KR102292843B1 - Induced pluripotent stem cell(iPSC) derived natural killer cell and its use - Google Patents
Induced pluripotent stem cell(iPSC) derived natural killer cell and its use Download PDFInfo
- Publication number
- KR102292843B1 KR102292843B1 KR1020200186564A KR20200186564A KR102292843B1 KR 102292843 B1 KR102292843 B1 KR 102292843B1 KR 1020200186564 A KR1020200186564 A KR 1020200186564A KR 20200186564 A KR20200186564 A KR 20200186564A KR 102292843 B1 KR102292843 B1 KR 102292843B1
- Authority
- KR
- South Korea
- Prior art keywords
- cells
- added
- medium
- culturing
- cell
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0646—Natural killers cells [NK], NKT cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/125—Stem cell factor [SCF], c-kit ligand [KL]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/155—Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/165—Vascular endothelial growth factor [VEGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
- C12N2501/2307—Interleukin-7 (IL-7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
- C12N2501/2313—Interleukin-13 (IL-13)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
- C12N2501/2315—Interleukin-15 (IL-15)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/26—Flt-3 ligand (CD135L, flk-2 ligand)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/45—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biochemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Developmental Biology & Embryology (AREA)
- Virology (AREA)
- Epidemiology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
본 발명은 역분화줄기세포(iPSC) 유래 자연 살해 세포(Natural Killer Cell; "NK 세포"), 이의 용도 및 이의 제조 방법에 관한 것이다. The present invention relates to iPSC-derived natural killer cells (“NK cells”), uses thereof, and methods for preparing the same.
NK세포는 면역 반응에 관여하는 림프계 세포이다. 이들의 세포는 다양한 기능을 가지고 있으며, 특히 종양 세포, 발암성 형질 전환을 가진 세포 및 다른 비정상적인 세포를 생체 내에서 사멸하는 기능을 갖고 있으며, 선천성 면역계의 중요한 구성 성분이다.NK cells are lymphoid cells involved in immune responses. These cells have various functions, and in particular, have the function of killing tumor cells, cells with oncogenic transformation, and other abnormal cells in vivo, and are important components of the innate immune system.
NK세포는 MHC 클래스 I분자를 발현하는 정상세포는 공격하지 않고 MHC 클래스 I분자의 발현이 저하되거나 결손된 세포를 주로 공격한다. 암 세포나 바이러스에 감염된 세포에서는 MHC 클래스 I분자의 발현이 저하되기 때문에, NK세포는 이들 세포를 공격할 수 있다. 따라서 암 및 감염증의 세포 치료법으로 동종(allogenic) NK세포를 이용하면, 표적 세포를 인식하기 위해 NK세포를 미리 면역할 필요가 없으며, 이식편대숙주질환(Graft-versus-host disease; GVHD)의 부작용을 회피할 수 있는 이점이 있다. 실제 암 환자를 수용자로 하고, 그 수용자와 근친 관계에 있는 정상인 공여자(donor)의 신선한 말초혈액단핵세포(PBMC)로부터 얻어진 NK세포를 농축한 후 이식했을 때, 이식된 NK세포는 수용체에 부작용을 일으키지 않고 단기간 생존하였으며 세포 살해 활성을 유지하였다(비특허문헌 1 및 2 참조). 그러나 NK세포의 이식 요법의 유효성을 나타내는 임상시험은 아직 보고된 바 없다.NK cells do not attack normal cells expressing MHC class I molecules, but mainly attack cells with reduced or deficient MHC class I molecule expression. Since the expression of MHC class I molecules is decreased in cancer cells or virus-infected cells, NK cells can attack these cells. Therefore, when allogenic NK cells are used as a cell therapy for cancer and infections, there is no need to immunize the NK cells in advance to recognize the target cells, and there is a side effect of graft-versus-host disease (GVHD). has the advantage of avoiding it. When an actual cancer patient is a recipient and NK cells obtained from fresh peripheral blood mononuclear cells (PBMCs) from a normal donor who are close to the recipient are concentrated and then transplanted, the transplanted NK cells have no adverse effects on the recipient. It survived for a short time without causing a cell killing activity (see
최근에는 공여자로부터 NK 세포를 얻는 대신, 생체외에서 NK 세포를 배양시키는 기술이 개발되고 있다. 특히 NK세포를 이용한 획득성 면역 요법을 위해서는, NK 세포 집단을 효과적이고 효율적으로 확대 배양함과 동시에, 이들의 기능성(살상능, 수송능, 국재화, 지속 및 증식)을 생체 내에 있어서 유지하고 강화하기 위한 보다 개선된 방법의 필요성이 요구된다.Recently, instead of obtaining NK cells from a donor, a technique for culturing NK cells in vitro has been developed. In particular, for acquired immunotherapy using NK cells, NK cell populations are effectively and efficiently expanded and cultured, and their functions (killing capacity, transport capacity, localization, persistence and proliferation) are maintained and strengthened in vivo. There is a need for a more improved method for doing so.
NK 세포가 임상적으로 면역 증강이 필요한 질환에 사용될 수 있음에도 불구하고, NK 세포를 체외에서 배양 및 증식하는 것이 어렵기 때문에 면역 세포 치료제로서 사용하는 것에는 여전히 어려움이 있다. Although NK cells can be clinically used for diseases requiring immune enhancement, there are still difficulties in using them as immune cell therapeutics because it is difficult to culture and proliferate NK cells in vitro.
이에 따라, 본 발명에서는 NK 세포의 제조 방법, 구체적으로는, 역분화줄기세포(induced pluripotent stem cell, "iPSC")로부터 유래된 NK 세포를 제조하는 방법을 제공하고자 한다.Accordingly, the present invention intends to provide a method for producing NK cells, specifically, a method for producing NK cells derived from induced pluripotent stem cells (“iPSCs”).
또한 본 발명은 상기 방법으로 제조된 NK 세포 및 이의 세포치료제로서의 용도를 제공하고자 한다. In addition, the present invention is to provide a NK cell prepared by the above method and its use as a cell therapy agent.
본 발명은 역분화줄기세포로부터 유래된 NK 세포의 제조 방법을 제공한다. 본 발명의 제조 방법은 하기 단계를 포함하는 것일 수 있다.The present invention provides a method for producing NK cells derived from retrodifferentiated stem cells. The manufacturing method of the present invention may include the following steps.
(a) 역분화줄기세포를 플레이트에 시딩(seeding)하여 배양하는 단계; (a) culturing by seeding the retrodifferentiated stem cells on a plate;
(b) 상기 배양된 세포를 골형성단백질4(BMP4)가 첨가된 배지로 교체하여 배양하는 단계; (b) culturing by replacing the cultured cells with a medium to which bone morphogenetic protein 4 (BMP4) is added;
(c) 상기 (b) 단계의 배양된 세포를 혈관내피세포성장인자(VEGF) 및 염기성 섬유 아세포성장인자(bFGF)가 첨가된 배지로 교체하여 배양하는 단계; (c) culturing by replacing the cultured cells of step (b) with a medium to which vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are added;
(d) 상기 (c) 단계의 배양된 세포를 SB431542, 혈관내피세포성장인자(VEGF), 및 염기성 섬유 아세포성장인자(bFGF)가 첨가된 배지로 교체하여 배양하는 단계; (d) culturing by replacing the cultured cells of step (c) with a medium to which SB431542, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) are added;
(e) 상기 (d) 단계의 배양된 세포를 인터루킨-3(IL-3), 줄기세포인자(SCF), 인터루킨-7(IL-7), 인터루킨-15(IL-15) 및 FMS 유사 티로신 키나제 3 리간드(FLT-3L)이 첨가된 배지로 교체하여 배양하는 단계; 및(e) interleukin-3 (IL-3), stem cell factor (SCF), interleukin-7 (IL-7), interleukin-15 (IL-15) and FMS-like tyrosine in the cultured cells of step (d) culturing by replacing the medium with the
(f) 상기 (e) 단계의 배양된 세포를 줄기세포인자(SCF), 인터루킨-7(IL-7), 인터루킨-15(IL-15) 및 FMS 유사 티로신 키나제 3 리간드(FLT-3L)이 첨가된 배지로 교체하여 배양하는 단계.(f) Stem cell factor (SCF), interleukin-7 (IL-7), interleukin-15 (IL-15) and FMS-
본 발명의 상기 제조 방법은, The manufacturing method of the present invention,
(i) 단계 (b)에서 BMP4가 30 내지 70 ng/mL, 예컨대 50 ng/mL의 농도로 첨가되거나,(i) in step (b) BMP4 is added at a concentration of 30 to 70 ng/mL, such as 50 ng/mL,
(ii) 단계 (c)에서 VEGF 및 bFGF가 각각 30 내지 70 ng/mL, 예컨대 50 ng/mL의 농도로 첨가되거나,(ii) in step (c) VEGF and bFGF are each added at a concentration of 30 to 70 ng/mL, such as 50 ng/mL, or
(iii) 단계 (d)에서 SB431542가 5 내지 50 μM, 예컨대 20 μM, VEGF가 30 내지 70 ng/mL, 예컨대 50 ng/mL, bFGF가 30 내지 70 ng/mL, 예컨대 50 ng/mL의 농도로 첨가되거나,(iii) in step (d) at a concentration of 5-50 μM, such as 20 μM, for SB431542, 30 to 70 ng/mL, such as 50 ng/mL, for VEGF, 30 to 70 ng/mL, such as 50 ng/mL, for bFGF or added to
(iv) 단계 (e)에서 IL-3, SCF, IL-7, IL-15 및 FLT-3L가 각각 30 내지 70 ng/mL, 예컨대 50 ng/mL의 농도로 첨가되거나, 또는(iv) in step (e) IL-3, SCF, IL-7, IL-15 and FLT-3L are each added at a concentration of 30 to 70 ng/mL, such as 50 ng/mL, or
(v) 단계 (f)에 있어서, SCF, IL-7, IL-15 및 FLT-3L가 각각 30 내지 70 ng/mL, 예컨대 50 ng/mL의 농도로 첨가되는 것일 수 있다.(v) In step (f), SCF, IL-7, IL-15 and FLT-3L may be added at a concentration of 30 to 70 ng/mL, for example, 50 ng/mL, respectively.
또다른 실시태양에서 본 발명의 상기 제조 방법은, In another embodiment, the manufacturing method of the present invention comprises:
(i) 단계 (b)에서 상기 세포를 1 내지 5일 동안 배양하거나, (i) culturing the cells in step (b) for 1 to 5 days, or
(ii) 단계 (c)에서 상기 세포를 1 내지 5일 동안 배양하거나, (ii) culturing the cells in step (c) for 1 to 5 days, or
(iii) 단계 (d)에서 상기 세포를 1 내지 5일 동안 배양하거나, (iii) culturing the cells in step (d) for 1 to 5 days, or
(iv) 단계 (e)에서 상기 세포를 3 내지 10일 동안 배양하거나, 또는(iv) culturing said cells in step (e) for 3 to 10 days, or
(v) 단계 (f)에서 상기 세포를 10 내지 30일 동안 배양하는 것일 수 있다.(v) it may be to culture the cells in step (f) for 10 to 30 days.
