JPWO2005056778A1 - Method of inhibiting or proliferating hematopoietic stem cells - Google Patents

Method of inhibiting or proliferating hematopoietic stem cells Download PDF

Info

Publication number
JPWO2005056778A1
JPWO2005056778A1 JP2005516252A JP2005516252A JPWO2005056778A1 JP WO2005056778 A1 JPWO2005056778 A1 JP WO2005056778A1 JP 2005516252 A JP2005516252 A JP 2005516252A JP 2005516252 A JP2005516252 A JP 2005516252A JP WO2005056778 A1 JPWO2005056778 A1 JP WO2005056778A1
Authority
JP
Japan
Prior art keywords
hematopoietic stem
stem cells
cells
hematopoietic
wnt5a
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005516252A
Other languages
Japanese (ja)
Inventor
一雄 戸所
一雄 戸所
博幸 里深
博幸 里深
義和 桑原
義和 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Publication of JPWO2005056778A1 publication Critical patent/JPWO2005056778A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Food Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Diabetes (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)

Abstract

本発明は、造血幹細胞を未分化に抑制又は増殖する方法、造血幹細胞の分化抑制又は増殖剤などを提供する。より具体的には、本発明は、造血幹細胞を、Wnt2及びWnt5aから選ばれる一種以上のタンパク質の存在下で培養することを特徴とする造血幹細胞の分化抑制又は増殖方法;(a)フィーダー細胞、(b)Wnt2及びWnt5aから選ばれる一種以上のタンパク質及び(c)一種以上の造血因子又は細胞刺激因子を含み、かつ血清を含まないことを特徴とする造血幹細胞培養系;Wnt2及びWnt5aから選ばれる一種以上のタンパク質を含有する造血幹細胞分化抑制又は増殖剤などを提供する。The present invention provides a method for suppressing or proliferating hematopoietic stem cells undifferentiated, an agent for suppressing or proliferating hematopoietic stem cells, and the like. More specifically, the present invention relates to a method of inhibiting or proliferating hematopoietic stem cells, comprising culturing hematopoietic stem cells in the presence of one or more proteins selected from Wnt2 and Wnt5a; (a) feeder cells; (B) one or more proteins selected from Wnt2 and Wnt5a, and (c) one or more hematopoietic factors or cell stimulating factors, and does not contain serum; selected from Wnt2 and Wnt5a A hematopoietic stem cell differentiation inhibiting or proliferating agent containing one or more proteins is provided.

Description

本発明は、造血幹細胞の分化抑制又は増殖方法、造血幹細胞の製造方法、その方法によって得られる造血幹細胞、その培養法で用いられる培養系、造血幹細胞の増殖または分化を調節する物質をスクリーニングする方法、造血幹細胞の分化抑制又は増殖剤などに関する。  The present invention relates to a method for inhibiting or proliferating hematopoietic stem cells, a method for producing hematopoietic stem cells, a hematopoietic stem cell obtained by the method, a culture system used in the culturing method, and a method for screening a substance that regulates proliferation or differentiation of hematopoietic stem cells. The present invention relates to an agent for inhibiting differentiation of hematopoietic stem cells or a proliferation agent.

最近では、Wntと称されるタンパク質が造血幹細胞との関係で盛んに研究されている。例えば、WeissmanらはWntシグナルが幹細胞を増幅できる可能性があると報告している(Nature,VOL.423,2003,pp409−414)。この報告では、従来幹細胞の自己複製に必要であるとされていたHoxB4や分化抑制シグナルに必要なNotchの発現も誘導できることから、幹細胞の増幅や維持におけるWntファミリーの重要な役割が示された。
また、Matthewsらは、マウス胎児肝においてWnt5aとWnt10bが発現していること、Wnt10bは造血幹細胞にも発現していること、Wnt5aまたはWnt10bを発現させた細胞の培養上清は5倍程度に幹細胞を増幅したこと報告している(BLOOD,VOL.89,1997,pp3624−3635)。Hoffmanらはヒト胎児骨髄にWnt2b(これはWnt13に対応する)、Wnt5a、Wnt10bが発現しており、Wnt5aはヒト造血幹細胞にも発現していると報告している(非特許文献1;BLOOD,VOL.92,No.9,1998,pp3189−3202)。しかし、これらのWntは体外培養系で造血幹細胞の自己複製を促進するかどうかについては示されておらず、そもそも胎児の骨髄で造血は行なわれていない。BhatiaらはWnt5aで造血幹細胞を体外では増幅できないが、Wnt5aを含む培養上清をマウスに投与すると3倍程度幹細胞が増幅したと報告している(非特許文献2:PNAS,VOL.100,No.6,2003,pp3422−3427)。この文献では、Wntによる幹細胞の体外での増幅効果は殆ど無いと報告されている。
また、NusseらはWnt3aを可溶性タンパク質として純化に成功し、Wnt3a単独で、造血幹細胞を約6倍に増幅できたと報告している(Nature,VOL.423,2003,pp448−452)。しかしながら、この実験では、幹細胞が分化してしまっており、純粋に幹細胞だけを増幅している訳でもない。また、増幅の程度は、約1.7倍であり、実用化レベルではない。
以上の報告からは、Wntが実際に単独で体性幹細胞の自己複製因子としての機能を持っているのか、Wntが全ての体性幹細胞を自己複製させる能力があるのか否か、オートクラインで自己複製するとする矛盾をどう説明できるのか、またWntファミリーのどのメンバーがどの体性幹細胞を制御しているのか(特異性)、などの疑問点は未だ解明されていない。
Recently, a protein called Wnt has been actively studied in relation to hematopoietic stem cells. For example, Weissman et al. Report that the Wnt signal may be able to amplify stem cells (Nature, VOL. 423, 2003, pp 409-414). In this report, expression of Notch necessary for HoxB4 and differentiation suppression signal, which has been conventionally required for self-renewal of stem cells, can be induced, indicating an important role of the Wnt family in stem cell amplification and maintenance.
Matthews et al. Show that Wnt5a and Wnt10b are expressed in the mouse fetal liver, Wnt10b is also expressed in hematopoietic stem cells, and the culture supernatant of cells expressing Wnt5a or Wnt10b is about 5 times the stem cells. (BLOOD, VOL. 89, 1997, pp 3624-3635). Hoffman et al. Reported that Wnt2b (which corresponds to Wnt13), Wnt5a and Wnt10b are expressed in human fetal bone marrow, and that Wnt5a is also expressed in human hematopoietic stem cells (Non-patent Document 1; BLOOD, VOL.92, No. 9, 1998, pp 3189-3202). However, it has not been shown whether these Wnts promote self-renewal of hematopoietic stem cells in an in vitro culture system, and hematopoiesis is not performed in the fetal bone marrow in the first place. Bhatia et al. Reported that hematopoietic stem cells could not be amplified in vitro with Wnt5a, but the stem cells were amplified about 3 times when a culture supernatant containing Wnt5a was administered to mice (Non-patent Document 2: PNAS, VOL. 100, No. 6, 2003, pp 3422-3427). In this document, it is reported that there is almost no in vitro amplification effect of stem cells by Wnt.
In addition, Nusse et al. Have successfully purified Wnt3a as a soluble protein, and reported that hematopoietic stem cells could be amplified about 6 times with Wnt3a alone (Nature, VOL. 423, 2003, pp 448-452). However, in this experiment, stem cells have been differentiated, and not purely stem cells are amplified. Further, the degree of amplification is about 1.7 times, which is not a practical level.
From the above reports, it is clear that whether Wnt actually has a function as a self-replicating factor of somatic stem cells or whether Wnt has the ability to self-replicate all somatic stem cells. Questions such as how to explain the contradiction to be replicated and which somatic stem cells control which member of the Wnt family (specificity) have not yet been elucidated.

