WO2006085480A1 - Cofocal microscope - Google Patents

Cofocal microscope Download PDF

Info

Publication number
WO2006085480A1
WO2006085480A1 PCT/JP2006/301826 JP2006301826W WO2006085480A1 WO 2006085480 A1 WO2006085480 A1 WO 2006085480A1 JP 2006301826 W JP2006301826 W JP 2006301826W WO 2006085480 A1 WO2006085480 A1 WO 2006085480A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
plate
dmd
image
region
Prior art date
Application number
PCT/JP2006/301826
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Terakawa
Takashi Sakurai
Yoshihiko Wakazono
Seiji Yamamoto
Original Assignee
National University Corporation, Hamamatsu University School Of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation, Hamamatsu University School Of Medicine filed Critical National University Corporation, Hamamatsu University School Of Medicine
Publication of WO2006085480A1 publication Critical patent/WO2006085480A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0044Scanning details, e.g. scanning stages moving apertures, e.g. Nipkow disks, rotating lens arrays

Definitions

  • the present invention relates to a confocal microscope using a bipco plate.
  • a confocal microscope that can obtain an optically cut image is widely used in bioresearch.
  • a laser beam is squeezed into a dot shape, and the image at this point is rotated in a fan shape.
  • Swing and laser scanning with a bright spot formed on the specimen and a two-puck plate type where a disk with a small hole (pinhole) is rotated instead of a mirror and is moved by a pinhole image formed on the specimen.
  • the fluorescent material of the specimen is excited by bright spot scanning, and the resulting fluorescent light can be collected through a pinhole at the conjugate position and observed as an image.
  • the micro-lens-Pukou plate which has improved the light utilization efficiency through the combination of microlenses, is brighter and faster scanning, and its use is relatively widespread.
  • the present inventors have proposed that the Puku disc assembly is used in Patent Document 1 and Patent Document 2.
  • the disadvantage of this method is that illumination light cannot be applied to only a specified region of the field of view and only that region is observed, and illumination and observation are always performed on the entire field of view. .
  • This may be inconvenient for observation of fluorescently stained cells. That is, fluorescence observation involves a phenomenon called fading of the observation object, and the object is changed to an invisible one depending on the observation time and the applied light intensity.
  • Patent Document 3 discloses a technique in which light emitted from a light source is reflected by an on-element of a DMD and focused on an object plane.
  • the fluorescence excited in the object plane returns to the DMD through the same optical path, and is reflected by the semitransparent mirror to reach one camera. Out of focus The generated light is reflected off the mirror by the off-element and reaches the other camera.
  • the invention of an optical apparatus and method for imaging in a scanning microscope and a scanning microscope described in Patent Document 4 is a confocal in which laser light is reflected by a micromirror and applied to a specimen, and the reflected light is detected. It is a scanning microscope.
  • Patent Document 5 was proposed by the present inventor and is a confocal scanning microscope using an epi-illumination type and a transmission type DMD.
  • the DMD is used to determine the size of the bright spot, the scanning speed, and the scanning pattern.
  • a confocal microscope that can be freely changed is realized.
  • Patent Document 6 discloses a device having a DMD as a device for controlling an irradiation region using a fluorescent microscope instead of a microscope.
  • the invention described in Patent Document 6 relates to a fluorescence microscope.
  • the illumination light emitted from the light source 23 is collected by the collector lens 22 and selectively reflected by the digital micromirror 201 to cause the digital micromirror to be reflected.
  • Patent Document 1 Japanese Patent Application No. 2003-187142
  • Patent Document 2 Patent No. 3099063
  • Patent Document 3 Japanese Patent Laid-Open No. 11-194275
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-131649
  • Patent Document 5 Japanese Patent Application No. 2003-186768
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2003-107361
  • the present invention solves the above-mentioned drawbacks of the above-described two-puko plate type confocal microscope, and its object is to improve the light utilization efficiency in the two-pcho type confocal microscope.
  • An object of the present invention is to provide a confocal microscope capable of selectively illuminating and observing an area of a specimen using DMD.
  • claim 1 of the present invention includes a light source device and a plurality of micromirrors arranged two-dimensionally, and the light from the light source device is punctuated by the selected micromirrors.
  • DM D which converts the illumination light into a parallel light beam according to the selected set of micromirrors, and the 1st 2 Puk board with many pinholes and the 2nd Pukou board with many microlenses
  • the parallel light beam from the DMD is converged by the micro lens of the second Puk plate and imaged in the pin hole of the first Puk plate-Puk plate assembly, and the pin of the first Puk plate
  • a light beam imaged in a hole is imaged at a corresponding position in the field of view, and is disposed between a confocal optical system that reverses fluorescence from the field of view, a two-dimensional light detection means, and the first and second two-ply plates.
  • Color-splitting optical element and color-splitting optical element An output optical system comprising a lens system that focuses reflected light from a child on the light detection means, and a control device that selects and controls on-off control of a number of micro mirrors of the DMD, It is characterized in that it is configured so that a part of the light is selected and illumination is given.
  • a second aspect of the present invention is characterized in that, in the first aspect of the present invention, the two-piece plate assembly is rotated at a high speed to form an image on the light detecting means.
  • a third aspect of the present invention is characterized in that, in the first aspect of the present invention, a fluorescent specimen is placed in the visual field.
  • the sample is observed by the light of the caged compound while observing the specimen with a two-ply plate confocal microscope. It can also be applied to release and can be used for a wide range of applications of caged reagents. For example, there is a chemical stimulus of a living specimen such as a cell, and the reaction of the resulting cell can be captured as it is by fluorescence observation with a confocal microscope.
  • Fig. 7 shows an example of a fluorescence image when each region of a living specimen such as a cell is chemically stimulated. When searching for the localization of a specific receptor in a certain cell, it is possible to observe the intracellular response by sequentially stimulating light release in multiple microregions.
  • the setting of the illumination area (or ROI) by DMD is not limited to monotonous figures such as circles and squares, and complex pictures and characters such as outlines of cell morphology are possible, and characters can be printed on cells.
  • it can take the form of printing limited to a certain limited fault plane.
  • a light source other than a laser can also be used. If a light source that mixes several wavelengths of light (such as white light) is used, the tone adjustment function of the DMD is synchronized with the color specification of the filter that can be switched at high speed, and the color of each region Can also be projected.
  • a light source that mixes several wavelengths of light such as white light
  • FIG. 1 is a block diagram showing an outline of a confocal microscope according to the present invention.
  • FIG. 2 is a diagram showing an embodiment of a confocal microscope according to the present invention.
  • FIG. 3 is a diagram showing an example of a rotary filter.
  • FIG. 4 is a diagram for explaining the ROI of DMD.
  • FIG. 5 is a diagram for explaining an example of a two-ply plate assembly.
  • FIG. 6 is a diagram for explaining the generation of fluorescence in a selected region of a specimen.
  • FIG. 7 is a diagram showing an example of a fluorescence image when each region of a living specimen such as a cell is chemically stimulated in order.
  • FIG. 1 is a block diagram showing an outline of a confocal microscope according to the present invention.
  • the confocal microscope is equipped with a confocal optical system, two-ply plate assembly, output optical system, DMD, and illumination optical system.
  • Light having the power of a light source device enters the illumination optical system.
  • the camera device detects the optical signal from the output optical system and outputs it to the monitor.
  • the control device composed of CPU, memory circuit, control program, etc. functions as a DMD controller that controls on / off of the micromirrors in the selected area of the DMD and a rotation controller that controls the rotation of the two-ply plate ⁇ a. It is equipped with.
  • the output signal of the two-dimensional photodetector is fed back to the control device including the DMD control unit, and the control device uses the excitation light intensity ( It is configured to automatically adjust the ROI using the tone adjustment function of DMD).
  • the ROI When observing multiple areas with different excitation light using a white light source, the ROI, excitation light filter (provided in the illumination optical system, etc.), and dichroic mirror (including absorption filter, if any) are synchronized.
  • the control device including the DMD control unit is configured to simultaneously control the excitation filter and the dichroic mirror (including an absorption filter, if any).
  • the ROI of the sample placed in the field of view can be selected and input to the monitor by inputting the operating force.
  • the light of the light source device power is converted into a predetermined wavelength band by the illumination optical system and guided to the DMD.
  • About the illumination range of the DMD ROI is selected under the control of the DMD control unit.
  • On / off control is performed.
  • the light from the on-controlled micro mirror group becomes a parallel light beam corresponding to the micro mirror group, and the parallel light beam is incident on the micro lens corresponding to the Puko plate assembly and converged by the micro lens.
  • the light focused on the pinhole is focused on a selected area of the specimen by the confocal optical system. Fluorescence and scattered light generated in the selected area of the specimen returns to the confocal optical system and is guided by the output optical system to the two-dimensional photodetector (camera device), where it is processed for image display and displayed on the monitor. .
  • FIG. 2 is a diagram showing an embodiment of a confocal microscope according to the present invention.
  • the condensing lens 1 and the rotary filter 14 constitute an illumination optical system.
  • -Pukou plate assembly has a number of spiral pinholes 6 -Pukou plate 4a and a number of microlenses 5 provided for each pinhole -Pukou plate 4b is connected by rotating shaft 15
  • the confocal optical system is composed of a plurality of microlenses 5-a Pukko plate 4b, a large number of pinholes 6-a Pukko plate 4a, and an objective lens 6 that forms an image at a conjugate position with respect to the pinhole position.
  • the output optical system is composed of a dichroic mirror 7 and an imaging lens 11 inserted on the optical paths of the Pukko plates 4a and 4b.
  • a specimen is mounted on the cover glass 9, and the specimen is a position including a conjugate position with respect to the pinhole 6 in the field of view of the microscope.
  • a laser beam having a predetermined wavelength is used, and a light source in which several wavelengths are mixed is used.
  • a white light lamp is used, and the ROI can be projected in each color.
  • Fig. 3 shows an example of a rotary filter inserted in the illumination optical system.
  • a filter 14a in the red wavelength region, a filter 14b in the green wavelength region 14b, and a filter 14c in the blue wavelength region are arranged on the circumference, and are rotated by the rotating shaft 16 and projected by changing the color for each ROI. It is out.
  • the illumination light from the light source 20 is converted into a parallel light beam by the lens 1, passes through the rotary filter 14, and irradiates each micromirror of the DMD 2.
  • Figure 4 shows the case where the specified ROD of the DMD is on-controlled.
  • DMD2 25 is the irradiable area, and the area under the control of the DMD controller (R ) 2a and region (R) 2b micro mirrors are selected and turned on.
  • the other area of the irradiation area 25 is an area where the micromirror is off. Each region of the irradiation region 25 can be selected in turn by the DMD control unit.
  • the selected area (R), (R) is a rectangular area, but its shape and size can be set freely.
  • On-controlled micromirror region (R) and reflected light from region (R) are parallel light fluxes
  • the light in the irradiation region 25 other than the region (R) and the region (R) is reflected by the minute mirror in the region.
  • the two-Pukou plate configuration increases the efficiency of the incident light and reduces the noise light reflected on the plate surface other than the pinhole.
  • FIG. 5 shows an example of a two-ply plate assembly.
  • the pinholes 6 of the Pukko plate 4a are arranged in a spiral at a predetermined interval, and a large number of these spiral pinhole groups are provided on the entire disc.
  • -A large number of microlenses 5 are arranged on the Pukou plate 4b for each pinhole.
  • the specimen image can be displayed on the monitor by rotating the Pukou board assembly by the rotation controller.
  • the number of display frames per second can be changed by appropriately controlling the number of spiral pinhole groups and the rotational speed (minute speed) of the two-ply plate. For example:-By forming a Pukko board at several thousand rpm and about 10 spiral pinhole groups, one frame can be displayed at several mmS.
  • the light that has passed through the pinhole 6 is imaged at a selected position of the sample 10 by the objective lens 8.
  • Fig. 6 shows the selected position force fluorescence of the specimen.
  • DMD region (R) force light 26a is focused at the position where the front force of sample 10 is incident by z
  • fluorescence 27 is generated by the substance existing at the imaging position of the specimen 10, and the fluorescence 27 returns to the confocal optical system and is guided to the imaging lens 11 by the dichroic mirror 7 that reflects the fluorescence wavelength band. It is. Fluorescence forms an image on the two-dimensional photodetector 12 by the imaging lens 11, and the position of the specimen 10 x
  • the two-dimensional photodetector 12 performs photoelectric conversion, and this electric signal is processed into a predetermined signal system in the camera device and then displayed on a monitor.
  • a dichroic mirror is used for the output optical system.
  • other optical elements may be used as long as they are optical elements that can separate the output (fluorescence) wavelength band.
  • An absorption filter may be inserted into the dichroic mirror, the reflected light from the dichroic mirror may be guided to the absorption filter, and the transmitted light from the absorption filter may be imaged on the light detection means.
  • a force or wavelength range required for the light source device may be generated without inserting a force rotation filter in which an example is shown in which a rotary filter is inserted to make the irradiation light have an RGB wavelength range.
  • Force that can generate diffracted light due to the periodic surface structure of DMD In that case, force that uses only the 0th-order light of diffracted light, force that uses light that has passed through a diffuser or an incoherencer, etc.
  • the present invention can be implemented by using a light source with low coherence (xenon lamp, SLD, femtosecond laser, etc.).
  • DMD and filters are used to light-release stimuli of caged compounds at specific wavelengths (colors) in specific areas outside the cells. In this specific region, fluorescence is observed at a specific excitation wavelength. In addition, if the stimulus-response response is very fast, it is necessary to switch at high speed.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

A Nipkow system cofocal microscope in which a region of a sample can be illuminated selectively and observed using a DMD. Illumination light from a light source (20) passes through a condenser lens (1) and a rotary filter (14) and impinges on a DMD (2) and only the light subjected to on-control by the DMD (2) and illuminating a micro mirror region impinges on the microlens (5) of a Nipkow disk assembly. The light passed through the microlens (5) is converged by a pinhole (6) to form an image in a selected region of a sample (10) by an objective lens (8). Reflected light, e.g. fluorescence, from the selected region of a sample (10) retrogresses along the incident optical path and is reflected by a dichroic mirror (7) before an image is formed on a two-dimensional photodetector by an image forming lens (11).

Description

明 細 書  Specification
共焦点顕微鏡  Confocal microscope
技術分野  Technical field
[0001] 本発明は、二プコゥ板を用いた共焦点顕微鏡に関する。  [0001] The present invention relates to a confocal microscope using a bipco plate.
背景技術  Background art
[0002] 光学的切断像が得られる共焦点顕微鏡はバイオ研究において広く用いられている これを実現するには、レーザ光を点状に絞って、この点の像を扇形に回転振動する 鏡で振り、標本上にできる輝点によってレーザ走査する方式と、鏡の代わりに小孔( ピンホール)の開いた円板を回転させて、標本上にできるピンホールの像によって走 查する二プコゥ板式がある。輝点走査によって標本の蛍光物質を励起し、生ずる蛍 光を共役位置にあるピンホールを通して集光し画像として観察できる。マイクロレンズ の結合により光の利用効率を高めたマイクロレンズ付き-プコゥ板は、明るぐ高速の 走査ができ、比較的安価であるため使用が広がっている。例えば本件発明者が提案 して 、る特許文献 1や特許文献 2に-プコゥ円板組立が用いられて 、る。  [0002] A confocal microscope that can obtain an optically cut image is widely used in bioresearch. To achieve this, a laser beam is squeezed into a dot shape, and the image at this point is rotated in a fan shape. Swing and laser scanning with a bright spot formed on the specimen, and a two-puck plate type where a disk with a small hole (pinhole) is rotated instead of a mirror and is moved by a pinhole image formed on the specimen. There is. The fluorescent material of the specimen is excited by bright spot scanning, and the resulting fluorescent light can be collected through a pinhole at the conjugate position and observed as an image. The micro-lens-Pukou plate, which has improved the light utilization efficiency through the combination of microlenses, is brighter and faster scanning, and its use is relatively widespread. For example, the present inventors have proposed that the Puku disc assembly is used in Patent Document 1 and Patent Document 2.
[0003] しかし、この方式の欠点は、視野の任意の指定した領域のみに照明光を与えてそ の領域のみを観察するということができず、常に視野全面を対象とした照明と観察に なる。これは、蛍光染色した細胞の観察では都合が悪い場合がある。すなわち、蛍光 観察には観察対象の退色という現象が伴い、観察する時間や与える光強度に応じて 、その対象が見えな 、ものに変化してしまうからである。 [0003] However, the disadvantage of this method is that illumination light cannot be applied to only a specified region of the field of view and only that region is observed, and illumination and observation are always performed on the entire field of view. . This may be inconvenient for observation of fluorescently stained cells. That is, fluorescence observation involves a phenomenon called fading of the observation object, and the object is changed to an invisible one depending on the observation time and the applied light intensity.
1つの視野に多数ある細胞のうち関心あるものだけを選択的に照明して観察できれ ば、対象としていないものには光が当たらず、順次観察していくことができる。  If only cells of interest in a single field of view can be selectively illuminated and observed, those not targeted will not be exposed to light and can be observed sequentially.
[0004] 一方、前者のレーザ方式で実現するものとして DMDを用いたものが存在する。 [0004] On the other hand, there is a technique using DMD that can be realized by the former laser system.
これは、特許文献 3, 4および 5等がある。  This includes Patent Documents 3, 4 and 5.
特許文献 3記載の発明は、光源力 出た光が DMDのオン素子により反射され対物 平面に焦点を結ぶ技術を開示している。対物平面で励起された蛍光は同一の光路 を経て DMDに戻り、半透明ミラーで反射されて一方のカメラに達する。焦点が外れ た位置力 発生した光はオフ素子によりミラーで反射され他方のカメラに達するように なっている。 The invention described in Patent Document 3 discloses a technique in which light emitted from a light source is reflected by an on-element of a DMD and focused on an object plane. The fluorescence excited in the object plane returns to the DMD through the same optical path, and is reflected by the semitransparent mirror to reach one camera. Out of focus The generated light is reflected off the mirror by the off-element and reaches the other camera.
特許文献 4記載の走査型顕微鏡、走査型顕微鏡法における結像のための光学装 置および方法の発明はレーザー光をマイクロミラーで反射させて標本に当て、反射さ れた光を検出する共焦点走査型顕微鏡である。  The invention of an optical apparatus and method for imaging in a scanning microscope and a scanning microscope described in Patent Document 4 is a confocal in which laser light is reflected by a micromirror and applied to a specimen, and the reflected light is detected. It is a scanning microscope.
[0005] 特許文献 5は、本件発明者が提案したもので、落射形と透過形の DMDを用いた共 焦点走査顕微鏡であり、 DMDを用いて輝点の大きさや走査速度,走査のパターン を自由に変えることができる共焦点顕微鏡を実現するものである。 [0005] Patent Document 5 was proposed by the present inventor and is a confocal scanning microscope using an epi-illumination type and a transmission type DMD. The DMD is used to determine the size of the bright spot, the scanning speed, and the scanning pattern. A confocal microscope that can be freely changed is realized.
上記特許文献 3, 4および 5いずれも標本の走査領域の選択は可能であるが、光の 利用効率はマイクロレンズ付き-プコゥ板式と比較して劣り、結果として喑 、像になる また、共焦点顕微鏡ではなく蛍光顕微鏡にぉ 、て照射領域を制御するものとして D MDを有するものが特許文献 6に開示されて 、る。  In any of the above Patent Documents 3, 4 and 5, the scanning area of the specimen can be selected, but the light utilization efficiency is inferior to that of the microlens-Pukou plate type, resulting in a light image. Patent Document 6 discloses a device having a DMD as a device for controlling an irradiation region using a fluorescent microscope instead of a microscope.
特許文献 6記載の発明は、蛍光顕微鏡に関するもので図 1において光源 23から照 射された照明光がコレクタレンズ 22により集光され、ディジタル微小ミラー 201におい て選択的に反射してディジタル微小ミラーを視野絞りとして使用することにより標本へ の部分的な照明を可能として退色を防止して 、るが、マイクロレンズ付き-プコゥ板を 備えた共焦点顕微鏡への適用を示す記載やそれらを示唆する記述はない。  The invention described in Patent Document 6 relates to a fluorescence microscope. In FIG. 1, the illumination light emitted from the light source 23 is collected by the collector lens 22 and selectively reflected by the digital micromirror 201 to cause the digital micromirror to be reflected. Use as a field stop to enable partial illumination of the specimen to prevent fading, but a description indicating or suggesting its application to a confocal microscope with a microlens-Pukou plate There is no.
特許文献 1 :特願 2003— 187142号公報  Patent Document 1: Japanese Patent Application No. 2003-187142
特許文献 2:特許 3099063号  Patent Document 2: Patent No. 3099063
特許文献 3:特開平 11— 194275号公報  Patent Document 3: Japanese Patent Laid-Open No. 11-194275
特許文献 4:特開 2002— 131649号公報  Patent Document 4: Japanese Patent Laid-Open No. 2002-131649
特許文献 5 :特願 2003— 186768号公報  Patent Document 5: Japanese Patent Application No. 2003-186768
特許文献 6:特開 2003 - 107361号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2003-107361
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、上記二プコゥ板方式共焦点顕微鏡が持っている上記欠点を解決するも ので、その目的は二プコゥ方式の共焦点顕微鏡において光の利用効率を高めつつ DMDを用いて標本の領域を選択的に照明して観察することができる共焦点顕微鏡 を提供することにある。 [0006] The present invention solves the above-mentioned drawbacks of the above-described two-puko plate type confocal microscope, and its object is to improve the light utilization efficiency in the two-pcho type confocal microscope. An object of the present invention is to provide a confocal microscope capable of selectively illuminating and observing an area of a specimen using DMD.
課題を解決するための手段  Means for solving the problem
[0007] 前記目的を達成するために本発明の請求項 1は、光源装置と、 2次元に配列された 多数の微小ミラーを備え、選択された微小ミラーにより前記光源装置からの光を点状 の照明光に変換して選択された微小ミラーの集合に応じた平行光束を形成する DM Dと、多数のピンホールを有する第 1二プコゥ板および多数のマイクロレンズを有する 第 2-プコゥ板よりなり、前記 DMDからの平行光束を前記第 2-プコゥ板のマイクロレ ンズで収束させて前記第 1-プコゥ板のピンホールに結像させる-プコゥ板組立と、 前記第 1 -プコゥ板のピンホールで結像された光束を視野の対応位置に結像させ、 前記視野からの蛍光を逆向させる共焦点光学系と、 2次元光検出手段と、前記第 1 および第 2二プコゥ板の間に配置された色分割光学素子および該色分割光学素子 からの反射光を前記光検出手段に結像するレンズ系からなる出力光学系と、前記 D MDの多数の微小ミラーを選択してオン,オフ制御する制御装置とを有し、前記視野 全体の一部を選択して照明を与えるように構成したことを特徴とする。 In order to achieve the above object, claim 1 of the present invention includes a light source device and a plurality of micromirrors arranged two-dimensionally, and the light from the light source device is punctuated by the selected micromirrors. From DM D, which converts the illumination light into a parallel light beam according to the selected set of micromirrors, and the 1st 2 Puk board with many pinholes and the 2nd Pukou board with many microlenses The parallel light beam from the DMD is converged by the micro lens of the second Puk plate and imaged in the pin hole of the first Puk plate-Puk plate assembly, and the pin of the first Puk plate A light beam imaged in a hole is imaged at a corresponding position in the field of view, and is disposed between a confocal optical system that reverses fluorescence from the field of view, a two-dimensional light detection means, and the first and second two-ply plates. Color-splitting optical element and color-splitting optical element An output optical system comprising a lens system that focuses reflected light from a child on the light detection means, and a control device that selects and controls on-off control of a number of micro mirrors of the DMD, It is characterized in that it is configured so that a part of the light is selected and illumination is given.
本発明の請求項 2は、請求項 1記載の発明にお 、て前記二プコゥ板組立は高速回 転させられ前記光検出手段に映像を形成することを特徴とする。  A second aspect of the present invention is characterized in that, in the first aspect of the present invention, the two-piece plate assembly is rotated at a high speed to form an image on the light detecting means.
本発明の請求項 3は、請求項 1記載の発明において前記視野内には蛍光標本が 留置されることを特徴とする。  A third aspect of the present invention is characterized in that, in the first aspect of the present invention, a fluorescent specimen is placed in the visual field.
発明の効果  The invention's effect
[0008] 上記構成によれば、視野の任意の指定した領域のみに光源の光利用効率を高め た光を照射してその照射領域のみを観察することができる。  [0008] According to the configuration described above, it is possible to observe only the irradiated region by irradiating only the arbitrarily designated region of the field of view with the light with improved light use efficiency of the light source.
レーザの波長を選択し、 DMDによりケージドィ匕合物の光解除領域と解除光の強度 、そして観察領域を任意に選択すれば、二プコゥ板共焦点顕微鏡によって標本を観 察しながらケージド化合物の光による解除にも応用でき、ケージド試薬の広い応用に 用いることができる。例えば、細胞などの生きた標本の化学刺激があり、それによつて 生ずる細胞の反応を、そのまま共焦点顕微鏡での蛍光観察によって捉えることがで きる。 図 7に細胞等の生きた標本の各領域を順番に化学刺激したときの蛍光画像の一例 を示す。ある細胞における特定の受容体の局在を探索するに当たり、複数の微小領 域で順次光解除刺激を行い細胞内応答を観察できる。 If the wavelength of the laser is selected, the light release region of the caged compound and the intensity of the release light, and the observation region are arbitrarily selected by DMD, the sample is observed by the light of the caged compound while observing the specimen with a two-ply plate confocal microscope. It can also be applied to release and can be used for a wide range of applications of caged reagents. For example, there is a chemical stimulus of a living specimen such as a cell, and the reaction of the resulting cell can be captured as it is by fluorescence observation with a confocal microscope. Fig. 7 shows an example of a fluorescence image when each region of a living specimen such as a cell is chemically stimulated. When searching for the localization of a specific receptor in a certain cell, it is possible to observe the intracellular response by sequentially stimulating light release in multiple microregions.
また、 DMDによる照明領域 (或いは ROI)の設定は、円や四角と言った単調な図 形に止まらず、細胞形態の輪郭などの複雑な絵や文字も可能であり、細胞への文字 の印刷などにおいて、ある限られた断層面だけに限局した印刷という形をとることがで きる。  In addition, the setting of the illumination area (or ROI) by DMD is not limited to monotonous figures such as circles and squares, and complex pictures and characters such as outlines of cell morphology are possible, and characters can be printed on cells. For example, it can take the form of printing limited to a certain limited fault plane.
光源としてレーザ以外のものも使用可能である。いくつかの波長の光が混合してい る(例えば白色光のような)光源を用いるならば、 DMDの階調調整機能と高速に切り 換えられるフィルタの色指定とを同期させて領域別の色の投影も可能である。  A light source other than a laser can also be used. If a light source that mixes several wavelengths of light (such as white light) is used, the tone adjustment function of the DMD is synchronized with the color specification of the filter that can be switched at high speed, and the color of each region Can also be projected.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本発明による共焦点顕微鏡の概略を示すブロック図である。 FIG. 1 is a block diagram showing an outline of a confocal microscope according to the present invention.
[図 2]本発明による共焦点顕微鏡の実施の形態を示す図である。  FIG. 2 is a diagram showing an embodiment of a confocal microscope according to the present invention.
[図 3]回転式フィルタの一例を示す図である。  FIG. 3 is a diagram showing an example of a rotary filter.
[図 4]DMDの ROIを説明するための図である。  FIG. 4 is a diagram for explaining the ROI of DMD.
[図 5]二プコゥ板組立の一例を説明するための図である。  FIG. 5 is a diagram for explaining an example of a two-ply plate assembly.
[図 6]標本の選択領域での蛍光の発生を説明するための図である。  FIG. 6 is a diagram for explaining the generation of fluorescence in a selected region of a specimen.
[図 7]細胞等の生きた標本の各領域を順番に化学刺激したときの蛍光画像の一例を 示す図である。  FIG. 7 is a diagram showing an example of a fluorescence image when each region of a living specimen such as a cell is chemically stimulated in order.
符号の説明  Explanation of symbols
[0010] 1 集光レンズ [0010] 1 condenser lens
2 DMD (ディジタル 'マイクロミラ一'デバイス)  2 DMD (digital 'micromirror' device)
3 微小ミラー群 (オン状態)  3 Micro mirror group (ON state)
4 マイクロレンズ付き-プコゥ板  4 With microlens-Pukou board
5 マイクロレンズ  5 Micro lens
6 ピンホーノレ  6 Pinhonore
7 色分割鏡 (ダイクロイツクミラー)  7 color split mirror (dichroic mirror)
8 対物レンズ 9 カバーガラス 8 Objective lens 9 Cover glass
10 共焦点像となる標本の領域  10 Sample area to be a confocal image
11 結像レンズ  11 Imaging lens
12 2次元光検出器 (カメラ)  12 Two-dimensional photodetector (camera)
13 光トラップ  13 Light trap
14 回転式フィルタ  14 Rotary filter
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、図面等を参照して本発明の実施の形態を詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings and the like.
図 1は、本発明による共焦点顕微鏡の概略を示すブロック図である。  FIG. 1 is a block diagram showing an outline of a confocal microscope according to the present invention.
共焦点顕微鏡は、共焦点光学系,二プコゥ板組立,出力光学系, DMD,照明光 学系を備えている。照明光学系には光源装置力もの光が入射する。  The confocal microscope is equipped with a confocal optical system, two-ply plate assembly, output optical system, DMD, and illumination optical system. Light having the power of a light source device enters the illumination optical system.
カメラ装置は出力光学系からの光学信号を検出してモニタに出力する。 CPU,メモ リ回路,制御プログラムなど力 構成される制御装置は DMDの選択した領域の微小 ミラーをオンオフ制御する DMD制御部や二プコゥ板^ a立の回転を駆動制御する回 転制御部の機能を備えて 、る。  The camera device detects the optical signal from the output optical system and outputs it to the monitor. The control device composed of CPU, memory circuit, control program, etc. functions as a DMD controller that controls on / off of the micromirrors in the selected area of the DMD and a rotation controller that controls the rotation of the two-ply plate ^ a. It is equipped with.
複数領域で蛍光強度の統一を図る場合や動きのある標本を追跡する場合は、 2次 元光検出器の出力信号を DMD制御部を含む制御装置にフィードバックし、該制御 装置が励起光強度 (DMDの階調調整機能を利用)や ROIを自動的に調整するよう に構成される。  When unifying the fluorescence intensity in multiple areas or tracking a moving sample, the output signal of the two-dimensional photodetector is fed back to the control device including the DMD control unit, and the control device uses the excitation light intensity ( It is configured to automatically adjust the ROI using the tone adjustment function of DMD).
また、白色光源により異なる励起光で複数領域を観察する場合には ROIと励起光 用フィルタ(照明光学系などに設けられる),ダイクロイツクミラー(吸収フィルタもある 場合、これも含む)はそれぞれ同期して切り替えるようにする必要があり、かかる場合 DMD制御部を含む制御装置は励起用フィルタとダイクロイツクミラー(吸収フィルタも ある場合、これも含む)も同時に制御するように構成される。  When observing multiple areas with different excitation light using a white light source, the ROI, excitation light filter (provided in the illumination optical system, etc.), and dichroic mirror (including absorption filter, if any) are synchronized. In such a case, the control device including the DMD control unit is configured to simultaneously control the excitation filter and the dichroic mirror (including an absorption filter, if any).
操作部力 の入力により視野に載置された標本の ROIを選択してモニタにより観察 することができる。  The ROI of the sample placed in the field of view can be selected and input to the monitor by inputting the operating force.
[0012] 光源装置力 の光は照明光学系によって所定の波長帯域に変換されて DMDに導 かれる。 DMDの照明範囲について DMD制御部の制御の下に ROIが選択されてォ ンオフの制御が行われる。オン制御された微小ミラー群による光はその微小ミラー群 対応の平行光束となり、該平行光束は-プコゥ板組立のマイクロレンズ付き-プコゥ 板の対応のマイクロレンズに入射し、該マイクロレンズで収束されてピンホール付き- プコゥ板のピンホールで結像する。ピンホールで結像した光は共焦点光学系によつ て標本の選択した領域に結像させられる。標本の選択した領域で発生した蛍光や散 乱光は共焦点光学系を戻り出力光学系によって 2次元光検出器 (カメラ装置)に導か れ映像表示のための処理がなされてモニタに表示される。 [0012] The light of the light source device power is converted into a predetermined wavelength band by the illumination optical system and guided to the DMD. About the illumination range of the DMD ROI is selected under the control of the DMD control unit. On / off control is performed. The light from the on-controlled micro mirror group becomes a parallel light beam corresponding to the micro mirror group, and the parallel light beam is incident on the micro lens corresponding to the Puko plate assembly and converged by the micro lens. With a pinhole-Forms an image with a pinhole on a Pukow plate. The light focused on the pinhole is focused on a selected area of the specimen by the confocal optical system. Fluorescence and scattered light generated in the selected area of the specimen returns to the confocal optical system and is guided by the output optical system to the two-dimensional photodetector (camera device), where it is processed for image display and displayed on the monitor. .
回転制御部によって-プコゥ板組立を高速回転させることにより秒当たり所定枚数 の標本の画像を得ることができる。  By rotating the Pukko board assembly at a high speed by the rotation control unit, a predetermined number of specimen images can be obtained per second.
[0013] 図 2は、本発明による共焦点顕微鏡の実施の形態を示す図である。 FIG. 2 is a diagram showing an embodiment of a confocal microscope according to the present invention.
集光レンズ 1および回転式フィルタ 14は照明用光学系を構成する。 -プコゥ板組立 は多数の螺旋状のピンホール 6を有する-プコゥ板 4aおよび各ピンホール対応に設 けられた多数のマイクロレンズ 5を有する-プコゥ板 4bが回転軸 15により連結されて 構成される。共焦点光学系は多数のマイクロレンズ 5を有する-プコゥ板 4b,多数の ピンホール 6を有する-プコゥ板 4a,ピンホール位置に対する共役の位置に結像さ せる対物レンズ 6により構成される。出力光学系は-プコゥ板 4aおよび 4bの光路上 に挿入されたダイクロイツクミラー 7と結像レンズ 11により構成される。カバーガラス 9 の上に標本が搭載され、該標本は顕微鏡の視野内の、ピンホール 6に対する共役位 置を含む位置である。  The condensing lens 1 and the rotary filter 14 constitute an illumination optical system. -Pukou plate assembly has a number of spiral pinholes 6 -Pukou plate 4a and a number of microlenses 5 provided for each pinhole -Pukou plate 4b is connected by rotating shaft 15 The The confocal optical system is composed of a plurality of microlenses 5-a Pukko plate 4b, a large number of pinholes 6-a Pukko plate 4a, and an objective lens 6 that forms an image at a conjugate position with respect to the pinhole position. The output optical system is composed of a dichroic mirror 7 and an imaging lens 11 inserted on the optical paths of the Pukko plates 4a and 4b. A specimen is mounted on the cover glass 9, and the specimen is a position including a conjugate position with respect to the pinhole 6 in the field of view of the microscope.
[0014] 光源 20は所定波長のレーザ光を用いる他、幾つかの波長が混ざり合った光源が用 いられる。この実施の形態は白色光のランプを用いたものであり、 ROIを各色で投影 することができる。図 3に照明用光学系に挿入した回転式フィルタの一例を示す。 赤波長領域のフィルタ 14a,緑波長領域のフィルタ 14b,青波長領域のフィルタ 14 cが円周上に配置されており、回転軸 16で回転させて各 ROI毎に色を変えて投影す ることがでさる。  As the light source 20, a laser beam having a predetermined wavelength is used, and a light source in which several wavelengths are mixed is used. In this embodiment, a white light lamp is used, and the ROI can be projected in each color. Fig. 3 shows an example of a rotary filter inserted in the illumination optical system. A filter 14a in the red wavelength region, a filter 14b in the green wavelength region 14b, and a filter 14c in the blue wavelength region are arranged on the circumference, and are rotated by the rotating shaft 16 and projected by changing the color for each ROI. It is out.
[0015] 光源 20からの照明光はレンズ 1により平行光束にされ、回転式フィルタ 14を通過し て DMD2の各微小ミラーを照射する。図 4に DMDの所定の ROIをオン制御した場 合を示す。 DMD2の 25が照射可能領域であり、 DMD制御部の制御の下に領域 (R ) 2aと領域 (R ) 2bの微小ミラーが選択されてオン状態となって 、る。 The illumination light from the light source 20 is converted into a parallel light beam by the lens 1, passes through the rotary filter 14, and irradiates each micromirror of the DMD 2. Figure 4 shows the case where the specified ROD of the DMD is on-controlled. DMD2 25 is the irradiable area, and the area under the control of the DMD controller (R ) 2a and region (R) 2b micro mirrors are selected and turned on.
1 2  1 2
照射領域 25の他の領域は微小ミラーがオフの領域である。 DMD制御部によって 順番に照射領域 25の各領域を選択していくことができる。また、この選択された領域 (R ) , (R )は矩形領域であるが、その形や大きさは自由に設定することが可能であ The other area of the irradiation area 25 is an area where the micromirror is off. Each region of the irradiation region 25 can be selected in turn by the DMD control unit. The selected area (R), (R) is a rectangular area, but its shape and size can be set freely.
1 2 1 2
る。  The
[0016] オン制御された微小ミラーの領域 (R )および領域 (R )からの反射光は平行光束  [0016] On-controlled micromirror region (R) and reflected light from region (R) are parallel light fluxes
1 2  1 2
となって-プコゥ板 4bのそれぞれ対応のマイクロレンズ 5に入射する。  -Is incident on the corresponding microlenses 5 of the Pukou plate 4b.
一方、領域 (R )および領域 (R )以外の照射領域 25の光は、その領域の微小ミラ  On the other hand, the light in the irradiation region 25 other than the region (R) and the region (R) is reflected by the minute mirror in the region.
1 2  1 2
一のオフにより-プコゥ板 4bの方向以外に導かれ、光トラップ 13により吸収される。 対応のマイクロレンズ 5に入射した光は、対応のピンホール 6に結像される。この 2つ の-プコゥ板の構成によって入射する光の利用効率が高められ、ピンホール以外の 板表面で反射されるノイズ光が減少する。  When the light is turned off, the light is guided in a direction other than the direction of the Pukko plate 4b and absorbed by the optical trap 13. The light incident on the corresponding microlens 5 is imaged on the corresponding pinhole 6. The two-Pukou plate configuration increases the efficiency of the incident light and reduces the noise light reflected on the plate surface other than the pinhole.
[0017] 図 5に二プコゥ板組立の一例を示す。 FIG. 5 shows an example of a two-ply plate assembly.
-プコゥ板 4aのピンホール 6は、螺旋状に所定間隔で配置され、これら螺旋状ピン ホール群は円板全体に多数設けられている。 -プコゥ板 4bには各ピンホール対応に 多数のマイクロレンズ 5が配置されている。 -プコゥ板組立を回転制御部により回転さ せることにより標本の画像をモニタに表示することができる。螺旋状ピンホール群の数 と二プコゥ板の回転速度 (分速)を適宜制御することにより例えば秒当たりの表示駒 数を変更することができる。例えは、 -プコゥ板を数千 rpmで、螺旋状ピンホール群 の数を 10個程度形成することにより、 1駒を数 mmSで表示することができる。  -The pinholes 6 of the Pukko plate 4a are arranged in a spiral at a predetermined interval, and a large number of these spiral pinhole groups are provided on the entire disc. -A large number of microlenses 5 are arranged on the Pukou plate 4b for each pinhole. -The specimen image can be displayed on the monitor by rotating the Pukou board assembly by the rotation controller. For example, the number of display frames per second can be changed by appropriately controlling the number of spiral pinhole groups and the rotational speed (minute speed) of the two-ply plate. For example:-By forming a Pukko board at several thousand rpm and about 10 spiral pinhole groups, one frame can be displayed at several mmS.
[0018] ピンホール 6を通過した光は対物レンズ 8で標本 10の選択位置に結像される。 The light that has passed through the pinhole 6 is imaged at a selected position of the sample 10 by the objective lens 8.
図 6は、標本の選択位置力 蛍光が発生している状態を示す。  Fig. 6 shows the selected position force fluorescence of the specimen.
DMDの領域 (R )力もの光 26aは標本 10の前面力も z だけ入射した位置に焦点  DMD region (R) force light 26a is focused at the position where the front force of sample 10 is incident by z
1 1  1 1
を結ぶ。縦横方向は領域 (R ) y  Tie. Vertical and horizontal direction is area (R) y
1 に対応する位置 X ,  Position X corresponding to 1,
1 1に結像する。また、 DMDの領 域 (R )からの光 26bは標本 10の前面力も Z だけ入射した位置に焦点を結び、縦横1 Forms an image on 1. In addition, the light 26b from the DMD region (R) focuses on the position where the frontal force of the specimen 10 is incident by Z , and the vertical and horizontal directions.
2 1 twenty one
方向は領域 (R )  Direction is region (R)
2 に対応する位置 X , y  The position X, y corresponding to 2
2 2に結像する。  2 Focus on 2
標本 10の結像位置に存在する物質により例えば蛍光 27が発生し、蛍光 27は共焦 点光学系を戻り、蛍光波長帯を反射するダイクロイツクミラー 7で結像レンズ 11に導か れる。結像レンズ 11によって 2次元光検出器 12に蛍光が結像し標本 10の位置 x , y For example, fluorescence 27 is generated by the substance existing at the imaging position of the specimen 10, and the fluorescence 27 returns to the confocal optical system and is guided to the imaging lens 11 by the dichroic mirror 7 that reflects the fluorescence wavelength band. It is. Fluorescence forms an image on the two-dimensional photodetector 12 by the imaging lens 11, and the position of the specimen 10 x
1 1
, z と位置 X , y , z に像が検出される。 , z and images X, y, z are detected.
1 1 2 2 1  1 1 2 2 1
2次元光検出器 12では光電変換され、この電気信号は、カメラ装置内で所定の信 号方式に処理された後モニタに表示される。  The two-dimensional photodetector 12 performs photoelectric conversion, and this electric signal is processed into a predetermined signal system in the camera device and then displayed on a monitor.
[0019] 以上の実施の形態では出力光学系にダイクロイツクミラーを用いた例を説明したが 、出力(蛍光)の波長帯域を分離できる光学素子であれば、他の光学素子を用いても 良い。ダイクロイツクミラーにカ卩えて吸収フィルタを挿入しダイクロイツクミラーからの反 射光を吸収フィルタに導き、吸収フィルタからの透過光を光検出手段に結像させても 良い。また、回転式フィルタを挿入して照射光を RGBの波長域にする例を示した力 回転フィルタを挿入することなく光源装置で必要となる波長または波長域を発生させ ても良い。 In the above embodiment, an example in which a dichroic mirror is used for the output optical system has been described. However, other optical elements may be used as long as they are optical elements that can separate the output (fluorescence) wavelength band. . An absorption filter may be inserted into the dichroic mirror, the reflected light from the dichroic mirror may be guided to the absorption filter, and the transmitted light from the absorption filter may be imaged on the light detection means. Further, a force or wavelength range required for the light source device may be generated without inserting a force rotation filter in which an example is shown in which a rotary filter is inserted to make the irradiation light have an RGB wavelength range.
DMDの周期的な表面構造に起因して回折光が発生することがある力 その場合、 回折光の 0次光のみを利用する力、拡散板やインコヒーレンサーなどを通した光を用 いる力、或いはコヒーレンスの低い光源(キセノンランプ、 SLD、フェムト秒レーザなど )を使用することにより本発明を実施することができる。  Force that can generate diffracted light due to the periodic surface structure of DMD In that case, force that uses only the 0th-order light of diffracted light, force that uses light that has passed through a diffuser or an incoherencer, etc. Alternatively, the present invention can be implemented by using a light source with low coherence (xenon lamp, SLD, femtosecond laser, etc.).
さらに光源装置に白色光を用い DMDの階調調整機能と高速に切り換えられるフィ ルタの色指定とを同期させて領域別の色の投影を行う具体例は以下のような場合で ある。  Furthermore, a specific example in which white light is used for the light source device and the DMD tone adjustment function and the color specification of the filter that can be switched at high speed are synchronized to project colors by region is as follows.
細胞外刺激に対する細胞内応答の可視化の際に DMDとフィルタにより細胞外の 特定の領域に、特定の波長(色)でケージド化合物の光解除刺激を行った後、 DMD とフィルタを切り替えて細胞内の特定の領域に、特定の励起波長で蛍光を観察する ものである。なお、刺激一応答反応が非常に速ければ高速に切り替える必要がある。 産業上の利用可能性  When visualizing intracellular responses to extracellular stimuli, DMD and filters are used to light-release stimuli of caged compounds at specific wavelengths (colors) in specific areas outside the cells. In this specific region, fluorescence is observed at a specific excitation wavelength. In addition, if the stimulus-response response is very fast, it is necessary to switch at high speed. Industrial applicability
[0020] DMDにより標本の照射領域を選択できる二プコゥ式共焦点顕微鏡で、医学やバイ ォ研究などの広 、範囲で応用可能である。 [0020] This is a two-puck confocal microscope that can select the irradiation area of a specimen by DMD, and can be applied in a wide range of fields such as medicine and bioresearch.

Claims

請求の範囲 The scope of the claims
[1] 光源装置と、  [1] a light source device;
2次元に配列された多数の微小ミラーを備え、選択された微小ミラーにより前記光 源装置からの光を点状の照明光に変換して選択された微小ミラーの集合に応じた平 行光束を形成する DMDと、  A number of micromirrors arranged in two dimensions are provided, and the selected micromirrors convert the light from the light source device into dotted illumination light to generate parallel light beams according to the selected set of micromirrors. DMD to form,
多数のピンホールを有する第 1-プコゥ板および多数のマイクロレンズを有する第 2 二プコゥ板よりなり、前記 DMDからの平行光束を前記第 2-プコゥ板のマイクロレン ズで収束させて前記第 1-プコゥ板のピンホールに結像させる-プコゥ板組立と、 前記第 1-プコゥ板のピンホールで結像された光束を視野の対応位置に結像させ 、前記視野からの蛍光を逆向させる共焦点光学系と、  It comprises a first-puku plate having a number of pinholes and a second second-puk plate having a number of microlenses, and the parallel light beam from the DMD is converged by the microlenses of the second-puk plate and the first -Forming an image on the pinhole of the Pukou plate-Sharing the image of the light beam imaged in the pinhole plate assembly and the first-Pukou plate at the corresponding position of the field of view and reversing the fluorescence from the field of view Focusing optics,
2次元光検出手段と、  Two-dimensional light detection means;
前記第 1および第 2二プコゥ板の間に配置された色分割光学素子および該色分割 光学素子からの反射光を前記光検出手段に結像するレンズ系からなる出力光学系と 前記 DMDの多数の微小ミラーを選択してオン,オフ制御する制御装置とを有し、 前記視野全体の一部を選択して照明を与えるように構成したことを特徴とする共焦 点顕微鏡。  An output optical system comprising a color dividing optical element disposed between the first and second second plate and a lens system that forms an image of reflected light from the color dividing optical element on the light detection means; A confocal microscope, comprising: a control device that selects and controls on / off of a mirror; and a portion of the entire field of view is selected to provide illumination.
[2] 前記二プコゥ板組立は高速回転させられ前記光検出手段に映像を形成することを 特徴とする請求項 1記載の共焦点顕微鏡。  2. The confocal microscope according to claim 1, wherein the two-piece plate assembly is rotated at a high speed to form an image on the light detection means.
[3] 前記視野内には蛍光標本が留置されることを特徴とする請求項 1記載の共焦点顕 微鏡。 3. The confocal microscope according to claim 1, wherein a fluorescent specimen is placed in the field of view.
PCT/JP2006/301826 2005-02-09 2006-02-03 Cofocal microscope WO2006085480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005032961A JP2006220818A (en) 2005-02-09 2005-02-09 Confocal microscope
JP2005-032961 2005-02-09

Publications (1)

Publication Number Publication Date
WO2006085480A1 true WO2006085480A1 (en) 2006-08-17

Family

ID=36793054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301826 WO2006085480A1 (en) 2005-02-09 2006-02-03 Cofocal microscope

Country Status (2)

Country Link
JP (1) JP2006220818A (en)
WO (1) WO2006085480A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602648A3 (en) * 2011-12-07 2013-07-31 Yokogawa Electric Corporation Confocal optical scanner and confocal microscope

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5555061B2 (en) 2010-06-09 2014-07-23 オリンパス株式会社 Observation apparatus and observation method
JP6024576B2 (en) * 2013-04-10 2016-11-16 横河電機株式会社 Light source unit for confocal microscope
JP6161399B2 (en) 2013-05-17 2017-07-12 オリンパス株式会社 Microscope system
CN110023813B (en) * 2017-06-06 2022-04-29 美利坚合众国,由健康及人类服务部部长代表 Multi-focal structured illumination microscopy systems and methods
US11086113B2 (en) 2017-06-06 2021-08-10 The United States Of America Multi-focal structured illumination microscopy systems and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107361A (en) * 2001-09-28 2003-04-09 Olympus Optical Co Ltd Microscope
JP2004354469A (en) * 2003-05-27 2004-12-16 Yokogawa Electric Corp Confocal microscope display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107361A (en) * 2001-09-28 2003-04-09 Olympus Optical Co Ltd Microscope
JP2004354469A (en) * 2003-05-27 2004-12-16 Yokogawa Electric Corp Confocal microscope display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602648A3 (en) * 2011-12-07 2013-07-31 Yokogawa Electric Corporation Confocal optical scanner and confocal microscope
US9122061B2 (en) 2011-12-07 2015-09-01 Yokogawa Electric Corporation Confocal optical scanner and confocal microscope

Also Published As

Publication number Publication date
JP2006220818A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP5259154B2 (en) Scanning laser microscope
JP3816632B2 (en) Scanning microscope
JP4723806B2 (en) Confocal microscope
JP2006235420A (en) Confocal microscope
WO2006085480A1 (en) Cofocal microscope
JP2006317544A (en) Confocal microscope
US6248995B1 (en) Confocal microscopic equipment
JP2006504140A (en) Random access high-speed confocal microscope
JP2006106378A (en) Confocal microscope
JP2011085759A (en) Confocal optical scanner
JP2005121796A (en) Laser microscope
JP2008203813A (en) Scanning microscope
JP3585018B2 (en) Confocal device
WO2002021109A1 (en) Imaging apparatus
JP2008026885A (en) Light-stimulus illumination apparatus and microscope apparatus
CN113056696A (en) Microscope and method of microscopy
JP2009293994A (en) Optical microscope and observation method
JP2012187293A (en) Fundus photographing apparatus
JP2007187945A (en) Confocal microscope
JP5888498B2 (en) Microscope equipment
JP4593141B2 (en) Optical scanning observation device
JP3736213B2 (en) Confocal light scanner
JP4793626B2 (en) Confocal microscope
JPH0854340A (en) Two-photon excitation microscope
JP2008275791A (en) Scanning confocal microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712969

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712969

Country of ref document: EP