또다른 실시태양에서 본 발명은 하기 단계를 포함하는, 역분화줄기세포로부터 유래된 NK 세포의 제조 방법을 제공한다.In another embodiment, the present invention provides a method for producing NK cells derived from idiopathic stem cells, comprising the following steps.
(e) 역분화줄기세포로부터 배양된 세포를 인터루킨-3(IL-3), 줄기세포인자(SCF), 인터루킨-7(IL-7), 인터루킨-15(IL-15) 및 FMS 유사 티로신 키나제 3 리간드(FLT-3L)이 첨가된 배지로 교체하여 배양하는 단계; 및(e) interleukin-3 (IL-3), stem cell factor (SCF), interleukin-7 (IL-7), interleukin-15 (IL-15) and FMS-
(f) 상기 배양된 세포를 줄기세포인자(SCF), 인터루킨-7(IL-7), 인터루킨-15(IL-15) 및 FMS 유사 티로신 키나제 3 리간드(FLT-3L)이 첨가된 배지로 교체하여 배양하는 단계.(f) replacing the cultured cells with a medium supplemented with stem cell factor (SCF), interleukin-7 (IL-7), interleukin-15 (IL-15) and FMS-
본 발명은 또한 상기 제조 방법에 따라 제조된 NK 세포, 및 상기 NK 세포를 포함하는 암 치료 또는 예방용 제약 조성물을 제공한다.The present invention also provides NK cells prepared according to the above production method, and a pharmaceutical composition for treating or preventing cancer comprising the NK cells.
본 발명에 따른 iPSC 유래 NK 세포의 제조 방법은 소량의 iPSC로부터 NK 세포를 효과적으로 증식시킬 수 있어, NK 세포의 대량 생산에 유용하게 사용될 수 있다. The method for producing iPSC-derived NK cells according to the present invention can effectively proliferate NK cells from a small amount of iPSCs, and thus can be usefully used for mass production of NK cells.
또한 본 발명에 따라 제조된 NK 세포는 우수한 세포살상능을 나타내어, 다양한 면역 세포 치료 분야에서 유용하게 사용될 수 있다. In addition, the NK cells prepared according to the present invention exhibit excellent cell killing ability, and can be usefully used in various immune cell therapy fields.
도 1은 실시예 1에 따라 iPSC부터 NK 세포를 제조하는 일 실시태양을 나타낸다.
도 2는 실시예 1의 각 단계에서 생성된 세포를 광학 현미경으로 촬영한 사진이다.
도 3 및 4는 본 발명에 따라 제조된 NK 세포의 암세포 살상능을 나타낸다.1 shows an embodiment of preparing NK cells from iPSCs according to Example 1.
2 is a photograph taken with an optical microscope of the cells generated in each step of Example 1.
3 and 4 show the cancer cell killing ability of NK cells prepared according to the present invention.
본 발명은 하기 단계 중 하나 이상의 단계를 포함하는, 역분화줄기세포로부터 유래된 자연 살해 세포의 제조 방법을 제공한다. The present invention provides a method for producing natural killer cells derived from immunized stem cells, comprising one or more of the following steps.
(a) 역분화줄기세포를 플레이트에 시딩(seeding)하여 배양하는 단계; (a) culturing by seeding the retrodifferentiated stem cells on a plate;
(b) 상기 배양된 세포를 골형성단백질4(BMP4)가 첨가된 배지로 교체하여 배양하는 단계; (b) culturing by replacing the cultured cells with a medium to which bone morphogenetic protein 4 (BMP4) is added;
(c) 상기 (b) 단계의 배양된 세포를 혈관내피세포성장인자(VEGF) 및 염기성 섬유 아세포성장인자(bFGF)가 첨가된 배지로 교체하여 배양하는 단계; (c) culturing by replacing the cultured cells of step (b) with a medium to which vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are added;
(d) 상기 (c) 단계의 배양된 세포를 SB431542, 혈관내피세포성장인자(VEGF), 및 염기성 섬유 아세포성장인자(bFGF)가 첨가된 배지로 교체하여 배양하는 단계; (d) culturing by replacing the cultured cells of step (c) with a medium to which SB431542, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) are added;
(e) 상기 (d) 단계의 배양된 세포를 인터루킨-3(IL-3), 줄기세포인자(SCF), 인터루킨-7(IL-7), 인터루킨-15(IL-15) 및 FMS 유사 티로신 키나제 3 리간드(FLT-3L)이 첨가된 배지로 교체하여 배양하는 단계; 및(e) interleukin-3 (IL-3), stem cell factor (SCF), interleukin-7 (IL-7), interleukin-15 (IL-15) and FMS-like tyrosine in the cultured cells of step (d) culturing by replacing the medium with the
(f) 상기 (e) 단계의 배양된 세포를 줄기세포인자(SCF), 인터루킨-7(IL-7), 인터루킨-15(IL-15) 및 FMS 유사 티로신 키나제 3 리간드(FLT-3L)이 첨가된 배지로 교체하여 배양하는 단계.(f) Stem cell factor (SCF), interleukin-7 (IL-7), interleukin-15 (IL-15) and FMS-
본원에서 사용된 용어 "자연 살해 세포" 또는 "NK 세포"는 바이러스, 박테리아 및 기생충의 감염과 비정상적인 자가세포(암세포 등)를 제거하는 체내 1차 방어(선천면역) 기능을 수행하는 핵심 선천면역세포이다. NK 세포는 골수, 림프절, 비장, 편도선 및 흉선에서 분화되고 성숙하여 순환계로 진입하는 것으로 알려져 있다. NK 세포는 표현형, 기원 및 각각의 이펙터 기능 측면에서 자연 살해 T 세포 (NKT)와 다르며, 종종 NKT 세포 활성은 IFNγ를 분비함으로써 NK 세포 활성을 촉진시킨다. NKT 세포와 달리, NK 세포는 T-세포 항원 수용체 (TCR) 또는 pan T 마커 CD3 또는 표면 면역글로불린 (Ig) B 세포 수용체를 발현하지 않지만, 일반적으로 인간에서 표면 마커 CD16 (FcγRIII) 및 CD56을 발현하고, C57BL/6 마우스에서 NK1.1 또는 NK1.2를 발현한다. As used herein, the term "natural killer cell" or "NK cell" refers to a core innate immune cell that performs the primary defense (innate immunity) function in the body to eliminate infection of viruses, bacteria and parasites and abnormal autologous cells (cancer cells, etc.) am. NK cells are known to differentiate and mature in the bone marrow, lymph nodes, spleen, tonsils and thymus to enter the circulation. NK cells differ from natural killer T cells (NKTs) in terms of phenotype, origin and respective effector functions, and often NKT cell activity promotes NK cell activity by secreting IFNγ. Unlike NKT cells, NK cells do not express the T-cell antigen receptor (TCR) or the pan T marker CD3 or the surface immunoglobulin (Ig) B cell receptor, but generally do express the surface markers CD16 (FcγRIII) and CD56 in humans. and express NK1.1 or NK1.2 in C57BL/6 mice.
본원에서 사용된 용어 "역분화줄기세포"는 영문으로 "induced Pluripotent Stem Cells" 또는 이의 약어 iPSC로도 불리며, "유도만능줄기세포"라고도 불린다. iPSC는 줄기세포가 아닌 다분화된 체세포에 인위적인 자극을 통해 만능분화능 (pluripotency), 즉, 우리 몸을 이루는 모든 세포로 분화 가능한 배아 줄기 세포와 같은 분화능력을 가지게 된 세포를 의미한다. As used herein, the term “immunely differentiated stem cells” is also called “induced Pluripotent Stem Cells” or its abbreviation iPSC in English, and is also called “induced pluripotent stem cells”. iPSC refers to a cell that has pluripotency, i.e., the ability to differentiate into all cells of our body, like embryonic stem cells, through artificial stimulation of multidifferentiated somatic cells, not stem cells.
iPSC를 제조하는 방법은 당업계에 주지된 방법을 사용할 수 있다. 예를 들어 섬유아세포(fibroblast)를 배양한 뒤 레트로바이러스(retrovirus)를 사용하여 재프로그래밍 인자, 예컨대 Oct4, Sox2, Klf4, c-Myc의 4가지 유전자를 섬유아세포에 전달하면 배아줄기세포와 같은 분화능력을 가진 세포덩어리를 형성하는데 이를 iPSC라고 한다. iPSC가 종전의 치료가능한 세포로 알려진 배아줄기세포, 체세포복제배아줄기세포와 다른 점은 이 세포를 제작하기 위해 배아를 희생하지 않아서 윤리적 문제가 없으며, 환자의 체세포를 이용해 제작하여 면역거부반응이 나타나지 않는다는 점이다.Methods for preparing iPSCs may use methods well known in the art. For example, if fibroblasts are cultured and then reprogramming factors, such as Oct4, Sox2, Klf4, and c-Myc, are transferred to fibroblasts using a retrovirus, they differentiate into embryonic stem cells. It forms a mass of cells with ability, which is called iPSC. The difference between iPSCs and embryonic stem cells and somatic cell cloned embryonic stem cells, which are known as treatable cells, is that there is no ethical problem because embryos are not sacrificed to produce these cells. that it doesn't.
본원에서 사용된 용어 "배양"은 시험관내 환경에서 세포 분열을 진행하거나 세포 분열을 진행하지 않는 하나 이상의 세포와 관련될 수 있다. 시험관내 환경은 세포를 시험관내에서 유지하기에 적합한 본 기술분야에 공지된 임의의 배지, 예컨대, 예를 들면 적합한 액체 배지 또는 한천일 수 있다.As used herein, the term “culture” may refer to one or more cells that either undergo cell division or do not undergo cell division in an in vitro environment. The in vitro environment may be any medium known in the art suitable for maintaining cells in vitro, such as, for example, a suitable liquid medium or agar.
단계 (a)에서 iPSC는 다양한 방법을 사용하여 미분화된 상태로 배양되거나 유지될 수 있다. 일 실시태양에서, iPSC는 feeder-free 배양 시스템(feeder-independent culture system), 예컨대 TeSR 배지를 사용하여 미분화된 상태로 배양되어 유지될 수 있다. 본원에 사용된 용어 "feeder (cell)"은 분열 증식하지 못하나 대사활성이 있어, 여러 가지 대사물질을 생산함으로써 목적 세포의 증식을 돕는 세포를 의미한다. In step (a), iPSCs may be cultured or maintained in an undifferentiated state using various methods. In one embodiment, iPSCs can be maintained and cultured in an undifferentiated state using a feeder-independent culture system, such as TeSR medium. As used herein, the term "feeder (cell)" refers to a cell that cannot divide and proliferate but has metabolic activity, thereby helping the proliferation of a target cell by producing various metabolites.
