WO2006085482A1 - Self-replication factor and amplification method of hematopoietic stem cell - Google Patents

Self-replication factor and amplification method of hematopoietic stem cell Download PDF

Info

Publication number
WO2006085482A1
WO2006085482A1 PCT/JP2006/301838 JP2006301838W WO2006085482A1 WO 2006085482 A1 WO2006085482 A1 WO 2006085482A1 JP 2006301838 W JP2006301838 W JP 2006301838W WO 2006085482 A1 WO2006085482 A1 WO 2006085482A1
Authority
WO
WIPO (PCT)
Prior art keywords
hematopoietic stem
stem cells
self
factor
seq
Prior art date
Application number
PCT/JP2006/301838
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Todokoro
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Priority to JP2007502582A priority Critical patent/JPWO2006085482A1/en
Publication of WO2006085482A1 publication Critical patent/WO2006085482A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere

Definitions

  • the present invention relates to a self-replicating factor necessary for amplification of mammalian hematopoietic stem cells, and a technique for in vitro amplification of hematopoietic stem cells using this factor.
  • Bone marrow transplantation is the most effective way to treat refractory blood diseases such as various leukemias and aplastic anemia.
  • an HLA-compatible donor must be selected.
  • the transplantation treatment for adult patients requires the collection of large numbers of bone marrow cells, and there are significant risks associated with donors. Therefore, there are even cases where the consent of the donor cannot be obtained.
  • Peripheral blood stem cells can be used even if they have donor strength.
  • G-CSF is administered in large quantities to increase the number of stem cells. This is also a side effect of G-CSF for donors. There is a risk associated with apheresis.
  • Umbilical cord blood can also be used Forced blood cell recovery delay and the number of hematopoietic stem cells in umbilical cord blood are inadequate and are applicable for transplantation in children, but adults often have engraftment failure. It is difficult to apply. As described above, hematopoietic stem cells present in bone marrow and umbilical cord blood are useful for transplantation therapy and regenerative medicine, but cannot be applied immediately due to the limited number of hematopoietic stem cells and rejection.
  • Non-patent Document 3 Temporary extracorporeal amplification methods in the presence of these hematopoietic site force-ins are reportedly limited in force amplification and are not at a level applicable to medical treatment.
  • SCF, FL and TPO were added in the presence of Hess-5 mouse stromal cells separated by membranes, and cord blood CD34 positive In some cases, sex cells were cultured for 5 days and successfully amplified 10 times (Non-patent Document 4).
  • mice cells are co-cultured in the presence of serum, and there is a possibility of viral infection, so it cannot be applied to clinical practice.
  • Neither of these methods is an amplification method of hematopoietic stem cells suitable for transplantation treatment.
  • the amplification efficiency is insufficient.
  • this is an amplification method in which a small number of hematopoietic stem cells coexist in a large number of differentiated blood cells, not only amplifying hematopoietic stem cells, which is inefficient and not suitable for practical use.
  • ushi serum was added to the medium, and there was a risk of infectious diseases including BSE, which had a safety problem.
  • Non-patent Document 6 Succeeded in purifying Wnt3a as a soluble protein and reported that hematopoietic stem cells could be amplified about 6 times with Wnt3a alone (Non-patent Document 6).
  • Wnt is expressed in hematopoietic stem cells themselves, and there is a contradiction in the function of self-replicating factors.
  • Wnt3a is not expressed in the bone marrow, and the Wnt member mainly expressed is also different from the results of the present inventors (Japanese Patent Application 2003-41366 2).
  • amplification is far from practical use, and since it is not a serum-free medium, many differentiated cells are produced, which is problematic for practical use.
  • the self-replicating factor F1 that amplifies hematopoietic stem cells was identified.
  • This membrane protein itself is known (Patent Document 2), suggesting that this protein may have hematopoietic regulatory activity! (Patent Document 3).
  • Patent Document 1 Republished 03/018805 (WO03 / 018805)
  • Patent Document 2 W098 / 11219
  • Patent Document 3 Special Table 2002-513280 (WO98 / 30696)
  • Non-patent literature l Conneally et al, Pro. Natl. Acad. Sci. 94, 9836-9841, 1997
  • Non-patent literature 2 Piacibello et al., Blood, 93, 3736-3749, 1999
  • Non-Patent Document 3 Ueda et al., J. Clin. Iinvest. 105, 1013-1021, 2000
  • Non-Patent Document 4 Kawada et al., Exp. HematoL, 27, 904-915, 1999
  • Non-Patent Document 5 Nature 423, 409-414, 2003
  • Non-Patent Document 6 Nature 423, 448-452, 2003
  • Non-Patent Document 7 Ueno et al., Nat. Immunol. 4, 457-463, 2003
  • Non-Patent Document 8 Tulin et al., J. Biol. Chem. 276, 27519-27526, 2001
  • hematopoietic stem cells can be cultured and amplified outside the body, the patient's own bone marrow (previously! /, Preserved umbilical cord blood at birth), etc. Stem cells can be produced, and safe medical treatment is possible without waiting for an HLA-compatible donor. In other words, autotransplantation is possible, the number of stem cells necessary for transplantation can be secured, and the problem of rejection can be solved. Even if autotransplantation is not possible, if amplification technology can be established, transplantation treatment can be performed simply by collecting a small amount of cells from the donor's bone marrow, eliminating the risk of donors and increasing the number of registered donors. We can expect a dramatic increase in opportunities to work.
  • an object of the present invention is to provide a self-replicating factor necessary for the amplification of mammalian hematopoietic stem cells and a technique for in vitro amplification of hematopoietic stem cells using this factor.
  • the present inventor prepared a cDNA library expressed from a mouse bone marrow stromal cell and mouse 'stromal cell line OP9, which is considered to contain a hematopoietic stem cell self-renewal factor, using pcDNA3.1 vector, and created a cDNA pool.
  • Transfected feeder cells (mouse fibroblasts C 127) were co-cultured with hematopoietic stem cells in a serum-free medium, assayed using the amplification ability as an index, and the candidate gene F1 of a self-replicating factor was isolated. From the analysis of the sequence, the present inventor found that F1 is identical to the 4-transmembrane protein EMP-3 (also known as YMP, HNMP-1).
  • the inventor further succeeded in efficiently amplifying hematopoietic stem cells in vitro without differentiation by co-culturing hematopoietic stem cells and a feeder cell expressing F1 in a serum-free medium, thereby completing the present invention. It came.
  • the present invention is a self-replicating factor that amplifies mammalian hematopoietic stem cells, which is composed of a four-transmembrane membrane protein EMP-3 (also known as YMP, HNMP-1).
  • EMP-3 also known as YMP, HNMP-1
  • the present invention also relates to a protein having the amino acid sequence ability shown in SEQ ID NO: 1 or SEQ ID NO: 3, or one or several amino acids in the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3, deleted, substituted or added. It is a self-replicating factor that amplifies mammalian hematopoietic stem cells with a protein power that has the ability to amplify mammalian hematopoietic stem cells.
  • the present invention relates to any force of a peptide in the extracellular domain of two strengths of the four-transmembrane membrane protein EMP-3, a mixture thereof, or a mixture of these two peptides via a spacer. It is a self-replicating factor that amplifies mammalian hematopoietic stem cells consisting of peptides bound in the above.
  • the present invention also relates to a method for amplifying hematopoietic stem cells, comprising culturing mammalian hematopoietic stem cells in a serum-free medium in the presence of the above self-replicating factor.
  • the present invention is also a hematopoietic stem cell amplified by the above method. Further, the present invention is a medium for culturing hematopoietic stem cells that contains the above self-replicating factor and does not contain serum.
  • the present invention is a feeder cell into which DNA encoding the above protein or peptide is introduced.
  • the present invention further provides a feeder cell into which DNA encoding at least one hematopoietic factor or cell stimulating factor is introduced.
  • the inventor has confirmed that hematopoietic stem cells are amplified by the self-replicating factor F1 of the present invention.
  • all tissue stem cells and somatic cells that react with hematopoietic stem cells and F1 are amplified outside the body, and the amplified hematopoietic stem cells and all tissue stem cells and somatic cells that react with F1 are various. It can be used for transplantation therapy and gene therapy for patients with various intractable blood diseases and various tissue diseases.
  • Hematopoietic stem cells amplified using the self-replicating factor of the present invention and all tissue stem cells and somatic cells that react with F1 can be used for hematopoietic stem cell transplantation in place of conventional bone marrow transplantation or cord blood transplantation.
  • the hematopoietic stem cells obtained by the culture method of the present invention can improve hematopoietic insufficiency due to bone marrow hypoplasia that exhibits anemia such as aplastic anemia.
  • Other diseases for which transplantation of hematopoietic stem cells obtained by the culture method of the present invention is effective include chronic granulomatosis, double immunodeficiency syndrome, agammaglobulinemia, Wiskott-Aldric h syndrome, acquired immune deficiency syndrome (AIDS ) Immunodeficiency syndrome, thalassemia, hemolytic anemia due to enzyme deficiency, congenital anemia such as sickle cell disease, lysosomal storage diseases such as Gaucher's disease and mucopolysaccharidosis, adrenoleukodysplasia, various cancers or tumors, etc. Is mentioned.
  • the self-replicating factor of the present invention can be used for in vitro or hematopoietic stem cell culture / proliferation methods because hematopoietic stem cells can be propagated in vivo or in vitro without being differentiated.
  • Improvement of cytopenia with radiation therapy and chemotherapy drugs such as anticancer drugs, prevention of infection caused by lymphocyte depletion, treatment of bone marrow diseases such as myelodysplasia and myelosuppression, It can be used for the treatment of bone marrow diseases such as leukemia and advanced renal disorder's bone marrow suppression, the treatment of hypocytosis derived from genetic diseases, and the in vitro culture of recombinant stem cells at the time of gene therapy.
  • the self-replicating factor of the present invention can amplify tissue stem cells other than hematopoietic stem cells.
  • the self-replicating factor F1 of the present invention can be applied to regenerative medicine of various tissues.
  • the self-replicating factor of the present invention is a four-transmembrane membrane protein EMP-3 (also known as YMP, HN MP-1).
  • EMP-3 also known as YMP, HN MP-1
  • amino acid sequences such as NP_001416, NP-001415, NP-001414, CAGH09718, CAG33152, AAH09718, and P54852, and nucleotide sequences such as NM_001425, BC009718, and CR456871 are registered as human membrane protein EMP-3.
  • amino acid sequences such as NP_034259, AAH01999, 035912, and base sequences such as NM_010129 and BC001999 are registered. Any of these can be used in the present invention.
  • the origin of the membrane protein EMP-3 is not particularly limited as long as it amplifies all tissue stem cells and somatic cells that react with hematopoietic stem cells and F1 of mammals, particularly humans.
  • the self-replicating factor of the present invention is a protein having an amino acid sequence ability shown in SEQ ID NO: 1 (human) or SEQ ID NO: 3 (mouse). The homology between these amino acids is 92.6%.
  • the self-replicating factor of the present invention is a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3, preferably the amino acid sequence thereof.
  • a protein having an amino acid sequence with a homology of 90% or more and has the activity of amplifying mammalian hematopoietic stem cells. The ability of this protein to amplify hematopoietic stem cells can be measured by the method described later.
  • the mammal may be a mouse or a force L, but is preferably a human.
  • the self-replicating factor of the present invention is a four-transmembrane membrane protein, it is considered that the two extracellular domains also have the ability to amplify hematopoietic stem cells.
  • this extracellular domain has amino acid numbers 22 to 60.
  • Peptides and forces that are peptides with amino acid numbers 117-134 or 121-134 In the case of non-human membrane protein EMP-3, there are two corresponding peptides.
  • either one of the two extracellular domain peptides or a mixture thereof can be used. Furthermore, a peptide in which these two peptides are directly bound, or a peptide in which two peptides are bound through a spacer can be used.
  • the full-length gene of the self-replicating factor F1 of the present invention a variant thereof, a part of the extracellular membrane, a part or the whole of F1, and a fusion protein thereof, bacteria such as E. coli, yeast, animal cells, silkworms, etc. It is preferable to use it artificially produced by insects, cultured cells thereof, or individual mammals!
  • Hematopoietic stem cells are derived from umbilical cord blood, fetal liver, bone marrow, fetal bone marrow, peripheral blood, peripheral blood in which stem cells are mobilized by administration of anticancer agents and peripheral blood of mammals such as humans and mice, and terminal blood It is also possible to collect the cell group isotropic force. From these tissues, hematopoietic stem cells can be obtained by immunologically staining with anti-CD34 antibody, anti-CD133 antibody, anti-CD38 antibody, etc., and separating with a cell sorter according to the staining properties of these antibodies. it can.
  • CD34 antigen is known as a marker for human hematopoietic stem cells, and particularly unclear markers include CD34 positive, CD38 negative, CD133 positive, KDR positive, and cell differentiation antigen negative.
  • nucleated cells or stem cell fractions derived from human or mouse bone marrow without isolating hematopoietic stem cells can be used as they are for culturing.
  • SP side population cell fraction (contains about half of hematopoietic stem cells and other tissue stem cells! / ) May be used.
  • the hematopoietic stem cell or hematopoietic stem cell fraction is cultured in the presence of the self-replicating factor of the present invention.
  • Culture of hematopoietic stem cells can be performed using a suitable culture medium in a petri dish for culture, a flask, or a bioreactor capable of mechanically controlling the medium composition, pH, and the like.
  • Medium is hematopoietic stem It is not particularly limited as long as cell survival and growth are not inhibited.
  • SF-02 medium Sudo Junyaku
  • Opti-MEM medium GEBCO BRL
  • MEM medium GEBCO BRL
  • DMEM medium GIB CO BRL
  • IMDM medium GIBCO BRL
  • PRMI1640 medium GIBCO BRL
  • the medium further includes, for example, insulin, transferrin, ratatopherin, 2-mercaptoethanol, ethanolamine, sodium selenite, HEPES, monothioglycerol, sodium pyruvate, polyethylene glycol, various vitamins, various amino acids, various growths. Factors, various antibiotics, KSR (knockout serum replacement), etc. may be added as necessary.
  • the culture is preferably performed in the absence of serum.
  • the self-replicating factor of the present invention is added as a soluble protein (peptide) at the time of culturing hematopoietic stem cells, or as an insoluble protein (peptide) together with various compounds, or directly fixed to a culture vessel or various Can be covalently or non-covalently immobilized via a carrier such as a protein (peptide), and hematopoietic stem cells (various tissue stem cells and somatic cells that can be amplified with F1 factor) can be amplified outside the body in a serum-free medium. it can.
  • a carrier such as a protein (peptide)
  • hematopoietic stem cells variantous tissue stem cells and somatic cells that can be amplified with F1 factor
  • hematopoietic stem cells in amplifying hematopoietic stem cells, it is possible to improve the efficiency by coexisting at least one hematopoietic factor or cell stimulating factor in addition to using the self-replicating factor of the present invention alone. Hematopoietic stem cells can be amplified outside the body.
  • This hematopoietic factor or cell stimulating factor refers to a factor that gives a hematopoietic cell a stimulus such as self-renewal and proliferation.
  • Wnt wingless / int-l
  • SCF stem cell factor
  • TPO thrombopoietin
  • IL-3 interleukin 3
  • IL-11 interleukin-11
  • GM-CSF granulocyte / ma crophage colony-stimulating factor
  • G-CSF Condylar sphere colony ⁇ [J granulocyte colony-stimulating factor), TGF- ⁇ (transforming growth factor 1 j8), MIP-1a, Flt3 / Flk2-ligand (FL), Flk2 / Flk3 ligand, EPO (erythropoietin ), Notch ligand (Jagged family, Delta family), Tie2 ligand (angiopoetin), BMP4, bFG F, oncostatin M,
  • Wnt such as Wnt2 and Wnt5a, which have already been discovered by the present inventors, seems to function as a factor that suppresses cell differentiation and plays a role in synergistic amplification of proliferation.
  • Patent Application 2003-413662 which is considered to be an effective cell stimulating factor.
  • the self-replicating factor F1 of the present invention may be added to the medium, or the self-replicating factor of the present invention.
  • F1 may be added to the medium and co-cultured with a single feeder cell, or the self-replicating factor F1 of the present invention may be attached or covalently attached to a petri dish or other incubator (device) with or without various carriers.
  • the cells may be cultured or co-cultured with a feeder cell expressing the self-replicating factor F1 of the present invention.
  • a DNA encoding the amino acid sequence of the self-replicating factor F1 of the present invention (eg, SEQ ID NO: 2) is introduced into an expression vector, and this recombinant is transferred to the feeder cell. It can be obtained by feeding. Any vector that can be expressed in animal cells, such as pcDNA3.1, can be used as this vector.
  • the concentration of the hematopoietic factor or cell stimulating factor added to the medium is usually about lng / ml to about lOOng / ml, preferably about 5 ng / ml to about 50 ng / ml, more preferably about 5 ng / ml to about 30 ng. / ml.
  • feeder cells include fibroblasts that can be serum-free cultured (C127, NN3T3, P3, etc.), other cell lines that can be cultured without serum (JCT-19, JCT-12, COS7, etc.), fetuses, etc.
  • the derived cells, mesenchymal stem cells, vascular endothelial cells, preadipocytes and the like may be used, and various human cells and various animal cells and insect cells established may be used.
  • a primary cultured somatic cell derived from a patient such as a human oral epithelial cell
  • a human-derived cell that preferably uses a serum-free human-derived cell.
  • a cell line that can be cultured in a serum-free medium or a primary culture cell collected from a patient in a serum-free medium.
  • Cultivation is usually performed at 33-39 ° C, preferably 37 ° C, 3-6% CO, preferably 5% CO.
  • hematopoietic stem cell markers should be at least CD34 antigen positive, preferably CD34 antigen positive, CD38 antigen negative, CD133 positive, KDR positive, cytoplasmic antigen negative, etc. It can be used as an index of hematopoietic stem cells.
  • a transplantation experiment system using irradiated mice or an in vitro colony formation method may be used.
  • the bone marrow cells and hematopoietic stem cell-containing fractions isolated from other mice were transplanted into the mice (recipients) that had been irradiated and damaged the hematopoietic system.
  • the presence of hematopoietic stem cells having long-term bone marrow reconstitution ability is confirmed using the ratio of recipient-derived and donor-derived hematopoietic cells (chimerism) as an index.
  • the mouth-one formation method when hematopoietic stem cells are cultured in a medium supplemented with various site strengths so that various blood cells can appear, the number of hematopoietic progenitor cells whose orientation has been determined is small or The ability to form a colony that does not contain a single split-line cell and possibly a hematopoietic stem cell that has the potential to form a colony that includes a plurality of split-lineage blood cells.
  • CFU-Emix mixed colonies containing red blood cells
  • the present inventor created one cDNA library expressed from mouse bone marrow stromal cell mRNA and mouse stromal cell line OP9 mRNA in a pcDNA3.1 vector.
  • the pooled cDNA (100, 200, 500, etc.) was transfected into mouse fibroblasts C127 using lipofectamine 2000, and G418 resistant cells were obtained in a 24-well or 96-well plate one week later.
  • the amount of DNA used ranged from 0.02 to lmg under various conditions.
  • SP cells Hoechst333 42-negative Rhodaminel23-negative cells
  • FACS fluorescence-activated cell sorter
  • the medium was a serum-free medium containing only 5% Knockout serum replacement (KSR) and penicillin'streptomycin in DMEM. After 5-7 days, the cells were fixed and the number of beta GAL positive cells was counted. From pools with positive cells higher than knock ground (0-50), 10 One-half (or one-fifth) sized cDNA pools were re-transfected into C127 cells and repeated. When the number of pools became 8 or less, 5 times the number of cDNA inserts were sequenced to search for a novel factor that encodes a full-length membrane protein and searched for potential candidate genes. As a result, an isolated single candidate gene (SEQ ID NO: 4) was obtained, which was designated F1. This F1 is the same gene as mouse EMP-3, whose function is unclear, and encoded an 18 kDa four-transmembrane membrane protein.
  • SEQ ID NO: 4 an isolated single candidate gene
  • the F1 gene (SEQ ID NO: 4) introduced into the pcDNA3.1 vector was transfected into mouse fibroblasts C127 using lipofectamine 2000.
  • mice normal mice (8 to 10 weeks old, 578/6/6) and bone marrow strength were also KSL cells (c- Kit positive Seal positive Lineage negative CD34 negative or weak positive).
  • This C127 transfectant was used as a feeder cell and co-cultured with mouse hematopoietic stem cells in the above-mentioned serum-free medium for 1 to 16 days. After incubation, c-Kit positive Seal positive cells were counted with FACS.
  • CD34-positive CD38 weakly-positive cells from human umbilical cord blood were collected using FACS, and mouse hematopoietic stem cells (KSL cells) were used as mouse F1-expressing feeder cells in the same manner as in Example 2. After co-culture, human CD34 positive cells were observed to be amplified (results omitted).
  • the human homologue of the mouse F1 gene (SEQ ID NO: 4) was isolated from human bone marrow cells by RT-PCR and introduced into pcDNA3.1.
  • the human F1 gene (SEQ ID NO: 2) was 92.6% identical in amino acid sequence with the mouse.
  • Mouse F1 and human F1 were able to amplify mouse and human hematopoietic stem cells across species.
  • F1 is a four-transmembrane membrane protein
  • the ability to amplify hematopoietic stem cells was examined using only the F1 extracellular domain.
  • a peptide of the extracellular domain of human F1 (SEQ ID NO: 1) (the two strengths of amino acid 22-60 peptide and amino acid 117-134 or 121-134 peptide) was prepared and assembled. C127 cells coexist with each peptide mix or fusion peptide of each amino acid (directly bound type and bound with Gly-Gly-Ser-Gly-Gly-Ser (SEQ ID NO: 5) spacer) Below, when added and cultured, hematopoietic stem cell amplification was weak!
  • FIG. 1 is a graph showing the amplification efficiency of hematopoietic stem cells.
  • the horizontal axis indicates the culture time.
  • Mouse hematopoietic stem cells (KSL cells c-Kit + Scal + Lin—CD34 1 ⁇ > W / —cells) were co-cultured with mouse Fl-expressing feeder cells, and C- Kit + Scal + cells amplified by FACS were counted. Amplification efficiency is before culture It is expressed as a ratio of the number of cells later.
  • FIG. 2 is a photograph of mouse hematopoietic stem cells amplified under one F1-expressing feeder cell. The feeder cells were physically removed and photographed.

Abstract

[PROBLEMS] A technique for amplifying a hematopoietic stem cell ex vivo is developed. A self-replication factor that amplifies a hematopoietic stem cell of a mammal, particularly human, and a technique for amplifying a hematopoietic stem cell ex vivo using this factor are provided. [MEANS FOR SOLVING PROBLEMS] The self-replication factor F1 of the invention that amplifies a hematopoietic stem cell comprises a four transmembrane protein EMP-3 (also called YMP, HNMP-1). By co-culturing a hematopoietic stem cell in the presence of F1, part thereof, a mutant thereof or a derivative thereof in a serum-free medium, co-culturing a hematopoietic stem cell with a feeder cell with the addition of F1, part thereof or the like, or co-culturing a hematopoietic stem cell with a feeder cell in which F1 or a derivative thereof is expressed, the hematopoietic stem cell can be amplified ex vivo efficiently and safely without differentiating it. By using the amplified hematopoietic stem cell or a stem cell of each of various tissues which can be amplified with F1, a transplantation therapy and a gene therapy for a patient with a variety of intractable hematologic diseases or a variety of organ diseases can be conducted.

Description

明 細 書  Specification
造血幹細胞の自己複製因子及び増幅方法  Self-renewal factor and amplification method of hematopoietic stem cells
技術分野  Technical field
[0001] この発明は、哺乳動物の造血幹細胞の増幅に必要な自己複製因子、及びこの因 子を用いた造血幹細胞の体外での増幅技術に関する。  The present invention relates to a self-replicating factor necessary for amplification of mammalian hematopoietic stem cells, and a technique for in vitro amplification of hematopoietic stem cells using this factor.
背景技術  Background art
[0002] 様々な白血病や再生不良性貧血など難治性血液疾患の治療には、骨髄移植が最 も有効である力 それには先ず HLA適合のドナーを搜さなければならない。運良く見 つ力つても、成人患者の移植治療には大量の骨髄細胞を採取しなければならずドナ 一にも大変なリスクが伴う。従って、ドナーの承諾を得られないケースさえある。ドナー 力もの末梢血幹細胞を用いることも可能であれ力 この場合には G-CSFを大量投与 し幹細胞数を増加させる処置が施される力 これもドナーに取っては G-CSFによる副 作用ゃァフェレ一シスに伴うリスクがある。また、臍帯血も利用することが可能である 力 血球回復遅延と臍帯血中の造血幹細胞は絶対数不足で、小児への移植治療に は適用されるが成人には生着不全の頻度が高く適用が困難である。このように、骨髄 や臍帯血に存在する造血幹細胞は、移植治療 ·再生医療に有益であれが、造血幹 細胞の数は限られており拒絶反応があるために即座に適用できない。  [0002] Bone marrow transplantation is the most effective way to treat refractory blood diseases such as various leukemias and aplastic anemia. First, an HLA-compatible donor must be selected. Fortunately, the transplantation treatment for adult patients requires the collection of large numbers of bone marrow cells, and there are significant risks associated with donors. Therefore, there are even cases where the consent of the donor cannot be obtained. Peripheral blood stem cells can be used even if they have donor strength. In this case, G-CSF is administered in large quantities to increase the number of stem cells. This is also a side effect of G-CSF for donors. There is a risk associated with apheresis. Umbilical cord blood can also be used Forced blood cell recovery delay and the number of hematopoietic stem cells in umbilical cord blood are inadequate and are applicable for transplantation in children, but adults often have engraftment failure. It is difficult to apply. As described above, hematopoietic stem cells present in bone marrow and umbilical cord blood are useful for transplantation therapy and regenerative medicine, but cannot be applied immediately due to the limited number of hematopoietic stem cells and rejection.
[0003] 従来、造血幹細胞を体外で培養増幅する技術としては、既に知られて!/、る造血因 子やサイト力インを様々に組み合わせて、造血幹細胞を浮遊細胞として培養する方 法が検討されてきた。例えば、 SCF、 FL、 IL3、 IL6、 G-CSFを加えて CD34+CD38—ヒト 造血幹細胞を 1週間培養し 2倍に増やした報告がある(非特許文献 1)。また、 SCF、 F L、 IL6、 TPOを加え臍帯血 CD34陽性細胞を 9週間培養し、 70倍に増幅できたとする 報告がある(非特許文献 2)。更に、 SCF、 FL、 TPO、 IL6と可溶性 IL6レセプターをカロ え、臍帯血 CD34陽性細胞を 1週間培養し 4倍に増やした報告もある (非特許文献 3) 。これら造血系サイト力インの共存下における一時的な体外増幅法は報告されている 力 増幅に限界があり医療へ応用できるレベルではない。また、膜で分離された Hess -5というマウスのストローマ細胞共存下で、 SCF、 FL、 TPOを添カ卩し、臍帯血 CD34陽 性細胞を 5日間培養して、 10倍に増幅に成功した例もある(非特許文献 4)。これは マウスの細胞を血清存在下で共培養させており、ウィルス感染の可能性などがあり臨 床には応用できな 、。これら何れの方法も移植治療に適した造血幹細胞の増幅法で はない。先ず、増幅効率が不十分である。また、造血幹細胞だけを増幅しているので はなく、分化した大多数の血液細胞中に少数の造血幹細胞が共存する増幅法であり 、非効率である上に実用化には適していない。また、ゥシ血清を培地に添加しており 、 BSEを始め感染症の恐れがあり安全性に問題があった。 [0003] Conventionally, as a technique for culturing and amplifying hematopoietic stem cells in vitro, a method for culturing hematopoietic stem cells as floating cells using various combinations of hematopoietic factors and cytodynamic force is studied. It has been. For example, there has been a report that CD34 + CD38-human hematopoietic stem cells were cultured for 1 week and added twice by adding SCF, FL, IL3, IL6, and G-CSF (Non-patent Document 1). In addition, it has been reported that umbilical cord blood CD34-positive cells were cultured for 9 weeks by adding SCF, FL, IL6, and TPO and amplified 70-fold (Non-patent Document 2). In addition, there is a report that SCF, FL, TPO, IL6 and soluble IL6 receptor were calorized, and cord blood CD34 positive cells were cultured for 1 week and increased 4 times (Non-patent Document 3). Temporary extracorporeal amplification methods in the presence of these hematopoietic site force-ins are reportedly limited in force amplification and are not at a level applicable to medical treatment. In addition, SCF, FL and TPO were added in the presence of Hess-5 mouse stromal cells separated by membranes, and cord blood CD34 positive In some cases, sex cells were cultured for 5 days and successfully amplified 10 times (Non-patent Document 4). This is because mouse cells are co-cultured in the presence of serum, and there is a possibility of viral infection, so it cannot be applied to clinical practice. Neither of these methods is an amplification method of hematopoietic stem cells suitable for transplantation treatment. First, the amplification efficiency is insufficient. Further, this is an amplification method in which a small number of hematopoietic stem cells coexist in a large number of differentiated blood cells, not only amplifying hematopoietic stem cells, which is inefficient and not suitable for practical use. In addition, ushi serum was added to the medium, and there was a risk of infectious diseases including BSE, which had a safety problem.
造血幹細胞を自己複製させる新たな因子が存在する可能性も考えられ、その遺伝 子の探索が様々試みられて来た力 未だ同定に成功していない。過去には、 Notchリ ガンド(Jaggedや Deltaファミリー)、 Tie- 2リガンド(アンジォポェチン)、 BMP- 4などが、 造血幹細胞の自己複製に重要な役割を担っていると報告されたが、これら因子単独 又は組み合わせでは増幅は限定的であり、一刻も早い解決が待たれていた。最近、 Weissmanらは、昔力も知られて!/、た Wntが造血幹細胞を増幅させると報告した(非特 許文献 5)。 Daleyらが報告していた HoxB4や Notchの誘導もあり説得力がある。 Nusse らは Wnt3aを可溶性タンパク質として純ィ匕に成功し、 Wnt3a単独で、造血幹細胞を約 6倍に増幅できたと報告した (非特許文献 6)。しかし、 Wntは造血幹細胞自体で発現 しており、自己複製因子の機能として矛盾がある。また、骨髄で Wnt3aは発現してお らず、主に発現している Wntメンバーも本発明者の結果とは異なる(特願 2003-41366 2)。また、増幅が実用化にはほど遠い上に、無血清培地ではない為分化した細胞も 多く産生されており、実用化には問題がある。また Wnt以外の幹細胞の自己複製に 関与する因子も最近相次いで報告された。上野らは Kirreが造血幹細胞の自己複製 を行うと報告した (非特許文献 7、特許文献 1)。しかし Kirre単独で幹細胞を体外で増 幅できるとは記載されていない上に、 Walzらの報告によれば全く異なる機能を持った 膜タンパク質として報告されているなど、自己複製因子としての機能は疑わしい。 Kirr eは骨髄ストローマ細胞のみならず造血発生の時期の AGM領域でも発現を確認して いるが (未発表データ)、その詳細な機能は今後の課題である。また、 ISFが造血幹細 胞の増幅に関与するとする報告もある (非特許文献 8)が、確定していない。  There may be new factors that allow hematopoietic stem cells to self-replicate, and various attempts have been made to search for their genes. In the past, Notch ligand (Jagged and Delta family), Tie-2 ligand (angiopoetin), BMP-4, etc. have been reported to play an important role in self-renewal of hematopoietic stem cells. Or, in combination, amplification was limited, and a solution was awaited as soon as possible. Recently, Weissman et al. Reported that Wnt was able to amplify hematopoietic stem cells. The guidance of HoxB4 and Notch reported by Daley et al. Is compelling. Nusse et al. Succeeded in purifying Wnt3a as a soluble protein and reported that hematopoietic stem cells could be amplified about 6 times with Wnt3a alone (Non-patent Document 6). However, Wnt is expressed in hematopoietic stem cells themselves, and there is a contradiction in the function of self-replicating factors. In addition, Wnt3a is not expressed in the bone marrow, and the Wnt member mainly expressed is also different from the results of the present inventors (Japanese Patent Application 2003-41366 2). In addition, amplification is far from practical use, and since it is not a serum-free medium, many differentiated cells are produced, which is problematic for practical use. Other factors involved in stem cell self-renewal other than Wnt were also reported one after another. Ueno et al. Reported that Kirre performs self-renewal of hematopoietic stem cells (Non-patent Document 7, Patent Document 1). However, Kirre alone has not been described as capable of expanding stem cells outside the body, and Walz et al. Report that the function as a self-replicating factor is suspicious, as reported by Walz et al. As a membrane protein with a completely different function. . Kirre has confirmed expression not only in bone marrow stromal cells but also in the AGM region at the time of hematopoiesis (unpublished data), but its detailed functions are for further study. There is also a report that ISF is involved in hematopoietic stem cell amplification (Non-patent Document 8), but it has not been confirmed.
なお、本発明により、造血幹細胞を増幅する自己複製因子 F1を同定したが、これ は 4回膜貫通型の膜タンパク質 EMP— 3と同一であることが明らかになった。この膜 タンパク質自体は既知であり(特許文献 2)、このタンパク質が造血調節活性を有する 可能性が示唆されて!ヽた (特許文献 3)。 According to the present invention, the self-replicating factor F1 that amplifies hematopoietic stem cells was identified. Was found to be identical to the 4-transmembrane protein EMP-3. This membrane protein itself is known (Patent Document 2), suggesting that this protein may have hematopoietic regulatory activity! (Patent Document 3).
[0005] 特許文献 1:再公表 03/018805 (WO03/018805) [0005] Patent Document 1: Republished 03/018805 (WO03 / 018805)
特許文献 2 :W098/11219  Patent Document 2: W098 / 11219
特許文献 3:特表 2002-513280 (WO98/30696)  Patent Document 3: Special Table 2002-513280 (WO98 / 30696)
非特許文献 l : Conneally et al, Pro. Natl. Acad. Sci. 94, 9836-9841, 1997 非特許文献 2 : Piacibello et al., Blood, 93, 3736-3749, 1999  Non-patent literature l: Conneally et al, Pro. Natl. Acad. Sci. 94, 9836-9841, 1997 Non-patent literature 2: Piacibello et al., Blood, 93, 3736-3749, 1999
非特許文献 3 : Ueda et al., J. Clin. Iinvest. 105, 1013-1021, 2000  Non-Patent Document 3: Ueda et al., J. Clin. Iinvest. 105, 1013-1021, 2000
非特許文献 4 : Kawada et al., Exp.HematoL, 27, 904-915, 1999  Non-Patent Document 4: Kawada et al., Exp. HematoL, 27, 904-915, 1999
非特許文献 5 : Nature 423, 409-414, 2003  Non-Patent Document 5: Nature 423, 409-414, 2003
非特許文献 6 : Nature 423, 448-452, 2003  Non-Patent Document 6: Nature 423, 448-452, 2003
非特許文献 7 : Ueno et al., Nat. Immunol. 4, 457-463, 2003  Non-Patent Document 7: Ueno et al., Nat. Immunol. 4, 457-463, 2003
非特許文献 8 : Tulin et al., J. Biol.Chem. 276, 27519-27526, 2001  Non-Patent Document 8: Tulin et al., J. Biol. Chem. 276, 27519-27526, 2001
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 造血幹細胞を体外で培養し増幅することができれば、患者自身の骨髄 (ある!/、は生 誕時の保存臍帯血)など力 少量の幹細胞を採取するだけで移植治療に充分な量 の幹細胞が産生可能となり、治療が HLA適合のドナーを待つことなく安全な医療が 可能となる。つまり、自家移植が可能となり、移植に必要な幹細胞数も確保できる上 に拒絶反応の問題も解決できる。自家移植が不可能な場合でも、増幅技術が確立で きれば、ドナーの骨髄からの少量の細胞の採取だけで移植治療が可能となり、ドナ 一のリスクもなくなりドナー登録者も増え、ドナーが見つ力るチャンスの急激な増大が 期待できる。臍帯血も体外で増幅できれば、成人への治療が可能となる。このように 造血幹細胞の体外での増幅技術の確立は、多くの難治性血液疾患患者の生命を救 うことが可能になる。また、遺伝子治療に必要な幹細胞を簡単に入手が可能となり、 レトロウイルスを用いない安全な遺伝子導入が可能となり、遺伝子治療が普及させる ことが可能となる。造血幹細胞の体外での増幅技術の開発は、難治生血液疾患患者 の移植治療'再生治療及び遺伝子治療にとって緊急に解決すべき重要な技術課題 となっている。 [0006] If hematopoietic stem cells can be cultured and amplified outside the body, the patient's own bone marrow (previously! /, Preserved umbilical cord blood at birth), etc. Stem cells can be produced, and safe medical treatment is possible without waiting for an HLA-compatible donor. In other words, autotransplantation is possible, the number of stem cells necessary for transplantation can be secured, and the problem of rejection can be solved. Even if autotransplantation is not possible, if amplification technology can be established, transplantation treatment can be performed simply by collecting a small amount of cells from the donor's bone marrow, eliminating the risk of donors and increasing the number of registered donors. We can expect a dramatic increase in opportunities to work. If umbilical cord blood can be amplified outside the body, treatment for adults is possible. Thus, the establishment of in vitro amplification technology of hematopoietic stem cells can save the lives of many patients with intractable blood diseases. In addition, stem cells necessary for gene therapy can be easily obtained, and safe gene transfer without using retrovirus becomes possible, and gene therapy can be spread. Development of in vitro amplification technology for hematopoietic stem cells It is an important technical issue to be solved urgently for transplantation therapy 'regenerative treatment and gene therapy.
即ち、本発明は、哺乳動物の造血幹細胞の増幅に必要な自己複製因子、及びこ の因子を用いた造血幹細胞の体外での増幅技術を提供することを目的とする。 課題を解決するための手段  That is, an object of the present invention is to provide a self-replicating factor necessary for the amplification of mammalian hematopoietic stem cells and a technique for in vitro amplification of hematopoietic stem cells using this factor. Means for solving the problem
[0007] 本発明者は、造血幹細胞の自己複製因子を含むと考えられるマウス骨髄ストローマ 細胞及びマウス'ストローマ細胞株 OP9から発現 cDNAライブラリーを pcDNA3.1ベタ ターを用いて作成し、 cDNAプールをトランスフエタトしたフィーダ一細胞(マウス繊維 芽細胞 C 127)を造血幹細胞と無血清培地で共培養させ、その増幅能を指標にアツ セィし、自己複製因子の候補遺伝子 F1を単離した。本発明者は、その配列の解析 から、 F1が 4回膜貫通型の膜タンパク質 EMP-3 (別名 YMP、 HNMP-1)と同一である ことを突き止めた。本発明者は更に造血幹細胞と F1を発現するフィーダ一細胞を無 血清培地で共培養することにより、造血幹細胞を分化させることなく効率よく体外で 増幅することに成功し、本発明を完成させるに至った。  [0007] The present inventor prepared a cDNA library expressed from a mouse bone marrow stromal cell and mouse 'stromal cell line OP9, which is considered to contain a hematopoietic stem cell self-renewal factor, using pcDNA3.1 vector, and created a cDNA pool. Transfected feeder cells (mouse fibroblasts C 127) were co-cultured with hematopoietic stem cells in a serum-free medium, assayed using the amplification ability as an index, and the candidate gene F1 of a self-replicating factor was isolated. From the analysis of the sequence, the present inventor found that F1 is identical to the 4-transmembrane protein EMP-3 (also known as YMP, HNMP-1). The inventor further succeeded in efficiently amplifying hematopoietic stem cells in vitro without differentiation by co-culturing hematopoietic stem cells and a feeder cell expressing F1 in a serum-free medium, thereby completing the present invention. It came.
[0008] 即ち、本発明は、 4回膜貫通型の膜タンパク質 EMP— 3 (別名 YMP、 HNMP-1)力 成る哺乳動物の造血幹細胞を増幅する自己複製因子である。  [0008] That is, the present invention is a self-replicating factor that amplifies mammalian hematopoietic stem cells, which is composed of a four-transmembrane membrane protein EMP-3 (also known as YMP, HNMP-1).
また、本発明は、配列番号 1若しくは配列番号 3に示すアミノ酸配列力もなるタンパ ク質、又は配列番号 1若しくは配列番号 3に示すアミノ酸配列において 1若しくは数 個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、哺乳動物の造血 幹細胞の増幅能を有するタンパク質力 成る哺乳動物の造血幹細胞を増幅する自 己複製因子である。  The present invention also relates to a protein having the amino acid sequence ability shown in SEQ ID NO: 1 or SEQ ID NO: 3, or one or several amino acids in the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3, deleted, substituted or added. It is a self-replicating factor that amplifies mammalian hematopoietic stem cells with a protein power that has the ability to amplify mammalian hematopoietic stem cells.
更に、本発明は、 4回膜貫通型の膜タンパク質 EMP— 3の 2力所の細胞膜外領域 のペプチドのいずれ力、若しくはこれらの混合物、又はこれら 2つのペプチドをスぺー サーを介して若しくは介さな 、で結合させたペプチドから成る哺乳動物の造血幹細 胞を増幅する自己複製因子である。  Furthermore, the present invention relates to any force of a peptide in the extracellular domain of two strengths of the four-transmembrane membrane protein EMP-3, a mixture thereof, or a mixture of these two peptides via a spacer. It is a self-replicating factor that amplifies mammalian hematopoietic stem cells consisting of peptides bound in the above.
また、本発明は、哺乳動物の造血幹細胞を上記の自己複製因子の存在下で、無 血清培地で培養することから成る造血幹細胞の増幅方法である。  The present invention also relates to a method for amplifying hematopoietic stem cells, comprising culturing mammalian hematopoietic stem cells in a serum-free medium in the presence of the above self-replicating factor.
また、本発明は、上記の方法によって増幅された造血幹細胞である。 また、本発明は、上記の自己複製因子を含み、血清を含まない造血幹細胞培養用 の培地である。 The present invention is also a hematopoietic stem cell amplified by the above method. Further, the present invention is a medium for culturing hematopoietic stem cells that contains the above self-replicating factor and does not contain serum.
また、本発明は、上記のタンパク質又はペプチドをコードする DNAが導入されたフィ ーダー細胞である。本発明は、更に少なくとも 1種の造血因子又は細胞刺激因子を コードする DNAを導入したフィーダ一細胞である。  Further, the present invention is a feeder cell into which DNA encoding the above protein or peptide is introduced. The present invention further provides a feeder cell into which DNA encoding at least one hematopoietic factor or cell stimulating factor is introduced.
発明の効果  The invention's effect
[0009] 本発明者は本発明の自己複製因子 F1により造血幹細胞が増幅することを確認し た。  [0009] The inventor has confirmed that hematopoietic stem cells are amplified by the self-replicating factor F1 of the present invention.
本発明の自己複製因子を用いて、造血幹細胞や F1に反応する全ての組織幹細胞 や体細胞を体外で増幅し、増幅した造血幹細胞及び F1に反応する全ての組織幹細 胞ゃ体細胞を様々な難治性血液疾患や様々な組織疾患患者への移植治療、及び 遺伝子治療に用いることができる。  Using the self-replicating factor of the present invention, all tissue stem cells and somatic cells that react with hematopoietic stem cells and F1 are amplified outside the body, and the amplified hematopoietic stem cells and all tissue stem cells and somatic cells that react with F1 are various. It can be used for transplantation therapy and gene therapy for patients with various intractable blood diseases and various tissue diseases.
本発明の自己複製因子を用いて増幅した造血幹細胞及び F1に反応する全ての組 織幹細胞や体細胞は、従来の骨髄移植や臍帯血移植に代わる造血幹細胞移植な どに用いることができる。  Hematopoietic stem cells amplified using the self-replicating factor of the present invention and all tissue stem cells and somatic cells that react with F1 can be used for hematopoietic stem cell transplantation in place of conventional bone marrow transplantation or cord blood transplantation.
また、患者あるいは他人の造血幹細胞を各種血液細胞に分ィ匕させ、それらを患者 の体内に移入することにより、各種血液細胞の形成が不十分な患者を治療すること ができる。また、本発明の培養方法によって得られる造血幹細胞は、再生不良性貧 血などの貧血を呈する骨髄低形成に起因する造血不全症を改善することができる。 その他、本発明の培養方法によって得られる造血幹細胞の移植が有効な疾患として は、慢性肉芽腫症、重複免疫不全症候群、無ガンマグロブリン血症、 Wiskott-Aldric h症候群、後天性免疫不全症候群 (AIDS)等の免疫不全症候群、サラセミア、酵素欠 損による溶血性貧血、鎌状赤血球症等の先天性貧血、 Gaucher病、ムコ多糖症等の リソゾーム蓄積症、副腎白質変性症、各種の癌又は腫瘍等が挙げられる。  In addition, by separating the hematopoietic stem cells of a patient or another person into various blood cells and transferring them into the patient's body, patients with insufficient formation of various blood cells can be treated. Moreover, the hematopoietic stem cells obtained by the culture method of the present invention can improve hematopoietic insufficiency due to bone marrow hypoplasia that exhibits anemia such as aplastic anemia. Other diseases for which transplantation of hematopoietic stem cells obtained by the culture method of the present invention is effective include chronic granulomatosis, double immunodeficiency syndrome, agammaglobulinemia, Wiskott-Aldric h syndrome, acquired immune deficiency syndrome (AIDS ) Immunodeficiency syndrome, thalassemia, hemolytic anemia due to enzyme deficiency, congenital anemia such as sickle cell disease, lysosomal storage diseases such as Gaucher's disease and mucopolysaccharidosis, adrenoleukodysplasia, various cancers or tumors, etc. Is mentioned.
[0010] また、本発明の自己複製因子は、造血幹細胞を未分化なまま、体内又は体外で増 殖させることができるので、体外で造血幹細胞の培養 ·増殖方法に用いることができ る他、放射線治療や制ガン剤等の化学療法剤による血球減少症の改善、リンパ球減 少に起因する感染症の予防、骨髄形成不全症や骨髄抑制などの骨髄疾患の治療、 白血病、高度腎障害'骨髄抑制などの骨髄疾患の治療、遺伝的疾患に由来する低 血球症の治療、遺伝子治療時における組換え幹細胞の体外培養等に用いることが できる。 [0010] In addition, the self-replicating factor of the present invention can be used for in vitro or hematopoietic stem cell culture / proliferation methods because hematopoietic stem cells can be propagated in vivo or in vitro without being differentiated. Improvement of cytopenia with radiation therapy and chemotherapy drugs such as anticancer drugs, prevention of infection caused by lymphocyte depletion, treatment of bone marrow diseases such as myelodysplasia and myelosuppression, It can be used for the treatment of bone marrow diseases such as leukemia and advanced renal disorder's bone marrow suppression, the treatment of hypocytosis derived from genetic diseases, and the in vitro culture of recombinant stem cells at the time of gene therapy.
また本発明の自己複製因子を、造血幹細胞以外の組織幹細胞を増幅させることも できると考えられる。その場合、本発明の自己複製因子 F1を様々な組織の再生医療 へ応用することができる。  It is also considered that the self-replicating factor of the present invention can amplify tissue stem cells other than hematopoietic stem cells. In that case, the self-replicating factor F1 of the present invention can be applied to regenerative medicine of various tissues.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明の自己複製因子は、 4回膜貫通型の膜タンパク質 EMP— 3 (別称 YMP、 HN MP- 1)である。各種データベースには、ヒト膜タンパク質 EMP— 3として、 NP_001416 、 NP— 001415、 NP— 001414、 CAGH09718, CAG33152、 AAH09718, P54852等のアミノ 酸配列、 NM_001425、 BC009718, CR456871等の塩基配列が登録されており、またマ ウス膜タンパク質 EMP— 3として、 NP_034259、 AAH01999、 035912等のアミノ酸配列 、 NM_010129、 BC001999等の塩基配列が登録されている。本発明においては、これ らのいずれをも利用することができる。 [0011] The self-replicating factor of the present invention is a four-transmembrane membrane protein EMP-3 (also known as YMP, HN MP-1). In various databases, amino acid sequences such as NP_001416, NP-001415, NP-001414, CAGH09718, CAG33152, AAH09718, and P54852, and nucleotide sequences such as NM_001425, BC009718, and CR456871 are registered as human membrane protein EMP-3. In addition, as mouse membrane protein EMP-3, amino acid sequences such as NP_034259, AAH01999, 035912, and base sequences such as NM_010129 and BC001999 are registered. Any of these can be used in the present invention.
また、本発明においては、哺乳類、特にヒトの造血幹細胞や F1に反応する全ての 組織幹細胞や体細胞を増幅するものであれば、膜タンパク質 EMP— 3の由来は特 に問わない。  In the present invention, the origin of the membrane protein EMP-3 is not particularly limited as long as it amplifies all tissue stem cells and somatic cells that react with hematopoietic stem cells and F1 of mammals, particularly humans.
[0012] また本発明の自己複製因子は、配列番号 1 (ヒト)又は配列番号 3 (マウス)に示すァ ミノ酸配列力もなるタンパク質である。これらアミノ酸の相同性は 92.6%である。  [0012] The self-replicating factor of the present invention is a protein having an amino acid sequence ability shown in SEQ ID NO: 1 (human) or SEQ ID NO: 3 (mouse). The homology between these amino acids is 92.6%.
また本発明の自己複製因子は、配列番号 1若しくは配列番号 3に示すアミノ酸配列 において、 1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列か らなるタンパク質、好ましくはそのアミノ酸配列との相同性が 90%以上のアミノ酸配列 力もなるタンパク質であり、哺乳動物の造血幹細胞を増幅する活性を持つ。このタン パク質の造血幹細胞増幅能は後述する方法により測定することができる。  The self-replicating factor of the present invention is a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3, preferably the amino acid sequence thereof. Is a protein having an amino acid sequence with a homology of 90% or more, and has the activity of amplifying mammalian hematopoietic stem cells. The ability of this protein to amplify hematopoietic stem cells can be measured by the method described later.
この哺乳動物は、マウスや力エルでもよいが、好ましくはヒトである。  The mammal may be a mouse or a force L, but is preferably a human.
[0013] また本発明の自己複製因子は 4回膜貫通型の膜タンパク質であることから、その 2 つの細胞外ドメインも造血幹細胞の増幅能を持つものと考えられる。この細胞外ドメイ ンは、ヒト膜タンパク質 EMP— 3 (配列番号 1)の場合、そのアミノ酸番号 22〜60のべ プチド及びアミノ酸番号 117〜134又は 121〜134のペプチドである力 ヒト以外の膜タ ンパク質 EMP— 3の場合にはこれらに相当する 2つのペプチドである。 [0013] In addition, since the self-replicating factor of the present invention is a four-transmembrane membrane protein, it is considered that the two extracellular domains also have the ability to amplify hematopoietic stem cells. In the case of the human membrane protein EMP-3 (SEQ ID NO: 1), this extracellular domain has amino acid numbers 22 to 60. Peptides and forces that are peptides with amino acid numbers 117-134 or 121-134 In the case of non-human membrane protein EMP-3, there are two corresponding peptides.
従って本発明の自己複製因子として、 2力所の細胞膜外ドメインのペプチドのいず れか一方、又はこれらの混合物を用いることができる。更に、これら 2つのペプチドを 直接結合させたペプチドや、 2つのペプチドをスぺーサーを介して結合させたぺプチ ドを用 、ることができる。  Therefore, as the self-replicating factor of the present invention, either one of the two extracellular domain peptides or a mixture thereof can be used. Furthermore, a peptide in which these two peptides are directly bound, or a peptide in which two peptides are bound through a spacer can be used.
本発明の自己複製因子 F1の遺伝子の完全長、その改変体、細胞膜外などの一部 分、 F1の一部又は全体とその融合タンパク質を、大腸菌などの細菌、酵母、動物細 胞、カイコ等の昆虫又はその培養細胞、哺乳動物個体などで人工的に産生させて用 、ることが好まし!/、。  The full-length gene of the self-replicating factor F1 of the present invention, a variant thereof, a part of the extracellular membrane, a part or the whole of F1, and a fusion protein thereof, bacteria such as E. coli, yeast, animal cells, silkworms, etc. It is preferable to use it artificially produced by insects, cultured cells thereof, or individual mammals!
[0014] 造血幹細胞は、ヒト及びマウス等の哺乳動物の臍帯血、胎児肝臓、骨髄、胎児骨 髄、末梢血、サイト力インゃ抗癌剤の投与によって幹細胞を動員した末梢血、及び末 梢血由来の細胞群等力も採取することができる。これらの組織から、抗 CD34抗体、抗 CD133抗体、抗 CD38抗体等を用いて免疫学的に染色し、セルソーターを用いてこれ らの抗体の染色性により分離することにより造血幹細胞を取得することができる。 例えば、マウスでは、細胞分ィヒ抗原 (Lineage)が陰性であり、かつ c_kit及び Sca_l陽 性の細胞の内、 CD34抗原が陰性から弱陽性の性質を示す細胞に造血幹細胞の性 質が見られる。ヒト造血幹細胞のマーカーとしては CD34抗原が知られており、特によ り未分ィ匕なマーカーとして CD34陽性、 CD38陰性、 CD133陽性、 KDR陽性、細胞分 化抗原陰性等がある。また、造血幹細胞を単離することなぐヒト又はマウス骨髄由来 等の有核細胞あるいは幹細胞分画をそのまま培養に用いることもできる。例えば、ヒト やマウス骨髄や臍帯血や末梢血由来等の幹細胞分画として SP(side population)細胞 分画 (造血幹細胞を約半分弱含み、他の組織幹細胞も含むと考えられて!/、る)を用 いてもよい。  [0014] Hematopoietic stem cells are derived from umbilical cord blood, fetal liver, bone marrow, fetal bone marrow, peripheral blood, peripheral blood in which stem cells are mobilized by administration of anticancer agents and peripheral blood of mammals such as humans and mice, and terminal blood It is also possible to collect the cell group isotropic force. From these tissues, hematopoietic stem cells can be obtained by immunologically staining with anti-CD34 antibody, anti-CD133 antibody, anti-CD38 antibody, etc., and separating with a cell sorter according to the staining properties of these antibodies. it can. For example, in mice, the characteristics of hematopoietic stem cells are found in cells that are negative for the cytoplasmic antigen (Lineage) and positive for c_kit and Sca_l and that have negative to weakly positive properties for the CD34 antigen. . CD34 antigen is known as a marker for human hematopoietic stem cells, and particularly unclear markers include CD34 positive, CD38 negative, CD133 positive, KDR positive, and cell differentiation antigen negative. In addition, nucleated cells or stem cell fractions derived from human or mouse bone marrow without isolating hematopoietic stem cells can be used as they are for culturing. For example, as a stem cell fraction derived from human, mouse bone marrow, umbilical cord blood, peripheral blood, etc., SP (side population) cell fraction (contains about half of hematopoietic stem cells and other tissue stem cells! / ) May be used.
[0015] 本発明の造血幹細胞を製造するための培養法においては、この造血幹細胞又は 造血幹細胞分画を、本発明の自己複製因子の存在下で培養する。造血幹細胞の培 養は、培養用のシャーレ、フラスコ、あるいは培地組成、 pHなどを機械的に制御でき るバイオリアクターにおいて適当な培地を用いて行なうことができる。培地は、造血幹 細胞の生存 ·増殖が阻害されない限り特に限定されないが、例えば、 SF-02培地 (三 光純薬)、 Opti- MEM培地 (GIBCO BRL)、 MEM培地 (GIBCO BRL)、 DMEM培地 (GIB CO BRL)、 IMDM培地 (GIBCO BRL)、 PRMI1640培地 (GIBCO BRL)、 RD培地 (RPMI1 640:DMEM = 1 : 1(V/V)混合培地)等を用いることができる。培地には更に、例えば、ィ ンスリン、トランスフェリン、ラタトフエリン、 2—メルカプトエタノール、エタノールァミン、 亜セレン酸ナトリウム、 HEPES、モノチォグリセロール、ピルビン酸ナトリウム、ポリェチ レンダリコール、各種ビタミン、各種アミノ酸、各種増殖因子、各種抗生物質、 KSR (kn ockout serum replacement)等を必要に応じて添カ卩してもよい。なお、培養において は、血清非存在下で行なうことが好ましい。 [0015] In the culture method for producing the hematopoietic stem cell of the present invention, the hematopoietic stem cell or hematopoietic stem cell fraction is cultured in the presence of the self-replicating factor of the present invention. Culture of hematopoietic stem cells can be performed using a suitable culture medium in a petri dish for culture, a flask, or a bioreactor capable of mechanically controlling the medium composition, pH, and the like. Medium is hematopoietic stem It is not particularly limited as long as cell survival and growth are not inhibited.For example, SF-02 medium (Sanko Junyaku), Opti-MEM medium (GIBCO BRL), MEM medium (GIBCO BRL), DMEM medium (GIB CO BRL), IMDM medium (GIBCO BRL), PRMI1640 medium (GIBCO BRL), RD medium (RPMI1 640: DMEM = 1: 1 (V / V) mixed medium) and the like can be used. The medium further includes, for example, insulin, transferrin, ratatopherin, 2-mercaptoethanol, ethanolamine, sodium selenite, HEPES, monothioglycerol, sodium pyruvate, polyethylene glycol, various vitamins, various amino acids, various growths. Factors, various antibiotics, KSR (knockout serum replacement), etc. may be added as necessary. The culture is preferably performed in the absence of serum.
[0016] 本発明の自己複製因子を、造血幹細胞の培養時に可溶性タンパク質 (ペプチド)と して、あるいは種々の化合物と共に不溶性タンパク質 (ペプチド)として添加し、ある いは、培養容器に直接固定あるいは種々のタンパク質 (ペプチド)等の担体を介して 共有結合あるいは非共有結合で固定化して、無血清培地で造血幹細胞 (F1因子で 増幅可能な種々の組織幹細胞や体細胞)を体外で増幅することができる。  [0016] The self-replicating factor of the present invention is added as a soluble protein (peptide) at the time of culturing hematopoietic stem cells, or as an insoluble protein (peptide) together with various compounds, or directly fixed to a culture vessel or various Can be covalently or non-covalently immobilized via a carrier such as a protein (peptide), and hematopoietic stem cells (various tissue stem cells and somatic cells that can be amplified with F1 factor) can be amplified outside the body in a serum-free medium. it can.
[0017] 本発明において、造血幹細胞を増幅するにあたり、本発明の自己複製因子を単独 で用いるだけでなぐ少なくとも 1種の造血因子又は細胞刺激因子を共存させて作用 させることにより、より効率の良い造血幹細胞を体外で増幅することができる。  [0017] In the present invention, in amplifying hematopoietic stem cells, it is possible to improve the efficiency by coexisting at least one hematopoietic factor or cell stimulating factor in addition to using the self-replicating factor of the present invention alone. Hematopoietic stem cells can be amplified outside the body.
この造血因子又は細胞刺激因子は、造血細胞に自己複製や増殖などの刺激を与 える因子をいい、例えば、 Wnt (wingless/int-l)ファミリー、 SCF (幹細胞成長因子; ste m cell factor)、 TPO (トロンボポェチン)、 IL- 3 (インターロイキン 3)、 IL- 11 (インター ロイキン— 11)、 GM-CSF (顆粒球マクロファージ 'コロニー刺激因子; granulocyte/ma crophage colony-stimulating factor)、 G—CSF (顆 球コロニー朿 [J激因子; granulocyte colony-stimulating factor)、 TGF- β (トランスフォーミング成長因子一 j8 )、 MIP-1 a 、 Flt3/Flk2-リガンド(FL)、 Flk2/Flk3リガンド、 EPO (エリスロポエチン)、 Notchリガン ド(Jaggedファミリー、 Deltaファミリー)、 Tie2リガンド(アンジォポェチン)、 BMP4、 bFG F、オンコスタチン M、 IL6/sIL6R、 EGF及び LIF等が挙げられる。  This hematopoietic factor or cell stimulating factor refers to a factor that gives a hematopoietic cell a stimulus such as self-renewal and proliferation. For example, Wnt (wingless / int-l) family, SCF (stem cell factor), TPO (thrombopoietin), IL-3 (interleukin 3), IL-11 (interleukin-11), GM-CSF (granulocyte / ma crophage colony-stimulating factor), G-CSF ( Condylar sphere colony 朿 [J granulocyte colony-stimulating factor), TGF-β (transforming growth factor 1 j8), MIP-1a, Flt3 / Flk2-ligand (FL), Flk2 / Flk3 ligand, EPO (erythropoietin ), Notch ligand (Jagged family, Delta family), Tie2 ligand (angiopoetin), BMP4, bFG F, oncostatin M, IL6 / sIL6R, EGF and LIF.
[0018] 特に、本発明者らが既に発見した Wnt2や Wnt5aなどの Wntは、細胞分化を抑制す る力、増殖を相乗的に増幅させる役割を果たす因子として働いていると思われるため (特許出願 2003-413662)、有効な細胞刺激因子であると考えられる。 [0018] In particular, Wnt such as Wnt2 and Wnt5a, which have already been discovered by the present inventors, seems to function as a factor that suppresses cell differentiation and plays a role in synergistic amplification of proliferation. (Patent Application 2003-413662), which is considered to be an effective cell stimulating factor.
本発明の造血幹細胞及び F1に反応する全ての組織幹細胞や体細胞を増幅する ための培養法においては、本発明の自己複製因子 F1を培地に添加してもよいし、本 発明の自己複製因子 F1を培地に添加しフィーダ一細胞と共培養してもよいし、本発 明の自己複製因子 F1を様々な担体を介して或いは介さずにシャーレ等培養器 (装 置)に付着あるいは共有結合させて培養してもよい、また本発明の自己複製因子 F1 を発現するフィーダ一細胞と共培養してもよ ヽ。  In the culture method for amplifying all the tissue stem cells and somatic cells that react with the hematopoietic stem cells and F1 of the present invention, the self-replicating factor F1 of the present invention may be added to the medium, or the self-replicating factor of the present invention. F1 may be added to the medium and co-cultured with a single feeder cell, or the self-replicating factor F1 of the present invention may be attached or covalently attached to a petri dish or other incubator (device) with or without various carriers. The cells may be cultured or co-cultured with a feeder cell expressing the self-replicating factor F1 of the present invention.
この自己複製因子 F1を発現するフィーダ一細胞は、本発明の自己複製因子 F1の アミノ酸配列をコードする DNA (配列番号 2等)を発現ベクターに導入し、この組換え 体をフィーダ一細胞にトランスフエタトすることにより得ることができる。このベクターと しては、 pcDNA3.1など動物細胞で発現させることができるベクターなら何でも利用す ることがでさる。  In this feeder cell expressing this self-replicating factor F1, a DNA encoding the amino acid sequence of the self-replicating factor F1 of the present invention (eg, SEQ ID NO: 2) is introduced into an expression vector, and this recombinant is transferred to the feeder cell. It can be obtained by feeding. Any vector that can be expressed in animal cells, such as pcDNA3.1, can be used as this vector.
[0019] 培地に添加する造血因子又は細胞刺激因子の濃度は、通常約 lng/ml〜約 lOOng/ ml、好ましくは約 5ng/ml〜約 50ng/ml、より好ましくは約 5ng/ml〜約 30ng/mlである。  [0019] The concentration of the hematopoietic factor or cell stimulating factor added to the medium is usually about lng / ml to about lOOng / ml, preferably about 5 ng / ml to about 50 ng / ml, more preferably about 5 ng / ml to about 30 ng. / ml.
[0020] 本発明の造血幹細胞を製造するために、造血幹細胞をフィーダ一細胞と共培養す ることは必須ではないが、好ましい。このフィーダ一細胞としては、無血清培養が可能 な線維芽細胞 (C127、 NN3T3、い P3等)、無血清培養可能な他の株化細胞 (JCT-19 、 JCT-12、 COS7等)、胎児由来細胞、間葉系幹細胞、血管内皮細胞、前脂肪細胞 等を用いてもよぐまた株化された様々なヒトゃ種々の動物細胞や昆虫細胞を用いて もよい。また、無血清下で生存可能なヒト由来細胞を用いることが好ましぐヒト由来細 胞としてヒト口腔内上皮細胞などの患者由来の一次培養体細胞を用いることが更に 好ましい。特に無血清培地で培養が可能となった細胞株や、患者力 採取した一次 培養細胞を無血清培地で用いることが最も好まし 、。  [0020] In order to produce the hematopoietic stem cells of the present invention, it is not essential, but it is preferable to co-culture hematopoietic stem cells with feeder cells. These feeder cells include fibroblasts that can be serum-free cultured (C127, NN3T3, P3, etc.), other cell lines that can be cultured without serum (JCT-19, JCT-12, COS7, etc.), fetuses, etc. The derived cells, mesenchymal stem cells, vascular endothelial cells, preadipocytes and the like may be used, and various human cells and various animal cells and insect cells established may be used. In addition, it is more preferable to use a primary cultured somatic cell derived from a patient such as a human oral epithelial cell as a human-derived cell that preferably uses a serum-free human-derived cell. In particular, it is most preferable to use a cell line that can be cultured in a serum-free medium or a primary culture cell collected from a patient in a serum-free medium.
培養は、通常、 33〜39°C、好ましくは 37°C、 3〜6%CO、好ましくは 5%COの条件下  Cultivation is usually performed at 33-39 ° C, preferably 37 ° C, 3-6% CO, preferably 5% CO.
2 2 で、 5〜50日間行なう。  2 2 for 5-50 days.
[0021] 造血幹細胞の増幅は通常細胞表面抗原を指標に確認することができる。例えば、ヒ ト造血幹細胞のマーカーとしては、少なくとも CD34抗原陽性、好ましくは CD34抗原 陽性、 CD38抗原陰性、 CD133陽性、 KDR陽性、細胞分ィ匕抗原陰性等であることをヒ ト造血幹細胞の指標として用いることができる。造血幹細胞の存在を確認する手段と して放射線照射マウスを用いた移植実験系又は in vitroのコロニー形成法を用いても よい。放射線照射マウスを用いた移植実験系では、放射線照射し造血系に障害を与 えたマウス(レシピエント)に、他のマウス(ドナー)から分離した骨髄細胞や造血幹細 胞含有画分を移植し、移植後、レシピエント由来とドナー由来の造血系細胞の割合( キメリズム)を指標に、長期骨髄再構築能を有する造血幹細胞の存在を確認する。コ 口-一形成法において、造血幹細胞を種々の血液細胞が出現できるように種々のサ イト力インを添加した培地にて培養すると、分ィヒ方向の決定された造血前駆細胞は、 小数あるいは、単一な分ィ匕系列の細胞し力含まないコロニーを形成する力 多分ィ匕 能を持つ造血幹細胞は、複数の分ィ匕系列の血液細胞を含むコロニーを形成すること ができる。特に、赤血球を含む混合コロニー(CFU-Emix)を形成することが、ヒトでは 造血幹細胞の指標とされて ヽる。 [0021] Amplification of hematopoietic stem cells can usually be confirmed using a cell surface antigen as an indicator. For example, human hematopoietic stem cell markers should be at least CD34 antigen positive, preferably CD34 antigen positive, CD38 antigen negative, CD133 positive, KDR positive, cytoplasmic antigen negative, etc. It can be used as an index of hematopoietic stem cells. As a means for confirming the presence of hematopoietic stem cells, a transplantation experiment system using irradiated mice or an in vitro colony formation method may be used. In the transplantation experiment system using irradiated mice, the bone marrow cells and hematopoietic stem cell-containing fractions isolated from other mice (donors) were transplanted into the mice (recipients) that had been irradiated and damaged the hematopoietic system. After transplantation, the presence of hematopoietic stem cells having long-term bone marrow reconstitution ability is confirmed using the ratio of recipient-derived and donor-derived hematopoietic cells (chimerism) as an index. In the mouth-one formation method, when hematopoietic stem cells are cultured in a medium supplemented with various site strengths so that various blood cells can appear, the number of hematopoietic progenitor cells whose orientation has been determined is small or The ability to form a colony that does not contain a single split-line cell and possibly a hematopoietic stem cell that has the potential to form a colony that includes a plurality of split-lineage blood cells. In particular, the formation of mixed colonies containing red blood cells (CFU-Emix) is regarded as an indicator of hematopoietic stem cells in humans.
以下、実施例にて本発明を例証するが本発明を限定することを意図するものでは ない。  The following examples illustrate the invention but are not intended to limit the invention.
実施例 1 Example 1
本発明者は、新たな造血幹細胞の自己複製因子を同定するために、マウス骨髄ス トローマ細胞 mRNA及びマウスストローマ細胞株 OP9 mRNAから発現 cDNAライブラリ 一を pcDNA3.1ベクターに作成した。そのプール cDNA(100、 200又は 500個など)をマ ウス繊維芽細胞 C127にリポフエクトァミン 2000を用いてトランスフエクシヨンし 24穴又は 96穴プレートに G418耐性細胞を 1週間後に得た。使った DNA量は 0.02〜lmgまでの 範囲で様々な条件で行った。  In order to identify a new hematopoietic stem cell self-replicating factor, the present inventor created one cDNA library expressed from mouse bone marrow stromal cell mRNA and mouse stromal cell line OP9 mRNA in a pcDNA3.1 vector. The pooled cDNA (100, 200, 500, etc.) was transfected into mouse fibroblasts C127 using lipofectamine 2000, and G418 resistant cells were obtained in a 24-well or 96-well plate one week later. The amount of DNA used ranged from 0.02 to lmg under various conditions.
造血幹細胞は、ベータ GALトランスジエニックマウスの骨髄から SP細胞(Hoechst333 42陰性 Rhodaminel23陰性細胞)を蛍光表示式細胞分取器 (FACS) (ベタトン'デッキ ンソン社製 FACS Vantage SE)を用いてソーティングして単離した。 1穴当たり 90〜40 0個の SP細胞を用いて上記トランスフエクタントと共培養した。  For hematopoietic stem cells, SP cells (Hoechst333 42-negative Rhodaminel23-negative cells) are sorted from the bone marrow of beta GAL transgenic mice using a fluorescence-activated cell sorter (FACS) (FACS Vantage SE manufactured by Betaton Deckson). Isolated. 90 to 400 SP cells per well were co-cultured with the above transfectant.
培地は DMEMに 5% Knockout serum replacement (KSR)とペニシリン 'ストレプトマ イシンのみの無血清培地を用いた。 5〜7日後に細胞を固定しベータ GAL陽性細胞 数をカウントした。ノ ックグランド (0〜50個)より高い陽性細胞のあるプールから、 10 分の 1 (又は 5分の 1)サイズの cDNAプールを再度 C127細胞にトランスフエクシヨンし アツセィを繰り返した。 8個以下のプールとなった時点で、その 5倍の数の cDNAイン サートをシークェンスし完全長で且つ膜タンパク質をコードしている新規因子を検索 し、可能性ある候補遺伝子を検索した。その結果、単離された単一の候補遺伝子 (配 列番号 4)が得られたので、 F1と命名した。この F1は機能が不明瞭なマウス EMP-3と 同一遺伝子であり、 18kDaの 4回膜貫通型の膜タンパク質をコードしていた。 The medium was a serum-free medium containing only 5% Knockout serum replacement (KSR) and penicillin'streptomycin in DMEM. After 5-7 days, the cells were fixed and the number of beta GAL positive cells was counted. From pools with positive cells higher than knock ground (0-50), 10 One-half (or one-fifth) sized cDNA pools were re-transfected into C127 cells and repeated. When the number of pools became 8 or less, 5 times the number of cDNA inserts were sequenced to search for a novel factor that encodes a full-length membrane protein and searched for potential candidate genes. As a result, an isolated single candidate gene (SEQ ID NO: 4) was obtained, which was designated F1. This F1 is the same gene as mouse EMP-3, whose function is unclear, and encoded an 18 kDa four-transmembrane membrane protein.
実施例 2  Example 2
[0023] pcDNA3.1ベクターに導入された F1遺伝子(配列番号 4)を、マウス繊維芽細胞 C12 7にリポフエクトァミン 2000を用いてトランスフエクシヨンした。  [0023] The F1 gene (SEQ ID NO: 4) introduced into the pcDNA3.1 vector was transfected into mouse fibroblasts C127 using lipofectamine 2000.
マウス造血幹細胞として正常マウス(8〜10週齢のじ578し/6)骨髄力も KSL細胞(c- Kit陽性 Seal陽性 Lineage陰性 CD34陰性又は弱陽性)を用いた。  As mouse hematopoietic stem cells, normal mice (8 to 10 weeks old, 578/6/6) and bone marrow strength were also KSL cells (c- Kit positive Seal positive Lineage negative CD34 negative or weak positive).
この C127トランスフエクタントをフィーダ一細胞とし、マウス造血幹細胞と 1〜16日間 上述の無血清培地で共培養した。培養後、 FACSで c-Kit陽性 Seal陽性細胞をカウン トした。  This C127 transfectant was used as a feeder cell and co-cultured with mouse hematopoietic stem cells in the above-mentioned serum-free medium for 1 to 16 days. After incubation, c-Kit positive Seal positive cells were counted with FACS.
なお、コントロールとしてトランスフエタトしていないフィーダ一細胞(マウス繊維芽細 胞 C127)のみと共培養した場合には、造血幹細胞はほとんど増殖していな力つた。 上記 F1発現フィーダ一細胞を用いて増幅した造血幹細胞数力 フィーダ一細胞の みのバックグラウンドを差し弓 Iいて、 F1によって増幅した造血幹細胞を算出した。  As a control, when co-cultured with only one feeder cell (mouse fibroblast C127) that had not been transfected, the hematopoietic stem cells were vigorously proliferated. The number of hematopoietic stem cells amplified using the above F1-expressing feeder cell The background of only the feeder cell was inserted I to calculate the hematopoietic stem cell amplified by F1.
Lineage陽性細胞は観察されな力つたので、造血幹細胞だけが増えて 、ると考えら れた。増幅効率としては最終的に 16日で 1000倍程度まで増幅していると概算できた 。 2週間余りで 10回細胞分裂する速度であり大変妥当な数字と考えられた。  Since Lineage positive cells were not observed, it was thought that only hematopoietic stem cells increased. The amplification efficiency was estimated to be about 1000 times in 16 days. The rate of cell division 10 times in 2 weeks or so was considered to be a very reasonable number.
その結果を図 1に示す。  The results are shown in Fig. 1.
[0024] 増幅能は FACSを用いて確認するだけでなく顕微鏡下で増幅を確認した。ベータ G AL陽性、 GFP陽性、あるいは蛍光物質を付加した造血幹細胞と F1発現 C127細胞を 共培養し、数日後から 2週間後に継代後に蛍光顕微鏡で観察することにより行った。 造血幹細胞は C127細胞の下に潜り込んで増幅していることが観察できた。図 2はフィ ーダー細胞をピンセットで強制的に剥離して撮影した、増幅後のマウス造血幹細胞 を示す。造血幹細胞が増殖するためにはフィーダ一細胞の存在が必要である可能 性を示唆している。 [0024] The amplification ability was confirmed not only using FACS but also under a microscope. Beta GAL positive, GFP positive, or hematopoietic stem cells to which a fluorescent substance was added and F1-expressing C127 cells were co-cultured and observed with a fluorescence microscope after passage after 2 days to 2 weeks. It was observed that hematopoietic stem cells were submerged under C127 cells and amplified. Figure 2 shows the amplified mouse hematopoietic stem cells taken by forcing the feeder cells to detach with forceps. The presence of feeder cells may be necessary for hematopoietic stem cells to proliferate Suggests sex.
実施例 3  Example 3
[0025] 造血幹細胞として、ヒト臍帯血からの CD34陽性 CD38弱陽性細胞を FACSを用いて 収集し、マウス造血幹細胞 (KSL細胞)を用いて実施例 2と同様に、マウス F1発現フィ ーダー細胞で共培養し、ヒト CD34陽性細胞が増幅して ヽることが観察された (結果は 省略する)。  [0025] As hematopoietic stem cells, CD34-positive CD38 weakly-positive cells from human umbilical cord blood were collected using FACS, and mouse hematopoietic stem cells (KSL cells) were used as mouse F1-expressing feeder cells in the same manner as in Example 2. After co-culture, human CD34 positive cells were observed to be amplified (results omitted).
実施例 4  Example 4
[0026] マウス F1遺伝子(配列番号 4)のヒト 'ホモログを RT-PCRによってヒト骨髄細胞より単 離し、 pcDNA3.1に導入した。ヒト F1遺伝子 (配列番号 2)はマウスとアミノ酸配列で 92. 6%同一であった。  [0026] The human homologue of the mouse F1 gene (SEQ ID NO: 4) was isolated from human bone marrow cells by RT-PCR and introduced into pcDNA3.1. The human F1 gene (SEQ ID NO: 2) was 92.6% identical in amino acid sequence with the mouse.
このヒト F1遺伝子 (配列番号 2)を発現した C127フィーダ一細胞を用いて、ヒト臍帯 血由来 CD34陽性 CD38弱陽性細胞及びマウス KSL細胞を造血幹細胞として、実施 例 2と同様に増幅実験を行ったが、マウス F1発現フィーダ一細胞と同じ増幅能が観 察された (結果は省略する)。  Using a C127 feeder cell expressing this human F1 gene (SEQ ID NO: 2), amplification experiments were performed in the same manner as in Example 2 using human umbilical cord blood-derived CD34 positive CD38 weakly positive cells and mouse KSL cells as hematopoietic stem cells. However, the same amplification ability as that of a mouse F1-expressing feeder cell was observed (results omitted).
マウス F1及びヒト F1でも種を越えてマウス及びヒト造血幹細胞が増幅できた。  Mouse F1 and human F1 were able to amplify mouse and human hematopoietic stem cells across species.
実施例 5  Example 5
[0027] F1は 4回膜貫通型の膜タンパク質であることが分力つたので、 F1の細胞膜外ドメイ ンだけを用いて造血幹細胞の増幅能を調べた。  [0027] Since F1 is a four-transmembrane membrane protein, the ability to amplify hematopoietic stem cells was examined using only the F1 extracellular domain.
ヒト F1 (配列番号 1)の細胞外ドメインのペプチド(アミノ酸 22- 60のペプチド、及び、 アミノ酸 117-134又は 121-134のペプチド、の 2力所)を作成してアツセィした。各ぺプ チドミックス又は各アミノ酸の融合ペプチド (直接結合させたタイプと、 Gly-Gly-Ser-G ly-Gly-Ser (配列番号 5)のスぺーサーを付けて結合したタイプ)を C127細胞共存下 にお 、て添加し培養したところ、造血幹細胞の増幅が弱!、ながら観察できた。  A peptide of the extracellular domain of human F1 (SEQ ID NO: 1) (the two strengths of amino acid 22-60 peptide and amino acid 117-134 or 121-134 peptide) was prepared and assembled. C127 cells coexist with each peptide mix or fusion peptide of each amino acid (directly bound type and bound with Gly-Gly-Ser-Gly-Gly-Ser (SEQ ID NO: 5) spacer) Below, when added and cultured, hematopoietic stem cell amplification was weak!
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]造血幹細胞の増幅効率を示す図である。横軸は培養時間を示す。マウス造血 幹細胞(KSL細胞 c-Kit+Scal+Lin— CD341<>W/—細胞)をマウス Fl発現フィーダ一細胞と 共培養し、 FACSにより増幅した C-Kit+Scal+細胞をカウントした。増幅効率は培養前 後の細胞数の比で表す。 FIG. 1 is a graph showing the amplification efficiency of hematopoietic stem cells. The horizontal axis indicates the culture time. Mouse hematopoietic stem cells (KSL cells c-Kit + Scal + Lin—CD34 1 <> W / —cells) were co-cultured with mouse Fl-expressing feeder cells, and C- Kit + Scal + cells amplified by FACS were counted. Amplification efficiency is before culture It is expressed as a ratio of the number of cells later.
[図 2]F1発現フィーダ一細胞の下で増幅したマウスの造血幹細胞の写真である。フィ ーダー細胞を物理的に剥がして撮影した。  FIG. 2 is a photograph of mouse hematopoietic stem cells amplified under one F1-expressing feeder cell. The feeder cells were physically removed and photographed.

Claims

請求の範囲 The scope of the claims
[I] 4回膜貫通型の膜タンパク質 EMP— 3から成る哺乳動物の造血幹細胞を増幅する 自己複製因子。  [I] A self-replicating factor that amplifies mammalian hematopoietic stem cells consisting of the four-transmembrane protein EMP-3.
[2] 配列番号 1若しくは配列番号 3に示すアミノ酸配列からなるタンパク質、又は配列番 号 1若しくは配列番号 3に示すアミノ酸配列において 1若しくは数個のアミノ酸が欠失 、置換若しくは付加されたアミノ酸配列からなり、哺乳動物の造血幹細胞の増幅能を 有するタンパク質力 成る哺乳動物の造血幹細胞を増幅する自己複製因子。  [2] From a protein consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3, or an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3. A self-replicating factor that amplifies mammalian hematopoietic stem cells, consisting of a protein having the ability to amplify mammalian hematopoietic stem cells.
[3] 4回膜貫通型の膜タンパク質 EMP— 3の 2力所の細胞膜外領域のペプチドのいずれ 力 若しくはこれらの混合物、又はこれら 2つのペプチドをスぺーサーを介して若しく は介さないで結合させたペプチドから成る哺乳動物の造血幹細胞を増幅する自己複 製因子。  [3] Four-transmembrane protein EMP-3, the force of any of the peptides in the extracellular domain of the two strengths, or a mixture of these, or these two peptides via a spacer. Self-replicating factor that amplifies mammalian hematopoietic stem cells consisting of conjugated peptides.
[4] 前記膜タンパク質 EMP— 3が、配列番号 1若しくは配列番号 3に示すアミノ酸配列か らなるタンパク質、又は配列番号 1若しくは配列番号 3に示すアミノ酸配列において 1 若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、哺乳 動物の造血幹細胞の増幅能を有するタンパク質である請求項 3に記載の自己複製 因子。  [4] The membrane protein EMP-3 is a protein consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3, or one or several amino acids are deleted in the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3, 4. The self-replicating factor according to claim 3, wherein the self-replicating factor is a protein that also has a substituted or added amino acid sequence ability and has an ability to amplify mammalian hematopoietic stem cells.
[5] 前記 2力所の細胞膜外領域のペプチドが、ヒト膜タンパク質 EMP— 3 (配列番号 1)の アミノ酸番号 22〜60のペプチド及びアミノ酸番号 117〜134若しくは 121〜134のぺプ チド、又はヒト以外の膜タンパク質 EMP— 3の場合にはこれらに相当する 2つのぺプ チドである請求項 3又は 4に記載の自己複製因子。  [5] The peptide in the extracellular domain of the two strengths is a peptide of amino acid numbers 22 to 60 and a peptide of amino acid numbers 117 to 134 or 121 to 134 of human membrane protein EMP-3 (SEQ ID NO: 1), or The self-replicating factor according to claim 3 or 4, which is two peptides corresponding to these non-human membrane protein EMP-3.
[6] 前記哺乳動物がヒトである請求項 1〜5のいずれか一項に記載の自己複製因子。  6. The self-replicating factor according to any one of claims 1 to 5, wherein the mammal is a human.
[7] 哺乳動物の造血幹細胞を請求項 1〜6のいずれか一項に記載の自己複製因子の存 在下で、無血清培地で培養することから成る造血幹細胞の増幅方法。  [7] A method for amplifying hematopoietic stem cells, comprising culturing mammalian hematopoietic stem cells in a serum-free medium in the presence of the self-replicating factor according to any one of claims 1 to 6.
[8] 少なくとも 1種の造血因子又は細胞刺激因子の存在下及び血清非存在下で培養を 行なう請求項 7に記載の方法。  8. The method according to claim 7, wherein the culture is performed in the presence of at least one hematopoietic factor or cell stimulating factor and in the absence of serum.
[9] 前記哺乳動物がヒトである請求項 7又は 8に記載の方法。  9. The method according to claim 7 or 8, wherein the mammal is a human.
[10] 前記自己複製因子を培地に添加する請求項 7〜9のいずれか一項に記載の方法。  [10] The method according to any one of [7] to [9], wherein the self-replicating factor is added to a medium.
[II] 前記自己複製因子を培地に添加し、前記造血幹細胞をフィーダ一細胞と無血清培 地で共培養する請求項 7〜9のいずれか一項に記載の方法。 [II] The self-replicating factor is added to a medium, and the hematopoietic stem cells are cultured with a feeder cell and serum-free. The method according to any one of claims 7 to 9, wherein the co-culture is performed on the ground.
[12] 前記造血幹細胞を前記自己複製因子を発現するフィーダ一細胞と無血清培地で共 培養する請求項 7〜9のいずれか一項に記載の方法。 12. The method according to any one of claims 7 to 9, wherein the hematopoietic stem cells are co-cultured with a feeder cell expressing the self-replicating factor in a serum-free medium.
[13] 前記フィーダ一細胞が無血清下で生存可能なヒト由来細胞である請求項 11又は 12 に記載の方法。 [13] The method according to [11] or [12], wherein the feeder cell is a human-derived cell that can survive under serum-free condition.
[14] 請求項 7〜 13のいずれかの方法によって増幅された造血幹細胞。  [14] A hematopoietic stem cell amplified by the method according to any one of claims 7 to 13.
[15] 請求項 1〜6のいずれか一項に記載の自己複製因子を含み、血清を含まない造血 幹細胞培養用の培地。  [15] A medium for culturing hematopoietic stem cells containing the self-replicating factor according to any one of claims 1 to 6 and not containing serum.
[16] 更に、フィーダ一細胞を含む請求項 15に記載の培地。 16. The medium according to claim 15, further comprising a feeder cell.
[17] 更に、少なくとも 1種の造血因子又は細胞刺激因子を含む請求項 15又は 16に記載 の培地。  17. The medium according to claim 15 or 16, further comprising at least one hematopoietic factor or cell stimulating factor.
[18] 前記フィーダ一細胞が無血清下で生存可能なヒト由来細胞である請求項 16に記載 の培地。  18. The medium according to claim 16, wherein the feeder cell is a human-derived cell that can survive under serum-free conditions.
[19] (1)〜(4)の!、ずれかのタンパク質又はペプチドをコードする DNAが導入されたフィー ダー細胞。  [19] A feeder cell into which DNA encoding a protein or peptide of any one of (1) to (4) is introduced.
(1) 4回膜貫通型の膜タンパク質 EMP— 3  (1) Four-time transmembrane protein EMP-3
(2)配列番号 1若しくは配列番号 3に示すアミノ酸配列からなるタンパク質、又は配列 番号 1若しくは配列番号 3に示すアミノ酸配列において 1若しくは数個のアミノ酸が欠 失、置換若しくは付加されたアミノ酸配列からなり、哺乳動物の造血幹細胞の増幅能 を有するタンパク質  (2) A protein consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3, or an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3. , A protein capable of amplifying mammalian hematopoietic stem cells
(3) 4回膜貫通型の膜タンパク質 EMP— 3の 2力所の細胞膜外領域のペプチドの ヽ ずれか、若しくはこれらの混合物、又はこれら 2つのペプチドをスぺーサーを介して若 しくは介さな 、で結合させたペプチド  (3) Four-transmembrane membrane protein EMP-3, one of the two peptides in the extracellular domain, or a mixture of these, or these two peptides via a spacer. Peptide bound with
(4) (3)の細胞膜外領域のペプチドが、ヒト膜タンパク質 EMP— 3 (配列番号 1)のァ ミノ酸番号 22〜60のペプチド及びアミノ酸番号 117〜134若しくは 121〜134のぺプチ ド、又はヒト以外の膜タンパク質 EMP— 3の場合にはこれらに相当する 2つのべプチ ド、  (4) The peptide in the extracellular region of (3) is a peptide of amino acid number 22 to 60 of human membrane protein EMP-3 (SEQ ID NO: 1) and a peptide of amino acid number 117 to 134 or 121 to 134, Or, in the case of non-human membrane protein EMP-3, two corresponding peptides,
[20] 更に、少なくとも 1種の造血因子又は細胞刺激因子をコードする DNAを導入した請求 項 19に記載のフィーダ一細胞。 [20] Furthermore, a request for introducing DNA encoding at least one hematopoietic factor or cell stimulating factor Item 20. A feeder cell according to Item 19.
PCT/JP2006/301838 2005-02-10 2006-02-03 Self-replication factor and amplification method of hematopoietic stem cell WO2006085482A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007502582A JPWO2006085482A1 (en) 2005-02-10 2006-02-03 Self-renewal factor and amplification method of hematopoietic stem cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005033909 2005-02-10
JP2005-033909 2005-02-10

Publications (1)

Publication Number Publication Date
WO2006085482A1 true WO2006085482A1 (en) 2006-08-17

Family

ID=36793056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301838 WO2006085482A1 (en) 2005-02-10 2006-02-03 Self-replication factor and amplification method of hematopoietic stem cell

Country Status (2)

Country Link
JP (1) JPWO2006085482A1 (en)
WO (1) WO2006085482A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095029A1 (en) * 2018-11-05 2020-05-14 Nhs Blood & Transplant Method for producing erythroid cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011219A1 (en) * 1996-09-11 1998-03-19 Incyte Pharmaceuticals, Inc. Disease associated membrane protein (damp)
WO2000035473A2 (en) * 1998-12-18 2000-06-22 Scios Inc. Methods for detection and use of differentially expressed genes in disease states
JP2002513280A (en) * 1997-01-13 2002-05-08 ジェネティックス・インスチチュート・インコーポレーテッド Secreted proteins and polynucleotides encoding them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011219A1 (en) * 1996-09-11 1998-03-19 Incyte Pharmaceuticals, Inc. Disease associated membrane protein (damp)
JP2002513280A (en) * 1997-01-13 2002-05-08 ジェネティックス・インスチチュート・インコーポレーテッド Secreted proteins and polynucleotides encoding them
WO2000035473A2 (en) * 1998-12-18 2000-06-22 Scios Inc. Methods for detection and use of differentially expressed genes in disease states

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BEN-PORATH I. ET AL.: "Characterization of a tumor-associated gene, a member of a novel family of genes encoding membrane glycoproteins", GENE, vol. 183, 1996, pages 69 - 75, XP004062729 *
BOLIN L.M. ET AL.: "HNMP-1: A novel hematopoietic and neural membrane protein differentially regulated in neural development and injury", J. NEUROSCI., vol. 17, no. 14, 1997, pages 5493 - 5502, XP002048248 *
REYA T. ET AL.: "A role for Wnt signalling in self-renewal of haematopoietic stem cells", NATURE, vol. 423, 2003, pages 409 - 414, XP002975077 *
TAYLOR V. ET AL.: "Epithelial membrane protein-2 and epithelial membrane protein-3: two novel members of the peripheral myelin protein 22 gene family", GENE, vol. 175, 1996, pages 115 - 120, XP004043302 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095029A1 (en) * 2018-11-05 2020-05-14 Nhs Blood & Transplant Method for producing erythroid cells

Also Published As

Publication number Publication date
JPWO2006085482A1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
US8143059B2 (en) Method for identification of cell growth or differentiation factors
KR102510368B1 (en) Hemangio-colony forming cells
US20190002828A1 (en) Methods for producing enucleated erythroid cells derived from pluripotent stem cells
US5914268A (en) Embryonic cell populations and methods to isolate such populations
KR101445337B1 (en) Isolation and purification of hematopoietic stem cells from post-liposuction lipoaspirates
KR102292843B1 (en) Induced pluripotent stem cell(iPSC) derived natural killer cell and its use
US20050221482A1 (en) Methods and compositions for obtaining hematopoietic stem cells derived from embryonic stem cells and uses thereof
KR20040023724A (en) Process for Preparing Hematopoietic Stem Cells
CA3109546A1 (en) Generation of hematopoietic progenitor cells from human pluripotent stem cells
JP2014036651A (en) Manufacturing method of human erythrocyte precursor cell line and human enucleated erythrocyte
WO2012133948A1 (en) Composition for allotransplantation cell therapy, said composition containing ssea-3 positive pluripotent stem cell capable of being isolated from body tissue
WO2020227885A1 (en) Genetically engineered red blood cells carrying anti-pd-1 single-chain antibody and preparation method therefor
JP5511039B1 (en) Method for preparing NK cells
Perlingeiro et al. A role for thrombopoietin in hemangioblast development
JP2022172252A (en) Methods of improving hematopoietic grafts
Lai et al. Human pluripotent stem cell-derived eosinophils reveal potent cytotoxicity against solid tumors
WO2019127664A1 (en) Multipotent stem cells and differentiated t-cells and use thereof
JP6164650B2 (en) Method for preparing NK cells
Xie et al. Marrow mesenchymal stem cells transduced with TPO/FL genes as support for ex vivo expansion of hematopoietic stem/progenitor cells
KR101027288B1 (en) Stat3 activated stem cell
WO2006085482A1 (en) Self-replication factor and amplification method of hematopoietic stem cell
JP2007238473A (en) Factor for promoting maintenance and amplification of hematopoietic stem cell and method for amplification of hematopoietic stem cell
JPWO2005056778A1 (en) Method of inhibiting or proliferating hematopoietic stem cells
WO2021200901A1 (en) T cell progenitor production method
WO2024073665A1 (en) Scalable expansion of cd71+ erythroid progenitor cells for cell therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007502582

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712981

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712981

Country of ref document: EP