WO2006090646A1 - Method for manufacturing optical glass, method for manufacturing polarization converting element and polarization converting element - Google Patents

Method for manufacturing optical glass, method for manufacturing polarization converting element and polarization converting element Download PDF

Info

Publication number
WO2006090646A1
WO2006090646A1 PCT/JP2006/302841 JP2006302841W WO2006090646A1 WO 2006090646 A1 WO2006090646 A1 WO 2006090646A1 JP 2006302841 W JP2006302841 W JP 2006302841W WO 2006090646 A1 WO2006090646 A1 WO 2006090646A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
flat plate
plate
optical
bonded
Prior art date
Application number
PCT/JP2006/302841
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Tanaka
Hiroki Kameyama
Takashi Sekiguchi
Original Assignee
Fujinon Sano Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Sano Corporation filed Critical Fujinon Sano Corporation
Publication of WO2006090646A1 publication Critical patent/WO2006090646A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another

Definitions

  • the present invention relates to a method for manufacturing an optical element such as a polarization conversion element and a method for manufacturing a polarization conversion element in which, for example, total reflection film surfaces and polarization film surfaces are alternately formed and the polarization direction of incident light is aligned and output. Further, the present invention relates to a polarization conversion element manufactured by this method for manufacturing a polarization conversion element.
  • a polarization conversion element as an example of an optical element has a function of aligning and outputting the polarization direction without lowering the light utilization efficiency when light containing polarization components orthogonal to each other is incident. To demonstrate. For this reason, the optical element is formed in a flat plate shape. The total reflection surface and the polarization surface are alternately formed in multiple stages at an angle of 45 ° with respect to the incident surface. A 1Z2 wave plate is formed in a stripe shape at the part facing the polarization plane.
  • an optical glass having a total reflection film formed thereon The plates and the optical glass on which the polarizing film is formed are alternately overlapped so that their film surfaces are 45 ° with respect to the incident plane of the optical element.
  • a glass wall block is formed by providing a reference wall inclined at 45 °, laminating two types of optical glass sequentially along the reference wall, and fixing each layer with an adhesive. To do.
  • this glass laminate block is sliced in a direction parallel to the reference wall with a wire saw, for example, and both the front and back surfaces are polished to form a bonded glass flat plate having a predetermined thickness.
  • a bonded glass flat plate is placed in the vertical direction, that is, if the polished surface is placed in a direction perpendicular to the optical path, the total reflection surface and the polarization plane that are inclined at 45 ° to the optical path will be A plurality of them can be alternately arranged.
  • Patent Document 2 a bonded glass flat plate obtained as described above is further divided to manufacture a beam splitter! / Speak.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-186195
  • Patent Document 2 JP 2000-199810 A
  • both the front and back surfaces are polished. Since this polishing needs to be performed with high accuracy, it is performed by lapping. It is common. In this lapping process, in order to protect the machining tool so as not to be damaged, it is necessary to remove by sharply polishing sharp edges on the corners and ridges of the workpiece in advance. When this polishing process is performed, the reference position is lost in the outer shape of the workpiece. Then, after lapping the workpiece, it becomes impossible to perform some processing by positioning the workpiece on the basis of the outer shape.
  • the present invention has been made in view of the above points, and the object of the present invention is to reliably leave a portion serving as a reference surface until the final stage of manufacturing an optical element. Use the reference surface to make it possible to perform operations such as dividing into desired sizes very accurately.
  • a plurality of optical glass plates having different optical characteristics are laminated in a stepped manner along a reference wall according to a certain order and bonded to each other.
  • the glass product is inclined stepwise in the front-rear direction and the left and right sides are vertical.
  • an edge treatment step for polishing edges and corners of the bonded glass flat plate to remove edges
  • a surface polishing step for polishing both front and back surfaces of the bonded glass flat plate subjected to the edge removal treatment.
  • the length of one or a plurality of optical glass plates stacked in an approximately middle stage is shorter than the length of the other optical glass plates, so that the left and right sides of the glass laminated body block are vertically formed.
  • a reference groove is formed in the face, and this reference groove is used as a reference portion positioned by a positioning member provided in the cutting positioning jig when the bonded glass flat plate is divided during the flat plate dividing step. It is characterized by that.
  • a large-sized bonded glass flat plate is divided into a necessary size as an optical element, thereby improving manufacturing efficiency.
  • a high quality optical element can be manufactured as a product by holding the reference portion until cutting for this division.
  • one or a plurality of optical glass plates positioned in the middle step between two or more kinds of alternately laminated layers can be formed of a thick raw glass plate. .
  • the raw glass plate by inserting the raw glass plate in the middle, it is possible to divide the raw glass plate as a boundary portion in the plane plate dividing step. Further, the cut surfaces of the raw glass plates can be polished and the polished surfaces can be bonded to each other.
  • the glass laminate block When forming the glass laminate block, they are laminated in an inclined step shape having a predetermined angle, but a reference wall that is at least inclined is required, but a second reference surface is provided on the other side. It can also be formed. That is, in addition to the reference wall formed obliquely, a second reference wall in a vertical state provided in a direction perpendicular to the reference wall is provided, and in the second reference wall, the reference groove is disposed in the arrangement portion of the reference groove. A protrusion is formed.
  • an optical glass plate is laminated along the reference wall and the second reference wall.
  • ultraviolet curable resin can be used for bonding between the optical glass plates of the glass laminate block. And UV is optical glass End face direction force Set to irradiate.
  • the first invention when used as a method for manufacturing a polarization conversion element as an optical element is the first optical element in which a total reflection film is formed along a reference wall having an inclination angle of 45 °.
  • a glass plate and a second optical glass plate on which a polarizing film is formed are alternately arranged, and a plurality of steps are stacked and bonded together to incline stepwise in the front-rear direction and the left and right sides are suspended.
  • a polishing step and the joining gas A plane plate dividing step of cutting the plane plate into optical elements of a predetermined size, and a 1Z2 wavelength at a position facing the polarizing film or the total reflection film on one side of the divided plane plate
  • the length of one or a plurality of optical glass plates laminated in an approximately middle stage is set to the other optical glass plate.
  • a reference groove is formed on the left and right vertical surfaces formed in the glass laminate block by being shorter than the length of the glass plate, and the bonded glass plane plate is divided during the plane plate dividing step.
  • the reference portion is positioned by a positioning member provided in the cutting positioning jig.
  • a first optical glass plate having a total reflection film formed along a reference wall having an inclination angle of 45 ° and a polarizing film are provided.
  • the formed second optical glass plates are arranged alternately, and a plurality of steps are stacked and bonded together, and the optical glass plates arranged in the middle steps are thicker than other optical glass plates.
  • a glass plate block forming process comprising a glass plate, forming a glass laminate block that is inclined stepwise in the front-rear direction and the left and right sides are vertical, and the glass laminate block is defined as a reference wall.
  • a flat plate dividing step of dividing into two parts by cutting the raw glass plate into two parts, and facing the polarizing film or the total reflection film on one side of the flat plate thus divided 1G2 wavelength plate is laminated at a position to be laminated, and an inversion joining step of reversing one side after joining the cut surface divided into two by the raw glass plate and joining the polished surfaces.
  • a reference groove was formed on the left and right sides of the laminate block, and this reference groove was provided in the cutting positioning jig when dividing the bonded glass flat plate during the flat plate dividing step.
  • Ri is characterized in that the reference portion being determined position, Ru.
  • FIG. 1 is an explanatory diagram of a configuration of a polarization conversion element as an optical element.
  • FIG. 2 is an explanatory view showing a step of forming a glass laminate block in the method of the present invention.
  • FIG. 3 is a side view of FIG.
  • FIG. 4 is an explanatory view showing a flat plate forming step in the method of the present invention.
  • FIG. 5 is an explanatory view showing a plane plate dividing step in the method of the present invention.
  • FIG. 6 is an explanatory view showing an inversion joining process in the method of the present invention.
  • FIG. 1 shows the configuration of an optical element as a final product manufactured by the method of the present invention.
  • This optical element is a polarization conversion element, and two structurally different elements are shown.
  • FIG. 4A shows an optical element 1A having an entrance surface 2A and an exit surface 3A, and an optical film is formed at an angle of 45 ° with respect to the entrance surface 2A and the exit surface 3A.
  • the first optical film is the total reflection film 4, and the second optical film is the polarizing film 5.
  • the polarizing film 5 reflects S-polarized light and transmits P-polarized light.