TeSR 배지에는 mTeSR1, TeSR2, 또는 TeSR-E8가 포함되나 이로 제한되는 것은 아니다. 상기 배지에 대한 구체적인 정보는 예컨대 Stemcell Technologies사의 홈페이지에서 확인할 수 있거나 또는 공지된 선행문헌을 통해 이의 사용법을 확인할 수 있다.TeSR medium includes, but is not limited to, mTeSR1, TeSR2, or TeSR-E8. Specific information on the medium can be found, for example, on the homepage of Stemcell Technologies, or its usage can be confirmed through known prior literature.
단계 (a)에 대한 바람직한 feeder-free 배지로는 무혈청 배지(serum-free), 예컨대 mTeSR1을 사용할 수 있다. 완전 mTeSR™1 배지(Basal Medium + 5X Supplement)는 recombinant human basic fibroblast growth factor (rh bFGF) 및 recombinant human transforming growth factor β (rh TGFβ)를 함유하며, 또다른 성장 인자는 요구되지 않는다. A preferred feeder-free medium for step (a) may be a serum-free medium, such as mTeSR1.
다양한 기질 성분이 iPSC를 배양하거나 유지시키기 위해 사용될 수 있다. 예를 들어, 콜라겐 IV, 파이브로넥틴, 라미닌, 및 빈트로넥틴이 iPSC 배양 및 유지를 위한 고체 지지체를 제공하기 위해 사용될 수 있다. 일 구체예에서, Matrigel® 매트릭스, 예컨대 Corning® Matrigel® hESC-Qualified Matrix (Corning Catalog #354277)가 사용될 수 있다. Matrigel®은 마우스 종양 세포에 의해 분비된 젤라틴성 단백질 혼합물로서, 혼합물은 많은 조직에서 볼 수 있는 복합적인 세포외 환경과 비슷하고, 이는 세포 배양을 위한 기질로서 사용된다. 또다른 기질의 예로서 Vitronectin 매트릭스, 예컨대 Vitronectin XF™ (Catalog #07180, a matrix developed and manufactured by Nucleus Biologics)와 함께 사용될 수 있다.A variety of substrate components can be used to culture or maintain iPSCs. For example, collagen IV, fibronectin, laminin, and vintronectin can be used to provide a solid support for iPSC culture and maintenance. In one embodiment, a Matrigel® matrix such as Corning® Matrigel® hESC-Qualified Matrix (Corning Catalog #354277) can be used. Matrigel® is a mixture of gelatinous proteins secreted by mouse tumor cells, the mixture mimics the complex extracellular environment found in many tissues, and serves as a substrate for cell culture. Another example of a substrate may be used with a Vitronectin matrix, such as Vitronectin XF™ (Catalog #07180, a matrix developed and manufactured by Nucleus Biologics).
단계 (a)의 배지는 추가로 ROCK inhibitor를 포함할 수 있다.The medium of step (a) may further contain a ROCK inhibitor.
특정예에서, 단계 (a)에서 iPSC는 mTeSR1 및 ROCK inhibitor를 포함하는 Matrigel-코팅 웰에서 배양될 수 있으며, 이 때 5 x 104 / well로 시딩될 수 있다.In a specific example, in step (a), iPSCs may be cultured in Matrigel-coated wells containing mTeSR1 and ROCK inhibitor, at which time they may be seeded at 5 x 10 4 / well.
일 실시태양에서, iPSC는 또다른 세포, 예컨대 조혈 전구 세포 또는 조혈모세포로 배양되거나 분화될 수 있다. In one embodiment, iPSCs can be cultured or differentiated into other cells, such as hematopoietic progenitor cells or hematopoietic stem cells.
본원에 사용된 용어 "분화"는 덜 특화된 세포가 이것이 분화되지 않고 동일한 조건 하에서 가질 수 있는 것보다 배양액 또는 생체내에서 더 특화된 세포가 될 수 있는 과정을 지칭한다. 특정 조건 하에서, 미분화된 세포(즉, 덜 특화된 세포)에 대한 분화된 세포(즉, 특화된 세포)의 비율은 적어도 약 1%, 5%, 25% 이상일 수 있다.As used herein, the term “differentiation” refers to a process by which a less specialized cell can become a more specialized cell in culture or in vivo than it would have under the same conditions without it being differentiated. Under certain conditions, the ratio of differentiated cells (ie, specialized cells) to undifferentiated cells (ie, less specialized cells) may be at least about 1%, 5%, 25% or more.
iPSC의 다양한 분화 방법에 따라 조혈모세포, 면역 효과기 세포 (예를 들면, T 세포, NK 세포, iNKT 세포), 근세포 (예를 들면, 심근세포), 뉴런, 베타 소도 세포, 신장 세포, 폐 세포, 섬유아세포, 표피 세포, 또는 이로부터 유도된 조직 또는 기관을 포함하는 세포 계통으로 iPSC를 분화시킬 수 있다.According to various differentiation methods of iPSCs, hematopoietic stem cells, immune effector cells (eg T cells, NK cells, iNKT cells), myocytes (eg cardiomyocytes), neurons, beta islet cells, kidney cells, lung cells, iPSCs can be differentiated into cell lineages comprising fibroblasts, epidermal cells, or tissues or organs derived therefrom.
조혈모세포는 종래 알려진 배양 조건을 사용하고 공급 세포를 사용하여 생성시킬 수 있다. 예를 들면, iPSC를 부분적으로, 본질적으로, 또는 완전하게 분리하거나 개별화한 이후, 세포를 정의된 배지에서 추가로 배양하여 조혈 분화를 촉진할 수 있다. 성장 인자의 특정 조합이 실질적으로 조혈모세포 또는 조혈 세포 계통으로의 iPSC 세포의 분화를 촉진할 수 있다. 특정 구현예에서, 성장 인자의 특정 조합의 순차적인 사용은 iPSC의 조혈 분화를 위해 중요하다. 예를 들면, 골형성단백질4(BMP4), 혈관내피세포성장인자(VEGF), 염기성 섬유 아세포성장인자(bFGF), 및 SB431542 중 하나 이상의 조합이 사용될 수 있다.Hematopoietic stem cells can be generated using conventionally known culture conditions and using feeder cells. For example, after partial, essentially, or complete isolation or individualization of iPSCs, the cells can be further cultured in a defined medium to promote hematopoietic differentiation. Certain combinations of growth factors can substantially promote differentiation of iPSC cells into hematopoietic stem cells or hematopoietic cell lineages. In certain embodiments, the sequential use of specific combinations of growth factors is important for the hematopoietic differentiation of iPSCs. For example, a combination of one or more of bone morphogenetic protein 4 (BMP4), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and SB431542 may be used.
특정 실시태양에서, iPSC를 BMP4를 포함하는 배지에서 배양시킨 후, VEGF 및 bFGF를 포함하는 배지에서 배양시킨 다음, SB431542, VEGF 및 bFGF를 포함하는 배지에서 배양시켜 또다른 세포, 예컨대 조혈모세포 또는 조혈 전구 세포로 분화시킬 수 있다. In a specific embodiment, iPSCs are cultured in a medium comprising BMP4, followed by culture in a medium comprising VEGF and bFGF, and then cultured in a medium comprising SB431542, VEGF and bFGF to another cell, such as hematopoietic stem cells or hematopoietic cells. It can differentiate into progenitor cells.
iPSC의 분화용 배지는 당업계에 공지된 분화 배지를 사용할 수 있다. 일 구체예에서, 무혈청이며 동물 성분이 없는 염기성 배지, 예컨대 STEMdiff ™ APEL ™ 배지(Stem Cell Technologies)가 사용될 수 있다. 특히 STEMdiff ™ APEL ™ 배지에 특정 사이토카인이 첨가되는 경우, 조혈 세포로의 직접 분화가 가능하다. 이에 대한 구체적인 프로토콜에 대해서는 Stem Cell Technologies사의 홈페이지에서 확인할 수 있거나 또는 공지된 선행문헌을 통해 이의 사용법을 확인할 수 있다.As a medium for differentiation of iPSCs, a differentiation medium known in the art may be used. In one embodiment, a serum-free and animal component-free basic medium such as STEMdiff™ APEL™ medium (Stem Cell Technologies) can be used. In particular, when specific cytokines are added to STEMdiff ™ APEL ™ medium, direct differentiation into hematopoietic cells is possible. For a specific protocol for this, it can be found on the homepage of Stem Cell Technologies, or its usage can be confirmed through known prior literature.
일 실시태양에서, 본 발명의 NK 세포의 제조 방법은 하기 단계 (b) 내지 (d) 중 하나 이상을 포함할 수 있으며, 예컨대 단계 (b) 내지 (d)를 모두 포함한다. 본 발명의 단계 (b) 내지 (d)에서는 iPSC를 배양한 세포를 또다른 세포, 예컨대 조혈모세포 또는 조혈 전구 세포로 분화시킬 수 있다.In one embodiment, the method for producing NK cells of the present invention may include one or more of the following steps (b) to (d), for example, all of the steps (b) to (d). In steps (b) to (d) of the present invention, the iPSC-cultured cells may be differentiated into other cells, such as hematopoietic stem cells or hematopoietic progenitor cells.
(b) iPSC로부터 배양된 세포를 골형성단백질4(BMP4)가 첨가된 배지로 교체하여 배양하는 단계; (b) culturing cells cultured from iPSCs by replacing them with a medium to which bone morphogenetic protein 4 (BMP4) is added;
(c) 상기 (b) 단계의 배양된 세포를 혈관내피세포성장인자(VEGF) 및 염기성 섬유 아세포성장인자(bFGF)가 첨가된 배지로 교체하여 배양하는 단계; 및(c) culturing by replacing the cultured cells of step (b) with a medium to which vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are added; and
(d) 상기 (c) 단계의 배양된 세포를 SB431542, 혈관내피세포성장인자(VEGF), 및 염기성 섬유 아세포성장인자(bFGF)가 첨가된 배지로 교체하여 배양하는 단계. (d) culturing by replacing the cultured cells of step (c) with a medium to which SB431542, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) are added.
상기 단계 (b)에서 iPSC로부터 배양된 세포는 상기 단계 (a)에서 배양된 세포일 수 있다.The cells cultured from the iPSCs in step (b) may be cells cultured in step (a).
