対象物の表面に設けられ、めっき液と、めっき液の拡散力を高める拡散流体と を用いた第 1のめつき処理により形成される下地膜と、その下地膜上に設けられ、第 2 のめつき処理により形成される貴金属膜とを含むことを特徴とするコーティング膜。  A base film formed by a first plating process using a plating solution and a diffusion fluid that enhances the diffusing power of the plating solution, provided on the surface of the object, and provided on the base film; A coating film comprising a noble metal film formed by a plating process.
[3] 第 2のめつき処理は置換めつき処理であることを特徴とする請求項 2に記載のコーテ イング膜。  [3] The coating film according to [2], wherein the second staking process is a replacement staking process.
[4] 前記下地膜の厚さは、 lOnm以上であることを特徴とする請求項 2又は 3に記載のコ 一ティング膜。  [4] The coating film according to [2] or [3], wherein the base film has a thickness of lOnm or more.
[5] 前記拡散流体は、超臨界流体又は亜臨界流体であることを特徴とする請求項 1〜4 のいずれか 1つに記載のコーティング膜。  [5] The coating film according to any one of claims 1 to 4, wherein the diffusion fluid is a supercritical fluid or a subcritical fluid.
[6] 前記拡散流体は、二酸ィ匕炭素であることを特徴とする請求項 5に記載のコーティング 膜。 [6] The coating film according to [5], wherein the diffusion fluid is carbon dioxide.
[7] 前記拡散流体を用いるめっき処理では、フッ素系化合物力 なり、前記めつき液の分 散を促進する分散促進剤が添加されることを特徴とする請求項 1〜6のいずれか 1つ に記載のコーティング膜。  [7] In the plating treatment using the diffusion fluid, a dispersion accelerator that promotes dispersion of the plating solution is added because of the strength of a fluorine-based compound. The coating film as described in 2.
[8] 耐食性を確保するために表面をコーティング膜で被覆された物品であって、  [8] An article whose surface is coated with a coating film to ensure corrosion resistance,
前記コーティング膜は、貴金属膜を形成するめつき液と、めっき液の拡散力を高め る拡散流体とを用いためっき処理により形成されることを特徴とするコーティング膜で 被覆された物品。  An article coated with a coating film, wherein the coating film is formed by a plating process using a plating liquid that forms a noble metal film and a diffusion fluid that enhances the diffusing power of the plating liquid.
[9] 耐食性を確保するために表面をコーティング膜で被覆された物品であって、  [9] An article whose surface is coated with a coating film in order to ensure corrosion resistance,
前記コーティング膜力 めっき液と、めっき液の拡散力を高める拡散流体とを用いた 第 1のめつき処理により形成される下地膜と、その下地膜上に設けられ、第 2のめつき 処理により形成される貴金属膜とを含むことを特徴とするコーティング膜で被覆された 物品。 The coating film strength The base film formed by the first sticking process using the plating solution and the diffusion fluid that enhances the diffusing power of the plating solution, and the base film provided on the base film and the second sticking process An article coated with a coating film, comprising a noble metal film to be formed.
[10] 前記第 1のめつき処理において、フッ素系化合物からなり、前記めつき液の分散を促 進する分散促進剤を添加して、前記下地膜が形成されたことを特徴とする請求項 9に 記載のコーティング膜で被覆された物品。 [10] The base film is formed by adding a dispersion accelerator made of a fluorine compound and promoting dispersion of the plating solution in the first plating process. An article coated with the coating film according to 9.
[11] 貴金属膜又は下地膜を含み、かつめつき膜の厚さが lOnm以上であるコーティング 膜により被覆される物品。 [11] An article that is coated with a coating film that includes a noble metal film or an undercoat film, and the thickness of the adhesive film is lOnm or more.
[12] 対象物を被覆し、耐食性を確保するためのコーティング膜を形成する方法であって、 めっき液と、めっき液の拡散力を高める拡散流体とを用いためっき処理により、前記 対象物に対して下地金属膜を形成する第 1の工程と、 [12] A method of forming a coating film for covering an object and ensuring corrosion resistance, wherein the object is formed by plating using a plating solution and a diffusion fluid that enhances the diffusing power of the plating solution. In contrast, a first step of forming a base metal film,
置換めつき処理を用いて、前記下地金属膜に対して貴金属膜を形成する第 2のェ 程とを含むことを特徴とする耐食性コーティング方法。  And a second step of forming a noble metal film with respect to the base metal film using a substitution staking process.
[13] 前記第 1の工程において、フッ素系化合物からなり、前記めつき液の分散を促進する 分散促進剤を添加して、前記下地膜を形成することを特徴とする請求項 12に記載の 耐食性コーティング方法。 [13] The base film according to [12], wherein in the first step, the undercoat film is formed by adding a dispersion accelerator that is made of a fluorine-based compound and promotes dispersion of the plating solution. Corrosion resistant coating method.
PCT/JP2006/303261 2005-02-23 2006-02-23 Coating film, article covered with coating film, and method for corrosion-resistant coating WO2006090775A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-048080 2005-02-23
JP2005048080 2005-02-23

Publications (1)

Publication Number Publication Date
WO2006090775A1 true WO2006090775A1 (en) 2006-08-31

Family

ID=36927413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303261 WO2006090775A1 (en) 2005-02-23 2006-02-23 Coating film, article covered with coating film, and method for corrosion-resistant coating

Country Status (1)

Country Link
WO (1) WO2006090775A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
JP2003013249A (en) * 2001-06-29 2003-01-15 Electroplating Eng Of Japan Co Gold substitution plating solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
JP2003013249A (en) * 2001-06-29 2003-01-15 Electroplating Eng Of Japan Co Gold substitution plating solution

Similar Documents

Publication Publication Date Title
Chandrasekar et al. Pulse and pulse reverse plating—Conceptual, advantages and applications
US20110117338A1 (en) Open pore ceramic matrix coated with metal or metal alloys and methods of making same
JP2002506484A (en) Method for producing high quality copper foil with very small irregularities and copper foil produced by this method
JPH0598496A (en) Method for forming copper layer on steel filament
WO2000029643A1 (en) Gas diffusion electrode material, process for producing the same, and process for producing gas diffusion electrode
BR112019004029B1 (en) process for galvanic deposition of zinc and zinc alloy coatings from an alkaline coating bath with reduced degradation of organic bath additives
Nguyen et al. An electroplating technique using the post supercritical carbon dioxide mixed watts electrolyte
JP6942067B2 (en) Electrolytic nickel plating method including heat treatment step
JP2016132788A (en) Electroplating cell and method for producing metallic film
WO2006090775A1 (en) Coating film, article covered with coating film, and method for corrosion-resistant coating
US20090294295A1 (en) Method for forming composite plating film and process for manufacturing inkjet recording head
JP4100434B2 (en) Coating film, article coated with coating film, and corrosion-resistant coating method
JP2018076576A (en) Catalytic electrode for water electrolysis, water electrolysis device, and production method of catalytic electrode for water electrolysis
JP5215731B2 (en) Plastic surface modification method and surface modified plastic
JP2006265729A (en) Production method of multilayer film structure, multilayer film structure and plating equipment
JP2009129853A (en) Membrane electrode assembly, manufacturing method thereof, and solid polymer fuel cell
JP2016540886A (en) Method for pretreatment of substrate surface, method for coating substrate surface, and method for bonding substrate to member
JP3740677B2 (en) Gas diffusion electrode and manufacturing method thereof
JP5873071B2 (en) Method for producing anode catalyst body and method for producing electrolytic cell for ozone generation
JP4157117B2 (en) Method for forming electric Ni-P plating film and film thereof
JP2004308003A (en) Electrochemical surface treatment method for metallic member, and electrochemical surface treatment apparatus for metallic member
JP2006213956A (en) Fe-W ALLOY ELECTROPLATING DEVICE USING CATION EXCHANGE MEMBRANE, CONTINUOUS PLATING METHOD USING THE DEVICE AND COATING FILM
WO2007007617A1 (en) Surface treatment in presence of organic solvent
RU2503751C2 (en) Method of iron coat electroplating in flowing electrolyte with coarse disperse particles
WO2006090785A1 (en) Plated member for fuel cell, and method and apparatus for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714401

Country of ref document: EP

Kind code of ref document: A1