  • a 1Z2 wavelength plate 6 is formed by a film forming means at a portion facing the polarizing film 5 on the exit surface 3A side of the optical element 1A.
  • the light emitted from the light source 7 includes S-polarized light and P-polarized light, and the light emitted from the light source 7 is incident on the incident surface as much as 2A while passing through the optical element 1.
  • S-polarized light is reflected by the polarizing film 5, and the reflected light of the parenthesis is reflected again by the total reflection film 4, and then is emitted as S-polarized light with the exit surface 3A force.
  • the P-polarized light is separated into S-polarized light by the polarizing film 5, and the plane of polarization is rotated by 90 ° by the 1Z2 wavelength plate 6 to be converted into S-polarized light.
  • the optical element 1A Accordingly, all light is converted into S-polarized light on the exit side of the optical element 1A.
  • light including S-polarized light and P-polarized light is converted into S-polarized light and emitted.
  • the 1Z2 wavelength plate 6 is made to face the total reflection film 4. In this case, all the emitted light is P-polarized light.
  • FIG. 1 (b) shows another type of optical element IB, where the 2B side is the entrance surface and the 3B side is the exit surface.
  • this optical element 1B total reflection films 4 and polarizing films 5 are alternately formed, but the tilt directions of the films are reversed on the left and right sides with the central portion C in the length direction as the center.
  • the 1Z2 wave plate 6 is provided on the side facing the polarizing film 5. Even if configured in this way The light emitted from the light source 7 including the P-polarized light and the S-polarized light is all emitted as S-polarized light in the same manner as the optical element 1A.
  • the optical glass plate 10 has a total reflection film 4 formed on one surface thereof, and the optical glass plate 11 has a polarizing film 5 formed on one surface thereof.
  • the optical glass plate 12 is a bare glass that is not formed on any surface.
  • One or more optical glass plates 12 are used.
  • the optical glass plates 10 and 11 have the same thickness and the same size.
  • the optical glass plate 12 has a width dimension larger than the optical glass plates 10 and 11 (as will be described later, the direction of the force toward the second reference wall 21 in FIG. 3) smaller than those. ing.
  • the optical glass plates 10 and 11 are laminated alternately.
  • An optical glass plate 12 is interposed in the middle one or two to three stages.
  • An optical glass plate 11 having a polarizing film 5 formed thereon is provided at the upper and lower stages of the stage where the optical glass plate 12 is provided, and a total reflection film 4 is formed at the lowermost stage and the uppermost stage.
  • An optical glass plate 10 is provided. By laminating the optical glasses 10, 11 and 12 in this order, the glass laminate block 13 is formed.
  • This glass laminate block 13 is laminated in a staircase shape, and as a whole, as shown in Fig. 2, the glass laminate block 13 has a staircase shape with an angle of 45 ° in the front-rear direction. As described above, the left and right sides of the glass laminate block 13 are vertical surfaces. For this, two reference walls are used.
  • the first reference wall 20 serves as an inclined reference wall for forming the staircase of the glass laminate block 13, and the first reference wall 20 is inclined at an angle of 45 °.
  • the second reference wall 21 is in a vertical state, and a protrusion 21a is formed in the middle.
  • the optical glass 12 is laminated at the position of the protrusion 21a, and the length of the protruding portion of the protrusion 21a is a dimensional difference in the width direction between the optical glass plates 10 and 11 and the optical glass plate 12.
  • the dimension is equivalent to half of the size.
  • the optical glass plates 10, 11 and 12 can be easily obtained by laminating the adjacent first and second reference walls 20, 21 so that two adjacent sides are brought into contact with each other. Also, the force can be accurately laminated.
  • a laminated body block 13 is formed. As shown in FIG. 2, the laminated glass block 13 has a force that is laminated in an inclined state while being shifted in an oblique direction.
  • grooves 14 penetrating in the front-rear direction are formed on both left and right side portions.
  • all the optical glass plates 10 to 12 are strictly controlled in size, and therefore the groove 14 formed between the glasses serves as a reference groove having a highly accurate dimension.
  • the optical glass plate is laminated to form the glass laminate block 13, for example, an ultraviolet curable adhesive is applied to the laminated surface, and after the lamination is completed, for example, on the vertical surface side The ultraviolet curable adhesive is cured by irradiating with ultraviolet rays. As a result, the glass laminate block 13 is fixed.
  • the above is the glass plate blocking process.
  • the glass laminate block 13 is sliced in the tilt direction, that is, in the direction parallel to the first reference wall 20 to obtain the bonded glass flat plate 15.
  • the thickness T of the bonded glass flat plate 15 is thicker by the polishing allowance on both sides than the final thickness of the optical element 1B.
  • it can cut
  • the glass laminate block 13 is cut after taking out the reference wall force. This process is a flat plate forming process.
  • the reference groove 14 is present in all of the predetermined number of bonded glass flat plates 15 obtained by slicing the glass laminate block 13.
  • the bonded glass flat plate 15 formed in the flat plate forming step has sharp portions at the ridgeline portions, that is, the sides constituting the six surfaces and the corners, these sharp edges are present.
  • the part is polished and chamfered. This is the edge processing step.
  • This edge treatment process is to prevent damage to parts of the polishing apparatus, particularly the lapping surface plate, etc. in the surface polishing process described later, and to prevent the bonded glass flat plate 15 from being cracked or chipped.
  • the reference groove 14 is in a deep position and has a slight length, so that it is difficult to carry out the capping at the time of lapping. If the tool is damaged! /, There will be no other problems! / ...
  • the surface of the bonded glass flat plate 15 obtained as described above is polished.
  • This surface polishing is an example For example, both front and back surfaces are processed simultaneously by lapping. This surface polishing is performed according to the amount remaining as a polishing allowance in the flat plate forming process.
  • a bonded glass flat plate 15 after film formation is placed on a cutting positioning jig 23 in which two positioning pins 22 are erected, for example, diamond.
  • the bonded glass flat plate 15 is cut along cutting lines DX1 to DX3 and DY1 to DY4 with a cutting tool such as a cutter.
  • the width G is polished for each cutting line.
  • the polishing for the width G is indispensable at the position of the cutting line DX2, but it is not always necessary to polish at other positions.
  • the cutting by the cutting lines DX1 and DX3 creates a flat portion at the upper and lower ends when configured as the polarization conversion element 1B, and the intermediate cutting line DX2 Is a cutting line for performing reversal bonding as will be described later.
  • the bonded glass flat plate 15 When the bonded glass flat plate 15 is cut, the bonded glass flat plate 15 must be accurately positioned on the cutting positioning jig 23.
  • the positioning of the bonded glass flat plate 15 it is necessary to accurately position the y direction and the 0 direction among the X, y, and ⁇ directions.
  • the distance between the cutting lines DY1–DY2, DY2-DY3, and DY3–DY4 is important, but it is not a problem if these cutting lines are shifted slightly to the left or right as a whole. From the above, no special positioning accuracy is required in this direction.
  • the positioning jig for cutting 23 is provided with two positioning pins 22 and 22, and these positioning pins 22 are in a reference glass 14 located on both the left and right sides of the bonded glass flat plate 15.
  • the side wall portion of the reference groove 14 is the side surface portion of the optical glass plate 11 having an accurate dimensional accuracy, and this portion is not polished during the edge processing step, so that the dimensional accuracy is maintained. ing. Therefore, the bonded glass flat plate 15 can be accurately positioned in the y direction and the ⁇ direction by bringing the two positioning pins 22 into contact with the side surfaces of the optical glass plate 11 in the reference grooves 14 on both sides. . Even if the optical glass plate 10 is partially chipped on its side surface, the bonding glass flat plate 15 is displaced in the X direction so that the contact portion with the positioning pin 22 avoids the chipped position. In this way, positioning can be performed.
  • the optical element 1B is a surface on the side of the emission surface 3B, which faces the polarizing film 5 or faces the total reflection film 4
  • the 1Z2 wave plate 6 is formed only at the position where it is applied.
  • the 1Z2 wavelength plate 6 can be formed by a film forming means, and an appropriate means such as affixing a film can also be adopted. Therefore, on the surface on the emission surface 3B side, the surface from which the glass is exposed and the surface on which the 1Z2 wavelength plate 6 is laminated are alternately striped. After this lamination, an antireflection film is formed on both the front and back surfaces.
  • one of the optical element pieces 16a and 16b that is divided into two by the cutting line DX2 and whose end face is polished for example, the optical element piece 16b is reversed and the back surface is reversed.
  • the face of the ground glass plate 12 is bonded and bonded with an adhesive.
  • the optical element IB shown in FIG. 1 (b) is manufactured.
  • the 1Z2 wavelength plate 6 when the 1Z2 wavelength plate 6 is laminated at a position facing the polarizing film 5, the emitted light becomes S-polarized light, and the 1Z2 wavelength plate 6 is positioned at the position facing the total reflection film 4. When is placed, the emitted light becomes P-polarized light.
  • the optical glass plate constituting the middle stage of the glass laminate block is not a raw glass plate, although it is almost the same as described above.
  • Laminate optical glass plates 10 and 11 alternately.
  • one or more optical glass plates laminated in the middle are those having a narrow width dimension. Use. Also, in the flat plate dividing process, it is not necessary to cut the part corresponding to the cutting line DX2 in Fig. 6, and the subsequent reverse joining is not performed.

Abstract

A glass laminate block is formed by laminating and bonding stepwise a plurality of optical glass boards having different optical characteristics along a reference wall, inclining the work stepwise in a front and rear direction, having both right and left side sections vertical and a length of one or a plurality of optical glass plates at a substantially middle step shorter than that of other optical glass plates, and by forming a reference groove on the vertical planes on both right and left sides. A bonded glass flat plate is formed by slicing the glass laminate block by a prescribed thickness in a direction parallel to the reference wall, the edges are removed by polishing a ridge line section and an angular corner section of the bonded glass flat plate, and both front and rear planes of the bonded glass flat plate are polished. Then, the surface polished bonded glass flat plate is cut into optical elements having prescribed sizes. At the time of cutting the bonded glass flat plate, the reference groove formed on a vertical plane is permitted to be a reference section for alignment by an aligning member of an aligning jig for cutting.

Description

光学ガラスの製造方法,偏光変換素子の製造方法及び偏光変換素子 技術分野  Optical glass manufacturing method, polarization conversion element manufacturing method, and polarization conversion element technical field
[0001] 本発明は例えば全反射膜面と偏光膜面とが交互に形成され、入射光の偏光方向 を揃えて出力する偏光変換素子等の光学素子の製造方法及び偏光変換素子の製 造方法に関するものであり、またこの偏光変換素子の製造方法により製造された偏 光変換素子に関する。  The present invention relates to a method for manufacturing an optical element such as a polarization conversion element and a method for manufacturing a polarization conversion element in which, for example, total reflection film surfaces and polarization film surfaces are alternately formed and the polarization direction of incident light is aligned and output. Further, the present invention relates to a polarization conversion element manufactured by this method for manufacturing a polarization conversion element.
背景技術  Background art
[0002] 光学素子の一例としての偏光変換素子は、相互に直交する偏光成分が含まれて いる光を入射させたときに、光の利用効率を低下させることなぐ偏光方向を揃えて 出力する機能を発揮するものである。このために、光学素子は平板状に形成される 力 その入射面に対して 45° の角度をもって全反射面と偏光面とが交互に多段に形 成されており、また出射側の面には、偏光面と対面する部位に 1Z2波長板がストライ プ状に形成されている。これによつて、 P偏光成分と S偏光成分とを含む光が入射さ れると、 S偏光成分の光は偏光面で反射した後、全反射面で再び反射してそのまま 反対側の面から出射される。一方、 P偏光成分光は偏光面を透過することによって、 S偏光成分と分離されて、 1Z2波長板で偏光方向を 90° 回転させることによって、 S 偏光成分の光として出射させるものである。この種の偏光変換素子の構成にっ 、て は、例えば特許文献 1に記載されている。  [0002] A polarization conversion element as an example of an optical element has a function of aligning and outputting the polarization direction without lowering the light utilization efficiency when light containing polarization components orthogonal to each other is incident. To demonstrate. For this reason, the optical element is formed in a flat plate shape. The total reflection surface and the polarization surface are alternately formed in multiple stages at an angle of 45 ° with respect to the incident surface. A 1Z2 wave plate is formed in a stripe shape at the part facing the polarization plane. As a result, when light containing P-polarized light component and S-polarized light component is incident, the light of S-polarized light component is reflected by the polarization surface, then reflected again by the total reflection surface, and emitted from the opposite surface as it is. Is done. On the other hand, the P-polarized component light is separated from the S-polarized component by passing through the polarization plane, and is emitted as the light of the S-polarized component by rotating the polarization direction by 90 ° with the 1Z2 wavelength plate. The configuration of this type of polarization conversion element is described in Patent Document 1, for example.
[0003] 前述したように、光路に対して斜め 45° の斜面となった全反射面及び偏光面を上 下方向に交互に複数並ぶように配置するには、全反射膜を形成した光学ガラス板と 、偏光膜を形成した光学ガラスとを交互に重ね合わせて、それらの膜面が光学素子 の入射平面に対して 45° となるように配置する。このためには、 45° に傾斜させた 基準壁を設けて、この基準壁に沿って 2種類の光学ガラスを順次積層し、各層間を 接着剤により固着することによって、ガラス積層体ブロックを形成する。そして、このガ ラス積層体ブロックを、例えばワイヤソ一によつて基準壁と平行な方向にスライスし、 その表裏両面を研磨することによって、所定の厚みを有する接合ガラス平面板が形 成される。この接合ガラス平面板を鉛直方向に配置すれば、つまり研磨した面を光路 と直交する方向に配置すれば、光路に対して斜め 45° の斜面となった全反射面及 び偏光面を上下方向に交互に複数配列することができる。このような光学素子の製 造について特許文献 2に開示されている。なお、この特許文献 2では、さらに前述の ようにして得られた接合ガラス平面板を分割して、ビームスプリッタを製造して!/ヽる。 特許文献 1 :特開平 10— 186195号公報 [0003] As described above, in order to arrange a plurality of total reflection surfaces and polarization planes that are inclined at an angle of 45 ° with respect to the optical path so as to be alternately arranged in the upper and lower directions, an optical glass having a total reflection film formed thereon The plates and the optical glass on which the polarizing film is formed are alternately overlapped so that their film surfaces are 45 ° with respect to the incident plane of the optical element. For this purpose, a glass wall block is formed by providing a reference wall inclined at 45 °, laminating two types of optical glass sequentially along the reference wall, and fixing each layer with an adhesive. To do. Then, this glass laminate block is sliced in a direction parallel to the reference wall with a wire saw, for example, and both the front and back surfaces are polished to form a bonded glass flat plate having a predetermined thickness. Made. If this bonded glass flat plate is placed in the vertical direction, that is, if the polished surface is placed in a direction perpendicular to the optical path, the total reflection surface and the polarization plane that are inclined at 45 ° to the optical path will be A plurality of them can be alternately arranged. The manufacture of such an optical element is disclosed in Patent Document 2. In Patent Document 2, a bonded glass flat plate obtained as described above is further divided to manufacture a beam splitter! / Speak. Patent Document 1: Japanese Patent Laid-Open No. 10-186195
特許文献 2 :特開 2000— 199810号公報  Patent Document 2: JP 2000-199810 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、ガラス積層体ブロックを所定の厚みとなるようにスライスした後、その表裏 両面を研磨することになるが、この研磨は高精度に行う必要があるために、ラッピング により行うのが一般的である。このラッピング加工の際には、その加工工具が損傷し な 、ように保護するために、予めワークの角隅部や稜線等に鋭利なエッジ部を研磨 することにより除去しておく必要がある。この研磨加工を行うと、ワークの外形に基準と なる位置が失われてしまう。そして、このワークをラッピングカ卩ェした後に、このワーク を外形基準で位置決めして何らかの加工を行うことができなくなってしまう。従って、 例えば前述した接合ガラス平面板の段階では、大判のものとなし、これを切断して複 数に分割して所定のサイズの光学素子として製造する場合に、正確な基準が存在し ないために、製品の寸法精度にばらつきが生じる可能性がある等といった不都合が 生じる。 [0004] By the way, after slicing the glass laminate block to have a predetermined thickness, both the front and back surfaces are polished. Since this polishing needs to be performed with high accuracy, it is performed by lapping. It is common. In this lapping process, in order to protect the machining tool so as not to be damaged, it is necessary to remove by sharply polishing sharp edges on the corners and ridges of the workpiece in advance. When this polishing process is performed, the reference position is lost in the outer shape of the workpiece. Then, after lapping the workpiece, it becomes impossible to perform some processing by positioning the workpiece on the basis of the outer shape. Therefore, for example, at the stage of the bonded glass flat plate described above, there is no large standard, and there is no accurate standard when cutting and dividing it into a plurality of optical elements of a predetermined size. In addition, there is a problem that the dimensional accuracy of the product may vary.
[0005] 本発明は以上の点に鑑みてなされたものであって、その目的とするところは、光学 素子の製造の最終段階に至るまで、基準面となる部位を確実に残しておき、この基 準面を利用して、所望のサイズに分割する等の操作を極めて正確に行えるようにす ることにめる。  [0005] The present invention has been made in view of the above points, and the object of the present invention is to reliably leave a portion serving as a reference surface until the final stage of manufacturing an optical element. Use the reference surface to make it possible to perform operations such as dividing into desired sizes very accurately.
課題を解決するための手段  Means for solving the problem
[0006] 前述した目的を達成するために、本発明は、相異なる光学特性を有する光学ガラス 板を一定の順序に応じて基準壁に沿って階段状に複数枚積層して相互に貼り合わ せることによって、前後方向に階段状に傾斜し、左右両側部が垂直となったガラス積 層体ブロックを形成するガラス板ブロック化工程と、前記ガラス積層体ブロックを、そ の基準壁と平行な方向に所定の厚み毎にスライスして、接合ガラス平面板を形成す る平面板形成工程と、前記接合ガラス平面板の稜線部及び角隅部を研磨して、エツ ジを除去するエッジ処理工程と、エッジ除去処理がなされた接合ガラス平面板の表 裏両面を研磨する表面研磨工程と、表面研磨がなされた接合ガラス平面板を切断し て、所定サイズの光学素子となるように分割する平面板分割工程とからなり、前記ガ ラス板ブロック化工程で貼り合わされる光学ガラス板のうち、概略中間の段に積層さ れる 1または複数枚の光学ガラス板の長さを他の光学ガラス板の長さより短寸のもの とすることによりガラス積層体ブロックに形成される左右両側の垂直面に基準溝を形 成し、この基準溝を前記平面板分割工程時で前記接合ガラス平面板を分割する際 に、その切断用位置決め治具に設けた位置決め部材により位置決めされる基準部と することをその特徴とするものである。 [0006] In order to achieve the above-described object, according to the present invention, a plurality of optical glass plates having different optical characteristics are laminated in a stepped manner along a reference wall according to a certain order and bonded to each other. The glass product is inclined stepwise in the front-rear direction and the left and right sides are vertical. A glass plate block forming step for forming a layered body block, and a flat plate forming step for slicing the glass laminate block in predetermined directions in a direction parallel to the reference wall to form a bonded glass flat plate And an edge treatment step for polishing edges and corners of the bonded glass flat plate to remove edges, and a surface polishing step for polishing both front and back surfaces of the bonded glass flat plate subjected to the edge removal treatment. A flat plate dividing step of cutting the bonded glass flat plate that has undergone surface polishing and dividing it into optical elements of a predetermined size, and among the optical glass plates that are bonded together in the glass plate blocking step The length of one or a plurality of optical glass plates stacked in an approximately middle stage is shorter than the length of the other optical glass plates, so that the left and right sides of the glass laminated body block are vertically formed. A reference groove is formed in the face, and this reference groove is used as a reference portion positioned by a positioning member provided in the cutting positioning jig when the bonded glass flat plate is divided during the flat plate dividing step. It is characterized by that.
[0007] 要するに、光学素子の製造の最終段階では、大判に形成した接合ガラス平面板を 光学素子として必要なサイズに分割するようになし、もって製造効率を向上させる。こ の分割のための切断が行われるまで基準部を保持させておくことによって、製品とし て高品質の光学素子を製造することができる。  In short, in the final stage of manufacturing an optical element, a large-sized bonded glass flat plate is divided into a necessary size as an optical element, thereby improving manufacturing efficiency. A high quality optical element can be manufactured as a product by holding the reference portion until cutting for this division.
[0008] 光学ガラス板として、 2種類乃至それ以上の種類のものを交互に積層させる力 中 間の段に位置する 1または複数枚の光学ガラス板を厚手の素ガラス板で構成するこ ともできる。このように、中間に素ガラス板を挿入することによって、平面板分割工程 でこの素ガラス板を境界部として、分割することができる。また、この素ガラス板の切 断面を研磨して、この研磨面同士を接合することもできる。  [0008] As the optical glass plate, one or a plurality of optical glass plates positioned in the middle step between two or more kinds of alternately laminated layers can be formed of a thick raw glass plate. . In this way, by inserting the raw glass plate in the middle, it is possible to divide the raw glass plate as a boundary portion in the plane plate dividing step. Further, the cut surfaces of the raw glass plates can be polished and the polished surfaces can be bonded to each other.
[0009] ガラス積層体ブロックを形成する際には、所定角度を有する傾斜階段状に積層す るが、最低限傾斜した基準壁を必要とするが、もう 1つの側に第 2の基準面を形成す ることもできる。即ち、斜めに形成した基準壁に加えて、この基準壁と直交する方向に 設けた鉛直状態となった第 2の基準壁を設け、この第 2の基準壁において、基準溝の 配置部には突出部を形成しておく。ガラス板ブロック化工程では、基準壁と第 2の基 準壁に沿って光学ガラス板を積層させる。ガラス積層体ブロックの光学ガラス板間の 接合は、例えば紫外線硬化榭脂を用いることができる。そして、紫外線は光学ガラス の端面方向力 照射するように設定する。 [0009] When forming the glass laminate block, they are laminated in an inclined step shape having a predetermined angle, but a reference wall that is at least inclined is required, but a second reference surface is provided on the other side. It can also be formed. That is, in addition to the reference wall formed obliquely, a second reference wall in a vertical state provided in a direction perpendicular to the reference wall is provided, and in the second reference wall, the reference groove is disposed in the arrangement portion of the reference groove. A protrusion is formed. In the glass plate blocking process, an optical glass plate is laminated along the reference wall and the second reference wall. For example, ultraviolet curable resin can be used for bonding between the optical glass plates of the glass laminate block. And UV is optical glass End face direction force Set to irradiate.
[0010] ここで、光学素子として、偏光変換素子を製造する方法として用いる場合の第 1の 発明は、 45° の傾斜角を有する基準壁に沿って、全反射膜を形成した第 1の光学ガ ラス板と、偏光膜を形成した第 2の光学ガラス板とを交互に配置して階段状に複数枚 積層して貼り合わせることによって、前後方向に階段状に傾斜し、左右両側部が垂 直となつたガラス積層体ブロックを形成するガラス板ブロック化工程と、前記ガラス積 層体ブロックを、その基準壁と平行な方向に所定の厚み毎にスライスして、接合ガラ ス平面板を形成する平面板形成工程と、前記接合ガラス平面板の稜線部及び角隅 部を研磨して、エッジを除去するエッジ処理工程と、エッジ除去処理がなされた接合 ガラス平面板の表裏両面を研磨する表面研磨工程と、前記接合ガラス平面板を切断 して、所定サイズの光学素子となるように分割する平面板分割工程と、このように分割 した平面板の一側面に前記偏光膜または全反射膜と対面する位置に 1Z2波長板を 積層させる積層工程とからなり、前記ガラス板ブロック化工程で貼り合わされる光学ガ ラス板のうち、概略中間の段に積層される 1または複数枚の光学ガラス板の長さを他 の光学ガラス板の長さより短いものとすることによりガラス積層体ブロックに形成される 左右両側の垂直面に基準溝を形成し、この基準溝を前記平面板分割工程時で前記 接合ガラス平面板を分割する際に、その切断用位置決め治具に設けた位置決め部 材により位置決めされる基準部とすることをその特徴としている。  Here, the first invention when used as a method for manufacturing a polarization conversion element as an optical element is the first optical element in which a total reflection film is formed along a reference wall having an inclination angle of 45 °. A glass plate and a second optical glass plate on which a polarizing film is formed are alternately arranged, and a plurality of steps are stacked and bonded together to incline stepwise in the front-rear direction and the left and right sides are suspended. A glass plate block forming step for forming a straight glass laminate block, and the glass laminate block is sliced at a predetermined thickness in a direction parallel to the reference wall to form a bonded glass plane plate A flat plate forming step, an edge processing step for removing edges by polishing the ridges and corners of the bonded glass flat plate, and a surface for polishing both front and back surfaces of the bonded glass flat plate subjected to the edge removal processing A polishing step and the joining gas A plane plate dividing step of cutting the plane plate into optical elements of a predetermined size, and a 1Z2 wavelength at a position facing the polarizing film or the total reflection film on one side of the divided plane plate Of the optical glass plates laminated in the glass plate blocking step, the length of one or a plurality of optical glass plates laminated in an approximately middle stage is set to the other optical glass plate. A reference groove is formed on the left and right vertical surfaces formed in the glass laminate block by being shorter than the length of the glass plate, and the bonded glass plane plate is divided during the plane plate dividing step. In this case, the reference portion is positioned by a positioning member provided in the cutting positioning jig.
[0011] また、偏光変換素子の製造方法についての第 2の発明としては、 45° の傾斜角を 有する基準壁に沿って、全反射膜を形成した第 1の光学ガラス板と、偏光膜を形成し た第 2の光学ガラス板とを交互に配置して階段状に複数枚積層して貼り合わせ、力 つ中間の段に配設される光学ガラス板を他の光学ガラス板より厚手の素ガラス板で 構成して、前後方向に階段状に傾斜し、左右両側部が垂直となったガラス積層体ブ ロックを形成するガラス板ブロック化工程と、前記ガラス積層体ブロックを、その基準 壁と平行な方向に所定の厚み毎にスライスして、接合ガラス平面板を形成する平面 板形成工程と、前記接合ガラス平面板の稜線部及び角隅部を研磨して、エッジを除 去するエッジ処理工程と、エッジ除去処理がなされた接合ガラス平面板の表裏両面 を研磨する表面研磨工程と、前記接合ガラス平面板を切断して、所定サイズの光学 素子となるように分割し、かつ前記素ガラス板の部位で切断して 2分割する平面板分 割工程と、このようにして分割した平面板の一側面に前記偏光膜または全反射膜と 対面する位置に 1Z2波長板を積層させる積層工程と、前記素ガラス板で 2分割した 切断面を研磨した後に、一方を反転させてそれらの研磨面を接合させる反転接合ェ 程とからなり、前記ガラス板ブロック化工程で貼り合わされる光学ガラス板のうち、概 略中間の段に積層される 1または複数枚の光学ガラス板の長さを他の光学ガラス板 の長さより短いものとすることによりガラス積層体ブロックに形成される左右両側の垂 直面に基準溝を形成し、この基準溝を前記平面板分割工程時で前記接合ガラス平 面板を分割する際に、その切断用位置決め治具に設けた位置決め部材により位置 決めされる基準部とすることを特徴として 、る。 [0011] Further, according to a second aspect of the method for manufacturing a polarization conversion element, a first optical glass plate having a total reflection film formed along a reference wall having an inclination angle of 45 ° and a polarizing film are provided. The formed second optical glass plates are arranged alternately, and a plurality of steps are stacked and bonded together, and the optical glass plates arranged in the middle steps are thicker than other optical glass plates. A glass plate block forming process comprising a glass plate, forming a glass laminate block that is inclined stepwise in the front-rear direction and the left and right sides are vertical, and the glass laminate block is defined as a reference wall. A flat plate forming step of forming a bonded glass flat plate by slicing in a parallel direction at a predetermined thickness, and an edge process for removing edges by polishing ridges and corners of the bonded glass flat plate Bonded glass plane with process and edge removal treatment Front and back surfaces and surface polishing step of polishing a cut of the bonding glass flat plate, an optical predetermined size A flat plate dividing step of dividing into two parts by cutting the raw glass plate into two parts, and facing the polarizing film or the total reflection film on one side of the flat plate thus divided 1G2 wavelength plate is laminated at a position to be laminated, and an inversion joining step of reversing one side after joining the cut surface divided into two by the raw glass plate and joining the polished surfaces. By making the length of one or more optical glass plates laminated in the middle step of the optical glass plates bonded together in the plate blocking process shorter than the length of the other optical glass plates A reference groove was formed on the left and right sides of the laminate block, and this reference groove was provided in the cutting positioning jig when dividing the bonded glass flat plate during the flat plate dividing step. For positioning member Ri is characterized in that the reference portion being determined position, Ru.
発明の効果  The invention's effect
[0012] 光学素子の製造最終段階まで基準面が残るようにして!/、るので、接合ガラス平面板 を分割するまで、高精度な加工や処理が行われ、光学素子として高い品質が得られ る等の効果を奏する。  [0012] Since the reference plane remains until the final stage of optical element production! /, Therefore, high-precision processing and processing are performed until the bonded glass flat plate is divided, and high quality as an optical element is obtained. There are effects such as.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]光学素子としての偏光変換素子の構成説明図である。 FIG. 1 is an explanatory diagram of a configuration of a polarization conversion element as an optical element.
[図 2]本発明の方法において、ガラス積層体ブロックを形成する工程を示す説明図で ある。  FIG. 2 is an explanatory view showing a step of forming a glass laminate block in the method of the present invention.
[図 3]図 2の側面図である。  FIG. 3 is a side view of FIG.
[図 4]本発明の方法において、平面板形成工程を示す説明図である。  FIG. 4 is an explanatory view showing a flat plate forming step in the method of the present invention.
[図 5]本発明の方法において、平面板分割工程を示す説明図である。  FIG. 5 is an explanatory view showing a plane plate dividing step in the method of the present invention.
[図 6]本発明の方法において、反転接合工程を示す説明図である。  FIG. 6 is an explanatory view showing an inversion joining process in the method of the present invention.
符号の説明  Explanation of symbols
[0014] 1A, 1B 光学素子 [0014] 1A, 1B optical element
10, 11, 12 光学ガラス板  10, 11, 12 Optical glass plate
13 ガラス積層体ブロック  13 Glass laminate block
14 基準溝  14 Reference groove
15 接合ガラス平面板 16a, 16b 光学素子部片 15 Bonded glass flat plate 16a, 16b Optical element piece
20 第 1の基準壁  20 First reference wall
21 第 2の基準壁  21 Second reference wall
21a 突条  21a ridge
22 位置決めピン  22 Positioning pin
23 切断用位置決め治具  23 Cutting positioning jig
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、図面に基づいて本発明の実施の形態について説明する。まず、図 1に本 発明の方法により製造した最終製品としての光学素子の構成を示す。この光学素子 は偏光変換素子であって、構造的に異なる 2種類の素子が示されている。同図(a)は 入射面 2Aと出射面 3Aとを有する光学素子 1Aであって、これら入射面 2A,出射面 3 Aに対して斜め 45° の角度をもって光学膜が形成されており、第 1の光学膜は全反 射膜 4であり、第 2の光学膜は偏光膜 5である。偏光膜 5は S偏光光を反射させ、 P偏 光光を透過させるものである。さらに、光学素子 1 Aの出射面 3A側において、偏光膜 5と対面する部位には 1Z2波長板 6が成膜手段により形成されている。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, Fig. 1 shows the configuration of an optical element as a final product manufactured by the method of the present invention. This optical element is a polarization conversion element, and two structurally different elements are shown. FIG. 4A shows an optical element 1A having an entrance surface 2A and an exit surface 3A, and an optical film is formed at an angle of 45 ° with respect to the entrance surface 2A and the exit surface 3A. The first optical film is the total reflection film 4, and the second optical film is the polarizing film 5. The polarizing film 5 reflects S-polarized light and transmits P-polarized light. Further, a 1Z2 wavelength plate 6 is formed by a film forming means at a portion facing the polarizing film 5 on the exit surface 3A side of the optical element 1A.
[0016] 光源 7から出射される光は S偏光光と P偏光光とが含まれており、この光源 7からの 出射光は、この光学素子 1を通過する間に、入射面 2A力もの入射光のうち、 S偏光 光は偏光膜 5に反射し、かっこの反射光は全反射膜 4で再び反射した後、出射面 3A 力 S偏光光のまま出射される。一方、 P偏光光は偏光膜 5により S偏光光力 分離さ れて、 1Z2波長板 6により偏光面が 90° 回転して、 S偏光光に変換される。従って、 光学素子 1Aの出射側では、全ての光が S偏光光に変換される。なお、図示した偏光 変換素子は S偏光光と P偏光光とが含まれる光を S偏光光に変換して出射させるよう にしたが、 1Z2波長板 6を全反射膜 4と対面させるようにすれば、出射光は全て P偏 光光となる。  [0016] The light emitted from the light source 7 includes S-polarized light and P-polarized light, and the light emitted from the light source 7 is incident on the incident surface as much as 2A while passing through the optical element 1. Of the light, S-polarized light is reflected by the polarizing film 5, and the reflected light of the parenthesis is reflected again by the total reflection film 4, and then is emitted as S-polarized light with the exit surface 3A force. On the other hand, the P-polarized light is separated into S-polarized light by the polarizing film 5, and the plane of polarization is rotated by 90 ° by the 1Z2 wavelength plate 6 to be converted into S-polarized light. Accordingly, all light is converted into S-polarized light on the exit side of the optical element 1A. In the illustrated polarization conversion element, light including S-polarized light and P-polarized light is converted into S-polarized light and emitted. However, the 1Z2 wavelength plate 6 is made to face the total reflection film 4. In this case, all the emitted light is P-polarized light.
[0017] また、図 1 (b)は他のタイプの光学素子 IBであって、 2B側が入射面、 3B側が出射 面である。この光学素子 1Bは、全反射膜 4及び偏光膜 5が交互に形成されているが 、長さ方向の中央部 Cを中心として、左右両側で膜の傾き方向が逆になつている。そ して、 1Z2波長板 6は偏光膜 5と対面する側に設けられている。このように構成しても 、光源 7からの P偏光光と S偏光光とを含む出射光は全て S偏光光となって出射され る点は、光学素子 1Aと同様である。 FIG. 1 (b) shows another type of optical element IB, where the 2B side is the entrance surface and the 3B side is the exit surface. In this optical element 1B, total reflection films 4 and polarizing films 5 are alternately formed, but the tilt directions of the films are reversed on the left and right sides with the central portion C in the length direction as the center. The 1Z2 wave plate 6 is provided on the side facing the polarizing film 5. Even if configured in this way The light emitted from the light source 7 including the P-polarized light and the S-polarized light is all emitted as S-polarized light in the same manner as the optical element 1A.
[0018] そこで、以下にぉ 、ては、偏光変換素子としての光学素子 1Bの製造方法にっ 、て 説明する。ここで、図 2及び図 3に示したように、 3種類の光学ガラス板 10, 11, 12が 用いられる。光学ガラス板 10は、その一面に全反射膜 4を形成したものであり、光学 ガラス板 11は、その一面に偏光膜 5が形成されている。また、光学ガラス板 12はいず れの面にも成膜されていない素ガラスである。この光学ガラス板 12は 1枚または複数 枚用いる。一方、光学ガラス板 10, 11は同じ厚みで、サイズも同じである。これに対 して、光学ガラス板 12は、光学ガラス板 10, 11より厚みが大きぐ幅寸法 (後述するよ うに、図 3の第 2の基準壁 21に向力 方向)はそれらより小さくなつている。  [0018] Therefore, hereinafter, a method for manufacturing the optical element 1B as a polarization conversion element will be described. Here, as shown in FIGS. 2 and 3, three types of optical glass plates 10, 11, and 12 are used. The optical glass plate 10 has a total reflection film 4 formed on one surface thereof, and the optical glass plate 11 has a polarizing film 5 formed on one surface thereof. The optical glass plate 12 is a bare glass that is not formed on any surface. One or more optical glass plates 12 are used. On the other hand, the optical glass plates 10 and 11 have the same thickness and the same size. On the other hand, the optical glass plate 12 has a width dimension larger than the optical glass plates 10 and 11 (as will be described later, the direction of the force toward the second reference wall 21 in FIG. 3) smaller than those. ing.
[0019] 光学ガラス板 10, 11は交互に積層される。そして、真ん中の 1段または 2〜3段に ついては光学ガラス板 12を介在させている。そして、この光学ガラス板 12が配設され ている段の上下の段には偏光膜 5を形成した光学ガラス板 11が配設され、最下段及 び最上段には全反射膜 4を形成した光学ガラス板 10が配設される。これらの順で光 学ガラス 10, 11及び 12を積層させることによって、ガラス積層体ブロック 13が形成さ れる。  The optical glass plates 10 and 11 are laminated alternately. An optical glass plate 12 is interposed in the middle one or two to three stages. An optical glass plate 11 having a polarizing film 5 formed thereon is provided at the upper and lower stages of the stage where the optical glass plate 12 is provided, and a total reflection film 4 is formed at the lowermost stage and the uppermost stage. An optical glass plate 10 is provided. By laminating the optical glasses 10, 11 and 12 in this order, the glass laminate block 13 is formed.
[0020] このガラス積層体ブロック 13は、階段状に積層されており、全体として、図 2に示し たように、前後方向には 45° の角度を持った階段状となし、図 3に示したように、ガラ ス積層体ブロック 13の左右両側は垂直面となるようにしている。このために、 2つの基 準壁が用いられる。第 1の基準壁 20はガラス積層体ブロック 13の階段を形成するに 当っての傾斜の基準壁となるものであり、この第 1の基準壁 20は斜め 45° に傾斜し ている。また、第 2の基準壁 21は鉛直状態となっており、中間に突条 21aが形成され ている。この突条 21aの位置には光学ガラス 12が積層されるものであり、この突条 21 aの突出部分の長さは光学ガラス板 10, 11と光学ガラス板 12との幅方向における寸 法差の半分に相当する寸法となっている。  [0020] This glass laminate block 13 is laminated in a staircase shape, and as a whole, as shown in Fig. 2, the glass laminate block 13 has a staircase shape with an angle of 45 ° in the front-rear direction. As described above, the left and right sides of the glass laminate block 13 are vertical surfaces. For this, two reference walls are used. The first reference wall 20 serves as an inclined reference wall for forming the staircase of the glass laminate block 13, and the first reference wall 20 is inclined at an angle of 45 °. The second reference wall 21 is in a vertical state, and a protrusion 21a is formed in the middle. The optical glass 12 is laminated at the position of the protrusion 21a, and the length of the protruding portion of the protrusion 21a is a dimensional difference in the width direction between the optical glass plates 10 and 11 and the optical glass plate 12. The dimension is equivalent to half of the size.
[0021] 光学ガラス板 10, 11及び 12は、このようにして形成した第 1,第 2の基準壁 20, 21 に相隣接する 2辺を当接させるようにして積層させることによって、容易に、し力も正 確に積層させることができる。そして、所定枚数の光学ガラス板が積層されると、ガラ ス積層体ブロック 13が形成される。このガラス積層体ブロック 13は、図 2に示したよう に、斜め方向にずれながら傾斜状態に積層されている力 左右の両側部は全体的に は鉛直状態となっている。そして、図 3から明らかなように、中段に位置する光学ガラ ス板 12の部位では、その前後方向に貫通する溝 14が左右両側部に形成されている 。ここで、光学ガラス板 10〜 12はいずれも厳格に寸法管理がなされており、従ってガ ラス間に形成される溝 14は高精度な寸法を有する基準溝となる。 [0021] The optical glass plates 10, 11 and 12 can be easily obtained by laminating the adjacent first and second reference walls 20, 21 so that two adjacent sides are brought into contact with each other. Also, the force can be accurately laminated. When a predetermined number of optical glass plates are laminated, A laminated body block 13 is formed. As shown in FIG. 2, the laminated glass block 13 has a force that is laminated in an inclined state while being shifted in an oblique direction. As is apparent from FIG. 3, in the portion of the optical glass plate 12 located in the middle stage, grooves 14 penetrating in the front-rear direction are formed on both left and right side portions. Here, all the optical glass plates 10 to 12 are strictly controlled in size, and therefore the groove 14 formed between the glasses serves as a reference groove having a highly accurate dimension.
[0022] ガラス積層体ブロック 13を形成するために光学ガラス板を積層する際には、その積 層面に例えば紫外線硬化接着剤を塗布するようになし、積層が終了した後に、例え ば鉛直面側から紫外線を照射することによって、紫外線硬化接着剤を硬化させる。こ れによって、ガラス積層体ブロック 13が固定される。以上がガラス板ブロック化工程で ある。 [0022] When the optical glass plate is laminated to form the glass laminate block 13, for example, an ultraviolet curable adhesive is applied to the laminated surface, and after the lamination is completed, for example, on the vertical surface side The ultraviolet curable adhesive is cured by irradiating with ultraviolet rays. As a result, the glass laminate block 13 is fixed. The above is the glass plate blocking process.
[0023] 次に、図 4に示したように、ガラス積層体ブロック 13を、その傾斜方向、つまり第 1の 基準壁 20と平行な方向にスライスして、接合ガラス平面板 15を得る。この接合ガラス 平面板 15の厚み Tは、後述するように、光学素子 1Bとしての最終厚みより両側の研 磨代分だけ厚いものとする。このガラス積層体ブロック 13をスライスするには、ワイヤ ソーまたはバンドソーを用いることによって、容易に切断することができる。勿論、この ガラス積層体ブロック 13の切断は、基準壁力も取り出した後に行う。この工程が平面 板形成工程である。ここで、ガラス積層体ブロック 13をスライスして取得した所定数の 接合ガラス平面板 15の全てにぉ 、て、基準溝 14が存在して 、る。  Next, as shown in FIG. 4, the glass laminate block 13 is sliced in the tilt direction, that is, in the direction parallel to the first reference wall 20 to obtain the bonded glass flat plate 15. As will be described later, the thickness T of the bonded glass flat plate 15 is thicker by the polishing allowance on both sides than the final thickness of the optical element 1B. In order to slice this glass laminated body block 13, it can cut | disconnect easily by using a wire saw or a band saw. Of course, the glass laminate block 13 is cut after taking out the reference wall force. This process is a flat plate forming process. Here, the reference groove 14 is present in all of the predetermined number of bonded glass flat plates 15 obtained by slicing the glass laminate block 13.
[0024] 平面板形成工程で形成した接合ガラス平面板 15は、その稜線部分、つまりその 6 面を構成する各辺や、角隅部に鋭利な部位が存在しているので、これらの鋭利な部 位を研磨して面取りを行う。これがエッジ処理工程である。このエッジ処理工程は、後 述する表面研磨工程において、研磨装置の部品、特にラッピング定盤等を損傷させ るのを防止し、また接合ガラス平面板 15の割れや欠けを防止するためである。ただし 、基準溝 14の部位には鋭利な部位が残存しているが、この基準溝 14は奥まった位 置であって、し力も僅かな長さ寸法のものであるから、ラッピング時にカ卩ェ工具を損傷 する等と!/、つた問題が生じることはな!/、。  [0024] Since the bonded glass flat plate 15 formed in the flat plate forming step has sharp portions at the ridgeline portions, that is, the sides constituting the six surfaces and the corners, these sharp edges are present. The part is polished and chamfered. This is the edge processing step. This edge treatment process is to prevent damage to parts of the polishing apparatus, particularly the lapping surface plate, etc. in the surface polishing process described later, and to prevent the bonded glass flat plate 15 from being cracked or chipped. However, although a sharp part remains in the part of the reference groove 14, the reference groove 14 is in a deep position and has a slight length, so that it is difficult to carry out the capping at the time of lapping. If the tool is damaged! /, There will be no other problems! / ...
[0025] 以上のようにして得た接合ガラス平面板 15の表面を研磨する。この表面研磨は、例 えばラッピングにより表裏両面を同時に加工する。この表面研磨は平面板形成工程 で研磨代として残存させた分にっ 、て行う。 [0025] The surface of the bonded glass flat plate 15 obtained as described above is polished. This surface polishing is an example For example, both front and back surfaces are processed simultaneously by lapping. This surface polishing is performed according to the amount remaining as a polishing allowance in the flat plate forming process.
[0026] その後に、図 5に示したように、 2本の位置決めピン 22を立設した切断用位置決め 治具 23上に、成膜後の接合ガラス平面板 15を載置して、例えばダイアモンドカツタ 等の切断工具によって、この接合ガラス平面板 15を切断線 DX1〜DX3, DY1〜D Y4に沿って切断する。そして、切断後には、各々の切断ラインに対して幅 G分を研 磨する。なお、この幅 G分の研磨は、最低限切断線 DX2の位置では必須であるが、 それ以外の位置については必ずしも研磨する必要はない。ここで、横方向の切断線 DX1〜DX3のうち、切断線 DX1, DX3による切断は、偏光変換素子 1Bとして構成 したときに、上下の両端における平面部を作り出すものであり、中間の切断線 DX2は 後述するように反転接合を行わせるための切断線である。  Thereafter, as shown in FIG. 5, a bonded glass flat plate 15 after film formation is placed on a cutting positioning jig 23 in which two positioning pins 22 are erected, for example, diamond. The bonded glass flat plate 15 is cut along cutting lines DX1 to DX3 and DY1 to DY4 with a cutting tool such as a cutter. Then, after cutting, the width G is polished for each cutting line. The polishing for the width G is indispensable at the position of the cutting line DX2, but it is not always necessary to polish at other positions. Here, among the horizontal cutting lines DX1 to DX3, the cutting by the cutting lines DX1 and DX3 creates a flat portion at the upper and lower ends when configured as the polarization conversion element 1B, and the intermediate cutting line DX2 Is a cutting line for performing reversal bonding as will be described later.
[0027] 接合ガラス平面板 15の切断時には、切断用位置決め治具 23上において、この接 合ガラス平面板 15が正確に位置決めされていなければならない。ここで、接合ガラス 平面板 15の位置決めにおいて、 X, y, Θ方向のうち、 y方向及び 0方向については 正確に位置決めする必要はある。ただし、 X方向については、切断線 DY1— DY2, DY2-DY3, DY3— DY4の間隔は重要ではあるものの、これらの切断線が全体的 に多少左右にずれても何等問題ではない。以上のことから、この方向においては、格 別位置決め精度が要求されない。切断用位置決め治具 23には、 2本の位置決めピ ン 22, 22が立設されており、これらの位置決めピン 22は接合ガラス平面板 15におい て、その左右の両側に位置する基準溝 14内において、この基準溝 14の側壁部をと なるのは正確な寸法精度を有する光学ガラス板 11の側面部であり、この部位はエツ ジ処理工程時に研磨がなされていないので、寸法精度が維持されている。従って、 2 本の位置決めピン 22を両側の基準溝 14内において、光学ガラス板 11の側面に当 接させることによって、接合ガラス平面板 15は y方向及び Θ方向については正確に 位置決めすることができる。また、この光学ガラス板 10の側面に部分的に欠けがあつ ても、この接合ガラス平面板 15を X方向にずらせることにより、位置決めピン 22との当 接部を、この欠けた位置を避けるようにして位置決めできる。  When the bonded glass flat plate 15 is cut, the bonded glass flat plate 15 must be accurately positioned on the cutting positioning jig 23. Here, in the positioning of the bonded glass flat plate 15, it is necessary to accurately position the y direction and the 0 direction among the X, y, and Θ directions. However, in the X direction, the distance between the cutting lines DY1–DY2, DY2-DY3, and DY3–DY4 is important, but it is not a problem if these cutting lines are shifted slightly to the left or right as a whole. From the above, no special positioning accuracy is required in this direction. The positioning jig for cutting 23 is provided with two positioning pins 22 and 22, and these positioning pins 22 are in a reference glass 14 located on both the left and right sides of the bonded glass flat plate 15. In this case, the side wall portion of the reference groove 14 is the side surface portion of the optical glass plate 11 having an accurate dimensional accuracy, and this portion is not polished during the edge processing step, so that the dimensional accuracy is maintained. ing. Therefore, the bonded glass flat plate 15 can be accurately positioned in the y direction and the Θ direction by bringing the two positioning pins 22 into contact with the side surfaces of the optical glass plate 11 in the reference grooves 14 on both sides. . Even if the optical glass plate 10 is partially chipped on its side surface, the bonding glass flat plate 15 is displaced in the X direction so that the contact portion with the positioning pin 22 avoids the chipped position. In this way, positioning can be performed.
[0028] 以上が平面板分割工程である。この平面板分割工程時に、図 5において、切断線 DY1から左側及び切断線 DY4力 右側の部位は廃棄され、その結果基準溝が存 在しなくなる。ただし、これ以後は位置決め壁を必要としないので、位置決め基準位 置が存在しなくなっても何等の問題もな!/、。 The above is the plane plate dividing step. During this flat plate splitting process, the cutting line in FIG. The part on the left side from DY1 and the right side of the cutting line DY4 force is discarded, so that the reference groove does not exist. However, since no positioning wall is required after this, there will be no problem even if the positioning reference position no longer exists!
[0029] 以上のようにして 6分割されたものにおいて、光学素子 1Bとして構成したときに、出 射面 3B側となる面であって、偏光膜 5と対面する位置または全反射膜 4と対面する位 置に限定して 1Z2波長板 6を形成する。この 1Z2波長板 6は成膜手段で行うことが でき、またフィルムの貼り付け等適宜の手段を採用することもできる。従って、出射面 3B側の面には、ガラスが露出している面と、 1Z2波長板 6が積層されている面とが 交互のストライプ状となる。この積層の後に、表裏両面において、それらの全面に反 射防止膜を成膜する。 [0029] When the optical element 1B is divided into six parts as described above, it is a surface on the side of the emission surface 3B, which faces the polarizing film 5 or faces the total reflection film 4 The 1Z2 wave plate 6 is formed only at the position where it is applied. The 1Z2 wavelength plate 6 can be formed by a film forming means, and an appropriate means such as affixing a film can also be adopted. Therefore, on the surface on the emission surface 3B side, the surface from which the glass is exposed and the surface on which the 1Z2 wavelength plate 6 is laminated are alternately striped. After this lamination, an antireflection film is formed on both the front and back surfaces.
[0030] さらに、図 6に示したように、切断線 DX2により 2分割され、かつ端面が研磨された 光学素子部片 16a, 16bのうちの一方、例えば光学素子部片 16bを反転させて裏向 きとなし、研磨された素ガラス板 12の面を接合させて、接着剤により固着する。これに よって図 1 (b)に示されている光学素子 IBが製造される。ここで、光学素子 1Bにおい て、 1Z2波長板 6を偏光膜 5と対面する位置に積層させると、出射光は S偏光光とな り、また全反射膜 4と対面する位置に 1Z2波長板 6を配置すると、出射光は P偏光光 となる。  Further, as shown in FIG. 6, one of the optical element pieces 16a and 16b that is divided into two by the cutting line DX2 and whose end face is polished, for example, the optical element piece 16b is reversed and the back surface is reversed. The face of the ground glass plate 12 is bonded and bonded with an adhesive. As a result, the optical element IB shown in FIG. 1 (b) is manufactured. Here, in the optical element 1B, when the 1Z2 wavelength plate 6 is laminated at a position facing the polarizing film 5, the emitted light becomes S-polarized light, and the 1Z2 wavelength plate 6 is positioned at the position facing the total reflection film 4. When is placed, the emitted light becomes P-polarized light.
[0031] なお、図 1 (a)に示した光学素子 1Aを製造する場合においても、概ね前述したと同 様であるが、ガラス積層体ブロックの中段を構成する光学ガラス板は素ガラス板では なぐ光学ガラス板 10, 11を交互に積層させるようにする。そして、基準溝を形成する ために、最下段及び最上段の光学ガラス板を除き、中間に積層されるいずれかの光 学ガラス板 1枚または複数枚については、幅寸法が狭くなつたものを用いる。また、平 面板分割工程で、図 6の切断線 DX2に相当する部位の切断は必要ではなぐまたそ の後の反転接合も行わな 、。  [0031] Note that, in the case of manufacturing the optical element 1A shown in Fig. 1 (a), the optical glass plate constituting the middle stage of the glass laminate block is not a raw glass plate, although it is almost the same as described above. Laminate optical glass plates 10 and 11 alternately. Then, in order to form the reference groove, except for the lowermost and uppermost optical glass plates, one or more optical glass plates laminated in the middle are those having a narrow width dimension. Use. Also, in the flat plate dividing process, it is not necessary to cut the part corresponding to the cutting line DX2 in Fig. 6, and the subsequent reverse joining is not performed.

Claims

請求の範囲 The scope of the claims
[1] 相異なる光学特性を有する光学ガラス板を一定の順序に応じて基準壁に沿って階 段状に複数枚積層して相互に貼り合わせることによって、前後方向に階段状に傾斜 し、左右両側部が垂直となったガラス積層体ブロックを形成するガラス板ブロック化工 程と、  [1] A plurality of optical glass plates having different optical characteristics are stacked in a stepped manner along a reference wall in a certain order, and bonded together to incline in a stepwise manner in the front-rear direction. Glass plate block forming process to form a glass laminate block with both sides vertical;
前記ガラス積層体ブロックを、その基準壁と平行な方向に所定の厚み毎にスライス して、接合ガラス平面板を形成する平面板形成工程と、  A flat plate forming step of slicing the glass laminate block at a predetermined thickness in a direction parallel to the reference wall to form a bonded glass flat plate;
前記接合ガラス平面板の稜線部及び角隅部を研磨して、エッジを除去するエッジ 処理工程と、  An edge processing step of polishing edges and corners of the bonded glass flat plate to remove edges;
エッジ除去処理がなされた接合ガラス平面板の表裏両面を研磨する表面研磨工程 と、  A surface polishing step for polishing both the front and back surfaces of the bonded glass plane plate that has been subjected to edge removal processing;
表面研磨がなされた接合ガラス平面板を切断して、所定サイズの光学素子となるよ うに分割する平面板分割工程とからなり、  It comprises a flat plate dividing step of cutting a bonded glass flat plate that has been subjected to surface polishing and dividing it into optical elements of a predetermined size,
前記ガラス板ブロック化工程で貼り合わされる光学ガラス板のうち、概略中間の段 に積層される 1または複数枚の光学ガラス板の長さを他の光学ガラス板の長さより短 寸のものとすることによりガラス積層体ブロックに形成される左右両側の垂直面に基 準溝を形成し、この基準溝を前記平面板分割工程時で前記接合ガラス平面板を分 割する際に、その切断用位置決め治具に設けた位置決め部材により位置決めされる 基準部とする  Of the optical glass plates to be bonded together in the glass plate blocking step, the length of one or more optical glass plates stacked in an approximately intermediate stage is shorter than the length of the other optical glass plates. Thus, a reference groove is formed on the left and right vertical surfaces formed in the glass laminate block, and when the bonded glass flat plate is divided during the flat plate dividing step, the positioning for cutting is performed. A reference part that is positioned by a positioning member provided on the jig
ことを特徴とする光学素子の製造方法。  A method for manufacturing an optical element.
[2] 前記ガラス積層体ブロックを形成する際に、中間の段に配設される 1または複数枚の 光学ガラス板を他の光学ガラス板より厚手とした素ガラス板で構成し、この素ガラス板 の幅寸法を短くすることにより前記基準溝を形成し、前記平面板分割工程では、この 素ガラス板の部位で切断して 2分割し、切断面を研磨した後に、一方を反転させてそ れらの研磨面を接合することを特徴とする請求項 1記載の光学素子の製造方法。  [2] When forming the glass laminated body block, one or a plurality of optical glass plates disposed in an intermediate stage are constituted by a raw glass plate thicker than other optical glass plates, and the raw glass The reference groove is formed by shortening the width dimension of the plate, and in the plane plate dividing step, the substrate is cut at a portion of the glass plate and divided into two, and after the cut surface is polished, the other is inverted. 2. The method of manufacturing an optical element according to claim 1, wherein these polished surfaces are bonded.
[3] 前記ガラス積層体ブロックを形成する際に、前記傾斜させた基準壁に加えて、この基 準壁と直交する方向に設けた鉛直状態となった第 2の基準壁を設け、この第 2の基準 壁には前記基準溝の配置部に突出部が形成されて、前記ガラス板ブロック化工程で は、前記基準壁と第 2の基準壁とに沿って前記光学ガラス板を積層させることを特徴 とする請求項 1記載の光学素子の製造方法。 [3] When forming the glass laminate block, in addition to the inclined reference wall, a second reference wall in a vertical state provided in a direction perpendicular to the reference wall is provided. The reference wall of 2 is formed with a protrusion at the reference groove placement portion, and the glass plate blocking step 2. The method of manufacturing an optical element according to claim 1, wherein the optical glass plate is laminated along the reference wall and the second reference wall.
[4] 45° の傾斜角を有する基準壁に沿って、全反射膜を形成した第 1の光学ガラス板と 、偏光膜を形成した第 2の光学ガラス板とを交互に配置して階段状に複数枚積層し て貼り合わせることによって、前後方向に階段状に傾斜し、左右両側部が垂直となつ たガラス積層体ブロックを形成するガラス板ブロック化工程と、 [4] A first optical glass plate with a total reflection film and a second optical glass plate with a polarization film are alternately arranged along a reference wall having an inclination angle of 45 ° in a staircase pattern. A glass plate block forming step for forming a glass laminate block that is inclined in a stepwise manner in the front-rear direction and the left and right sides are vertical,
前記ガラス積層体ブロックを、その基準壁と平行な方向に所定の厚み毎にスライス して、接合ガラス平面板を形成する平面板形成工程と、  A flat plate forming step of slicing the glass laminate block at a predetermined thickness in a direction parallel to the reference wall to form a bonded glass flat plate;
前記接合ガラス平面板の稜線部及び角隅部を研磨して、エッジを除去するエッジ 処理工程と、  An edge processing step of polishing edges and corners of the bonded glass flat plate to remove edges;
エッジ除去処理がなされた接合ガラス平面板の表裏両面を研磨する表面研磨工程 と、  A surface polishing step for polishing both the front and back surfaces of the bonded glass plane plate that has been subjected to edge removal processing;
前記接合ガラス平面板を切断して、所定サイズの光学素子となるように分割する平 面板分割工程と、  A flat plate dividing step of cutting the bonded glass flat plate to divide it into optical elements of a predetermined size;
分割された平面板の一側面に前記偏光膜または全反射膜と対面する位置に 1Z2 波長板を積層させる積層工程とからなり、  A laminating step of laminating a 1Z2 wavelength plate at a position facing the polarizing film or the total reflection film on one side surface of the divided flat plate,
前記ガラス板ブロック化工程で貼り合わされる光学ガラス板のうち、概略中間の段 に積層される 1または複数枚の光学ガラス板の長さを他の光学ガラス板の長さより短 いものとすることによりガラス積層体ブロックに形成される左右両側の垂直面に基準 溝を形成し、この基準溝を前記平面板分割工程時で前記接合ガラス平面板を分割 する際に、その切断用位置決め治具に設けた位置決め部材により位置決めされる基 準部とする  Of the optical glass plates to be bonded together in the glass plate blocking step, the length of one or more optical glass plates laminated in an approximately middle stage shall be shorter than the length of the other optical glass plates. Forming a reference groove on the right and left vertical surfaces formed in the glass laminate block, and when dividing the bonded glass flat plate in the flat plate dividing step, the reference groove is used as a cutting positioning jig. The reference part is positioned by the provided positioning member.
ことを特徴とする偏光変換素子の製造方法。  A method for manufacturing a polarization conversion element, comprising:
[5] 45° の傾斜角を有する基準壁に沿って、全反射膜を形成した第 1の光学ガラス板と 、偏光膜を形成した第 2の光学ガラス板とを交互に配置して階段状に複数枚積層し て貼り合わせ、かつ中間の段に配設される光学ガラス板を他の光学ガラス板より厚手 の素ガラス板で構成して、前後方向に階段状に傾斜し、左右両側部が垂直となった ガラス積層体ブロックを形成するガラス板ブロック化工程と、 前記ガラス積層体ブロックを、その基準壁と平行な方向に所定の厚み毎にスライス して、接合ガラス平面板を形成する平面板形成工程と、 [5] A first optical glass plate on which a total reflection film is formed and a second optical glass plate on which a polarizing film is formed are arranged alternately along a reference wall having an inclination angle of 45 °. The optical glass plates that are stacked and bonded together and are arranged in the middle step are composed of thicker glass plates that are thicker than the other optical glass plates, and are inclined stepwise in the front-rear direction. A glass plate block forming step for forming a glass laminate block in which A flat plate forming step of slicing the glass laminate block at a predetermined thickness in a direction parallel to the reference wall to form a bonded glass flat plate;
前記接合ガラス平面板の稜線部及び角隅部を研磨して、エッジを除去するエッジ 処理工程と、  An edge processing step of polishing edges and corners of the bonded glass flat plate to remove edges;
エッジ除去処理がなされた接合ガラス平面板の表裏両面を研磨する表面研磨工程 と、  A surface polishing step for polishing both the front and back surfaces of the bonded glass plane plate that has been subjected to edge removal processing;
前記接合ガラス平面板を切断して、所定サイズの光学素子となるように分割した上 で、前記素ガラス板の部位で切断して 2分割する平面板分割工程と、  A flat plate dividing step of cutting the bonded glass flat plate and dividing it into optical elements of a predetermined size, and then cutting into two parts by cutting at the portion of the raw glass plate;
分割された平面板の一側面に前記偏光膜または全反射膜と対面する位置に 1Z2 波長板を積層させる積層工程と、  A laminating step of laminating a 1Z2 wavelength plate at a position facing the polarizing film or the total reflection film on one side of the divided flat plate;
前記素ガラス板で 2分割した切断面を研磨した後に、一方を反転させてそれらの研 磨面を接合させる反転接合工程とからなり、  After polishing the cut surface divided into two parts by the raw glass plate, it comprises an inversion joining step of inverting one side and joining the polished surfaces.
前記ガラス板ブロック化工程で貼り合わされる光学ガラス板のうち、概略中間の段 に積層される 1または複数枚の光学ガラス板の長さを他の光学ガラス板の長さより短 いものとすることによりガラス積層体ブロックに形成される左右両側の垂直面に基準 溝を形成し、この基準溝を前記平面板分割工程時で前記接合ガラス平面板を分割 する際に、その切断用位置決め治具に設けた位置決め部材により位置決めされる基 準部とする  Of the optical glass plates to be bonded together in the glass plate blocking step, the length of one or more optical glass plates laminated in an approximately middle stage shall be shorter than the length of the other optical glass plates. Forming a reference groove on the right and left vertical surfaces formed in the glass laminate block, and when dividing the bonded glass flat plate in the flat plate dividing step, the reference groove is used as a cutting positioning jig. The reference part is positioned by the provided positioning member.
ことを特徴とする偏光変換素子の製造方法。 A method for manufacturing a polarization conversion element, comprising:
請求項 4または請求項 5により製造された偏光変換素子。 A polarization conversion element manufactured according to claim 4 or claim 5.
PCT/JP2006/302841 2005-02-22 2006-02-17 Method for manufacturing optical glass, method for manufacturing polarization converting element and polarization converting element WO2006090646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-045006 2005-02-22
JP2005045006A JP2006234861A (en) 2005-02-22 2005-02-22 Method of manufacturing optical glass, method of manufacturing polarization conversion element, and polarization conversion element

Publications (1)

Publication Number Publication Date
WO2006090646A1 true WO2006090646A1 (en) 2006-08-31

Family

ID=36927287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302841 WO2006090646A1 (en) 2005-02-22 2006-02-17 Method for manufacturing optical glass, method for manufacturing polarization converting element and polarization converting element

Country Status (3)

Country Link
JP (1) JP2006234861A (en)
TW (1) TW200643473A (en)
WO (1) WO2006090646A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133403A1 (en) * 2011-03-31 2012-10-04 シャープ株式会社 Reflective imaging element, method of manufacturing reflective imaging element and optical system
US10576064B2 (en) 2014-07-03 2020-03-03 Boehringer Ingelheim International Gmbh Spiro[3H-indole-3,2′-pyrrolidin]-2(1H)-one compounds and derivatives as MDM2-P53 inhibitors
US10717742B2 (en) 2015-10-09 2020-07-21 Boehringer Ingelheim International Gmbh Spiro[3H-indole-3,2′-pyrrolidin]-2(1H)-one compounds and derivatives as MDM2-P53 inhibitors
US10919913B2 (en) 2014-08-21 2021-02-16 Boehringer Ingelheim International Gmbh Spiro[3H-indole-3,2′-pyrrolidin]-2(1H)-one compounds and derivatives as MDM2-p53 inhibitors

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081300A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Method for manufacturing reflection type plane-symmetric imaging element
JP2012128456A (en) * 2012-03-22 2012-07-05 Pioneer Electronic Corp Method of manufacturing reflective plane-symmetric imaging element
JP5318242B2 (en) * 2012-03-22 2013-10-16 パイオニア株式会社 Method for manufacturing a reflection-type plane-symmetric imaging element
JP6400453B2 (en) * 2014-12-05 2018-10-03 有限会社オプトセラミックス Manufacturing method of optical panel for aerial imaging

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174212A (en) * 1997-12-10 1999-07-02 Toshiba Corp Production of cross dichroic prism
JP2000199810A (en) * 1998-10-30 2000-07-18 Toyo Commun Equip Co Ltd Manufacture of optical device
JP2000329912A (en) * 1996-12-06 2000-11-30 Seiko Epson Corp Manufacture of cross-dichroic prism
JP2002179440A (en) * 2000-12-12 2002-06-26 Asahi Techno Glass Corp Tool for fabricating laminated optical member, method of producing laminated optical member and method of producing optical prism
JP2002189109A (en) * 2000-10-10 2002-07-05 Nikon Corp Cross dichroic prism and method for manufacturing the same
JP2003057417A (en) * 2001-08-21 2003-02-26 Toyo Commun Equip Co Ltd Optical device and method for manufacturing the same
JP2003207643A (en) * 1996-03-12 2003-07-25 Seiko Epson Corp Polarized light separation device and its manufacturing method, and projection display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207643A (en) * 1996-03-12 2003-07-25 Seiko Epson Corp Polarized light separation device and its manufacturing method, and projection display
JP2000329912A (en) * 1996-12-06 2000-11-30 Seiko Epson Corp Manufacture of cross-dichroic prism
JPH11174212A (en) * 1997-12-10 1999-07-02 Toshiba Corp Production of cross dichroic prism
JP2000199810A (en) * 1998-10-30 2000-07-18 Toyo Commun Equip Co Ltd Manufacture of optical device
JP2002189109A (en) * 2000-10-10 2002-07-05 Nikon Corp Cross dichroic prism and method for manufacturing the same
JP2002179440A (en) * 2000-12-12 2002-06-26 Asahi Techno Glass Corp Tool for fabricating laminated optical member, method of producing laminated optical member and method of producing optical prism
JP2003057417A (en) * 2001-08-21 2003-02-26 Toyo Commun Equip Co Ltd Optical device and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133403A1 (en) * 2011-03-31 2012-10-04 シャープ株式会社 Reflective imaging element, method of manufacturing reflective imaging element and optical system
US10576064B2 (en) 2014-07-03 2020-03-03 Boehringer Ingelheim International Gmbh Spiro[3H-indole-3,2′-pyrrolidin]-2(1H)-one compounds and derivatives as MDM2-P53 inhibitors
US10919913B2 (en) 2014-08-21 2021-02-16 Boehringer Ingelheim International Gmbh Spiro[3H-indole-3,2′-pyrrolidin]-2(1H)-one compounds and derivatives as MDM2-p53 inhibitors
US10717742B2 (en) 2015-10-09 2020-07-21 Boehringer Ingelheim International Gmbh Spiro[3H-indole-3,2′-pyrrolidin]-2(1H)-one compounds and derivatives as MDM2-P53 inhibitors
US10882866B1 (en) 2015-10-09 2021-01-05 Boehringer Ingelheim International Gmbh Spiro[3H-indole-3,2′-pyrrolidin]-2(1H)-one compounds and derivatives as MDM2-P53 inhibitors

Also Published As

Publication number Publication date
JP2006234861A (en) 2006-09-07
TW200643473A (en) 2006-12-16

Similar Documents

Publication Publication Date Title
WO2006090646A1 (en) Method for manufacturing optical glass, method for manufacturing polarization converting element and polarization converting element
JP4006855B2 (en) Optical device manufacturing method
JP6165206B2 (en) Manufacturing method of light control panel, light control panel, optical imaging apparatus, and aerial image forming system
US20070211339A1 (en) Polarized light splitting device and method for manufacturing the same
JP4637653B2 (en) Manufacturing method of prism
WO2003044573A1 (en) Optical filter, production method for this optical filter and optical device using this optical filter and housing structure for this optical filter
US11892677B2 (en) Method of fabrication of compound light-guide optical elements
JP2000199810A (en) Manufacture of optical device
JP5055961B2 (en) Optical element manufacturing method
JP2000241610A (en) Manufacture of optical prism
KR20240017159A (en) Fabrication method of optical aperture multiplier with rectangular waveguide
JP4273945B2 (en) Manufacturing method of composite prism
KR20070093359A (en) Polarization conversion element and method for manufacturing the same
JP2000147222A (en) Production of wollaston prism
JP5617848B2 (en) Optical element manufacturing method and jig used in the manufacturing method
JP2006084861A (en) Method for manufacturing optical device and optical device
JP7429171B2 (en) Manufacturing method of Faraday rotator and optical isolator
US20240061179A1 (en) Methods of fabrication of compound light-guide optical elements having embedded coupling-in reflectors
JP2003057417A (en) Optical device and method for manufacturing the same
JP2007249130A (en) Flat-plate-like optical member, manufacturing method of optical device, and optical device
JP2010217244A (en) Method for manufacturing prism
JP2001337209A (en) Method for manufacturing device for correcting optical path
TWI316615B (en)
JP3096364B2 (en) Method for producing Johansson type X-ray spectroscopic crystal
JP2003137615A (en) Method for manufacturing optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713982

Country of ref document: EP

Kind code of ref document: A1