일 실시태양에서, (i) 단계 (b)에서 BMP4가 30 내지 70 ng/mL, 바람직하게는 40 내지 60 ng/mL, 더욱 바람직하게는 50 ng/mL의 농도로 첨가되거나,In one embodiment, (i) in step (b) BMP4 is added at a concentration of 30 to 70 ng/mL, preferably 40 to 60 ng/mL, more preferably 50 ng/mL;
(ii) 단계 (c)에서 VEGF 및 bFGF가 각각 30 내지 70 ng/mL, 바람직하게는 40 내지 60 ng/mL, 더욱 바람직하게는 50 ng/mL의 농도로 첨가되거나,(ii) in step (c) VEGF and bFGF are each added at a concentration of 30 to 70 ng/mL, preferably 40 to 60 ng/mL, more preferably 50 ng/mL,
(iii) 단계 (d)에서 SB431542가 5 내지 50 μM, 바람직하게는 10 내지 40 μM, 더욱 바람직하게는 20 μM, VEGF가 30 내지 70 ng/mL, 바람직하게는 40 내지 60 ng/mL, 더욱 바람직하게는 50 ng/mL, bFGF가 30 내지 70 ng/mL, 바람직하게는 40 내지 60 ng/mL, 더욱 바람직하게는 50 ng/mL의 농도로 첨가될 수 있다. (iii) in step (d) SB431542 is 5 to 50 μM, preferably 10 to 40 μM, more preferably 20 μM, VEGF is 30 to 70 ng/mL, preferably 40 to 60 ng/mL, more Preferably 50 ng/mL, bFGF may be added at a concentration of 30 to 70 ng/mL, preferably 40 to 60 ng/mL, more preferably 50 ng/mL.
단계 (b) 내지 (d)에서 각각의 세포를 1 내지 10일, 바람직하게는 1 내지 5일, 예컨대 2 내지 3일 동안 배양할 수 있다. 예를 들어, 단계 (b)에서는 3일간 배양하고, 단계 (c)에서는 2일간 배양하며, 단계 (d)에서는 2일간 배양할 수 있다.Each of the cells in steps (b) to (d) may be cultured for 1 to 10 days, preferably 1 to 5 days, such as 2 to 3 days. For example, in step (b), it may be cultured for 3 days, in step (c), it may be cultured for 2 days, and in step (d), it may be cultured for 2 days.
일 실시태양에서, iPSC로부터 배양 또는 분화된 세포는 NK 세포로 분화될 수 있다. 이 때 NK 세포로의 분화 배지는 여러가지 사이토카인을 포함할 수 있다.In one embodiment, cells cultured or differentiated from iPSCs are capable of differentiating into NK cells. At this time, the medium for differentiation into NK cells may include various cytokines.
본원에서 사용된 용어 "사이토카인"은 iPSC로부터 배양 또는 분화된 세포를 NK 세포로 유도하는데 사용가능한 면역 활성화 사이토카인을 의미한다. 상기 사이토카인은 예를 들어 IL(Interleukin)-3, IL-15, IL-21, FLT3-L(FMS-like tyrosine kinase 3 ligand), SCF(Stem Cell Factor), IL-7, IL-18, IL-4, type I interferons, GM-CSF(Granulocyte-macrophage colony-stimulating factor) 및/또는 IGF 1(Insulin-like growth factor 1)일 수 있으나, 이로 제한되는 것은 아니다. 일 실시태양에서, IL-3, SCF, IL-7, IL-15 및 FLT-3L의 조합 또는 SCF, IL-7, IL-15 및 FLT-3L의 조합이 사용될 수 있다.As used herein, the term “cytokine” refers to an immune activating cytokine that can be used to induce cells cultured or differentiated from iPSCs into NK cells. The cytokine is, for example, IL (Interleukin)-3, IL-15, IL-21, FLT3-L (FMS-
상기 사이토카인은 30 내지 70, 바람직하게는 40 내지 60, 보다 바람직하게는 50 ng/mL의 농도로 분화 배지에 첨가된다.The cytokine is added to the differentiation medium at a concentration of 30 to 70, preferably 40 to 60, more preferably 50 ng/mL.
일 실시태양에서, 본 발명의 상기 제조 방법은 하기 단계 (e) 및/또는 (f), 바람직하게는 단계 (e) 및 (f)를 포함하는 것일 수 있다. 본 발명의 단계 (e) 및 (f)를 통해 iPSC를 배양한 세포(예컨대, 조혈모세포)를 NK 세포로 분화시킬 수 있다. In one embodiment, the manufacturing method of the present invention may include the following steps (e) and/or (f), preferably steps (e) and (f). Through steps (e) and (f) of the present invention, iPSC-cultured cells (eg, hematopoietic stem cells) can be differentiated into NK cells.
(e) iPSC로부터 배양된 세포를 IL-3, SCF, IL-7, IL-15 및 FLT-3L이 첨가된 배지로 교체하여 배양하는 단계; 및(e) replacing the cells cultured from the iPSC with a medium containing IL-3, SCF, IL-7, IL-15 and FLT-3L and culturing; and
(f) 상기 배양된 세포를 SCF, IL-7, IL-15 및 FLT-3L이 첨가된 배지로 교체하여 배양하는 단계.(f) culturing by replacing the cultured cells with a medium to which SCF, IL-7, IL-15 and FLT-3L are added.
상기 단계 (e)에서 iPSC로부터 배양된 세포는 상기 단계 (b) 내지 (d) 중 하나 이상의 단계를 통해 배양된 세포, 예컨대 조혈모세포일 수 있다.The cells cultured from the iPSCs in step (e) may be cells cultured through one or more of steps (b) to (d), such as hematopoietic stem cells.
일 실시태양에서, 단계 (e)에서 IL-3, SCF, IL-7, IL-15 및 FLT-3L이 30 내지 70 ng/mL, 바람직하게는 40 내지 60 ng/mL, 더욱 바람직하게는 50 ng/mL의 농도로 첨가되거나,In one embodiment, in step (e) IL-3, SCF, IL-7, IL-15 and FLT-3L are 30 to 70 ng/mL, preferably 40 to 60 ng/mL, more preferably 50 added at a concentration of ng/mL, or
단계 (f)에서 SCF, IL-7, IL-15 및 FLT-3L이 각각 30 내지 70 ng/mL, 바람직하게는 40 내지 60 ng/mL, 더욱 바람직하게는 50 ng/mL의 농도로 첨가될 수 있다. In step (f) SCF, IL-7, IL-15 and FLT-3L are each added at a concentration of 30 to 70 ng/mL, preferably 40 to 60 ng/mL, more preferably 50 ng/mL. can
단계 (e)에서 세포를 3 내지 10일, 바람직하게는 4 내지 7일, 예컨대 6일 동안 배양할 수 있다. 단계 (f)에서 세포를 10 내지 30일, 바람직하게는 15 내지 20일, 예컨대 18일 동안 배양할 수 있다. 이 때 단계 (f)의 배지, 예컨대 SCF, IL-7, IL-15 및 FLT-3L을 포함하는 NK 분화 배지는 정기적으로 교체될 수 있으며, 총 18일 동안 배양하는 경우 6일마다 새로운 배지로 교체할 수 있다. 예를 들어, 단계 (e)에서는 6일간 배양하고, 단계 (f)에서는 18일간 배양할 수 있으며 이 때 6일마다 배지를 교체할 수 있다.The cells in step (e) may be cultured for 3 to 10 days, preferably 4 to 7 days, such as 6 days. The cells in step (f) may be cultured for 10 to 30 days, preferably 15 to 20 days, such as 18 days. At this time, the medium of step (f), such as the NK differentiation medium containing SCF, IL-7, IL-15 and FLT-3L, can be regularly replaced, and when cultured for a total of 18 days, it is replaced with a new medium every 6 days. Can be replaced. For example, in step (e), culture may be performed for 6 days, and in step (f), culture may be performed for 18 days, and the medium may be replaced every 6 days.
NK 분화 배지는 예컨대 Matrigel-코팅된 배지일 수 있으며, 종래 알려진 물질, 예컨대 DMEM, HAM's F12, Glutamax, Human serum, Penicillin Streptomycin, L-glutamine, Beta-mercaptoethanol, Ethanolamine, Ascorbic acid, Sodium selenite 등을 포함하나 이로 제한되는 것은 아니다. The NK differentiation medium may be, for example, Matrigel-coated medium, and includes conventionally known substances such as DMEM, HAM's F12, Glutamax, Human serum, Penicillin Streptomycin, L-glutamine, Beta-mercaptoethanol, Ethanolamine, Ascorbic acid, Sodium selenite, etc. However, it is not limited thereto.
본 발명의 제조 방법에 따라 제조된 NK 세포는 종래 NK 세포의 단백질 발현 특징을 나타낸다. 일 실시태양에서, 상기 NK 세포는 CD45, CD56, CD2, CD16, CD94, KIR2D, 및 CD158로 이루어지는 군으로부터 선택되는 하나 이상의 단백질을 발현할 수 있다. 또다른 실시태양에서, 상기 NK 세포는 CD3, CD19 및 CD14로 이루어지는 군으로부터 선택되는 하나 이상의 단백질을 발현하지 않는 것일 수 있다. 예컨대 CD56(+) NK 세포는 필요에 따라, 세포 표면의 CD56 당단백질이 발현되는 세포이거나, 또는 CD56 당단백질이 발현되는 동시에 CD3 당단백질이 발현되지 않는 세포일 수 있다. 이 경우 상기 CD56(+) NK 세포는 예를 들어, PBMC에 CD56 마이크로비즈(microbeads)를 첨가하여 비특이적 결합(Nonspecific binding)을 제거한 CD56+ NK 세포이거나, 또는 PBMC에 CD3 마이크로비즈를 첨가하여 특이적 결합(Specific binding)을 제거한 후, CD56 마이크로비즈를 첨가하여 비특이적 결합을 제거한 CD3(-)/CD56(+) NK 세포일 수 있다.NK cells prepared according to the production method of the present invention exhibit the protein expression characteristics of conventional NK cells. In one embodiment, the NK cells are capable of expressing one or more proteins selected from the group consisting of CD45, CD56, CD2, CD16, CD94, KIR2D, and CD158. In another embodiment, the NK cells may not express one or more proteins selected from the group consisting of CD3, CD19 and CD14. For example, CD56(+) NK cells may be cells expressing cell surface CD56 glycoprotein, or cells expressing CD56 glycoprotein and not expressing CD3 glycoprotein, if necessary. In this case, the CD56(+) NK cells are, for example, CD56+ NK cells in which nonspecific binding is removed by adding CD56 microbeads to PBMC, or specific binding by adding CD3 microbeads to PBMC. After removing (specific binding), it may be CD3(-)/CD56(+) NK cells in which non-specific binding is removed by adding CD56 microbeads.