上記したように、造血幹細胞の増殖との関係でWntタンパク質は種々検討されてきたが、どのWntタンパク質が実際に実用的レベルの造血幹細胞の分化抑制能又は増殖能を有するかについては未だ究明されておらず、そのようなタンパク質を用いて造血幹細胞を未分化に抑制する方法あるいは増殖する方法は未だ知られていない。従って、造血幹細胞の分化抑制能又は増殖能を有するタンパク質を特定することができ、そのタンパク質を用いて造血幹細胞の分化を抑制し、又は増殖させることができれば、血液関連の種々の疾患の治療あるいは研究に有効である。
本発明者等は鋭意研究の結果、成体マウス骨髄ストローマ細胞にはWnt2、Wnt5aが発現しており、成体ヒト骨髄ストローマ細胞にはWnt2、Wnt5a及びWnt5bが発現し、Wnt2が最も多く発現していることを見出した。本発明者等は、この新たな知見に基づいて研究を続けた結果、Wnt2またはWnt5aを用いることにより、造血幹細胞の分化を抑制し、あるいは増殖させることができることを見出し、本発明を完成した。
すなわち、本発明は、次のような、造血幹細胞の分化抑制及び/又は増殖方法、その方法によって得られる造血幹細胞、造血幹細胞の製造方法、その培養法で用いられる培養系、造血幹細胞の増殖または分化を調節する物質をスクリーニングする方法、造血幹細胞の分化抑制又は増殖剤などを提供する。
(1)造血幹細胞を、Wnt2及びWnt5aから選ばれる一種以上のタンパク質の存在下で培養することを特徴とする造血幹細胞の分化抑制又は増殖方法。
(2)一種以上の造血因子又は細胞刺激因子の存在下、かつ血清の非存在下で培養を行なう前記(1)に記載の方法。
(3)SCF及びTPOから選ばれる一種以上の造血因子の存在下で培養を行なう前記(2)に記載の方法。
(4)Wnt2及びWnt5aから選ばれる一種以上のタンパク質を培養系に添加し、あるいはそのタンパク質を発現させたフィーダー細胞上で培養する前記(3)に記載の方法。
(5)前記(1)〜(4)のいずれかの方法によって得られる造血幹細胞。
(6)造血幹細胞を、Wnt2及びWnt5aから選ばれる一種以上のタンパク質の存在下で培養する工程を含んでなる、造血幹細胞の製造方法。
(7)(a)フィーダー細胞、(b)Wnt2及びWnt5aから選ばれる一種以上のタンパク質及び(c)一種以上の造血因子又は細胞刺激因子を含み、かつ血清を含まないことを特徴とする造血幹細胞培養系。
(8)フィーダー細胞として、無血清下で生存可能なC127細胞を含む前記(7)に記載の培養系。
(9)無血清下で生存可能なフィーダー細胞を用いることを特徴とし、(a)フィーダー細胞および造血幹細胞を含み、かつ血清を含まないことを特徴とする培養系に試験物質を共存させる工程、(b)試験物質が共存した培養系で造血幹細胞を培養する工程、及び(c)試験物質非共存下の場合と比較して、試験物質共存下の場合における造血幹細胞の割合および/または数の変化を測定する工程を含む、造血幹細胞の増殖または分化を調節する物質をスクリーニングする方法。
(10)Wnt2及びWnt5aから選ばれる一種以上のタンパク質を含有する造血幹細胞分化抑制又は増殖剤。
(11)さらに、造血因子又は細胞刺激因子を含む前記(10)に記載の造血幹細胞分化抑制又は増殖剤。
(12)前記造血因子として、SCF及びTPOから選ばれる一種以上の造血因子を含む前記(11)に記載の造血幹細胞分化抑制又は増殖剤。
本発明の造血幹細胞の分化抑制又は増殖方法を用いることにより、in vitro/ex vivoで造血幹細胞の培養、増殖等を行なうことができる。また、本発明の造血幹細胞の分化抑制又は増殖剤を用いることにより、造血幹細胞を未分化なまま、体内または体外で増殖させることができるので、放射線治療や制ガン剤等の化学療法剤による血球減少症の改善、リンパ球減少に起因する感染症の予防、骨髄形成不全症や骨髄抑制等の骨髄疾患の治療、白血病・高度腎障害・骨髄抑制等の骨髄疾患の治療、遺伝的疾患に由来する低血球症の治療、遺伝子治療時における組換え幹細胞の体外培養等に用いることができる。
また、本発明のスクリーニング法によれば、造血幹細胞の増殖または分化を調節する物質をスクリーニングすることができるので、造血幹細胞レベルの疾患の解明や新たな治療法・治療剤の開発に有用である。
As described above, various types of Wnt proteins have been studied in relation to the proliferation of hematopoietic stem cells. However, it has not yet been determined which Wnt protein actually has a practical level of differentiation or proliferation ability of hematopoietic stem cells. However, a method for inhibiting or proliferating hematopoietic stem cells using such a protein is not yet known. Therefore, if a protein having the ability to suppress or proliferate hematopoietic stem cells can be identified, and if the protein can be used to suppress or proliferate hematopoietic stem cells, treatment of various blood-related diseases or It is effective for research.
As a result of diligent research, the present inventors have expressed Wnt2 and Wnt5a in adult mouse bone marrow stromal cells, Wnt2, Wnt5a and Wnt5b are expressed in adult human bone marrow stromal cells, and Wnt2 is most expressed. I found out. As a result of continuing research based on this new knowledge, the present inventors have found that the differentiation of hematopoietic stem cells can be suppressed or expanded by using Wnt2 or Wnt5a, and the present invention has been completed.
That is, the present invention provides the following method for inhibiting and / or proliferating hematopoietic stem cells, hematopoietic stem cells obtained by the method, a method for producing hematopoietic stem cells, a culture system used in the culture method, Provided are a method for screening a substance that regulates differentiation, a hematopoietic stem cell differentiation inhibitory or proliferating agent, and the like.
(1) A method for inhibiting or proliferating hematopoietic stem cells, comprising culturing hematopoietic stem cells in the presence of one or more proteins selected from Wnt2 and Wnt5a.
(2) The method according to (1) above, wherein the culture is performed in the presence of one or more hematopoietic factors or cell stimulating factors and in the absence of serum.
(3) The method according to (2) above, wherein the culture is performed in the presence of one or more hematopoietic factors selected from SCF and TPO.
(4) The method according to (3) above, wherein one or more proteins selected from Wnt2 and Wnt5a are added to the culture system or cultured on feeder cells in which the protein is expressed.
(5) A hematopoietic stem cell obtained by any one of the methods (1) to (4).
(6) A method for producing hematopoietic stem cells, comprising a step of culturing hematopoietic stem cells in the presence of one or more proteins selected from Wnt2 and Wnt5a.
(7) Hematopoietic stem cells comprising (a) feeder cells, (b) one or more proteins selected from Wnt2 and Wnt5a, and (c) one or more hematopoietic factors or cell stimulating factors and no serum. Culture system.
(8) The culture system according to (7), wherein C127 cells that can survive under serum-free conditions are used as feeder cells.
(9) a step of coexisting a test substance in a culture system characterized by using feeder cells that can survive under serum-free conditions, (a) containing feeder cells and hematopoietic stem cells and not containing serum; (B) a step of culturing hematopoietic stem cells in a culture system in which the test substance coexists, and (c) the ratio and / or number of hematopoietic stem cells in the presence of the test substance compared to the case of not coexisting with the test substance. A method for screening for a substance that regulates proliferation or differentiation of hematopoietic stem cells, comprising a step of measuring the change.
(10) A hematopoietic stem cell differentiation inhibiting or proliferating agent containing one or more proteins selected from Wnt2 and Wnt5a.
(11) The hematopoietic stem cell differentiation inhibiting or proliferating agent according to (10), further comprising a hematopoietic factor or a cell stimulating factor.
(12) The hematopoietic stem cell differentiation-suppressing or proliferating agent according to (11) above, which contains one or more hematopoietic factors selected from SCF and TPO as the hematopoietic factor.
By using the method for inhibiting differentiation or proliferation of hematopoietic stem cells of the present invention, hematopoietic stem cells can be cultured and expanded in vitro / ex vivo. Furthermore, by using the hematopoietic stem cell differentiation inhibiting or proliferating agent of the present invention, hematopoietic stem cells can be proliferated in the body or outside the body undifferentiated, and thus cytopenia caused by chemotherapeutic agents such as radiotherapy and anticancer agents. Improvement, prevention of infectious diseases caused by lymphopenia, treatment of bone marrow diseases such as myelodysplasia and myelosuppression, treatment of bone marrow diseases such as leukemia, advanced nephropathy and myelosuppression, and low levels resulting from genetic diseases It can be used for treatment of hemocytosis, in vitro culture of recombinant stem cells during gene therapy, and the like.
Further, according to the screening method of the present invention, since a substance that regulates the proliferation or differentiation of hematopoietic stem cells can be screened, it is useful for elucidating diseases at the level of hematopoietic stem cells and developing new therapeutic methods and therapeutic agents. .

以下、本発明を詳細に説明する。
1.造血幹細胞の分化抑制又は増殖方法、および造血幹細胞の製造方法
本発明の第一の態様によれば、造血幹細胞を、Wnt2及びWnt5aから選ばれる一種以上の蛋白質の存在下で培養することを特徴とする造血幹細胞の分化抑制又は増殖方法(以下、「培養法」ともいう)が提供される。ここで、「造血幹細胞」とは、顆粒球系細胞(myeloid)、リンパ球系細胞(lymphoid)、赤血球系細胞(erythroid)、巨核球系細胞(megakaryocyte)等を含む全ての血球細胞へ分化する能力を有し、且つ自己複製能を有する細胞をいう。造血幹細胞を体外で培養するためには、何らかの造血因子又は細胞刺激因子の共存が必要であり、このような因子の非存在下では造血幹細胞はすぐに死滅してしまう。一方、このような因子の存在下では造血幹細胞は容易に分化してしまう。造血幹細胞は分化してしまうと自己複製能を失う。造血幹細胞の分化を抑制するとは、通常であれば造血幹細胞の分化が進むような条件下で、自己複製能を保持した造血幹細胞の存在割合および/または数を高めることを意味する。造血幹細胞の増殖(または増幅とも言う)とは、自己複製能を保持した造血幹細胞が増えること即ち自己複製することを意味し、造血幹細胞から分化した細胞が増えることは造血幹細胞の増殖に該当しない。
本発明で用いるWnt2及びWnt5aは公知の蛋白質であり、そのアミノ酸配列および該蛋白質をコードする遺伝子の塩基配列は以下の配列データベースから入手できる。ヒトWnt2遺伝子及びヒトWnt5a遺伝子は、GenBankに、それぞれ、Accession No.NM_003391及びAccession No.NM_003392として登録されている。ヒトWnt2タンパク質及びヒトWnt5aタンパク質は、NCBI Entrez Protein Databaseに、それぞれ、Accession No.NP_003382及びAccession No.NP_003383として登録されている。マウスWnt2遺伝子及びマウスWnt5a遺伝子は、GenBankに、それぞれ、Accession No.BC026373及びAccession No.BC018425として登録されている。マウスWnt2タンパク質及びマウスWnt5aタンパク質は、NCBI Entrez Protein Databaseに、それぞれ、Accession No.P21552及びAccession No.AAH18425として登録されている。本発明で用いるWnt2及びWnt5aは、いずれの種由来のものでもよいが、好ましくはヒト由来である。また、ヒトWnt2及びWnt5aと同等の活性を保持している限り、ヒト蛋白質のアミノ酸配列に対して欠失、置換、挿入、及び/または付加が生じたアミノ酸配列からなる変異蛋白質もWnt2及びWnt5aと同様に使用しうる。アミノ酸の変異部位および個数は、変異蛋白質がヒトWnt2及びWnt5aと同等の活性を保持している限り特に制限はないが、変異個数は通常数十アミノ酸以内(例えば、60アミノ酸以内)、好ましくは10アミノ酸以内、より好ましくは1〜数個(例えば、1〜6個)、さらに好ましくは1〜3個、さらに好ましくは1〜2個である。本発明で用いるWnt2及びWnt5aは、該蛋白質を発現している細胞や組織から調製することができ、またペプチド合成機(例えば、ペプチドシンセサイザー433A型、アプライドバイオシステムズ ジャパン株式会社製)を使用した化学合成法でも、また原核生物あるいは真核生物から選択される適当な宿主細胞を用いた組換え方法によっても調製することができる。しかしながら、その純度の面から遺伝子工学的な手法による生産ならびに組換え型蛋白質が好ましい。本発明で用いるWnt2及びWnt5aは、それ単独の形態でも別種の蛋白質との融合蛋白質の形態でも使用することができ、また、蛋白質を更に種々の形態へと変換させることも可能である。例えば、蛋白質に対する種々の化学修飾、ポリエチレングリコール等の高分子との結合、不溶性担体への結合、糖鎖修飾、脂質修飾等、当業者に知られている多種の手法による加工が考えられる。
本発明において用いる造血幹細胞は、例えば、ヒト及びマウス等の哺乳動物の胎児肝臓、骨髄、末梢血、臍帯血等から採取できるが、造血幹細胞が含まれる限りその採取源を問うものではない。またその調製、単離は、目的とする造血幹細胞のマーカーを指標として通常の方法により行なうことができる。例えば、マウスでは、細胞分化抗原(Linege)が陰性であり、かつc−kitならびにSca−1陽性の細胞の内、CD34抗原が陰性から弱陽性の性質を示す細胞に造血幹細胞の性質が見いだされている(Osawa,M.,Science,273:242,1996)。ヒト造血幹細胞のマーカーとしてはCD34抗原が知られており、特により未分化なマーカーとしてCD34抗原陽性、CD38抗原陰性、細胞分化抗原陰性があることが知られている(Bhatia et al.,Proc.Natl.Acad.Sci.U.S.A.94,5320−5325,1997)。また、場合によっては、造血幹細胞を単離することなく、ヒト又はマウス骨髄由来等の有核細胞あるいは幹細胞分画をそのまま培養に供することもできる。例えば、マウス骨髄由来等の幹細胞分画としてSP(side population)細胞分画(造血幹細胞を約半分弱含み、他の組織幹細胞も含むと考えられている)を用いることもできる。
本発明によれば、上記のようにして採取した造血幹細胞または造血幹細胞分画を、Wnt2及びWnt5aから選ばれる一種以上の蛋白質の存在下で培養する。細胞のin vitro培養は、公知の細胞培養技術を用いて行なうことができる(例えば、新生化学実験講座18 細胞培養技術(日本生化学会編、東京化学同人発行、1989)等参照)。造血幹細胞の培養は、培養用のシャーレ、フラスコ、あるいは培地組成、pHなどを機械的に制御できるバイオリアクターにおいて適当な培地を用いて行なうことができる。培養に用いる適当な培地は、造血幹細胞の生存・増殖が阻害されない限り特に制限されないが、例えば、SF−02培地(三光純薬)、Opti−MEM培地(GIBCO BRL)、MEM培地(GIBCO BRL)、DMEM培地(GIBCO BRL)、IMDM培地(GIBCO BRL)、PRMI1640培地(GIBCO BRL)、RD培地(RPMI1640:DMEM=1:1〔V/V〕混合培地)等が挙げられる。培養系には、通常、添加される成分、例えば、インスリン、トランスフェリン、ラクトフェリン、2−メルカプトエタノール、エタノールアミン、亜セレン酸ナトリウム、およびHEPES、血清(例えば、ウシ胎児血清、ヒト血清、ウマ血清)、モノチオグリセロール、ピルビン酸ナトリウム、ポリエチレングリコール、各種ビタミン、各種アミノ酸、各種増殖因子が必要に応じて添加される。
本発明の培養法においては、Wnt2及びWnt5aから選ばれる一種以上の蛋白質に加え、造血因子又は細胞刺激因子、あるいはその両方を培養系に添加することによって、より有効に造血幹細胞の分化抑制および/または自己複製を行なうことができる。ここで、「造血因子又は細胞刺激因子」とは、造血細胞に自己複製、増殖、分化、生存、遊走などの刺激を与える因子を広義に意味する。ここで用いられる造血因子又は細胞刺激因子は、造血幹細胞の生存・増殖を阻害しない限り特に限定されない。好ましく用いられる造血因子又は細胞刺激因子としては、例えば、SCF(幹細胞成長因子;stem cell factor)、TPO(トロンボポエチン)、IL−3(インターロイキン−3)、IL−11(インターロイキン−11)、GM−CSF(顆粒球マクロファージ・コロニー刺激因子;granulocyte/macrophage colony−stimulating factor)、G−CSF(顆粒球コロニー刺激因子;granulocyte colony−stimulating factor)、TGF−β(トランスフォーミング成長因子−β)、MIP−1α、Flt3/Flk2−ligand、EPO(エリスロポエチン)、Notchリガンド(Jaggedファミリー、Deltaファミリー)、Tie2リガンド(アンジオポエチン)、BMP4、Flk2/Flk3リガンド、FL、bFGF、オンコスタチンM、IL6/sIL6R、EGFおよびLIF等が挙げられる。本発明で使用される造血因子又は細胞刺激因子は、遺伝子組換え技術、ペプチド合成法、細胞培養法等により製造されたヒト、マウス等の哺乳動物由来の蛋白質を含む。さらにここで用いられる造血因子又は細胞刺激因子は、アミノ酸配列の1部(例えば、1〜数個(例えば、1〜6個))、好ましくは1〜3個)が置換、挿入、付加及び/または欠失した変異蛋白質でも、活性を保持している限りにおいて使用しうる。または、各因子を発現させたフィーダー細胞を用いてもよい。
培養系に添加される造血因子又は細胞刺激因子の量は、一般的には因子特異的であるが、因子は、造血幹細胞培養培地に、通常、約1ng/ml〜約100ng/mlの間の濃度で、好ましくは約5ng/ml〜約50ng/mlの濃度で、より好ましくは約5ng/ml〜約30ng/mlの間の濃度で添加される。
本発明の培養方法においては、Wnt2及びWnt5aから選ばれる一種以上のタンパク質、および各種造血因子又は細胞刺激因子から選ばれる一種以上を培養系に添加することもできるが、それらタンパク質や因子を発現させたフィーダー細胞上で造血幹細胞を共培養してもよい。ここで好ましく用いられるフィーダー細胞としては、X線処理等で増殖能を欠損させた骨髄細胞または骨髄ストローマ細胞、AGM領域由来細胞、線維芽細胞、胎児肝臓由来細胞、間葉系幹細胞、血管内皮細胞、および前脂肪細胞等を用いることができる。本発明の特に好ましい態様によれば、培養系に血清を添加しない無血清培地で培養を行なう。無血清培地で特に好ましく用いられるフィーダー細胞としては、C127細胞が挙げられる。なお、本発明で好ましく用いられる、無血清培地で生存、長期培養、および/または増殖できるC127細胞は、例えば、次のようにして得ることができる。まず、C127細胞を、1%FCS+5%KSR入りのDMEMで1ヶ月ほど掛けて生き残る細胞を選択し、更に0.1%FCS+5%KSRを含むDMEMでも生き残る細胞を増殖する。次いで完全無血清のDMEM+5%KSRで増幅する細胞を限界希釈法によってクローン化した細胞を、無血清培地で生存、長期培養、および/または増殖可能なC127細胞とする。
フィーダー細胞にWnt2及びWnt5aから選ばれる一種以上のタンパク質や、各種造血因子又は細胞刺激因子を発現させるには、それらタンパク質や因子のアミノ酸配列をコードするDNAを含んでなる組換えベクターを作製し、該組換えベクターをフィーダー細胞に導入すればよい。
なお、培養は、例えば、33〜39℃(好ましくは37℃)の温度で、3〜6%CO2(好ましくは5%)下、5〜50日間行なう。造血幹細胞の分化抑制および/または自己複製の結果は、Herzenberg,L.A.「Weir’s Handbook of Experimental Immunology,5th edition」,Blackwell Science Inc.1997」、Spangrude,G.J.,Proc.Natl.Acad.Sci.U.S.A.,87:7433−7437,1990;Visser,J.M.W.,「Flow cytometry in hematology」,Academic Press,p9−29,1992等を参考に細胞表面抗原を指標に確認することができる。例えば、ヒト造血幹細胞のマーカーとしては、少なくともCD34抗原陽性、好ましくはCD34抗原陽性、CD38抗原陰性、細胞分化抗原陰性であることをヒト造血幹細胞の指標として用いることができる。造血幹細胞の存在を確認する手段として放射線照射マウスを用いた移植実験系、または、in vitro(インビトロ)のコロニー形成法(Bradley,T.R.,J.Exp.Med.,44:287−299,1966)を用いることも可能である。放射線照射マウスを用いた移植実験系では、放射線照射し造血系に障害を与えたマウス(レシピエント)に、他のマウス(ドナー)から分離した骨髄細胞や造血幹細胞含有画分を移植する。移植後、レシピエント由来とドナー由来の造血系細胞の割合(キメリズム)を指標に、長期骨髄再構築能を有する造血幹細胞の存在を確認する(Osawa,M.,Science,273:242−245,1996、Bhatia et al.,Proc.Natl.Acad.Sci.U.S.A.94,5320−5325,1997)。コロニー形成法において、造血幹細胞を種々の血液細胞が出現できるように種々のサイトカインを添加した培地にて培養すると、分化方向の決定された造血前駆細胞は、小数あるいは、単一な分化系列の細胞しか含まないコロニーを形成するが、多分化能を持つ造血幹細胞は、複数の分化系列の血液細胞を含むコロニーを形成することができる。特に、赤血球を含む混合コロニー(CFU−Emix)を形成することが、ヒトでは造血幹細胞の指標とされている。
本発明は、上述の本発明の培養方法を用いることを特徴とする、造血幹細胞の製造方法を提供する。本発明の製造方法は、(a)造血幹細胞を、Wnt2及びWnt5aから選ばれる一種以上のタンパク質の存在下で培養する工程を含んでなることを特徴とする。本発明の製造方法は、更に以下のような工程を含むことができるが、これらに限定されるものではなく、本発明の培養方法や培養系に準じた工程を適宜含み得る;(b)一種以上の造血因子又は細胞刺激因子の存在下、かつ血清の非存在下で培養を行なう工程、(c)造血幹細胞をフィーダー細胞と共培養する工程、(d)フィーダー細胞にWnt2及びWnt5aから選ばれる一種以上のタンパク質を発現させる工程。
2.上記培養方法によって得られた造血幹細胞
上記本発明の方法によって得られた造血幹細胞は、従来の骨髄移植や臍帯血移植に代わる造血幹細胞移植用に用いることができる。例えば、自己免疫疾患等の骨髄移植によってその改善の見られる疾患に対しては、自己あるいは非自己の幹細胞を増殖させるに際し、本発明による幹細胞増殖技術を利用することができる。具体的には、本発明の方法により得られた造血幹細胞は、様々な白血病に対する全身X線療法や高度化学療法を行う際に、これらの治療と組み合わせて用いることができる。また、造血幹細胞は、例えば、固形癌患者の化学療法、放射線療法等の骨髄抑制が副作用として生じる治療を実施する際に、施術前に骨髄を採取しておき、造血幹細胞を試験管内で増幅し、施術後に患者に戻すことで、副作用による造血系の障害から早期に回復させることができ、より強力な化学療法を行えるようになる。
また、本発明を利用して、患者あるいは他人の造血幹細胞を各種血液細胞に分化させ、それらを患者の体内に移入することにより、各種血液細胞の形成が不十分な患者を治療することができる。また、本発明の培養方法によって得られる造血幹細胞は、再生不良性貧血などの貧血を呈する骨髄低形成に起因する造血不全症を改善することができる。その他、本発明の培養方法によって得られる造血幹細胞の移植が有効な疾患としては、慢性肉芽腫症、重複免疫不全症候群、無ガンマグロブリン血症、Wiskott−Aldrich症候群、後天性免疫不全症候群(AIDS)等の免疫不全症候群、サラセミア、酵素欠損による溶血性貧血、鎌状赤血球症等の先天性貧血、Gaucher病、ムコ多糖症等のリソゾーム蓄積症、副腎白質変性症、各種の癌または腫瘍等が挙げられる。
造血幹細胞の移植は、使用する細胞以外は、従来行われている骨髄移植や臍帯血移植と同様に行なうことができる。なお、本発明の移植片は、本発明の方法によって増殖した造血幹細胞を含む細胞成分の他に、緩衝液等を含む組成物として用いることもできる。
3.細胞培養系及びこれを用いるスクリーニング方法
本発明の他の態様によれば、(a)フィーダー細胞、(b)Wnt2及びWnt5aから選ばれる一種以上のタンパク質及び(c)一種以上の造血因子又は細胞刺激因子を含み、かつ血清を含まないことを特徴とする造血幹細胞培養系を提供する。このような無血清培養系においては、無血清下で少なくとも生存可能な、好ましくは長期培養、および/または増殖可能なフィーダー細胞を用いる必要がある。好適なフィーダー細胞は、無血清下で生存可能なように調製したC127細胞である。このような無血清培養系は、造血幹細胞の分化または増殖を調節する物質をスクリーニングする方法に利用することができる。すなわち、本発明の造血幹細胞の増殖または分化を調節する物質をスクリーニングする方法は、無血清下で生存可能なフィーダー細胞を用いることを特徴とし、(a)フィーダー細胞および造血幹細胞を含み、かつ血清を含まないことを特徴とする培養系に試験物質を共存させる(添加あるいはフィーダー細胞に発現させる)工程、(b)試験物質を共存させた(添加あるいはフィーダー細胞に発現させた)培養系で造血幹細胞を培養する工程、及び(c)試験物質非共存下(非添加または非発現)の場合と比較して、試験物質共存下(添加または発現)の場合における造血幹細胞の割合および/または数の変化を測定する工程を含む。本発明のスクリーニング方法において、例えば、造血幹細胞の増殖促進活性を有する物質を試験するに際しては、Wnt2及びWnt5aから選ばれる一種以上のタンパク質を培養系に含めておく(添加あるいはフィーダー細胞に発現させる)ことにより、幹細胞の分化を抑制した状態で試験物質の増殖促進活性をより有効に試験することが可能である。また、必要に応じて造血因子又は細胞刺激因子の一種以上を培養系に含めてもよい。増殖または分化の調節とは、増殖抑制、増殖促進、分化抑制および分化促進の何れかのことであり、特に増殖促進が好ましい。
このスクリーニングにおいて用いる試験物質としては、細胞の培養上清、精製タンパク質若しくはペプチド、合成化合物、微生物や植物に由来する天然物、造血幹細胞の増殖あるいは分化を促進する因子を産生していることが予想される支持細胞により産生される蛋白質や生体物質などが挙げられる。試験物質の活性は、培養系において試験物質の存在下及び非存在下において、処理前後の細胞に含まれる造血幹細胞の割合および/または数を算出することで測定することができる。細胞に含まれる造血幹細胞の割合および/または数はFACSによって求めることができる。造血幹細胞の分化は、分化した細胞に特異的な抗原に対する抗体により、FACSあるいは蛍光抗体法で測定することができる。たとえば、B細胞の特異抗原としてB220、顆粒球の特異抗原としてGr−1、赤芽球系細胞の特異抗原としてTER119が使用できる。また、CFU−GM、CFU−Mix、CFU−S等のコロニーアッセイにより測定することができる。このようなスクリーニングの結果、有意な造血幹細胞の自己複製・増殖、分化抑制、または分化が検出されれば、スクリーニングに用いた試験物質は、造血幹細胞の増殖または分化を調節する因子であると判定される。このような因子は、特に血液系疾患の治療薬開発において有用である。
4.造血幹細胞の分化抑制又は増殖剤
本発明の他の態様によれば、Wnt2及びWnt5aから選ばれる一種以上のタンパク質を含有する造血幹細胞分化抑制又は増殖剤(以下、単に、「造血幹細胞増殖剤」ともいう)が提供される。本発明の増殖剤は、好ましくは、Wnt2及びWnt5aから選ばれる一種以上のタンパク質に加えて、上記した造血因子又は細胞刺激因子の一種以上、例えば、SCF、TPOまたはその両方を含有する。
本発明の造血幹細胞増殖剤は、造血幹細胞を未分化なまま、体内または体外で増殖させることができるので、上記したin vitroにおける造血幹細胞の培養・増殖方法において用いることができる他、放射線治療や制ガン剤等の化学療法剤による血球減少症の改善、リンパ球減少に起因する感染症の予防、骨髄形成不全症や骨髄抑制などの骨髄疾患の治療、白血病、高度腎障害・骨髄抑制などの骨髄疾患の治療、遺伝的疾患に由来する低血球症の治療、遺伝子治療時における組換え幹細胞の体外培養等に用いることができる。
本発明の造血幹細胞増殖剤は、経口、非経口、骨髄等の局所その他の適当な経路で投与することができる。造血幹細胞増殖剤の望ましい投与量は、その有効成分(上記Wntタンパク質、及び必要に応じて造血因子又は細胞刺激因子それぞれを「有効成分」という)として、1日あたり1〜1000μG/kg体重程度で、好ましくは5〜500μg/kg体重程度であるが、患者の体重および症状や個々の投与経路によって当然変動する。場合によっては前記範囲の下限より低い投与量が適当なこともあるし、前記範囲より投与量を多くしてもそれを1日に何回にも分けて少量ずつ投与すれば有害な副作用を生じない場合もある。
本発明で用いられる上記有効成分は、前記3つの投与経路のいずれをとっても単独または薬学的あるいは薬剤学的に許容される担体または希釈剤と共に投与することができ、またその投与は1回または数回に分けて行うことができる。より具体的に述べると、本発明の増殖剤は様々な種類の投与形態で投与することができ、たとえば各種の薬剤学的に許容される不活性担体と併用して錠剤、カプセル、薬用ドロップ、トローチ、硬質キャンディ、粉末剤、噴霧剤、クリーム、膏薬、坐薬、ゼリー、ジェル、ペースト、ローション、軟膏、水性懸濁液、注射液、エリキシル、シロップ等の形態とすることができる。これらの担体には、固体希釈剤または賦形剤、無菌水性媒体、各種の非毒性有機溶媒等が含まれる。
Hereinafter, the present invention will be described in detail.
1. Method for inhibiting or proliferating hematopoietic stem cell and method for producing hematopoietic stem cell According to the first aspect of the present invention, the hematopoietic stem cell is cultured in the presence of one or more proteins selected from Wnt2 and Wnt5a. A method for suppressing or proliferating hematopoietic stem cells (hereinafter also referred to as “culture method”) is provided. Here, “hematopoietic stem cells” are differentiated into all blood cells including granulocyte cells (myloid), lymphocyte cells (lymphoid), erythroid cells (erythroid), megakaryocyte cells (megakaryocyte) and the like. A cell that has the ability and self-replication ability. In order to culture hematopoietic stem cells outside the body, coexistence of some hematopoietic factor or cell stimulating factor is necessary, and in the absence of such a factor, the hematopoietic stem cell is immediately killed. On the other hand, hematopoietic stem cells are easily differentiated in the presence of such factors. When hematopoietic stem cells differentiate, they lose their ability to replicate. Suppressing the differentiation of hematopoietic stem cells means increasing the abundance and / or number of hematopoietic stem cells that retain their self-replicating ability under conditions that would normally cause the differentiation of hematopoietic stem cells. The proliferation (or amplification) of hematopoietic stem cells means that hematopoietic stem cells having self-replicating ability increase, that is, self-replicating, and the increase of differentiated cells from hematopoietic stem cells does not correspond to the proliferation of hematopoietic stem cells. .
Wnt2 and Wnt5a used in the present invention are known proteins, and their amino acid sequences and base sequences of genes encoding the proteins can be obtained from the following sequence databases. The human Wnt2 gene and the human Wnt5a gene were obtained from GenBank in the Accession No. NM_003391 and Accession No. It is registered as NM_003392. Human Wnt2 protein and human Wnt5a protein are obtained from NCBI Entrez Protein Database, respectively, with Accession No. NP_003382 and Accession No. It is registered as NP_003383. The mouse Wnt2 gene and the mouse Wnt5a gene were obtained from GenBank, respectively with Accession No. BC026363 and Accession No. It is registered as BC018425. Mouse Wnt2 protein and mouse Wnt5a protein were obtained from NCBI Entrez Protein Database, respectively, with Accession No. P21552 and Accession No. It is registered as AAH18425. Wnt2 and Wnt5a used in the present invention may be derived from any species, but are preferably derived from human. As long as the activity equivalent to that of human Wnt2 and Wnt5a is maintained, a mutant protein consisting of an amino acid sequence in which deletion, substitution, insertion and / or addition has occurred with respect to the amino acid sequence of the human protein is also referred to as Wnt2 and Wnt5a. It can be used as well. The mutation site and number of amino acids are not particularly limited as long as the mutant protein retains the same activity as human Wnt2 and Wnt5a, but the number of mutations is usually within several tens of amino acids (for example, within 60 amino acids), preferably 10 Within 1 amino acid, more preferably 1 to several (for example, 1 to 6), still more preferably 1 to 3, and still more preferably 1 to 2. Wnt2 and Wnt5a used in the present invention can be prepared from cells or tissues expressing the protein, and chemistry using a peptide synthesizer (for example, peptide synthesizer 433A type, manufactured by Applied Biosystems Japan Co., Ltd.). It can be prepared by synthetic methods or by recombinant methods using suitable host cells selected from prokaryotes or eukaryotes. However, production by genetic engineering techniques and recombinant proteins are preferred from the standpoint of purity. Wnt2 and Wnt5a used in the present invention can be used alone or in the form of a fusion protein with another protein, and the protein can be further converted into various forms. For example, various chemical modifications to proteins, binding to polymers such as polyethylene glycol, binding to an insoluble carrier, sugar chain modification, lipid modification, and the like can be considered by various techniques known to those skilled in the art.
The hematopoietic stem cells used in the present invention can be collected from, for example, fetal liver, bone marrow, peripheral blood, umbilical cord blood and the like of mammals such as humans and mice, but as long as hematopoietic stem cells are contained, the collection source is not limited. The preparation and isolation can be carried out by a conventional method using the target hematopoietic stem cell marker as an index. For example, in mice, the characteristics of hematopoietic stem cells are found in cells that are negative for cell differentiation antigen (Lineage) and that are negative for c34 and Sca-1 and that show negative to weakly positive properties for CD34 antigen. (Osawa, M., Science, 273: 242, 1996). CD34 antigen is known as a marker for human hematopoietic stem cells, and in particular, CD34 antigen positive, CD38 antigen negative, and cell differentiation antigen negative are known as more undifferentiated markers (Bhatia et al., Proc. Natl.Acad.Sci.U.S.A.94, 5320-5325, 1997). In some cases, nucleated cells or stem cell fractions derived from human or mouse bone marrow can be directly subjected to culture without isolating hematopoietic stem cells. For example, SP (side population) cell fraction (which is considered to contain about half of hematopoietic stem cells and other tissue stem cells) can be used as a stem cell fraction derived from mouse bone marrow.
According to the present invention, the hematopoietic stem cell or hematopoietic stem cell fraction collected as described above is cultured in the presence of one or more proteins selected from Wnt2 and Wnt5a. In vitro culture of cells can be performed using a known cell culture technique (see, for example, Shinsei Kagaku Kogaku Kenkyu 18 Cell Culture Technology (edited by the Japan Biochemical Society, Tokyo Kagaku Dojin, 1989)). Hematopoietic stem cells can be cultured using a suitable culture medium in a petri dish for culture, a flask, or a bioreactor capable of mechanically controlling medium composition, pH, and the like. An appropriate medium used for the culture is not particularly limited as long as the hematopoietic stem cell survival / proliferation is not inhibited. For example, SF-02 medium (Sanko Junyaku), Opti-MEM medium (GIBCO BRL), MEM medium (GIBCO BRL) , DMEM medium (GIBCO BRL), IMDM medium (GIBCO BRL), RPMI1640 medium (GIBCO BRL), RD medium (RPMI1640: DMEM = 1: 1 [V / V] mixed medium) and the like. In the culture system, usually added components such as insulin, transferrin, lactoferrin, 2-mercaptoethanol, ethanolamine, sodium selenite, and HEPES, serum (eg, fetal bovine serum, human serum, horse serum) Monothioglycerol, sodium pyruvate, polyethylene glycol, various vitamins, various amino acids, and various growth factors are added as necessary.
In the culture method of the present invention, in addition to one or more proteins selected from Wnt2 and Wnt5a, a hematopoietic factor and / or a cell stimulating factor, or both are added to the culture system to more effectively suppress hematopoietic stem cell differentiation and / or Or self-replication can be performed. Here, the term “hematopoietic factor or cell stimulating factor” broadly means a factor that gives a hematopoietic cell a stimulus such as self-replication, proliferation, differentiation, survival, and migration. The hematopoietic factor or cell stimulating factor used here is not particularly limited as long as it does not inhibit the survival / proliferation of hematopoietic stem cells. Examples of hematopoietic factors or cell stimulating factors preferably used include SCF (stem cell factor), TPO (thrombopoietin), IL-3 (interleukin-3), IL-11 (interleukin-11), GM-CSF (granulocyte macrophage colony-stimulating factor; granulocyte / macrophage colony-stimulating factor), G-CSF (granulocyte colony-stimulating factor), TGF-β (transforming growth factor-β) MIP-1α, Flt3 / Flk2-ligand, EPO (erythropoietin), Notch ligand (Jagged family, Delta family) , Tie2 ligand (Angiopoietin), BMP4, Flk2 / Flk3 ligand, FL, bFGF, oncostatin M, IL6 / sIL6R, EGF and LIF, and the like. The hematopoietic factor or cell stimulating factor used in the present invention includes proteins derived from mammals such as humans and mice produced by gene recombination techniques, peptide synthesis methods, cell culture methods and the like. Furthermore, the hematopoietic factor or cell stimulating factor used herein is a part of the amino acid sequence (for example, 1 to several (for example, 1 to 6), preferably 1 to 3), preferably substituted, inserted, added and / or Alternatively, deleted mutant proteins can be used as long as they retain activity. Alternatively, feeder cells expressing each factor may be used.
The amount of hematopoietic or cell stimulating factor added to the culture system is generally factor specific, but the factor is typically between about 1 ng / ml and about 100 ng / ml in the hematopoietic stem cell culture medium. Concentrations are preferably added at a concentration of about 5 ng / ml to about 50 ng / ml, more preferably at a concentration between about 5 ng / ml to about 30 ng / ml.
In the culture method of the present invention, one or more proteins selected from Wnt2 and Wnt5a, and one or more proteins selected from various hematopoietic factors or cell stimulating factors can be added to the culture system. Hematopoietic stem cells may be co-cultured on the feeder cells. The feeder cells preferably used here include bone marrow cells or bone marrow stromal cells deficient in proliferation ability by X-ray treatment or the like, AGM region-derived cells, fibroblasts, fetal liver-derived cells, mesenchymal stem cells, vascular endothelial cells , And preadipocytes and the like can be used. According to a particularly preferred embodiment of the present invention, culturing is performed in a serum-free medium in which no serum is added to the culture system. Examples of feeder cells that are particularly preferably used in a serum-free medium include C127 cells. The C127 cells that can be preferably used in the present invention and can survive, long-term culture, and / or proliferate in a serum-free medium can be obtained, for example, as follows. First, C127 cells are selected with DMEM containing 1% FCS + 5% KSR for about 1 month to select cells that survive, and further, cells that survive with DMEM containing 0.1% FCS + 5% KSR are proliferated. Then, a cell obtained by cloning cells amplified by completely serum-free DMEM + 5% KSR by a limiting dilution method is defined as a C127 cell that can survive, long-term culture, and / or proliferate in serum-free medium.
In order to express one or more proteins selected from Wnt2 and Wnt5a and various hematopoietic factors or cell stimulating factors in feeder cells, a recombinant vector comprising DNA encoding the amino acid sequences of these proteins and factors is prepared, The recombinant vector may be introduced into feeder cells.
The culture is performed at a temperature of 33 to 39 ° C. (preferably 37 ° C.) under 3 to 6% CO 2 (preferably 5%) for 5 to 50 days. The results of suppression of hematopoietic stem cell differentiation and / or self-renewal are described in Herzenberg, L .; A. “Weir's Handbook of Experimental Immunology, 5th edition”, Blackwell Science Inc. 1997 ", Spangrude, G .; J. et al. , Proc. Natl. Acad. Sci. U. S. A. 87: 7433-7437, 1990; Visser, J. et al. M.M. W. , “Flow cytometry in hematology”, Academic Press, p9-29, 1992, etc., can be used to confirm cell surface antigen as an index. For example, as a marker for human hematopoietic stem cells, at least CD34 antigen positive, preferably CD34 antigen positive, CD38 antigen negative, and cell differentiation antigen negative can be used as an indicator of human hematopoietic stem cells. Transplantation experiment system using irradiated mice as means for confirming the presence of hematopoietic stem cells, or in vitro colony formation method (Bradley, TR, J. Exp. Med., 44: 287-299) , 1966) can also be used. In a transplantation experiment system using irradiated mice, bone marrow cells and hematopoietic stem cell-containing fractions separated from other mice (donors) are transplanted into mice (recipients) that have been irradiated and damaged in the hematopoietic system. After transplantation, the presence of hematopoietic stem cells having long-term bone marrow remodeling ability is confirmed using the ratio of recipient-derived and donor-derived hematopoietic cells (chimerism) as an index (Osawa, M., Science, 273: 242-245). 1996, Bhatia et al., Proc. Natl. Acad. Sci. USA 94, 5320-5325, 1997). In the colony formation method, when hematopoietic stem cells are cultured in a medium supplemented with various cytokines so that various blood cells can appear, the number of hematopoietic progenitor cells whose differentiation direction has been determined can be small or single differentiation lineage cells. However, pluripotent hematopoietic stem cells can form colonies containing blood cells of multiple differentiation lineages. In particular, the formation of mixed colonies (CFU-Emix) containing erythrocytes is regarded as an indicator of hematopoietic stem cells in humans.
The present invention provides a method for producing hematopoietic stem cells, characterized by using the culture method of the present invention described above. The production method of the present invention comprises (a) a step of culturing hematopoietic stem cells in the presence of one or more proteins selected from Wnt2 and Wnt5a. The production method of the present invention can further include the following steps, but is not limited thereto, and may appropriately include steps according to the culture method and culture system of the present invention; (b) A step of culturing in the presence of the above hematopoietic factor or cell stimulating factor and in the absence of serum; (c) a step of co-culturing hematopoietic stem cells with feeder cells; and (d) a feeder cell selected from Wnt2 and Wnt5a. Expressing one or more proteins.
2. Hematopoietic stem cells obtained by the above culture method The hematopoietic stem cells obtained by the method of the present invention can be used for hematopoietic stem cell transplantation in place of conventional bone marrow transplantation or umbilical cord blood transplantation. For example, for a disease that is improved by bone marrow transplantation such as an autoimmune disease, the stem cell proliferation technique according to the present invention can be used when proliferating autologous or non-self stem cells. Specifically, hematopoietic stem cells obtained by the method of the present invention can be used in combination with these treatments when performing systemic X-ray therapy or advanced chemotherapy for various leukemias. In addition, hematopoietic stem cells are collected from the bone marrow prior to treatment, for example, when performing treatment in which bone marrow suppression occurs as a side effect, such as chemotherapy or radiation therapy for solid cancer patients, and hematopoietic stem cells are amplified in vitro. By returning to the patient after the operation, hematopoietic system failure due to side effects can be recovered early, and more powerful chemotherapy can be performed.
In addition, by using the present invention, a patient with insufficient blood cell formation can be treated by differentiating hematopoietic stem cells of a patient or another person into various blood cells and transferring them into the patient's body. . In addition, the hematopoietic stem cells obtained by the culture method of the present invention can improve hematopoietic insufficiency caused by hypoplasia of the bone marrow exhibiting anemia such as aplastic anemia. Other diseases in which transplantation of hematopoietic stem cells obtained by the culture method of the present invention is effective include chronic granulomatosis, double immunodeficiency syndrome, agammaglobulinemia, Wiskott-Aldrich syndrome, acquired immune deficiency syndrome (AIDS) Examples include immunodeficiency syndrome such as thalassemia, hemolytic anemia due to enzyme deficiency, congenital anemia such as sickle cell disease, lysosomal storage diseases such as Gaucher's disease and mucopolysaccharidosis, adrenoleukodysplasia, various cancers or tumors, etc. It is done.
Transplantation of hematopoietic stem cells can be performed in the same manner as conventional bone marrow transplantation and umbilical cord blood transplantation except for the cells to be used. The graft of the present invention can also be used as a composition containing a buffer solution in addition to cell components containing hematopoietic stem cells grown by the method of the present invention.
3. Cell culture system and screening method using the same According to another aspect of the present invention, (a) a feeder cell, (b) one or more proteins selected from Wnt2 and Wnt5a, and (c) one or more hematopoietic factors or cell stimulation. There is provided a hematopoietic stem cell culture system characterized by containing a factor and not containing serum. In such a serum-free culture system, it is necessary to use feeder cells that are at least viable in serum-free, preferably long-term culture and / or proliferative. Suitable feeder cells are C127 cells prepared to be viable under serum-free conditions. Such a serum-free culture system can be used in a method for screening a substance that regulates differentiation or proliferation of hematopoietic stem cells. That is, the method for screening a substance that regulates proliferation or differentiation of hematopoietic stem cells of the present invention is characterized by using feeder cells that can survive under serum-free conditions, and includes (a) feeder cells and hematopoietic stem cells, and serum. Hematopoiesis in a culture system characterized in that it does not contain a test substance coexisting (added or expressed in feeder cells), (b) a culture system coexisting with a test substance (added or expressed in feeder cells) The step of culturing the stem cells, and (c) the proportion and / or number of hematopoietic stem cells in the presence (addition or expression) of the test substance compared to the absence of the test substance (no addition or expression) Measuring the change. In the screening method of the present invention, for example, when testing a substance having proliferation promoting activity of hematopoietic stem cells, one or more proteins selected from Wnt2 and Wnt5a are included in the culture system (added or expressed in feeder cells). Thus, it is possible to more effectively test the growth promoting activity of the test substance in a state in which the differentiation of the stem cells is suppressed. Further, if necessary, one or more hematopoietic factors or cell stimulating factors may be included in the culture system. The regulation of proliferation or differentiation is any one of proliferation inhibition, proliferation promotion, differentiation inhibition and differentiation promotion, and proliferation promotion is particularly preferable.
Test substances used in this screening are expected to produce cell culture supernatants, purified proteins or peptides, synthetic compounds, natural products derived from microorganisms and plants, and factors that promote proliferation or differentiation of hematopoietic stem cells Examples thereof include proteins and biological materials produced by supported cells. The activity of the test substance can be measured by calculating the ratio and / or number of hematopoietic stem cells contained in the cells before and after the treatment in the culture system in the presence and absence of the test substance. The proportion and / or number of hematopoietic stem cells contained in the cells can be determined by FACS. Differentiation of hematopoietic stem cells can be measured by FACS or a fluorescent antibody method using an antibody against an antigen specific to the differentiated cell. For example, B220 can be used as a B cell specific antigen, Gr-1 can be used as a granulocyte specific antigen, and TER119 can be used as a erythroid cell specific antigen. Moreover, it can measure by colony assays, such as CFU-GM, CFU-Mix, and CFU-S. If significant hematopoietic stem cell self-renewal / proliferation, differentiation suppression, or differentiation is detected as a result of such screening, the test substance used for screening is determined to be a factor that regulates hematopoietic stem cell proliferation or differentiation. Is done. Such factors are particularly useful in the development of therapeutics for blood system diseases.
4). Hematopoietic stem cell differentiation inhibiting or proliferating agent According to another aspect of the present invention, a hematopoietic stem cell differentiation inhibiting or proliferating agent containing one or more proteins selected from Wnt2 and Wnt5a (hereinafter simply referred to as “hematopoietic stem cell proliferating agent”). Say). The proliferative agent of the present invention preferably contains one or more hematopoietic factors or cell stimulating factors such as SCF, TPO, or both in addition to one or more proteins selected from Wnt2 and Wnt5a.
Since the hematopoietic stem cell proliferating agent of the present invention can be proliferated in the body or outside of the body with undifferentiated hematopoietic stem cells, it can be used in the above-described in vitro method for culturing and proliferating hematopoietic stem cells. Improvement of cytopenia with chemotherapeutic agents such as anticancer drugs, prevention of infections caused by lymphopenia, treatment of bone marrow diseases such as myelodysplasia and bone marrow suppression, bone marrow diseases such as leukemia, advanced nephropathy and bone marrow suppression It can be used for the treatment of the above, the treatment of hypocytosis derived from a genetic disease, the in vitro culture of recombinant stem cells at the time of gene therapy, and the like.
The hematopoietic stem cell proliferating agent of the present invention can be administered orally, parenterally, locally or other suitable route such as bone marrow. The desired dose of the hematopoietic stem cell proliferating agent is about 1 to 1000 μG / kg body weight per day as its active ingredient (the above Wnt protein, and if necessary, each hematopoietic factor or cell stimulating factor is referred to as “active ingredient”). It is preferably about 5 to 500 μg / kg body weight, but naturally varies depending on the weight and symptoms of the patient and the individual administration route. In some cases, a dose lower than the lower limit of the above range may be appropriate, and even if the dose is increased from the above range, it may cause harmful side effects if administered in small portions in several times a day. Sometimes it is not.
The active ingredient used in the present invention can be administered alone or together with a pharmaceutically or pharmaceutically acceptable carrier or diluent by any of the three administration routes, and can be administered once or several times. Can be divided into times. More specifically, the proliferative agent of the present invention can be administered in various types of dosage forms, such as tablets, capsules, medicinal drops in combination with various pharmaceutically acceptable inert carriers, It can be in the form of a troche, hard candy, powder, spray, cream, salve, suppository, jelly, gel, paste, lotion, ointment, aqueous suspension, injection solution, elixir, syrup and the like. These carriers include solid diluents or excipients, sterile aqueous media, various non-toxic organic solvents and the like.

以下、本発明を実施例に基づいてより具体的に説明するが、本発明はこれに限定されるものではない。
[実施例1]
1.マウス及びヒト成体骨髄ストローマ細胞で発現しているWnt遺伝子の同定
1.1 骨髄幹細胞の調製
非働化したウシ胎児血清(FCS)を2%含むリン酸緩衝化生理食塩水(PBS)を、26ゲージの針で骨髄腔に一気に注ぐことにより、マウス骨髄細胞を8週令のC57BL/6マウス(Charles River)から調製した。成人ヒト骨髄細胞を、インフォームドコンセントと、施設内倫理委員会の承認に基づいて正常ドナーの後腸骨稜(posterior iliac crest)から得た。細胞懸濁液をLymphoprep(Nycomed)上に置き、800gで20分間遠心した。単核細胞を回収し、2%のFCSを含むPBSで洗浄した。そして、接着細胞を10%のFCSを含むIMD培養液(Gibco−BRL)で10日間培養した。全RNAはAGPC法で単離した後、degenerative RT−PCRで発現しているWntの種類を同定した。
1.2 Degenerative RT−PCR解析
逆転写ポリメーラーゼ連鎖反応(RT−PCR)を以下のように行った。第一鎖(first strand)cDNAをSuperscript II(Gibco−BRL)を用いて合成した。PCRの増幅はLA Tag polymerase(Takara)とデジェネレートプライマー

Figure 2005056778
を用いて、94°Cで1分を1サイクル、94°Cで1分、54°Cで30秒;72°Cで45秒を60サイクル、そして72°Cで5分を1サイクル行った。精製したPCR産物を、pBluescriptにサブクローニングし、そして核酸配列をABI 3700ジェネティック・アナライザー(Applied Biosystems)を用いて決定した。この方法によって、マウスではWnt2、Wnt5a、ヒトではWnt2、Wnt5a、Wnt5bが発現していることを見いだした。両者ともWnt2が最も多く発現されていた。
2.Wntを用いた幹細胞分画の増殖アッセイ
2.1 造血幹細胞の調製
有核細胞を7−8週令のlacZトランスジェニックマウス(B6;S129−Gt(ROSA26)Sorの骨髄細胞から、Lymphoprepを用いた遠心によって調製した。2%FCSを含むPBS中に懸濁した細胞(1X10細胞/ml)をHoechst33342(1.5μg/ml)と、Rhodamine123(0.1μg/ml)で染色した。造血幹細胞に富んだ分画である、side population(SP)細胞をFACS Vantage SEセルソーター(商標:Beckton Dickinson Bioscience)で単離した。一匹のマウスから約4000個のSP細胞を単離した。lacZトランスジェニックマウスから、マウス骨髄造血幹細胞であるLin陰性c−Kit陽性Sca1陽性CD34陰性またはlowの細胞分画をFACSを用いて単離した。一匹のマウスから約10000個の細胞を単離した。
2.2 in vitroでの幹細胞の自己複製アッセイ
マウス又はヒトの全長Wnt2及びWnt5aのcDNAをKOD+DNA polymeraseを用いたRT−PCRで単離し、Wnt cDNAの完全な核酸配列がデータベースに登録されている配列と同一であることを確認した。pcDNA3.1発現ベクターにマウスまたはヒトの各WntのcDNAを組換え、C127細胞にLipofect Amine 2000(invitrogen)を用いてトランスフェクトし、G418(1mg/ml)に耐性の安定発現細胞を無血清培地(DMEM+5%のKSR(Knockout serum replacement)(Gibco))中に維持した。Wntの発現はRT−PCRでは確認済みであり、一部抗体が利用できるWnt5aに関してはウエスタン解析で発現を確認した。
組み換えWntを発現するC127トランスフェクタントまたは組み換えWnt非発現C127細胞を24穴プレートに播種した後、単離したlacZトランスジェニックマウス由来骨髄造血幹細胞を5000個/ウエルで植え込み、共培養した。培地は無血清培地またはTPOおよびSCF添加無血清培地を用いた。2日おきに培地を交換し6日目に細胞をトリプシン消化して回収し、β−Gal陽性細胞即ちlacZトランスジェニックマウス由来の細胞をfluorescein di−β−galactopyranosideを基質に用いて蛍光発色によって分画し、その中のLin陰性c−Kit陽性Sca1陽性細胞(造血幹細胞)の割合を算出した。
組み換えWnt発現C127トランスフェクタントまたは組み換えWnt非発現C127細胞と、マウス骨髄造血幹細胞の共培養において、TPOおよびSCFを添加していない無血清培地で培養した場合、3日後にはlacZトランスジェニックマウス由来細胞は生存しておらず、造血幹細胞は維持も増幅もできなかった。組み換えWnt非発現C127細胞との共培養において、TPOおよびSCF添加無血清培地で培養した場合、回収したβ−Gal陽性細胞のうち88%はLin陽性細胞であり分化した細胞であった。12%はLin陰性c−Kit陽性Sca1陽性細胞であり幹細胞であると考えられた。これは従来の幹細胞のサイトカインを用いた増幅結果とほぼ一致したものである。一方、組み換えWnt発現C127トランスフェクタントとの共培養において、TPOおよびSCF添加無血清培地で培養した場合、回収したβ−Gal陽性細胞のうち23%〜27%(マウスWnt2において27%、マウスWnt5aにおいて25%、ヒトWnt5aにおいて23%)は造血幹細胞であった。組み換えWnt発現C127トランスフェクタントとの共培養の場合、共培養処理後生存しているlacZトランスジェニックマウス由来細胞における造血幹細胞の割合は、組み換えWnt非発現C127細胞との共培養の場合と比べて、マウスWnt2において2.3倍、マウスWnt5aにおいて2.1倍、ヒトWnt5aにおいて1.9倍を示した。即ち、Wnt2およびWnt5aは、TPOやSCFのような造血幹細胞の分化を促す因子の存在下において、造血幹細胞の分化を抑制し、未分化な状態を維持して生存させるのに有効であることが分かった。EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to this.
[Example 1]
1. Identification of Wnt gene expressed in mouse and human adult bone marrow stromal cells 1.1 Preparation of bone marrow stem cells Phosphate buffered saline (PBS) containing 2% of inactivated fetal bovine serum (FCS), 26 gauge Mouse bone marrow cells were prepared from 8-week-old C57BL / 6 mice (Charles River) by pouring into the bone marrow cavity at once. Adult human bone marrow cells were obtained from informed consent and the posterior iliac crest of a normal donor based on institutional ethics committee approval. The cell suspension was placed on Lymphoprep (Nycomed) and centrifuged at 800 g for 20 minutes. Mononuclear cells were collected and washed with PBS containing 2% FCS. Adherent cells were cultured for 10 days in an IMD culture solution (Gibco-BRL) containing 10% FCS. Total RNA was isolated by AGPC method, and the type of Wnt expressed by degenerative RT-PCR was identified.
1.2 Degenerative RT-PCR analysis Reverse transcription polymerase chain reaction (RT-PCR) was performed as follows. First strand cDNA was synthesized using Superscript II (Gibco-BRL). PCR amplification is based on LA Tag polymerase (Takara) and degenerate primer
Figure 2005056778
1 cycle at 94 ° C for 1 minute, 94 ° C for 1 minute, 54 ° C for 30 seconds; 72 ° C for 45 seconds for 60 cycles, and 72 ° C for 5 minutes for 1 cycle . The purified PCR product was subcloned into pBluescript and the nucleic acid sequence was determined using an ABI 3700 Genetic Analyzer (Applied Biosystems). By this method, it was found that Wnt2 and Wnt5a were expressed in mice and Wnt2, Wnt5a and Wnt5b were expressed in humans. In both cases, Wnt2 was most expressed.
2. Proliferation assay of stem cell fraction using Wnt 2.1 Preparation of hematopoietic stem cells Lymphophore was used for nucleated cells from bone marrow cells of 7-8 week old lacZ transgenic mice (B6; S129-Gt (ROSA26) Sor). Prepared by centrifugation: Cells suspended in PBS containing 2% FCS (1 × 10 6 cells / ml) were stained with Hoechst 33342 (1.5 μg / ml) and Rhodamine 123 (0.1 μg / ml). A rich fraction, side population (SP) cells, was isolated with a FACS Vantage SE cell sorter (Trademark: Beckton Dickinson Bioscience) About 4000 SP cells were isolated from a single mouse lacZ transgenic mice From The cell fractions of Lin-negative c-Kit positive Sca1 positive CD34-negative or low a mouse bone marrow hematopoietic stem cells were isolated using FACS. From a mouse about 10000 cells were isolated.
2.2 Stem cell self-replication assay in vitro Mouse or human full-length Wnt2 and Wnt5a cDNAs were isolated by RT-PCR using KOD + DNA polymerase, and the complete nucleic acid sequence of Wnt cDNA was registered in the database It was confirmed that it was the same. Recombining mouse or human Wnt cDNA with pcDNA3.1 expression vector, transfecting C127 cells with Lipofect Amine 2000 (invitrogen), and expressing stable expression cells resistant to G418 (1 mg / ml) in serum-free medium Maintained in (DMEM + 5% KSR (Knockout serum replacement) (Gibco)). The expression of Wnt has been confirmed by RT-PCR, and the expression of Wnt5a for which some antibodies can be used was confirmed by Western analysis.
C127 transfectants expressing recombinant Wnt or non-recombinant Wnt-expressing C127 cells were seeded in a 24-well plate, and then isolated lacZ transgenic mouse-derived bone marrow hematopoietic stem cells were seeded at 5000 cells / well and co-cultured. As the medium, a serum-free medium or a serum-free medium supplemented with TPO and SCF was used. The medium was changed every 2 days, and the cells were collected by trypsin digestion on the 6th day, and β-Gal positive cells, that is, cells derived from lacZ transgenic mice were separated by fluorescence development using fluorescein di-β-galactopyranoside as a substrate. The ratio of Lin negative c-Kit positive Sca1 positive cells (hematopoietic stem cells) was calculated.
When cocultured with recombinant Wnt-expressing C127 transfectant or recombinant Wnt non-expressing C127 cells and mouse bone marrow hematopoietic stem cells, lacZ transgenic mice were cultured after 3 days in serum-free medium without TPO and SCF. The derived cells were not alive and hematopoietic stem cells could not be maintained or amplified. In co-culture with recombinant Wnt non-expressing C127 cells, when cultured in a serum-free medium supplemented with TPO and SCF, 88% of the recovered β-Gal positive cells were Lin positive cells and differentiated cells. 12% were Lin negative c-Kit positive Sca1 positive cells and considered to be stem cells. This is almost the same as the conventional amplification result using cytokine of stem cells. On the other hand, in co-culture with recombinant Wnt-expressing C127 transfectants, when cultured in a serum-free medium supplemented with TPO and SCF, 23% to 27% of recovered β-Gal positive cells (27% in mouse Wnt2; mouse 25% in Wnt5a and 23% in human Wnt5a) were hematopoietic stem cells. In the case of co-culture with the recombinant Wnt-expressing C127 transfectant, the proportion of hematopoietic stem cells in the lacZ transgenic mouse-derived cells surviving after the co-culture treatment is higher than that in the case of co-culture with the recombinant Wnt-non-expressing C127 cells. The results were 2.3 times in mouse Wnt2, 2.1 times in mouse Wnt5a, and 1.9 times in human Wnt5a. That is, Wnt2 and Wnt5a are effective in suppressing the differentiation of hematopoietic stem cells in the presence of factors that promote the differentiation of hematopoietic stem cells such as TPO and SCF, and maintaining survival in an undifferentiated state. I understood.

本発明の造血幹細胞の分化抑制又は増殖方法、造血幹細胞の製造方法、並びに、本発明の造血幹細胞の分化抑制又は増殖剤を用いることにより、造血幹細胞を未分化なまま、体内または体外で増殖させることができるので、化学療法剤による血球減少症の改善、リンパ球減少に起因する感染症の予防、骨髄疾患の治療、白血病・高度腎障害・骨髄抑制等の骨髄疾患の治療などに用いることができる。
また、本発明のスクリーニング法によれば、造血幹細胞の増殖または分化を調節する物質をスクリーニングすることができるので、造血幹細胞レベルの疾患の解明や新たな治療法・治療剤の開発に有用である。
By using the method for inhibiting or proliferating hematopoietic stem cells of the present invention, the method for producing hematopoietic stem cells, and the agent for inhibiting or proliferating hematopoietic stem cells of the present invention, the hematopoietic stem cells are allowed to proliferate in vivo or in vitro without being differentiated. It can be used to improve cytopenias with chemotherapeutic agents, prevent infections caused by lymphopenia, treat bone marrow diseases, and treat bone marrow diseases such as leukemia, advanced nephropathy, and bone marrow suppression. it can.
Further, according to the screening method of the present invention, since a substance that regulates the proliferation or differentiation of hematopoietic stem cells can be screened, it is useful for elucidating diseases at the level of hematopoietic stem cells and developing new therapeutic methods and therapeutic agents. .

Claims (12)

造血幹細胞を、Wnt2及びWnt5aから選ばれる一種以上のタンパク質の存在下で培養することを特徴とする造血幹細胞の分化抑制又は増殖方法。A method for inhibiting or proliferating hematopoietic stem cells, comprising culturing hematopoietic stem cells in the presence of one or more proteins selected from Wnt2 and Wnt5a. 一種以上の造血因子又は細胞刺激因子の存在下、かつ血清の非存在下で培養を行なう前記請求項1に記載の方法。The method according to claim 1, wherein the culture is performed in the presence of one or more hematopoietic factors or cell stimulating factors and in the absence of serum. SCF及びTPOから選ばれる造血因子の一種以上の存在下で培養を行なう前記請求項2に記載の方法。The method according to claim 2, wherein the culture is performed in the presence of one or more hematopoietic factors selected from SCF and TPO. Wnt2及びWnt5aから選ばれる一種以上のタンパク質を培養系に添加し、あるいはそのタンパク質を発現させたフィーダー細胞上で培養する前記請求項3に記載の方法。4. The method according to claim 3, wherein one or more proteins selected from Wnt2 and Wnt5a are added to the culture system or cultured on feeder cells in which the protein is expressed. 前記請求項1〜4のいずれかの方法によって得られる造血幹細胞。A hematopoietic stem cell obtained by the method according to any one of claims 1 to 4. 造血幹細胞を、Wnt2及びWnt5aから選ばれる一種以上のタンパク質の存在下で培養する工程を含んでなる、造血幹細胞の製造方法。A method for producing hematopoietic stem cells, comprising a step of culturing hematopoietic stem cells in the presence of one or more proteins selected from Wnt2 and Wnt5a. (a)フィーダー細胞、(b)Wnt2及びWnt5aから選ばれる一種以上のタンパク質及び(c)一種以上の造血因子又は細胞刺激因子を含み、かつ血清を含まないことを特徴とする造血幹細胞培養系。A hematopoietic stem cell culture system comprising (a) feeder cells, (b) one or more proteins selected from Wnt2 and Wnt5a, and (c) one or more hematopoietic factors or cell stimulating factors and no serum. フィーダー細胞として、無血清下で生存可能なC127細胞を用いることを特徴とする前記請求項7に記載の培養系。The culture system according to claim 7, wherein C127 cells that can survive under serum-free conditions are used as feeder cells. 無血清下で生存可能なフィーダー細胞を用いることを特徴とし、(a)フィーダー細胞および造血幹細胞を含み、かつ血清を含まないことを特徴とする培養系に試験物質を共存させる工程、(b)試験物質が共存した培養系で造血幹細胞を培養する工程、及び(c)試験物質非共存下の場合と比較して、試験物質共存下の場合における造血幹細胞の割合および/または数の変化を測定する工程を含む、造血幹細胞の増殖または分化を調節する物質をスクリーニングする方法。A step of coexisting a test substance in a culture system characterized by using feeder cells that can survive under serum-free conditions, (a) containing feeder cells and hematopoietic stem cells and not containing serum, (b) A step of culturing hematopoietic stem cells in a culture system in which a test substance coexists, and (c) a change in the ratio and / or number of hematopoietic stem cells in the presence of a test substance compared to the case in the absence of the test substance A method for screening a substance that regulates proliferation or differentiation of hematopoietic stem cells, comprising the step of: Wnt2及びWnt5aから選ばれる一種以上のタンパク質を含有する造血幹細胞分化抑制又は増殖剤。A hematopoietic stem cell differentiation inhibiting or proliferating agent containing one or more proteins selected from Wnt2 and Wnt5a. さらに、造血因子又は細胞刺激因子を含む前記請求項10に記載の造血幹細胞分化抑制又は増殖剤。Furthermore, the hematopoietic stem cell differentiation inhibiting or proliferating agent according to claim 10, further comprising a hematopoietic factor or a cell stimulating factor. 前記造血因子として、SCF及びTPOから選ばれる一種以上の造血因子を含む前記請求項11に記載の造血幹細胞分化抑制又は増殖剤。The hematopoietic stem cell differentiation-inhibiting or proliferating agent according to claim 11, comprising one or more hematopoietic factors selected from SCF and TPO as the hematopoietic factor.
JP2005516252A 2003-12-11 2004-12-10 Method of inhibiting or proliferating hematopoietic stem cells Pending JPWO2005056778A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003413662 2003-12-11
JP2003413662 2003-12-11
PCT/JP2004/018860 WO2005056778A1 (en) 2003-12-11 2004-12-10 Method of regulating the differentiation of hematopoietic stem cells or proliferating the same

Publications (1)

Publication Number Publication Date
JPWO2005056778A1 true JPWO2005056778A1 (en) 2007-07-12

Family

ID=34675064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005516252A Pending JPWO2005056778A1 (en) 2003-12-11 2004-12-10 Method of inhibiting or proliferating hematopoietic stem cells

Country Status (2)

Country Link
JP (1) JPWO2005056778A1 (en)
WO (1) WO2005056778A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950195B1 (en) * 2009-03-20 2010-03-29 서울대학교산학협력단 Method for isolation of umbilical cord blood derived-pluripotent stem cell expressing znf281
JP5409222B2 (en) * 2009-09-10 2014-02-05 学校法人慶應義塾 Hematopoietic stem cell culture method
US20130078721A1 (en) * 2010-02-22 2013-03-28 Luc Douay Cell Culture Medium for the Growth and Differentiation of Cells of the Hematopoietic Lineage
ES2413557T3 (en) 2010-06-22 2013-07-16 Lonza Cologne Gmbh Procedure and arrangement of electrodes to treat adherent cells
US10080354B2 (en) 2012-09-07 2018-09-25 Children's Medical Center Corporation Hematopoietic stem cell specific reporter mouse and uses thereof

Also Published As

Publication number Publication date
WO2005056778A1 (en) 2005-06-23

Similar Documents

Publication Publication Date Title
US11578310B2 (en) Method for producing CD4/CD8 double-positive T cells
KR102510368B1 (en) Hemangio-colony forming cells
KR101218663B1 (en) Modulation of stem and progenitor cell differentiation, assays, and uses thereof
US20040235160A1 (en) Process for preparing hematopoietic stem cells
JP2023516632A (en) Method for producing natural killer cells from pluripotent stem cells
JP2013194049A (en) Composition and method for amplifying human hematopoietic stem cell
JP2019509065A (en) Colony forming medium and use thereof
Perlingeiro et al. A role for thrombopoietin in hemangioblast development
Lyadova et al. Macrophages derived from human induced pluripotent stem cells: the diversity of protocols, future prospects, and outstanding questions
ZA200104175B (en) Human brain endothelial cells and growth medium and method for expansion of primitive CD34+CD38- bone marrow stem cells.
Trubiani et al. Functional interleukin‐7/interleukin‐7Rα, and SDF‐1α/CXCR4 are expressed by human periodontal ligament derived mesenchymal stem cells
US20200345789A1 (en) Production method for ips cell-derived population of genetically diverse t cells
KR101027288B1 (en) Stat3 activated stem cell
JPWO2005056778A1 (en) Method of inhibiting or proliferating hematopoietic stem cells
US20220233665A1 (en) Medicinal composition
WO1999003980A1 (en) Agm-derived stroma cells
JP2012165660A (en) Composition and method for amplifying human hematopoietic stem cell
WO2023286834A1 (en) Pericyte-like cell expressing vascular endothelial growth factor (vegf) at high level
JP2007238473A (en) Factor for promoting maintenance and amplification of hematopoietic stem cell and method for amplification of hematopoietic stem cell
WO2023286832A1 (en) Pericyte-like cells expressing vascular endothelial growth factor (vegf) at high level
JP6817633B2 (en) Hematopoietic stem cell amplification inducer
US20100209396A1 (en) Method of Enhancing Proliferation and/or Hematopoietic Differentiation of Stem Cells
WO2006085482A1 (en) Self-replication factor and amplification method of hematopoietic stem cell
WO2024077153A1 (en) Pluripotent stem cell-derived megakaryocytes and platelets
JP2014183784A (en) Composition and method for proliferating human hematopoietic stem cells