WO2006087786A1 - Solar cell manufacturing method - Google Patents

Solar cell manufacturing method Download PDF

Info

Publication number
WO2006087786A1
WO2006087786A1 PCT/JP2005/002456 JP2005002456W WO2006087786A1 WO 2006087786 A1 WO2006087786 A1 WO 2006087786A1 JP 2005002456 W JP2005002456 W JP 2005002456W WO 2006087786 A1 WO2006087786 A1 WO 2006087786A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
laser
manufacturing
type electrode
pulse width
Prior art date
Application number
PCT/JP2005/002456
Other languages
French (fr)
Japanese (ja)
Inventor
Takaaki Iwata
Hisashi Tominaga
Kimikazu Hazumi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2007503526A priority Critical patent/JPWO2006087786A1/en
Priority to PCT/JP2005/002456 priority patent/WO2006087786A1/en
Publication of WO2006087786A1 publication Critical patent/WO2006087786A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A solar cell manufacturing method wherein manufacturing equipment whose maintenance is easy can be used and a solar cell which does not easily generate electrical leakage is generated. In the solar cell manufacturing method, a pulse laser beam having a pulse width of 100nsec or less is used to electrically insulate a P-type electrode forming region from an N-type electrode forming region in the crystalline silicon based solar cell, and PN isolation is realized. The solar cell can be manufactured by using the laser equipment, which is low price, can be easily maintained and does not take much installation space, by obtaining the pulse laser beam by using YAG laser or YVO4 laser equipment.

Description

太陽電池の製造方法  Manufacturing method of solar cell
技術分野  Technical field
[0001] この発明は太陽電池の製造方法に関するものであり、特に結晶シリコン系太陽電 池の p型電極と n型電極とを電気的に絶縁する方法に関するものである。  The present invention relates to a method for manufacturing a solar cell, and more particularly to a method for electrically insulating a p-type electrode and an n-type electrode of a crystalline silicon solar cell.
背景技術  Background art
[0002] シリコンを用いたシリコン太陽電池の製造方法にお!、て、 p型電極と n型電極とを電 気的に絶縁する工程 (PN分離)として、ウエットエッチングやプラズマエッチングを用 いた方法がよく知られている。しかしながら、上記方法は長時間を要する、あるいはェ ツチング処理のためにシリコンウェハを積み重ねる処理前後の移載工程でシリコンゥ ェハが割れ易いため、上記エッチングの代替としてレーザを用いるものが提案されて いる。 PN分離に使われるレーザとしては、エキシマレーザを用いるもの(例えば、特 許文献 1参照。)、または Qスィッチ YAGレーザを用いるもの(例えば、特許文献 2参 照。)が報告されている。  [0002] In a method of manufacturing a silicon solar cell using silicon, a method using wet etching or plasma etching as a step of electrically insulating a p-type electrode and an n-type electrode (PN separation) Is well known. However, since the above method takes a long time or the silicon wafer is easily broken in the transfer process before and after the process of stacking the silicon wafers for the etching process, a method using a laser as an alternative to the etching has been proposed. . As a laser used for PN separation, one using an excimer laser (for example, refer to Patent Document 1) or one using a Q-switch YAG laser (for example, refer to Patent Document 2) has been reported.
[0003] 特許文献 1 :米国特許第 4989059号明細書 (第 6頁、 Figl)  [0003] Patent Document 1: US Pat. No. 4989059 (page 6, Figl)
特許文献 2 :特開平 5-75148号公報 (第 2-3頁、図 1)  Patent Document 2: JP-A-5-75148 (Page 2-3, Fig. 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] PN分離にレーザを使用するにあたって、上記レーザとして特許文献 1に示された エキシマレーザを用いた場合、有害なガスを用いるのでメンテナンスが容易でなぐ 装置が大型化し、スペースをとるという問題点があった。また、レーザとして特許文献 2に示された Qスィッチ YAGレーザ(波長 1. 06 [ m]、ノ レス幅 200 [ sec]、エネ ルギー密度 108[WZcm2])を用いた場合、廉価だがパルス幅が長ぐ熱加工になり やすいという問題があった。また、この場合、従来のエッチング方法やエキシマレー ザを用いた場合に比べて、電気的絶縁が十分でな 、と 、う問題点があった。 [0004] When using a laser for PN separation, if the excimer laser shown in Patent Document 1 is used as the above laser, a harmful gas is used, so maintenance is easy and the device becomes large and takes up space. There was a point. In addition, if the Q-switch YAG laser (wavelength 1.06 [m], nores width 200 [sec], energy density 10 8 [WZcm 2 ]) shown in Patent Document 2 is used as the laser, it is inexpensive but pulsed. There was a problem that it was easy to heat-process with a long width. Further, in this case, there is a problem that the electrical insulation is insufficient as compared with the case where a conventional etching method or excimer laser is used.
[0005] この発明は上記のような問題点を解決するためになされたものであり、メンテナンス が容易な製造装置を用いることが可能であると共に、電気的なリークが生じ難い太陽 電池の製造方法を提供するものである。 [0005] The present invention has been made to solve the above-described problems, and it is possible to use a manufacturing apparatus that can be easily maintained, and at the same time, it is difficult to cause electrical leakage. A battery manufacturing method is provided.
課題を解決するための手段  Means for solving the problem
[0006] この発明に係る太陽電池の製造方法は、パルス幅が 100 [nsec]以下のパルスレ 一ザビームを用いて、結晶シリコン系太陽電池の p型電極形成領域と n型電極形成 領域とを電気的に絶縁加工し、 PN分離するものである。  [0006] A method for manufacturing a solar cell according to the present invention electrically connects a p-type electrode formation region and an n-type electrode formation region of a crystalline silicon solar cell using a pulsed laser beam having a pulse width of 100 [nsec] or less. Insulating process is performed and PN is separated.
発明の効果  The invention's effect
[0007] この発明によれば、レーザのパルス幅を短くすることにより、エキシマレーザのような 短波長のものを選ばなくても効果的なカ卩ェができる。すなわち、短パルスであること により熱カ卩ェになりにくぐつまり加工点に熱がたまりにくぐ加工部分周辺のシリコン が溶融しな ヽので、 p型電極形成領域と n型電極形成領域とをより確実に電気的に絶 縁できる、といった顕著な効果を奏する。  [0007] According to the present invention, by shortening the pulse width of the laser, it is possible to effectively check even if a short wavelength one such as an excimer laser is not selected. In other words, the short pulse makes it difficult for heat to occur, that is, the silicon around the processed part where heat does not accumulate at the processing point does not melt, so the p-type electrode formation region and the n-type electrode formation region are separated. There is a remarkable effect that electrical insulation can be performed more reliably.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本発明の実施の形態 1による太陽電池の製造工程を示す工程図である。  FIG. 1 is a process diagram showing a manufacturing process of a solar cell according to Embodiment 1 of the present invention.
[図 2]本発明の実施の形態 1に係わるレーザによる PN分離の加工例を示す図である  FIG. 2 is a diagram showing a processing example of PN separation by a laser according to Embodiment 1 of the present invention.
[図 3]本発明の実施の形態 1による太陽電池の製造方法において用いるレーザの波 形を従来のレーザ波形と比較して示す図である。 FIG. 3 is a diagram showing the waveform of a laser used in the method for manufacturing a solar cell according to Embodiment 1 of the present invention in comparison with a conventional laser waveform.
[図 4]本発明の実施の形態 1に係わる太陽電池セルの等価回路を示す回路構成図 である。  FIG. 4 is a circuit configuration diagram showing an equivalent circuit of the solar battery cell according to the first embodiment of the present invention.
[図 5]本発明の実施の形態 1に係わる PN分離レーザ力卩ェを実施したレーザのパルス 幅とダイオード電流との関係を示す図である。  FIG. 5 is a diagram showing a relationship between a pulse width and a diode current of a laser in which PN separation laser power according to the first embodiment of the present invention is implemented.
[図 6]本発明の実施の形態 1に係わるレーザ溝加工形状を示す図である。  FIG. 6 is a diagram showing a laser groove machining shape according to the first embodiment of the present invention.
符号の説明  Explanation of symbols
[0009] 1 シリコンウエノ、、 2 N+層、 3 反射防止膜、 4 A1電極、 5, 6 Ag電極、 7 P+層 、 8 レーザ加工溝、 9a, 9b 角切落し部分、 11 光起電流源、 12 ダイオード、 13 直列抵抗 、 14 並列抵抗。  [0009] 1 silicon weno, 2 N + layer, 3 antireflection film, 4 A1 electrode, 5, 6 Ag electrode, 7 P + layer, 8 laser processing groove, 9a, 9b corner cut off part, 11 photovoltaic current source, 12 Diode, 13 series resistance, 14 parallel resistance.
発明を実施するための最良の形態 実施の形態 1. BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1.
図 1 (a)— (f)は本発明の実施の形態 1による太陽電池の製造方法を示す工程図で あり、各工程におけるシリコンウェハの横断面を示している。  FIGS. 1A to 1F are process diagrams showing a method for manufacturing a solar cell according to the first embodiment of the present invention, and show a cross section of a silicon wafer in each process.
まず、 p型の結晶シリコンインゴットを所定の厚さ(300 [ m]程度)にスライシングし 、ウェハ 1を形成する(図 1 (a) )  First, a p-type crystalline silicon ingot is sliced to a predetermined thickness (about 300 [m]) to form wafer 1 (FIG. 1 (a)).
次に、上記ウェハ表面のダメージ層に対してダメージエッチング (最大で約 20 [ m])と、光電流の増大を目的とした反射率の低減のためピラミッド状のテクスチャーェ ツチングを行う。さらに、上記ウェハに対し、ォキシ塩化リンを用いて表面にリンを拡 散し、 N+層 2を形成する。また、反射率を低減させるため、ウェハの上面に対して反 射防止膜 3を形成する(図 1 (b) )。  Next, damage etching (up to about 20 [m]) is performed on the damaged layer on the wafer surface, and pyramidal texture etching is performed to reduce reflectivity for the purpose of increasing photocurrent. Further, phosphorus is diffused on the surface of the wafer using phosphorus oxychloride to form an N + layer 2. In order to reduce the reflectance, an antireflection film 3 is formed on the upper surface of the wafer (FIG. 1 (b)).
次に、ウェハの下面に A1電極 4と Ag電極 5と力もなる p型電極を作成する。 p型電極 を作るために、 A1ペーストと Agペーストとを用い、それぞれ所定のパターンにスクリー ン印刷し、乾燥させる(図 1 (c) (d) )。  Next, a p-type electrode is formed on the lower surface of the wafer, which also has the A1 electrode 4 and the Ag electrode 5 and force. To make a p-type electrode, A1 paste and Ag paste are used, and each is screen printed in a predetermined pattern and dried (Fig. 1 (c) (d)).
ウェハ 1の上面に対しても同様に、 Ag電極 6からなる n型電極を作るために、 Agぺ 一ストを所定のパターンにスクリーン印刷し、乾燥させる(図 1 (d) )。  Similarly, in order to form an n-type electrode composed of Ag electrode 6 on the upper surface of wafer 1, Ag paste is screen-printed in a predetermined pattern and dried (FIG. 1 (d)).
ウェハ 1の両面のペーストが乾燥した後、各々焼成することによって、ウェハ下面の A1ペーストから p型シリコンウェハ内に拡散された A1原子は、 N+層 2を相殺して p型シ リコンウェハ 1内に P+層 7を形成する。その結果、 N+PP+接合が形成され、ウェハの下 面には、 A1電極 4と Ag電極 5とからなる p型電極力 上面には Ag電極 6からなる n型 電極が形成される(図 l (e) )。  After the paste on both sides of wafer 1 is dried, each A1 atom diffused from the A1 paste on the lower surface of the wafer into the p-type silicon wafer by offsetting the N + layer 2 into the p-type silicon wafer 1 P + layer 7 is formed. As a result, an N + PP + junction is formed, and a p-type electrode force composed of A1 electrode 4 and Ag electrode 5 is formed on the lower surface of the wafer, and an n-type electrode composed of Ag electrode 6 is formed on the upper surface (Fig. L). (e)).
次に、パルス幅が 100 [nsec]以下の(例えば 10— 40 [nsec] )短パルス LD励起固 体レーザ(波長 1064 [nm]— 355 [nm] )を用いて、上記ウェハ下面の p型電極周辺 部に沿ってレーザビームを照射し (繰り返し周波数 10 [kHz]— 100 [kHz] )、溝 (幅 20— 40[ /ζ πι]、深さ数 [ m]— 50 [ m]) 8を形成する。これにより、ウェハ上面の n型電極形成領域とウェハ下面の p型電極形成領域とが電気的に絶縁され、 PN分 離が実現する((図 l (f) )。  Next, using a short-pulse LD-pumped solid laser (wavelength 1064 [nm] -355 [nm]) with a pulse width of 100 [nsec] or less (for example, 10-40 [nsec]) A laser beam is irradiated along the periphery of the electrode (repetition frequency 10 [kHz] —100 [kHz]), groove (width 20—40 [/ ζ πι], depth number [m] —50 [m]) 8 Form. As a result, the n-type electrode formation region on the upper surface of the wafer and the p-type electrode formation region on the lower surface of the wafer are electrically insulated, and PN separation is realized (Fig. L (f)).
上記までの工程で、太陽電池セルが完成する。これを基に複数の太陽電池セルを 並べて構成し、モジュールィ匕することによって太陽電池モジュールが完成する。 [0011] なお、上記実施の形態では、上記レーザによる加工は、図 1 (f)、図 2 (f— 1)に示す ように、ウェハ下面の p型電極周辺部を溝カ卩ェするものを示した力 図 2 (f— 2)に示 すように、ウェハ上面の n型電極周辺部を溝加工してもよい。また、図 2 (f— 3)、 (f-4 )に示すように、ウェハ 1の角部を切落すカ卩ェとしてもよい。 9a、 9bがレーザによる角 切落し部分である。 The solar battery cell is completed through the above steps. Based on this, a plurality of solar cells are arranged side by side and modularized to complete a solar cell module. [0011] In the above-described embodiment, the above-described laser processing is performed by groove-causing the periphery of the p-type electrode on the lower surface of the wafer, as shown in FIGS. 1 (f) and 2 (f-1). As shown in Fig. 2 (f-2), the periphery of the n-type electrode on the upper surface of the wafer may be grooved. Further, as shown in FIGS. 2 (f-3) and (f-4), the corners of the wafer 1 may be cut off. 9a and 9b are the corner cut-out portions by the laser.
[0012] また、上記実施の形態では、短パルス LD励起固体レーザからのレーザビームを用 いたが、パルス幅が 100 [nsec]以下のパルスレーザビームであれば、使用するレー ザは LD励起固体レーザに限らず、他のレーザ装置であっても良い。  [0012] In the above embodiment, a laser beam from a short-pulse LD-pumped solid-state laser is used. However, if the pulse width is 100 [nsec] or less, the laser to be used is an LD-pumped solid-state laser. Not only a laser but another laser device may be used.
本実施の形態では、 Nd: YAG (ネオジゥムを活性原子として添加した YAGレーザ )もしくは Nd:YVO (ネオジゥムを活性原子として添カ卩した YVOレーザ)の基本波、  In this embodiment, the fundamental wave of Nd: YAG (YAG laser added with neodymium as an active atom) or Nd: YVO (YVO laser added with neodymium as an active atom),
4 4  4 4
または Nd: YAGもしくは Nd: YVOの第 3高調波を用いてそれぞれ実際の加工を行  Or Nd: YAG or Nd: YVO 3rd harmonic is used for actual machining
4  Four
つた結果、良好に電気的絶縁されて ヽることを確認した。  As a result, it was confirmed that electrical insulation was good.
[0013] 図 3は本発明の太陽電池の製造方法において用いるレーザの波形 Aを従来のレー ザ波形 Bと比較して示す図である。従来のレーザ波形 Bのパルス幅は 100 [nsec]より 大き 、波形を用いて 、るのに対して、本発明に係わるレーザ波形 Aはパルス幅が小 さぐ 100 [nsec]以下である。したがって、ピークパワーは従来よりも大きぐ 10 [kw] 程度以上である。 FIG. 3 is a diagram showing a laser waveform A used in the method for manufacturing a solar cell of the present invention in comparison with a conventional laser waveform B. The pulse width of the conventional laser waveform B is larger than 100 [nsec], and the waveform is used, whereas the laser waveform A according to the present invention has a pulse width of 100 [nsec] or less. Therefore, the peak power is about 10 [kw] or more, which is larger than before.
以下に、太陽電池セルの電気的特性と、加工に用いるレーザビームのパルス幅と の関係を説明する。  The relationship between the electrical characteristics of the solar battery cell and the pulse width of the laser beam used for processing will be described below.
太陽電池セルの電気的特性は図 4に示す等価回路によって説明することができる。 等価回路は光起電流源 11 (1 )、ダイオード 12、直列抵抗 13 (r )、並列抵抗 14 (r ) し s sh からなり、直列抵抗 13 (r )は太陽電池表面のォーミック損失、並列抵抗 14 (r )はリ s sh 一ケージ電流 (I )による損失を表している。 PN分離が良好におこなわれた力どうか sh The electrical characteristics of solar cells can be explained by the equivalent circuit shown in FIG. The equivalent circuit consists of a photovoltaic current source 11 (1), a diode 12, a series resistor 13 ( r ), a parallel resistor 14 (r) and s sh, and the series resistor 13 (r) is the ohmic loss of the solar cell surface, the parallel resistor 14 (r) represents the loss due to the res s sh cage current (I). Whether the PN separation is done well sh
は並列抵抗 14 (r )を求める力 逆バイアスをかけたときのリーケージ電流 (I )を求 sh sh めればよい。逆バイアスをかけたときのリーケージ電流 (I )は小さければ小さいほどリ sh  Can calculate the leakage current (I) when reverse bias is applied. The smaller the leakage current (I) when reverse bias is applied, the lower the sh
ークが少ないことを表し、電気的絶縁ができたかどうか判断することができる。そこで、 It is possible to judge whether or not electrical insulation has been achieved. Therefore,
PN分離のための溝カ卩ェ工程(図 1 (f) )で用いるレーザのパルス幅を変えて電気的 特性を比較した。 [0014] 図 5にレーザのパルス幅と逆バイアス (一 1 [V])をかけたときのリーケージ電流(I ) The electrical characteristics were compared by changing the pulse width of the laser used in the groove cleaning process for PN separation (Fig. 1 (f)). [0014] Figure 5 shows the leakage current (I) when the laser pulse width and reverse bias (1 1 [V]) are applied.
sh との関係を示す。  Indicates the relationship with sh.
良好な電気的絶縁を得るにはリーケージ電流 (I )が 0. 1 [A]以下となることが必要  In order to obtain good electrical insulation, the leakage current (I) must be less than 0.1 [A].
sh  sh
であり、図 5より、パルス幅が 100 [nsec]以下で電気的絶縁が良好であることがわか る。一方、パルス幅が大きぐ 100 sec以上になるとリーケージ電流(I )は 0. 6 [A]  Figure 5 shows that the electrical insulation is good when the pulse width is 100 [nsec] or less. On the other hand, when the pulse width is longer than 100 sec, the leakage current (I) is 0.6 [A].
sh  sh
以上となり、電気的絶縁が悪くなる。  Thus, electrical insulation is deteriorated.
レーザ加工したウェハを観察した結果、このような条件で加工すると加工部近傍で 溶融が起きていることがわかり、このことが電気的絶縁を悪くしていると推察される。  As a result of observing the laser-processed wafer, it was found that melting occurred in the vicinity of the processed part when processed under these conditions, which is presumed to deteriorate the electrical insulation.
[0015] 以上の検討により、熱加工を防いで電気的絶縁性の良い PN分離を行うには、従来 示されたエキシマレーザを用いる方法、すなわちレーザ波長を短くする方法の他に、 レーザのパルス幅を 100 [nsec]以下にすることが有効であることを本発明で初めて 実際に明らかにした。  [0015] Based on the above examination, in order to prevent thermal processing and perform PN separation with good electrical insulation, in addition to the conventional method using an excimer laser, that is, the method of shortening the laser wavelength, a laser pulse For the first time in the present invention, it has been clarified that it is effective to set the width to 100 [nsec] or less.
[0016] なお、図 5は YAGレーザの基本波を用いた場合の結果である力 第 3高調波を用 いた場合も、パルス幅が 100 [nsec]以下で、リーケージ電流 (I )が 0. 1 [A]以下と  [0016] Note that Fig. 5 shows that the pulse width is 100 [nsec] or less and the leakage current (I) is 0. 1 [A]
sh  sh
なり、電気的絶縁が良好に行われることが確認できた。高調波にするとエネルギーが 増えるので、利用できる加工材料の選択の範囲が広がる利点がある。また、ビームを 小さく絞れるので微細な加工も可能となる利点がある。なお、基本波を用いれば装置 構成が簡単になる効果がある。  Thus, it was confirmed that the electrical insulation was performed well. Harmonics increase energy, which has the advantage of expanding the range of available processing materials. In addition, since the beam can be narrowed down, there is an advantage that fine processing is possible. Use of the fundamental wave has the effect of simplifying the device configuration.
[0017] 電気的絶縁の良否を左右するもうひとつのパラメータとして、照射エネルギーがあ げられる。照射エネルギーが低いとカ卩ェ不十分になり、逆にエネルギーが高すぎると 溶融が起きて電気的絶縁がよくならない。レーザ波長が 1064[nm] (基本波)の場合 も 355 [nm] (第 3高調波)の場合も、電気的絶縁が良好に行えるための加工条件は 、 1パルス当り、かつ単位面積あたりの照射エネルギーが 10— 30 (Pulse 'cm2) ]であった。 [0017] Irradiation energy is another parameter that determines the quality of electrical insulation. If the irradiation energy is low, it will be insufficient. On the other hand, if the energy is too high, melting will occur and electrical insulation will not be improved. Whether the laser wavelength is 1064 [nm] (fundamental wave) or 355 [nm] (third harmonic wave), the processing conditions for good electrical insulation are per pulse and per unit area. The irradiation energy was 10-30 (Pulse 'cm 2 )].
[0018] 以上のことより、使用するレーザビームは、パルス幅が 100[nsec]以下のパルスレ 一ザビームであり、かつ溶融が起きな 、範囲の照射エネルギー密度であることが必 要である。このような条件を満たせば、基本波を用いて加工しても、第 n次高調波 (n ≥ 2)を用いてカ卩ェしてもよ!、。 [0019] また、照射スポットを重ねて溝力卩ェを行うときのスポットの重なり率は 60%以上にな るような加工速度がよい。 [0018] From the above, it is necessary that the laser beam to be used is a pulsed laser beam having a pulse width of 100 [nsec] or less and an irradiation energy density in a range where melting does not occur. If these conditions are met, processing can be performed using the fundamental wave or can be checked using the nth harmonic (n ≥ 2)! [0019] Further, the processing rate is good so that the overlapping rate of the spots when the irradiation spots are overlapped and the groove force is applied is 60% or more.
[0020] また、レーザによる溝力卩ェの加工軌跡は、例えば、図 6 (a) (b)に示すように、「井」 型や「口」型など、直線を組み合わせた形状にすることにより、レーザ加工装置の駆 動系を単純な構成にすることができる。 [0020] In addition, the processing trajectory of the groove force due to the laser is, for example, a shape combining straight lines such as a "well" shape and a "mouth" shape as shown in FIGS. 6 (a) and 6 (b). Thus, the drive system of the laser processing apparatus can be made simple.

Claims

請求の範囲 The scope of the claims
[1] パルス幅が lOOnsec以下のパルスレーザビームを用いて、結晶シリコン系太陽電池 の P型電極形成領域と N型電極形成領域とを電気的に絶縁加工し、 PN分離すること を特徴とする太陽電池の製造方法。  [1] Using a pulsed laser beam with a pulse width of lOOnsec or less, the P-type electrode formation region and the N-type electrode formation region of the crystalline silicon solar cell are electrically insulated and PN separated A method for manufacturing a solar cell.
[2] 固定レーザ装置を用いて上記パルスレーザビームを得ることを特徴とする請求項 1記 載の太陽電池の製造方法。  2. The method for manufacturing a solar cell according to claim 1, wherein the pulsed laser beam is obtained using a fixed laser device.
[3] 固体レーザ装置は、 YAGレーザまたは YVOレーザであり、基本波を用いて絶縁加  [3] The solid-state laser device is a YAG laser or YVO laser and is insulated using a fundamental wave.
4  Four
ェすることを特徴とする請求項 2記載の太陽電池の製造方法。  The method for producing a solar cell according to claim 2, wherein:
[4] 固体レーザ装置は、 YAGレーザまたは YVOレーザであり、第 n次高調波(n≥ 2)を [4] The solid-state laser device is a YAG laser or YVO laser, and the nth harmonic (n≥ 2)
4  Four
用いて絶縁加工することを特徴とする請求項 2記載の太陽電池の製造方法。  3. The method for manufacturing a solar cell according to claim 2, wherein the insulating process is performed using the solar cell.
PCT/JP2005/002456 2005-02-17 2005-02-17 Solar cell manufacturing method WO2006087786A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007503526A JPWO2006087786A1 (en) 2005-02-17 2005-02-17 Manufacturing method of solar cell
PCT/JP2005/002456 WO2006087786A1 (en) 2005-02-17 2005-02-17 Solar cell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/002456 WO2006087786A1 (en) 2005-02-17 2005-02-17 Solar cell manufacturing method

Publications (1)

Publication Number Publication Date
WO2006087786A1 true WO2006087786A1 (en) 2006-08-24

Family

ID=36916202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002456 WO2006087786A1 (en) 2005-02-17 2005-02-17 Solar cell manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2006087786A1 (en)
WO (1) WO2006087786A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010493A (en) * 2008-06-27 2010-01-14 Sharp Corp Solar cell and method of manufacturing the same
EP2263263A2 (en) * 2008-02-25 2010-12-22 LG Electronics Inc. Solar cell and method for manufacturing the same
JP2011009663A (en) * 2009-06-29 2011-01-13 Kyocera Corp Method and apparatus for manufacturing solar cell element
JP2011049484A (en) * 2009-08-28 2011-03-10 Kyocera Corp Method and apparatus of manufacturing solar cell element
WO2011040489A1 (en) * 2009-09-29 2011-04-07 京セラ株式会社 Solar cell element and solar cell module
JP2011151192A (en) * 2010-01-21 2011-08-04 Sharp Corp Solar cell, solar cell with interconnector, and manufacturing method thereof
JP2011187903A (en) * 2010-03-11 2011-09-22 Mitsubishi Electric Corp Method of manufacturing solar cell
KR20120136014A (en) * 2011-06-08 2012-12-18 엘지전자 주식회사 Solar cell and wafer etching appratus thereof
JP2013110406A (en) * 2011-11-23 2013-06-06 Samsung Sdi Co Ltd Photoelectric conversion element manufacturing method and photoelectric conversion element
WO2014054350A1 (en) * 2012-10-04 2014-04-10 信越化学工業株式会社 Solar cell manufacturing method
JP2014511038A (en) * 2011-03-30 2014-05-01 ハンワ ケミカル コーポレイション Manufacturing method of solar cell
JP2014158043A (en) * 2014-04-22 2014-08-28 Sanyo Electric Co Ltd Solar cell module
WO2014188773A1 (en) * 2013-05-21 2014-11-27 信越化学工業株式会社 Method for manufacturing solar cell, and solar cell
WO2015064354A1 (en) * 2013-11-01 2015-05-07 パナソニックIpマネジメント株式会社 Solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312815A (en) * 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd Manufacture of thin-film solar cell
JP2002198546A (en) * 2000-12-27 2002-07-12 Kyocera Corp Formation method for solar cell element
JP2002231986A (en) * 2001-02-07 2002-08-16 Mitsubishi Heavy Ind Ltd Method for manufacturing integrated thin film solar battery
JP2002324768A (en) * 2001-02-21 2002-11-08 Nec Machinery Corp Substrate cutting method
JP2002329880A (en) * 2001-04-23 2002-11-15 Samsung Sdi Co Ltd Solar battery and method for manufacturing the same
JP2004039891A (en) * 2002-07-04 2004-02-05 Mitsubishi Heavy Ind Ltd Thin film solar cell manufacturing method and its apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312815A (en) * 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd Manufacture of thin-film solar cell
JP2002198546A (en) * 2000-12-27 2002-07-12 Kyocera Corp Formation method for solar cell element
JP2002231986A (en) * 2001-02-07 2002-08-16 Mitsubishi Heavy Ind Ltd Method for manufacturing integrated thin film solar battery
JP2002324768A (en) * 2001-02-21 2002-11-08 Nec Machinery Corp Substrate cutting method
JP2002329880A (en) * 2001-04-23 2002-11-15 Samsung Sdi Co Ltd Solar battery and method for manufacturing the same
JP2004039891A (en) * 2002-07-04 2004-02-05 Mitsubishi Heavy Ind Ltd Thin film solar cell manufacturing method and its apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2263263A2 (en) * 2008-02-25 2010-12-22 LG Electronics Inc. Solar cell and method for manufacturing the same
EP2263263A4 (en) * 2008-02-25 2012-08-08 Lg Electronics Inc Solar cell and method for manufacturing the same
JP2010010493A (en) * 2008-06-27 2010-01-14 Sharp Corp Solar cell and method of manufacturing the same
JP2011009663A (en) * 2009-06-29 2011-01-13 Kyocera Corp Method and apparatus for manufacturing solar cell element
JP2011049484A (en) * 2009-08-28 2011-03-10 Kyocera Corp Method and apparatus of manufacturing solar cell element
JP5289578B2 (en) * 2009-09-29 2013-09-11 京セラ株式会社 Solar cell element and solar cell module
WO2011040489A1 (en) * 2009-09-29 2011-04-07 京セラ株式会社 Solar cell element and solar cell module
JP2013102217A (en) * 2009-09-29 2013-05-23 Kyocera Corp Solar cell element and solar cell module
US8912431B2 (en) 2009-09-29 2014-12-16 Kyocera Corporation Solar cell element and solar cell module
JP2011151192A (en) * 2010-01-21 2011-08-04 Sharp Corp Solar cell, solar cell with interconnector, and manufacturing method thereof
JP2011187903A (en) * 2010-03-11 2011-09-22 Mitsubishi Electric Corp Method of manufacturing solar cell
US9093580B2 (en) 2011-03-30 2015-07-28 Hanwha Chemical Corporation Method for manufacturing solar cell
JP2014511038A (en) * 2011-03-30 2014-05-01 ハンワ ケミカル コーポレイション Manufacturing method of solar cell
KR101708240B1 (en) * 2011-06-08 2017-02-20 엘지전자 주식회사 Solar cell and wafer etching appratus thereof
KR20120136014A (en) * 2011-06-08 2012-12-18 엘지전자 주식회사 Solar cell and wafer etching appratus thereof
JP2013110406A (en) * 2011-11-23 2013-06-06 Samsung Sdi Co Ltd Photoelectric conversion element manufacturing method and photoelectric conversion element
JPWO2014054350A1 (en) * 2012-10-04 2016-08-25 信越化学工業株式会社 Method for manufacturing solar battery cell
WO2014054350A1 (en) * 2012-10-04 2014-04-10 信越化学工業株式会社 Solar cell manufacturing method
US9614117B2 (en) 2012-10-04 2017-04-04 Shin-Etsu Chemical Co., Ltd. Solar cell manufacturing method
WO2014188773A1 (en) * 2013-05-21 2014-11-27 信越化学工業株式会社 Method for manufacturing solar cell, and solar cell
JPWO2014188773A1 (en) * 2013-05-21 2017-02-23 信越化学工業株式会社 Solar cell manufacturing method and solar cell
WO2015064354A1 (en) * 2013-11-01 2015-05-07 パナソニックIpマネジメント株式会社 Solar cell
US20160233368A1 (en) * 2013-11-01 2016-08-11 Panasonic Intellectual Property Management Co., Ltd. Solar cell
JPWO2015064354A1 (en) * 2013-11-01 2017-03-09 パナソニックIpマネジメント株式会社 Solar cell
JP2014158043A (en) * 2014-04-22 2014-08-28 Sanyo Electric Co Ltd Solar cell module

Also Published As

Publication number Publication date
JPWO2006087786A1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
WO2006087786A1 (en) Solar cell manufacturing method
JP6633709B2 (en) Manufacturing method and structure of solar cell
JP5289764B2 (en) Solar cell and method for manufacturing the same
JP6111249B2 (en) High throughput laser ablation process and structure for forming contact holes in solar cells
EP2239788A1 (en) Solar battery element and solar battery element manufacturing method
KR101384853B1 (en) Laser processing methods for photovoltaic solar cells
BR112016022522A2 (en) SOLAR CELL SHEET-BASED METALIZATION
KR101289787B1 (en) Laser processing for high-efficiency thin crystalline silicon solar cell fabrication
JP6915806B2 (en) Solar cells and methods
CN102074499A (en) Method for producing a contact area of an electronic component
CN102792455A (en) Rear-contact heterojunction photovoltaic cell
JP2010251667A (en) Solar cell
JP7471229B2 (en) Localized metallization of semiconductor substrates using laser beams.
KR101532721B1 (en) Spatially selective laser annealing applications in high-efficiency solar cells
Dunsky et al. Solid state laser applications in photovoltaics manufacturing
KR20110031335A (en) Photoelectric conversion device manufacturing method and photoelectric conversion device
CN113380926B (en) Manufacturing method of heterojunction solar cell and heterojunction solar cell
KR20200130495A (en) Laser-assisted metallization process for solar cell stringing
WO2013022912A2 (en) Fixture for drilling vias in back-contact solar cells
Matylitsky et al. High Q femtoREGEN UC laser systems for industrial microprocessing applications
JP2012209316A (en) Solar cell element and solar cell module
JP2013105850A (en) Method for manufacturing solar cell
JP2001267618A (en) Manufacturing method of integral thin film photoelectric conversion device
JP2009072831A (en) Apparatus for forming laser scribes
JP2011040462A (en) Photoelectric conversion device, and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007503526

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05710306

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5710306

Country of ref document: EP