일 실시태양에서, 본 발명의 방법에 따라 제조된 NK 세포는 CD45(+)CD56(+) NK 세포이거나, 또는 CD3(-)CD19(-)CD14(-) NK 세포일 수 있다. 또다른 예에서, 본 발명의 방법에 따라 제조된 NK 세포는 CD3(-)CD19(-)CD14(-)이면서 CD45(+)CD56(+)의 특징을 나타내는 세포, 즉, CD45(+)CD56(+)/CD3(-)CD19(-)CD14(-) NK 세포일 수 있다.In one embodiment, the NK cells produced according to the method of the present invention may be CD45(+)CD56(+) NK cells, or CD3(-)CD19(-)CD14(-) NK cells. In another example, the NK cells produced according to the method of the present invention are CD3(-)CD19(-)CD14(-) and CD45(+)CD56(+) cells, i.e., CD45(+)CD56. (+)/CD3(-)CD19(-)CD14(-) NK cells.
또다른 실시태양에서, 본 발명의 방법에 따라 제조된 NK 세포는 상기 NK 세포 마커의 특징을 나타내는 것 이외에 추가로 NK 세포의 기능과 직접적으로 관련된 마커의 특징을 나타낸다. 예컨대 본 발명의 방법에 따라 제조된 NK 세포는 CD2, CD16, CD94, KIR2D, 및 CD158로 이루어지는 군으로부터 선택되는 하나 이상의 단백질을 발현할 수 있으며, 즉, CD2(+) NK 세포, CD16(+) NK 세포, CD94(+) NK 세포, 또는 KIR2D, CD158(+) NK 세포일 수 있다. 또다른 예에서, 본 발명의 방법에 따라 제조된 NK 세포는 CD2(+)/CD56(+) NK 세포, CD16(+)/CD56(+) NK 세포, CD94(+) /CD56(+) NK 세포, 또는 KIR2D, CD158(+)/CD56(+) NK 세포일 수 있다.In another embodiment, the NK cells produced according to the methods of the present invention exhibit, in addition to the characteristics of said NK cell markers, markers directly related to the function of NK cells. For example, the NK cells prepared according to the method of the present invention may express one or more proteins selected from the group consisting of CD2, CD16, CD94, KIR2D, and CD158, that is, CD2(+) NK cells, CD16(+) NK cells, CD94(+) NK cells, or KIR2D, CD158(+) NK cells. In another example, the NK cells produced according to the method of the present invention are CD2(+)/CD56(+) NK cells, CD16(+)/CD56(+) NK cells, CD94(+)/CD56(+) NK cells. cells, or KIR2D, CD158(+)/CD56(+) NK cells.
본 발명에 따라 제조된 NK 세포는 최종 제조된 세포 중 약 85% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 95% 이상, 특히 바람직하게는 98% 이상일 수 있다. The NK cells produced according to the present invention may be about 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 98% or more of the final prepared cells.
본 발명은 또한 상기 제조 방법에 따라 제조된 NK 세포를 제공한다.The present invention also provides NK cells prepared according to the above production method.
상기 제조된 NK 세포는 세포치료제, 특히 암 치료 또는 예방용으로 사용될 수 있다. 이에 따라 본 발명은 NK 세포를 포함하는 암 치료 또는 예방용 제약 조성물을 제공한다. The NK cells prepared above can be used for cell therapy, in particular for cancer treatment or prevention. Accordingly, the present invention provides a pharmaceutical composition for treating or preventing cancer comprising NK cells.
본원에서 사용된 용어 "세포치료제"란 세포와 조직의 기능을 복원시키기 위하여 살아있는 자가(autologous), 동종(allogenic), 이종(xenogenic) 세포를 체외에서 증식·선별하거나 여타한 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 말한다. 본 발명의 NK 세포는 생체 내 면역반응의 억제 또는 면역반응의 항진 등 면역반응 조절을 위한 면역세포 치료제로 분류될 수 있다.As used herein, the term "cell therapy agent" refers to the biological characteristics of cells by proliferating and selecting living autologous, allogenic, and xenogenic cells in vitro or by other methods in order to restore the functions of cells and tissues. It refers to medicines used for the purpose of treatment, diagnosis and prevention through a series of actions such as changing the The NK cells of the present invention may be classified as immune cell therapeutics for regulating immune responses, such as suppression of immune responses or enhancement of immune responses in vivo.
본 발명의 항암용 세포치료제 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 비경구 투여, 예를 들어, 복강 내 투여, 정맥 내 투여, 근육 내 투여, 피하 투여, 피내 투여될 수 있으나, 이에 제한되지는 않는다.The administration route of the anticancer cell therapy composition of the present invention may be administered through any general route as long as it can reach the target tissue. Parenteral administration, for example, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, may be administered intradermally, but is not limited thereto.
본 발명의 조성물은 세포 치료에 일반적으로 사용되는 약학적으로 허용되는 담체와 함께 적합한 형태로 제형화될 수 있다. '약학적으로 허용되는'이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증 등과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. 약학적으로 허용되는 담체로는 예를 들면, 물, 적합한 오일, 식염수, 수성 글루코스 및 글리콜 등과 같은 비경구 투여용 담체 등이 있으며 안정화제 및 보존제를 추가로 포함할 수 있다. 적합한 안정화제로는 아황산수소나트륨, 아황산나트륨 또는 아스코르브산과 같은 항산화제나 슈크로오즈, 알부민 등이 있다. 적합한 보존제로는 DMSO, glycerol, ethylene glycol, sucrose, trehalose, dextrose, polyvinylpyrrolidone 등이 있다.The composition of the present invention may be formulated in a suitable form together with a pharmaceutically acceptable carrier generally used for cell therapy. "Pharmaceutically acceptable" refers to a composition that is physiologically acceptable and does not normally cause allergic reactions such as gastrointestinal disorders, dizziness, or similar reactions when administered to humans. Pharmaceutically acceptable carriers include, for example, carriers for parenteral administration such as water, suitable oils, saline, aqueous glucose and glycol, and may further include stabilizers and preservatives. Suitable stabilizers include antioxidants such as sodium bisulfite, sodium sulfite or ascorbic acid, sucrose, albumin, and the like. Suitable preservatives include DMSO, glycerol, ethylene glycol, sucrose, trehalose, dextrose, and polyvinylpyrrolidone.
본 발명의 또다른 실시태양에서는, 본 발명의 제조 방법에 따라 제조된 NK 세포를 포함하는 항암용 세포치료제 조성물을 대상체에 투여하는 단계를 포함하는 암 예방 또는 치료 방법을 제공한다. 상기 대상체는 포유동물을 의미하며, 바람직하게는 인간을 나타낸다. In another embodiment of the present invention, there is provided a method for preventing or treating cancer comprising administering to a subject an anticancer cell therapy composition comprising NK cells prepared according to the method of the present invention. The subject means a mammal, preferably a human.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .
실시예 1: 역분화줄기세포(Induced Pluripotent Stem Cells: iPSC) 유래 자연살해세포 (iPSC derived Natural killer cells: iPSC-NK) 제조Example 1: Preparation of Induced Pluripotent Stem Cells (iPSC)-derived Natural Killer Cells (iPSC-derived Natural Killer Cells: iPSC-NK)
Matrigel로 코팅된 24-well plate에 mTeSR-1 배지를 첨가하고, iPSC를 well 당 5 x 104 세포의 밀도로 seeding하였다. Seeding된 세포를 도 1에 나타난 바와 같이 시기별로 배지를 교체하면서 분화하였다. 구체적으로, Seeding 후 1 일째 배지를 STEMdiff APEL 2 (Stem cell Technologies)로 교체한 뒤, BMP4 (50 ng/mL, Peprotech)를 배지에 첨가하였다. Seeding 후 4 일째에 배지를 VEGF (50 ng/mL, Peprotech) 및 bFGF (50 ng/mL, Peprotech)를 첨가하고 새로운 STEMdiff APEL 2로 교체하였다. Seeding 후 6 일째, SB431542 (20 μM, Reagents Direct, Encinitas, CA, USA), VEGF (50 ng/mL) 및 bFGF (50 ng/mL)를 첨가하고, 배지를 신선한 STEMdiff APEL로 교체하였다. Seeding 후 8 일째에는 IL-3 (50 ng/mL, Peprotech), SCF (50 ng/mL, Peprotech), IL-7 (50 ng/mL, Peprotech), IL-15 (50 ng/mL, Peprotech), FLT-3L (50 ng/mL, Peprotech)을 첨가하여 신선한 NK cell differentiation medium(조성에 대해서는 표 1 참조)로 교체하였다. Seeding 후 14 일째에 SCF (50 ng/mL, Peprotech), IL-7 (50 ng/mL, Peprotech), IL-15 (50 ng/mL), FLT-3L (50 ng/mL, Peprotech)를 첨가하고, 배지를 신선한 NK cell differentiation medium로 교체하였으며, 32일째 되는날까지 6일마다 위 언급된 사이토카인의 첨가 및 배지 교체를 진행하였다. 배지 교체시마다 분화되는 세포의 생성을 광학 현미경으로 관찰하였다. 상등액을 수집하고 300 Х g에서 10 분간 원심 분리하여 상등액으로 방출된 세포를 수득하였다.mTeSR-1 medium was added to a 24-well plate coated with Matrigel, and iPSCs were seeded at a density of 5 x 10 4 cells per well. The seeded cells were differentiated while replacing the medium by time as shown in FIG. 1 . Specifically, on the first day after seeding, the medium was replaced with STEMdiff APEL 2 (Stem cell Technologies), and BMP4 (50 ng/mL, Peprotech) was added to the medium. On
광학 현미경으로 촬영한 결과를 도 2에 나타내었다. iPSC는 Seeding 후 1일까지는 콜로니의 형태로 자라다가, 4일째 이후로 형태가 변하기 시작하였다. 그리고 14일까지는 미분화된 endothelial spread 형태가 보이나, 26일 이후에는 모두 단일 세포 형태의 NK 세포로 분화된 것을 확인할 수 있었다.The results photographed with an optical microscope are shown in FIG. 2 . iPSCs grew in the form of colonies until 1 day after seeding, and then started to change shape after the 4th day. In addition, undifferentiated endothelial spread was seen until
실시예 2 : NK 세포 분화 확인 Example 2: Confirmation of NK cell differentiation
본 실시예에서는 실시예 1에서 제조된 세포의 특성을 확인하기 위해, NK 세포 관련 마커의 발현 여부를 면역형광염색법으로 확인하였다.In this example, in order to confirm the characteristics of the cells prepared in Example 1, the expression of NK cell-related markers was confirmed by immunofluorescence staining.
2.1 : NK 세포 마커를 이용한 NK 세포 분화 확인2.1: Confirmation of NK cell differentiation using NK cell markers
실시예 1에 따라 분화된 iPSC 유래 NK 세포에 대해, NK 세포의 마커로 알려져 있는 CD3(-), CD19(-), CD14(-), CD45(+), CD56(+)의 발현 여부를 조사하였다. 구체적으로 iPSC 유래 NK 세포를 Seeding 후 8일까지 또는 32일까지 분화시킨 후, 분화된 세포에서의 위 마커의 발현 여부를 flow cytometry로 확인하였다. flow cytometry에서는 세포 표면 염색 방법을 이용하였고, 보다 자세하게는, 실시예 1에서 얻어진 세포를 Fixable Viability Dye eFluor™ 506 (live-dead cells) (Invitrogen, Carlsbad, CA, USA), 단일 클론 항체인 anti-CD3-APC (BD, Franklin Lakes, New Jersey, USA), anti-CD19-APC (BD), anti-CD14-APC-eFluor 780 (Invitrogen), anti-CD45-eFluor 450 (Invitrogen), anti-CD56-Alexa Fluor® 488 (BD) 항체와 함께 인큐베이션시켰다. 세포를 버퍼로 세척한 후 형광 강도를 측정하였다. 또한 적절한 isotype 항체를 염색하여 비교하였다. 유세포 분석기(MACSQuant Analyzer 10 Flow Cytometer, Miltenyi biotec, Bergisch Gladbach, Germany)로 세포 마커 발현을 분석하였다.For iPSC-derived NK cells differentiated according to Example 1, the expression of CD3(-), CD19(-), CD14(-), CD45(+), and CD56(+), which are known NK cell markers, was investigated. did. Specifically, iPSC-derived NK cells were differentiated up to 8 or 32 days after seeding, and the expression of gastric markers in the differentiated cells was confirmed by flow cytometry. In flow cytometry, a cell surface staining method was used, and more specifically, the cells obtained in Example 1 were treated with Fixable Viability Dye eFluor™ 506 (live-dead cells) (Invitrogen, Carlsbad , CA, USA), a monoclonal antibody anti- CD3-APC (BD, Franklin Lakes, New Jersey , USA), anti-CD19-APC (BD), anti-CD14-APC-eFluor 780 (Invitrogen), anti-CD45-eFluor 450 (Invitrogen), anti-CD56- Incubated with Alexa Fluor® 488 (BD) antibody. After washing the cells with a buffer, the fluorescence intensity was measured. In addition, the appropriate isotype antibody was stained for comparison. Cell marker expression was analyzed with a flow cytometer (
위 실험을 3회 반복하였고, 그 실험 결과를 정리하여 표 3에 나타내었다. 분화 후 8일째(Day 8)에는 CD3(-)CD19(-)CD14(-)인 세포(%)가 98.1 ± 1.3%였고, CD3(-)CD19(-)CD14(-)인 세포내(%)에서 CD45(+)CD56(+) (%)를 분석하였을 때 9.7 ± 10.2%인 반면, 분화 후 32일째(Day 32)에는 각각 90.1 ± 8.5% 및 89.2 ± 6.9%로 증가하였으며, 전체 세포수도 약 317.2 배 증가하였다.The above experiment was repeated 3 times, and the experimental results are summarized and shown in Table 3. On the 8th day after differentiation (Day 8), CD3(-)CD19(-)CD14(-) cells (%) were 98.1 ± 1.3%, and CD3(-)CD19(-)CD14(-) intracellular cells (%) ) in CD45(+)CD56(+) (%), it was 9.7 ± 10.2%, whereas on the 32nd day after differentiation (Day 32), it increased to 90.1 ± 8.5% and 89.2 ± 6.9%, respectively, and the total number of cells It increased about 317.2 times.
(Fold change)Total cell number
(Fold change)
CD19(-)
CD14(-)
세포 (%)CD3(-)
CD19(-)
CD14(-)
cell (%)
CD3(-)CD19(-)CD14(-) 세포 (%)CD45(+)CD56(+) /
CD3(-)CD19(-)CD14(-) cells (%)
(30.0)7.52 x10 6
(30.0)
(317.2)79.3 x10 6
(317.2)
이로부터 본 발명의 방법으로 분화된 세포는 NK 세포로 확인되었고, 나아가 본 발명의 방법에 따를 때 iPSC로부터 NK 세포를 높은 효율로 제조할 수 있음을 확인할 수 있었다(즉, 최종 생성된 세포 중 약 90%가 NK 세포임). 특히 Day 8에서 Day 32 사이에 NK 세포 마커가 증가한 것으로 보아, IL-3+SCF+IL-7+IL-15+FLT-3L이 첨가된 배지에서 배양하고(도 1의 단계 e), 이어서 SCF+IL-7+IL-15+FLT-3L이 첨가된 배지로 변경하여 배양한 경우(도 1의 단계 f), NK 세포로의 분화 정도가 매우 증가하였음을 확인하였다. From this, it was confirmed that the cells differentiated by the method of the present invention were NK cells, and furthermore, it was confirmed that NK cells could be produced from iPSCs with high efficiency according to the method of the present invention (that is, about 90% are NK cells). In particular, it was observed that the NK cell marker increased between
2.2 : NK 세포 수용체 마커를 이용한 NK 세포 분화 확인2.2: Confirmation of NK cell differentiation using NK cell receptor markers
실시예 2.1에서는 이미 최종 분화된 세포가 NK 세포 마커의 특징을 나타냄을 확인한 바 있다. 본 실시예에서는 NK 세포의 기능과 직접적으로 관련된 마커를 통해 최종 분화된 세포의 특성을 다시 한번 확인하고자 하였다. 구체적으로 iPSC 유래 NK Seeding 후 8일까지 또는 32일까지 분화시킨 후, 분화된 세포에서의 마커의 발현 여부를 flow cytometry로 확인하였다. flow cytometry 방법으로는 실시예 2.1에 기재된 방법과 동일한 세포 표면 염색 방법을 이용하되, 단일 클론 항체로서 anti-CD56-Alexa Fluor® 488 (BD), anti-CD2-APC (BD), anti-CD16-APC-H7 (BD), anti-CD94-FITC (BD) 항체를 사용하여 세포 마커 발현을 분석하였다In Example 2.1, it was confirmed that the already terminally differentiated cells exhibited characteristics of NK cell markers. In this example, it was attempted once again to confirm the characteristics of terminally differentiated cells through markers directly related to the function of NK cells. Specifically, after differentiation up to 8 days or 32 days after iPSC-derived NK seeding, the expression of markers in the differentiated cells was confirmed by flow cytometry. As a flow cytometry method, the same cell surface staining method as described in Example 2.1 was used, but as a monoclonal antibody, anti-CD56-Alexa Fluor® 488 (BD), anti-CD2-APC (BD), anti-CD16- Cell marker expression was analyzed using APC-H7 (BD) and anti-CD94-FITC (BD) antibodies.
그 결과를 표 3에 나타내었다. Day 8과 비교하여 Day 32에서 CD56(+)가 증가하였고, CD56(+)인 세포내(%)에서 CD2(+), CD16(+), 및 CD94(+) (%)를 분석하였을 때 이들 모두 증가함을 확인하였다. The results are shown in Table 3. Compared to
(Fold change)Total cell number
(Fold change)
cells (%)CD56(+)
cells (%)
CD56(+)
cells (%)CD2(+)/
CD56(+)
cells (%)
CD56(+)
cells (%)CD16(+)/
CD56(+)
cells (%)
CD56(+)
cells (%)
CD94(+)/
CD56(+)
cells (%)
(30.0)7.52 x10 6
(30.0)
실시예 2.1 및 2.2로부터 본 발명의 방법으로 분화된 세포는 NK 세포로 확인되었고, 나아가 본 발명의 방법에 따를 때 iPSC로부터 NK 세포를 높은 효율로 제조할 수 있음을 확인할 수 있었다. 특히 Day 8에서 Day 32 사이에 NK 세포 관련 마커의 발현율이 증가한 것으로 보아, IL-3+SCF+IL-7+IL-15+FLT-3L이 첨가된 배지에서 배양하고(도 1의 단계 e), 이어서 SCF+IL-7+IL-15+FLT-3L이 첨가된 배지로 변경하여 배양한 경우(도 1의 단계 f), NK 세포로의 분화 정도가 매우 증가하였음을 확인하였다. Cells differentiated by the method of the present invention from Examples 2.1 and 2.2 were identified as NK cells, and further, it was confirmed that NK cells could be produced from iPSCs with high efficiency according to the method of the present invention. In particular, it was observed that the expression rate of NK cell-related markers increased between
실시예 3: NK 세포의 암세포 치료 효과 확인Example 3: Confirmation of cancer cell treatment effect of NK cells
본 실시예에서는 본 발명에 따라 제조된 NK 세포의 암세포 치료 효과를 평가하였다. In this example, the cancer cell treatment effect of NK cells prepared according to the present invention was evaluated.
3.1: 혈액암 세포 준비 (K562: Target cell) 3.1: Blood cancer cell preparation (K562: Target cell)
37℃ CO2 Incubator에서 T25 cell culture flask에 유지하고 있는 혈액암 세포주 K562를 pipetting하여 풀어주고 15 mL conical tube로 옮긴 후, 516 x g에서 5분간 원심분리하였다. 원심분리가 끝나고 상층액을 suction한 후, 10% RPMI-1640 배지 (Gibco) 1 mL를 첨가하고 재현탁하였다. 배지 4 mL을 추가로 첨가하고 재현탁한 후, 세포 counting하였다. 이어서 CFSE 염색 유무에 따라 실험군을 구분하기 위해, 세포를 표 4에 기재된 세포수만큼 15 mL conical tube에 옮긴 후, 516 x g에서 5분간 원심분리하고 상층액을 suction하였고, 표 4의 부피만큼 배지를 첨가하여 재현탁하였다. The blood cancer cell line K562 maintained in the T25 cell culture flask was released by pipetting in a 37°C CO 2 incubator, transferred to a 15 mL conical tube, and centrifuged at 516 x g for 5 minutes. After centrifugation was completed and the supernatant was suctioned, 1 mL of 10% RPMI-1640 medium (Gibco) was added and resuspended. After additional addition of 4 mL of medium and resuspending, the cells were counted. Then, in order to classify the experimental group according to the presence or absence of CFSE staining, the cells were transferred to a 15 mL conical tube as many as the number of cells listed in Table 4, centrifuged at 516 x g for 5 minutes, the supernatant was suctioned, and the medium as much as the volume of Table 4 was used. was added and resuspended.
그 후 CFSE (O) 실험군에는 CFSE를 첨가하는 과정을 추가하였다. 구체적으로, 앞선 과정을 거친 15 mL conical tube에 최종 농도가 2 μM 되도록 2.5 mM stock의 CFSE(Invitrogen)를 4 μL 넣어준 후, CFSE staining이 균일하게 되도록 곧바로 vortexing하였다. 그 후 37℃ CO2 incubator에 넣고 15분간 incubation하였고, 이어서 배지 7.5 mL를 넣은 후, 516 x g에서 5분간 원심분리하였다. 원심분리가 끝나면 상층액을 suction한 후, 배지 10 mL을 넣고 516 x g에서 5분간 원심분리하였다. 상층액을 suction한 후, 배지 1 mL 넣고 재현탁하여 세포를 잘 풀어주었다. K562 세포의 cell density가 5x105/mL이 되도록 배지 7 mL을 추가로 첨가하였다. After that, the process of adding CFSE was added to the CFSE (O) experimental group. Specifically, 4 μL of 2.5 mM stock CFSE (Invitrogen) was added to the 15 mL conical tube that had been subjected to the previous process so that the final concentration was 2 μM, and then vortexed immediately so that the CFSE staining was uniform. Then, it was put in a 37 ℃ CO 2 incubator and incubated for 15 minutes, then 7.5 mL of the medium was added, followed by centrifugation at 516 x g for 5 minutes. After centrifugation was completed, the supernatant was suctioned, 10 mL of medium was added, and centrifuged at 516 x g for 5 minutes. After suctioning the supernatant, 1 mL of medium was added and resuspended to release the cells well. 7 mL of medium was additionally added so that the cell density of K562 cells was 5x10 5 /mL.
3.2: NK 세포 준비 (iPSC-유래 NK세포: Effector cell) 3.2: NK cell preparation (iPSC-derived NK cells: Effector cell)
본 발명에 따라 분화된 iPSC-유래 NK 세포를 70 μm strainer에 한번 걸러내고 50 mL conical tube에 옮겨준 후, 세포수를 counting하였다. 그 후, 표 5에 기재된 바와 같이 각 E:T ratio (effector to target cell ratio) 별로 serial dilution하였다.The iPSC-derived NK cells differentiated according to the present invention were filtered once in a 70 μm strainer and transferred to a 50 mL conical tube, and the number of cells was counted. Thereafter, as shown in Table 5, serial dilution was performed for each E:T ratio (effector to target cell ratio).
구체적으로, 5 mL round bottom polystyrene test tube를 각 그룹당 3개씩 준비하고, 실시예 1에 따라 제조된 NK cell을 100 μL씩 넣었다. E:T ratio가 가장 높은 A 튜브(10:1)의 경우, 5x106 NK cell을 15 mL conical tube에 옮기고, 516 x g에서 5분간 원심분리한 후, 상층액을 suction하여 배지 1 mL을 넣고 재현탁하였다. B 튜브, C 튜브, D 튜브, E 튜브의 경우 각각 A 튜브, B 튜브, C 튜브 및 D 튜브의 세포를 이용하여 serial dilution을 진행하였다. Specifically, 3 5 mL round bottom polystyrene test tubes were prepared for each group, and 100 μL of the NK cells prepared according to Example 1 were added. For tube A (10:1) with the highest E:T ratio, transfer 5x10 6 NK cells to a 15 mL conical tube, centrifuge at 516 x g for 5 minutes, suction the supernatant, add 1 mL of medium, and reproduce. It was cloudy. In the case of tube B, tube C, tube D, and tube E, serial dilution was performed using cells from tube A, tube B, tube C, and tube D, respectively.
3.3: iPSC-유래 NK세포 (Effector cell)와 혈액암 세포 (K562: Target cell) 공조배양을 통한 암세포 세포독성 (cytotoxicity) 측정3.3: Measurement of cancer cell cytotoxicity through co-culture of iPSC-derived NK cells (Effector cell) and blood cancer cells (K562: Target cell)
5 mL round bottom polystyrene test tube를 준비하여, 3.1 단계에서 준비한 CFSE (O) 그룹의 K562 cell(target cell)을 100 μL씩 넣었다. 이 때, target cell의 spontaneous killing값을 측정하기 위하여 별도의 5 mL round bottom polystyrene test tube를 준비하고, target cell만 100 μL 넣었다. 준비된 test tube를 516 x g에서 1분간 원심분리한 후, 37℃ CO2 Incubator에서 4시간 incubation하고, 각 tube에 7-AAD (BD)를 5 μL씩 넣고, flow cytometry로 cytotoxicity를 측정하였다.Prepare a 5 mL round bottom polystyrene test tube, and put 100 μL of K562 cells (target cells) of the CFSE (O) group prepared in step 3.1 each. At this time, in order to measure the spontaneous killing value of the target cell, a separate 5 mL round bottom polystyrene test tube was prepared, and only 100 μL of the target cell was added. The prepared test tube was centrifuged at 516 x g for 1 minute, incubated in a 37°C CO 2 incubator for 4 hours, and 5 μL of 7-AAD (BD) was added to each tube, and cytotoxicity was measured by flow cytometry.
그 결과를 표 6, 도 5 및 6에 나타내었다. NK 세포의 비율이 증가함에 따라, 혈액암 세포주의 사멸 정도도 약 2.8%, 약 4.2%, 약 12.1%, 약 18.6%로 증가하였다. The results are shown in Table 6, FIGS. 5 and 6 . As the proportion of NK cells increased, the degree of death of blood cancer cell lines also increased to about 2.8%, about 4.2%, about 12.1%, and about 18.6%.
correction =
original
-Spontaneous
Killing* data after
correction =
original
-Spontaneous
Killing
이로부터 본 발명의 방법으로 분화된 NK 세포는 암 세포를 효과적으로 사멸시켜 암 세포 치료 효과를 나타냄을 확인하였다.From this, it was confirmed that the NK cells differentiated by the method of the present invention effectively kill cancer cells, thereby exhibiting a cancer cell therapeutic effect.
Claims (11)
(a) 역분화줄기세포를 플레이트에 시딩(seeding)하여 배양하는 단계;
(b) 상기 배양된 세포를 골형성단백질4(BMP4)가 첨가된 배지로 교체하여 배양하는 단계;
(c) 상기 (b) 단계의 배양된 세포를 혈관내피세포성장인자(VEGF) 및 염기성 섬유 아세포성장인자(bFGF)가 첨가된 배지로 교체하여 배양하는 단계;
(d) 상기 (c) 단계의 배양된 세포를 SB431542, 혈관내피세포성장인자(VEGF), 및 염기성 섬유 아세포성장인자(bFGF)가 첨가된 배지로 교체하여 배양하는 단계;
(e) 상기 (d) 단계의 배양된 세포를 인터루킨-3(IL-3), 줄기세포인자(SCF), 인터루킨-7(IL-7), 인터루킨-15(IL-15) 및 FMS 유사 티로신 키나제 3 리간드(FLT-3L)이 첨가된 배지로 교체하여 배양하는 단계; 및
(f) 상기 (e) 단계의 배양된 세포를 줄기세포인자(SCF), 인터루킨-7(IL-7), 인터루킨-15(IL-15) 및 FMS 유사 티로신 키나제 3 리간드(FLT-3L)이 첨가된 배지로 교체하여 배양하는 단계.
A method for producing natural killer cells derived from immunized stem cells, comprising the steps of:
(a) culturing by seeding the retrodifferentiated stem cells on a plate;
(b) culturing by replacing the cultured cells with a medium to which bone morphogenetic protein 4 (BMP4) is added;
(c) culturing by replacing the cultured cells of step (b) with a medium to which vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are added;
(d) culturing by replacing the cultured cells of step (c) with a medium to which SB431542, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) are added;
(e) interleukin-3 (IL-3), stem cell factor (SCF), interleukin-7 (IL-7), interleukin-15 (IL-15) and FMS-like tyrosine in the cultured cells of step (d) culturing by replacing the medium with the kinase 3 ligand (FLT-3L); and
(f) Stem cell factor (SCF), interleukin-7 (IL-7), interleukin-15 (IL-15) and FMS-like tyrosine kinase 3 ligand (FLT-3L) in the cultured cells of step (e) Culturing by replacing with the added medium.
The method of claim 1, wherein in step (a), the retrodifferentiated stem cells are cultured in a feeder-free, serum-free medium.
(i) 단계 (b)에서 BMP4가 30 내지 70 ng/mL의 농도로 첨가되거나,
(ii) 단계 (c)에서 VEGF 및 bFGF가 각각 30 내지 70 ng/mL의 농도로 첨가되거나,
(iii) 단계 (d)에서 SB431542가 5 내지 50 μM, VEGF가 30 내지 70 ng/mL, bFGF가 30 내지 70 ng/mL의 농도로 첨가되거나,
(iv) 단계 (e)에서 IL-3, SCF, IL-7, IL-15 및 FLT-3L이 각각 30 내지 70 ng/mL의 농도로 첨가되거나, 또는
(v) 단계 (f)에 있어서, SCF, IL-7, IL-15 및 FLT-3L이 각각 30 내지 70 ng/mL의 농도로 첨가되는 것을 특징으로 하는,
자연 살해 세포의 제조 방법.
According to claim 1,
(i) BMP4 is added at a concentration of 30 to 70 ng/mL in step (b), or
(ii) VEGF and bFGF are each added at a concentration of 30 to 70 ng/mL in step (c), or
(iii) SB431542 is added at a concentration of 5 to 50 μM, VEGF is 30 to 70 ng/mL, and bFGF is added at a concentration of 30 to 70 ng/mL in step (d);
(iv) in step (e) IL-3, SCF, IL-7, IL-15 and FLT-3L are each added at a concentration of 30 to 70 ng/mL, or
(v) in step (f), characterized in that SCF, IL-7, IL-15 and FLT-3L are added at a concentration of 30 to 70 ng/mL, respectively,
Methods of making natural killer cells.
(i) 단계 (b)에서 BMP4가 50 ng/mL의 농도로 첨가되거나,
(ii) 단계 (c)에서 VEGF 및 bFGF가 각각 50 ng/mL의 농도로 첨가되거나,
(iii) 단계 (d)에서 SB431542가 20 μM, VEGF가 50 ng/mL, bFGF가 50 ng/mL의 농도로 첨가되거나,
(iv) 단계 (e)에서 IL-3, SCF, IL-7, IL-15 및 FLT-3L이 각각 50 ng/mL의 농도로 첨가되거나, 또는
(v) 단계 (f)에 있어서, SCF, IL-7, IL-15 및 FLT-3L이 각각 50 ng/mL의 농도로 첨가되는 것을 특징으로 하는,
자연 살해 세포의 제조 방법.
According to claim 1,
(i) BMP4 is added at a concentration of 50 ng/mL in step (b), or
(ii) VEGF and bFGF are each added at a concentration of 50 ng/mL in step (c), or
(iii) SB431542 is added at a concentration of 20 μM, VEGF is 50 ng/mL, and bFGF is 50 ng/mL in step (d);
(iv) in step (e) IL-3, SCF, IL-7, IL-15 and FLT-3L are each added at a concentration of 50 ng/mL, or
(v) in step (f), characterized in that SCF, IL-7, IL-15 and FLT-3L are each added at a concentration of 50 ng/mL,
Methods of making natural killer cells.
(i) 단계 (b)에서 상기 세포를 1 내지 5일 동안 배양하거나,
(ii) 단계 (c)에서 상기 세포를 1 내지 5일 동안 배양하거나,
(iii) 단계 (d)에서 상기 세포를 1 내지 5일 동안 배양하거나,
(iv) 단계 (e)에서 상기 세포를 3 내지 10일 동안 배양하거나, 또는
(v) 단계 (f)에서 상기 세포를 10 내지 30일 동안 배양하는 것을 특징으로 하는,
자연 살해 세포의 제조 방법.
According to claim 1,
(i) culturing the cells in step (b) for 1 to 5 days, or
(ii) culturing the cells in step (c) for 1 to 5 days, or
(iii) culturing the cells in step (d) for 1 to 5 days, or
(iv) culturing said cells in step (e) for 3 to 10 days, or
(v) characterized in that the cells in step (f) are cultured for 10 to 30 days,
Methods of making natural killer cells.
The method of claim 1, wherein the natural killer cells express one or more proteins selected from the group consisting of CD45, CD56, CD2, CD16, CD94, KIR2D, and CD158.
The method of claim 1, wherein the natural killer cells do not express one or more proteins selected from the group consisting of CD3, CD19 and CD14.
(e) 역분화줄기세포로부터 배양된 세포를 인터루킨-3(IL-3), 줄기세포인자(SCF), 인터루킨-7(IL-7), 인터루킨-15(IL-15) 및 FMS 유사 티로신 키나제 3 리간드(FLT-3L)이 첨가된 배지로 교체하여 배양하는 단계이며, 상기 역분화줄기세포로부터 배양된 세포는 조혈모 세포인 단계; 및
(f) 상기 (e) 단계를 거쳐 배양된 세포를 줄기세포인자(SCF), 인터루킨-7(IL-7), 인터루킨-15(IL-15) 및 FMS 유사 티로신 키나제 3 리간드(FLT-3L)이 첨가된 배지로 교체하여 배양하는 단계.
A method for producing natural killer cells derived from immunized stem cells, comprising the steps of:
(e) interleukin-3 (IL-3), stem cell factor (SCF), interleukin-7 (IL-7), interleukin-15 (IL-15) and FMS-like tyrosine kinase 3 the step of culturing by replacing the medium with the ligand (FLT-3L), wherein the cells cultured from the retrodifferentiated stem cells are hematopoietic stem cells; and
(f) Stem cell factor (SCF), interleukin-7 (IL-7), interleukin-15 (IL-15) and FMS-like tyrosine kinase 3 ligand (FLT-3L) The step of culturing by replacing it with the added medium.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200186564A KR102292843B1 (en) | 2020-12-29 | 2020-12-29 | Induced pluripotent stem cell(iPSC) derived natural killer cell and its use |
PCT/KR2021/019255 WO2022145832A1 (en) | 2020-12-29 | 2021-12-17 | Induced pluripotent stem cell-derived natural killer cell and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200186564A KR102292843B1 (en) | 2020-12-29 | 2020-12-29 | Induced pluripotent stem cell(iPSC) derived natural killer cell and its use |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102292843B1 true KR102292843B1 (en) | 2021-08-25 |
Family
ID=77495060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200186564A KR102292843B1 (en) | 2020-12-29 | 2020-12-29 | Induced pluripotent stem cell(iPSC) derived natural killer cell and its use |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102292843B1 (en) |
WO (1) | WO2022145832A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113388579A (en) * | 2021-07-07 | 2021-09-14 | 杭州原生生物科技有限公司 | A culture medium containing cytokine for differentiating hematopoietic stem cell into natural killer cell and its differentiation method |
CN113801846A (en) * | 2021-09-22 | 2021-12-17 | 南京艾尔普再生医学科技有限公司 | Method for differentiating human induced pluripotent stem cells into natural killer cells |
WO2022145832A1 (en) * | 2020-12-29 | 2022-07-07 | 주식회사 온코인사이트 | Induced pluripotent stem cell-derived natural killer cell and use thereof |
WO2023191597A1 (en) * | 2022-04-01 | 2023-10-05 | (주) 테라베스트 | Natural killer cells produced from induced pluripotent stem cells, method for producing same, and use thereof |
WO2023233339A1 (en) * | 2022-06-01 | 2023-12-07 | Crispr Therapeutics Ag | Compositions and methods for differentiating stem cells into nk cells |
WO2024107010A1 (en) * | 2022-11-17 | 2024-05-23 | 주식회사 씨티셀즈 | Method for differentiation from undifferentiated stem cells into natural killer cells and use thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115873795B (en) * | 2023-02-02 | 2023-09-01 | 苏州血霁生物科技有限公司 | Method for differentiating hematopoietic stem/progenitor cells, culture medium and application |
CN115896019B (en) * | 2023-02-23 | 2023-05-26 | 山东兴瑞生物科技有限公司 | Method for inducing and differentiating induced pluripotent stem cells into NK cells |
CN115975925B (en) * | 2023-03-21 | 2023-09-08 | 天九再生医学(天津)科技有限公司 | Method for inducing human pluripotent stem cells to differentiate into natural killer cells by variable-speed suspension |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200083645A (en) * | 2009-12-04 | 2020-07-08 | 스템 셀 앤드 리제너러티브 메디신 인터내셔날, 인크. | Method of generating natural killer cells and dendritic cells from human embryonic stem cell-derived hemangioblasts |
KR20200099099A (en) * | 2019-02-13 | 2020-08-21 | 주식회사 온코인사이트 | Method of preparing hematopoietic stem cells derived from induced pluripotent stem cells |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101143369B1 (en) * | 2009-04-28 | 2012-05-17 | 한국생명공학연구원 | A COMPOSITION CONTAINING TUMOR NECROSIS FACTOR-alpha; FOR DIFFERENTIATING NATURAL KILLER CELL AS AN ACTIVE INGREDIENT AND A METHOD OF DIFFERENTIATION USING THE SAME |
KR101520534B1 (en) * | 2012-05-07 | 2015-05-21 | 고려대학교 산학협력단 | Method for enrichment and expansion of natural killer cells derived from peripheral blood mononuclear cells |
KR102292843B1 (en) * | 2020-12-29 | 2021-08-25 | 주식회사 온코인사이트 | Induced pluripotent stem cell(iPSC) derived natural killer cell and its use |
-
2020
- 2020-12-29 KR KR1020200186564A patent/KR102292843B1/en active IP Right Grant
-
2021
- 2021-12-17 WO PCT/KR2021/019255 patent/WO2022145832A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200083645A (en) * | 2009-12-04 | 2020-07-08 | 스템 셀 앤드 리제너러티브 메디신 인터내셔날, 인크. | Method of generating natural killer cells and dendritic cells from human embryonic stem cell-derived hemangioblasts |
KR20200099099A (en) * | 2019-02-13 | 2020-08-21 | 주식회사 온코인사이트 | Method of preparing hematopoietic stem cells derived from induced pluripotent stem cells |
Non-Patent Citations (2)
Title |
---|
Miller, J. S. et al., Blood, 105: 3051 (2005) |
Rubnitz, J. E. et al., J. Clin. Oncol., 28: 955 (2010) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022145832A1 (en) * | 2020-12-29 | 2022-07-07 | 주식회사 온코인사이트 | Induced pluripotent stem cell-derived natural killer cell and use thereof |
CN113388579A (en) * | 2021-07-07 | 2021-09-14 | 杭州原生生物科技有限公司 | A culture medium containing cytokine for differentiating hematopoietic stem cell into natural killer cell and its differentiation method |
CN113801846A (en) * | 2021-09-22 | 2021-12-17 | 南京艾尔普再生医学科技有限公司 | Method for differentiating human induced pluripotent stem cells into natural killer cells |
CN113801846B (en) * | 2021-09-22 | 2024-06-04 | 南京艾尔普再生医学科技有限公司 | Method for differentiating pluripotent stem cells from human induced pluripotent stem cells into natural killer cells |
WO2023191597A1 (en) * | 2022-04-01 | 2023-10-05 | (주) 테라베스트 | Natural killer cells produced from induced pluripotent stem cells, method for producing same, and use thereof |
WO2023233339A1 (en) * | 2022-06-01 | 2023-12-07 | Crispr Therapeutics Ag | Compositions and methods for differentiating stem cells into nk cells |
WO2024107010A1 (en) * | 2022-11-17 | 2024-05-23 | 주식회사 씨티셀즈 | Method for differentiation from undifferentiated stem cells into natural killer cells and use thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2022145832A1 (en) | 2022-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102292843B1 (en) | Induced pluripotent stem cell(iPSC) derived natural killer cell and its use | |
US20200131475A1 (en) | Method of generating natural killer cells and dendritic cells from human embryonic stem cell-derived hemangioblasts | |
CN113631699A (en) | Methods and systems for producing cells of hematopoietic lineage | |
CA2867953C (en) | Regulating stem cells | |
JP5511039B1 (en) | Method for preparing NK cells | |
WO2005097979A2 (en) | Methods and compositions for obtaining hematopoietic stem cells derived from embryonic stem cells and uses thereof | |
CN114774365A (en) | Method for obtaining CD34+ cells and NK cells by inducing iPSC differentiation and application thereof | |
WO2012133948A1 (en) | Composition for allotransplantation cell therapy, said composition containing ssea-3 positive pluripotent stem cell capable of being isolated from body tissue | |
CN115261318A (en) | Method for producing natural killer cells | |
CN112513255A (en) | Method for producing regenerative T cell population via iPS cells | |
US12037607B2 (en) | Methods of preparing hematopoietic progenitor cells in vitro | |
JP6164650B2 (en) | Method for preparing NK cells | |
CN111164204A (en) | Method for preparing T cell population with genetic diversity from iPS cells | |
KR101550269B1 (en) | A method for direct dedifferentiation of hematopoietic stem cell from fibroblast cell | |
TW202204609A (en) | Method for manufacturing t progenitor cell | |
CN113939302A (en) | Pharmaceutical composition | |
CN117050940B (en) | Method for preparing natural killer cells | |
CN117050941B (en) | Method for preparing natural killer cells | |
WO2022242359A1 (en) | Method for regenerating humoral immunity system and use thereof | |
JP2007238473A (en) | Factor for promoting maintenance and amplification of hematopoietic stem cell and method for amplification of hematopoietic stem cell | |
KR20220113290A (en) | Method for differentiation of lymphoid lineage blood cells from pluripotent stem cell-derived hemogenic endothelium | |
CN115418373A (en) | Method for regenerating humoral immune system and application thereof | |
CN117778315A (en) | T cell preparation method | |
JPWO2006085482A1 (en) | Self-renewal factor and amplification method of hematopoietic stem cells | |
Ma | Derivation of lymphocytes from human induced pluripotent stem cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |