WO2006090537A1 - Gas mixer, film deposition equipment, and method for producing thin film - Google Patents

Gas mixer, film deposition equipment, and method for producing thin film Download PDF

Info

Publication number
WO2006090537A1
WO2006090537A1 PCT/JP2006/300751 JP2006300751W WO2006090537A1 WO 2006090537 A1 WO2006090537 A1 WO 2006090537A1 JP 2006300751 W JP2006300751 W JP 2006300751W WO 2006090537 A1 WO2006090537 A1 WO 2006090537A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing chamber
gas
mixing
gases
film
Prior art date
Application number
PCT/JP2006/300751
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Miura
Original Assignee
Hoya Advanced Semiconductor Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Advanced Semiconductor Technologies Co., Ltd. filed Critical Hoya Advanced Semiconductor Technologies Co., Ltd.
Publication of WO2006090537A1 publication Critical patent/WO2006090537A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4323Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber

Definitions

  • the present invention relates to a gas mixer used when supplying two or more kinds of gases (source gas, carrier gas, dilution gas, etc.) to various film forming apparatuses, a film forming apparatus using the same, and a thin film It relates to the manufacturing method.
  • gases source gas, carrier gas, dilution gas, etc.
  • CVD chemical vapor deposition
  • sputtering method or the like has been adopted as a method for forming a thin film on a substrate by introducing two or more gases into a film forming apparatus. .
  • the CVD method is a method in which two or more kinds of source gases are introduced into a film forming chamber and a thin film is formed on a substrate by a chemical reaction between the source gases.
  • Sputtering is a method of forming a thin film on a substrate by blowing a gas onto a target made of metal or the like and attaching the ejected molecules to the surface of the substrate.
  • a reactive sputtering method using gas is also used.
  • sputtering is used in semiconductor manufacturing processes and the like because it is easy to form a uniform and high-quality film.
  • Non-Patent Document 1 “CVD Handbook”, Chemical Engineering Society, Asakura Shoten, p727-728
  • Patent Document 1 Japanese Patent Laid-Open No. 11 19494
  • the resistance value which is one of the important factors of the film quality depends on the volume of the film.
  • the control of the line width uniformity is more important than the film thickness uniformity in controlling the film volume.
  • the uniformity of the film thickness is more important than the uniformity of the line width in controlling the film volume.
  • the method (1) when the method (1) is adopted and a film is formed on a deposition target substrate, the formed film has an in-plane distribution (in-plane film thickness distribution, in-plane composition distribution, etc.). There was a problem.
  • the present inventor has found that it depends on the arrangement of the gas introduction pipe to the apparatus. That is, when two or more gases were introduced into the apparatus by the method (1) above, it was found that mixing alone in the apparatus was substantially insufficient. That is, when mixing each gas by the method (1) above, it is necessary to lengthen the gas flow path from introduction into the apparatus to the film formation process. In order to lengthen the length, it is necessary to enlarge the apparatus. For this reason, it is difficult to form a uniform film by the method (1), which is practically impossible.
  • the method (2) is considered to correspond to the method (1) above in which the gas flow path until the gas is mixed is secured outside the apparatus and the gas flow path is lengthened. However, even in this case, the mixing of the gases is insufficient, and the in-plane distribution of the film formed on the deposition target substrate is not eliminated.
  • Patent Document 1 discloses that a mixing pipe for flowing a raw material gas and an argon gas through the main pipe and an oxygen gas is provided on the same circumference of the main pipe. It is shown how to mix the raw material gas' argon gas ⁇ oxygen gas (however, the gas flow rate of the main pipe must be higher than the gas flow rate of the mixed pipe).
  • the present invention has been made based on such a technical background, and is a gas mixer that can be applied to various film forming conditions without incurring complexity and size of the apparatus.
  • the purpose is to provide a film-forming device using the above.
  • the present invention also provides a thin film capable of forming a thin film with high in-plane uniformity.
  • the purpose is to provide a manufacturing method.
  • the gas mixer of the present invention is a gas mixer for mixing two or more kinds of gases, and is a first mixing chamber located upstream in the gas flow direction. And at least a second mixing chamber located downstream, wherein the first mixing chamber has two or more inlets into which two or more gases to be mixed are introduced, and one or more exhaust ports. And an outlet, and the second mixing chamber communicates with an exhaust port provided in the first mixing chamber, and includes at least one gas into which the gas discharged from the first mixing chamber is introduced. An introduction port and a discharge port more than that are provided. The discharge loca provided in the first mixing chamber and / or the second mixing chamber. With respect to the introduction port provided in the same mixing chamber, In the gas flow direction, they are arranged so that they overlap.
  • the gas mixer of the present invention is preferably configured so that the pressure of the second mixing chamber is lower than the pressure of the first mixing chamber when two or more gases are mixed. More specifically, the volume of the second mixing chamber is preferably larger than the volume of the first mixing chamber. Also, the discharge port provided in the first mixing chamber and / or the first mixing chamber. It is preferable that the total area of the inlets provided in the two mixing chambers is 1/5 or less of the area of each installation surface.
  • the gas mixer of the present invention may be provided with at least two or more mixing chambers.
  • the second mixing chamber has two or more mixing chambers.
  • a structure having a discharge port and connecting the pipes connected to each of the discharge ports may be combined into a single pipe.
  • the first mixing chamber is provided with one or more inlets through which the gas discharged from the second mixing chamber is introduced, and at least one discharge port that communicates with the outlet provided in the second mixing chamber.
  • three mixing chambers may be provided.
  • the gas mixer of the present invention may be provided with a temperature adjusting mechanism so that a stable mixed state can be ensured regardless of the temperature change of the outside air.
  • a film forming apparatus of the present invention includes the gas mixer as described above, and is arranged in the film forming chamber by supplying two or more kinds of gases into the film forming chamber.
  • a film forming apparatus for forming a thin film on a substrate comprising: a gas supply pipe for supplying two or more kinds of gases mixed in the film forming chamber; Connected to a gas supply source via a mixer, the gas mixer comprising at least a first mixing chamber located upstream in a gas flow direction and a second mixing chamber located downstream;
  • the one mixing chamber is provided with two or more inlets through which two or more kinds of gases to be mixed are introduced, and one or more outlets, and the second mixing chamber has the first mixing chamber.
  • the gas discharged from the first mixing chamber communicates with the discharge port provided in one mixing chamber.
  • One or more inlets to be introduced and one or more outlets are provided, and the outlets provided in the first mixing chamber and / or the second mixing chamber are introduced in the same mixing chamber It can be set as the structure arrange
  • the thin film manufacturing method of the present invention is a thin film manufacturing method in which two or more kinds of gases are supplied to a film forming apparatus to form a thin film on a substrate disposed in the film forming apparatus, At least a first mixing chamber located upstream in the gas flow direction and a second mixing chamber located downstream are provided, and two or more kinds of gases to be mixed are contained in the first mixing chamber.
  • a thin film with high in-plane uniformity can be easily produced.
  • a mixed gas containing at least a silicon source gas and a carbon source gas is supplied to a film forming apparatus to form a silicon carbide film on the substrate. It can be a method of forming.
  • two or more gases can be uniformly mixed with a simple structure without increasing the complexity and size of the apparatus. For this reason, it is possible to easily manufacture a thin film with high in-plane uniformity by supplying two or more kinds of uniformly mixed gases to the film forming apparatus.
  • FIG. 1 is a schematic perspective view showing an embodiment of a gas mixer according to the present invention.
  • FIG. 2 is a schematic perspective view showing a modification of the embodiment of the gas mixer according to the present invention.
  • FIG. 3 is an explanatory diagram showing an outline of an embodiment of a film forming apparatus according to the present invention.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is an explanatory diagram showing the arrangement of gas supply pipes in the film forming apparatus used in Comparative Example 1.
  • FIG. 1 is a perspective view showing an outline of the gas mixer in the present embodiment.
  • the gas mixer 1 shown in FIG. 1 includes three mixing chambers, a first mixing chamber 10, a second mixing chamber 20, and a third mixing chamber 30, and these mixing chambers 10, 20, 30 are Both have a hollow structure with a substantially cylindrical shape.
  • the first mixing chamber 10 includes an inlet arrangement surface 12 on the upstream side of the gas flow, and an outlet arrangement substantially parallel to the introduction port arrangement surface 12 on the downstream side. With face 14
  • a plurality of (two or more) inlets 12a are connected to the inlet arrangement surface 12 and connected to a pipe (not shown) to separately introduce two or more different gases into the first mixing chamber 10. , 12b, 12c, 12d.
  • the number of introduction ports to be formed in the introduction port arrangement surface 12 can be changed as appropriate in consideration of the number of types of gas to be mixed and the characteristics of the gas to be mixed.
  • the discharge port arrangement surface 14 is provided with two discharge ports 14a and 14b.
  • the discharge ports 14a and 14b are extended along the gas flow direction of each of the four introduction ports 12a, 12b, 12c, and 12d formed in the introduction port disposition surface 12 as illustrated.
  • Extended lines that pass through the centers of the inlets 12a, 12b, 12c, and 12d are indicated by two-dot broken lines in the figure), and the outlets 14a and 14b are in the gas flow direction.
  • the power to make the level not overlap with the level difference of the inlets 12a, 12b, 12c, 12d. Les.
  • discharge ports formed in the discharge port disposition surface 14 is not limited to the illustrated example, and can be changed as appropriate.
  • the second mixing chamber 20 includes an introduction port arrangement surface 22 on the upstream side of the gas flow, and a discharge port arrangement surface 24 substantially parallel to the introduction port arrangement surface 22 on the downstream side.
  • the normal direction of faces 22 and 24 is
  • the gas flow direction substantially coincides with the gas flow direction.
  • the introduction port 22a for introducing the gas discharged from the discharge ports 14a, 14b of the first mixing chamber 10 into the second mixing chamber 20 22b has been drilled.
  • the inlets 22a and 22b are communicated with the outlets 14a and 14b of the first mixing chamber 10 via pipes 40a and 40b provided along the gas flow direction. Force The inlet 22a, 22b and the outlets 14a, 14b are mixed with the force S. The mixing surface 22 of the second mixing chamber 20 and the outlet 14 of the first mixing chamber 10 are mixed.
  • the pipes 40a and 40b can be omitted by making the inlets 22a and 22b and the outlets 14a and 14b communicate directly with each other while ensuring tightness in the chambers 10 and 20. By doing so, the mixer 1 can be miniaturized and the structure can be simplified.
  • the number of outlets of the first mixing chamber 10 and the number of inlets of the second mixing chamber 20 are usually the same, but the outlet of the first mixing chamber 10 and the second mixing chamber 20 are the same.
  • the number of outlets of the first mixing chamber 10 and the number of inlets of the second mixing chamber 20 can be made different by collecting or branching the pipes connecting to the inlets of the second halfway. it can.
  • two discharge ports 24a and 24b are formed in the discharge port disposition surface 24 of the second mixing chamber 20.
  • the discharge ports 24a and 24b are also arranged at positions away from the extended lines of the two introduction ports 22a and 22b of the introduction port arrangement surface 22 (introduction ports 22a and 22b).
  • the extension lines that pass through the center of each 22b are also indicated by the two-dot broken lines in the figure), and the outlets 24a and 24b force in the direction of gas flow should be such that both the inlet 22a and 22b and the deviation do not overlap. It is.
  • the number of introduction ports drilled in the introduction port arrangement surface 22 and the number of discharge ports drilled in the discharge port arrangement surface 24 can be appropriately changed.
  • two inlets 22a, 22b are drilled in the outlet arrangement surface 22, and two outlets 24a, 24b are also drilled in the outlet outlet surface 24, the center of the two inlets 22a, 22b So that the direction connecting the centers of the two outlets 24a and 24b (also indicated by the dashed line in the figure) is almost perpendicular to the direction connecting the two outlets 24a and 24b.
  • outlets 24a, 24b are preferably provided.
  • discharge port when one discharge port is to be drilled on the discharge port arrangement surface 24, it is at a position that is approximately equidistant from each introduction port drilled in the introduction port arrangement surface 22. It is preferable to provide a discharge port.
  • the third mixing chamber 30 includes an inlet arrangement surface 32 on the upstream side of the gas flow and an outlet arrangement surface 34 substantially parallel to the introduction port arrangement surface 32 on the downstream side.
  • the normal direction of the surfaces 32 and 34 is made to substantially coincide with the gas flow direction.
  • an introduction port for introducing the gas discharged from the discharge ports 24a, 24b of the second mixing chamber 20 into the third mixing chamber 30. 32a and 32b are drilled.
  • the outlets 24a and 24b of the second mixing chamber 20 and the inlets 32a and 32b of the third mixing chamber 30 are connected by the pipes 40c and 40d in the same manner as described above.
  • Such pipes 40c and 40d may be omitted.
  • the number of outlets of the second mixing chamber 20 and the number of inlets of the third mixing chamber 30 can be made different as described above.
  • the discharge port arrangement surface 34 of the third mixing chamber 30 has a single discharge port 34a. It is preferable that the discharge port 34 is not overlapped with any of the introduction ports 32a and 32b in the gas flow direction.
  • the two inlets 32a and 32b are preferably disposed at substantially equal distances.
  • a pipe 40 is connected to the outlet 34 of the third mixing chamber 30 in the gas mixer 1 as described above, and the gas mixed by the gas mixer 1 is connected to the pipe. Guided to 40, it is supplied to a film forming apparatus (not shown) such as a CVD apparatus or a sputtering apparatus (see FIG. 3 described later).
  • a film forming apparatus such as a CVD apparatus or a sputtering apparatus (see FIG. 3 described later).
  • the gas mixer 1 shown in FIG. 1 is configured to include three mixing chambers 10, 20, and 30. As shown in FIG. Saving the third mixing chamber 30 Variations can be made in an abbreviated manner.
  • the gas mixer 1 can have two mixing chambers, and the gas mixer 1 has at least two or more mixing chambers.
  • the third mixing chamber 30 is omitted and the pipes 40e and 40f connected to the discharge ports 24a and 24b of the second mixing chamber 20 are joined.
  • the pipes 40 are grouped together.
  • the gas mixed by the gas mixer 1 is guided to the pipe 40 and supplied to the film forming apparatus.
  • one discharge port may be provided in the discharge port disposition surface 24 of the second mixing chamber 20.
  • this discharge port is disposed at a position that is approximately equidistant from each of the introduction ports formed in the introduction port arrangement surface 22. Is preferred.
  • the phenomenon in which two or more kinds of gases introduced into the gas mixer 1 of the present embodiment are mixed is, at least, a process in which the gases collide with each other to form a single flow) and a single flow process. This can be explained as having a process in which the gas diffuses and mixes in the flow (diffusion process).
  • the first mixing chamber 10 located on the most upstream side of the gas flow is introduced from the inlets 12a, 12b, 12c, 12d, respectively. It has the function of colliding two or more independent gas flows into a single flow.
  • the introduced gas is mixed mainly by the turbulent flow process.
  • the gas flow mixed in the first mixing chamber 10 is discharged from the discharge ports 14a and 14b.
  • outlets 14a, 14b By arranging the outlets 14a, 14b relative to the inlets 12a, 12b, 12c, 12d in this way, the mixing efficiency of the gas introduced into the first mixing chamber 10 can be increased, and the gas can be more evenly and more uniformly. Can be mixed.
  • the gas flow discharged from the discharge ports 14a and 14b of the first mixing chamber 10 is introduced into the second mixing chamber 20 that communicates with the discharge ports 14a and 14b via the pipes 40a and 40b (or directly). It is introduced into the second mixing chamber 20 through the ports 22a and 22b.
  • the gas introduced into the second mixing chamber 20 is mainly mixed by a diffusion process.
  • the pressure in the second mixing chamber 20 is It is preferable to use the gas mixer 1 in a state where it is lower than the pressure in the first mixing chamber 10.
  • the second mixing chamber 20 In order to make the pressure in the second mixing chamber 20 lower than the pressure in the first mixing chamber 10 and efficiently cause gas diffusion in the second mixing chamber 20, the second mixing chamber 20 It is effective to make the volume of 20 larger (preferably twice or more) than the volume of the first mixing chamber 10. As a result, the second mixing chamber 20 located on the downstream side of the gas flow (the film forming apparatus side) can be in a reduced pressure state as compared with the first mixing chamber 10.
  • the total area of the discharge ports 14a, 14b of the first mixing chamber 10 is made as small as possible.
  • the amount of gas flowing into the second mixing chamber 20 can be reduced by reducing the amount of gas discharged from the first mixing chamber 10 or by reducing the total area of the inlets 22a and 22b of the second mixing chamber 20 as much as possible. It is also effective to suppress it.
  • both the discharge ports 14a and 14b of the first mixing chamber 10 and the introduction ports 22a and 22b of the second mixing chamber 20 are more preferable than the force that makes the total area as small as possible.
  • the total area of the outlets 14a, 14b of the first mixing chamber 10 and / or the inlets 22a, 22b of the second mixing chamber 20 is the total of the respective installation surfaces 14, 22.
  • the area is preferably 1/5 or less, more preferably 1/10 or less, and particularly preferably 1Z30 or less.
  • the gas mixed in the second mixing chamber 20 is discharged from the discharge ports 24a, 24b.
  • the introduction ports 22a, 22b and the discharge ports 24a, 24b Are preferably arranged so as to overlap each other in the gas flow direction to improve the mixing efficiency of the gas introduced into the second mixing chamber 20.
  • the gas flow discharged from the outlets 24a and 24b of the second mixing chamber 20 is introduced into the third mixing chamber 30 that communicates with the outlets 24a and 24b via the pipes 40c and 40d (or directly). It is introduced into the third mixing chamber 30 through the ports 32a and 32b.
  • the gas mixer 1 may have at least two or more mixing chambers, but can be applied to various gas types and various film forming conditions. In order to do this, it is preferable to have three mixing chambers 10, 20, 30. In this way, the gas mixed in the first mixing chamber 10 and the second mixing chamber 20 can be mixed more uniformly and uniformly in the third mixing chamber 30.
  • variable gas species means that two or more gases to be mixed are gas species whose characteristics such as molecular weight, molecular size, molecular structure, molecular energy potential, and electrical polarity are greatly different. Means.
  • variant film formation conditions include the case where the flow rates of two or more gases to be mixed differ greatly, or the two or more gases to be mixed have similar characteristics. This also means when the gas flow rate needs to be changed during the process, or when the gas type to be supplied is switched at an arbitrary time.
  • the number of mixing chambers provided in the gas mixer 1 is not limited to three, and may be four or more. However, even if four or more mixing chambers are provided, the mixing chamber may be provided with three mixing chambers. Compared to the complicated structure, it is difficult to recognize a significant difference in effect. For this reason, in terms of balance, the number of mixing chambers is most preferably three.
  • the mixer 1 in the present embodiment when two or more kinds of gases are mixed and supplied to the film forming apparatus, the influence due to the change in the environmental temperature is avoided in the gas mixing process.
  • a temperature adjustment mechanism that can adjust the temperature of the entire gas mixer 1 by covering the periphery of the gas mixer 1 with a heater.
  • the piping for introducing the gas into each mixing chamber may be connected obliquely to the introduction surface of each mixing chamber. This also makes it possible to appropriately adjust the direction in which the gas is introduced into each mixing chamber.
  • Such an embodiment is particularly suitable when a high-density gas is introduced into the mixing chamber under high-pressure conditions. It is valid.
  • FIG. 3 is an explanatory diagram showing an outline of the film forming apparatus in the present embodiment.
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG.
  • a film forming apparatus 100 shown in FIG. 3 and FIG. 4 is an example of a so-called cold wall type decompression CVD apparatus, and a substrate (film formation substrate) 150 disposed on a support means 120 is heated by a hand.
  • the stage 130 is heated to an appropriate temperature, the exhaust pipe 140 exhausts the film formation chamber 110, and an appropriate gas is supplied from the nozzle 42 of the gas supply pipe (pipe) 40 to enter the film formation chamber 110.
  • a thin film is grown on the substrate 150 by forming an appropriate vapor phase.
  • the gas supply pipe 40 is provided in the film formation chamber 110 in a state where the tip nozzle 42 is erected substantially vertically so that the tip nozzle 42 is located in the center of the film formation chamber 110.
  • a supporting means 120 for supporting the substrate 150 is provided, and a heating means 130 is provided at a position for heating the substrate 150 disposed on the supporting means 120 from the back side.
  • an exhaust pipe 140 is connected to the film forming chamber 110, and this exhaust pipe 140 is connected to an exhaust pump (not shown) through a pressure adjusting valve 145, thereby forming the film forming chamber 110. The inside can be exhausted.
  • the film forming apparatus 100 in the present embodiment includes the gas mixer 1 as described above, and is connected to the gas mixer 1 outside the gas supply side force film forming chamber 110 of the gas supply pipe 40. Yes.
  • a predetermined gas supply source for example, a gas cylinder
  • the gas introduced from the gas supply source into the gas mixer 1 is uniformly mixed by the gas mixer 1.
  • the gas mixer 1 is connected to pipes 41a, 41b, 41c, 41d.
  • Pipe 41a is H gas supply source
  • pipe 41b is N gas supply source
  • pipe 41c is Si
  • HC1 gas supply source and piping 41d are connected to CH gas supply source.
  • a mixed gas containing a silicon source gas and a carbon source gas is supplied and carbonized on the single crystal silicon substrate.
  • An example of forming a silicon film will be described.
  • an H gas supply source an N gas supply source, an SiH C1 gas supply
  • the mixed gas discharged from the gas mixer 1 is guided to the gas supply pipe 40 and supplied into the film forming chamber 110 provided in the film forming apparatus 100.
  • the pressure adjusting valve is used.
  • the film forming chamber 110 is evacuated through the exhaust pipe 140 to maintain the pressure in the film forming chamber 110 at a predetermined pressure, and is disposed on the supporting means 120 by the heating means 130.
  • the formed silicon substrate 150 is heated to a predetermined temperature.
  • a silicon carbide thin film to which the dopant (N) is added is formed on the silicon substrate 150 with a predetermined film thickness.
  • the silicon carbide thin film thus formed has excellent uniformity in film thickness and film quality, reflecting that the mixed gas supplied into the film formation chamber 110 is uniformly mixed. .
  • the surface layer of silicon substrate 150 may be carbonized in advance, and a thin silicon carbide layer may be formed as a noffer layer. By performing such pretreatment, it is possible to grow a silicon carbide layer having good crystallinity on the silicon substrate 150.
  • the crystal plane indicated by the Miller index ⁇ 001 ⁇ A silicon carbide film was formed as follows on single crystal silicon substrate 150 having a diameter of 200 mm.
  • the inside of the film forming chamber 110 is exhausted through an exhaust pipe 140, and H gas 20sc.
  • the pressure in the film formation chamber 110 was kept at lOOmTorr, and the temperature of the substrate 150 was heated to 1200 ° C. in about 1 minute by the heating unit 130.
  • the surface layer of the silicon substrate 150 is carbonized to form a thin silicon carbide layer as a buffer layer between the silicon substrate 150 and the silicon carbide layer grown on the silicon substrate 150.
  • a silicon carbide layer having good crystallinity can be grown.
  • the mixed gas mixed by the gas mixer 1 was guided by the gas supply pipe 40 and supplied to the film forming chamber 110.
  • the gas mixer 1 connected to the gas supply side of the gas supply pipe 40 has pipes 40a, 40b, and 40c40d from the embodiment shown in FIG. Omitted, outlets 14a and 14b of first mixing chamber 10 and inlets 22a and 22b of second mixing chamber 20, outlets 24a and 24b of second mixing chamber 20 and inlet 32a of third mixing chamber 30 32b was used in direct communication with each other.
  • the gas mixer 1 also has a height of the first mixing chamber 10 (length along the gas flow direction) HI of 20 mm, a height of the second mixing chamber 20 of H2 of 60 mm, and a height of the third mixing chamber 30 of 30 mm.
  • the H3 was 20 mm, the diameter of each mixing chamber 10, 20, 30 was 80 mm, and the diameter of the inlet and outlet of each mixing chamber 10, 20, 30 was 10 mm.
  • the part from the mixer 1 to the film forming chamber 110 was covered with a heater and adjusted to a set temperature of 100 ° C.
  • the resistivity distribution was about 15%, and it was confirmed that a uniform thin film was formed on a substrate having a diameter of 200 mm. It was.
  • the measurement was performed by sampling at intervals of 12 mm using a resistivity measuring device manufactured by Kokusai Electric Inc.
  • FIG. 5 is an explanatory diagram (corresponding to the A_A cross section of FIG. 3) showing the arrangement of the gas supply pipes 45a, 45b, 45c, 45d in the film forming apparatus used in this comparative example.
  • Gas supply pipes 45a, 45b, 45c, 45d are not shown, H gas supply source, N gas supply
  • the gas is mixed only in the film forming chamber 110, so the mixing is insufficient, and the resulting silicon carbide thin film has a composition that depends on the arrangement of the gas supply pipes 45a, 45b, 45c, and 45d. This is thought to be due to having segregation.
  • the gas mixing ratio immediately after being discharged from the gas mixer 1 is as in Example 1. Based on the conditions (gas type, gas flow rate, film forming chamber pressure, etc.), it was obtained by simulation.
  • the simulation was performed by the following method using general-purpose thermal fluid simulation software FLUENT (manufactured by Fluent. Inc., USA).
  • FLUENT general-purpose thermal fluid simulation software
  • the governing equations of the flow field at the center of gravity of each mesh that is, the momentum equation, the mass conservation equation, the heat transfer equation, and the diffusion equation are calculated by the upwind difference method, and the gas velocity distribution, temperature, Distribution and concentration distribution of the target gas were obtained.
  • the temperature of the gas flow path wall surface if there is a temperature distribution
  • the flow rate of each gas introduced into the first mixing chamber 10 usual unit [sccm], or SI unit [kg / s ec]
  • pressure values at temperature, outlet 34a or pressure reference point usually the position where pressure is measured.
  • viscosity coefficient, specific heat, heat conduction coefficient, and diffusion coefficient are given as thermophysical values for each gas, and if there are temperature dependence and pressure dependence for each physical property, they are taken into account.
  • the SiH C1 gas concentration distribution in the vertical cross section in the flow direction was 0.001% or less.
  • the gas concentration distribution is calculated as the value (percentage) obtained by dividing the difference between the maximum concentration and the minimum concentration of the target gas (SiH C1 gas in this example) in the vertical cross section in the flow direction by the average concentration.
  • Table 1 shows the gas concentration distribution of the target gas in Examples 2 to 6 and Comparative Examples 2 to 5.
  • the gas mixing ratio immediately after being discharged from the gas mixer 1 was determined in the same manner as in Example 2 except that the flow rate of each gas introduced into the first mixing chamber 10 was doubled.
  • the SiH C1 gas concentration distribution in the vertical cross section in the flow direction was 0.001% or less.
  • the gas type to be introduced into the first mixing chamber 10 and its flow rate are WF gas 10 sccm, H gas 25
  • the mixing ratio of the gas immediately after being discharged from the gas mixer 1 was determined in the same manner as in Example 2 except that Osccm and Ar gas were set to 300 sccm.
  • the WF gas concentration distribution in the vertical cross section in the flow direction is about 0.4%.
  • the gas mixing ratio in the cross section of the pipe 40 immediately after the pipes 42e and 42f were combined into the pipe 40 was determined in the same manner as in Example 2 except that the gas mixer 1 having the mode shown in FIG. 2 was used.
  • the SiH C1 gas concentration distribution in the vertical cross section in the flow direction was about 0.02%.
  • the pipes 42e and 42f are provided in the same manner as in Example 5 except that the discharge port is disposed so as to overlap the introduction port in the gas flow direction.
  • the gas mixing ratio in the cross section of the pipe 40 immediately after being integrated into the pipe 40 was obtained.
  • the SiH C1 gas concentration distribution in the vertical cross section in the flow direction was about 0.643%.
  • the type of gas introduced into the first mixing chamber and its flow rate are as follows: WF gas 10sccm, H gas 250s
  • the WF gas concentration distribution in the vertical cross section in the flow direction is about 26.48%.
  • the SiH C1 gas concentration distribution in the vertical cross section in the flow direction was about 0.124%.
  • the second mixing chamber 20 is further omitted from the gas mixer 1 shown in FIG. 2, and in the embodiment shown in FIG. 2, pipes 40e, 4 Of connected to the discharge ports 24a, 24b of the second mixing chamber 20 Example 2 except that the pipes 40a and 40b connected to the outlets 12a and 12b of the first mixing chamber 10 are combined into one as in the case of combining the pipes into one pipe 40.
  • the gas mixing ratio in the cross section immediately after the piping 40a and 40b were combined into one was determined.
  • the SiH C1 gas concentration distribution in the vertical cross section in the flow direction is about 8%.
  • the second mixing chamber 20 is further omitted from the gas mixer 1 of the embodiment shown in FIG. 2, and only one discharge port is disposed at the center of the discharge port disposition surface 14 of the first mixing chamber 10. Except for connecting a pipe to the outlet, the gas mixing ratio immediately after being discharged from the gas mixer 1 was determined in the same manner as in Example 2.
  • the SiH C1 gas concentration distribution in the vertical cross section in the flow direction is about 43%.
  • the present invention can be widely applied in the technical field of forming a thin film on a predetermined substrate by supplying two or more kinds of gases to various film forming apparatuses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Accessories For Mixers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A gas mixer having at least two mixing chambers in which the first mixing chamber is provided with two or more openings for introducing two or more kinds of gas being mixed and one or more discharge opening, and the second mixing chamber is provided with one or more openings communicating with the discharge opening of the first mixing chamber and introducing gas discharged from the first mixing chamber and one or more discharge opening, the discharge openings provided in the first mixing chamber and/or second mixing chamber being arranged so as not to overlap the introduction opening provided in the same mixing chamber in the direction of gas flow. A gas mixer applicable to a variety of film deposition conditions can be provided without causing complication of the equipment or increase in size. A film deposition equipment employing it, and a method for forming a thin film having high in-plane uniformity are also provided.

Description

明 細 書  Specification
ガス混合器、成膜装置、及び薄膜製造方法  Gas mixer, film forming apparatus, and thin film manufacturing method
技術分野  Technical field
[0001] 本発明は、二種以上のガス (原料ガス、キャリアガス、希釈ガスなど)を各種成膜装 置に供給する際に用いられるガス混合器、これを用いた成膜装置、及び薄膜製造方 法に関する。  [0001] The present invention relates to a gas mixer used when supplying two or more kinds of gases (source gas, carrier gas, dilution gas, etc.) to various film forming apparatuses, a film forming apparatus using the same, and a thin film It relates to the manufacturing method.
背景技術  Background art
[0002] 従来、二種以上のガスを成膜装置に導入して、基板上に薄膜を形成する方法とし て、 CVD (ィ匕学蒸着)法や、スパッタリング法などの方法が採用されている。  Conventionally, a CVD (chemical vapor deposition) method, a sputtering method, or the like has been adopted as a method for forming a thin film on a substrate by introducing two or more gases into a film forming apparatus. .
CVD法は、二種以上の原料ガスを成膜チャンバ一内へ導入し、原料ガスどうしの 化学反応により、基板上へ薄膜を形成する方法である。  The CVD method is a method in which two or more kinds of source gases are introduced into a film forming chamber and a thin film is formed on a substrate by a chemical reaction between the source gases.
また、スパッタリング法は、金属等からなるターゲットにガスを吹きつけ、それにより 弾き出された分子を基板表面につけることで、基板上に薄膜を形成する方法である 力 金属と反応性のある種のガスを採用した反応性スパッタリング法も用いられている 。一般に、スパッタリング法は、均一で高品質の膜が形成しやすいため、半導体製造 工程などで採用されている。  Sputtering is a method of forming a thin film on a substrate by blowing a gas onto a target made of metal or the like and attaching the ejected molecules to the surface of the substrate. A reactive sputtering method using gas is also used. In general, sputtering is used in semiconductor manufacturing processes and the like because it is easy to form a uniform and high-quality film.
[0003] CVD装置や、スパッタリング装置に、二種以上のガスを導入する方法としては、一 般に、下記(1)〜(3)のような方法が用レ、られている。  [0003] As a method for introducing two or more kinds of gases into a CVD apparatus or a sputtering apparatus, the following methods (1) to (3) are generally used.
(1)それぞれのガスの配管を直接装置に結合させ、二種以上のガスを別々に装置内 へ導入する方法。  (1) A method in which each gas pipe is directly connected to the device, and two or more gases are separately introduced into the device.
(2)予め、それぞれのガスの配管どうしを結合して 1本の配管とし、この 1本の配管に まとめて、二種以上のガスを装置内へ導入する方法 (例えば、非特許文献 1参照)。 (2) A method of previously connecting two gas pipes into a single pipe and combining the two pipes into two or more gases into the apparatus (for example, see Non-Patent Document 1). ).
(3)予め、それぞれのガスの配管をガス混合装置へ結合し、二種以上のガスをガス 混合装置により混合してから装置内へ導入する方法 (例えば、特許文献 1参照)。 (3) A method in which each gas pipe is connected in advance to a gas mixing device, and two or more gases are mixed by the gas mixing device and then introduced into the device (for example, refer to Patent Document 1).
[0004] 非特許文献 1:「CVDハンドブック」化学工学会編、朝倉書店、 p727- 728  [0004] Non-Patent Document 1: “CVD Handbook”, Chemical Engineering Society, Asakura Shoten, p727-728
特許文献 1:特開平 11 19494号公報  Patent Document 1: Japanese Patent Laid-Open No. 11 19494
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0005] ところで、近年、半導体デバイスの高密度化、及び基板の大口径化に伴って、基板 上に形成された薄膜の膜厚や、膜質の均一性に対する要求が厳しくなつている。 すなわち、半導体デバイスが高密度化すると、デバイスの線幅が狭くなり、線幅に 対する膜厚の比が大きくなるため、膜厚や、膜質の均一性が無視できなくなってしま う。そして、線幅が広い場合には、そのエリア全体として平均化されていれば問題とな らなかったような膜厚分布や、膜質分布であっても、線幅が狭い場合には、膜自体の 特性が直接効いてしまうために、膜厚や、膜質に対する高い均一性が要求されること になる。  [0005] Meanwhile, in recent years, with the increase in the density of semiconductor devices and the increase in the diameter of the substrate, there are strict requirements for the thickness of the thin film formed on the substrate and the uniformity of the film quality. In other words, as the density of semiconductor devices increases, the line width of the device becomes narrower, and the ratio of the film thickness to the line width increases, making it impossible to ignore film thickness and film quality uniformity. And when the line width is wide, even if it is a film thickness distribution or film quality distribution that would not have been a problem if averaged over the entire area, even if the line width is narrow, the film itself Therefore, high uniformity of film thickness and film quality is required.
[0006] ここで、例えば、膜質の重要な因子の一つである抵抗値は、膜の体積に依存する。  [0006] Here, for example, the resistance value which is one of the important factors of the film quality depends on the volume of the film.
このため、広い線幅においては、膜の体積の制御において、膜厚の均一性よりも線 幅の均一性の制御の方が重要となる。これに対して、線幅が狭い場合には、膜の体 積の制御において、線幅の均一性よりも膜厚の均一性の方が重要となる。  For this reason, in the case of a wide line width, the control of the line width uniformity is more important than the film thickness uniformity in controlling the film volume. On the other hand, when the line width is narrow, the uniformity of the film thickness is more important than the uniformity of the line width in controlling the film volume.
膜質に関する他の因子として、耐圧性、エッチング特性などがあるが、これらの特性 においても、面内均一性の要求が厳しくなつてきていることは言うまでもない。  Other factors relating to the film quality include pressure resistance and etching characteristics. Needless to say, the demand for in-plane uniformity is becoming stricter in these characteristics as well.
[0007] このように、これまで問題とならなかったレベルの膜厚や、膜質の面内分布であって も、半導体デバイスが高密度化するにつれて、無視できない状況となってきている。 これに加え、基板の大口径化に伴い、膜厚及び膜質の面内均一性が、さらに大面積 に亘つて要求されてきてレ、る。 [0007] As described above, even with a film thickness at a level that has not been a problem until now or an in-plane distribution of film quality, it has become a situation that cannot be ignored as the density of semiconductor devices increases. In addition, as the substrate diameter increases, in-plane uniformity of film thickness and film quality is required over a larger area.
[0008] しかし、従来用いられているガス導入方法を採用しても、近年の膜厚や膜質の均一 性に対する要求を満たすことが困難となってきた。この問題は、基板の大口径化に伴 い顕著となっている。 [0008] However, even if a conventionally used gas introduction method is employed, it has become difficult to satisfy recent demands for film thickness and film quality uniformity. This problem has become more prominent as the substrate diameter increases.
[0009] 例えば、上記(1)の方法を採用し、被成膜基板上へ成膜した場合、成膜された膜が 面内分布 (面内膜厚分布、面内組成分布など)を有してしまう問題が生じた。  [0009] For example, when the method (1) is adopted and a film is formed on a deposition target substrate, the formed film has an in-plane distribution (in-plane film thickness distribution, in-plane composition distribution, etc.). There was a problem.
本発明者が、この面内分布の原因について検討した結果、装置へのガス導入管の 配置に依存していることを見出した。すなわち、上記(1 )の方法で二種以上のガスを 装置内へ導入した場合、装置内での混合だけでは実質不十分であることがわかった すなわち、上記(1)の方法で、それぞれのガスを混合する場合には、装置内に導 入されてから成膜される過程に至るまでのガス流路を長くする必要がある力 ガス流 路を長くするためには、装置を大型化する必要がある。このため、上記(1)の方法で 均一な膜を形成するのは困難であり、実際には不可能に近い。 As a result of examining the cause of this in-plane distribution, the present inventor has found that it depends on the arrangement of the gas introduction pipe to the apparatus. That is, when two or more gases were introduced into the apparatus by the method (1) above, it was found that mixing alone in the apparatus was substantially insufficient. That is, when mixing each gas by the method (1) above, it is necessary to lengthen the gas flow path from introduction into the apparatus to the film formation process. In order to lengthen the length, it is necessary to enlarge the apparatus. For this reason, it is difficult to form a uniform film by the method (1), which is practically impossible.
[0010] また、上記(2)の方法は、上記(1)の方法において、ガスが混合するまでのガス流 路を装置外に確保して、そのガス流路を長くした場合に相当すると考えられるが、こ の場合でも、ガスどうしの混合は不十分であり、被成膜基板上へ形成された膜の面内 分布は解消されない。  [0010] Further, the method (2) is considered to correspond to the method (1) above in which the gas flow path until the gas is mixed is secured outside the apparatus and the gas flow path is lengthened. However, even in this case, the mixing of the gases is insufficient, and the in-plane distribution of the film formed on the deposition target substrate is not eliminated.
[0011] また、上記(3)の方法として、特許文献 1には、主配管に原料ガスとアルゴンガスを 流し、酸素ガスを流すための混合配管を、この主配管の同一円周上に三つ設けるこ とにより、原料ガス 'アルゴンガス ·酸素ガスを混合する方法(ただし、主配管のガス流 量力 混合配管のガス流量よりも多レ、ことが必要)が示されてレ、る。  [0011] Further, as a method of the above (3), Patent Document 1 discloses that a mixing pipe for flowing a raw material gas and an argon gas through the main pipe and an oxygen gas is provided on the same circumference of the main pipe. It is shown how to mix the raw material gas' argon gas · oxygen gas (however, the gas flow rate of the main pipe must be higher than the gas flow rate of the mixed pipe).
[0012] し力しながら、この方法では、主配管を流れるガスと、三方向から噴出した混合配管 力 のガスとを、主配管の中央部で衝突させることにより混合させているため、一つの 混合器では二系統(主配管を流れるガス系統と、混合配管を流れるガス系統)のガス を混合して一系統にすることしかできない。  [0012] However, in this method, since the gas flowing through the main pipe and the mixed pipe force gas ejected from three directions are mixed by colliding with each other at the center of the main pipe, In the mixer, the gas from two systems (the gas system flowing through the main pipe and the gas system flowing through the mixing pipe) can only be mixed into one system.
すなわち、例えば、三系統以上のガスを混合するためには、特許文献 1に示されて レ、る混合器を複数使用するなどの必要があり、装置の複雑化や、大型化を招いてし まレ、、好ましくない。  That is, for example, in order to mix three or more gas systems, it is necessary to use a plurality of mixers as shown in Patent Document 1, which leads to complicated and large equipment. This is not preferable.
[0013] さらに、特許文献 1の方法では、成膜条件により混合器の構造 (配管の位置や、配 管の径など)を最適化する必要があるため、分子量が大きく異なるガス種を混合する 場合、流量が大きく異なるガス種を混合する場合、プロセス中にガス流量を変化させ る場合など、多様な成膜条件において、一つの混合器で兼用するのは困難であるた め、それぞれの条件に応じて混合器を設計する必要があり、ガス種や、成膜条件の 多様化には適用が困難である。  [0013] Furthermore, in the method of Patent Document 1, it is necessary to optimize the structure of the mixer (pipe position, pipe diameter, etc.) according to the film formation conditions, so gas species having greatly different molecular weights are mixed. In this case, it is difficult to use a single mixer for various film formation conditions, such as mixing gas types with significantly different flow rates, or changing the gas flow rate during the process. It is necessary to design a mixer according to the conditions, and it is difficult to apply it to diversification of gas types and film formation conditions.
[0014] 本発明は、このような技術的背景のもとでなされたものであり、装置の複雑化や、大 型化を招くことなぐ多様な成膜条件に適用可能なガス混合器、これを用いた成膜装 置の提供を目的とする。また、本発明は、面内均一性の高い薄膜を形成できる薄膜 製造方法の提供を目的とする。 [0014] The present invention has been made based on such a technical background, and is a gas mixer that can be applied to various film forming conditions without incurring complexity and size of the apparatus. The purpose is to provide a film-forming device using the above. The present invention also provides a thin film capable of forming a thin film with high in-plane uniformity. The purpose is to provide a manufacturing method.
課題を解決するための手段  Means for solving the problem
[0015] 上記目的を達成するため、本発明のガス混合器は、二種以上のガスを混合するた めのガス混合器であって、ガスの流れ方向の上流側に位置する第一混合室と、下流 側に位置する第二混合室とを少なくとも備え、前記第一混合室には、混合しょうとす る二種以上のガスがそれぞれ導入される二以上の導入口と、一以上の排出口とが設 けられているとともに、前記第二混合室には、前記第一混合室に設けられた排出口と 連通し、前記第一混合室から排出されたガスが導入される一以上の導入口と、ー以 上の排出口とが設けられており、前記第一混合室及び/又は前記第二混合室に設 けられた排出ロカ 同じ混合室に設けられた導入口に対して、ガスの流れ方向にお レ、て重ならなレ、ように配設されてレ、る構成としてある。  In order to achieve the above object, the gas mixer of the present invention is a gas mixer for mixing two or more kinds of gases, and is a first mixing chamber located upstream in the gas flow direction. And at least a second mixing chamber located downstream, wherein the first mixing chamber has two or more inlets into which two or more gases to be mixed are introduced, and one or more exhaust ports. And an outlet, and the second mixing chamber communicates with an exhaust port provided in the first mixing chamber, and includes at least one gas into which the gas discharged from the first mixing chamber is introduced. An introduction port and a discharge port more than that are provided. The discharge loca provided in the first mixing chamber and / or the second mixing chamber. With respect to the introduction port provided in the same mixing chamber, In the gas flow direction, they are arranged so that they overlap.
[0016] このような構成とすることにより、装置の複雑化や、大型化を招くことなぐ簡易な構 造で、二種以上のガスを均一に混合することができる。  [0016] By adopting such a configuration, two or more gases can be uniformly mixed with a simple structure that does not increase the complexity and size of the apparatus.
[0017] 本発明のガス混合器は、二種以上のガスを混合するに際して、前記第二混合室の 圧力が、前記第一混合室の圧力よりも低くなるように構成するのが好ましい。より具体 的には、前記第二混合室の容積が、前記第一混合室の容積よりも大きくするのが好 ましぐまた、前記第一混合室に設けられた排出口、及び/又は前記第二混合室に 設けられた導入口の総面積が、それぞれの配設面の面積の 1/5以下であるのが好 ましい。  [0017] The gas mixer of the present invention is preferably configured so that the pressure of the second mixing chamber is lower than the pressure of the first mixing chamber when two or more gases are mixed. More specifically, the volume of the second mixing chamber is preferably larger than the volume of the first mixing chamber. Also, the discharge port provided in the first mixing chamber and / or the first mixing chamber. It is preferable that the total area of the inlets provided in the two mixing chambers is 1/5 or less of the area of each installation surface.
このような構成とすることにより、第一混合室から排出されたガスが第二混合室に導 入される際に、断熱膨張効果を得られるようになり、拡散過程による混合を効果的に 生じさせることが可能となる。  By adopting such a configuration, when the gas discharged from the first mixing chamber is introduced into the second mixing chamber, an adiabatic expansion effect can be obtained, and mixing by the diffusion process is effectively generated. It becomes possible to make it.
[0018] また、本発明のガス混合器は、少なくとも二以上の混合室を備えていればよいが、 二つの混合室を備えたものとする場合には、前記第二混合室が二以上の排出口を 有し、かつ、前記排出口のそれぞれに接続された配管を合流させて、一本の配管に まとめた構成とすることができる。 [0018] In addition, the gas mixer of the present invention may be provided with at least two or more mixing chambers. However, in the case where two mixing chambers are provided, the second mixing chamber has two or more mixing chambers. A structure having a discharge port and connecting the pipes connected to each of the discharge ports may be combined into a single pipe.
また、前記第二混合室に設けられた排出口と連通し、前記第二混合室から排出さ れたガスが導入される一以上の導入口と、少なくとも一つの排出口とが設けられた第 三混合室を備えた構成として、三つの混合室を備えたものとすることもできる。 Further, the first mixing chamber is provided with one or more inlets through which the gas discharged from the second mixing chamber is introduced, and at least one discharge port that communicates with the outlet provided in the second mixing chamber. As a configuration including three mixing chambers, three mixing chambers may be provided.
[0019] また、本発明のガス混合器は、外気の温度変化によらず安定した混合状態を確保 することができるように、温度調節機構を具備させることもできる。  [0019] Further, the gas mixer of the present invention may be provided with a temperature adjusting mechanism so that a stable mixed state can be ensured regardless of the temperature change of the outside air.
[0020] また、本発明の成膜装置は、上記のようなガス混合器を備えたものであり、成膜室 内に二種以上のガスを供給して、前記成膜室内に配置された基板上に薄膜を形成 する成膜装置であって、前記成膜室内に混合された二種以上のガスを供給する一 本のガス供給パイプを有しているとともに、前記ガス供給パイプが、ガス混合器を介し てガス供給源に接続され、前記ガス混合器が、ガスの流れ方向の上流側に位置する 第一混合室と、下流側に位置する第二混合室とを少なくとも備え、前記第一混合室 には、混合しょうとする二種以上のガスがそれぞれ導入される二以上の導入口と、一 以上の排出口とが設けられているとともに、前記第二混合室には、前記第一混合室 に設けられた排出口と連通し、前記第一混合室力 排出されたガスが導入される一 以上の導入口と、一以上の排出口とが設けられており、前記第一混合室及び/又は 前記第二混合室に設けられた排出口 、同じ混合室に設けられた導入口に対して、 ガスの流れ方向において重ならないように配設されている構成とすることができる。  [0020] Further, a film forming apparatus of the present invention includes the gas mixer as described above, and is arranged in the film forming chamber by supplying two or more kinds of gases into the film forming chamber. A film forming apparatus for forming a thin film on a substrate, comprising: a gas supply pipe for supplying two or more kinds of gases mixed in the film forming chamber; Connected to a gas supply source via a mixer, the gas mixer comprising at least a first mixing chamber located upstream in a gas flow direction and a second mixing chamber located downstream; The one mixing chamber is provided with two or more inlets through which two or more kinds of gases to be mixed are introduced, and one or more outlets, and the second mixing chamber has the first mixing chamber. The gas discharged from the first mixing chamber communicates with the discharge port provided in one mixing chamber. One or more inlets to be introduced and one or more outlets are provided, and the outlets provided in the first mixing chamber and / or the second mixing chamber are introduced in the same mixing chamber It can be set as the structure arrange | positioned so that it may not overlap with the opening | mouth in the gas flow direction.
[0021] また、本発明の薄膜製造方法は、成膜装置に二種以上のガスを供給して、前記成 膜装置内に配置された基板上に薄膜を形成する薄膜製造方法であって、ガスの流 れ方向の上流側に位置する第一混合室と、下流側に位置する第二混合室とを少なく とも備え、前記第一混合室には、混合しょうとする二種以上のガスがそれぞれ導入さ れるニ以上の導入口と、一以上の排出口とが設けられているとともに、前記第二混合 室には、前記第一混合室に設けられた排出口と連通し、前記第一混合室から排出さ れたガスが導入される一以上の導入口と、一以上の排出口とが設けられており、前記 第一混合室及び/又は前記第二混合室に設けられた排出口が、同じ混合室に設け られた導入口に対して、ガスの流れ方向において重ならないように配設されたガス混 合器を介して、混合された二種以上のガスを前記成膜装置に供給し、前記基板上に 薄膜を形成する方法としてある。  [0021] The thin film manufacturing method of the present invention is a thin film manufacturing method in which two or more kinds of gases are supplied to a film forming apparatus to form a thin film on a substrate disposed in the film forming apparatus, At least a first mixing chamber located upstream in the gas flow direction and a second mixing chamber located downstream are provided, and two or more kinds of gases to be mixed are contained in the first mixing chamber. There are provided two or more inlets and one or more outlets to be introduced, respectively, and the second mixing chamber communicates with an outlet provided in the first mixing chamber, and One or more inlets for introducing the gas discharged from the mixing chamber and one or more outlets are provided, and the outlet provided in the first mixing chamber and / or the second mixing chamber Are arranged so that they do not overlap in the gas flow direction with respect to the inlet provided in the same mixing chamber. This is a method of forming a thin film on the substrate by supplying two or more kinds of mixed gases to the film forming apparatus via the gas mixer.
[0022] このような方法とすることにより、面内均一性の高い薄膜を容易に製造することがで きる。 [0023] また、本発明の薄膜製造方法は、より具体的には、少なくとも珪素源ガスと炭素源 ガスとを含む混合ガスを、成膜装置に供給して、前記基板上に炭化珪素膜を形成す る方法とすることができる。 With such a method, a thin film with high in-plane uniformity can be easily produced. [0023] More specifically, in the thin film manufacturing method of the present invention, a mixed gas containing at least a silicon source gas and a carbon source gas is supplied to a film forming apparatus to form a silicon carbide film on the substrate. It can be a method of forming.
発明の効果  The invention's effect
[0024] 以上のように、本発明によれば、装置の複雑化や、大型化を招くことなぐ簡易な構 造で、二種以上のガスを均一に混合することができる。このため、均一に混合された 二種以上のガスを成膜装置に供給することにより、面内均一性の高い薄膜を容易に 製造することが可能となる。  [0024] As described above, according to the present invention, two or more gases can be uniformly mixed with a simple structure without increasing the complexity and size of the apparatus. For this reason, it is possible to easily manufacture a thin film with high in-plane uniformity by supplying two or more kinds of uniformly mixed gases to the film forming apparatus.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]本発明に係るガス混合器の実施形態を示す概略斜視図である。  FIG. 1 is a schematic perspective view showing an embodiment of a gas mixer according to the present invention.
[図 2]本発明に係るガス混合器の実施形態における変形例を示す概略斜視図である  FIG. 2 is a schematic perspective view showing a modification of the embodiment of the gas mixer according to the present invention.
[図 3]本発明に係る成膜装置の実施形態の概略を示す説明図である。 FIG. 3 is an explanatory diagram showing an outline of an embodiment of a film forming apparatus according to the present invention.
[図 4]図 3の A— A断面図である。  FIG. 4 is a cross-sectional view taken along line AA in FIG.
[図 5]比較例 1において用レ、た成膜装置におけるガス供給パイプの配置を示す説明 図である。  FIG. 5 is an explanatory diagram showing the arrangement of gas supply pipes in the film forming apparatus used in Comparative Example 1.
符号の説明  Explanation of symbols
[0026] 1 ガス混合器 [0026] 1 Gas mixer
10 第一混合室  10 First mixing chamber
20 第二混合室  20 Second mixing chamber
30 第三混合室  30 Third mixing chamber
12a〜12d, 22a, 22b, 32a, 32b 導入口  12a-12d, 22a, 22b, 32a, 32b inlet
14a, 14b, 24a, 24b, 34a 排出口  14a, 14b, 24a, 24b, 34a outlet
40 配管(ガス供給パイプ)  40 Piping (gas supply pipe)
100 成膜装置  100 Deposition system
110 成膜室  110 Deposition chamber
150 基板 発明を実施するための最良の形態 150 substrates BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、本発明の好ましい実施形態について、図面を参照して説明する。ただし、以 下の説明は、あくまでも本発明の例示にすぎず、以下の記載によって本発明の技術 的範囲が限定されるものではない。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the following description is merely an example of the present invention, and the technical scope of the present invention is not limited by the following description.
[0028] [ガス混合器] [0028] [Gas mixer]
まず、本発明に係るガス混合器の実施形態について説明する。ここで、図 1は、本 実施形態におけるガス混合器の概略を示す斜視図である。  First, an embodiment of a gas mixer according to the present invention will be described. Here, FIG. 1 is a perspective view showing an outline of the gas mixer in the present embodiment.
[0029] 図 1に示すガス混合器 1は、第一混合室 10、第二混合室 20、及び第三混合室 30 の三つの混合室を備え、これらの混合室 10, 20, 30は、いずれもほぼ円柱形状を有 する中空構造となっている。 The gas mixer 1 shown in FIG. 1 includes three mixing chambers, a first mixing chamber 10, a second mixing chamber 20, and a third mixing chamber 30, and these mixing chambers 10, 20, 30 are Both have a hollow structure with a substantially cylindrical shape.
なお、図中の矢印は、本実施形態におけるガス混合器 1を使用して、二種以上のガ スを混合する際のガスの流れ方向を示しており、第一混合室 10、第二混合室 20、第 三混合室 30の順に、ガスが流れる。  Note that the arrows in the figure indicate the gas flow directions when mixing two or more gases using the gas mixer 1 in the present embodiment. Gas flows in the order of chamber 20 and third mixing chamber 30.
[0030] 本実施形態において、第一混合室 10は、ガスの流れの上流側に導入口配設面 12 を備え、下流側には、導入口配設面 12とほぼ平行な排出口配設面 14を備えている[0030] In the present embodiment, the first mixing chamber 10 includes an inlet arrangement surface 12 on the upstream side of the gas flow, and an outlet arrangement substantially parallel to the introduction port arrangement surface 12 on the downstream side. With face 14
。そして、これらの面 12, 14の法線方向が、ガスの流れ方向とほぼ一致するようにし てある。 . The normal directions of these surfaces 12 and 14 are made to substantially coincide with the gas flow direction.
[0031] 導入口配設面 12には、図示しない配管に接続され、第一混合室 10に、二種以上 の異なる複数のガスを別々に導入するための複数(二以上)の導入口 12a, 12b, 12 c, 12dが穿設されている。この導入口配設面 12に穿設する導入口の数は、混合しよ うとするガスの種類数や、混合しょうとするガスの特性などを考慮して、適宜変更する こと力 Sできる。  [0031] A plurality of (two or more) inlets 12a are connected to the inlet arrangement surface 12 and connected to a pipe (not shown) to separately introduce two or more different gases into the first mixing chamber 10. , 12b, 12c, 12d. The number of introduction ports to be formed in the introduction port arrangement surface 12 can be changed as appropriate in consideration of the number of types of gas to be mixed and the characteristics of the gas to be mixed.
[0032] また、図示する例において、排出口配設面 14には、二つの排出口 14a, 14bが穿 設されている。このとき、排出口 14a, 14bは、図示するように、導入口配設面 12に穿 設された、四つの導入口 12a, 12b, 12c, 12dのそれぞれのガスの流れ方向に沿つ た延長線上から外れた位置に配設し(導入口 12a, 12b, 12c, 12dのそれぞれの中 心を通る延長線を、図中二点破線で示す)、排出口 14a, 14bが、ガスの流れ方向に ぉレヽて、導入口 12a, 12b, 12c, 12dのレヽずれとも重ならなレヽようにするの力 S好まし レ、。 [0032] In the illustrated example, the discharge port arrangement surface 14 is provided with two discharge ports 14a and 14b. At this time, the discharge ports 14a and 14b are extended along the gas flow direction of each of the four introduction ports 12a, 12b, 12c, and 12d formed in the introduction port disposition surface 12 as illustrated. (Extended lines that pass through the centers of the inlets 12a, 12b, 12c, and 12d are indicated by two-dot broken lines in the figure), and the outlets 14a and 14b are in the gas flow direction. In addition, the power to make the level not overlap with the level difference of the inlets 12a, 12b, 12c, 12d. Les.
なお、排出口配設面 14に穿設する排出口の数も、図示する例に限られず、適宜変 更できる。  Note that the number of discharge ports formed in the discharge port disposition surface 14 is not limited to the illustrated example, and can be changed as appropriate.
[0033] 第二混合室 20も同様に、ガスの流れの上流側に導入口配設面 22、下流側に導入 口配設面 22とほぼ平行な排出口配設面 24を備え、これらの面 22, 24の法線方向が [0033] Similarly, the second mixing chamber 20 includes an introduction port arrangement surface 22 on the upstream side of the gas flow, and a discharge port arrangement surface 24 substantially parallel to the introduction port arrangement surface 22 on the downstream side. The normal direction of faces 22 and 24 is
、ガスの流れ方向とほぼ一致するようにしてある。 The gas flow direction substantially coincides with the gas flow direction.
[0034] 第二混合室 20の導入口配設面 22には、第一混合室 10の排出口 14a, 14bから排 出されたガスを、第二混合室 20に導入するための導入口 22a, 22bが穿設されてい る。 [0034] On the introduction port arrangement surface 22 of the second mixing chamber 20, the introduction port 22a for introducing the gas discharged from the discharge ports 14a, 14b of the first mixing chamber 10 into the second mixing chamber 20 22b has been drilled.
[0035] 図示する例では、この導入口 22a, 22bは、ガスの流れ方向に沿って設けられた配 管 40a, 40bを介して、第一混合室 10の排出口 14a, 14bに連通されている力 導入 口 22a, 22bと排出口 14a, 14bと力 S重なり合うように、第二混合室 20の導入ロ配設 面 22と、第一混合室 10の排出口配設面 14とを、混合室 10, 20内の気密性を確保 しつつ密接させ、導入口 22a, 22bと排出口 14a, 14bとを直接連通させることにより 、配管 40a, 40bを省略することもできる。このようにすることで、混合器 1の小型化や 、構造の簡略化が可能となる。  [0035] In the illustrated example, the inlets 22a and 22b are communicated with the outlets 14a and 14b of the first mixing chamber 10 via pipes 40a and 40b provided along the gas flow direction. Force The inlet 22a, 22b and the outlets 14a, 14b are mixed with the force S. The mixing surface 22 of the second mixing chamber 20 and the outlet 14 of the first mixing chamber 10 are mixed. The pipes 40a and 40b can be omitted by making the inlets 22a and 22b and the outlets 14a and 14b communicate directly with each other while ensuring tightness in the chambers 10 and 20. By doing so, the mixer 1 can be miniaturized and the structure can be simplified.
[0036] また、第一混合室 10の排出口と、第二混合室 20の導入口とは、通常、同じ数とす るが、第一混合室 10の排出口と、第二混合室 20の導入口とを接続する配管を途中 でまとめたり、分岐させたりすることで、第一混合室 10の排出口の数と、第二混合室 2 0の導入口の数とを異ならせることもできる。  [0036] The number of outlets of the first mixing chamber 10 and the number of inlets of the second mixing chamber 20 are usually the same, but the outlet of the first mixing chamber 10 and the second mixing chamber 20 are the same. The number of outlets of the first mixing chamber 10 and the number of inlets of the second mixing chamber 20 can be made different by collecting or branching the pipes connecting to the inlets of the second halfway. it can.
[0037] 図示する例において、第二混合室 20の排出口配設面 24には、二つの排出口 24a , 24bが穿設されている。この排出口 24a, 24bも、第一混合室 10の場合と同様に、 導入口配設面 22の二つの導入口 22a, 22bのそれぞれの延長線上から外れた位置 に配置し (導入口 22a, 22bのそれぞれの中心を通る延長線についても、図中二点 破線で示す)、排出口 24a, 24b力 ガスの流れ方向において、導入口 22a, 22bの レ、ずれとも重ならなレ、ようにしてある。  [0037] In the example shown in the drawing, two discharge ports 24a and 24b are formed in the discharge port disposition surface 24 of the second mixing chamber 20. Similarly to the case of the first mixing chamber 10, the discharge ports 24a and 24b are also arranged at positions away from the extended lines of the two introduction ports 22a and 22b of the introduction port arrangement surface 22 (introduction ports 22a and 22b). The extension lines that pass through the center of each 22b are also indicated by the two-dot broken lines in the figure), and the outlets 24a and 24b force in the direction of gas flow should be such that both the inlet 22a and 22b and the deviation do not overlap. It is.
