JP2006317544A - Confocal microscope - Google Patents

Confocal microscope Download PDF

Info

Publication number
JP2006317544A
JP2006317544A JP2005137590A JP2005137590A JP2006317544A JP 2006317544 A JP2006317544 A JP 2006317544A JP 2005137590 A JP2005137590 A JP 2005137590A JP 2005137590 A JP2005137590 A JP 2005137590A JP 2006317544 A JP2006317544 A JP 2006317544A
Authority
JP
Japan
Prior art keywords
point
light
interest
confocal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005137590A
Other languages
Japanese (ja)
Other versions
JP4894161B2 (en
Inventor
Tomoko Ujiie
知子 氏家
Tomoya Noda
友也 埜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005137590A priority Critical patent/JP4894161B2/en
Priority to DE102006019952A priority patent/DE102006019952A1/en
Priority to US11/429,998 priority patent/US7369309B2/en
Publication of JP2006317544A publication Critical patent/JP2006317544A/en
Application granted granted Critical
Publication of JP4894161B2 publication Critical patent/JP4894161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a confocal microscope capable of improving the efficiency of utilizing light. <P>SOLUTION: The confocal microscope comprises: a means for concentrating illumination light on a point [5] of interest of a sample and points [1], [9] of non-interest positioned in the vicinity of the point of interest to simultaneously illuminating the point of interest and the points of non-interest; a means for receiving the light incident on a light receiving part confocal with the point of interest without discrimination among the light generated from the point of interest and the light generated from the points of non-interest to output a light receiving signal corresponding to intensity of the lights; a means for changing the number of the points of non-interest and taking the light receiving signals in before and after the change; and a generation means for generating a confocal signal corresponding to the intensity of light generated from the point of interest on the basis of the relationship between the plurality of light receiving signals taken in and the number of the points of non-interest changed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、試料の共焦点観察を行う共焦点顕微鏡に関する。   The present invention relates to a confocal microscope that performs confocal observation of a sample.

共焦点顕微鏡では、試料の1点に照明光を集光して、その1点から発生した光の強度をセンサで測定し、試料上で測定点を2次元走査しながら同様の動作を繰り返す。このため、試料の高分解能な像強度分布を得ることができ、共焦点観察が可能となる。また、共焦点観察を効率よく行うために、例えばニッポウディスクなどを用いて、多点走査方式とすることが提案されている(例えば特許文献1を参照)。この場合、隣り合う測定点の間隔は、それぞれの測定点から発生した光がセンサ上で混じり合わないように(つまり共焦点効果が保たれるように)、ニッポウディスクのピンホール間隔に応じて設定される。
特開平9−325279号公報
In a confocal microscope, illumination light is condensed on one point of a sample, the intensity of light generated from the one point is measured by a sensor, and the same operation is repeated while two-dimensionally scanning the measurement point on the sample. Therefore, a high-resolution image intensity distribution of the sample can be obtained, and confocal observation can be performed. In order to efficiently perform confocal observation, it has been proposed to use a multipoint scanning method using, for example, a Nippon disc (see, for example, Patent Document 1). In this case, the interval between adjacent measurement points is determined according to the pinhole interval of the Nippon disk so that the light generated from each measurement point does not mix on the sensor (that is, the confocal effect is maintained). Is set.
JP 9-325279 A

しかし、上記の多点走査方式では、ニッポウディスクにおけるピンホールの開口率が低く、光源側からの光のうちピンホールを通過したわずかな光のみを照明光として試料側へ導くため、光の利用効率が低かった。
本発明の目的は、光の利用効率を向上させることができる共焦点顕微鏡を提供することにある。
However, in the above multi-point scanning method, the aperture ratio of the pinhole in the Nippon disk is low, and only a small amount of light passing through the pinhole from the light source side is guided to the sample side as illumination light. The efficiency was low.
The objective of this invention is providing the confocal microscope which can improve the utilization efficiency of light.

本発明の共焦点顕微鏡は、試料の注目点と該注目点の近傍に位置する1つ以上の非注目点との各々に照明光を集光し、前記注目点と前記非注目点とを同時に照明する照明手段と、前記照明手段によって照明されたときに前記注目点から発生する光と前記非注目点から発生する光のうち、前記注目点と共役な受光部に入射する光を区別せずに受光し、該光の強度に応じた受光信号を出力する受光手段と、前記照明手段を制御して前記非注目点の数を変更し、その変更前後における前記受光手段から出力される前記受光信号を順に取り込む制御手段と、前記制御手段によって取り込まれた複数の前記受光信号と変更された前記非注目点の数との関係に基づいて、前記注目点から発生する光の強度に応じた共焦点信号を生成する生成手段とを備えたものである。   The confocal microscope of the present invention condenses illumination light on each of a sample point of interest and one or more non-point of interest located in the vicinity of the point of interest, and the point of interest and the non-point of interest simultaneously. No distinction is made between illuminating means for illuminating, and light incident on the light receiving unit conjugate with the target point, among light generated from the target point and light generated from the non-target point when illuminated by the illuminating unit A light receiving means for receiving the light and outputting a light receiving signal corresponding to the intensity of the light; and the light receiving means for controlling the illumination means to change the number of the non-attention points, and outputting the light receiving from the light receiving means before and after the change. Based on the relationship between the control means for sequentially taking in signals, the plurality of received light signals taken in by the control means, and the number of changed non-attention points, a shared value corresponding to the intensity of light generated from the attention points is obtained. Generating means for generating a focus signal Than it is.

さらに、前記生成手段は、前記共焦点信号を生成すると共に、前記非注目点から発生する光の強度に応じた非共焦点信号を生成し、かつ、前記共焦点信号と前記非共焦点信号との差分信号を生成することが好ましい。   Further, the generation means generates the confocal signal, generates a non-confocal signal according to the intensity of light generated from the non-focused point, and the confocal signal and the non-confocal signal It is preferable to generate the difference signal.

本発明の共焦点顕微鏡によれば、光の利用効率を向上させることができる。   According to the confocal microscope of the present invention, the light utilization efficiency can be improved.

以下、図面を用いて本発明の実施形態を詳細に説明する。
(第1実施形態)
第1実施形態の共焦点顕微鏡10は、図1に示す通り、照明系(11〜16)と、結像系(13〜17)と、光検出器18と、制御部19とで構成される。照明系(11〜16)は、光源11と、コンデンサレンズ12と、ダイクロイックミラー13と、ミラー素子14と、レンズ15,16とで構成される。結像系(13〜17)は、上記のレンズ15,16とミラー素子14とダイクロイックミラー13と、さらにレンズ17とで構成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
The confocal microscope 10 of 1st Embodiment is comprised by the illumination system (11-16), the imaging system (13-17), the photodetector 18, and the control part 19 as shown in FIG. . The illumination system (11 to 16) includes a light source 11, a condenser lens 12, a dichroic mirror 13, a mirror element 14, and lenses 15 and 16. The imaging system (13 to 17) includes the lenses 15 and 16, the mirror element 14, the dichroic mirror 13, and the lens 17.

ミラー素子14は、2次元配列された多数の微小ミラー4Aを有し(図2も参照)、それぞれの傾き角を高速に調整可能である(例えばDMD;Digital Micromirror Device)。光検出器18は、例えばCCDなどの撮像素子であり、2次元配列された多数の受光部8Aを有する(図2)。各々の受光部8Aは、例えば撮像素子の1つ以上の画素からなる。ミラー素子14と光検出器18は互いに共役な面に配置され、かつ、試料面20とも共役に配置されている。   The mirror element 14 includes a large number of two-dimensionally arranged micromirrors 4A (see also FIG. 2), and each tilt angle can be adjusted at high speed (for example, DMD; Digital Micromirror Device). The photodetector 18 is an image pickup device such as a CCD, for example, and has a large number of light receiving portions 8A arranged two-dimensionally (FIG. 2). Each light receiving unit 8A is composed of, for example, one or more pixels of an image sensor. The mirror element 14 and the photodetector 18 are arranged in a conjugate plane with each other, and are also arranged in a conjugate manner with the sample surface 20.

図2には、ミラー素子14の各々の微小ミラー4Aに対応させて光検出器18の各々の受光部8Aを示した。さらに、微小ミラー4Aの2次元配列(受光部8Aの2次元配列)に対応させて、試料面20を多数の微小領域2Aに分割して示した。各々の微小領域2Aは、各々の微小ミラー4Aと共役であり、各々の受光部8Aとも共役である。図2では、微小領域2Aと微小ミラー4Aと受光部8Aの大きさが同じであるように示したが、実際の大きさはレンズ15〜17の焦点距離などに起因して必ずしも一致するとは限らない。   In FIG. 2, each light receiving portion 8 </ b> A of the photodetector 18 is shown corresponding to each micromirror 4 </ b> A of the mirror element 14. Furthermore, the sample surface 20 is shown divided into a large number of minute regions 2A corresponding to the two-dimensional array of minute mirrors 4A (two-dimensional array of light receiving portions 8A). Each micro region 2A is conjugate with each micro mirror 4A, and is also conjugate with each light receiving portion 8A. In FIG. 2, the micro area 2 </ b> A, the micro mirror 4 </ b> A, and the light receiving unit 8 </ b> A are shown to have the same size, but the actual sizes do not always match due to the focal lengths of the lenses 15 to 17. Absent.

光源11からの光は、コンデンサレンズ12とダイクロイックミラー13とを経た後、ミラー素子14の多数の微小ミラー4Aを一様に照明する。多数の微小ミラー4Aのうち一部は照明用の傾き角に設定され(以下「オン状態の微小ミラー4A」)、残りは照明用の傾き角とは異なる非照明用の傾き角に設定されている(以下「オフ状態の微小ミラー4A」)。微小ミラー4Aのオン/オフの切り替えは、制御部19からの制御信号に基づいて高速に行われる。   The light from the light source 11 passes through the condenser lens 12 and the dichroic mirror 13 and then uniformly illuminates the numerous micromirrors 4A of the mirror element 14. Some of the small number of micromirrors 4A are set to illumination tilt angles (hereinafter referred to as “on-state micromirrors 4A”), and the rest are set to non-illumination tilt angles different from the illumination tilt angles. (Hereinafter, “micromirror 4A in the off state”). Switching on / off of the micromirror 4A is performed at high speed based on a control signal from the control unit 19.

多数の微小ミラー4Aのうちオン状態の微小ミラー4Aでは、ダイクロイックミラー13からの光を反射してレンズ15の方へ導く。そして、この光はレンズ15,16を経た後、照明光として試料面20に入射する。試料面20における照明光の入射位置は、多数の微小領域2Aのうち、ミラー素子14におけるオン状態の微小ミラー4Aと共役な微小領域2Aとなる。微小領域2Aに入射した照明光は、それぞれ、その中の1点に集光される。なお、オフ状態の微小ミラー4Aで反射した光は、試料面20に到達しない。   Among the many micromirrors 4A, the micromirror 4A in the on state reflects light from the dichroic mirror 13 and guides it toward the lens 15. The light passes through the lenses 15 and 16 and then enters the sample surface 20 as illumination light. The incident position of the illumination light on the sample surface 20 is a minute area 2A conjugate with the on-state minute mirror 4A in the mirror element 14 among the many minute areas 2A. The illumination light incident on the minute area 2A is collected at one point. The light reflected by the micro mirror 4A in the off state does not reach the sample surface 20.

試料面20のうち照明光が入射した微小領域2Aでは、照明光によって蛍光物質が励起され、蛍光物質から蛍光が発生する。この蛍光は、レンズ16,15を経た後、ミラー素子14のオン状態の微小ミラー4Aに入射し、そこで反射してダイクロイックミラー13の方へ導かれ、ダイクロイックミラー13とレンズ17を介して光検出器18に入射する。光検出器18における蛍光の入射位置は、多数の受光部8Aのうち、ミラー素子14のオン状態の微小ミラー4Aと共役な受光部8Aとなる。   In the minute area 2A where the illumination light is incident on the sample surface 20, the fluorescent material is excited by the illumination light, and fluorescence is generated from the fluorescent material. After passing through the lenses 16 and 15, the fluorescence is incident on the minute mirror 4 A in the on state of the mirror element 14, reflected there, and guided to the dichroic mirror 13, and is detected through the dichroic mirror 13 and the lens 17. Incident on the vessel 18. The incident position of the fluorescence in the photodetector 18 is the light receiving portion 8A conjugate with the micromirror 4A in the ON state of the mirror element 14 among the many light receiving portions 8A.

このように、第1実施形態の共焦点顕微鏡10では、試料面20の多数の微小領域2Aのうち、ミラー素子14のオン状態の微小ミラー4Aと共役な微小領域2Aを照明して、その微小領域2Aから発生した蛍光をオン状態の微小ミラー4Aで反射して光検出器18に導き、オン状態の微小ミラー4Aと共役な受光部8Aで検出する。このため、微小ミラー4Aのオン/オフを切り替えることによって、任意の照明パターンによる蛍光を検出することができる。   As described above, in the confocal microscope 10 according to the first embodiment, among the many micro regions 2A on the sample surface 20, the micro region 2A conjugate with the micro mirror 4A in the on state of the mirror element 14 is illuminated, and the micro region 2A is illuminated. The fluorescence generated from the region 2A is reflected by the on-state micromirror 4A, guided to the photodetector 18, and detected by the light receiving unit 8A conjugate with the on-state micromirror 4A. For this reason, fluorescence by an arbitrary illumination pattern can be detected by switching on / off the micromirror 4A.

試料面20に例えば図3(a)の照明パターンを形成した場合、試料面20では、一定の間隔D1だけ離れた複数の微小領域2Aの各々で照明される。図3(a)では白抜き領域が照明された微小領域2A、ハッチング領域が照明されなかった微小領域2Aに対応する。そして、照明された微小領域2A(以下「注目点2A」)からの蛍光は、各々の注目点2Aに共役な受光部8Aで検出される。このとき、隣り合う注目点2Aの間隔D1を共焦点効果が保たれるように設定し、その注目点2Aを試料面20で2次元走査すれば、試料面20の高分解能な像強度分布を得ることができ、共焦点観察が可能となる。   For example, when the illumination pattern shown in FIG. 3A is formed on the sample surface 20, the sample surface 20 is illuminated by each of a plurality of minute regions 2A separated by a certain distance D1. In FIG. 3A, the white area corresponds to the minute area 2A illuminated, and the hatched area corresponds to the minute area 2A not illuminated. Then, the fluorescence from the illuminated minute region 2A (hereinafter “attention point 2A”) is detected by the light receiving unit 8A conjugate to each attention point 2A. At this time, if the distance D1 between the adjacent attention points 2A is set so that the confocal effect is maintained, and the attention point 2A is two-dimensionally scanned on the sample surface 20, a high-resolution image intensity distribution on the sample surface 20 can be obtained. Can be obtained and confocal observation is possible.

以下の説明では、共焦点効果が保たれる間隔D1を、各々の微小領域2Aどうしの間隔D2の例えば2倍とする。また、その間隔D1(=D2×2)だけ離れた複数の注目点2Aの各々と、これに隣接する8個の微小領域2Aとを総じて、ユニット21(図3(b))という。各々のユニット21は、3×3配列で合計9個の微小領域2Aを含み、その中心が注目点2Aとなっている。図3(b)にはユニット21内の9個の微小領域2Aに便宜的に番号「1」〜「9」を付与した。   In the following description, the interval D1 in which the confocal effect is maintained is, for example, twice the interval D2 between the minute regions 2A. Further, each of the plurality of attention points 2A separated by the distance D1 (= D2 × 2) and the eight minute regions 2A adjacent thereto are collectively referred to as a unit 21 (FIG. 3B). Each unit 21 includes a total of nine minute regions 2A in a 3 × 3 array, and the center thereof is the attention point 2A. In FIG. 3B, the numbers “1” to “9” are assigned to the nine minute regions 2A in the unit 21 for the sake of convenience.

図3(b)の照明パターンのように、ユニット21内の「5」の注目点2Aのみが照明された場合、隣り合う注目点2Aから発生した蛍光は、各々の注目点2Aに共役な隣り合う受光部8Aにそれぞれ入射し、互いに混じり合うことはない。このため、一方の受光部8Aから出力される信号は、一方の注目点2Aから発生する蛍光の強度に応じた共焦点信号となる。また、他方の受光部8Aから出力される信号は、他方の注目点2Aから発生する蛍光の強度に応じた共焦点信号となる。   When only the “5” attention point 2A in the unit 21 is illuminated as in the illumination pattern of FIG. 3B, the fluorescence generated from the adjacent attention points 2A is adjacent to each attention point 2A. The light enters the matching light receiving portions 8A and does not mix with each other. For this reason, the signal output from one light-receiving part 8A becomes a confocal signal corresponding to the intensity of the fluorescence generated from one attention point 2A. Further, the signal output from the other light receiving unit 8A is a confocal signal corresponding to the intensity of the fluorescence generated from the other target point 2A.

これに対し、例えば図4(a)の照明パターンのように、ユニット21内の「5」の注目点2Aだけでなく、その近傍の「1」「9」の微小領域2A(以下「非注目点2A」)も同時に照明された場合には、事情が異なる。ユニット21内の注目点2Aと非注目点2Aとの間隔は共焦点効果が保たれない狭い間隔であり、注目点2Aに共役な受光部8Aには、注目点2Aから発生した蛍光だけでなく、非注目点2Aから発生した各々の蛍光の一部(漏れ光)も入射する。   In contrast to this, for example, as shown in the illumination pattern of FIG. 4A, not only the “5” attention point 2A in the unit 21, but also the minute areas 2A of “1” and “9” in the vicinity thereof (hereinafter “non-attention”). The situation is different if the point 2A ") is also illuminated at the same time. The interval between the attention point 2A and the non-attention point 2A in the unit 21 is a narrow interval where the confocal effect is not maintained, and the light receiving unit 8A conjugate to the attention point 2A has not only the fluorescence generated from the attention point 2A. A part (leakage light) of each fluorescence generated from the non-attention point 2A also enters.

そして、注目点2Aに共役な受光部8Aでは、注目点2Aからの蛍光と非注目点2Aからの漏れ光とを区別せずに受光し、その光の強度に応じた受光信号を出力する。この場合の受光信号は、注目点2Aからの蛍光の強度に応じた共焦点信号と、非注目点2Aからの漏れ光の強度に応じた非共焦点信号との和となる。したがって、受光信号そのものを用いても、試料面20の高分解能な像強度分布を得ることはできない。   The light receiving unit 8A conjugate to the point of interest 2A receives the fluorescence from the point of interest 2A and the leaked light from the non-point of interest 2A without distinguishing them, and outputs a light reception signal corresponding to the intensity of the light. The light reception signal in this case is the sum of the confocal signal according to the intensity of the fluorescence from the point of interest 2A and the non-confocal signal according to the intensity of the leaked light from the non-point of interest 2A. Therefore, it is not possible to obtain a high-resolution image intensity distribution on the sample surface 20 using the received light signal itself.

しかし、例えば図4(b)の照明パターンを用いて同様の受光信号を取り込み、図4(a)の照明パターンを用いて取り込んだ受光信号と組み合わせて所定の信号処理を行うことにより、受光信号から非共焦点信号を減算して、共焦点信号のみを抽出することができる。このため、信号処理で抽出された共焦点信号を用いることにより、試料面20の高分解能な像強度分布を得ることができる。   However, for example, by receiving the same light reception signal using the illumination pattern of FIG. 4B and performing predetermined signal processing in combination with the light reception signal acquired using the illumination pattern of FIG. The non-confocal signal can be subtracted from to extract only the confocal signal. For this reason, by using the confocal signal extracted by the signal processing, a high-resolution image intensity distribution of the sample surface 20 can be obtained.

また、信号処理の際には、受光信号に含まれる非共焦点信号の大きさを次のように仮定する。つまり、図5の照明パターンのように、ユニット21内の「5」の注目点2A以外の全ての微小領域2A(「1」〜「4」「6」〜「9」の非注目点2A)が同時に照明された場合を想定し、このとき注目点2Aに共役な受光部8Aから出力される受光信号の大きさを“b”とする。この受光信号(大きさb)は、ユニット21内の「1」〜「4」「6」〜「9」の非注目点2Aからの漏れ光の合計強度に応じた非共焦点信号である。なお、ユニット21外からの漏れ光が混入することは無いと考えられる。   In the signal processing, the magnitude of the non-confocal signal included in the light reception signal is assumed as follows. That is, as in the illumination pattern of FIG. 5, all the minute regions 2A other than the attention point 2A of “5” in the unit 21 (non- attention points 2A of “1” to “4”, “6” to “9”). Is assumed to be simultaneously illuminated, and the magnitude of the received light signal output from the light receiving unit 8A conjugate to the point of interest 2A is “b”. This light reception signal (magnitude b) is a non-confocal signal corresponding to the total intensity of leaked light from the non-target point 2A of “1” to “4” “6” to “9” in the unit 21. It is considered that light leaked from outside the unit 21 is not mixed.

さらに、説明を簡単にするため、各々の非注目点2Aから受光信号への寄与は等しいとする。この場合、「1」〜「4」「6」〜「9」の非注目点2Aの各々に起因する非共焦点信号の大きさは互いに等しく、平均的な“(1/8)b”となる。また、図3(b)の照明パターンのようにユニット21内の「5」の注目点2Aのみが照明された場合の受光信号の大きさを“a”とする。この受光信号(大きさa)は、注目点2Aからの蛍光の強度に応じた共焦点信号に等しい。   Furthermore, in order to simplify the description, it is assumed that the contribution from each non-attention point 2A to the received light signal is equal. In this case, the magnitudes of the non-confocal signals caused by the non-focused points 2A of “1” to “4”, “6” to “9” are equal to each other, and average “(1/8) b” is obtained. Become. Further, the magnitude of the received light signal when the “5” attention point 2A in the unit 21 is illuminated as in the illumination pattern of FIG. This received light signal (magnitude a) is equal to a confocal signal corresponding to the intensity of fluorescence from the point of interest 2A.

ユニット21内の注目点2Aに起因する共焦点信号の大きさaと、各々の非注目点2Aに起因する非共焦点信号の大きさ(1/8)bとを用いる場合、図4(a)の照明パターンのように「5」の注目点2Aと「1」「9」の2個の非注目点2Aとが同時に照明されたときの受光信号の大きさS1は、次の式(1)で表すことができる。
S1=a+(1/8)b×2 …(1)
次に、図4(b)の照明パターンの場合を説明する。図4(b)の照明パターンでは、ユニット21内の「5」の注目点2Aと、その近傍の「2」「4」「6」「8」の4個の非注目点2Aとを同時に照明している。この場合、注目点2Aに共役な受光部8Aから出力される受光信号の大きさS2は、次の式(2)で表すことができる。
When using the magnitude a of the confocal signal due to the attention point 2A in the unit 21 and the magnitude (1/8) b of the non-confocal signal due to each non-attention point 2A, FIG. ), The magnitude S1 of the received light signal when the attention point 2A of “5” and the two non-interesting points 2A of “1” and “9” are simultaneously illuminated is expressed by the following equation (1) ).
S1 = a + (1/8) b × 2 (1)
Next, the case of the illumination pattern in FIG. 4B will be described. In the illumination pattern of FIG. 4B, the attention point 2A of “5” in the unit 21 and the four non-interesting points 2A of “2”, “4”, “6”, and “8” in the vicinity thereof are simultaneously illuminated. is doing. In this case, the magnitude S2 of the received light signal output from the light receiving unit 8A conjugate to the point of interest 2A can be expressed by the following equation (2).

S2=a+(1/8)b×4 …(2)
本実施形態の共焦点顕微鏡10では、例えば、制御部19がミラー素子14を制御して、図4(a)の照明パターンを試料面20に形成したときに、ユニット21内の「5」の注目点2Aと共役な受光部8Aから出力される受光信号(大きさS1)を取り込み、その後、非注目点2Aの数を変更して(2個→4個)、図4(b)の照明パターンを試料面20に形成したときに、ユニット21内の「5」の注目点2Aと共役な受光部8Aから出力される受光信号(大きさS2)を取り込む。
S2 = a + (1/8) b × 4 (2)
In the confocal microscope 10 of the present embodiment, for example, when the control unit 19 controls the mirror element 14 to form the illumination pattern of FIG. The light receiving signal (magnitude S1) output from the light receiving unit 8A conjugate with the point of interest 2A is captured, and then the number of non-attention points 2A is changed (2 → 4), and the illumination shown in FIG. When the pattern is formed on the sample surface 20, a light reception signal (magnitude S2) output from the light receiving unit 8A conjugate with the target point 2A of “5” in the unit 21 is captured.

このようにして、ユニット21内における注目点2A以外への照明状態(非注目点2Aの数)が異なるときの受光信号(大きさS1,S2)を順に取り込むと、制御部19では、一方の受光信号(大きさS1)と非注目点2Aの数(2個)との関係を表している上記の式(1)と、他方の受光信号(大きさS2)と非注目点2Aの数(4個)との関係を表している上記の式(2)とを連立させ、注目点2Aからの蛍光の強度に応じた共焦点信号(大きさa)を生成する。   In this way, when the received light signals (magnitudes S1 and S2) when the illumination states other than the point of interest 2A in the unit 21 (the number of non-points of interest 2A) are different are sequentially taken in, the control unit 19 The above equation (1) representing the relationship between the received light signal (magnitude S1) and the number (two) of the non-target points 2A, the other received light signal (magnitude S2) and the number of the non-target points 2A ( 4), the confocal signal (magnitude a) corresponding to the intensity of the fluorescence from the point of interest 2A is generated.

図4(a),(b)に示す2種類の照明パターンを用いて生成した共焦点信号(大きさa)は、ユニット21内の「5」の注目点2Aに関わる信号であり、図3(b)の照明パターンによる受光信号に相当する。同様に、その他の例えば「9」の微小領域2Aを注目点2Aとし、これを中心とするユニット22を考え、図6(a),(b)に示す2種類の照明パターンを用いて「9」の注目点2Aに関わる共焦点信号(大きさa)を生成する。   The confocal signal (magnitude a) generated using the two types of illumination patterns shown in FIGS. 4A and 4B is a signal related to the attention point 2A of “5” in the unit 21, and FIG. It corresponds to the light reception signal by the illumination pattern of (b). Similarly, another small area 2A of “9”, for example, is set as the point of interest 2A, and the unit 22 centered on this is considered, and two types of illumination patterns shown in FIGS. 6 (a) and 6 (b) are used. The confocal signal (magnitude a) related to the attention point 2A is generated.

残りの「1」〜「4」「6」〜「8」の微小領域2Aでも同様に、順に注目点2Aとして設定し、2種類の照明パターン(非注目点2Aの数が異なる)を用いて、各々の注目点2Aに関わる共焦点信号(大きさa)を生成する。このように注目点2Aを試料面20で2次元走査することにより、試料面20の高分解能な像強度分布を得ることができ、共焦点観察が可能となる。   Similarly, the remaining small regions 2A of “1” to “4”, “6” to “8” are similarly set as attention points 2A in order, and two types of illumination patterns (the number of non-attention points 2A is different) are used. , A confocal signal (magnitude a) related to each attention point 2A is generated. In this way, by performing two-dimensional scanning of the point of interest 2A on the sample surface 20, a high-resolution image intensity distribution on the sample surface 20 can be obtained, and confocal observation is possible.

また、本実施形態の共焦点顕微鏡10では、試料面20において共焦点効果が保たれる間隔D1(=D2×2)で配列された複数の注目点2Aを照明すると共に、各々の注目点2Aに対して共焦点効果が保たれない狭い間隔で配列された非注目点2Aをも同時に照明するため、従来のニッポウディスクを用いた共焦点顕微鏡10と比較して、光源11からの光の利用効率が向上する。そして、その結果、S/N比が向上する。   Further, in the confocal microscope 10 of the present embodiment, a plurality of attention points 2A arranged at the interval D1 (= D2 × 2) where the confocal effect is maintained on the sample surface 20 is illuminated, and each attention point 2A is illuminated. In comparison with the confocal microscope 10 using the conventional nippo disk, the light from the light source 11 is used to simultaneously illuminate the non-focused points 2A arranged at a narrow interval where the confocal effect is not maintained. Efficiency is improved. As a result, the S / N ratio is improved.

さらに、本実施形態の共焦点顕微鏡10では、光源11からの照明光を試料面20の方へ導く光路と、試料面20からの蛍光を光検出器18の方へ導く光路とにおいて、複数の微小ミラー4Aを有するミラー素子14(図2)を兼用するため、装置の簡素化を図ることができる。
なお、ミラー素子14のオン/オフを切り替えて、注目点2Aを試料面20で2次元走査する際の手順としては、次のように簡略化することができる。図6(a)に示す試料面20の「9」の微小領域2Aを注目点2Aとして「5」「1」の微小領域2Aを非注目点2Aとするユニット22の照明パターンは、「5」の微小領域2Aを中心とするユニット21に置き換えると、図6(c)に示すようになり、図4(a)に示すユニット21の照明パターンと同じであることが分かる。
Furthermore, in the confocal microscope 10 of the present embodiment, there are a plurality of optical paths that guide the illumination light from the light source 11 toward the sample surface 20 and optical paths that guide the fluorescence from the sample surface 20 toward the photodetector 18. Since the mirror element 14 (FIG. 2) having the micromirror 4A is also used, the apparatus can be simplified.
The procedure for two-dimensionally scanning the target point 2A on the sample surface 20 by switching on / off the mirror element 14 can be simplified as follows. The illumination pattern of the unit 22 in which the “9” minute region 2A of the sample surface 20 shown in FIG. 6A is the point of interest 2A and the “5” “1” minute region 2A is the non-target point 2A is “5”. If it replaces with the unit 21 centering on 2A of this area, it will become as shown in FIG.6 (c) and it turns out that it is the same as the illumination pattern of the unit 21 shown to Fig.4 (a).

このため、図4(a)に示すユニット21の照明パターンを試料面20に形成したときに、ユニット21内の「5」「9」と共役な各々の受光部8Aから受光信号(大きさS1)を取り込むことにより、図6(a)に示すユニット22の照明パターンの形成を省略することができる。また、図4(a)の照明パターンを形成したときに、ユニット21内の「1」と共役な受光部8Aからも受光信号(大きさS1)を取り込むことが好ましい。   For this reason, when the illumination pattern of the unit 21 shown in FIG. 4A is formed on the sample surface 20, the light reception signals (size S1) from the respective light receiving portions 8A conjugate with “5” and “9” in the unit 21. ), The formation of the illumination pattern of the unit 22 shown in FIG. 6A can be omitted. In addition, when the illumination pattern of FIG. 4A is formed, it is preferable to capture a light reception signal (size S1) also from the light receiving portion 8A conjugate with “1” in the unit 21.

図4(a)の照明パターンを形成したときに、ユニット21内の照明された微小領域2A(「1」「5」「9」)に共役な各々の受光部8Aから受光信号(大きさS1)を取り込み、各々の微小領域2Aを注目点2Aとして共焦点信号(大きさa)を生成する場合に、その受光信号(大きさS1)を用いればよい。例えば「1」の微小領域2Aに共役な受光部8Aからの受光信号(大きさS1)は、「1」を注目点2Aとして共焦点信号(大きさa)を生成する場合に用いられる。   When the illumination pattern of FIG. 4 (a) is formed, the light reception signal (size S1) from each light receiving portion 8A conjugate to the illuminated minute region 2A (“1” “5” “9”) in the unit 21 is formed. ) And the confocal signal (magnitude a) is generated with each minute region 2A as the point of interest 2A, the received light signal (magnitude S1) may be used. For example, the received light signal (magnitude S1) from the light receiving unit 8A conjugate to the minute area 2A of “1” is used when a confocal signal (magnitude a) is generated with “1” as the attention point 2A.

同様に、図7(a)の照明パターンのように、ユニット21内の「2」「6」「7」の微小領域2Aを照明する場合は、これらの微小領域2Aに共役な各々の受光部8Aから受光信号(大きさS1)を取り込み、「2」「6」「7」を注目点2Aとして共焦点信号(大きさa)を生成する場合に、その受光信号(大きさS1)を用いればよい。図7(b)の照明パターンの場合は、「3」「4」「8」を注目点2Aとして共焦点信号(大きさa)を生成する場合に、その受光信号(大きさS1)を用いればよい。   Similarly, when illuminating the minute areas 2A of “2”, “6”, and “7” in the unit 21 as in the illumination pattern of FIG. 7A, each light receiving unit conjugate to these minute areas 2A. When the received light signal (magnitude S1) is taken from 8A and the confocal signal (magnitude a) is generated with “2”, “6”, and “7” as the attention point 2A, the received light signal (magnitude S1) is used. That's fine. In the case of the illumination pattern of FIG. 7B, when the confocal signal (magnitude a) is generated with “3”, “4”, and “8” as the attention point 2A, the received light signal (magnitude S1) is used. That's fine.

このように、注目点2Aに対して図中左上と図中右下の2個の微小領域2Aを非注目点2Aとする場合には、図4(a),図7(a),(b)に示す3通りの照明パターンを順に試料面20に形成するだけで、ユニット21内の全て(「1」〜「9」)の微小領域2Aに関わる受光信号(大きさS1)を効率よく取り込むことができる。
ただし、図6(b)に示す試料面20の「9」の微小領域2Aを注目点2Aとして「3」「6」「7」「8」の微小領域2Aを非注目点2Aとするユニット22の照明パターンは、「5」の微小領域2Aを中心とするユニット21に置き換えると、図6(d)に示すようになり、図4(b)に示すユニット21の照明パターンとは異なっている。このため、注目点2Aの上下左右に位置する4個の微小領域2Aを非注目点2Aとする場合は、図4(b),図6(b),図8に示す9通りの照明パターンを順に試料面20に形成することが必要となる。
As described above, when the two minute regions 2A at the upper left and lower right in the figure are set as the non-attention points 2A with respect to the attention point 2A, FIG. 4 (a), FIG. 7 (a), (b ), The light receiving signals (magnitude S1) relating to all the minute regions 2A (“1” to “9”) in the unit 21 are efficiently captured simply by forming the three illumination patterns shown in FIG. be able to.
However, the unit 22 in which the minute region 2A of “9” on the sample surface 20 shown in FIG. 6B is set as the attention point 2A and the minute region 2A of “3”, “6”, “7”, and “8” is set as the non-target point 2A. When the illumination pattern is replaced with the unit 21 centered on the minute region 2A of “5”, the illumination pattern is as shown in FIG. 6D, which is different from the illumination pattern of the unit 21 shown in FIG. . For this reason, when the four minute regions 2A located on the top, bottom, left, and right of the attention point 2A are set as the non-attention points 2A, the nine illumination patterns shown in FIGS. 4B, 6B, and 8 are used. It is necessary to form the sample surface 20 in order.

なお、上記した第1実施形態では、注目点2Aの近傍に位置する8個の非注目点2Aの各々から受光信号への寄与(つまり非共焦点信号の大きさ)が等しい場合を例に説明したが、本発明はこれに限定されない。注目点2Aと非注目点2Aとの位置関係に応じて重み付けを行い、非共焦点信号の大きさを異ならせる場合にも、本発明を適用できる。
例えば、「5」を注目点2Aとし、「1」〜「4」「6」〜「9」を非注目点2Aとする場合、番号「N」の非注目点2Aに起因する非共焦点信号の大きさを“KN×b”とし、係数KNの総和(=ΣKN)が“1”になるように設定すればよい。
(第2実施形態)
ここでは、非注目点2Aの数が同じで配置が異なる複数の照明パターン(図9,図10)について説明する。
In the first embodiment described above, the case where the contributions (that is, the magnitude of the non-confocal signal) to the received light signal from each of the eight non-target points 2A located in the vicinity of the target point 2A is described as an example. However, the present invention is not limited to this. The present invention can also be applied when weighting is performed according to the positional relationship between the attention point 2A and the non-attention point 2A, and the magnitude of the non-confocal signal is varied.
For example, when “5” is the attention point 2A and “1” to “4”, “6” to “9” are the non-attention points 2A, the non-confocal signal caused by the non-attention point 2A of the number “N” Is set to be “K N × b” and the sum of the coefficients K N (= ΣK N ) becomes “1”.
(Second Embodiment)
Here, a plurality of illumination patterns (FIGS. 9 and 10) having the same number of non-target points 2A and different arrangements will be described.

図9に示す4通りの照明パターンは、何れもユニット21内の「5」の微小領域2Aを注目点2Aとし、その近傍の2個の微小領域2Aを非注目点2Aとしている。非注目点2Aの配置は各照明パターンごとに異なるが、これらの4通りの照明パターンを順に試料面20に形成することで、注目点2Aの近傍の8個の微小領域2A(「1」〜「4」「6」〜「9」)を順に1回ずつ照明することができる。   In each of the four illumination patterns shown in FIG. 9, the “5” minute region 2A in the unit 21 is the point of interest 2A, and the two minute regions 2A in the vicinity thereof are the non-notable points 2A. Although the arrangement of the non-attention points 2A is different for each illumination pattern, by forming these four illumination patterns in order on the sample surface 20, eight minute regions 2A ("1" to "1" to the vicinity of the attention point 2A) are formed. "4", "6" to "9") can be illuminated one by one in order.

この場合、図9の各照明パターンによって「5」の注目点2Aと共役な受光部8Aから出力される受光信号(大きさS1(1)〜S1(4))を順に取り込み、これらの総和S3を最終的な受光信号として求めると、次の式(3)により表すことができる。
S3=S1(1)+S1(2)+S1(3)+S1(4)
=a×4+(1/8)b×8=4a+b …(3)
また、図10に示す6通りの照明パターンは、何れもユニット21内の「5」の微小領域2Aを注目点2Aとし、その近傍の4個の微小領域2Aを非注目点2Aとしている。非注目点2Aの配置は各照明パターンごとに異なるが、これら6通りの照明パターンを順に試料面20に形成することで、注目点2Aの近傍の8個の微小領域2A(「1」〜「4」「6」〜「9」)を順に3回ずつ照明することができる。
In this case, the light receiving signals (magnitudes S1 (1) to S1 (4)) output from the light receiving unit 8A conjugate with the target point 2A of “5” are sequentially taken in by each illumination pattern of FIG. Can be expressed by the following equation (3).
S3 = S1 (1) + S1 (2) + S1 (3) + S1 (4)
= A * 4 + (1/8) b * 8 = 4a + b (3)
In each of the six illumination patterns shown in FIG. 10, the “5” minute region 2A in the unit 21 is the attention point 2A, and the four minute regions 2A in the vicinity thereof are the non-notice points 2A. Although the arrangement of the non-attention points 2A is different for each illumination pattern, by forming these six illumination patterns on the sample surface 20 in order, eight minute regions 2A (“1” to “1” in the vicinity of the attention point 2A). 4 ”,“ 6 ”to“ 9 ”) can be illuminated three times in order.

この場合、図10の各照明パターンによって「5」の注目点2Aと共役な受光部8Aから出力される受光信号(大きさS2(1)〜S2(6))を順に取り込み、これらの総和S4を最終的な受光信号として求めると、次の式(4)により表すことができる。
S4=S2(1)+S2(2)+S2(3)+S2(4)+S2(5)+S2(6)
=a×6+(1/8)b×24=6a+3b …(4)
第2実施形態では、ユニット21内における注目点2A以外への照明状態(非注目点2Aの数)が異なるときの受光信号(大きさS3,S4)を順に求めると、一方の受光信号(大きさS3)と非注目点2Aの数(2個)との関係を表している上記の式(3)と、他方の受光信号(大きさS4)と非注目点2Aの数(4個)との関係を表している上記の式(4)とを連立させ、注目点2Aからの蛍光の強度に応じた共焦点信号(大きさa)を生成する。
In this case, the received light signals (magnitudes S2 (1) to S2 (6)) output from the light receiving unit 8A conjugate with the point of interest 2A of “5” are sequentially taken in by each illumination pattern of FIG. Can be expressed by the following equation (4).
S4 = S2 (1) + S2 (2) + S2 (3) + S2 (4) + S2 (5) + S2 (6)
= A * 6 + (1/8) b * 24 = 6a + 3b (4)
In the second embodiment, when the received light signals (magnitudes S3 and S4) when the illumination states other than the point of interest 2A in the unit 21 (the number of non-points of interest 2A) are different are sequentially obtained, (S3) and the number of non-target points 2A (2), the above equation (3), the other received light signal (size S4) and the number of non-target points 2A (4) The above equation (4) representing the above relationship is combined to generate a confocal signal (magnitude a) corresponding to the intensity of fluorescence from the point of interest 2A.

上記の式(3),(4)から分かるように、非共焦点信号の項は、共に、「5」の注目点2A以外の全ての微小領域2A(図5の「1」〜「4」「6」〜「9」の非注目点2A)からの漏れ光の合計強度に応じた非共焦点信号(大きさb)の整数倍となっている。このため、注目点2Aと非注目点2Aとの位置関係に応じて受光信号への寄与が相違する場合でも、その相違の影響を受けることなく、注目点2Aに関わる共焦点信号(大きさa)を再現性よく生成することができる。   As can be seen from the above formulas (3) and (4), the terms of the non-confocal signal are all the minute regions 2A other than the attention point 2A of “5” (“1” to “4” in FIG. 5). It is an integral multiple of the non-confocal signal (magnitude b) corresponding to the total intensity of leakage light from the non-focused points 2A) of “6” to “9”. For this reason, even when the contribution to the received light signal differs depending on the positional relationship between the attention point 2A and the non-attention point 2A, the confocal signal (magnitude a) relating to the attention point 2A is not affected by the difference. ) Can be generated with good reproducibility.

図9,図10に示す10種類の照明パターンを用いて生成した共焦点信号(大きさa)は、ユニット21内の「5」の注目点2Aに関わる信号である。残りの「1」〜「4」「6」〜「9」の微小領域2Aでも同様に、順に注目点2Aとして設定し、10種類の照明パターン(非注目点2Aの数が異なる)を用いて、各々の注目点2Aに関わる共焦点信号(大きさa)を生成すればよい。   The confocal signal (magnitude a) generated using the ten types of illumination patterns shown in FIGS. 9 and 10 is a signal related to the attention point 2A of “5” in the unit 21. Similarly, the remaining small regions 2A of “1” to “4”, “6” to “9” are similarly set as attention points 2A in order, and 10 types of illumination patterns (the number of non-attention points 2A is different) are used. A confocal signal (magnitude a) relating to each attention point 2A may be generated.

ただし、この場合にも、図4(a),図5(a)の照明パターンの比較を例に説明した通り、共有できる照明パターンが存在している。したがって、図9,図10に示す10種類の照明パターンの他に、図11,図12に示す13種類の照明パターンを順に形成すれば、全ての必要な照明パターンを網羅したことになる。
ユニット21内の「1」〜「9」の微小領域2Aに関わる受光信号(大きさS3)は、図9,図11に示す12通りの照明パターンを用いて効率よく求めることができる。また、「1」〜「9」の微小領域2Aに関わる受光信号(大きさS4)は、図10,図12に示す11通りの照明パターンを用いて効率よく求めることができる。
However, even in this case, there are illumination patterns that can be shared, as described with reference to the comparison of the illumination patterns in FIGS. 4A and 5A. Therefore, in addition to the 10 types of illumination patterns shown in FIGS. 9 and 10, if the 13 types of illumination patterns shown in FIGS. 11 and 12 are sequentially formed, all necessary illumination patterns are covered.
The received light signals (magnitude S3) related to the minute regions 2A of “1” to “9” in the unit 21 can be efficiently obtained using the 12 illumination patterns shown in FIGS. In addition, the received light signals (magnitude S4) relating to the minute area 2A of “1” to “9” can be efficiently obtained using the 11 illumination patterns shown in FIGS.

このように、第2実施形態では、非注目点2Aの数が同じで配置が異なる複数の照明パターン(図9,図10など)を用いて試料面20で注目点2Aを2次元走査するため、試料面20の高分解能な像強度分布を再現性よく得ることができる。
また、第2実施形態でも、試料面20において共焦点効果が保たれる間隔D1(=D2×2)で配列された複数の注目点2A、および、各々の注目点2Aに対して共焦点効果が保たれない狭い間隔で配列された非注目点2Aを同時に照明するため、光源11からの光の利用効率が向上する。
As described above, in the second embodiment, the point of interest 2A is two-dimensionally scanned on the sample surface 20 using a plurality of illumination patterns (FIG. 9, FIG. 10, etc.) having the same number of non-target points 2A and different arrangements. A high-resolution image intensity distribution on the sample surface 20 can be obtained with good reproducibility.
Also in the second embodiment, a plurality of attention points 2A arranged at a distance D1 (= D2 × 2) at which the confocal effect is maintained on the sample surface 20, and the confocal effect for each attention point 2A. Since the non-attention points 2A arranged at a narrow interval that cannot be maintained are simultaneously illuminated, the light use efficiency from the light source 11 is improved.

この場合の光の利用効率Eは、全ての照明パターン(23種類)を順に形成するために掛かる時間も考慮して平均値を求めると、次の式(5)のようになる。
E={(12/23)・[3/9]+(1/23)・[4/9]+(10/23)・[5/9]}×〔10/23〕
=0.189 …(5)
括弧[ ]内の数値の分子(3,4,5)は照明された微小領域2Aの数、括弧( )内の数値の分子(12,1,10)は照明された微小領域2Aの数ごとの照明パターンの数、括弧〔 〕内の数値の分子(10)は共焦点信号を生成するために計算に使用した照明パターンの数を表している。
The light use efficiency E in this case is as shown in the following equation (5) when an average value is obtained in consideration of the time taken to sequentially form all the illumination patterns (23 types).
E = {(12/23) ・ [3/9] + (1/23) ・ [4/9] + (10/23) ・ [5/9]} × [10/23]
= 0.189 (5)
Numeric molecules (3,4,5) in parentheses [] are the number of illuminated microregions 2A, and numeric molecules (12,1,10) in parentheses () are the number of illuminated microregions 2A. The numerator (10) in parentheses [] represents the number of illumination patterns used in the calculation to generate a confocal signal.

式(5)に示す光の利用効率と比較するために、従来と同様、共焦点効果が保たれる間隔D1(=D2×2)の複数の注目点2Aのみを照明した場合(図13に示す9種類の照明パターンを用いる場合)の利用効率E’を求めた。その結果は次の式(6)のようになる。
E’={(9/9)・[1/9]}×〔1/9〕
=0.0123 …(6)
上記の数値計算からも分かるように、第2実施形態では、光源11からの光の利用効率が格段に向上する。その結果、S/N比が向上し、良好な共焦点観察が可能となる。
(第3実施形態)
制御部19において上記の式(1),(2)の連立(または式(3),(4)の連立)により共焦点信号(大きさa)を生成する際に、非共焦点信号(大きさb)も生成する。非共焦点信号(大きさb)は、注目点2A以外の全ての微小領域2A(例えば図5に示す「1」〜「4」「6」〜「9」の8個の非注目点2A)からの漏れ光の合計強度に応じた信号である。
In order to compare with the light utilization efficiency shown in Equation (5), when only a plurality of attention points 2A at a distance D1 (= D2 × 2) where the confocal effect is maintained is illuminated as in the conventional case (FIG. 13). The utilization efficiency E ′ was determined in the case of using nine types of illumination patterns shown. The result is as shown in the following equation (6).
E ′ = {(9/9) · [1/9]} × [1/9]
= 0.0123 (6)
As can be seen from the above numerical calculation, the light use efficiency from the light source 11 is remarkably improved in the second embodiment. As a result, the S / N ratio is improved and good confocal observation is possible.
(Third embodiment)
When the control unit 19 generates the confocal signal (magnitude a) by the simultaneous equations (1) and (2) (or the simultaneous equations (3) and (4)), the non-confocal signal (magnitude) B) is also generated. The non-confocal signal (magnitude b) is obtained from all the minute regions 2A other than the attention point 2A (for example, eight non- attention points 2A of “1” to “4”, “6” to “9” shown in FIG. 5). It is a signal according to the total intensity of the leaked light from.

そして、さらに、共焦点信号(大きさa)と非共焦点信号(大きさb)との差分信号(a−b)を生成して、試料面20の像強度分布とする。差分信号(a−b)は、試料面20において共焦点信号(大きさa)より狭い領域の情報を表すと考えられる。このため、差分信号(a−b)に応じた試料面20の像強度分布は、共焦点信号(大きさa)に応じた像強度分布と比較して、より分解能が高い。この原理について定性的に説明する。   Further, a difference signal (ab) between the confocal signal (magnitude a) and the non-confocal signal (magnitude b) is generated to obtain an image intensity distribution on the sample surface 20. The difference signal (ab) is considered to represent information of a region narrower than the confocal signal (magnitude a) on the sample surface 20. For this reason, the image intensity distribution on the sample surface 20 corresponding to the difference signal (ab) has higher resolution than the image intensity distribution corresponding to the confocal signal (magnitude a). This principle will be described qualitatively.

例えば図14(a)の照明パターンのように「5」の注目点2Aのみが照明され、注目点2Aが光軸上に位置するとき(図14(b),(c)参照)、注目点2Aと共役な受光部8Aから出力される受光信号は、共焦点信号(大きさa)となる。また、試料面20の内部における照明領域は、図14(b)のような形になる。
一方、図14(d)の照明パターンのように「5」の注目点2Aの近傍に位置する「2」「8」の非注目点2Aが同時に照明され、注目点2Aが光軸上に位置するとき(図14(e),(f)参照)、注目点2Aと共役な受光部8Aから出力される受光信号は、非共焦点信号(大きさb)となる。また、試料面20の内部における照明領域は、図14(e)のような形になる。
For example, when only the point of interest 2A of “5” is illuminated and the point of interest 2A is located on the optical axis as in the illumination pattern of FIG. 14 (a) (see FIGS. 14 (b) and 14 (c)), the point of interest The light receiving signal output from the light receiving unit 8A conjugate with 2A is a confocal signal (size a). The illumination area inside the sample surface 20 has a shape as shown in FIG.
On the other hand, as shown in the illumination pattern of FIG. 14D, “2” and “8” non-target points 2A located in the vicinity of the “5” target point 2A are simultaneously illuminated, and the target point 2A is positioned on the optical axis. (See FIGS. 14E and 14F), the received light signal output from the light receiving unit 8A conjugate with the point of interest 2A is a non-confocal signal (size b). Further, the illumination area inside the sample surface 20 has a shape as shown in FIG.

そして、共焦点信号(大きさa)と非共焦点信号(大きさb)との差分信号(a−b)に含まれる試料面20の情報は、図14(g),(h)に示すハッチング部分に相当し、図14(b),(c)と比較して狭い領域の情報であることが分かる。したがって、上記の差分処理を行うことにより、光軸方向および面内での分解能を向上させることができる。
差分処理の効果を定量的に示すため、差分信号(a−b)に応じた像強度分布の光学伝達関数を図15(a)に示す。また、比較のために、共焦点信号(大きさa)に応じた像強度分布の光学伝達関数を図15(b)に示す。図15の横軸は、光軸方向の周波数Nz[1/μm]を表す。縦軸は光学伝達関数(OTF)である。
Information on the sample surface 20 included in the difference signal (ab) between the confocal signal (magnitude a) and the non-confocal signal (magnitude b) is shown in FIGS. 14 (g) and 14 (h). It can be seen that the information corresponds to a hatched portion and is narrower than the information in FIGS. 14 (b) and 14 (c). Therefore, the resolution in the optical axis direction and in the plane can be improved by performing the above difference processing.
In order to quantitatively show the effect of the difference processing, the optical transfer function of the image intensity distribution corresponding to the difference signal (ab) is shown in FIG. For comparison, the optical transfer function of the image intensity distribution according to the confocal signal (magnitude a) is shown in FIG. The horizontal axis in FIG. 15 represents the frequency Nz [1 / μm] in the optical axis direction. The vertical axis is the optical transfer function (OTF).

このシミュレーションでは、図14(d)〜(f)における非共焦点信号を用いて差分処理を行った。波長は0.55μmとし、開口数は0.75とし、倍率は40倍とした。微小領域2Aの大きさは、ユニット21外からの漏れ光をほぼ無視できるように、25μmとした。図15(a),(b)の比較から分かるように、周波数Nzが0.0から0.8までの範囲において、差分処理を行った場合の光学伝達関数(a)の方が大きな値を示し、差分処理を行わない場合(b)と比較して良好な光学特性を示している。
(変形例)
なお、上記した実施形態では、2個の非注目点2Aを含む照明パターンと、4個の非注目点2Aを含む照明パターンとを用いる例を説明したが、本発明はこれに限定されない。非注目点2Aの数を1つ以上とし、非注目点2Aの数が異なる2種類以上の照明パターンを用いる場合に、本発明を適用できる。また、非注目点2Aの数が異なる複数の照明パターンのうち1つにおいて、非注目点2Aへの照明を遮断してもよい。さらに、非注目点2Aの数が異なる3種類以上の照明パターンを用いる場合には、最小自乗法で連立方程式を解くことが好ましい。この場合、データ量が多いため、精度が向上する。
In this simulation, difference processing was performed using the non-confocal signals in FIGS. The wavelength was 0.55 μm, the numerical aperture was 0.75, and the magnification was 40 times. The size of the minute region 2A was set to 25 μm so that light leaked from the outside of the unit 21 can be almost ignored. As can be seen from the comparison between FIGS. 15 (a) and 15 (b), the optical transfer function (a) when the difference processing is performed in the frequency Nz range of 0.0 to 0.8 has a larger value. In comparison with the case (b) in which the difference processing is not performed, the optical characteristics are better.
(Modification)
In the above-described embodiment, the example using the illumination pattern including the two non-target points 2A and the illumination pattern including the four non-target points 2A has been described, but the present invention is not limited to this. The present invention can be applied when the number of non-attention points 2A is one or more and two or more types of illumination patterns having different numbers of non-attention points 2A are used. Further, in one of a plurality of illumination patterns having different numbers of non-attention points 2A, the illumination on the non-attention points 2A may be blocked. Furthermore, when using three or more types of illumination patterns with different numbers of non-target points 2A, it is preferable to solve simultaneous equations by the method of least squares. In this case, since the amount of data is large, the accuracy is improved.

また、上記した実施形態では、各々のユニット21が3×3配列で合計9個の微小領域2Aを含む例で説明したが、本発明はこれに限定されない。ユニット21と微小領域2Aの大きさは、受光信号に影響する照明領域の大きさから適切に決定することが好ましい。ユニット21の配列は偶数×偶数でも構わないが、奇数×奇数(例えば5×5)の方が非注目点2Aからの漏れ光の影響を等方的に考慮できるため好ましい。   Further, in the above-described embodiment, the example in which each unit 21 includes a total of nine minute regions 2A in a 3 × 3 array has been described, but the present invention is not limited to this. The sizes of the unit 21 and the minute area 2A are preferably determined appropriately from the size of the illumination area that affects the light reception signal. The arrangement of the units 21 may be an even number × even number, but an odd number × odd number (for example, 5 × 5) is preferable because the influence of leakage light from the non-target point 2A can be considered isotropically.

さらに、上記した実施形態では、反射型の空間光変調素子(例えばミラー素子14)を照明光路と受光光路とで兼用する例を説明したが、本発明はこれに限定されない。光透過性の試料面20の共焦点観察を行う場合には、照明光路と受光光路との各々に同様の空間光変調素子を配置して同期制御すればよい。また、反射型の空間光変調素子の代わりに、透過型の空間光変調素子(例えば2次元配列された多数の液晶セルを有する透過光学素子など)を用いてもよい。   Further, in the above-described embodiment, the example in which the reflective spatial light modulation element (for example, the mirror element 14) is used as the illumination optical path and the light reception optical path has been described, but the present invention is not limited to this. When confocal observation of the light-transmitting sample surface 20 is performed, a similar spatial light modulation element may be disposed in each of the illumination optical path and the light receiving optical path for synchronous control. Instead of the reflective spatial light modulator, a transmissive spatial light modulator (for example, a transmissive optical element having a number of two-dimensionally arranged liquid crystal cells) may be used.

共焦点顕微鏡10の全体構成を示す図である。1 is a diagram illustrating an overall configuration of a confocal microscope 10. 微小ミラー4Aと受光部8Aと微小領域2Aとの対応関係を説明する模式図である。It is a schematic diagram explaining the corresponding relationship among the minute mirror 4A, the light receiving unit 8A, and the minute region 2A. 注目点2Aのみを照明する場合の照明パターンを説明する図である。It is a figure explaining the illumination pattern in the case of illuminating only the attention point 2A. 注目点2Aと2個の非注目点2Aとを同時に照明する場合の照明パターン(a)、注目点2Aと4個の非注目点2Aとを同時に照明する場合の照明パターン(b)を説明する図である。An illumination pattern (a) in the case of simultaneously illuminating the attention point 2A and the two non-attention points 2A, and an illumination pattern (b) in the case of simultaneously illuminating the attention point 2A and the four non-attention points 2A will be described. FIG. 8個の非注目点2Aを照明する場合の照明パターンを説明する図である。It is a figure explaining the illumination pattern in the case of illuminating eight non-attention points 2A. 注目点2Aの2次元走査を説明する図である。It is a figure explaining the two-dimensional scanning of the attention point 2A. 注目点2Aと2個の非注目点2Aとを同時に照明する場合の他の照明パターンを説明する図である。It is a figure explaining the other illumination pattern in the case of illuminating the attention point 2A and the two non-notice points 2A simultaneously. 注目点2Aと4個の非注目点2Aとを同時に照明する場合の他の照明パターンを説明する図である。It is a figure explaining the other illumination pattern in the case of illuminating the attention point 2A and the four non-notice points 2A simultaneously. 第2実施形態で使用する非注目点2Aの数(2個)が同じで配置が異なる複数の照明パターンを説明する図である。It is a figure explaining the some illumination pattern from which arrangement | positioning differs in the number (two) of the non-attention points 2A used in 2nd Embodiment. 第2実施形態で使用する非注目点2Aの数(4個)が同じで配置が異なる複数の照明パターンを説明する図である。It is a figure explaining the some illumination pattern from which arrangement | positioning differs in the number (four) of the non-attention points 2A used in 2nd Embodiment. 注目点2Aと2個の非注目点2Aとを同時に照明する場合の他の照明パターンを説明する図である。It is a figure explaining the other illumination pattern in the case of illuminating the attention point 2A and the two non-notice points 2A simultaneously. 注目点2Aと4個の非注目点2Aとを同時に照明する場合の他の照明パターンを説明する図である。It is a figure explaining the other illumination pattern in the case of illuminating the attention point 2A and the four non-notice points 2A simultaneously. 比較例の照明パターンを説明する図である。It is a figure explaining the illumination pattern of a comparative example. 第3実施形態の差分処理を説明する図である。It is a figure explaining the difference process of 3rd Embodiment. 差分処理の効果を説明する図である。It is a figure explaining the effect of difference processing.

符号の説明Explanation of symbols

10 共焦点顕微鏡
11 光源
12 コンデンサレンズ
13 ダイクロイックミラー
14 ミラー素子
4A 微小ミラー
15,16,17 レンズ
18 光検出器
8A 受光部
19 制御部
20 試料面
2A 微小領域(注目点,非注目点)
DESCRIPTION OF SYMBOLS 10 Confocal microscope 11 Light source 12 Condenser lens 13 Dichroic mirror 14 Mirror element 4A Micro mirror 15, 16, 17 Lens 18 Photo detector 8A Light receiving part 19 Control part 20 Sample surface 2A Micro area (attention point, non-attention point)

Claims (2)

試料の注目点と該注目点の近傍に位置する1つ以上の非注目点との各々に照明光を集光し、前記注目点と前記非注目点とを同時に照明する照明手段と、
前記照明手段によって照明されたときに前記注目点から発生する光と前記非注目点から発生する光のうち、前記注目点と共役な受光部に入射する光を区別せずに受光し、該光の強度に応じた受光信号を出力する受光手段と、
前記照明手段を制御して前記非注目点の数を変更し、その変更前後における前記受光手段から出力される前記受光信号を順に取り込む制御手段と、
前記制御手段によって取り込まれた複数の前記受光信号と変更された前記非注目点の数との関係に基づいて、前記注目点から発生する光の強度に応じた共焦点信号を生成する生成手段とを備えた
ことを特徴とする共焦点顕微鏡。
Illuminating means for condensing illumination light on each of the sample point of interest and one or more non-point of interest located in the vicinity of the point of interest, and illuminating the point of interest and the non-point of interest simultaneously;
Of the light generated from the target point and the light generated from the non-target point when illuminated by the illuminating means, the light incident on the light receiving unit conjugate with the target point is received without distinction, and the light A light receiving means for outputting a light reception signal corresponding to the intensity of
Control means for controlling the illumination means to change the number of non-attention points, and sequentially taking in the received light signals output from the light receiving means before and after the change,
Generating means for generating a confocal signal according to the intensity of light generated from the attention point based on the relationship between the plurality of light reception signals captured by the control means and the number of changed non-attention points; A confocal microscope characterized by comprising:
請求項1に記載の共焦点顕微鏡において、
前記生成手段は、前記共焦点信号を生成すると共に、前記非注目点から発生する光の強度に応じた非共焦点信号を生成し、かつ、前記共焦点信号と前記非共焦点信号との差分信号を生成する
ことを特徴とする共焦点顕微鏡。
The confocal microscope according to claim 1,
The generation means generates the confocal signal, generates a non-confocal signal according to the intensity of light generated from the non-focused point, and a difference between the confocal signal and the non-confocal signal A confocal microscope characterized by generating a signal.
JP2005137590A 2005-05-10 2005-05-10 Confocal microscope Active JP4894161B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005137590A JP4894161B2 (en) 2005-05-10 2005-05-10 Confocal microscope
DE102006019952A DE102006019952A1 (en) 2005-05-10 2006-04-28 Confocal microscope
US11/429,998 US7369309B2 (en) 2005-05-10 2006-05-09 Confocal microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137590A JP4894161B2 (en) 2005-05-10 2005-05-10 Confocal microscope

Publications (2)

Publication Number Publication Date
JP2006317544A true JP2006317544A (en) 2006-11-24
JP4894161B2 JP4894161B2 (en) 2012-03-14

Family

ID=37538300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137590A Active JP4894161B2 (en) 2005-05-10 2005-05-10 Confocal microscope

Country Status (3)

Country Link
US (1) US7369309B2 (en)
JP (1) JP4894161B2 (en)
DE (1) DE102006019952A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197443A (en) * 2007-02-14 2008-08-28 Nikon Corp Slit scanning confocal microscope
JP2008275791A (en) * 2007-04-26 2008-11-13 Olympus Corp Scanning confocal microscope
JP2009510498A (en) * 2005-09-29 2009-03-12 カール ツァイス マイクロイメージング ゲーエムベーハー Microscopic inspection method and microscope
WO2013027336A1 (en) * 2011-08-22 2013-02-28 Canon Kabushiki Kaisha Microscope, objective optical system, and image acquisition apparatus
JP2013130853A (en) * 2011-11-22 2013-07-04 Yokogawa Electric Corp Microscope device
WO2015163261A1 (en) * 2014-04-24 2015-10-29 オリンパス株式会社 Microscope and microscopic observation method
WO2017046863A1 (en) * 2015-09-15 2017-03-23 オリンパス株式会社 Microscope and microscope observation method
KR101745797B1 (en) * 2015-11-18 2017-06-09 한국과학기술원 Optical micorscopy device
JP2021509181A (en) * 2017-12-20 2021-03-18 マツクス−プランク−ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウMAX−PLANCK−GESELLSCHAFT ZUR FOeRDERUNG DER WISSENSCHAFTEN E.V. Methods and Devices for Optical Confocal Imaging Using Programmable Array Microscopes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006040636B3 (en) * 2006-05-15 2007-12-20 Leica Microsystems (Schweiz) Ag Autofocus system and method for autofocusing
EP2124085A4 (en) * 2007-02-14 2010-04-28 Nikon Corp Slit-scanning confocal microscope
JP5393406B2 (en) * 2009-11-06 2014-01-22 オリンパス株式会社 Pattern projector, scanning confocal microscope, and pattern irradiation method
DE102012009836A1 (en) 2012-05-16 2013-11-21 Carl Zeiss Microscopy Gmbh Light microscope and method for image acquisition with a light microscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199063A (en) * 2002-12-16 2004-07-15 Olympus America Inc Confocal microscope
JP2004219537A (en) * 2003-01-10 2004-08-05 Nikon Engineering Co Ltd Confocal microscope
JP2005024596A (en) * 2003-06-30 2005-01-27 Susumu Terakawa Confocal scanning microscope

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325279A (en) 1996-06-04 1997-12-16 Nikon Corp Tandem scanning type confocal microscope
AU9617598A (en) * 1997-10-29 1999-05-17 Calum E. Macaulay Apparatus and methods relating to spatially light modulated microscopy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199063A (en) * 2002-12-16 2004-07-15 Olympus America Inc Confocal microscope
JP2004219537A (en) * 2003-01-10 2004-08-05 Nikon Engineering Co Ltd Confocal microscope
JP2005024596A (en) * 2003-06-30 2005-01-27 Susumu Terakawa Confocal scanning microscope

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510498A (en) * 2005-09-29 2009-03-12 カール ツァイス マイクロイメージング ゲーエムベーハー Microscopic inspection method and microscope
JP2008197443A (en) * 2007-02-14 2008-08-28 Nikon Corp Slit scanning confocal microscope
JP2008275791A (en) * 2007-04-26 2008-11-13 Olympus Corp Scanning confocal microscope
WO2013027336A1 (en) * 2011-08-22 2013-02-28 Canon Kabushiki Kaisha Microscope, objective optical system, and image acquisition apparatus
JP2013044781A (en) * 2011-08-22 2013-03-04 Canon Inc Image acquisition device, image acquisition system, and objective optical system
US9081186B2 (en) 2011-11-22 2015-07-14 Yokogawa Electric Corporation Microscope device for generating images of a specimen using phase distribution of light
JP2013130853A (en) * 2011-11-22 2013-07-04 Yokogawa Electric Corp Microscope device
WO2015163261A1 (en) * 2014-04-24 2015-10-29 オリンパス株式会社 Microscope and microscopic observation method
JPWO2015163261A1 (en) * 2014-04-24 2017-04-13 オリンパス株式会社 Microscope and microscope observation method
US10209502B2 (en) 2014-04-24 2019-02-19 Olympus Corporation Microscope and microscopy method
WO2017046863A1 (en) * 2015-09-15 2017-03-23 オリンパス株式会社 Microscope and microscope observation method
US10401293B2 (en) 2015-09-15 2019-09-03 Olympus Corporation Microscope and microscope observation method
KR101745797B1 (en) * 2015-11-18 2017-06-09 한국과학기술원 Optical micorscopy device
JP2021509181A (en) * 2017-12-20 2021-03-18 マツクス−プランク−ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウMAX−PLANCK−GESELLSCHAFT ZUR FOeRDERUNG DER WISSENSCHAFTEN E.V. Methods and Devices for Optical Confocal Imaging Using Programmable Array Microscopes
JP7053845B2 (en) 2017-12-20 2022-04-12 マツクス-プランク-ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウ Methods and equipment for optical confocal imaging using a programmable array microscope

Also Published As

Publication number Publication date
US20070014001A1 (en) 2007-01-18
JP4894161B2 (en) 2012-03-14
US7369309B2 (en) 2008-05-06
DE102006019952A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP4894161B2 (en) Confocal microscope
US6031661A (en) Confocal microscopic equipment
JP6346615B2 (en) Optical microscope and microscope observation method
JP5340799B2 (en) Laser scanning microscope
JP4723806B2 (en) Confocal microscope
US9360665B2 (en) Confocal optical scanner
JP2009103958A (en) Scanning laser microscope
JP5532459B2 (en) Microscope system
US20110090553A1 (en) Confocal optical scanner
US20070033680A1 (en) Optical inspection system and its illumination method
JPH09257440A (en) Two-dimensional-array-type confocal optic device
JP2016212154A (en) Scan type microscope system
US20200132975A1 (en) Miniaturized microscope for phase contrast and multicolor fluorescence imaging
JP3585018B2 (en) Confocal device
JP2009282112A (en) Confocal microscope
JP2007033381A (en) Optical inspection apparatus and its lighting method
JP2006091507A (en) Confocal microscope
JP2006220818A (en) Confocal microscope
JP4426763B2 (en) Confocal microscope
JP2008180851A (en) Scanning microscope
JP2005275206A (en) Optical scan type observation device
JP2008275791A (en) Scanning confocal microscope
JP4635145B2 (en) Confocal microscope and film thickness measuring device
JP2011027804A (en) Confocal microscope
JP2001311874A (en) Optical scanner and tomographic image acquiring device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250