WO2006087084A2 - Process for dehydrating glycerol to acrolein - Google Patents

Process for dehydrating glycerol to acrolein Download PDF

Info

Publication number
WO2006087084A2
WO2006087084A2 PCT/EP2006/000736 EP2006000736W WO2006087084A2 WO 2006087084 A2 WO2006087084 A2 WO 2006087084A2 EP 2006000736 W EP2006000736 W EP 2006000736W WO 2006087084 A2 WO2006087084 A2 WO 2006087084A2
Authority
WO
WIPO (PCT)
Prior art keywords
glycerol
acrolein
catalyst
process according
yield
Prior art date
Application number
PCT/EP2006/000736
Other languages
French (fr)
Other versions
WO2006087084A3 (en
Inventor
Jean-Luc Dubois
Christophe Duquenne
Wolfgang Hölderich
Jacques Kervennal
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35169625&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006087084(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Arkema France filed Critical Arkema France
Priority to JP2007555482A priority Critical patent/JP5107060B2/en
Priority to CN2006800049026A priority patent/CN101119956B/en
Priority to BRPI0607726-9A priority patent/BRPI0607726B1/en
Priority to KR1020077018652A priority patent/KR101249632B1/en
Priority to DE602006001638T priority patent/DE602006001638D1/en
Priority to US11/814,830 priority patent/US7655818B2/en
Priority to PL06706456T priority patent/PL1848681T3/en
Priority to EP06706456A priority patent/EP1848681B1/en
Publication of WO2006087084A2 publication Critical patent/WO2006087084A2/en
Publication of WO2006087084A3 publication Critical patent/WO2006087084A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/52Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition by dehydration and rearrangement involving two hydroxy groups in the same molecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to a process for manufacturing acrolein by gas-phase dehydration of glycerol.
  • Acrolein is the simplest of the unsaturated aldehydes. It is also known as 2-propenal, acrylaldehyde or acrylic aldehyde. As a result of its structure, acrolein has high reactive power by virtue of the presence of its two reactive functions, which are capable of reacting individually or together. It is for this reason that acrolein finds many applications, especially as a synthetic intermediate. It is in particular a key intermediate for the synthesis of methionine, a synthetic protein used as an animal feed supplement, which has established itself as a substitute for fishmeal.
  • Acrolein is a non-isolated synthetic intermediate of acrylic acid in the industrial production of acrylic acid by catalytic oxidation of propylene in the gas phase.
  • Acrolein also leads, via reaction with methyl vinyl ether followed by hydrolysis, to glutaraldehyde, which has many uses in leather tanning, as a biocidal agent in oil well drilling and during the processing of cutting oils, and as a chemical disinfectant /and sterilizing agent for hospital equipment.
  • Acrolein is usually used as a synthetic intermediate of derivatives that are synthesized on the site of production to minimize the transportation of acrolein from the manufacturer to the client.
  • the essential reason is linked to the toxicity of acrolein, which leads industrials to avoid the storage and transportation of this chemical product.
  • the most commonly used process for producing acrolein is based on the gas-phase catalytic oxidation reaction of propylene with atmospheric oxygen. The acrolein thus obtained may then be incorporated directly into an acrylic acid manufacturing process.
  • acrolein When acrolein is used as starting material for the synthesis of methionine or for fine chemistry reactions, a purification section allows the removal of the reaction by-products, mainly carbon oxides, acrylic acid, acetic acid and acetaldehyde.
  • the production of acrolein is thus highly dependent on the propylene starting material obtained by steam cracking or catalytic cracking of petroleum fractions .
  • This starting material of fossil origin, furthermore contributes towards increasing the greenhouse effect. It thus appears necessary to have available an acrolein synthesis process that is not dependent on propylene as resource and that uses another starting material, which is preferably renewable. This process would be particularly advantageous for the synthesis of methionine, which might then be said to be "obtained from biomass".
  • Glycerol also known as glycerine
  • glycerine is derived from the methanolysis of plant oils at the same time as the methyl esters, which are themselves used especially as fuels or combustibles in diesel and domestic fuel oil. It is a natural product that has an "environmentally friendly" image, is available in large amount and may be stored and transported without difficulty. Many studies have been devoted to the financial upgrading of glycerol according to its degree of purity, and the dehydration of glycerol to acrolein is one of the routes envisaged.
  • the hydration reaction is favoured at low temperatures, and the dehydration reaction is favoured at high temperatures.
  • the reaction may be performed in the liquid phase or in the gas phase. This type of reaction is known to be catalysed by acids.
  • acrolein is obtained by passing glycerol vapours at a sufficiently high temperature over salts of acids containing at least three acid functions, for instance phosphoric acid salts.
  • the yields indicated are greater than 75% after fractional distillation.
  • 99/05085 is based on a complex homogeneous catalysis, under a CO/H 2 atmosphere at a pressure of 20/40 bar and in the presence of a solvent such as an aqueous solution of sulfolane.
  • Chinese patent application CN 1 394 839 relates to a process for preparing 3-hydroxypropanaldehyde from glycerol.
  • the acrolein produced as reaction intermediate is obtained by passing vaporized pure glycerol over a catalyst of potassium sulfate or magnesium sulfate type. The reaction yields are not given.
  • Patent US 5 387 720 describes a process for producing acrolein by dehydration of glycerol, in the liquid phase or in the gas phase over acidic solid catalysts defined by their Hammett acidity.
  • the catalysts must have a Hammett acidity of less than +2 and preferably less than -3.
  • These catalysts correspond, for example, to natural or synthetic siliceous materials, for instance mordenite, montmorillonite, acidic zeolites; supports, such as oxides or siliceous materials, for example alumina (Al 2 O 3 ), titanium oxide (TiO 2 ), coated with mono-, di- or triacidic inorganic acids; oxides or mixed oxides such as gamma- alumina, the mixed oxide ZnO-Al 2 O 3 , or alternatively heteropolyacids .
  • supports such as oxides or siliceous materials, for example alumina (Al 2 O 3 ), titanium oxide (TiO 2 ), coated with mono-, di- or triacidic inorganic acids; oxides or mixed oxides such as gamma- alumina, the mixed oxide ZnO-Al 2 O 3 , or alternatively heteropolyacids .
  • an aqueous solution comprising from 10% to 40% of glycerol is used, and the process is performed at temperatures of between 180°C and 340 0 C in the liquid phase, and between 25O 0 C and 340 0 C in the gas phase.
  • the gas-phase reaction is preferable since it enables a degree of conversion of the glycerol of close to 100% to be obtained, which leads to an aqueous acrolein solution containing side products.
  • a proportion of about 10% of the glycerol is converted into hydroxypropanone , which is present as the major by-product in the acrolein solution.
  • the acrolein is recovered and purified by fractional condensation or distillation.
  • Patent US 5 426 249 describes the same gas-phase process for the dehydration of glycerol to acrolein, but followed by a hydration of the acrolein and a hydrogenation to lead to 1,2- and 1,3- propanediol.
  • the dehydration reaction of glycerol to acrolein is thus generally accompanied by side reactions leading to the formation of by-products such as hydroxypropanone, propanaldehyde, acetaldehyde, acetone, adducts of acrolein with glycerol, glycerol polycondensation products, cyclic glycerol ethers, etc., but also phenol and polyaromatic compounds, which are the cause of the formation of coke on the catalyst.
  • One subject of the present invention is thus a process for manufacturing acrolein by gas-phase dehydration of glycerol in the presence of strongly acidic solid catalysts with a Hainmett acidity of between -9 and - 18 and preferably between -10 and -16.
  • the Hammett acidity is determined by amine titration using indicators or by adsorption of a base in the gas phase.
  • the catalysts satisfying the acidity criterion Ho of between -9 and -18 may be chosen from natural or synthetic siliceous materials or acidic zeolites; mineral supports, such as oxides, coated with mono-, di-, tri- or polyacidic inorganic acids; oxides or mixed oxides, or alternatively heteropolyacids .
  • the catalysts are advantageously chosen from zeolites, Nafion ® composites (based on sulfonic acid of fluorinated polymers), chlorinated aluminas, phospho- tungstic and/or silicotungstic acids and acid salts, and various solids of metal oxide type such as tantalum oxide Ta 2 O 5 , niobium oxide Nb 2 O 5 , alumina Al 2 O 3 , titanium oxide TiO 2 , zirconia ZrO 2 , tin oxide SnO 2 , silica SiO 2 or silico- aluminate SiO 2 -Al 2 Oa, impregnated with acidic functions such as borate BO 3 , sulfate SO 4 , tungstate WO 3 , phosphate PO 4 , silicate SiO 2 or molybdate M0O3.
  • metal oxide type such as tantalum oxide Ta 2 O 5 , niobium oxide Nb 2 O 5 , alumina Al 2 O 3
  • the preferred catalysts are sulfate zirconias, phosphate zirconias, tungsten zirconias, siliceous zirconias, sulfate titanium or tin oxides, and phosphate aluminas or silicas.
  • the reaction may be performed in the presence of molecular oxygen.
  • the molecular oxygen may be present in the form of air or in the form of a mixture of gases containing molecular oxygen.
  • the amount of oxygen is chosen so as to be outside the flammability range at any point in the plant. From Figure 4 of US patent application 2004/15012, the maximum oxygen content, in an acrolein/0 2 /N 2 mixture is about 7% by volume in order to be entirely outside the flammability range.
  • the molecular oxygen content will generally be chosen so as not to exceed 7% relative to the mixture of gases entering the reaction (mixture of glycerol/H 2 0/oxygen/inert gases). Preferably, the oxygen content is less than 7% relative to the dry gas mixture leaving the reactor (mixture of acrolein/oxygen/inert gases).
  • the reaction according to the invention is performed in the gas phase.
  • Various process technologies may be used and are known to those skilled in the art, i.e. a fixed- bed process, a fluidized-bed process or a circulating fluidized-bed process.
  • the selection of the optimum process is made as a function of various criteria; the fixed-bed process has the advantage of simplicity; the fluidized-bed processes make it possible to continuously discharge the spent catalyst and to permanently recharge fresh catalyst without stopping the production, with the possibility of being isothermic.
  • the circulating fluidized-bed process has the advantage of optimizing the reaction selectivity by permanently returning freshly regenerated catalyst into the reactor, while at the same time compensating for the energy exchange between the reactor and the regenerator.
  • the regeneration of the catalyst may be performed with oxygen, hydrogen or with other treatments such as washing with solvents and/or treatment with H 2 O 2 .
  • the process is performed in a reactor of the plate heat exchanger type.
  • This reactor consists of plates forming between themselves circulation channels that can contain a catalyst.
  • This technology has many advantages in terms of heat exchange, associated with high heat exchange capacity.
  • this type of reactor is particularly suitable for removing heat easily in the case of exothermic reactions, or for supplying heat in the startup phases of reactions or in the case of endothermic reactions. More particularly, this reactor makes it possible either to heat or to cool the catalyst.
  • the heat exchange is particularly efficient with the circulation of a heat-exchange fluid in the system.
  • the plates may be assembled in modules, which gives greater flexibility, whether as regards the size of the reactor, its maintenance or the replacement of the catalyst.
  • Systems that may ' be suitable for the process of the invention are, for example, the reactors described in documents EP 995 491 or EP 1 147 807, the content of which is incorporated by reference. These reactors are particularly suitable for the catalytic conversion of reaction media, specifically gaseous reaction media, such as those used in the present invention.
  • the plate heat exchanger used for the preparation of (meth) acrolein or (meth) acrylic acid via catalytic oxidation of C3 or C4 precursors, described in document US 2005/0020851, may also be suitable for the manufacture of acrolein via dehydration of glycerol, which is the subject of the present invention.
  • the experimental conditions of the reaction are preferably a temperature of between 25O 0 C and 35O 0 C and a pressure of between 1 and 5 bar. It has been observed that a lower temperature leads to a reduction of the glycerol conversion yield, but, at the same time, the selectivity towards acrolein is increased. To avoid consecutive reactions and the formation of unwanted products, it is important to limit the residence time in the reactor; moreover, by increasing the residence time, it is also possible to have higher conversions. It is especially desirable to increase the contact time (residence time) of the reagents in the region of the catalyst in order to compensate for a decrease in the degree of conversion when a lower reaction temperature is used.
  • Glycerol is available inexpensively in the form of aqueous solutions.
  • an aqueous glycerol solution with a concentration of between 10% and 50% and preferably between 15% and 30% by weight is used in the reactor.
  • the concentration should not be too high, so as to avoid spurious reactions such as the formation of glycerol ethers or reactions between the acrolein produced and the glycerol.
  • the glycerol solution should not be too dilute on account of the energy cost involved in the evaporation of the aqueous glycerol solution.
  • the concentration of the glycerol solution may be adjusted by recycling the water produced by the reaction.
  • the reactor may be fed with concentrated solution of 40% to 100% by weight of glycerol, dilution to the optimum content being performed by recycling some of the steam produced by the reaction and of the dilution water.
  • the recovery of heat at the reactor outlet may also allow the glycerol solution feeding the reactor to be vaporized.
  • Glycerol derived from the methanolysis of plant oils in basic medium may contain certain impurities such as sodium chloride or sulfate, non-glycerol organic matter, and methanol.
  • the presence of sodium salts is in particular detrimental to the catalytic dehydration reaction since these salts are capable of poisoning the acidic sites.
  • a pretreatment of the glycerol by ion exchange may be envisaged.
  • the acrolein produced according to the process of the invention may contain impurities of different nature or in different amount. According to the envisaged use, synthesis of acrylic acid, synthesis of methionine or fine chemistry reactions, it may be envisaged to purify the ' acrolein according to the techniques known to those skilled in the art. More particularly, the by-products may be recovered and incinerated, thus producing vapour or energy.
  • the energetic upgrading of the by-products of the glycerol dehydration reaction furthermore makes it possible to greatly reduce the greenhouse-gas emissions of the process, compared with the conventional process, for which the CO 2 produced is derived from fossil carbon during the incineration of the by-products.
  • a tubular reactor consisting of a tube 85 cm long and with an inside diameter of 6 mm is used to perform the glycerol dehydration reaction in the gas phase at atmospheric pressure.
  • This reactor is placed in a heated chamber maintained at the reaction temperature, which is 300 0 C, unless otherwise indicated.
  • the catalysts used are ground and/or pelletized to obtain particles of 0.5 to 1.0 mm. 10 ml of catalyst are loaded into the reactor to form a catalytic bed 35 cm long. This bed is maintained at the reaction temperature for 5 to 10 minutes before introducing the reagents.
  • the reactor is fed with an aqueous solution containing 20% by weight of glycerol at a mean feed flow rate of 12 ml/h.
  • the aqueous glycerol solution is vaporized in the heated chamber, and then passes over the catalyst.
  • the calculated contact time is about 2.9 sec.
  • the duration of a catalyst test is about 7 hours, which corresponds to about 80 ml of aqueous glycerol solution passed over the catalyst. After reaction, the products are condensed in a trap refrigerated with crushed ice.
  • Samples of the effluents are collected periodically. For each sample collection, the flow is interrupted and a gentle flow of nitrogen is passed through the reactor to purge it. The trap at the reactor outlet is then replaced, the nitrogen flow is stopped and the reactor is returned under a flow of reagent. The test is continued until appreciable deactivation of the catalyst is noted.
  • the first method is particularly suitable for rapid analysis of the products, and especially the yield of acrolein.
  • the second method is used to have a more precise analysis of all the reaction by-products. Moreover, analyses by GC-MS or by chromatography after silylation were performed to confirm these results.
  • the products thus quantified are the unreacted glycerol, the acrolein formed and the by-products such as hydroxypropanone, acetaldehyde, propanaldehyde, acetone and phenol.
  • acetaldehyde yield (%) 2/3 * number of moles of acetaldehyde produced/number of moles of glycerol introduced.
  • phenol yield (%) 2 * number of moles of phenol produced/number of moles of glycerol introduced.
  • the catalyst was prepared in the following manner: 15.9 g of alpha-alumina from Ceramtec (Ref EO-19 - specific surface area 0.7 m 2 /g - mean pore diameter 2.5 ⁇ m - apparent porosity 65% - supplied in the form of rings and ground so as to retain only the particles of diameter 1-1.4 mm) were impregnated with 4 g of a 20% by weight phosphoric acid solution (prepared by addition of 16.25 ml of water and 5 g of 85% by weight phosphoric acid) . The solid is then dried on a rotavapor at 8O 0 C and used directly for Example 1. For Example Ia, the solid underwent an additional activation in air at 300 0 C for 3 hours in order to fix the phosphoric acid to the support. The results are collated in Table 1 below: Table 1
  • Example 2 A sulfate zirconia (90% ZrO 2 - 10% SO 4 ) from Daiichi Kigenso (supplier reference H1416) is used as catalyst.
  • This catalyst has a loss on ignition at 1000 0 C of 8.81% and a specific surface area of 54.3 mVg (BET, 1 point).
  • the acidity H 0 is equal to -16 according to the table on page 71 of the publication on acid-base catalysis (C. Marcilly) Vol. 1, published by Technip (ISBN No. 2-7108- 0841-2). 10 ml of catalyst, representing a mass of 16.5 g, were loaded into the reactor.
  • Glycerol conversion 100 100 100 97 92 87 80 73
  • Glycerol 100 100 100 100 97 93 85 80 conversion
  • This type of catalyst is active and selective and deactivates less quickly than that of Example 1.
  • Example 4 A phosphate zirconia (91.5% ZrO 2 - 8.5% PO 4 ) from Daiichi Kigenso (Ref. H1418) is used. This catalyst has a loss on ignition at 1000 0 C of 4.23% and a specific surface area of 128.7 m 2 /g. 10 ml of this catalyst, representing a mass of 12.7g, were loaded into the reactor. The results are given in Table 4 below.
  • Glycerol 100 100 100 100 99 97 96 95 conversion
  • a tungsten zirconia (90.7% ZrO 2 - 9.3% WO 3 ) from Daiichi Kigenso (supplier reference H1417) is used.
  • This catalyst has a loss on ignition at 1000°C of 1.75% and a specific surface area of 47.4 m 2 /g (BET, 1 point).
  • the acidity H 0 is equal to -14.5 according to the table on page 71 of the publication on acid-base catalysis (C. Marcilly) Vol. 1, published by Technip (ISBN No. 2-7108-0841-2).
  • Glycerol conversion 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Abstract

The present invention relates to a process for manufacturing acrolein by gas-phase dehydration of glycerol in the presence of strongly acidic solid catalysts with a Hammett acidity H0 of between -9 and -18 and preferably between -10 and -16.

Description

PROCESS FOR DEHYDRATING GLYCEROL TO ACROLEIN
The present invention relates to a process for manufacturing acrolein by gas-phase dehydration of glycerol.
Acrolein is the simplest of the unsaturated aldehydes. It is also known as 2-propenal, acrylaldehyde or acrylic aldehyde. As a result of its structure, acrolein has high reactive power by virtue of the presence of its two reactive functions, which are capable of reacting individually or together. It is for this reason that acrolein finds many applications, especially as a synthetic intermediate. It is in particular a key intermediate for the synthesis of methionine, a synthetic protein used as an animal feed supplement, which has established itself as a substitute for fishmeal. Acrolein is a non-isolated synthetic intermediate of acrylic acid in the industrial production of acrylic acid by catalytic oxidation of propylene in the gas phase. The importance of the chemistry of acrylic acid and its derivatives is known. Acrolein also leads, via reaction with methyl vinyl ether followed by hydrolysis, to glutaraldehyde, which has many uses in leather tanning, as a biocidal agent in oil well drilling and during the processing of cutting oils, and as a chemical disinfectant /and sterilizing agent for hospital equipment.
Acrolein is usually used as a synthetic intermediate of derivatives that are synthesized on the site of production to minimize the transportation of acrolein from the manufacturer to the client. The essential reason is linked to the toxicity of acrolein, which leads industrials to avoid the storage and transportation of this chemical product. The most commonly used process for producing acrolein is based on the gas-phase catalytic oxidation reaction of propylene with atmospheric oxygen. The acrolein thus obtained may then be incorporated directly into an acrylic acid manufacturing process. When acrolein is used as starting material for the synthesis of methionine or for fine chemistry reactions, a purification section allows the removal of the reaction by-products, mainly carbon oxides, acrylic acid, acetic acid and acetaldehyde. The production of acrolein is thus highly dependent on the propylene starting material obtained by steam cracking or catalytic cracking of petroleum fractions . This starting material, of fossil origin, furthermore contributes towards increasing the greenhouse effect. It thus appears necessary to have available an acrolein synthesis process that is not dependent on propylene as resource and that uses another starting material, which is preferably renewable. This process would be particularly advantageous for the synthesis of methionine, which might then be said to be "obtained from biomass". Specifically, during its use in animal feed, methionine is rapidly metabolized and the carbon dioxide expelled into the atmosphere contributes towards increasing the greenhouse effect. If acrolein is obtained from a renewable starting material, for example obtained from plant oil, the CO2 emissions no longer enter into the process balance, since they compensate for the carbon dioxide used by the biomass for its growth; there is therefore no increase in the greenhouse effect. Such a process thus satisfies the criteria associated with the new concept of "green chemistry" within a more global context of durable development . It has been known for a long time that glycerol can lead to the production of acrolein. Glycerol (also known as glycerine) is derived from the methanolysis of plant oils at the same time as the methyl esters, which are themselves used especially as fuels or combustibles in diesel and domestic fuel oil. It is a natural product that has an "environmentally friendly" image, is available in large amount and may be stored and transported without difficulty. Many studies have been devoted to the financial upgrading of glycerol according to its degree of purity, and the dehydration of glycerol to acrolein is one of the routes envisaged.
The reaction involved for obtaining acrolein from glycerol is: CH2OH-CHOH-CH2OH ? CH2=CH-CHO + 2H2O
As a general rule, the hydration reaction is favoured at low temperatures, and the dehydration reaction is favoured at high temperatures. To obtain acrolein, it is thus necessary to use a sufficient temperature, and/or partial vacuum to shift the reaction. The reaction may be performed in the liquid phase or in the gas phase. This type of reaction is known to be catalysed by acids.
According to patent FR 695 931, acrolein is obtained by passing glycerol vapours at a sufficiently high temperature over salts of acids containing at least three acid functions, for instance phosphoric acid salts. The yields indicated are greater than 75% after fractional distillation.
In patent US 2 558 520, the dehydration reaction is performed in the gas/liquid phase in the presence of diatomaceous earths impregnated with phosphoric acid salts, suspended in an aromatic solvent. A degree of conversion of the glycerol into acrolein of 72.3% is obtained under these conditions.
The process described ' in patent application WO
99/05085 is based on a complex homogeneous catalysis, under a CO/H2 atmosphere at a pressure of 20/40 bar and in the presence of a solvent such as an aqueous solution of sulfolane.
Chinese patent application CN 1 394 839 relates to a process for preparing 3-hydroxypropanaldehyde from glycerol. The acrolein produced as reaction intermediate is obtained by passing vaporized pure glycerol over a catalyst of potassium sulfate or magnesium sulfate type. The reaction yields are not given.
Patent US 5 387 720 describes a process for producing acrolein by dehydration of glycerol, in the liquid phase or in the gas phase over acidic solid catalysts defined by their Hammett acidity. The catalysts must have a Hammett acidity of less than +2 and preferably less than -3. These catalysts correspond, for example, to natural or synthetic siliceous materials, for instance mordenite, montmorillonite, acidic zeolites; supports, such as oxides or siliceous materials, for example alumina (Al2O3), titanium oxide (TiO2), coated with mono-, di- or triacidic inorganic acids; oxides or mixed oxides such as gamma- alumina, the mixed oxide ZnO-Al2O3, or alternatively heteropolyacids . According to the said patent, an aqueous solution comprising from 10% to 40% of glycerol is used, and the process is performed at temperatures of between 180°C and 3400C in the liquid phase, and between 25O0C and 3400C in the gas phase. According to the authors of the said patent, the gas-phase reaction is preferable since it enables a degree of conversion of the glycerol of close to 100% to be obtained, which leads to an aqueous acrolein solution containing side products. A proportion of about 10% of the glycerol is converted into hydroxypropanone , which is present as the major by-product in the acrolein solution. The acrolein is recovered and purified by fractional condensation or distillation. For a liquid- phase reaction, a conversion limited to 15-25% is desired, to avoid excessive loss of selectivity. In the case of a gas-phase reaction, catalysts with an acidity H0 of between +2 and -8.2 and preferably between -3 and -5.6 are the ones most advantageously used, whereas the liquid-phase reaction is preferably performed with catalysts with an acidity H0 of between -8.2 and -20. Patent US 5 426 249 describes the same gas-phase process for the dehydration of glycerol to acrolein, but followed by a hydration of the acrolein and a hydrogenation to lead to 1,2- and 1,3- propanediol.
The dehydration reaction of glycerol to acrolein is thus generally accompanied by side reactions leading to the formation of by-products such as hydroxypropanone, propanaldehyde, acetaldehyde, acetone, adducts of acrolein with glycerol, glycerol polycondensation products, cyclic glycerol ethers, etc., but also phenol and polyaromatic compounds, which are the cause of the formation of coke on the catalyst. This results, firstly, in a reduction in the yield of and the selectivity towards acrolein, and secondly in deactivation of the catalyst. The presence of by-products in the acrolein, such as hydroxypropanone or propanaldehyde, some of which are moreover difficult to isolate, necessitates separation and purification steps, which lead to high recovery costs for the purified acrolein. Moreover, it is necessary to regenerate the catalyst very regularly in order to regain satisfactory catalytic activity. The Applicant Company has found, surprisingly, that certain acidic solids with a Hainmett acidity Ho of between -9 and -18 have higher catalytic activity for the gas- phase dehydration reaction of glycerol to acrolein than the solids of lower acidity described in patent US 5 387 720. These catalysts are more active and deactivate less quickly, which allows longer cycles and a smaller reactor volume .
One subject of the present invention is thus a process for manufacturing acrolein by gas-phase dehydration of glycerol in the presence of strongly acidic solid catalysts with a Hainmett acidity of between -9 and - 18 and preferably between -10 and -16.
As indicated in patent US 5 387 720, which refers to the article by K. Tanabe et al. in "Studies in Surface Science and Catalysis", Vol. 51, 1989, chap. 1 and 2, the Hammett acidity is determined by amine titration using indicators or by adsorption of a base in the gas phase. The catalysts satisfying the acidity criterion Ho of between -9 and -18 may be chosen from natural or synthetic siliceous materials or acidic zeolites; mineral supports, such as oxides, coated with mono-, di-, tri- or polyacidic inorganic acids; oxides or mixed oxides, or alternatively heteropolyacids . The catalysts are advantageously chosen from zeolites, Nafion® composites (based on sulfonic acid of fluorinated polymers), chlorinated aluminas, phospho- tungstic and/or silicotungstic acids and acid salts, and various solids of metal oxide type such as tantalum oxide Ta2O5, niobium oxide Nb2O5, alumina Al2O3, titanium oxide TiO2, zirconia ZrO2, tin oxide SnO2, silica SiO2 or silico- aluminate SiO2-Al2Oa, impregnated with acidic functions such as borate BO3, sulfate SO4, tungstate WO3, phosphate PO4, silicate SiO2 or molybdate M0O3.
The preferred catalysts are sulfate zirconias, phosphate zirconias, tungsten zirconias, siliceous zirconias, sulfate titanium or tin oxides, and phosphate aluminas or silicas.
The reaction may be performed in the presence of molecular oxygen. The molecular oxygen may be present in the form of air or in the form of a mixture of gases containing molecular oxygen. The amount of oxygen is chosen so as to be outside the flammability range at any point in the plant. From Figure 4 of US patent application 2004/15012, the maximum oxygen content, in an acrolein/02/N2 mixture is about 7% by volume in order to be entirely outside the flammability range. The molecular oxygen content will generally be chosen so as not to exceed 7% relative to the mixture of gases entering the reaction (mixture of glycerol/H20/oxygen/inert gases). Preferably, the oxygen content is less than 7% relative to the dry gas mixture leaving the reactor (mixture of acrolein/oxygen/inert gases).
The reaction according to the invention is performed in the gas phase. Various process technologies may be used and are known to those skilled in the art, i.e. a fixed- bed process, a fluidized-bed process or a circulating fluidized-bed process.
The selection of the optimum process is made as a function of various criteria; the fixed-bed process has the advantage of simplicity; the fluidized-bed processes make it possible to continuously discharge the spent catalyst and to permanently recharge fresh catalyst without stopping the production, with the possibility of being isothermic. The circulating fluidized-bed process has the advantage of optimizing the reaction selectivity by permanently returning freshly regenerated catalyst into the reactor, while at the same time compensating for the energy exchange between the reactor and the regenerator. The regeneration of the catalyst may be performed with oxygen, hydrogen or with other treatments such as washing with solvents and/or treatment with H2O2.
According to one particular embodiment of the invention, the process is performed in a reactor of the plate heat exchanger type. This reactor consists of plates forming between themselves circulation channels that can contain a catalyst. This technology has many advantages in terms of heat exchange, associated with high heat exchange capacity. Thus, this type of reactor is particularly suitable for removing heat easily in the case of exothermic reactions, or for supplying heat in the startup phases of reactions or in the case of endothermic reactions. More particularly, this reactor makes it possible either to heat or to cool the catalyst. The heat exchange is particularly efficient with the circulation of a heat-exchange fluid in the system. The plates may be assembled in modules, which gives greater flexibility, whether as regards the size of the reactor, its maintenance or the replacement of the catalyst. Systems that may ' be suitable for the process of the invention are, for example, the reactors described in documents EP 995 491 or EP 1 147 807, the content of which is incorporated by reference. These reactors are particularly suitable for the catalytic conversion of reaction media, specifically gaseous reaction media, such as those used in the present invention. The plate heat exchanger used for the preparation of (meth) acrolein or (meth) acrylic acid via catalytic oxidation of C3 or C4 precursors, described in document US 2005/0020851, may also be suitable for the manufacture of acrolein via dehydration of glycerol, which is the subject of the present invention.
The experimental conditions of the reaction are preferably a temperature of between 25O0C and 35O0C and a pressure of between 1 and 5 bar. It has been observed that a lower temperature leads to a reduction of the glycerol conversion yield, but, at the same time, the selectivity towards acrolein is increased. To avoid consecutive reactions and the formation of unwanted products, it is important to limit the residence time in the reactor; moreover, by increasing the residence time, it is also possible to have higher conversions. It is especially desirable to increase the contact time (residence time) of the reagents in the region of the catalyst in order to compensate for a decrease in the degree of conversion when a lower reaction temperature is used.
Glycerol is available inexpensively in the form of aqueous solutions. Advantageously, an aqueous glycerol solution with a concentration of between 10% and 50% and preferably between 15% and 30% by weight is used in the reactor. The concentration should not be too high, so as to avoid spurious reactions such as the formation of glycerol ethers or reactions between the acrolein produced and the glycerol. Moreover, the glycerol solution should not be too dilute on account of the energy cost involved in the evaporation of the aqueous glycerol solution. In any case, the concentration of the glycerol solution may be adjusted by recycling the water produced by the reaction. In order to reduce the glycerol transportation and storage costs, the reactor may be fed with concentrated solution of 40% to 100% by weight of glycerol, dilution to the optimum content being performed by recycling some of the steam produced by the reaction and of the dilution water. Similarly, the recovery of heat at the reactor outlet may also allow the glycerol solution feeding the reactor to be vaporized.
Glycerol derived from the methanolysis of plant oils in basic medium may contain certain impurities such as sodium chloride or sulfate, non-glycerol organic matter, and methanol. The presence of sodium salts is in particular detrimental to the catalytic dehydration reaction since these salts are capable of poisoning the acidic sites. A pretreatment of the glycerol by ion exchange may be envisaged.
Compared with the conventional process for preparing acrolein by selective oxidation of propylene, the acrolein produced according to the process of the invention may contain impurities of different nature or in different amount. According to the envisaged use, synthesis of acrylic acid, synthesis of methionine or fine chemistry reactions, it may be envisaged to purify the ' acrolein according to the techniques known to those skilled in the art. More particularly, the by-products may be recovered and incinerated, thus producing vapour or energy. The energetic upgrading of the by-products of the glycerol dehydration reaction furthermore makes it possible to greatly reduce the greenhouse-gas emissions of the process, compared with the conventional process, for which the CO2 produced is derived from fossil carbon during the incineration of the by-products.
The examples that follow illustrate the present invention without, however, limiting its scope.
Examples
In the examples, a tubular reactor consisting of a tube 85 cm long and with an inside diameter of 6 mm is used to perform the glycerol dehydration reaction in the gas phase at atmospheric pressure. This reactor is placed in a heated chamber maintained at the reaction temperature, which is 3000C, unless otherwise indicated. The catalysts used are ground and/or pelletized to obtain particles of 0.5 to 1.0 mm. 10 ml of catalyst are loaded into the reactor to form a catalytic bed 35 cm long. This bed is maintained at the reaction temperature for 5 to 10 minutes before introducing the reagents. The reactor is fed with an aqueous solution containing 20% by weight of glycerol at a mean feed flow rate of 12 ml/h. The aqueous glycerol solution is vaporized in the heated chamber, and then passes over the catalyst. The calculated contact time is about 2.9 sec. The duration of a catalyst test is about 7 hours, which corresponds to about 80 ml of aqueous glycerol solution passed over the catalyst. After reaction, the products are condensed in a trap refrigerated with crushed ice.
Samples of the effluents are collected periodically. For each sample collection, the flow is interrupted and a gentle flow of nitrogen is passed through the reactor to purge it. The trap at the reactor outlet is then replaced, the nitrogen flow is stopped and the reactor is returned under a flow of reagent. The test is continued until appreciable deactivation of the catalyst is noted.
For each experiment, the total mass of products entering and leaving is measured, which allows a mass balance to be determined. Similarly, the products formed are analysed by chromatography. Two types of analysis are performed:
- an analysis by chromatography on a filled column (FFAP column 2 m*l/8") on a Carlo Erba chromatograph equipped with a TCD detector. The quantitative analysis is performed with an external standard (2-butanone) ;
- an analysis by chromatography on a capillary column (FFAP column 50 m*0.25 mm) on an HP6890 chromatograph equipped with an FID detector with the same samples stored at -150C.
The first method is particularly suitable for rapid analysis of the products, and especially the yield of acrolein. The second method is used to have a more precise analysis of all the reaction by-products. Moreover, analyses by GC-MS or by chromatography after silylation were performed to confirm these results.
The products thus quantified are the unreacted glycerol, the acrolein formed and the by-products such as hydroxypropanone, acetaldehyde, propanaldehyde, acetone and phenol.
In the examples that follow, the glycerol conversion, the acrolein selectivity and the yields of the various products are defined as follows: glycerol conversion (%) = 100 - number of moles of glycerol remaining/number of moles of glycerol introduced; acrolein yield (%) = number of moles of acrolein produced/number of moles of glycerol introduced; acrolein selectivity (%) = 100 * number of moles of acrolein produced/number of moles of glycerol reacted.
The acetone or hydroxypropanone yield is calculated as for the acrolein yield: acetaldehyde yield (%) = 2/3 * number of moles of acetaldehyde produced/number of moles of glycerol introduced. phenol yield (%) = 2 * number of moles of phenol produced/number of moles of glycerol introduced.
All the results are expressed as molar percentages relative to the glycerol introduced.
Examples 1 and Ia (comparative of the prior art)
10 ml of H3PO4/alpha-alumina catalyst with a Hammett acidity H0 of between -3 and -5.6, prepared as described in patent US 5 387 720, representing a mass of 10 g, were loaded into the reactor. The catalyst was prepared in the following manner: 15.9 g of alpha-alumina from Ceramtec (Ref EO-19 - specific surface area 0.7 m2/g - mean pore diameter 2.5 μm - apparent porosity 65% - supplied in the form of rings and ground so as to retain only the particles of diameter 1-1.4 mm) were impregnated with 4 g of a 20% by weight phosphoric acid solution (prepared by addition of 16.25 ml of water and 5 g of 85% by weight phosphoric acid) . The solid is then dried on a rotavapor at 8O0C and used directly for Example 1. For Example Ia, the solid underwent an additional activation in air at 3000C for 3 hours in order to fix the phosphoric acid to the support. The results are collated in Table 1 below: Table 1
Example 1 Example Ia
Cumulative 8 16 25 32 8 16 24 32 glycerol introduced (g)
Glycerol 91 69 42 17 70 37 9 8 conversion
Acrolein yield 54.5 32 .2 20.6 3. 8 42 .1 18.2 4.6 3.1
Acrolein 60 4 6 49 2 3 60 50 50 41 selectivity
Hydroxypropanone 12.3 9. 3 6.5 2. 1 10 .3 4.8 0.0 0.0 yield
Acetaldehyde 0.1 0. 0 0.0 0. 0 0. 0 0.0 0.0 0.0 yield
Propanaldehyde 0.3 0. 2 0.1 0. 0 0. 0 0.0 0.0 0.0 yield
Acetone yield 0.0 0. 0 0.0 0. 0 0. 0 0.0 0.0 0.1
Phenol yield 1.0 0. 1 0.1 0. 0 0. 8 0.0 0.0 0.0
Material balance 98.6 98 .7 nd 98 .9 98 .5 98.9 98.0 99.0
(mass collected/mass introduced)
Quantified 77.6 72 .6 84.9 89 .4 83 .2 86.2 95.5 95.6 product balance
(products assayed/glycerol introduced)
Rapid deactivation of the catalyst is observed.
Example 2 A sulfate zirconia (90% ZrO2 - 10% SO4) from Daiichi Kigenso (supplier reference H1416) is used as catalyst. This catalyst has a loss on ignition at 10000C of 8.81% and a specific surface area of 54.3 mVg (BET, 1 point). The acidity H0 is equal to -16 according to the table on page 71 of the publication on acid-base catalysis (C. Marcilly) Vol. 1, published by Technip (ISBN No. 2-7108- 0841-2). 10 ml of catalyst, representing a mass of 16.5 g, were loaded into the reactor.
The results are given in Table 2 below.
Table 2
Cumulative glycerol 9 17 27 36 44 53 introduced (g)
Glycerol conversion 100 99 96 91 89 84
Acrolein yield 34.0 43.3 40.6 36.0 33.8 35.4
Acrolein selectivity 34 44 42 39 38 42
Hydroxypropanone yield 8.5 13.8 13.7 14.6 15.1 14.3
Acetaldehyde yield 5.6 4.2 3.4 2.9 2.9 3.4
Propanaldehyde yield 12.4 9.7 7.2 6.5 6.7 7.8
Acetone yield 0.0 0.0 0.3 0.0 0.0 0.0
Phenol yield 1.9 0.4 0.4 0.3 0.3 0.3
Material balance 96.5 99.0 98.4 99.3 98.6 99.5
(mass collected/mass introduced)
Quantified product 62.5 72.8 70.0 69.0 69.6 77.2 balance
(products assayed/gly- cerol introduced) This type of catalyst deactivates less quickly than that of Example 1. Examples 3 and 3a'
10 ml of 40% Nafion/Siθ2 composite prepared according to the procedure described in the publication by Hόlderich and Harmer, Green Chemistry 2000, 2, pp. 7-14, representing a mass of 4.77 g, were loaded into the reactor. This type of catalyst has an acidity Ho of about - 12 according to a commercial notice.
The results are given in Table 3 below.
Table 3
Cumulative glycerol 8 16 24 33 41 50 58 67 introduced (g)
Glycerol conversion 100 100 100 97 92 87 80 73
Acrolein yield 63.6 76.0 72.5 68.3 64.0 58.6 52.6 47.2
Acrolein selectivity 64 76 73 70 69 68 66 65
Hydroxypropanone 5.0 9.5 9.3 9.4 9.0 8.0 7.0 6.4 yield
Acetaldehyde yield 1.3 0.5 0.4 0.3 0.2 0.2 0.2 0.1
Propanaldehyde yield 5.1 2.1 1.4 1.1 0.9 0.7 0.6 0.5
Acetone yield 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
Phenol yield 2.5 1.5 1.6 0.0 1.2 1.1 1.0 0.9
Material balance 97.5 98.8 98.8 99.5 99.0 99.5 99.0 99.0
(mass collected/mass introduced)
Quantified product 77.5 89.7 85.5 81.7 83.3 82.1 81.6 82.0 balance (products assayed/glycerol introduced)
This same catalyst was tested, this time with a reaction temperature of 28O0C instead of 3000C. The results are given in Table 3a below. Table 3a
Cumulative 8 16 24 32 40 56 72 80 glycerol introduced (g)
Glycerol 100 100 100 100 97 93 85 80 conversion
Acrolein yield 62 .3 73 .2 72 .5 70 .8 67.3 62.1 55.0 50.4
Acrolein 62 7 3 72 7 1 69 67 65 63 selectivity
Hydroxypropanone 4. 4 8. 8 9. 5 9. 5 9.5 9.2 9.1 8.3 yield
Acetaldehyde 1. 0 0. 4 0. 3 0. 3 0.2 0.2 0.1 0.1 yield
Propanaldehyde 4. 9 2. 2 1. 7 1. 4 1.0 0.9 0.6 0.6 yield
Acetone yield 0. 0 0. 0 0. 0 0. 0 0.0 0.0 0.0 0.0
Phenol yield 2. 5 1. 7 1. 4 1. 2 1.0 1.0 1.0 0.9
Material balance 97 .2 98 .5 98 .7 98 .6 99.0 98.5 98.5 99.2
(mass collected/mass introduced)
Quantified 75 .2 86 .4 85 .4 83 .1 81.6 80.3 80.8 80.0 product balance
(products assayed/glycerol introduced)
This type of catalyst is active and selective and deactivates less quickly than that of Example 1.
Example 4 A phosphate zirconia (91.5% ZrO2 - 8.5% PO4) from Daiichi Kigenso (Ref. H1418) is used. This catalyst has a loss on ignition at 10000C of 4.23% and a specific surface area of 128.7 m2/g. 10 ml of this catalyst, representing a mass of 12.7g, were loaded into the reactor. The results are given in Table 4 below.
Table 4
Cumulative 8 16 24 32 41 49 57 65 glycerol introduced (g)
Glycerol 100 100 100 100 99 97 96 95 conversion
Acrolein yield 16.6 40.4 46.7 45.2 46.2 46.5 45.3 46.9
Acrolein 17 40 47 45 46 48 47 49 selectivity
Hydroxypropanone 0.0 9.4 13.0 13.5 14.7 15.0 15.2 16.7 yield
Acetaldehyde 6.9 6.3 5.0 4.7 4.3 4.0 3.5 3.7 yield
Propanaldehyde 15.0 14.2 11.7 11.1 9.8 9.0 8.0 8.2 yield
Acetone yield 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Phenol yield 4.2 4.4 2.9 2.5 1.8 2.2 1.7 1.8
Material balance 95.0 98.2 95.2 97.7 97.6 98.4 97.9 97.9
(mass collected/mass introduced)
Quantified 42.7 74.6 79.3 77.0 77.4 79.4 77.3 82.3 product balance
(products assayed/glycerol introduced) Example 5
A tungsten zirconia (90.7% ZrO2 - 9.3% WO3) from Daiichi Kigenso (supplier reference H1417) is used. This catalyst has a loss on ignition at 1000°C of 1.75% and a specific surface area of 47.4 m2/g (BET, 1 point). The acidity H0 is equal to -14.5 according to the table on page 71 of the publication on acid-base catalysis (C. Marcilly) Vol. 1, published by Technip (ISBN No. 2-7108-0841-2).
10 ml of catalyst, representing a mass of 17 g, were loaded into the reactor. The results are given in Table 5 below.
Table 5
Cumulative glycerol 8 16 25 32 39 48 61 78 introduced (g)
Glycerol conversion 100 100 100 100 100 100 100 100
Acrolein yield 46.9 69.2 71.6 72.1 71.4 72.7 73.5 73.1
Acrolein selectivity 47 69 72 72 71 73 74 73
Hydroxypropanone yield 0.3 4.5 7.4 8.6 6.7 9.7 10.8 12.9
Acetaldehyde yield 4.7 4.4 4.0 3.8 3.7 3.4 2.7 1.7
Propanaldehyde yield 8.7 7.4 7.0 6.7 6.6 5.4 5.6 3.6
Acetone yield 2.3 3.0 2.5 2.4 2.4 2.3 1.7 1.1
Phenol yield 2.1 1.5 1.3 1.2 0.1 1.0 0.2 0.0
Material balance 96.8 98.2 98.4 99.0 97.0 99.0 99.0 98.6
(mass collected/mass introduced)
Quantified product 65.0 89.9 93.9 94.7 90.9 94.5 94.6 92.3 balance (products assayed/glycerol introduced)
This catalyst maintains a high yield largely superior to the performance of the catalyst of Example 1. Example 6
10 ml of sulfate zirconia from Daiichi Kigenso, as described in Example 2 (H1416), representing a mass of 16.5 g, were loaded into the reactor. The reaction is performed this time in the presence of molecular oxygen, at a flow rate of 0.8 1/h. The results are given in Table 6 below.
Table 6
Cumulative glycerol introduced (g) 9 18 27
Glycerol conversion 100 100 100
Acrolein yield 42.3 53.8 52.5
Acrolein selectivity 42 54 52
Hydroxypropanone yield 0.0 0.0 0.0
Acetaldehyde yield 10.3 9.1 8.2
Propanaldehyde yield 4.9 3.7 4.0
Acetone yield 0.0 0.4 0.0
Phenol yield 0.0 0.0 0.3
Material balance 96.5 98.0 98.0
(mass collected/mass introduced)
Quantified product balance 57.5 66.9 65.0
(products assayed/glycerol introduced)
The addition of molecular oxygen makes it possible to achieve higher yields by limiting the formation of byproducts.

Claims

1. Process for manufacturing acrolein by gas-phase dehydration of glycerol in the presence of a strongly acidic solid catalyst with a Hammett acidity H0 of between -9 and -18.
2. Process according to Claim 1, characterized in that the catalyst has a Hammett acidity Ho of between -10 and - 16.
3. Process according to Claim 1 or 2 , characterized in that the catalyst is chosen from natural or synthetic siliceous materials or acidic zeolites; mineral supports, such as oxides, coated with mono-, di-, tri- or polyacidic inorganic acids; oxides or mixed oxides, or alternatively heteropolyacids .
4. Process according to one of Claims 1 to 3, characterized in that the catalyst is chosen from zeolites, Nafion® composites (based on sulfonic acid of fluorinated polymers), chlorinated aluminas, phospho- tungstic and/or silicotungstic acids and acid salts, and various solids of metal oxide type such as tantalum oxide Ta2O5, niobium oxide Nb2O5, alumina Al2O3, titanium oxide TiO2, zirconia ZrO2, tin oxide SnO2, silica SiO2 or silico- aluminate SiO2-Al2O3, impregnated with acidic functions such as borate BO3, sulfate SO4, tungstate WO3, phosphate PO4, silicate SiO2 or molybdate MoO3.
5. Process according to one of Claims 1 to 4, characterized in that the catalyst is chosen from sulfate zirconias, phosphate zirconias, tungsten zirconias, siliceous zirconias, and sulfate titanium or tin oxides.
6. Process according to one of Claims 1 to 5, characterized in that the glycerol is in the form of an aqueous solution with a concentration of between 10% and 50% and preferably between 15% and 30% by weight in the reactor.
7. Process according to one of Claims 1 to 6, characterized in that the reaction is performed in the presence of molecular oxygen, in an amount chosen so as to be outside the flammability range at any point in the plant.
8. Process according to Claim 7, characterized in that the molecular oxygen is in the form of air or in the form of a mixture of gases containing molecular oxygen.
9. Process according to one of Claims 1 to 8, characterized in that the reaction is performed in a fixed-bed reactor, a fluidized-bed reactor, a circulating fluidized-bed reactor or in a plate heat exchanger.
PCT/EP2006/000736 2005-02-15 2006-01-06 Process for dehydrating glycerol to acrolein WO2006087084A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2007555482A JP5107060B2 (en) 2005-02-15 2006-01-06 Method for producing acrolein by dehydrating glycerol
CN2006800049026A CN101119956B (en) 2005-02-15 2006-01-06 Process for dehydrating glycerol to acrolein
BRPI0607726-9A BRPI0607726B1 (en) 2005-02-15 2006-01-06 Process for making acrolein
KR1020077018652A KR101249632B1 (en) 2005-02-15 2006-01-06 Process for dehydrating glycerol to acrolein
DE602006001638T DE602006001638D1 (en) 2005-02-15 2006-01-06 PROCESS FOR DEHYDRATION OF GLYCEROL TO ACROLEINE
US11/814,830 US7655818B2 (en) 2005-02-15 2006-01-06 Process for dehydrating glycerol to acrolein
PL06706456T PL1848681T3 (en) 2005-02-15 2006-01-06 Process for dehydrating glycerol to acrolein
EP06706456A EP1848681B1 (en) 2005-02-15 2006-01-06 Process for dehydrating glycerol to acrolein

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR05/01500 2005-02-15
FR0501500A FR2882053B1 (en) 2005-02-15 2005-02-15 METHOD FOR DEHYDRATING GLYCEROL IN ACROLENE
US68931805P 2005-06-10 2005-06-10
US60/689,318 2005-06-10

Publications (2)

Publication Number Publication Date
WO2006087084A2 true WO2006087084A2 (en) 2006-08-24
WO2006087084A3 WO2006087084A3 (en) 2007-01-18

Family

ID=35169625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/000736 WO2006087084A2 (en) 2005-02-15 2006-01-06 Process for dehydrating glycerol to acrolein

Country Status (13)

Country Link
US (1) US7655818B2 (en)
EP (1) EP1848681B1 (en)
JP (1) JP5107060B2 (en)
KR (1) KR101249632B1 (en)
CN (1) CN101119956B (en)
AT (1) ATE399751T1 (en)
BR (1) BRPI0607726B1 (en)
DE (1) DE602006001638D1 (en)
ES (1) ES2308717T3 (en)
FR (1) FR2882053B1 (en)
PL (1) PL1848681T3 (en)
PT (1) PT1848681E (en)
WO (1) WO2006087084A2 (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058221A1 (en) * 2005-11-15 2007-05-24 Nippon Shokubai Co., Ltd. Process for dehydration of polyhydric alcohols
EP1860090A1 (en) * 2006-03-24 2007-11-28 Instytut Chemii Przemyslowe im. Prof. Ignacego Moscickiego Method for processing the glycerol phase from transestrification of fatty acid triglycerols
JP2008088149A (en) * 2006-01-04 2008-04-17 Nippon Shokubai Co Ltd Catalyst for production of acrolein and method for producing acrolein by using the same
WO2008053646A1 (en) 2006-11-02 2008-05-08 Nippon Shokubai Co., Ltd. Acrylic acid production process, acrylic acid production apparatus, and composition for production of acrylic acid
WO2008052993A2 (en) * 2006-11-01 2008-05-08 Bioecon International Holding N.V. Process for production of acrolein and other oxygenated compounds from glycerol in a transported bed reactor
WO2008066079A1 (en) 2006-12-01 2008-06-05 Nippon Shokubai Co., Ltd. Method for producing acrylic acid
WO2008066082A1 (en) 2006-12-01 2008-06-05 Nippon Shokubai Co., Ltd. Method for producing acrolein and glycerin-containing composition
JP2008162908A (en) * 2006-12-27 2008-07-17 Nippon Shokubai Co Ltd Method for producing acrolein from glycerol
WO2008089301A2 (en) * 2007-01-17 2008-07-24 Curators Of The University Of Missouri Gas phase reaction process for polyhydric compounds
DE102007004351A1 (en) 2007-01-29 2008-07-31 Evonik Degussa Gmbh Solid catalyst for production of acrolein by dehydration of glycerol, contains a tungsten compound and a promoter selected from various metal compounds and-or montmorillonite or acid zeolite
DE102007004350A1 (en) 2007-01-29 2008-07-31 Evonik Degussa Gmbh Regenerating a tungsten catalyst, especially for converting glycerol to acrolein, comprises exposing the catalyst to an oxidizing or reducing atmosphere
JP2008280349A (en) * 2008-06-02 2008-11-20 Nippon Shokubai Co Ltd Method for producing acrylic acid, apparatus for producing acrylic acid, and composition for producing acrylic acid
WO2009028371A1 (en) * 2007-08-29 2009-03-05 Showa Denko K.K. Acrolein production method and acrylic acid production method
JP2009057288A (en) * 2007-08-29 2009-03-19 Showa Denko Kk Method for producing acrolein and method for producing acrylic acid
JP2009057289A (en) * 2007-08-29 2009-03-19 Showa Denko Kk Method for producing acrolein and method for producing acrylic acid
JP2009057287A (en) * 2007-08-29 2009-03-19 Showa Denko Kk Method for producing acrolein and method for producing acrylic acid
WO2009136537A1 (en) * 2008-04-16 2009-11-12 日本化薬株式会社 Catalyst for producing acrolein and acrylic acid through glycerin dehydration and production method of same
DE102008027350A1 (en) 2008-06-07 2009-12-17 Wolfgang Prof. Dr. Hölderich Preparing acrolein and acrylic acid, comprises dehydration of glycerin with or without oxygen and water in a catalyst bed filled with a tungsten-containing titanium dioxide carrier catalyst
EP2159309A1 (en) 2008-08-25 2010-03-03 Arkema France Method for manufacturing carbon fibres
DE102008038273A1 (en) 2008-08-18 2010-03-04 Evonik Stockhausen Gmbh Producing acrylic acid, useful as superabsorbent, comprises dehydrating glycerol in presence of dehydration catalysts to obtain gaseous acrolein phase and oxidizing acrolein in presence of oxidation catalyst to gaseous acrylic acid phase
EP2179981A1 (en) 2008-10-24 2010-04-28 Arkema France Process for manufacturing acrolein from glycerol
WO2010047405A1 (en) 2008-10-24 2010-04-29 日本化薬株式会社 Catalyst for production of acrolein and acrylic acid by means of dehydration reaction of glycerin, and process for producing same
CN101070276B (en) * 2007-05-31 2010-05-19 上海华谊丙烯酸有限公司 Process for preparing acrolein by glycerin dewatering
FR2938535A1 (en) * 2008-11-20 2010-05-21 Arkema France PROCESS FOR PRODUCING METHYLMERCAPTOPROPIONALDEHYDE AND METHIONINE FROM RENEWABLE MATERIALS
WO2010074177A1 (en) 2008-12-26 2010-07-01 株式会社日本触媒 Method for producing acrylic acid
WO2010090324A1 (en) 2009-02-06 2010-08-12 株式会社日本触媒 Polyacrylic acid (salt) type water-absorbent resin and process for production of same
CN101829593A (en) * 2010-04-13 2010-09-15 中国地质大学(武汉) Preparation method of titanium dioxide persulfate-loaded mordenite solid superacid catalyst
WO2010131604A1 (en) 2009-05-15 2010-11-18 株式会社日本触媒 Method for producing (meth)acrylic acid
WO2010131589A1 (en) 2009-05-15 2010-11-18 株式会社日本触媒 Method for producing (meth)acrylic acid
WO2010131603A1 (en) 2009-05-15 2010-11-18 株式会社日本触媒 Method for producing (meth)acrylic acid and crystallization system
WO2010136697A1 (en) 2009-05-28 2010-12-02 Arkema France Pressure-sensitive adhesive polymer containing tetrahydrofurfuryl methacrylate
DE102009027420A1 (en) 2009-07-02 2011-01-05 Evonik Degussa Gmbh Preparation of acrolein or aqueous acrolein solution comprises dehydration of a cyclic acetal of glycerol in the presence of a solid catalyst comprising acidic oxides or mixed oxides, natural or synthetic silicate materials
WO2011073552A1 (en) 2009-12-14 2011-06-23 Arkema France Method for manufacturing acrolein and/or acrylic acid from glycerol
JP2011518111A (en) * 2008-04-16 2011-06-23 アルケマ フランス Method for producing acrolein from glycerin
WO2011076787A1 (en) 2009-12-23 2011-06-30 Biofuel-Solution Ab Method for hydrogenating 1,2-unsaturated carbonylic compounds
WO2011080447A1 (en) 2009-12-14 2011-07-07 Arkema France Process for manufacturing acrolein and/or acrylic acid from glycerol
JP2011522015A (en) * 2008-06-03 2011-07-28 アルケマ フランス Method for producing acrolein by dehydrating glycerol
WO2011157959A1 (en) 2010-06-17 2011-12-22 Adisseo France S.A.S. Process for preparing acrolein from glycerol or glycerin
WO2012005348A1 (en) 2010-07-09 2012-01-12 日本化薬株式会社 Novel glycerol dehydration catalyst and production method therefor
WO2012010923A1 (en) 2010-07-19 2012-01-26 Arkema France Process for manufacturing acrolein from glycerol
US8148582B2 (en) 2007-03-19 2012-04-03 Arkema France Glycerol vaporization method
EP2468709A1 (en) 2010-11-30 2012-06-27 BioFuel-Solution AB A process for producing acrolein
WO2012102411A2 (en) 2011-01-28 2012-08-02 日本化薬株式会社 Catalyst for selectively reducing saturated aldehyde, and production method therefor
WO2012101471A1 (en) 2011-01-28 2012-08-02 Arkema France Improved process for manufacturing acrolein/acrylic acid
WO2013008279A1 (en) 2011-07-14 2013-01-17 Nippon Kayaku Kabushiki Kaisha Process for preparing catalyst used in production of acrolein and/or acrylic acid and process for preparing acrolein and/or acrylic acid by dehydration reaction of glycerin
WO2013018915A2 (en) 2011-07-29 2013-02-07 Arkema France Improved process of dehydration reactions
WO2013018752A2 (en) 2011-07-29 2013-02-07 日本化薬株式会社 Catalyst for manufacture of acrolein and acrylic acid by means of dehydration of glycerin, and manufacturing method for same
US8507736B2 (en) 2007-05-18 2013-08-13 Biofuel-Solution I Malmo Ab Gas phase process for monoalcohol production from glycerol
US20130217909A1 (en) * 2010-10-26 2013-08-22 Ecole Centrale De Lille Process for obtaining acrolein by catalytic dehydration of glycerol or glycerin
WO2013156706A1 (en) 2012-04-18 2013-10-24 Arkema France Method for producing acrolein and/or acrylic acid from glycerol
WO2015124856A1 (en) 2014-02-19 2015-08-27 Arkema France Method for the production of bio-sourced acrylic acid
WO2015150666A1 (en) 2014-04-04 2015-10-08 Arkema France Process for direct synthesis of (meth)acrolein from ethers and/or acetals
US9447009B2 (en) 2008-12-16 2016-09-20 Adisseo France S.A.S. Method for preparing acrolein from glycerol or glycerine
CN107812535A (en) * 2016-09-12 2018-03-20 中国科学院青岛生物能源与过程研究所 Anti-coking solid acid catalyst and its preparation and application a kind of reaction suitable for preparing acrolein by dehydrating glycerin
US10294315B2 (en) 2009-09-30 2019-05-21 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-based water absorbent resin and method for producing same
IT201800006967A1 (en) * 2018-07-05 2020-01-05 Solid composition for heterogeneous catalysis and related preparation process

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882052B1 (en) * 2005-02-15 2007-03-23 Arkema Sa PROCESS FOR THE DEHYDRATION OF GLYCEROL IN ACROLEIN
CN100420518C (en) * 2006-09-08 2008-09-24 华东理工大学 Catalyst of solid acid in use for preparing isobutene, and preparation method
US20090054538A1 (en) * 2007-08-24 2009-02-26 Peterson Thomas H Chemical production processes, systems, and catalyst compositions
US7872159B2 (en) * 2007-08-24 2011-01-18 Battelle Memorial Institute Chemical production processes, systems, and catalyst compositions
US7872158B2 (en) 2007-08-24 2011-01-18 Battelle Memorial Institute Chemical production processes, systems, and catalyst compositions
FR2920767B1 (en) * 2007-09-06 2009-12-18 Arkema France REACTIVE GLYCEROL VAPORIZATION PROCESS
US8070836B2 (en) 2007-10-16 2011-12-06 Wayne State University Combined homogeneous and heterogeneous catalytic transesterification process for biodiesel production
FR2925490B1 (en) * 2007-12-20 2009-12-25 Arkema France PROCESS FOR THE SYNTHESIS OF ACROLEIN FROM GLYCEROL
US8975426B2 (en) 2008-05-19 2015-03-10 Wayne State University ZnO nanoparticle catalysts for use in transesterification and esterification reactions and method of making
US8895764B2 (en) 2008-05-19 2014-11-25 Wayne State University ZnO nanoparticle catalysts for use in biodiesel production and method of making
WO2009143159A1 (en) 2008-05-19 2009-11-26 Wayne State University Methods and catalysts for making biodiesel from the transesterification and esterification of unrefined oils
FR2934261B1 (en) * 2008-07-25 2015-04-10 Arkema France PROCESS FOR THE SYNTHESIS OF ESTERS OF ACRYLIC ACID
US8198477B2 (en) * 2008-12-24 2012-06-12 Rohm And Haas Company Process for production of acrolein from glycerol
FR2940801B1 (en) * 2009-01-06 2012-08-17 Arkema France PROCESS FOR THE PRODUCTION OF A METHYL METHACRYLATE DERIVED FROM BIOMASS
DE102009006777A1 (en) 2009-01-30 2010-08-05 Wolfgang F. Prof. Dr. Hölderich Process for the preparation of fatty acid esters and glycerol by transesterification of vegetable and animal fats and oils
IN2012DN02381A (en) * 2009-09-18 2015-08-21 Nippon Kayaku Kk
CA2784618C (en) * 2009-12-18 2015-08-18 Battelle Memorial Institute Multihydric compound dehydration systems, catalyst compositions, and methods
KR101148995B1 (en) 2010-03-09 2012-05-22 아주대학교산학협력단 Method for Preparing Acrolein via Dehydration of Glycerol
FR2975922B1 (en) 2011-06-06 2013-05-31 Arkema France PLATE REACTOR WITH INJECTION IN SITU
FR2977809B1 (en) 2011-07-12 2016-01-08 Arkema France CONTINUOUS CATALYST REGENERATION IN A FLUIDIZED BED REACTOR
KR20140131589A (en) * 2012-03-07 2014-11-13 미리안트 코포레이션 Preparation of alpha, beta-unsaturated carboxylic acids and esters thereof
JP6100972B2 (en) 2013-06-27 2017-03-22 エルジー・ケム・リミテッド Method for producing acrylic acid from glycerol
KR101679717B1 (en) 2013-06-27 2016-11-25 주식회사 엘지화학 A Method for Preparation of Allyl alcohol and the Allyl alcohol Prepared by the Same
CN106977370A (en) 2013-06-27 2017-07-25 Lg化学株式会社 The method for preparing allyl alcohol
CN103638965B (en) * 2013-12-27 2015-12-30 复旦大学 For multi-stage porous ZSM-5 zeolite Catalysts and its preparation method and the application of preparing acrolein by dehydrating glycerin
US10336783B2 (en) 2014-03-11 2019-07-02 Japan Science And Technology Agency Solid catalyst for hydride isomerization reaction in an aqueous medium
WO2015142642A1 (en) * 2014-03-19 2015-09-24 Enersciences Holdings, Llc Methods and apparatus for treating sulfides in produced fluids
US9796648B2 (en) 2014-05-02 2017-10-24 University Of Tennessee Research Foundation Glycerol dehydration methods and products thereof
KR102044428B1 (en) 2015-12-23 2019-12-02 주식회사 엘지화학 Process for preparing acrylic acid from glycerin
CN109304190B (en) * 2017-07-28 2021-06-18 中国石油化工股份有限公司 Catalyst for preparing acrolein from glycerol
US10647928B2 (en) 2017-11-20 2020-05-12 Ecolab Usa Inc. In-line chemical heating for in-situ generation of active chemicals
CN110586066B (en) * 2019-09-26 2022-06-14 中国天辰工程有限公司 Preparation and application of solid base catalyst for synthesizing hydroxyl pivalaldehyde
CN114160119A (en) * 2021-11-15 2022-03-11 浙江工业大学 Dolomite-molybdenum trioxide composite catalyst for preparing acrolein through glycerol dehydration and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR695931A (en) * 1929-06-15 1930-12-23 Schering Kahlbaum Ag Acrolein manufacturing process
FR796553A (en) * 1935-10-21 1936-04-10 Bataafsche Petroleum Process for obtaining valuable carbonyl compounds
US2558520A (en) * 1948-01-29 1951-06-26 Us Ind Chemicals Inc Production of acrolein from glycerol
JPH05293375A (en) 1992-04-17 1993-11-09 Japan Energy Corp Solid super strong acid catalyst and its production
DE4238492C2 (en) * 1992-11-14 1995-06-14 Degussa Process for the preparation of 1,2- and 1,3-propanediol
DE4238493C1 (en) * 1992-11-14 1994-04-21 Degussa Process for the production of acrolein and its use
US5387721A (en) 1993-12-21 1995-02-07 Texaco Inc. Methyl tertiary butyl ether process
JPH09100244A (en) 1995-10-03 1997-04-15 Maruzen Petrochem Co Ltd Production of olefin compound and dehydration reaction catalyst therefor
TW476746B (en) * 1997-07-23 2002-02-21 Shell Int Research Hydrogenolysis of glycerol
DE19848208A1 (en) 1998-10-20 2000-04-27 Deg Engineering Gmbh Reactor for the catalytic conversion of reaction media, especially gaseous reaction media
DE10019381B4 (en) 2000-04-19 2006-05-18 Daun, Klaus-Dieter, Dipl.-Ing. Reactor for the catalytic conversion of reaction media, in particular gaseous reaction media
CN1394839A (en) * 2001-07-05 2003-02-05 嘉年生化产品有限公司 Method for chemically synthesizing lactenin from glycerine
DE10232482A1 (en) 2002-07-17 2004-01-29 Basf Ag Process for the safe operation of a continuous heterogeneously catalyzed gas phase partial oxidation of at least one organic compound
WO2004094357A1 (en) 2003-04-23 2004-11-04 Japan Energy Corporation Method for producing ether using solid acid catalyst
US20050021851A1 (en) 2003-06-09 2005-01-27 Kimmo Hamynen System, apparatus, and method for directional control input browsing in smart phones
JP5006507B2 (en) 2004-01-30 2012-08-22 株式会社日本触媒 Acrylic acid production method
FR2882052B1 (en) * 2005-02-15 2007-03-23 Arkema Sa PROCESS FOR THE DEHYDRATION OF GLYCEROL IN ACROLEIN

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058221A1 (en) * 2005-11-15 2007-05-24 Nippon Shokubai Co., Ltd. Process for dehydration of polyhydric alcohols
JP2008088149A (en) * 2006-01-04 2008-04-17 Nippon Shokubai Co Ltd Catalyst for production of acrolein and method for producing acrolein by using the same
EP1860090A1 (en) * 2006-03-24 2007-11-28 Instytut Chemii Przemyslowe im. Prof. Ignacego Moscickiego Method for processing the glycerol phase from transestrification of fatty acid triglycerols
WO2008052993A3 (en) * 2006-11-01 2008-07-17 Bioecon Int Holding Nv Process for production of acrolein and other oxygenated compounds from glycerol in a transported bed reactor
WO2008052993A2 (en) * 2006-11-01 2008-05-08 Bioecon International Holding N.V. Process for production of acrolein and other oxygenated compounds from glycerol in a transported bed reactor
WO2008053646A1 (en) 2006-11-02 2008-05-08 Nippon Shokubai Co., Ltd. Acrylic acid production process, acrylic acid production apparatus, and composition for production of acrylic acid
EP2100872A4 (en) * 2006-11-02 2010-10-20 Nippon Catalytic Chem Ind Acrylic acid production process, acrylic acid production apparatus, and composition for production of acrylic acid
EP2100872A1 (en) * 2006-11-02 2009-09-16 Nippon Shokubai Co., Ltd. Acrylic acid production process, acrylic acid production apparatus, and composition for production of acrylic acid
US8076509B2 (en) 2006-12-01 2011-12-13 Nippon Shokubai Co., Ltd. Process for producing acrylic acid
US7951978B2 (en) 2006-12-01 2011-05-31 Nippon Shokubai Co., Ltd. Process for producing acrolein and glycerin-containing composition
JPWO2008066079A1 (en) * 2006-12-01 2010-03-04 株式会社日本触媒 Acrylic acid production method
WO2008066079A1 (en) 2006-12-01 2008-06-05 Nippon Shokubai Co., Ltd. Method for producing acrylic acid
WO2008066082A1 (en) 2006-12-01 2008-06-05 Nippon Shokubai Co., Ltd. Method for producing acrolein and glycerin-containing composition
JP2008162908A (en) * 2006-12-27 2008-07-17 Nippon Shokubai Co Ltd Method for producing acrolein from glycerol
WO2008089301A3 (en) * 2007-01-17 2008-10-16 Univ Missouri Gas phase reaction process for polyhydric compounds
WO2008089301A2 (en) * 2007-01-17 2008-07-24 Curators Of The University Of Missouri Gas phase reaction process for polyhydric compounds
US7846861B2 (en) 2007-01-29 2010-12-07 Evonik Degussa Gmbh Process for regenerating a catalyst
DE102007004350A1 (en) 2007-01-29 2008-07-31 Evonik Degussa Gmbh Regenerating a tungsten catalyst, especially for converting glycerol to acrolein, comprises exposing the catalyst to an oxidizing or reducing atmosphere
US7790934B2 (en) 2007-01-29 2010-09-07 Evonik Degussa Gmbh Catalysts and process for dehydrating glycerol
DE102007004351A1 (en) 2007-01-29 2008-07-31 Evonik Degussa Gmbh Solid catalyst for production of acrolein by dehydration of glycerol, contains a tungsten compound and a promoter selected from various metal compounds and-or montmorillonite or acid zeolite
US8148582B2 (en) 2007-03-19 2012-04-03 Arkema France Glycerol vaporization method
US8507736B2 (en) 2007-05-18 2013-08-13 Biofuel-Solution I Malmo Ab Gas phase process for monoalcohol production from glycerol
CN101070276B (en) * 2007-05-31 2010-05-19 上海华谊丙烯酸有限公司 Process for preparing acrolein by glycerin dewatering
WO2009028371A1 (en) * 2007-08-29 2009-03-05 Showa Denko K.K. Acrolein production method and acrylic acid production method
JP2009057287A (en) * 2007-08-29 2009-03-19 Showa Denko Kk Method for producing acrolein and method for producing acrylic acid
JP2009057288A (en) * 2007-08-29 2009-03-19 Showa Denko Kk Method for producing acrolein and method for producing acrylic acid
JP2009057289A (en) * 2007-08-29 2009-03-19 Showa Denko Kk Method for producing acrolein and method for producing acrylic acid
WO2009136537A1 (en) * 2008-04-16 2009-11-12 日本化薬株式会社 Catalyst for producing acrolein and acrylic acid through glycerin dehydration and production method of same
KR101818242B1 (en) 2008-04-16 2018-02-21 아르끄마 프랑스 Process for manufacturing acrolein or acrylic acid from glycerin
JP5297450B2 (en) * 2008-04-16 2013-09-25 日本化薬株式会社 Catalyst for production of acrolein and acrylic acid by dehydration reaction of glycerin and production method thereof
JP2011518111A (en) * 2008-04-16 2011-06-23 アルケマ フランス Method for producing acrolein from glycerin
JP2008280349A (en) * 2008-06-02 2008-11-20 Nippon Shokubai Co Ltd Method for producing acrylic acid, apparatus for producing acrylic acid, and composition for producing acrylic acid
JP2011522015A (en) * 2008-06-03 2011-07-28 アルケマ フランス Method for producing acrolein by dehydrating glycerol
DE102008027350A1 (en) 2008-06-07 2009-12-17 Wolfgang Prof. Dr. Hölderich Preparing acrolein and acrylic acid, comprises dehydration of glycerin with or without oxygen and water in a catalyst bed filled with a tungsten-containing titanium dioxide carrier catalyst
DE102008038273A1 (en) 2008-08-18 2010-03-04 Evonik Stockhausen Gmbh Producing acrylic acid, useful as superabsorbent, comprises dehydrating glycerol in presence of dehydration catalysts to obtain gaseous acrolein phase and oxidizing acrolein in presence of oxidation catalyst to gaseous acrylic acid phase
EP2159309A1 (en) 2008-08-25 2010-03-03 Arkema France Method for manufacturing carbon fibres
EP2179981A1 (en) 2008-10-24 2010-04-28 Arkema France Process for manufacturing acrolein from glycerol
WO2010047405A1 (en) 2008-10-24 2010-04-29 日本化薬株式会社 Catalyst for production of acrolein and acrylic acid by means of dehydration reaction of glycerin, and process for producing same
WO2010046227A1 (en) 2008-10-24 2010-04-29 Arkema France Process for manufacturing acrolein from glycerol
WO2010058129A3 (en) * 2008-11-20 2010-07-15 Arkema France Method for manufacturing methylmercaptopropionaldehyde and methionine using renewable raw materials
FR2938535A1 (en) * 2008-11-20 2010-05-21 Arkema France PROCESS FOR PRODUCING METHYLMERCAPTOPROPIONALDEHYDE AND METHIONINE FROM RENEWABLE MATERIALS
US8735631B2 (en) 2008-11-20 2014-05-27 Arkema France Method for manufacturing methylmercaptopropionaldehyde and methionine using renewable raw materials
WO2010058129A2 (en) * 2008-11-20 2010-05-27 Arkema France Method for manufacturing methylmercaptopropionaldehyde and methionine using renewable raw materials
US9447009B2 (en) 2008-12-16 2016-09-20 Adisseo France S.A.S. Method for preparing acrolein from glycerol or glycerine
US8404887B2 (en) 2008-12-26 2013-03-26 Nippon Shokubai Co., Ltd. Process for producing acrylic acid
WO2010074177A1 (en) 2008-12-26 2010-07-01 株式会社日本触媒 Method for producing acrylic acid
WO2010090324A1 (en) 2009-02-06 2010-08-12 株式会社日本触媒 Polyacrylic acid (salt) type water-absorbent resin and process for production of same
WO2010131603A1 (en) 2009-05-15 2010-11-18 株式会社日本触媒 Method for producing (meth)acrylic acid and crystallization system
US8592627B2 (en) 2009-05-15 2013-11-26 Nippon Shokubai Co., Ltd. Process for producing (meth)acrylic acid and crystallization system
US8586787B2 (en) 2009-05-15 2013-11-19 Nippon Shokubai Co., Ltd. Process for producing (meth)acrylic acid
US8637701B2 (en) 2009-05-15 2014-01-28 Nippon Shokubai Co., Ltd. Method for producing (meth) acrylic acid
WO2010131589A1 (en) 2009-05-15 2010-11-18 株式会社日本触媒 Method for producing (meth)acrylic acid
WO2010131604A1 (en) 2009-05-15 2010-11-18 株式会社日本触媒 Method for producing (meth)acrylic acid
WO2010136697A1 (en) 2009-05-28 2010-12-02 Arkema France Pressure-sensitive adhesive polymer containing tetrahydrofurfuryl methacrylate
DE102009027420A1 (en) 2009-07-02 2011-01-05 Evonik Degussa Gmbh Preparation of acrolein or aqueous acrolein solution comprises dehydration of a cyclic acetal of glycerol in the presence of a solid catalyst comprising acidic oxides or mixed oxides, natural or synthetic silicate materials
US10294315B2 (en) 2009-09-30 2019-05-21 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-based water absorbent resin and method for producing same
WO2011080447A1 (en) 2009-12-14 2011-07-07 Arkema France Process for manufacturing acrolein and/or acrylic acid from glycerol
WO2011073552A1 (en) 2009-12-14 2011-06-23 Arkema France Method for manufacturing acrolein and/or acrylic acid from glycerol
WO2011076787A1 (en) 2009-12-23 2011-06-30 Biofuel-Solution Ab Method for hydrogenating 1,2-unsaturated carbonylic compounds
CN101829593A (en) * 2010-04-13 2010-09-15 中国地质大学(武汉) Preparation method of titanium dioxide persulfate-loaded mordenite solid superacid catalyst
US9079841B2 (en) 2010-06-17 2015-07-14 Adisseo France S.A.S. Process for preparing acrolein from glycerol or glycerin
WO2011157959A1 (en) 2010-06-17 2011-12-22 Adisseo France S.A.S. Process for preparing acrolein from glycerol or glycerin
WO2012005348A1 (en) 2010-07-09 2012-01-12 日本化薬株式会社 Novel glycerol dehydration catalyst and production method therefor
WO2012010923A1 (en) 2010-07-19 2012-01-26 Arkema France Process for manufacturing acrolein from glycerol
US9315440B2 (en) * 2010-10-26 2016-04-19 Adisseo France S.A.S. Process for obtaining acrolein by catalytic dehydration of glycerol or glycerin
US20130217909A1 (en) * 2010-10-26 2013-08-22 Ecole Centrale De Lille Process for obtaining acrolein by catalytic dehydration of glycerol or glycerin
EP2468709A1 (en) 2010-11-30 2012-06-27 BioFuel-Solution AB A process for producing acrolein
WO2012101471A1 (en) 2011-01-28 2012-08-02 Arkema France Improved process for manufacturing acrolein/acrylic acid
WO2012102411A2 (en) 2011-01-28 2012-08-02 日本化薬株式会社 Catalyst for selectively reducing saturated aldehyde, and production method therefor
US9296676B2 (en) 2011-01-28 2016-03-29 Arkema France Process for manufacturing acrolein/acrylic acid
WO2012101526A1 (en) 2011-01-28 2012-08-02 Arkema France Improved process for manufacturing acrolein/acrylic acid
WO2013008279A1 (en) 2011-07-14 2013-01-17 Nippon Kayaku Kabushiki Kaisha Process for preparing catalyst used in production of acrolein and/or acrylic acid and process for preparing acrolein and/or acrylic acid by dehydration reaction of glycerin
WO2013018915A2 (en) 2011-07-29 2013-02-07 Arkema France Improved process of dehydration reactions
WO2013017942A2 (en) 2011-07-29 2013-02-07 Arkema France Improved process of dehydration reactions
US9914699B2 (en) 2011-07-29 2018-03-13 Arkema France Process of dehydration reactions
WO2013018752A2 (en) 2011-07-29 2013-02-07 日本化薬株式会社 Catalyst for manufacture of acrolein and acrylic acid by means of dehydration of glycerin, and manufacturing method for same
WO2013156706A1 (en) 2012-04-18 2013-10-24 Arkema France Method for producing acrolein and/or acrylic acid from glycerol
US9527791B2 (en) 2012-04-18 2016-12-27 Arkema France Method for producing acrolein and/or acrylic acid from glycerol
US10407371B2 (en) 2012-04-18 2019-09-10 Arkema France Method for producing acrolein and/or acrylic acid from glycerol
WO2015124856A1 (en) 2014-02-19 2015-08-27 Arkema France Method for the production of bio-sourced acrylic acid
WO2015150666A1 (en) 2014-04-04 2015-10-08 Arkema France Process for direct synthesis of (meth)acrolein from ethers and/or acetals
CN107812535A (en) * 2016-09-12 2018-03-20 中国科学院青岛生物能源与过程研究所 Anti-coking solid acid catalyst and its preparation and application a kind of reaction suitable for preparing acrolein by dehydrating glycerin
IT201800006967A1 (en) * 2018-07-05 2020-01-05 Solid composition for heterogeneous catalysis and related preparation process

Also Published As

Publication number Publication date
ATE399751T1 (en) 2008-07-15
KR101249632B1 (en) 2013-04-02
BRPI0607726A2 (en) 2009-10-06
PT1848681E (en) 2008-09-09
BRPI0607726B1 (en) 2015-06-09
EP1848681A2 (en) 2007-10-31
FR2882053B1 (en) 2007-03-23
EP1848681B1 (en) 2008-07-02
ES2308717T3 (en) 2008-12-01
US20080214880A1 (en) 2008-09-04
DE602006001638D1 (en) 2008-08-14
WO2006087084A3 (en) 2007-01-18
FR2882053A1 (en) 2006-08-18
JP2008530151A (en) 2008-08-07
KR20070104413A (en) 2007-10-25
CN101119956B (en) 2012-02-15
CN101119956A (en) 2008-02-06
PL1848681T3 (en) 2009-03-31
JP5107060B2 (en) 2012-12-26
US7655818B2 (en) 2010-02-02

Similar Documents

Publication Publication Date Title
EP1848681B1 (en) Process for dehydrating glycerol to acrolein
EP1853541B1 (en) Process for dehydrating glycerol to acrolein
RU2399609C2 (en) Acrolein synthesis method
RU2397156C2 (en) Method of producing acrylic acid
US8324432B2 (en) Method for producing acrolein by means of dehydration of glycerol
BRPI0910629B1 (en) PROCESS FOR PREPARING ACROLEIN, PROCESS FOR PREPARING ACRYLIC ACID FROM GLYCEROL, AND USING CATALYST
JP2012506398A (en) Method for producing acrolein from glycerol
TWI471300B (en) Process for the manufacture of acrolein and/or acrylic acid from glycerol
US9796648B2 (en) Glycerol dehydration methods and products thereof
WO2013008279A1 (en) Process for preparing catalyst used in production of acrolein and/or acrylic acid and process for preparing acrolein and/or acrylic acid by dehydration reaction of glycerin
US9527791B2 (en) Method for producing acrolein and/or acrylic acid from glycerol
Ishida i, United States Patent (10) Patent No.: US 7.655. 818 B2
US007396962B Dubois et al.
GB2398749A (en) Catalyst and process for the production of lower fatty acid esters

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006706456

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5631/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11814830

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680004902.6

Country of ref document: CN

Ref document number: 1020077018652

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007555482

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2006706456

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2006706456

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0607726

Country of ref document: BR

Kind code of ref document: A2