[0038] さらに、第二混合室 20においても、導入口配設面 22に穿設する導入口の数、排出 口配設面 24に穿設する排出口の数を適宜変更できるが、図示する例のように、導入 口配設面 22に二つの導入口 22a, 22bを穿設し、排出口配設面 24にも二つの排出 口 24a, 24bを穿設する場合には、二つの導入口 22a, 22bの中心を結ぶ方向(図 中、一点破線で示す)と、二つの排出口 24a, 24bの中心を結ぶ方向(図中、同様に 一点破線で示す)とがほぼ直交するように、導入口 22a, 22bと、排出口 24a, 24bと を配設するのが好ましい。 Furthermore, in the second mixing chamber 20 as well, the number of introduction ports drilled in the introduction port arrangement surface 22 and the number of discharge ports drilled in the discharge port arrangement surface 24 can be appropriately changed. Introduce as an example When two inlets 22a, 22b are drilled in the outlet arrangement surface 22, and two outlets 24a, 24b are also drilled in the outlet outlet surface 24, the center of the two inlets 22a, 22b So that the direction connecting the centers of the two outlets 24a and 24b (also indicated by the dashed line in the figure) is almost perpendicular to the direction connecting the two outlets 24a and 24b. And outlets 24a, 24b are preferably provided.
また、特に図示しないが、排出口配設面 24に穿設する排出口を一つとする場合に は、導入口配設面 22に穿設された各導入口から、ほぼ等距離となる位置に、排出口 を配設するのが好ましい。  In addition, although not particularly illustrated, when one discharge port is to be drilled on the discharge port arrangement surface 24, it is at a position that is approximately equidistant from each introduction port drilled in the introduction port arrangement surface 22. It is preferable to provide a discharge port.
[0039] 第三混合室 30も同様に、ガスの流れの上流側に導入口配設面 32、下流側に導入 口配設面 32とほぼ平行な排出口配設面 34を備え、これらの面 32, 34の法線方向が 、ガスの流れ方向とほぼ一致するようにしてある。  [0039] Similarly, the third mixing chamber 30 includes an inlet arrangement surface 32 on the upstream side of the gas flow and an outlet arrangement surface 34 substantially parallel to the introduction port arrangement surface 32 on the downstream side. The normal direction of the surfaces 32 and 34 is made to substantially coincide with the gas flow direction.
[0040] 第三混合室 30の導入口配設面 32には、第二混合室 20の排出口 24a, 24bから排 出されたガスを、第三混合室 30内に導入するための導入口 32a, 32bが穿設されて レ、る。図示する例において、第二混合室 20の排出口 24a, 24bと、第三混合室 30の 導入口 32a, 32bとは、配管 40c, 40dで接続されている力 前述したのと同様にして 、このような配管 40c, 40dは省略してもよい。第二混合室 20の排出口の数と、第三 混合室 30の導入口の数とを異ならせることができるのも、前述したのと同様である。  [0040] On the introduction port arrangement surface 32 of the third mixing chamber 30, an introduction port for introducing the gas discharged from the discharge ports 24a, 24b of the second mixing chamber 20 into the third mixing chamber 30. 32a and 32b are drilled. In the example shown in the figure, the outlets 24a and 24b of the second mixing chamber 20 and the inlets 32a and 32b of the third mixing chamber 30 are connected by the pipes 40c and 40d in the same manner as described above. Such pipes 40c and 40d may be omitted. The number of outlets of the second mixing chamber 20 and the number of inlets of the third mixing chamber 30 can be made different as described above.
[0041] また、図示する例では、第三混合室 30の排出口配設面 34には、一つの排出口 34 aが穿設されている。この排出口 34についても、ガスの流れ方向において、導入口 3 2a, 32bのいずれとも重ならないようにするのが好ましぐさらに、図示するように、導 入口配設面 32に穿設された二つの導入口 32a, 32bから、ほぼ等距離となる位置に 配設するのが好ましい。  [0041] In the example shown in the figure, the discharge port arrangement surface 34 of the third mixing chamber 30 has a single discharge port 34a. It is preferable that the discharge port 34 is not overlapped with any of the introduction ports 32a and 32b in the gas flow direction. The two inlets 32a and 32b are preferably disposed at substantially equal distances.
[0042] 以上のようなガス混合器 1におレ、て、第三混合室 30の排出口 34には、配管 40が接 続されており、ガス混合器 1により混合されたガスが、配管 40に導かれて、図示しな い CVD装置や、スパッタリング装置などの成膜装置に供給されるようになっている( 後述する図 3参照)。  [0042] A pipe 40 is connected to the outlet 34 of the third mixing chamber 30 in the gas mixer 1 as described above, and the gas mixed by the gas mixer 1 is connected to the pipe. Guided to 40, it is supplied to a film forming apparatus (not shown) such as a CVD apparatus or a sputtering apparatus (see FIG. 3 described later).
[0043] このように、図 1に示すガス混合器 1は、三つの混合室 10, 20, 30を備えて構成さ れる力 本実施形態におけるガス混合器 1は、図 2に示すように、第三混合室 30を省 略した態様にて変形実施することもできる。 As described above, the gas mixer 1 shown in FIG. 1 is configured to include three mixing chambers 10, 20, and 30. As shown in FIG. Saving the third mixing chamber 30 Variations can be made in an abbreviated manner.
すなわち、ガス混合器 1の備える混合室は二つとすることもでき、ガス混合器 1は、 少なくとも二以上の混合室を備えてレ、ればよレ、。  That is, the gas mixer 1 can have two mixing chambers, and the gas mixer 1 has at least two or more mixing chambers.
[0044] ここで、図 2に示す本実施形態の変形例では、第三混合室 30を省略するとともに、 第二混合室 20の排出口 24a, 24bに接続された配管 40e、 40fを合流させて、一本 の配管 40にまとめてある。そして、ガス混合器 1により混合されたガスは、この配管 40 に導かれて、成膜装置に供給されるようにしてある。  Here, in the modification of the present embodiment shown in FIG. 2, the third mixing chamber 30 is omitted and the pipes 40e and 40f connected to the discharge ports 24a and 24b of the second mixing chamber 20 are joined. The pipes 40 are grouped together. The gas mixed by the gas mixer 1 is guided to the pipe 40 and supplied to the film forming apparatus.
[0045] また、特に図示しないが、本変形例にあっては、第二混合室 20の排出口配設面 24 に穿設する排出口を一つとすることもできる。この場合、図 1に示す例における第三 混合室 30のように、この排出口を、導入口配設面 22に穿設された各導入口から、ほ ぼ等距離となる位置に配設するのが好ましい。  [0045] Although not shown in the drawings, in this modified example, one discharge port may be provided in the discharge port disposition surface 24 of the second mixing chamber 20. In this case, like the third mixing chamber 30 in the example shown in FIG. 1, this discharge port is disposed at a position that is approximately equidistant from each of the introduction ports formed in the introduction port arrangement surface 22. Is preferred.
[0046] なお、上記以外の構成は、図 1に示す例と同様であるため、図 2に示す例の他の構 成についての詳細な説明は省略する。  [0046] Since the configuration other than the above is the same as the example shown in FIG. 1, detailed description of the other configuration of the example shown in FIG. 2 is omitted.
[0047] 本実施形態のガス混合器 1に導入された二種以上のガスが混合する現象は、少な くとも、ガスどうしが衝突して一つの流れになる過程ほし流過程)と、一つの流れにお レ、てガスどうしが拡散して混ざり合う過程 (拡散過程)とを有しているとして説明するこ とができる。  [0047] The phenomenon in which two or more kinds of gases introduced into the gas mixer 1 of the present embodiment are mixed is, at least, a process in which the gases collide with each other to form a single flow) and a single flow process. This can be explained as having a process in which the gas diffuses and mixes in the flow (diffusion process).
なお、圧力が高い場合には、乱流過程が比較的支配的となり、圧力が低い場合に は、拡散過程が比較的支配的となる。  When the pressure is high, the turbulence process is relatively dominant, and when the pressure is low, the diffusion process is relatively dominant.
[0048] 本実施形態のガス混合器 1におレ、て、ガスの流れの最も上流側に位置する第一混 合室 10は、導入口 12a, 12b, 12c, 12dから導入された、それぞれ独立した二種以 上のガス流を衝突させて一つの流れとする機能を有しており、この第一混合室 10で は、導入されたガスが、主に乱流過程によって混合される。そして、第一混合室 10で 混合されたガス流は、排出口 14a, 14bから排出される。  [0048] In the gas mixer 1 of the present embodiment, the first mixing chamber 10 located on the most upstream side of the gas flow is introduced from the inlets 12a, 12b, 12c, 12d, respectively. It has the function of colliding two or more independent gas flows into a single flow. In the first mixing chamber 10, the introduced gas is mixed mainly by the turbulent flow process. The gas flow mixed in the first mixing chamber 10 is discharged from the discharge ports 14a and 14b.
[0049] このとき、導入口 12a, 12b, 12c, 12dから導入されたガス力 第一混合室 10にお ける混合が不十分なまま、排出口 14a, 14bから排出されてしまうと、第一混合室 10 における混合効率が低下してしまう。このような不具合を回避するため、本実施形態 では、前述したように、ガスの流れ方向において、導入口と排出口とが重ならないよう にしている。 [0049] At this time, if the gas force introduced from the inlets 12a, 12b, 12c, 12d is discharged from the outlets 14a, 14b with insufficient mixing in the first mixing chamber 10, the first The mixing efficiency in the mixing chamber 10 is reduced. In order to avoid such a problem, in this embodiment, as described above, the inlet and the outlet are not overlapped in the gas flow direction. I have to.
導入口 12a, 12b, 12c, 12dに対する排出口 14a, 14bの配設位置をこのようにす ることで、第一混合室 10に導入されたガスの混合効率を高め、よりいつそう均一にガ スを混合させることができる。  By arranging the outlets 14a, 14b relative to the inlets 12a, 12b, 12c, 12d in this way, the mixing efficiency of the gas introduced into the first mixing chamber 10 can be increased, and the gas can be more evenly and more uniformly. Can be mixed.
[0050] 第一混合室 10の排出口 14a, 14bから排出されたガス流は、配管 40a, 40bを介し て(又は、直接)、排出口 14a, 14bと連通する第二混合室 20の導入口 22a, 22bか ら第二混合室 20に導入される。  [0050] The gas flow discharged from the discharge ports 14a and 14b of the first mixing chamber 10 is introduced into the second mixing chamber 20 that communicates with the discharge ports 14a and 14b via the pipes 40a and 40b (or directly). It is introduced into the second mixing chamber 20 through the ports 22a and 22b.
[0051] 第二混合室 20に導入されたガスは、主に拡散過程によって混合されるが、このとき 、ガスの拡散を効率よく生じさせるためには、第二混合室 20内の圧力が、第一混合 室 10内の圧力よりも低くなる状態でガス混合器 1を使用することが好ましい。これによ り、第一混合室 10から排出されたガスが第二混合室 20に導入される際に、断熱膨張 効果を得られるようになり、拡散過程による混合を効果的に生じさせることが可能とな る。  [0051] The gas introduced into the second mixing chamber 20 is mainly mixed by a diffusion process. At this time, in order to efficiently cause the diffusion of the gas, the pressure in the second mixing chamber 20 is It is preferable to use the gas mixer 1 in a state where it is lower than the pressure in the first mixing chamber 10. As a result, when the gas discharged from the first mixing chamber 10 is introduced into the second mixing chamber 20, an adiabatic expansion effect can be obtained, and mixing by the diffusion process can be effectively generated. It becomes possible.
[0052] 第二混合室 20内の圧力を、第一混合室 10内の圧力よりも低くして、第二混合室 2 0におけるガスの拡散を効率よく生じさせるためには、第二混合室 20の容積を、第一 混合室 10の容積よりも大きく(好ましくは、 2倍以上)するのが有効である。これにより 、ガスの流れの下流側 (成膜装置側)に位置する第二混合室 20を、第一混合室 10よ りも減圧状態とすることが可能となる。  In order to make the pressure in the second mixing chamber 20 lower than the pressure in the first mixing chamber 10 and efficiently cause gas diffusion in the second mixing chamber 20, the second mixing chamber 20 It is effective to make the volume of 20 larger (preferably twice or more) than the volume of the first mixing chamber 10. As a result, the second mixing chamber 20 located on the downstream side of the gas flow (the film forming apparatus side) can be in a reduced pressure state as compared with the first mixing chamber 10.
[0053] また、第二混合室 20内の圧力を、第一混合室 10内の圧力よりも低く抑えるには、 第一混合室 10の排出口 14a, 14bの総面積をできるだけ小さくして、第一混合室 10 力 のガスの排出量を抑制したり、第二混合室 20の導入口 22a, 22bの総面積をで きるだけ小さくして、第二混合室 20へのガスの流入量を抑制したりするのも有効であ る。この場合、第一混合室 10の排出口 14a, 14bと、第二混合室 20の導入口 22a, 2 2bの両方について、その総面積をできるだけ小さくするの力 より好ましい。  [0053] In order to keep the pressure in the second mixing chamber 20 lower than the pressure in the first mixing chamber 10, the total area of the discharge ports 14a, 14b of the first mixing chamber 10 is made as small as possible, The amount of gas flowing into the second mixing chamber 20 can be reduced by reducing the amount of gas discharged from the first mixing chamber 10 or by reducing the total area of the inlets 22a and 22b of the second mixing chamber 20 as much as possible. It is also effective to suppress it. In this case, both the discharge ports 14a and 14b of the first mixing chamber 10 and the introduction ports 22a and 22b of the second mixing chamber 20 are more preferable than the force that makes the total area as small as possible.
具体的な数値を挙げると、第一混合室 10の排出口 14a, 14b、及び/又は第二混 合室 20の導入口 22a, 22bの面積の合計を、それぞれの配設面 14, 22の面積の 1 /5以下とするのが好ましぐより好ましくは 1/10以下であり、特に好ましくは 1Z30 以下である。 [0054] 第二混合室 20で混合されたガスは、排出口 24a, 24bから排出される力 第一混 合室 10と同様に、ここでも、導入口 22a, 22bと排出口 24a, 24bとを、ガスの流れ方 向におレ、て重ならなレ、ように配設し、第二混合室 20に導入されたガスの混合効率を 向上させるのが好ましい。 Specifically, the total area of the outlets 14a, 14b of the first mixing chamber 10 and / or the inlets 22a, 22b of the second mixing chamber 20 is the total of the respective installation surfaces 14, 22. The area is preferably 1/5 or less, more preferably 1/10 or less, and particularly preferably 1Z30 or less. [0054] The gas mixed in the second mixing chamber 20 is discharged from the discharge ports 24a, 24b. Similarly to the first mixing chamber 10, here, the introduction ports 22a, 22b and the discharge ports 24a, 24b Are preferably arranged so as to overlap each other in the gas flow direction to improve the mixing efficiency of the gas introduced into the second mixing chamber 20.
[0055] 第二混合室 20の排出口 24a, 24bから排出されたガス流は、配管 40c, 40dを介し て(又は、直接)、排出口 24a, 24bと連通する第三混合室 30の導入口 32a, 32bか ら第三混合室 30に導入される。  [0055] The gas flow discharged from the outlets 24a and 24b of the second mixing chamber 20 is introduced into the third mixing chamber 30 that communicates with the outlets 24a and 24b via the pipes 40c and 40d (or directly). It is introduced into the third mixing chamber 30 through the ports 32a and 32b.
[0056] 前述したように、本実施形態において、ガス混合器 1は、少なくとも二つ以上の混合 室を有していればよいが、多様なガス種や、多様な成膜条件に適用可能とするため には、三つの混合室 10, 20, 30を備えているのが好ましレ、。このようにすれば、第一 混合室 10、及び第二混合室 20により混合されたガスを、第三混合室 30により、より レ、つそう均一に混合することが可能となる。  [0056] As described above, in the present embodiment, the gas mixer 1 may have at least two or more mixing chambers, but can be applied to various gas types and various film forming conditions. In order to do this, it is preferable to have three mixing chambers 10, 20, 30. In this way, the gas mixed in the first mixing chamber 10 and the second mixing chamber 20 can be mixed more uniformly and uniformly in the third mixing chamber 30.
ここで、「多様なガス種」とは、混合しょうとする二種以上のガスが、分子量、分子サ ィズ、分子構造、分子のエネルギーポテンシャル、電気的極性などの特性が大きく異 なるガス種を意味する。また、「多様な成膜条件」の例としては、混合しょうとする二種 以上のガスの流量が大きく異なる場合や、混合しょうとする二種以上のガス種が類似 する特性のものであっても、プロセス中にガス流量を変化させる必要がある場合や、 任意の時刻を境として供給するガス種を切り替える場合などを意味する。  Here, “various gas species” means that two or more gases to be mixed are gas species whose characteristics such as molecular weight, molecular size, molecular structure, molecular energy potential, and electrical polarity are greatly different. Means. Examples of “various film formation conditions” include the case where the flow rates of two or more gases to be mixed differ greatly, or the two or more gases to be mixed have similar characteristics. This also means when the gas flow rate needs to be changed during the process, or when the gas type to be supplied is switched at an arbitrary time.
[0057] なお、ガス混合器 1が備える混合室は、三つまでに限らず、四つ以上としてもよいが 、混合室を四つ以上備えさせても、三つの混合室を備えたものに比べて、構造の複 雑化を伴うわりには、効果に著しい違いが認められ難い。このため、バランス的には、 混合室は三つとするのが最も好ましい。  [0057] The number of mixing chambers provided in the gas mixer 1 is not limited to three, and may be four or more. However, even if four or more mixing chambers are provided, the mixing chamber may be provided with three mixing chambers. Compared to the complicated structure, it is difficult to recognize a significant difference in effect. For this reason, in terms of balance, the number of mixing chambers is most preferably three.
[0058] 以上のような本実施形態における混合器 1にあっては、二種以上のガスを混合して 成膜装置に供給するに際し、ガスの混合過程において、環境温度の変化による影響 を避けるために、例えば、ガス混合器 1の周囲をヒーターで被覆するなどして、ガス混 合器 1の全体を温度調節できるような温度調節機構を具備させるのが好ましい。これ により、外気の温度変化によらず安定した混合状態を確保することができ、このような 態様は、混合しょうとするガスに沸点の低レ、ものが含まれる場合に、特に有効である [0059] また、各混合室にガスを導入するための配管は、各混合室の導入ロ配設面に対し て斜めに接続するようにしてもよい。これにより、各混合室にガスが導入される際の方 向性を適宜調整することもでき、このような態様は、高密度のガスを高圧条件下で混 合室に導入する場合に、特に有効である。 In the mixer 1 in the present embodiment as described above, when two or more kinds of gases are mixed and supplied to the film forming apparatus, the influence due to the change in the environmental temperature is avoided in the gas mixing process. For this purpose, for example, it is preferable to provide a temperature adjustment mechanism that can adjust the temperature of the entire gas mixer 1 by covering the periphery of the gas mixer 1 with a heater. As a result, a stable mixing state can be ensured regardless of the temperature change of the outside air, and such an embodiment is particularly effective when the gas to be mixed contains a low boiling point. [0059] Further, the piping for introducing the gas into each mixing chamber may be connected obliquely to the introduction surface of each mixing chamber. This also makes it possible to appropriately adjust the direction in which the gas is introduced into each mixing chamber. Such an embodiment is particularly suitable when a high-density gas is introduced into the mixing chamber under high-pressure conditions. It is valid.
[0060] [成膜装置]  [0060] [Film Forming Apparatus]
次に、本発明に係る成膜装置の実施形態について説明する。ここで、図 3は、本実 施形態における成膜装置の概略を示す説明図である。また、図 4は、図 3の A—A断 面図である。  Next, an embodiment of a film forming apparatus according to the present invention will be described. Here, FIG. 3 is an explanatory diagram showing an outline of the film forming apparatus in the present embodiment. FIG. 4 is a cross-sectional view taken along the line AA in FIG.
[0061] 図 3及び図 4に示される成膜装置 100は、いわゆるコールドウォールタイプの減圧 C VD装置の例であり、支持手段 120上に配置した基板 (被成膜基板) 150を、加熱手 段 130によって適宜の温度に加熱し、排気パイプ 140によって成膜室 110内の排気 を行うとともに、ガス供給パイプ (配管) 40のノズノレ 42から、適宜のガスを供給し、成 膜室 110内に適宜の気相を形成することによって、基板 150上に薄膜を成長させる ものである。  A film forming apparatus 100 shown in FIG. 3 and FIG. 4 is an example of a so-called cold wall type decompression CVD apparatus, and a substrate (film formation substrate) 150 disposed on a support means 120 is heated by a hand. The stage 130 is heated to an appropriate temperature, the exhaust pipe 140 exhausts the film formation chamber 110, and an appropriate gas is supplied from the nozzle 42 of the gas supply pipe (pipe) 40 to enter the film formation chamber 110. A thin film is grown on the substrate 150 by forming an appropriate vapor phase.
[0062] 図示する例において、ガス供給パイプ 40は、その先端ノズル 42が成膜室 110の中 央部に位置するように、ほぼ垂直に立てられた状態で成膜室 110内に設けられてい る。また、成膜室 110内には、基板 150を支持する支持手段 120が設けられており、 この支持手段 120上に配置された基板 150を背面側から加熱する位置に加熱手段 1 30が設けられている。さらに、成膜室 110には、排気パイプ 140が接続され、この排 気パイプ 140が圧力調整バルブ 145を介して、図示しない排気ポンプなどに接続さ れており、これによつて成膜室 110内を排気できるようになつている。  [0062] In the illustrated example, the gas supply pipe 40 is provided in the film formation chamber 110 in a state where the tip nozzle 42 is erected substantially vertically so that the tip nozzle 42 is located in the center of the film formation chamber 110. The Further, in the film forming chamber 110, a supporting means 120 for supporting the substrate 150 is provided, and a heating means 130 is provided at a position for heating the substrate 150 disposed on the supporting means 120 from the back side. ing. Further, an exhaust pipe 140 is connected to the film forming chamber 110, and this exhaust pipe 140 is connected to an exhaust pump (not shown) through a pressure adjusting valve 145, thereby forming the film forming chamber 110. The inside can be exhausted.
[0063] 本実施形態における成膜装置 100は、前述したようなガス混合器 1を備え、ガス供 給パイプ 40のガス供給側力 成膜室 110の外部において、ガス混合器 1に接続され ている。そして、このガス混合器 1には、所定のガス供給源 (例えば、ガスボンベ)が接 続され、ガス供給源からガス混合器 1に導入されたガスは、ガス混合器 1により均一に 混合されてから成膜装置 100に供給される。  The film forming apparatus 100 in the present embodiment includes the gas mixer 1 as described above, and is connected to the gas mixer 1 outside the gas supply side force film forming chamber 110 of the gas supply pipe 40. Yes. A predetermined gas supply source (for example, a gas cylinder) is connected to the gas mixer 1, and the gas introduced from the gas supply source into the gas mixer 1 is uniformly mixed by the gas mixer 1. To the film forming apparatus 100.
ここで、図示する例において、ガス混合器 1には、配管 41a, 41b, 41c, 41dが接 続されており、配管 41aが Hガス供給源、配管 41bが Nガス供給源、配管 41cが Si Here, in the illustrated example, the gas mixer 1 is connected to pipes 41a, 41b, 41c, 41d. Pipe 41a is H gas supply source, pipe 41b is N gas supply source, pipe 41c is Si
2 2  twenty two
H C1ガス供給源、配管 41dが C Hガス供給源に、それぞれ接続されている。  HC1 gas supply source and piping 41d are connected to CH gas supply source.
2 2 2 2  2 2 2 2
[0064] [薄膜製造方法]  [0064] [Thin Film Manufacturing Method]
次に、本発明に係る薄膜製造方法の実施形態について、図 3に示す成膜装置にお いて、珪素源ガスと炭素源ガスとを含む混合ガスを供給して、単結晶珪素基板上に 炭化珪素膜を形成する例について説明する。  Next, regarding the embodiment of the thin film manufacturing method according to the present invention, in the film forming apparatus shown in FIG. 3, a mixed gas containing a silicon source gas and a carbon source gas is supplied and carbonized on the single crystal silicon substrate. An example of forming a silicon film will be described.
[0065] 本実施形態にあっては、まず、 Hガス供給源、 Nガス供給源、 SiH C1ガス供給 In the present embodiment, first, an H gas supply source, an N gas supply source, an SiH C1 gas supply
2 2 2 2 源、 C Hガス供給源から、所定の流量でそれぞれのガスを別々に、ガス混合器 1に 2 2 2 2 Sources from the C H gas supply source, each gas separately at a predetermined flow rate, into the gas mixer 1
2 2 twenty two
導入する。ガス混合器 1に導入された、これらのガスはガス混合器 1が備える各混合 室を通過することにより均一に混合され、ガス混合器 1から排出される。  Introduce. These gases introduced into the gas mixer 1 are uniformly mixed by passing through the respective mixing chambers of the gas mixer 1 and are discharged from the gas mixer 1.
[0066] 次に、ガス混合器 1から排出された混合ガスは、ガス供給パイプ 40に導かれて、成 膜装置 100が備える成膜室 110内に供給されるが、このとき、圧力調整バルブを操 作することにより、排気パイプ 140を通じて成膜室 110内を排気するなどして、成膜 室 110内の圧力を所定の圧力に保つとともに、加熱手段 130によって、支持手段 12 0上に配置された珪素基板 150を所定温度に加熱しておく。  [0066] Next, the mixed gas discharged from the gas mixer 1 is guided to the gas supply pipe 40 and supplied into the film forming chamber 110 provided in the film forming apparatus 100. At this time, the pressure adjusting valve is used. The film forming chamber 110 is evacuated through the exhaust pipe 140 to maintain the pressure in the film forming chamber 110 at a predetermined pressure, and is disposed on the supporting means 120 by the heating means 130. The formed silicon substrate 150 is heated to a predetermined temperature.
[0067] この状態を維持しつつ、混合ガスの供給を所定時間続けることにより、珪素基板 15 0上には、ドーパント (N)が添加された炭化珪素薄膜が、所定の膜厚で形成される。 このようにして形成された炭化珪素薄膜は、成膜室 110内に供給される混合ガスが 、均一に混合されていることを反映して、膜厚 ·膜質において均一性に優れたものと なる。  [0067] By maintaining the supply of the mixed gas for a predetermined time while maintaining this state, a silicon carbide thin film to which the dopant (N) is added is formed on the silicon substrate 150 with a predetermined film thickness. . The silicon carbide thin film thus formed has excellent uniformity in film thickness and film quality, reflecting that the mixed gas supplied into the film formation chamber 110 is uniformly mixed. .
[0068] なお、珪素基板 150上に炭化珪素膜を形成するにあたり、前処理として、珪素基板 150の表層をあらかじめ炭化し、ノ ッファ層として薄い炭化珪素層を形成することもで きる。このような前処理を施しておくことで、結晶性のよい炭化珪素層を珪素基板 150 上に成長させること力 Sできる。  [0068] When forming a silicon carbide film on silicon substrate 150, as a pretreatment, the surface layer of silicon substrate 150 may be carbonized in advance, and a thin silicon carbide layer may be formed as a noffer layer. By performing such pretreatment, it is possible to grow a silicon carbide layer having good crystallinity on the silicon substrate 150.
実施例  Example
[0069] 次に、具体的な実施例を挙げて、本発明をより詳細に説明する。  [0069] Next, the present invention will be described in more detail with specific examples.
[実施例 1]  [Example 1]
図 3に示す成膜装置 100を用いて、ミラー指数 {001 }で示される結晶面が表面に 現れる直径 200mmの単結晶珪素基板 150上に、次のようにして、炭化珪素膜を形 成した。 Using the deposition apparatus 100 shown in Fig. 3, the crystal plane indicated by the Miller index {001} A silicon carbide film was formed as follows on single crystal silicon substrate 150 having a diameter of 200 mm.
[0070] まず、前処理として、排気パイプ 140を通じて成膜室 110内を排気し、 Hガス 20sc  [0070] First, as a pretreatment, the inside of the film forming chamber 110 is exhausted through an exhaust pipe 140, and H gas 20sc.
2 cm、 C Hガス 50sccmを、ガス混合器 1、及びガス供給パイプ 40を介して成膜室 11 2 cm, CH gas 50 sccm, through gas mixer 1 and gas supply pipe 40, deposition chamber 11
2 2 twenty two
0内へ供給した。この際、成膜室 110内の圧力を lOOmTorrに保つとともに、加熱手 段 130によって基板 150の温度を約 1分間で 1200°Cまで加熱した。  Feeded into 0. At this time, the pressure in the film formation chamber 110 was kept at lOOmTorr, and the temperature of the substrate 150 was heated to 1200 ° C. in about 1 minute by the heating unit 130.
これによつて、珪素基板 150の表層をあら力^め炭化し、珪素基板 150と、珪素基 板 150上に成長させる炭化珪素層との間に、バッファ層として薄い炭化珪素層を形 成することにより、結晶性のよい炭化珪素層を成長できるようにした。  As a result, the surface layer of the silicon substrate 150 is carbonized to form a thin silicon carbide layer as a buffer layer between the silicon substrate 150 and the silicon carbide layer grown on the silicon substrate 150. Thus, a silicon carbide layer having good crystallinity can be grown.
[0071] このような前処理を施した後、基板温度を維持したまま、 Hガス 150sccm、 Nガス [0071] After performing such pretreatment, while maintaining the substrate temperature, H gas 150sccm, N gas
2 2 twenty two
100sccm、 SiH CIガス 200sccm、 C Hガス 50sccmをガス混合器 1へ導入し、ガ 100 sccm, SiH CI gas 200 sccm, CH gas 50 sccm are introduced into the gas mixer 1
2 2 2 2  2 2 2 2
ス混合器 1により混合された混合ガスを、ガス供給パイプ 40により導いて、成膜室 11 0へ供給した。  The mixed gas mixed by the gas mixer 1 was guided by the gas supply pipe 40 and supplied to the film forming chamber 110.
このようにして、珪素基板 150上に、ドーパント(N)が添加された 300 /i mの炭化珪 素薄膜を形成した。  In this manner, a 300 / im silicon carbide thin film doped with dopant (N) was formed on the silicon substrate 150.
[0072] ここで、図 3に示す成膜装置 100において、ガス供給パイプ 40のガス供給側に接 続したガス混合器 1は、図 1に示す態様のものから、配管 40a, 40b, 40c40dを省略 し、第一混合室 10の排出口 14a, 14bと第二混合室 20の導入口 22a, 22b、第二混 合室 20の排出口 24a, 24bと第三混合室 30の導入口 32a, 32bを、それぞれ直接連 通させたものを用いた。  Here, in the film forming apparatus 100 shown in FIG. 3, the gas mixer 1 connected to the gas supply side of the gas supply pipe 40 has pipes 40a, 40b, and 40c40d from the embodiment shown in FIG. Omitted, outlets 14a and 14b of first mixing chamber 10 and inlets 22a and 22b of second mixing chamber 20, outlets 24a and 24b of second mixing chamber 20 and inlet 32a of third mixing chamber 30 32b was used in direct communication with each other.
また、ガス混合器 1は、第一混合室 10の高さ(ガスの流れ方向に沿った長さ) HIを 20mm,第二混合室 20の高さ H2を 60mm、第三混合室 30の高さ H3を 20mm、各 混合室 10, 20, 30の直径を 80mmとし、各混合室 10, 20, 30の導入口及び排出 口の直径は、それぞれ 10mmに揃えた。  The gas mixer 1 also has a height of the first mixing chamber 10 (length along the gas flow direction) HI of 20 mm, a height of the second mixing chamber 20 of H2 of 60 mm, and a height of the third mixing chamber 30 of 30 mm. The H3 was 20 mm, the diameter of each mixing chamber 10, 20, 30 was 80 mm, and the diameter of the inlet and outlet of each mixing chamber 10, 20, 30 was 10 mm.
さらに、混合ガスを成膜装置 100へ安定に供給することや、沸点が比較的低いガス (SiH C1 )を使用することなどを考慮して、ガス混合器 1の周囲、及び配管 40のガス Furthermore, considering the stable supply of the mixed gas to the film forming apparatus 100 and the use of a gas having a relatively low boiling point (SiH C1), the gas around the gas mixer 1 and the gas in the pipe 40
2 2 twenty two
混合器 1から成膜室 110に至るまでの部分をヒーターで被覆して、設定温度 100°C に調節した。 [0073] 得られた炭化珪素薄膜の抵抗率の面内分布を測定した結果、抵抗率の分布は約 1 5%であり、直径 200mmの基板において、均一な薄膜が形成されたことが確認され た。 The part from the mixer 1 to the film forming chamber 110 was covered with a heater and adjusted to a set temperature of 100 ° C. [0073] As a result of measuring the in-plane distribution of resistivity of the obtained silicon carbide thin film, the resistivity distribution was about 15%, and it was confirmed that a uniform thin film was formed on a substrate having a diameter of 200 mm. It was.
なお、測定は、国際電気株式会社製の抵抗率測定装置を用いて、 12mm間隔で サンプリングして行った。  The measurement was performed by sampling at intervals of 12 mm using a resistivity measuring device manufactured by Kokusai Electric Inc.
[0074] [比較例 1] [0074] [Comparative Example 1]
ガス混合器 1を介さずに、各ガスを成膜室 110に直接供給した以外は、実施例 1と 同様にして、ミラー指数 { 001 }で示される結晶面が表面に現れる直径 200mmの単 結晶珪素基板 150に、ドーパント(N)が添加された厚さ 300 x mの炭化珪素薄膜を 形成した。  A single crystal with a diameter of 200 mm in which the crystal plane indicated by the Miller index {001} appears on the surface in the same manner as in Example 1 except that each gas was directly supplied to the film forming chamber 110 without going through the gas mixer 1. A silicon carbide thin film having a thickness of 300 xm to which a dopant (N) was added was formed on a silicon substrate 150.
[0075] ここで、図 5は、本比較例で用いた成膜装置における、ガス供給パイプ 45a, 45b, 45c, 45dの配置を示す説明図(図 3の A_A断面に相当)である。  Here, FIG. 5 is an explanatory diagram (corresponding to the A_A cross section of FIG. 3) showing the arrangement of the gas supply pipes 45a, 45b, 45c, 45d in the film forming apparatus used in this comparative example.
ガス供給パイプ 45a, 45b, 45c, 45dは、図示しない Hガス供給源、 Nガス供給  Gas supply pipes 45a, 45b, 45c, 45d are not shown, H gas supply source, N gas supply
2 2 源、 SiH C1ガス供給源、 C Hガス供給源にそれぞれ接続されている。また、各ガス It is connected to 2 2 source, SiH C1 gas supply source and C H gas supply source. Each gas
2 2 2 2 2 2 2 2
供給ノヽ。イブ 45a, 45b, 45c, 45dのノス、ノレ 46a, 46b, 46c, 46diま、水平方向(连素 基板 150に対して平行な方向)に開口している。  Supply note. Eve 45a, 45b, 45c, 45d nose, nore 46a, 46b, 46c, 46di are open in the horizontal direction (direction parallel to the substrate 150).
[0076] 実施例 1と同様にして、得られた炭化珪素薄膜の抵抗率の面内分布を測定した結 果、抵抗率の分布は約 40%であることが確認された。 [0076] As a result of measuring the in-plane distribution of resistivity of the obtained silicon carbide thin film in the same manner as in Example 1, it was confirmed that the resistivity distribution was about 40%.
これは、ガスの混合が、成膜室 110内のみで行われるため、混合が不十分であり、 得られた炭化珪素薄膜が、ガス供給パイプ 45a, 45b, 45c, 45dの配置に依存した 組成偏析を有していることに起因していると考えられる。  This is because the gas is mixed only in the film forming chamber 110, so the mixing is insufficient, and the resulting silicon carbide thin film has a composition that depends on the arrangement of the gas supply pipes 45a, 45b, 45c, and 45d. This is thought to be due to having segregation.
[0077] [実施例 2] [0077] [Example 2]
図 1に示す態様のガス混合器 1について、ガス混合器 1から排出された直後(第三 混合室 30の排出口 34a近傍の配管 40の断面)におけるガスの混合率について、実 施例 1における条件 (ガス種類、ガス流量、成膜室の圧力など)に基づいて、シミュレ ーシヨンにより求めた。  Regarding the gas mixer 1 of the embodiment shown in FIG. 1, the gas mixing ratio immediately after being discharged from the gas mixer 1 (cross section of the pipe 40 near the outlet 34a of the third mixing chamber 30) is as in Example 1. Based on the conditions (gas type, gas flow rate, film forming chamber pressure, etc.), it was obtained by simulation.
ここで、シミュレーションは、汎用の熱流体シミュレーションソフトウェア FLUENT ( 米国 Fluent. Inc社製)を使用して、次の方法で行った。 [0078] 最初に、ガス混合器 1中のガス流路 (任意形状の空間)を、四面体あるいは六面体 の立体形状 (三次元計算の場合)のメッシュで細分化した。これにより、円管や、屈曲 管など曲線的な形状をもつガス流路でも、平面を持つ立体の集合として近似的に表 現できる。 Here, the simulation was performed by the following method using general-purpose thermal fluid simulation software FLUENT (manufactured by Fluent. Inc., USA). [0078] First, the gas flow path (space of arbitrary shape) in the gas mixer 1 was subdivided with a mesh of tetrahedron or hexahedron (in the case of three-dimensional calculation). As a result, even a gas flow path having a curved shape such as a circular pipe or a bent pipe can be approximately represented as a solid set having a plane.
次に、各メッシュの重心点で流れ場の支配方程式、すなわち、運動量方程式、質量 保存式、伝熱方程式、拡散方程式を風上差分法で計算し、ガス流路全体のガス速 度分布、温度分布、対象となるガスの濃度分布を求めた。  Next, the governing equations of the flow field at the center of gravity of each mesh, that is, the momentum equation, the mass conservation equation, the heat transfer equation, and the diffusion equation are calculated by the upwind difference method, and the gas velocity distribution, temperature, Distribution and concentration distribution of the target gas were obtained.
その際、境界条件として、ガス流路壁面の温度(温度分布がある場合はその分布) 、第一混合室 10に導入される各ガスの流量 (慣用単位 [sccm]、又は SI単位 [kg/s ec] )と温度、排出口 34a又は圧力参照点(通常は、圧力を測定している位置)におけ る圧力値を与えた。また、各ガスの熱物性値として、粘性係数、比熱、熱伝導係数、 拡散係数を与え、各物性値に温度依存性や圧力依存性がある場合はそれを考慮す ることとした。  At that time, as boundary conditions, the temperature of the gas flow path wall surface (if there is a temperature distribution), the flow rate of each gas introduced into the first mixing chamber 10 (usual unit [sccm], or SI unit [kg / s ec]) and pressure values at temperature, outlet 34a or pressure reference point (usually the position where pressure is measured). In addition, viscosity coefficient, specific heat, heat conduction coefficient, and diffusion coefficient are given as thermophysical values for each gas, and if there are temperature dependence and pressure dependence for each physical property, they are taken into account.
[0079] その結果、流れ方向垂直断面における SiH C1ガス濃度分布は、 0. 001%以下と  As a result, the SiH C1 gas concentration distribution in the vertical cross section in the flow direction was 0.001% or less.
2 2  twenty two
レ、ぅ検知限度以下の数値を示し、ガス混合器 1によって略完全に均一なガス混合が 達成されているという結果が得られた。これにより、実施例 1の結果が良好に再現され ていることが確認できた。  The numerical values below the soot detection limit were obtained, and the result showed that gas mixer 1 achieved almost completely uniform gas mixing. Thereby, it was confirmed that the result of Example 1 was reproduced well.
なお、ガス濃度分布は、流れ方向垂直断面における対象ガス(本実施例では、 SiH C1ガス)の最大濃度と最小濃度との差を、平均濃度で除した値 (百分率)として算出 The gas concentration distribution is calculated as the value (percentage) obtained by dividing the difference between the maximum concentration and the minimum concentration of the target gas (SiH C1 gas in this example) in the vertical cross section in the flow direction by the average concentration.
2 2 twenty two
した。また、実施例 2〜6、比較例 2〜5のおける対象ガスのガス濃度分布を表 1に示 した。  did. Table 1 shows the gas concentration distribution of the target gas in Examples 2 to 6 and Comparative Examples 2 to 5.
[0080] [実施例 3]  [0080] [Example 3]
第一混合室 10に導入する各ガスの流量を 2倍にした以外は、実施例 2と同様にし て、ガス混合器 1から排出された直後におけるガスの混合率について求めた。  The gas mixing ratio immediately after being discharged from the gas mixer 1 was determined in the same manner as in Example 2 except that the flow rate of each gas introduced into the first mixing chamber 10 was doubled.
その結果、流れ方向垂直断面における SiH C1ガス濃度分布は 0. 001%以下と  As a result, the SiH C1 gas concentration distribution in the vertical cross section in the flow direction was 0.001% or less.
2 2  twenty two
レ、ぅ検知限度以下の数値を示し、第一混合室 10に導入する各ガスの流量を異なら せても略完全に均一なガス混合が達成されており、流量依存性がないことが確認さ れた。 [0081] [実施例 4] The numerical values below the soot detection limit are shown, and it was confirmed that almost completely uniform gas mixing was achieved even if the flow rate of each gas introduced into the first mixing chamber 10 was different, and there was no flow rate dependency. It was. [0081] [Example 4]
第一混合室 10に導入するガス種、及びその流量を、 WFガス 10sccm、 Hガス 25  The gas type to be introduced into the first mixing chamber 10 and its flow rate are WF gas 10 sccm, H gas 25
6 2  6 2
Osccm、 Arガス 300sccmとした以外は、実施例 2と同様にして、ガス混合器 1から排 出された直後におけるガスの混合率について求めた。  The mixing ratio of the gas immediately after being discharged from the gas mixer 1 was determined in the same manner as in Example 2 except that Osccm and Ar gas were set to 300 sccm.
その結果、流れ方向垂直断面における WFガス濃度分布は、 0. 4%程度であり、  As a result, the WF gas concentration distribution in the vertical cross section in the flow direction is about 0.4%.
6  6
分子量が大きく異なるガスを混合する場合にも、分子量が著しく大きいガスを、他の ガスと十分に均一に混合することができ、ガス系依存性がないことが確認された。  It was confirmed that even when gases with greatly different molecular weights were mixed, a gas with a significantly large molecular weight could be mixed with other gases sufficiently uniformly and had no dependence on the gas system.
[0082] [実施例 5] [Example 5]
図 2に示す態様のガス混合器 1を用いた以外は、実施例 2と同様にして、配管 42e, 42fが配管 40にまとめられた直後の配管 40の断面におけるガスの混合率について 求めた。  The gas mixing ratio in the cross section of the pipe 40 immediately after the pipes 42e and 42f were combined into the pipe 40 was determined in the same manner as in Example 2 except that the gas mixer 1 having the mode shown in FIG. 2 was used.
その結果、流れ方向垂直断面における SiH C1ガス濃度分布は、 0. 02%程度で  As a result, the SiH C1 gas concentration distribution in the vertical cross section in the flow direction was about 0.02%.
2 2  twenty two
あり、混合室が二つだけであっても、十分に均一なガス混合が達成されていることが 確認できた。  In addition, even with only two mixing chambers, it was confirmed that sufficiently uniform gas mixing was achieved.
[0083] [比較例 2] [0083] [Comparative Example 2]
第一混合室 10及び第二混合室 20のいずれにおいても、ガスの流れ方向において 、導入口と重なるように排出口を配設した以外は、実施例 5と同様にして、配管 42e, 42fが配管 40にまとめられた直後の配管 40の断面におけるガス混合率について求 めた。  In both the first mixing chamber 10 and the second mixing chamber 20, the pipes 42e and 42f are provided in the same manner as in Example 5 except that the discharge port is disposed so as to overlap the introduction port in the gas flow direction. The gas mixing ratio in the cross section of the pipe 40 immediately after being integrated into the pipe 40 was obtained.
その結果、流れ方向垂直断面における SiH C1ガス濃度分布は 0. 643%程度で  As a result, the SiH C1 gas concentration distribution in the vertical cross section in the flow direction was about 0.643%.
2 2  twenty two
あり、実施例 5に比べてガス混合が不十分であることが確認された。  As a result, it was confirmed that gas mixing was insufficient as compared with Example 5.
[0084] [比較例 3] [0084] [Comparative Example 3]
第一混合室に導入するガス種、及びその流量を、 WFガス 10sccm、 Hガス 250s  The type of gas introduced into the first mixing chamber and its flow rate are as follows: WF gas 10sccm, H gas 250s
6 2  6 2
ccm、 Arガス 300sccmとした以外は、比較例 4と同様にして、配管 42e, 42fが配管 40にまとめられた直後の配管 40の断面におけるガス混合率について求めた。  Except for ccm and Ar gas of 300 sccm, the gas mixing ratio in the cross section of the pipe 40 immediately after the pipes 42e and 42f were combined into the pipe 40 was determined in the same manner as in Comparative Example 4.
その結果、流れ方向垂直断面における WFガス濃度分布は、 26. 48%程度であり  As a result, the WF gas concentration distribution in the vertical cross section in the flow direction is about 26.48%.
6  6
、分子量が大きく異なるガスを混合する場合には、ガス濃度分布が著しく不均一にな つてしまうことが確認された。 [0085] [実施例 6] It was confirmed that the gas concentration distribution becomes extremely non-uniform when gases with greatly different molecular weights are mixed. [0085] [Example 6]
第二混合室 20の排出口を一つとし、排出口配設面 24の中心に配設した以外は、 実施例 5と同様にして、ガス混合器 1から排出された直後におけるガスの混合率につ いて求めた。  The mixing ratio of the gas immediately after being discharged from the gas mixer 1, in the same manner as in Example 5, except that the second mixing chamber 20 has one discharge port and is disposed at the center of the discharge port disposition surface 24. Asked about.
その結果、流れ方向垂直断面における SiH C1ガス濃度分布は 0. 124%程度で  As a result, the SiH C1 gas concentration distribution in the vertical cross section in the flow direction was about 0.124%.
2 2  twenty two
あり、十分に均一なガス混合が達成されていることが確認できた。  It was confirmed that sufficiently uniform gas mixing was achieved.
[0086] [比較例 4] [0086] [Comparative Example 4]
図 2に示す態様のガス混合器 1から、さらに第二混合室 20を省略するとともに、図 2 に示す態様において、第二混合室 20の排出口 24a, 24bに接続された配管 40e、 4 Ofを合流させて、一本の配管 40にまとめたのと同じように、第一混合室 10の排出口 12a, 12bに接続された配管 40a, 40bを一つにまとめた以外は、実施例 2と同様に して、配管 40a, 40bを一つにまとめた直後の断面におけるガスの混合率について求 めた。  In the embodiment shown in FIG. 2, the second mixing chamber 20 is further omitted from the gas mixer 1 shown in FIG. 2, and in the embodiment shown in FIG. 2, pipes 40e, 4 Of connected to the discharge ports 24a, 24b of the second mixing chamber 20 Example 2 except that the pipes 40a and 40b connected to the outlets 12a and 12b of the first mixing chamber 10 are combined into one as in the case of combining the pipes into one pipe 40. In the same manner, the gas mixing ratio in the cross section immediately after the piping 40a and 40b were combined into one was determined.
その結果、流れ方向垂直断面における SiH C1ガス濃度分布は、 8%程度であり、  As a result, the SiH C1 gas concentration distribution in the vertical cross section in the flow direction is about 8%.
2 2  twenty two
混合室が一つだけでは、ガス混合が不十分であることが確認された。  It was confirmed that gas mixing was insufficient with only one mixing chamber.
[0087] [比較例 5] [0087] [Comparative Example 5]
図 2に示す態様のガス混合器 1から、さらに第二混合室 20を省略するとともに、第 一混合室 10の排出口配設面 14の中央に排出口を一つだけ配設し、この排出口に 配管を接続した以外は、実施例 2と同様にして、ガス混合器 1から排出された直後に おけるガスの混合率にっレ、て求めた。  The second mixing chamber 20 is further omitted from the gas mixer 1 of the embodiment shown in FIG. 2, and only one discharge port is disposed at the center of the discharge port disposition surface 14 of the first mixing chamber 10. Except for connecting a pipe to the outlet, the gas mixing ratio immediately after being discharged from the gas mixer 1 was determined in the same manner as in Example 2.
その結果、流れ方向垂直断面における SiH C1ガス濃度分布は、 43%程度であり  As a result, the SiH C1 gas concentration distribution in the vertical cross section in the flow direction is about 43%.
2 2  twenty two
、一つの混合室に、一つの排出口を配設したものは、ガス混合が著しく不十分である ことが確認された。  It was confirmed that gas mixing was extremely insufficient when one outlet was provided in one mixing chamber.
また、比較例 4と比較例 5との対比により、第一混合室 10に一つの排出口を設けた ものよりも、二つの排出口を設けたものの方力 第二混合室 20に導入されるガスが、 より均一に混合された状態となることが確認された。  Also, by comparison between Comparative Example 4 and Comparative Example 5, the one with two outlets is introduced into the second mixing chamber 20 rather than the one with one outlet in the first mixing chamber 10. It was confirmed that the gas was mixed more uniformly.
[0088] [表 1] 力' 第一混合室 第二混合室 第三混合室 [0088] [Table 1] Force 'First mixing chamber Second mixing chamber Third mixing chamber
分布 ) 混合室数 重なり※ 排出口数 重なり※ 排出口数 重なり※ 排出口数 Distribution) Number of mixing chambers Overlap * Number of outlets Overlap * Number of outlets Overlap * Number of outlets
2 0. 0000 3 〇 2 〇 2 〇 1 実 3 0. 0000 3 〇 2 〇 2 〇 1 施 4 0. 4000 3 〇 2 〇 2 〇 1 例 5 0. 0200 2 〇 2 〇 2 2 0. 0000 3 0 2 0 2 0 1 Actual 3 0. 0000 3 0 2 0 2 0 1 Out 4 0. 4000 3 0 2 0 2 0 1 Example 5 0. 0200 2 0 2 0 2
6 0. 1240 2 〇 2 〇 1  6 0. 1240 2 〇 2 〇 1
2 0. 6430 2 X 2 X 2  2 0. 6430 2 X 2 X 2
 Ratio
3 26. 480 2 X 2 X 2  3 26. 480 2 X 2 X 2
 Comparison
4 8..0000 1 〇 2  4 8..0000 1 〇 2
 Example
5 43. 000 1 〇 1  5 43. 000 1 〇 1
※:ガスの流れ方向において, 導入口と排出口とを重ならないようにしたものは 「〇」 で示し、 重ならせたものは 「X」 で示した。  *: In the gas flow direction, those that do not overlap the inlet and outlet are indicated by “◯”, and those that overlap are indicated by “X”.
[0089] 以上、本発明について、好ましい実施形態を示して説明したが、本発明は、上記し た実施形態にのみ限定されるものではなぐ本発明の範囲で種々の変更実施が可能 であることは言うまでもない。  While the present invention has been described with reference to the preferred embodiment, the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. Needless to say.
産業上の利用可能性  Industrial applicability
[0090] 本発明は、二種以上のガスを各種成膜装置に供給して、所定の基板上に薄膜を形 成する技術分野に広く適用することができる。 The present invention can be widely applied in the technical field of forming a thin film on a predetermined substrate by supplying two or more kinds of gases to various film forming apparatuses.

Claims

請求の範囲 The scope of the claims
[1] 二種以上のガスを混合するためのガス混合器であって、  [1] A gas mixer for mixing two or more gases,
ガスの流れ方向の上流側に位置する第一混合室と、下流側に位置する第二混合 室とを少なくとも備え、  At least a first mixing chamber located upstream in the gas flow direction and a second mixing chamber located downstream;
前記第一混合室には、混合しょうとする二種以上のガスがそれぞれ導入されるニ以 上の導入口と、一以上の排出口とが設けられているとともに、  The first mixing chamber is provided with two or more inlets for introducing two or more gases to be mixed and one or more outlets, respectively.
前記第二混合室には、前記第一混合室に設けられた排出口と連通し、前記第一混 合室から排出されたガスが導入される一以上の導入口と、一以上の排出口とが設け られており、  The second mixing chamber communicates with an exhaust port provided in the first mixing chamber, and includes at least one introduction port into which the gas discharged from the first mixing chamber is introduced, and at least one exhaust port And is provided,
前記第一混合室及び/又は前記第二混合室に設けられた排出口が、同じ混合室 に設けられた導入口に対して、ガスの流れ方向において重ならないように配設されて レ、ることを特徴とするガス混合器。  The discharge port provided in the first mixing chamber and / or the second mixing chamber is arranged so as not to overlap with the introduction port provided in the same mixing chamber in the gas flow direction. A gas mixer characterized by that.
[2] 二種以上のガスを混合するに際して、前記第二混合室の圧力が、前記第一混合室 の圧力よりも低くなるようにしたことを特徴とする請求項 1に記載のガス混合器。  [2] The gas mixer according to claim 1, wherein when mixing two or more kinds of gases, the pressure of the second mixing chamber is lower than the pressure of the first mixing chamber. .
[3] 前記第二混合室の容積が、前記第一混合室の容積よりも大きレ、ことを特徴とする請 求項 1〜2のいずれ力 4項に記載のガス混合器 [3] The gas mixer according to any one of claims 1 to 2, wherein the volume of the second mixing chamber is larger than the volume of the first mixing chamber.
[4] 前記第一混合室に設けられた排出口、及び/又は前記第二混合室に設けられた 導入口の総面積が、それぞれの配設面の面積の 1/5以下であることを特徴とする請 求項 1〜3のいずれ力 4項に記載のガス混合器。 [4] The total area of the discharge port provided in the first mixing chamber and / or the introduction port provided in the second mixing chamber is 1/5 or less of the area of the respective installation surfaces. Claims characterized in any one of claims 1 to 3 The gas mixer according to item 4.
[5] 前記第二混合室が二以上の排出口を有し、かつ、前記排出口のそれぞれに接続 された配管を合流させて、一本の配管にまとめたことを特徴とする請求項 1〜4のい ずれか 1項に記載のガス混合器。 [5] The second mixing chamber has two or more outlets, and pipes connected to each of the outlets are merged to be combined into one pipe. The gas mixer according to any one of ˜4.
[6] 前記第二混合室に設けられた排出口と連通し、前記第二混合室力 排出されたガ スが導入される一以上の導入口と、少なくとも一つの排出口とが設けられた第三混合 室を備えたことを特徴とする請求項 1〜4のいずれ力 1項に記載のガス混合器。 [6] One or more inlets through which the gas discharged from the second mixing chamber is introduced and at least one outlet are provided in communication with the outlet provided in the second mixing chamber. The gas mixer according to any one of claims 1 to 4, further comprising a third mixing chamber.
[7] 温度調節機構を具備することを特徴とする請求項 1〜6のいずれ力 1項に記載のガ ス混合器。 [7] The gas mixer according to any one of [1] to [6], further comprising a temperature control mechanism.
[8] 成膜室内に二種以上のガスを供給して、前記成膜室内に配置された基板上に薄 膜を形成する成膜装置であって、 [8] Two or more kinds of gases are supplied into the film formation chamber, and thin films are formed on the substrate disposed in the film formation chamber. A film forming apparatus for forming a film,
前記成膜室内に混合された二種以上のガスを供給する一本のガス供給パイプを有 しているとともに、  A gas supply pipe for supplying two or more kinds of gases mixed in the film forming chamber;
前記ガス供給パイプが、ガス混合器を介してガス供給源に接続され、  The gas supply pipe is connected to a gas supply source via a gas mixer;
前記ガス混合器が、  The gas mixer is
ガスの流れ方向の上流側に位置する第一混合室と、下流側に位置する第二混合 室とを少なくとも備え、  At least a first mixing chamber located upstream in the gas flow direction and a second mixing chamber located downstream;
前記第一混合室には、混合しょうとする二種以上のガスがそれぞれ導入されるニ以 上の導入口と、一以上の排出口とが設けられているとともに、  The first mixing chamber is provided with two or more inlets for introducing two or more gases to be mixed and one or more outlets, respectively.
前記第二混合室には、前記第一混合室に設けられた排出口と連通し、前記第一混 合室から排出されたガスが導入される一以上の導入口と、一以上の排出口とが設け られており、  The second mixing chamber communicates with an exhaust port provided in the first mixing chamber, and includes at least one introduction port into which the gas discharged from the first mixing chamber is introduced, and at least one exhaust port And is provided,
前記第一混合室及び/又は前記第二混合室に設けられた排出口が、同じ混合室 に設けられた導入口に対して、ガスの流れ方向において重ならないように配設されて いることを特徴とする成膜装置。  The discharge port provided in the first mixing chamber and / or the second mixing chamber is disposed so as not to overlap with the introduction port provided in the same mixing chamber in the gas flow direction. A characteristic film forming apparatus.
成膜装置に二種以上のガスを供給して、前記成膜装置内に配置された基板上に 薄膜を形成する薄膜製造方法であって、  A thin film manufacturing method for forming a thin film on a substrate disposed in the film forming apparatus by supplying two or more gases to the film forming apparatus,
ガスの流れ方向の上流側に位置する第一混合室と、下流側に位置する第二混合 室とを少なくとも備え、  At least a first mixing chamber located upstream in the gas flow direction and a second mixing chamber located downstream;
前記第一混合室には、混合しょうとする二種以上のガスがそれぞれ導入されるニ以 上の導入口と、一以上の排出口とが設けられているとともに、  The first mixing chamber is provided with two or more inlets for introducing two or more gases to be mixed and one or more outlets, respectively.
前記第二混合室には、前記第一混合室に設けられた排出口と連通し、前記第一混 合室から排出されたガスが導入される一以上の導入口と、一以上の排出口とが設け られており、  The second mixing chamber communicates with an exhaust port provided in the first mixing chamber, and includes at least one introduction port into which the gas discharged from the first mixing chamber is introduced, and at least one exhaust port And is provided,
前記第一混合室及び/又は前記第二混合室に設けられた排出口が、同じ混合室 に設けられた導入口に対して、ガスの流れ方向において重ならないように配設された ガス混合器を介して、  A gas mixer in which the discharge port provided in the first mixing chamber and / or the second mixing chamber is arranged so as not to overlap with the introduction port provided in the same mixing chamber in the gas flow direction. Through
混合された二種以上のガスを前記成膜装置に供給し、前記基板上に薄膜を形成 することを特徴とする薄膜製造方法。 Supply two or more kinds of mixed gases to the film forming device to form a thin film on the substrate A method for producing a thin film, comprising:
少なくとも珪素源ガスと炭素源ガスとを含む混合ガスを、成膜装置に供給して、前 記基板上に炭化珪素膜を形成することを特徴とする請求項 9に記載の薄膜製造方法  10. The thin film manufacturing method according to claim 9, wherein a mixed gas containing at least a silicon source gas and a carbon source gas is supplied to a film forming apparatus to form a silicon carbide film on the substrate.
PCT/JP2006/300751 2005-02-22 2006-01-19 Gas mixer, film deposition equipment, and method for producing thin film WO2006090537A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-044938 2005-02-22
JP2005044938A JP2008114097A (en) 2005-02-22 2005-02-22 Gas mixer, film forming device, and manufacturing method of thin film

Publications (1)

Publication Number Publication Date
WO2006090537A1 true WO2006090537A1 (en) 2006-08-31

Family

ID=36927185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300751 WO2006090537A1 (en) 2005-02-22 2006-01-19 Gas mixer, film deposition equipment, and method for producing thin film

Country Status (2)

Country Link
JP (1) JP2008114097A (en)
WO (1) WO2006090537A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277730A (en) * 2008-05-12 2009-11-26 Shin Etsu Handotai Co Ltd Vapor phase growth method and vapor phase growth apparatus for thin film
JP2015143384A (en) * 2013-12-27 2015-08-06 株式会社日立国際電気 Substrate treatment device, production method of semiconductor, program and recording medium
US20160281750A1 (en) * 2013-11-15 2016-09-29 Dow Global Technologies Llc Interfacial surface generators and methods of manufacture thereof
JP2016178115A (en) * 2015-03-18 2016-10-06 株式会社東芝 Flow passage structure, intake/exhaust member, and processing device
CN108138321A (en) * 2015-10-06 2018-06-08 株式会社爱发科 Mixer, vacuum treatment installation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454372A (en) * 1977-10-08 1979-04-28 Seitetsu Kagaku Co Ltd Fluid mixer
JPH0794489A (en) * 1993-09-20 1995-04-07 Tokyo Electron Ltd Cleaning method of treating apparatus
JPH1142429A (en) * 1997-07-25 1999-02-16 Jiinasu:Kk Method and device for atomization
JP2000351615A (en) * 1999-04-07 2000-12-19 Ngk Insulators Ltd Silicon carbide body
JP2001335935A (en) * 2000-05-31 2001-12-07 Hoya Corp Manufacturing method for silicon carbide, silicon carbide and composite material, and semiconductor element
WO2003048413A1 (en) * 2001-12-03 2003-06-12 Ulvac, Inc. Mixer, and device and method for manufacturing thin-film
JP2004103879A (en) * 2002-09-10 2004-04-02 Sumitomo Chem Co Ltd Vapor growth device
JP2004323894A (en) * 2003-04-23 2004-11-18 Sekisui Chem Co Ltd Gas supply stabilizer, and apparatus and method for vapor phase growth

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454372A (en) * 1977-10-08 1979-04-28 Seitetsu Kagaku Co Ltd Fluid mixer
JPH0794489A (en) * 1993-09-20 1995-04-07 Tokyo Electron Ltd Cleaning method of treating apparatus
JPH1142429A (en) * 1997-07-25 1999-02-16 Jiinasu:Kk Method and device for atomization
JP2000351615A (en) * 1999-04-07 2000-12-19 Ngk Insulators Ltd Silicon carbide body
JP2001335935A (en) * 2000-05-31 2001-12-07 Hoya Corp Manufacturing method for silicon carbide, silicon carbide and composite material, and semiconductor element
WO2003048413A1 (en) * 2001-12-03 2003-06-12 Ulvac, Inc. Mixer, and device and method for manufacturing thin-film
JP2004103879A (en) * 2002-09-10 2004-04-02 Sumitomo Chem Co Ltd Vapor growth device
JP2004323894A (en) * 2003-04-23 2004-11-18 Sekisui Chem Co Ltd Gas supply stabilizer, and apparatus and method for vapor phase growth

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277730A (en) * 2008-05-12 2009-11-26 Shin Etsu Handotai Co Ltd Vapor phase growth method and vapor phase growth apparatus for thin film
US20160281750A1 (en) * 2013-11-15 2016-09-29 Dow Global Technologies Llc Interfacial surface generators and methods of manufacture thereof
JP2015143384A (en) * 2013-12-27 2015-08-06 株式会社日立国際電気 Substrate treatment device, production method of semiconductor, program and recording medium
TWI552203B (en) * 2013-12-27 2016-10-01 Hitachi Int Electric Inc A substrate processing apparatus, a manufacturing method of a semiconductor device, and a computer-readable recording medium
JP2016178115A (en) * 2015-03-18 2016-10-06 株式会社東芝 Flow passage structure, intake/exhaust member, and processing device
US10312113B2 (en) 2015-03-18 2019-06-04 Kabushiki Kaisha Toshiba Flow passage structure, intake and exhaust member, and processing apparatus
CN108138321A (en) * 2015-10-06 2018-06-08 株式会社爱发科 Mixer, vacuum treatment installation
CN108138321B (en) * 2015-10-06 2020-03-20 株式会社爱发科 Mixer and vacuum processing apparatus

Also Published As

Publication number Publication date
JP2008114097A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
WO2006090537A1 (en) Gas mixer, film deposition equipment, and method for producing thin film
JP2001512181A (en) Method and apparatus for vapor-phase coating of hollow product on composite inner surface
TW261689B (en) Method and apparatus for producing thin films by low temperature plasma-enhanced chemical vapor deposition using a rotating susceptor reactor
CN107400877A (en) The ground state hydroperoxyl radical source of the chemical vapor deposition of siliceous carbon film
JP2013019003A (en) Raw material gas supply device for semiconductor manufacturing device
JP2008538129A5 (en)
TW200844700A (en) Method and apparatus for pressure and mix ratio control
JPH1032173A (en) Manufacture of silicon carbide using chemical vapor precipitation method and device
JP2001262353A (en) Method and system for chemical vapor deposition(cvd)
JP4978554B2 (en) Method and apparatus for vapor phase growth of thin film
JP4426180B2 (en) Fluid distribution unit for distributing fluid flow into a plurality of partial flows and fluid distribution device for a plurality of fluids
CN109402608B (en) Gas path system of atomic layer deposition equipment and control method thereof
JP2641351B2 (en) Variable distribution gas flow reaction chamber
TW201021095A (en) Gas shower module
JPS6033352A (en) Vacuum cvd apparatus
CN105463577B (en) The manufacturing method and manufacturing device of group III-nitride crystal
CN115282802A (en) Variable-area gas mixing device of combustion type air heater
JP6717632B2 (en) Vapor deposition processing equipment
KR20180123634A (en) Film forming apparatus
JP2007138230A (en) Film deposition method, and film deposition apparatus
JPH11131233A (en) Production of titanium nitride thin coating film and cvd device
JPS62112781A (en) Chemical vapor deposition apparatus
JP2020113711A (en) Semiconductor manufacturing equipment
JP3187001U (en) Precise temperature control of TEOS addition by heat transfer fluid
JP2003239072A (en) Film deposition apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711997

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711997

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP