WO2006085436A1 - Substrate with built-in component and capacitor with built-in substrate - Google Patents

Substrate with built-in component and capacitor with built-in substrate Download PDF

Info

Publication number
WO2006085436A1
WO2006085436A1 PCT/JP2006/300970 JP2006300970W WO2006085436A1 WO 2006085436 A1 WO2006085436 A1 WO 2006085436A1 JP 2006300970 W JP2006300970 W JP 2006300970W WO 2006085436 A1 WO2006085436 A1 WO 2006085436A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
substrate
dielectric
conductor pattern
dielectric sheet
Prior art date
Application number
PCT/JP2006/300970
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Tomita
Tadashi Nakamura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006085436A1 publication Critical patent/WO2006085436A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/26Folded capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/05Flexible printed circuits [FPCs]
    • H05K2201/055Folded back on itself
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated

Definitions

  • the present invention relates to a component built-in substrate and a substrate built-in capacitor, and more particularly to a substrate structure in which electronic components are built in a base material capable of high-density wiring.
  • Patent Document 1 having a configuration power as shown in FIG.
  • a dielectric made of a ceramic dielectric material is formed on a part of a predetermined ceramic sheet 201a.
  • the layer 202 is formed, and electrode conductors 203 and 204 are formed on the upper and lower surfaces of the dielectric layer 202.
  • the dielectric layer 202 and the electrode conductors 203 and 204 sandwiching the dielectric layer 202 constitute a capacitor 205 built in the multilayer wiring board 200.
  • the dielectric layer 202 is sintered by filling the opening formed in the ceramic sheet 201a with a dielectric paste that is a ceramic dielectric material, and then drying by heating.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-92983
  • Patent Document 2 JP 2002-290051 A
  • the capacitor-embedded substrate disclosed in Patent Document 1 is composed of a single-layer dielectric sheet, the required capacity is larger than that of a multilayer ceramic capacitor. In particular, it is difficult to apply as a decoupling capacitor. Also In order to increase the capacitance of the capacitor, it is necessary to form a high-permittivity sheet with a large area. As a result, the effective area for routing the wiring decreases, which hinders the formation of high-density wiring. .
  • the high dielectric constant sheet since a ceramic material that requires high-temperature firing is used as the high dielectric constant sheet, when a capacitor is built in the resin substrate, the ceramic dielectric paste is placed in the resin substrate. After formation, it is difficult to fire the entire resin substrate at a high temperature. If a composite sheet in which powder of a high dielectric constant material is mixed with resin is used, it can also be applied to a resin substrate. However, since the dielectric constant is low, it is not possible to form a large-capacity capacitor. Have difficulty.
  • the present invention has been made in view of the strong point, and an object of the present invention is to provide a component-embedded substrate that enables both high-performance component incorporation and high-density wiring.
  • a component-embedded substrate of the present invention includes a substrate formed by laminating a plurality of dielectric layers arranged along the opposing direction of both main surfaces of the substrate along the substrate plane direction, And an internal conductor pattern provided on both surfaces of the dielectric layer.
  • the electronic component is configured using the internal conductor pattern as a constituent element, and the electronic component is embedded in the substrate.
  • the electronic component is a capacitor
  • the capacitor is constituted by the dielectric layer and the internal conductor pattern facing each other across the dielectric layer.
  • the electronic component is an inductor
  • the inductor is
  • the wiring layer is configured as a Miranda wiring.
  • adjacent dielectric layers are connected and formed integrally with each other on either one of the two main surfaces of the substrate, and adjacent to each other.
  • Each connecting part of the dielectric layer is on either side of the main surface of the substrate!
  • the plurality of dielectric layers constitute a single dielectric sheet that is bent, and the connection parts are alternately arranged in parallel, so that one of the main boards of the component-embedded substrate is provided. And other main surfaces.
  • the inner conductor pattern is provided on each of both surfaces of the dielectric sheet, and the inner conductor pattern provided on each of both surfaces of the dielectric sheet includes: It is provided over a plurality of dielectric layer forming regions arranged in parallel, and is disposed opposite to the dielectric sheet.
  • the dielectric layers are preferably fixed to each other by an insulating adhesive member provided between the layers.
  • the internal conductor pattern is preferably exposed from the insulating adhesive member at the connection portion.
  • the internal conductor pattern exposed at the connection portion on one main surface side of the substrate is used as a first electrode terminal, and the capacitor is exposed at the connection portion on the other main surface side.
  • the internal conductor pattern is preferably used as the second electrode terminal.
  • an insulating film is provided on both main surfaces of the substrate, and an opening reaching the internal conductor pattern is provided at a position facing the connection portion of the insulating film, and is exposed to the opening. It is preferable that both electrode terminals of the capacitor are constituted by the internal conductor pattern.
  • a semiconductor chip is mounted on the insulating film, and a connection terminal of the semiconductor chip is connected to an electrode terminal of the capacitor exposed in the opening.
  • the capacitor is formed in a partial region of the substrate.
  • the internal wiring of the substrate built-in substrate is formed from the region of the internal conductor pattern other than the capacitor.
  • a part of the internal conductor pattern constituting the internal wiring extends to the connection part and is exposed on the main surface of the substrate, and the part of the exposed internal conductor pattern is the internal part. It is preferable to configure a lead electrode for wiring.
  • the dielectric sheet is preferably made of a material having a high dielectric constant.
  • the dielectric sheet includes a first dielectric sheet made of a thin film having a sufficient required dielectric constant, and a mechanical strength of the first dielectric sheet that does not have the required dielectric constant.
  • a second dielectric sheet that is higher than the body sheet, the inner conductor pattern is provided on both sides of the first dielectric sheet, and the first and second dielectric sheets are integrated into a stack. It is preferable to be displayed.
  • the component-embedded substrate of the present invention includes a substrate formed by laminating a plurality of dielectric layers arranged along the opposing direction of both main surfaces of the substrate along the substrate plane direction, and the adjacent dielectric
  • the body layers are formed on one of the two main surfaces of the substrate, the ends of the layers are connected and integrally connected to each other, and the connecting portions of the adjacent dielectric layers are arranged at least on both main surfaces of the substrate.
  • the plurality of dielectric layers constitute a single dielectric sheet bent and arranged on the other side, and the dielectric layers are insulating adhesive members provided between the layers. They are fixed to each other, and the connecting portions are alternately arranged in parallel to constitute one main surface and the other main surface of the component-embedded substrate. A part is disposed between the adjacent dielectric layers, and the part is covered with the insulating adhesive member.
  • connection part for connecting the dielectric layers located at both ends of the component has a flat portion having a width substantially the same as the width of the component.
  • the component is housed in a region surrounded by both dielectric layers connected by the flat portion.
  • the component is arranged, and a conductor pattern is formed on the main surface of another dielectric layer, and the conductor pattern constitutes an internal wiring of the component-embedded substrate. .
  • the component is preferably a semiconductor chip, a chip capacitor, a chip resistor, a chip inductor force, a force that is at least one selected electronic component, or a heat spreader.
  • the dielectric sheet is preferably a composite material containing a ferroelectric filler and a thermosetting resin.
  • a plurality of dielectric layers arranged along the opposing direction of both main surfaces of the substrate are stacked along the substrate plane direction, and the dielectric layers are insulative.
  • a substrate is provided that is fixed to each other by an adhesive member.
  • Adjacent dielectric Layers are connected and formed on one of the two main surfaces of the substrate in such a manner that the ends of the layers are connected to each other, and the connecting portions of the adjacent dielectric layers are connected to the main surfaces of the two substrates.
  • the plurality of dielectric layers constitute a single dielectric sheet bent and arranged.
  • the connecting portions are alternately arranged in parallel to constitute one main surface of the substrate and another main surface.
  • An internal conductor pattern is provided on both surfaces of the dielectric sheet.
  • a capacitor is formed by the dielectric sheet and the internal conductor pattern facing each other across the dielectric sheet.
  • the inner conductor pattern exposed at the connecting portion on one main surface side of the substrate is used as a first electrode terminal, and the inner conductor pattern exposed at the connecting portion on the other main surface side is used as a second electrode terminal.
  • the present invention constitutes a built-in electronic component such as a capacitor using the internal conductor pattern formed on both sides with the dielectric layer in between as a constituent element, the surface area of the component in the electronic component such as a capacitor (Electrode surface area, etc.) can be increased, and electronic parts with excellent characteristics (such as large-capacity capacitors) can be compactly formed.
  • Such an effect of the present invention is remarkably obtained when the dielectric layer is formed by alternately and continuously folding the dielectric sheet with a predetermined width.
  • FIG. 1 is a diagram showing a configuration of a wiring board 1 related to the present invention.
  • FIG. 2 (A), FIG. 2 (B), and FIG. 2 (C) are diagrams showing the structure of a dielectric sheet on which a conductor pattern is formed.
  • FIG. 3 is a cross-sectional view of a wiring board related to the present invention.
  • FIG. 4 is a cross-sectional view showing a configuration of a component built-in substrate incorporating a capacitor according to Embodiment 1 of the present invention.
  • FIG. 5 is an enlarged cross-sectional view showing the configuration of the capacitor of the present invention.
  • FIG. 6 is a cross-sectional view showing a configuration of a component-embedded substrate on which a capacitor and internal wiring of the present invention are formed.
  • FIG. 7 is a cross-sectional view showing a method for taking out the electrode of the capacitor of the present invention.
  • FIG. 8 is a cross-sectional view showing another method of taking out the electrode of the capacitor of the present invention.
  • FIG. 9 is a cross-sectional view showing a configuration of a component built-in board on which the semiconductor chip of the present invention is mounted.
  • FIG. 10 (A) to FIG. 10 (D) are process diagrams showing respective stages of the dielectric sheet forming method of the present invention.
  • [11A] A diagram showing a method of folding a dielectric sheet according to the present invention.
  • FIG. 11B is a diagram showing a method of folding a dielectric sheet according to the present invention.
  • FIG. 11C A diagram illustrating a method of folding a dielectric sheet according to the present invention.
  • FIG. 12 is a cross-sectional view showing a configuration of a component-embedded substrate incorporating an electronic component according to Embodiment 2 of the present invention.
  • FIG. 13 is a cross-sectional view showing a configuration of a component-embedded substrate incorporating an electronic component according to Embodiment 2 of the present invention.
  • FIG. 14- (A) to FIG. 14- (C) are diagrams showing the structure of a dielectric sheet on which a conductor pattern of the present invention is formed.
  • FIG. 15 is a cross-sectional view showing a configuration of a component-embedded substrate incorporating the electronic component of the present invention.
  • FIG. 16 is a cross-sectional view showing the configuration of a multilayer wiring board incorporating a conventional capacitor.
  • FIG. 17 is a cross-sectional view showing a configuration of a multilayer wiring board incorporating a conventional electronic component.
  • External conductive pattern 30 Internal conductor pattern a End of internal conductor pattern
  • FIG. 1 is a diagram showing a wiring board 100 as a basic configuration of the present invention.
  • a wiring board 100 shown in FIG. 1 has a rectangular flat plate shape.
  • the wiring substrate 100 has a plurality of dielectric layers 11. Each dielectric layer 11 is disposed along a facing direction (thickness direction) t of both main surfaces of the substrate, and then laminated along a direction wl orthogonal to the facing direction t.
  • the orthogonal direction wl refers to one substrate plane direction along an arbitrary side of the wiring substrate 100 having a rectangular shape.
  • Inner conductor patterns 12 and 13 are provided on the surface of the dielectric layer 11.
  • the inner conductor patterns 12 and 13 are provided on both surfaces of the dielectric layer 11.
  • Adjacent dielectric layers 11 are formed by connecting and forming the ends of the layers so as to communicate with each other on either side of both main surfaces 20 and 21 of the substrate.
  • connection site 11 a is provided in the dielectric layer 11 continuously along the full width of the dielectric layer 11 (the full width of the wiring board 100), that is, along the substrate plane direction w2 orthogonal to the orthogonal direction w1 on the substrate plane. It is done.
  • the connecting portion 11a is provided at both ends of each dielectric layer 11.
  • the plurality of connecting portions 11a are alternately arranged on either one of the main surfaces 20 and 21 of the substrate along the orthogonal direction wl.
  • the connecting portion 11a adjacent to the connecting portion 11a on the one substrate main surface 20 side is provided on the other substrate main surface 21, and the connecting portion 11a adjacent to the connecting portion 11a on the other substrate main surface 21 side is It is provided on one substrate main surface 20.
  • the plurality of dielectric layers 100 as a whole are in the form of a single dielectric sheet 10 that is bent by being folded at the connecting portion 11a, and further from the folded dielectric sheet 10.
  • a substrate is constructed.
  • the inner conductor patterns 12 and 13 are arranged in a strip shape along the longitudinal direction of the dielectric layer 11 constituting the dielectric sheet 10 in this way.
  • the layer longitudinal direction is the direction of the connecting ridgeline of the connecting portion 11a, and specifically, the substrate plane direction w2.
  • Each dielectric layer 11 is fixed to each other with an insulating adhesive layer 16 disposed between the layers, and the inner conductor patterns 12 and 13 are covered with the insulating adhesive layer 16.
  • one substrate main surface 20 of the wiring substrate 100 is constituted by a continuous body of a plurality of connecting portions 11a fixed by the insulating adhesive layer 16.
  • the other substrate main surface 21 of the wiring substrate 100 is constituted by a continuous body of a plurality of connecting portions 1 la fixed by an insulating adhesive layer 16.
  • At least one of the plurality of internal conductor patterns 12 and 13 is extended to a connection portion 1 la where the surface of the dielectric layer 11 on which the internal conductor patterns 12 and 13 are formed becomes the connection outside.
  • the extended ends of the inner conductor patterns 12 and 13 are exposed at one of the main surfaces 20 and 21.
  • the internal conductor patterns 12 and 13 formed on both surfaces of the same dielectric layer 11 are connected to each other via via holes 22 formed in the dielectric layer 11.
  • the internal conductor patterns 12 and 13 exposed on the main surfaces 20 and 21 of the wiring board 100 constitute lead electrodes 17 and 18.
  • the upper surfaces of the extraction electrodes 17 and 18 are flat surfaces parallel to the substrate main surfaces 20 and 21 so that electronic components mounted on the wiring substrate 100 can be stably mounted.
  • the lead electrodes 17 and 18 formed on both surfaces of the same dielectric layer 11 They are connected to each other through via holes 22 formed in the electric conductor layer 11.
  • the wiring board 100 has a shape in which the inner conductor pattern 12 formed in a band shape is alternately laminated in the lateral direction with the dielectric layer 11 sandwiched therebetween.
  • the wiring can be routed at a minute pitch that is the same as the thickness of the internal conductive patterns 12 and 13.
  • the thickness of the dielectric layer 11 is 4 m and the thickness of the internal conductive patterns 12 and 13 is 1 m, it is possible to route wiring with a very high density of 4 to 5 m.
  • the wiring board 100 the internal conductive patterns 12 and 13 are covered with the insulating adhesive layer 16, so to speak, the wiring board 100 is arranged in the interior of the wiring board 100. High-density wiring is possible while maintaining a narrow pitch that is not obstructed by external connection terminals formed on the main surface of the wire substrate 100.
  • the wiring board 1 shown in FIG. 1 can be formed by alternately folding dielectric sheets by the methods shown in FIGS. 2- (A) to 2- (C) and FIG.
  • FIGS. 2- (A) to 2- (C) respectively show a plan view, a sectional view at XY, and a bottom view of the dielectric sheet 10 before being folded.
  • the peak side line PP ′ that becomes a mountain when viewed from one surface of the dielectric sheet 10 becomes a valley.
  • the valley side line Q—Q ' is virtually set.
  • These mountain side lines P ⁇ ⁇ ′ and valley side lines Q—Q ′ are set along the direction w 3 along one side of the dielectric sheet 10.
  • the peak line P—P ′ and the valley line Q— are set alternately, parallel to each other, and at regular intervals.
  • the direction w3 is a direction that is the same direction as the substrate plane direction w2 in the wiring substrate 100.
  • the inner conductor pattern 12 is formed in a strip shape on one surface of the dielectric sheet 10.
  • the arbitrary internal conductor pattern 12 is formed so as to extend to a position exceeding the peak line P—P ′, and constitutes a first lead electrode 17.
  • the inner conductor pattern 13 is formed in a strip shape on the other surface of the dielectric sheet 10. The inner conductor pattern 12 and the inner conductor pattern 13 face each other with the dielectric sheet 10 in between. Be placed.
  • the inner conductor pattern 13 opposite to the inner conductor pattern 12 having the first lead electrode 17 is formed to extend to a position exceeding the trough side line Q-.
  • a pattern of electrodes 19 is formed.
  • mountain side lines P— or valley side lines Q— Q ′ are arranged on both sides of the inner conductor patterns 12, 13, and the medium force one of these lines P— P ⁇ and Q— Q ′ is Then, the inner conductor patterns 12 and 13 are extended to the selected line to form lead electrodes 17 and 19.
  • the selection of the line P - ⁇ ', Q—Q' is performed as follows. As shown in FIGS. 2 (A) to 2 (C), the dielectric sheet 10 is alternately folded along the lines P— and Q—Q ′.
  • the extension end is located inside the sheet of the dielectric sheet 10 in the bent state, and the sheet When it is located outside, force S is generated.
  • the lines P— ⁇ and Q—Q ′ positioned outside the sheet of the dielectric sheet 10 whose pattern extending ends are bent are selected.
  • via holes 22 are formed in the dielectric sheet 10 in advance.
  • the via hole 22 is formed at a position where the inner conductor pattern 12 where the first lead electrode 17 is formed and the inner conductor pattern 13 where the second lead electrode 19 is formed face each other.
  • the via hole 22 is configured by filling a through-hole formed through the dielectric sheet 10 in the thickness direction with an interlayer connection conductor (metal conductor).
  • the via hole 22 is arranged at a position as close as possible to the extraction electrodes 17 and 19.
  • the first extraction electrode 17 and the second extraction electrode 19 are connected to each other by contacting the via hole 22 (interlayer connection conductor).
  • the dielectric sheet 10 is alternately and continuously folded along the peak side line P— and the valley side line Q—Q ′. At that time, when viewed from one surface of the dielectric sheet 10,
  • the structure of the wiring substrate 100 in which the dielectric layer 11 is laminated along the substrate plane direction is specific.
  • the layer ends of the dielectric layers 11 are connected by connecting portions 11a formed by alternately folding the dielectric sheets 10.
  • a plurality of connecting portions 11a are provided, and each connecting portion 11a is alternately arranged on one of the both ends of each dielectric layer 11.
  • each dielectric layer 11 Insulating adhesive layers (insulating adhesive members) 16 are filled in between, thereby fixing the dielectric layers 11 to each other. As a result, a plurality of dielectric layers 11 having partial forces superimposed on each other are formed.
  • the extraction electrodes 17 and 19 are exposed on the main surfaces 20 and 21 of the wiring board 100, located outside the connection portion 11a.
  • the extraction electrode 17 is connected to the inner conductor pattern 12 by the same material formed integrally, and the extraction electrode 19 is formed of the same material formed integrally. Connected to the inner conductor pattern 13. Further, the inner conductor pattern 12 and the inner conductor pattern 13 are connected to each other through the via hole 22. Thereby, the first extraction electrode 17 and the second extraction electrode 19 are electrically connected to each other.
  • external connection electrodes (not shown) are respectively formed on the first lead electrode 17 and the second lead electrode 19, they are mounted on both main surfaces 20, 21 of the wiring board 110.
  • the circuit components can be connected by signal lines.
  • the case where one via hole 22 is formed in the dielectric layer 11 has been described.
  • the inner conductor pattern 12 and the inner conductor pattern 13 are formed in parallel with the dielectric layer 11 in between. Therefore, the via hole can be formed at any point in between.
  • the wiring board 100 realizes high-density wiring having narrow pitch wiring that cannot be achieved by the conventional wiring board, but actually mounts a plurality of LSIs on the wiring board.
  • LSIs In addition to wiring that connects LSIs, it is necessary to mount capacitors and electronic components.
  • high-density wiring there is a demand for wiring boards that can incorporate high-performance components.
  • the inventor of the present application has the wiring substrate 100 composed of the dielectric layers 11 having the partial force superimposed on each other, but the dielectric layers 11 are essentially continuous electric charges folded alternately. Since it is composed of the body sheet 10, it was noted that the dielectric sheet 10 itself could be the dielectric core of the power capacitor. In other words, apart from the dielectric layer 11 constituting the high-density wiring, the capacitor can be configured by forming the inner conductor pattern on both sides with the dielectric sheet 10 folded continuously alternately. It will be possible. Dielectric sheet 10 Since it can be folded at high density, it is possible to obtain a wiring board containing a large-capacity capacitor in addition to high-density wiring.
  • FIG. 4 is a cross-sectional view showing a basic configuration of the component-embedded substrate 2 according to the first embodiment of the present invention.
  • the basic configuration in FIG. 4 is the same as that in FIG. 1, and the same or similar components are denoted by the same reference numerals.
  • the component built-in substrate 2 can be regarded as a substrate built-in capacitor, but in the following description of each embodiment, they are collectively referred to as a component built-in substrate.
  • the component-embedded substrate 2 includes the dielectric layer sheet 10 that is alternately and continuously folded with a predetermined width, and the internal conductor pattern formed on both surfaces of the dielectric layer sheet 10. 30 and 3 1 are provided.
  • the configuration of the folded dielectric sheet 10 is basically the same as that of the wiring board 100 of FIG. 1 and constitutes the base material of the component-embedded board 2.
  • a capacitor is configured by the dielectric layer sheet 10 and the internal conductor patterns 30 and 31 sandwiching the dielectric sheet 10.
  • the component-embedded substrate 2 shown in FIG. 4 has a high-density formation region of the internal wiring pattern shown in FIG. However, in FIG. 4, the high density formation region is not shown.
  • the dielectric sheet 10 a capacitor is formed in a part of the region, and a high density formation region of the internal wiring pattern is formed in the other region.
  • the folded dielectric sheet 10 has a plurality of connecting parts 1 la formed by alternately folding the dielectric sheets 10, and these connecting parts 1 la Are arranged in parallel, one substrate main surface 20 of the component-embedded substrate 2 and another substrate main surface 21 are formed.
  • the dielectric sheet 10 is united by an insulating adhesive member 16 disposed between the dielectric layers 11 in a folded state.
  • the inner conductor patterns 30, 31 are the main surfaces 20, 21 It is exposed to the outside at (connection part 11a).
  • the internal conductor patterns 30 and 31 exposed to the outside constitute a first electrode terminal and a second electrode terminal of the capacitor, respectively.
  • Examples of the dielectric sheet 10 include a ferroelectric filler such as TiBaO and a thermosetting resin.
  • Capacitors with higher capacitance can be obtained by using a material that has a higher dielectric constant and can be made thinner than the force that can be used for a sheet that also becomes a composite material.
  • a capacitor of lOOnF or more is required for the purpose of decoupling the LSI power supply.
  • a dielectric sheet as thin as 4 m can be applied.
  • a large capacity can be obtained in a capacitor built-in substrate of 3. 5nFZcm 2.
  • the conventional capacitor-embedded substrate using this sheet cannot obtain a capacity sufficient to achieve the purpose of decoupling and the like.
  • the sheet thickness is 4 m
  • the folding width of the sheet is lmm
  • the folding interval pitch between peaks and peaks
  • 500 layers are folded per cm.
  • a capacitor capacity of 175 nF / cm 2 can be obtained as the entire capacitor built-in substrate.
  • a capacitor having an extremely large capacity of about 50 times that of the conventional component-embedded substrate can be incorporated in the substrate, and LSI decoupling, which has been difficult in the past, is difficult. It is possible to incorporate a capacitor for use in a compact.
  • the dielectric sheet 10 forms the base material of the component-embedded substrate 2, a certain degree of mechanical strength is required, and selection of the material is limited.
  • the dielectric sheet 10 is configured as follows, for example. That is, the first dielectric sheet 10A is composed of a dielectric thin film that does not have the required mechanical strength but has a sufficient dielectric constant required as an electronic component such as a capacitor. Internal conductor patterns 30 and 31 are formed on both surfaces of the first dielectric sheet 10A, respectively.
  • a second dielectric sheet 10B is prepared, and the second dielectric sheet 10B is adhered to one surface of the first dielectric sheet 10A.
  • the second dielectric sheet 10B does not have a dielectric constant required for an electronic component such as a capacitor! / Although the dielectric strength is sufficiently higher than that of the first dielectric sheet 10A.
  • the multilayer dielectric sheet (10A + 10B) configured in this way is folded and integrated to form a capacitor. Then, the first dielectric sheet 10A (dielectric thin film) having a sufficiently high dielectric constant can be obtained after the role as the base material (maintaining mechanical strength) is exhibited by the second dielectric sheet 10B. A large capacity capacitor can be formed by using a dielectric core.
  • FIG. 5 is a cross-sectional view showing, in an enlarged manner, a part of the folded multilayer dielectric sheet (10A + 10B), the configuration of the capacitor thus formed.
  • the first dielectric sheet 10A made of a dielectric thin film having a sufficient required dielectric constant, and the mechanical strength of the first dielectric sheet 10A is lower than that of the first dielectric sheet 10A.
  • a second dielectric sheet 10B made of a dielectric sheet higher than the dielectric sheet 10A is prepared. Then, the inner conductor pattern 30 and the inner conductor pattern 31 are formed on the main surface of the first dielectric sheet 10A. Further, the second dielectric sheet 10B is laminated on one surface of the first dielectric sheet 10A, thereby forming a sheet form as a whole. Then, the multilayer dielectric sheet (10A + 10B) in this state is folded and bonded and integrated with the insulating adhesive layer 16 to constitute a capacitor.
  • the thickness of the first dielectric sheet 10A can be reduced to a fraction of that of the dielectric sheet 10 described in FIG. 1 and the like, the entire dielectric sheet 10 is formed as a dielectric core. Compared with a capacitor, a capacitor having a larger capacity can be formed. Moreover, even in that case, the mechanical strength of the entire capacitor can be maintained by the second dielectric sheet 10B.
  • FIG. 6 shows the component-embedded substrate 2 in which the capacitor and the internal wiring are formed in different regions (A) and (B) of the dielectric sheet 10.
  • the inner conductor patterns 30 and 31 are formed on both surfaces of the dielectric sheet 10 to form a capacitor.
  • the inner conductor patterns are formed on both surfaces of the dielectric sheet 10 (dielectric layer). pattern 12 and 13 are formed to constitute the internal wiring.
  • the dielectric sheet 10 in the region constituting the capacitor has as high a dielectric constant as possible, but the dielectric sheet 10 (dielectric layer) in the region constituting the internal wiring can be formed. Only a low dielectric constant is preferred. Therefore, as long as the dielectric sheet 10 made of the same material is used, it is difficult to satisfy the requirements for the internal wiring and the capacitor at the same time.
  • the dielectric sheet 10 is also configured with the second dielectric sheet 10B force in FIG. 5 described above, and the inner conductor in FIG. 5 described above is formed in a partial region (A) of the sheet 10B. Capacitors are selectively formed in the region (A) by forming the patterns 30 and 31 and the first dielectric sheet 10A. Then, the above requirements can be satisfied at the same time.
  • part of the internal conductor patterns 12 and 13 formed on the main surface of the dielectric sheet (dielectric layer) 10 By extending to the connecting part 11a of the sheet 10, the part of the exposed conductor pattern is exposed on the main surface of the component-embedded board, and the exposed electrodes 17, 19 of the inner conductor patterns 12, 13 are exposed. There is no.
  • FIG. 7 is a diagram showing a configuration for extracting the capacitor electrode when an insulating film is formed on the main surface of the component-embedded substrate 2.
  • insulating films 32 and 32 are formed on both main surfaces of the component-embedded substrate 2.
  • the insulating film 32 is formed with an opening 33 reaching the substrate main surfaces 20 and 21 (the connecting portion 11a of the dielectric layer 11).
  • the opening 33 is selectively provided at a position where the end portions of the internal conductor patterns 30 and 31 are exposed on the surface of the substrate 2.
  • the inner conductor patterns 30 and 31 are exposed at the bottom of the opening 33, and the exposed inner conductor patterns 30 and 31 constitute electrode terminals of the capacitor.
  • an extraction electrode 34 is formed over the surface of the insulating film 32 at the peripheral edge of the peripheral surface force of the opening 33, and the electrode terminal of the capacitor is constituted by the extraction electrode 34.
  • the electrode terminals of the capacitor are taken out from both surfaces of the component built-in substrate 2, but as shown in FIG. Out May be. This will be described below.
  • the inner conductor pattern 30 on one side of the dielectric sheet 10 has an inner conductor pattern end 30a and an inner conductor pattern end 30b.
  • the inner conductor pattern end 30a is physically connected and electrically connected to the inner conductor pattern 30 on the main body side.
  • the inner conductor pattern end 30b is physically separated from the inner conductor pattern 30 on the main body side and electrically insulated.
  • a plurality (two in the figure) of openings 33a and 33b are selectively formed on one substrate main surface 20 side. Extraction electrodes 34a and 34b are provided in the openings 33a and 33b, respectively.
  • the inner conductor pattern end 30a is connected to the extraction electrode 34a through one opening 33a.
  • the inner conductor pattern 30 is connected to the extraction electrode 34a.
  • the inner conductor pattern end 30b is connected to the extraction electrode 34b through the other opening 33b. Further, the inner conductor pattern end 30 b is connected to the inner conductor pattern end 31 b of the inner conductor pattern 31 through the via hole 35. Thus, the inner conductor pattern 31 is connected to the extraction electrode 34b.
  • FIG. 9 is a diagram showing a state in which a semiconductor chip is mounted on the surface of the lead-out electrode forming surface of the component built-in substrate 2 on which the capacitor is formed.
  • the configuration of the component-embedded substrate 2 used here is basically the same as the configuration shown in FIGS.
  • the semiconductor chip 40 is mounted on the insulating film 32 provided on the extraction electrode formation surface of the component-embedded substrate 2.
  • the connection terminal 41 of the semiconductor chip 40 is connected to the extraction electrode 34 on the insulating film 32 via the bump 42.
  • the capacitor formed on the component-embedded substrate 2 can be disposed immediately below the semiconductor chip 40, and therefore can function as a decoupling capacitor.
  • FIGS. 10 and 11 Figures 10- (A) to 10- (D) show the process of forming the dielectric sheet before folding.
  • a dielectric sheet 10 having a certain width is prepared.
  • FIG. 10- (B) on the surface of the dielectric sheet 10, along the width direction w3 of the dielectric sheet 10 (direction perpendicular to the paper surface, see FIG. 2), virtual Folded mountain side line P— P ′ and valley side line Q— are provided.
  • the mountain side line P- and the valley side line Q-Q ' are provided alternately and in parallel with each other with a certain regular interval. Determined.
  • a bending guide groove formed by scraping a part of the surface of the dielectric sheet 10 into a wedge shape along the mountain side line P—P ⁇ and the valley side line Q—Q ′. 50 is formed.
  • the bending guide groove 50 of the mountain side line P—P ′ is provided on one surface of the dielectric sheet 10
  • the bending guide groove 50 of the valley side line Q— is provided on the other surface of the dielectric sheet 10. It is done.
  • conductive thin films 60 and 61 are formed on both surfaces of the dielectric sheet 10.
  • the manufacturing method is slightly different.
  • the second dielectric sheet 10B as the dielectric sheet 10
  • at least a capacitor after the steps shown in FIGS. 10A and 10B before forming the conductive thin films 60 and 61.
  • a base electrode thin film is formed as an inner conductor pattern 30 in FIG. 5 on at least one surface of the second dielectric sheet 10B in the region where the first dielectric sheet 10B is formed, and the first dielectric sheet 10A made of a high dielectric constant thin film is formed on the thin film.
  • the internal conductor pattern 31 of FIG. 5 may be formed thereon.
  • the substrate can be stably manufactured even with the first dielectric sheet 10A made of a thin film having a high dielectric constant and no strength.
  • a part of the lower electrode thin film in FIG. 5 can be exposed from the first dielectric sheet 10A and connected to a part of the internal conductor pattern 31 (conductive thin film 60) to be pulled out. It is also possible to connect and draw out the base electrode thin film and the conductive thin film 61 provided on the back surface thereof through a via hole provided in the second dielectric sheet 10B.
  • a capacitor made of the first dielectric sheet 10A shown in FIG. 5 may be provided on both surfaces of the second dielectric sheet 10B.
  • the dielectric sheet 10A can be made sufficiently thin, so that double capacitance can be obtained with almost the same size.
  • the conductive thin films 60 and 61 formed in the region to be the internal wiring are etched to form the internal conductor patterns 12 and 13 constituting the internal wiring. .
  • the conductive thin films 60 and 61 formed in the region to be the capacitor become the inner conductor patterns 30 and 31 constituting the capacitor electrode as they are.
  • a semi-curing insulating sheet 62 was formed on the dielectric sheet 10, and then along the peak side line P— ⁇ and the valley side line Q—Q ′. Remove semi-cured insulation sheet 62 in the area of constant width.
  • FIGS. 11A to 11C a method for folding the dielectric sheet 10 on which the conductive patterns 12 and 13 and the internal conductor patterns 30 and 31 are formed will be described with reference to FIGS. 11A to 11C.
  • FIGS. 11A to 11C only the dielectric sheet 10 is shown, and the conductive patterns 12, 13, the inner conductor patterns 30, 31, and the semi-curing insulating sheet 62 are omitted. .
  • the end force of the dielectric sheet 10 is also a plate-like jig whose bottom surface is narrow along the peak side line P—P ′ and the valley side line Q—Q ′. Fold it while applying.
  • FIG. 11B pressing is performed from both sides of the folded dielectric sheet 10 until the semi-curing insulating sheets (not shown) come into contact with each other.
  • the semi-curable insulating sheet is heated with the pressed state.
  • heat treatment is performed while pressing, so that the semi-curable insulating sheets adhere to each other and the component-embedded board is completed.
  • the built-in component in the present invention is not limited to this.
  • the force with which a conventional substrate creates a zigzag meander wiring in the plane of the wiring layer like the wiring layer 30 in FIG.
  • the wiring folded alternately it is possible to form a circuit equivalent to the meander wiring by considering the cross-sectional force, and it is possible to create an inductor with a compact projected area.
  • a sheet material having a high magnetic permeability as the dielectric sheet of this portion it is possible to realize a high inductance that cannot be achieved conventionally.
  • Embodiment 2 in which a component-embedded substrate in which various components such as electronic components are built using the configuration of the present invention will be described below with reference to FIGS. 12-14.
  • FIGS. 12 and 13 are diagrams showing the configuration of the component-embedded substrate 3 in which the component 80 is built.
  • the component-embedded substrate 3 includes a plurality of dielectric layers 11 each having a partial force superimposed on each other, formed by alternately and continuously folding dielectric sheets 10 having a certain width.
  • the basic configuration is the same as that of the first embodiment.
  • the plurality of dielectric layers 11 are fixed to each other with an insulating adhesive layer 16 formed between the dielectric layers, and a component 80 is disposed between the dielectric layers 11. 80 is covered with an insulating adhesive layer 16. This will be described below.
  • the flat portion 10a is constituted by the connecting portion 11a, and the flat portion 11 and the guiding portion 11a are formed.
  • a region force component storage region ⁇ surrounded by the electric conductor layers 11 and 11 is formed. This part
  • the part 80 is stored in the storage area ⁇ .
  • the component storage area ⁇ in which the component 80 is stored is sealed with the insulating adhesive layer 16.
  • the component 80 is sealed in the component storage area ⁇ .
  • the flat portion 10a is preferably flush with the main surface of the component-embedded substrate 3 where the flat portion 10a is located (main surface 21 in FIG. 12). It can be maximized.
  • the configuration of the other dielectric layer 11 in which the component 80 is not arranged is the same as that of the first embodiment, and the inner conductor patterns 12 and 13 are formed on the surface of the dielectric layer 11, and the component Configures internal wiring of built-in board 3.
  • the external connection electrode 83 of the component 80 is connected to one ends 81a and 82a of the external lead conductor patterns 81 and 82.
  • the other ends 81b and 82b of the external lead conductor patterns 81 and 82 are connected to the connecting part 11a adjacent to the connecting part 11a constituting the flat portion 10a.
  • the external connection electrode 83 of the component 80 stored in the component storage area ⁇ is extracted to the outside of the component built-in substrate 3 via the external lead conductor patterns 81 and 82.
  • part 80 Semiconductor chips, chip capacitors, chip resistors, chip inductors, etc. can be incorporated.
  • FIG. 13 is a diagram showing a configuration in which the electrode of the component 80 is drawn out from each of the one main surface 20 and the other main surface 21 of the component-embedded substrate 3.
  • One external lead electrode 83A of the component built-in board 3 is drawn to one main surface 20 of the component built-in board 3 through one external lead pattern 81 as in FIG. While pressing, the other external extraction electrode 83B is extracted to the other main surface 21 of the component-embedded substrate 3 through the following configuration.
  • the other external lead pattern 82 does not have the other end 82b shown in FIG.
  • An internal conductor pattern 85 for external connection is provided on the surface of the dielectric sheet 10 facing the one end 82a of the external lead electrode 82 across the sheet.
  • the sheet surface on which the external connection internal conductor pattern 85 is provided is located on the main surface 21 side of the component-embedded substrate 3.
  • the internal conductor pattern for external connection 85 and the one end 82a of the external lead electrode 82 are connected to each other through a via hole 35 provided in the dielectric sheet 10.
  • the other external extraction electrode 83 B of the component 80 is connected to the external connection internal conductor pattern 85 and is extracted to the other main surface 21 of the component built-in substrate 3.
  • the component-embedded substrate 3 shown in FIG. 12 or FIG. 13 is formed by alternately folding dielectric sheets by the method shown in FIG. 14- (A) to FIG. 14- (C) and FIG. be able to.
  • FIGS. 14 (A) to 14 (C) are a plan view, a sectional view taken along line BB ′, and a bottom view, respectively, of the dielectric sheet 10 before folding.
  • Fig. 14 (A) and Fig. 14 (C) when folded on both sides of the dielectric sheet 10, the line P-P 'that becomes the peak side and the line Q-Q' that becomes the valley side
  • the internal conductor patterns 12 and 13 constituting the internal wiring are formed in a strip shape along the width direction of the dielectric sheet 10.
  • internal conductor patterns 81 and 82 are formed on the upper surface of the dielectric sheet 10 for leading out the external connection electrodes 83 of the component 80.
  • One ends 81b and 82b of the inner conductor patterns 81 and 82 extend to a position exceeding the peak line ⁇ - ⁇ ′ and function as lead electrodes.
  • the other ends 81a and 82a of the inner conductor patterns 81 and 82 extend to a position exceeding the valley side line Q—Q ′ and function as connection electrodes to the component 80.
  • the component 80 is mounted at a position indicated by a dotted line on the upper surface of the dielectric sheet 10 as shown in FIG. 14 (A).
  • the dielectric sheet 10 thus formed is alternately and continuously folded along the crest-side line P—P ′ and the trough-side line Q—Q ′, so that the component-embedded substrate 3 shown in FIG. Obtainable.
  • the connecting portion 11a of the dielectric sheet 10 on which the component 80 is mounted is folded at an acute angle.
  • the flat portion 10a is formed by being folded into a U shape without being folded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

[PROBLEMS] To provide a substrate having a built-in component, by which both high performance component integration and high density wiring are achieved. [MEANS FOR SOLVING PROBLEMS] The substrate having the built-in component is provided with a substrate (100) wherein a plurality of dielectric layers (11) arranged along an opposing direction to the both main planes of the substrate are stacked along a substrate planar direction; and internal conductive patterns (12, 13) arranged on a surface of the dielectric layer (11). The electronic component is composed of the internal conductive patterns (12, 13), and the electronic component is integrated with the substrate (100).

Description

明 細 書  Specification
部品内蔵基板および基板内蔵コンデンサ  Component built-in board and board built-in capacitor
技術分野  Technical field
[0001] 本発明は、部品内蔵基板や基板内蔵コンデンサに関し、特に、高密度配線が可能 な基材に電子部品が内蔵された基板構造に関する。  The present invention relates to a component built-in substrate and a substrate built-in capacitor, and more particularly to a substrate structure in which electronic components are built in a base material capable of high-density wiring.
背景技術  Background art
[0002] 近年、デジタルネットワーク技術の発展に伴って、膨大な情報量の処理を行う LSI の高速化が著しい。 LSIの高速化が進むに連れて、高速伝送時における伝送精度、 高速動作を保証可能な電源の安定化、高速動作により発生する熱の放熱、高速動 作に生ずる高調波ノイズなどの種々の課題が生じる。 LSIは高速に動作するほど、寄 生容量や寄生インダクタンスなどの影響を受けやすくなるので、上記課題の対策は、 LSIの直近位置で講じる必要がある。  In recent years, with the development of digital network technology, the speed of LSIs that process a huge amount of information has been significantly increased. As LSI speed increases, various issues such as transmission accuracy during high-speed transmission, stabilization of power supply that can guarantee high-speed operation, heat dissipation from high-speed operation, and harmonic noise generated during high-speed operation Occurs. As LSIs operate at higher speeds, they are more susceptible to parasitic capacitances and parasitic inductances, so countermeasures for the above issues must be taken in the immediate vicinity of the LSI.
[0003] 特に、 LSIを回路基板に搭載したときには、回路基板での配線の引き回しにより、ラ ンドゃビアなどの接続部で寄生成分が発生し、本来の LSIの特性を得ることが難しく なる。  [0003] In particular, when an LSI is mounted on a circuit board, parasitic components are generated in a connection portion such as a land via due to wiring routing on the circuit board, making it difficult to obtain the original LSI characteristics.
[0004] また、電源の安定供給と回路ブロックごとの電源デカップリングを行なうコンデンサ を回路基板に搭載した場合、 LSIとコンデンサとの間に配線の寄生インダクタンスが 入ってしまい、コンデンサの静電容量を大きくしても、十分な機能を果たせなくなる。  [0004] When a capacitor that performs stable power supply and power supply decoupling for each circuit block is mounted on the circuit board, a parasitic inductance of wiring enters between the LSI and the capacitor, reducing the capacitance of the capacitor. Even if it is enlarged, it will not be able to perform its full function.
[0005] さら〖こ、回路基板上にインピーダンス終端抵抗をつけようとしても、引き回し配線の 寄生成分がつくことで、純抵抗負荷にならず、信号の反射が発生することで、誤動作 の原因となる。  [0005] Even if you try to add an impedance termination resistor on the circuit board, the parasitic component of the routing wiring will create a pure resistance load, and signal reflection will occur, causing malfunctions. Become.
[0006] カロえて、回路基板に搭載された周辺の電子部品への引き回し配線が長くなると、電 流経路としてのループの大きな配線路が形成されるので、外部へのノイズ輻射が大 きくなり、高周波ノイズの問題が顕著になる。  [0006] If the lead wiring to the surrounding electronic components mounted on the circuit board becomes long, a large loop as a current path is formed, and noise radiation to the outside increases. The problem of high frequency noise becomes significant.
[0007] このような状況から、 LSIを回路基板に搭載する際に、配線路を極力短くして寄生 成分を減らすとともに、周辺部品を LSIの直近位置に配置することが強く求められて いる。 [0008] 上記要求に対して、近年では、電子部品を内蔵した多層配線基板やインターポー ザなどが開発されて実用化に至っている。電子部品が内蔵された多層配線基板は、 LSIの搭載面に電子部品を配置する必要もなぐまた、電子部品を接続する配線も 不要となるため、配線路を大幅に短縮でき、電子部品を LSIの直近に配置することが 可能となる。 [0007] Under such circumstances, when mounting an LSI on a circuit board, it is strongly required to shorten the wiring path as much as possible to reduce parasitic components and to arrange peripheral components in the closest position of the LSI. [0008] In response to the above requirements, in recent years, multilayer wiring boards and interposers incorporating electronic components have been developed and put to practical use. A multilayer wiring board with built-in electronic components eliminates the need to place electronic components on the LSI mounting surface and eliminates the need for wiring to connect the electronic components. It is possible to place it in the immediate vicinity.
[0009] また、熱問題にっ 、ても、熱源である LSIの直近で放熱対策をとることが有効である 力 ヒートスプレッダを多層配線基板に内蔵することにより、その効果を発揮すること ができる。  [0009] Also, even with regard to thermal problems, it is effective to take heat dissipation measures in the immediate vicinity of the LSI that is the heat source. By incorporating a heat spreader in the multilayer wiring board, the effect can be exhibited.
[0010] 配線基板にコンデンサを内蔵させる技術としては、例えば、図 16に示すような構成 力 特許文献 1に開示される。  A technique for incorporating a capacitor in a wiring board is disclosed in, for example, Patent Document 1 having a configuration power as shown in FIG.
[0011] 図 16に示すように、複数のセラミックシート (グリーンシート) 201を積層して構成さ れた多層配線基板 200において、所定のセラミックシート 201aの一部にセラミックス 誘電体材料からなる誘電体層 202が形成され、誘電体層 202の上面及び下面に、 電極導体 203、 204が形成される。誘電体層 202と当該誘電体層 202を挟む電極導 電 203、 204とで、多層配線基板 200に内蔵されたコンデンサ 205を構成する。なお 、誘電体層 202は、セラミックシート 201aに形成された開口部にセラミックス誘電体 材料力 なる誘電体ペーストを充填した後、加熱乾燥させて焼結される。  As shown in FIG. 16, in a multilayer wiring board 200 configured by laminating a plurality of ceramic sheets (green sheets) 201, a dielectric made of a ceramic dielectric material is formed on a part of a predetermined ceramic sheet 201a. The layer 202 is formed, and electrode conductors 203 and 204 are formed on the upper and lower surfaces of the dielectric layer 202. The dielectric layer 202 and the electrode conductors 203 and 204 sandwiching the dielectric layer 202 constitute a capacitor 205 built in the multilayer wiring board 200. The dielectric layer 202 is sintered by filling the opening formed in the ceramic sheet 201a with a dielectric paste that is a ceramic dielectric material, and then drying by heating.
[0012] また、多層配線基板内にコンデンサ等の電子部品を作り込む技術の他に、図 17に 示すように、多層配線基板 210の一部に空間部を設け、そこに単品の電子部品 211 a、 211bを埋設させた電子部品内蔵基板 (例えば、特許文献 2参照)も実用化されて いる。  [0012] Further, in addition to the technology of making electronic components such as capacitors in the multilayer wiring board, as shown in FIG. 17, a space is provided in a part of the multilayer wiring board 210, and a single electronic component 211 is provided there. Electronic component-embedded boards (for example, see Patent Document 2) in which a and 211b are embedded have also been put into practical use.
特許文献 1:特開平 9— 92983号公報  Patent Document 1: Japanese Patent Laid-Open No. 9-92983
特許文献 2 :特開 2002— 290051号公報  Patent Document 2: JP 2002-290051 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] しカゝしながら、特許文献 1に開示されるコンデンサ内蔵基板は、単層の誘電体シー トでコンデンサを構成しているため、積層セラミックコンデンサに比べて、必要な大き さの容量がとれず、特に、デカップリングコンデンサとして適用することは難しい。また 、コンデンサの容量をかせぐために、大きな面積の高誘電率シートを形成することが 必要となるが、その結果、配線の引き回しを行なう有効面積が減少し、そのことが高 密度配線の形成を阻害する。 [0013] However, since the capacitor-embedded substrate disclosed in Patent Document 1 is composed of a single-layer dielectric sheet, the required capacity is larger than that of a multilayer ceramic capacitor. In particular, it is difficult to apply as a decoupling capacitor. Also In order to increase the capacitance of the capacitor, it is necessary to form a high-permittivity sheet with a large area. As a result, the effective area for routing the wiring decreases, which hinders the formation of high-density wiring. .
[0014] さらに、高誘電率シートとしては、高温焼成を必要とするセラミックス系の材料が使 用されるので、榭脂基板にコンデンサを内蔵する場合、セラミックス系誘電体ペースト を榭脂基板内に形成した後、榭脂基板ごと高温で焼成することは困難である。榭脂 に高誘電率材料の粉体を混ぜたコンポジットシートを使用すれば、榭脂基板にも適 用することができるが、誘電率が低いため、大容量のコンデンサを形成することはや はり困難である。  [0014] Further, since a ceramic material that requires high-temperature firing is used as the high dielectric constant sheet, when a capacitor is built in the resin substrate, the ceramic dielectric paste is placed in the resin substrate. After formation, it is difficult to fire the entire resin substrate at a high temperature. If a composite sheet in which powder of a high dielectric constant material is mixed with resin is used, it can also be applied to a resin substrate. However, since the dielectric constant is low, it is not possible to form a large-capacity capacitor. Have difficulty.
[0015] また、特許文献 2に開示された電子部品内蔵基板は、ビアやスルーホールなどで 配線層間の接続を行なうと、その部分には電子部品を設けることができなくなる。この ようにこの従来例では、高密度配線と部品内蔵とはトレードオフの関係にあり、その両 立は極めて難しい。  [0015] In addition, if the electronic component built-in substrate disclosed in Patent Document 2 is connected between wiring layers by vias, through holes, or the like, an electronic component cannot be provided at that portion. Thus, in this conventional example, there is a trade-off between high-density wiring and built-in components, and it is extremely difficult to achieve both.
[0016] 本発明は力かる点に鑑みてなされたもので、高性能な部品内蔵と高密度配線の両 立を可能にした部品内蔵基板を提供することを目的とする。  [0016] The present invention has been made in view of the strong point, and an object of the present invention is to provide a component-embedded substrate that enables both high-performance component incorporation and high-density wiring.
課題を解決するための手段  Means for solving the problem
[0017] 上記課題を解決するために本発明の部品内蔵基板は、基板両主面の対向方向に 沿って配置された複数の誘電体層を基板平面方向に沿って積層してなる基板と、前 記誘電体層の両表面に設けられた内部導体パターンとを備え、前記内部導体バタ ーンを構成要素にして前記電子部品が構成されて、当該電子部品が前記基板に内 蔵される。 [0017] In order to solve the above problems, a component-embedded substrate of the present invention includes a substrate formed by laminating a plurality of dielectric layers arranged along the opposing direction of both main surfaces of the substrate along the substrate plane direction, And an internal conductor pattern provided on both surfaces of the dielectric layer. The electronic component is configured using the internal conductor pattern as a constituent element, and the electronic component is embedded in the substrate.
[0018] ある好適な実施形態において、前記電子部品はコンデンサであり、当該コンデンサ は、前記誘電体層と、当該誘電体層を挟んで対向する前記内部導体パターンとによ り構成される c  [0018] In a preferred embodiment, the electronic component is a capacitor, and the capacitor is constituted by the dielectric layer and the internal conductor pattern facing each other across the dielectric layer. C
[0019] ある好適な実施形態において、前記電子部品はインダクタであり、当該インダクタは In a preferred embodiment, the electronic component is an inductor, and the inductor is
、前記配線層をミランダ配線にして構成される。 The wiring layer is configured as a Miranda wiring.
[0020] ある好適な実施形態において、隣接する前記誘電体層どうしは、前記基板の両主 面のいずれか一方においてその層端が互いに連通一体に連結成形され、かつ、隣 接誘電体層の連結部位それぞれが基板両主面の ヽずれか一方に互!、違いに設け られることで、前記複数の誘電体層は屈曲配置された一枚の誘電体シートを構成し、 前記連結部位が互い違いに並列配置されることで、前記部品内蔵基板の一の主面、 及び他の主面を構成する。 [0020] In a preferred embodiment, adjacent dielectric layers are connected and formed integrally with each other on either one of the two main surfaces of the substrate, and adjacent to each other. Each connecting part of the dielectric layer is on either side of the main surface of the substrate! The plurality of dielectric layers constitute a single dielectric sheet that is bent, and the connection parts are alternately arranged in parallel, so that one of the main boards of the component-embedded substrate is provided. And other main surfaces.
[0021] また、ある好適な実施形態にお!、て、前記内部導体パターンは前記誘電体シート の両面それぞれに設けられ、かつ前記誘電体シートの両表面それぞれに設けられる 当該内部導体パターンは、並列する複数の誘電体層形成領域にわたって設けられ るとともに、前記誘電体シートを挟んで対向配置される。  [0021] Further, in a preferred embodiment, the inner conductor pattern is provided on each of both surfaces of the dielectric sheet, and the inner conductor pattern provided on each of both surfaces of the dielectric sheet includes: It is provided over a plurality of dielectric layer forming regions arranged in parallel, and is disposed opposite to the dielectric sheet.
[0022] 前記誘電体層は、層間に設けられる絶縁性接着部材で互いに固着されるのが好ま しい。  [0022] The dielectric layers are preferably fixed to each other by an insulating adhesive member provided between the layers.
[0023] また、前記内部導体パターンは、前記連結部位で、前記絶縁性接着部材から露出 するのが好ましい。  [0023] The internal conductor pattern is preferably exposed from the insulating adhesive member at the connection portion.
[0024] また、前記コンデンサは、前記基板の一の主面側の前記連結部位に露出する前記 内部導体パターンを第 1の電極端子とし、他の主面側の前記連結部位に露出する前 記内部導体パターンを第 2の電極端子とするのが好ましい。  [0024] Also, in the capacitor, the internal conductor pattern exposed at the connection portion on one main surface side of the substrate is used as a first electrode terminal, and the capacitor is exposed at the connection portion on the other main surface side. The internal conductor pattern is preferably used as the second electrode terminal.
[0025] また、前記基板の両主面に絶縁膜が設けられ、当該絶縁膜の前記連結部位に対 向する位置に、前記内部導体パターンに達する開口部が設けられ、前記開口部に 露出する前記内部導体パターンから、前記コンデンサの両電極端子が構成されるの が好ましい。  [0025] In addition, an insulating film is provided on both main surfaces of the substrate, and an opening reaching the internal conductor pattern is provided at a position facing the connection portion of the insulating film, and is exposed to the opening. It is preferable that both electrode terminals of the capacitor are constituted by the internal conductor pattern.
[0026] また、前記絶縁膜に半導体チップが搭載され、当該半導体チップの接続端子が、 前記開口部に露出する前記コンデンサの電極端子に接続されるのが好ましい。  [0026] Preferably, a semiconductor chip is mounted on the insulating film, and a connection terminal of the semiconductor chip is connected to an electrode terminal of the capacitor exposed in the opening.
[0027] また、前記コンデンサは、前記基板の一部の領域に形成されるのが好ま 、。 [0027] Preferably, the capacitor is formed in a partial region of the substrate.
[0028] また、前記コンデンサを構成する以外の他の前記内部導体パターンの領域から当 該基板内蔵基板の内部配線が構成されるのが好ましい。 [0028] Further, it is preferable that the internal wiring of the substrate built-in substrate is formed from the region of the internal conductor pattern other than the capacitor.
[0029] また、前記内部配線を構成する前記内部導体パターンの一部は、前記連結部位ま で延出して前記基板の主面に露出し、当該露出する内部導体パターンの部位は、前 記内部配線の引き出し電極を構成するのが好ましい。 [0029] Further, a part of the internal conductor pattern constituting the internal wiring extends to the connection part and is exposed on the main surface of the substrate, and the part of the exposed internal conductor pattern is the internal part. It is preferable to configure a lead electrode for wiring.
[0030] また、前記誘電体シ―トは、高誘電率の材料で構成されるのが好ま 、。 [0031] また、前記誘電体シートは、要求される誘電率を十分に有する薄膜からなる第 1の 誘電体シートと、要求される誘電率は有さないものの機械的強度が前記第 1の誘電 体シートより高い第 2の誘電体シートとから構成され、前記第 1の誘電体シートの両面 に前記内部導体パターンが設けられたうえで、これら第 1、第 2の誘電体シートが積 層一体ィ匕されるのが好ましい。 [0030] The dielectric sheet is preferably made of a material having a high dielectric constant. [0031] The dielectric sheet includes a first dielectric sheet made of a thin film having a sufficient required dielectric constant, and a mechanical strength of the first dielectric sheet that does not have the required dielectric constant. A second dielectric sheet that is higher than the body sheet, the inner conductor pattern is provided on both sides of the first dielectric sheet, and the first and second dielectric sheets are integrated into a stack. It is preferable to be displayed.
[0032] また、本発明の部品内蔵基板は、基板両主面の対向方向に沿って配置された複数 の誘電体層を基板平面方向に沿って積層してなる基板を備え、隣接する前記誘電 体層どうしは、前記基板の両主面の 、ずれか一方にお!、てその層端が互いに連通 一体に連結成形され、隣接する誘電体層の連結部位それぞれが基板両主面の ヽず れか一方に互 、違 、に設けられることで、前記複数の誘電体層は屈曲配置された一 枚の誘電体シートを構成し、前記誘電体層は、層間に設けられる絶縁性接着部材で 互いに固着され、前記連結部位は、互い違いに並列配置されることで前記部品内蔵 基板の一の主面、及び他の主面を構成する。隣接する前記誘電体層の間に部品が 配置され、当該部品が前記絶縁接着部材により被覆される。  [0032] The component-embedded substrate of the present invention includes a substrate formed by laminating a plurality of dielectric layers arranged along the opposing direction of both main surfaces of the substrate along the substrate plane direction, and the adjacent dielectric The body layers are formed on one of the two main surfaces of the substrate, the ends of the layers are connected and integrally connected to each other, and the connecting portions of the adjacent dielectric layers are arranged at least on both main surfaces of the substrate. The plurality of dielectric layers constitute a single dielectric sheet bent and arranged on the other side, and the dielectric layers are insulating adhesive members provided between the layers. They are fixed to each other, and the connecting portions are alternately arranged in parallel to constitute one main surface and the other main surface of the component-embedded substrate. A part is disposed between the adjacent dielectric layers, and the part is covered with the insulating adhesive member.
[0033] ある好適な実施形態では、前記部品の両端に位置する前記誘電体層どうしを連結 する前記連結部位は、前記部品の幅と略同一幅の平坦部を有し、当該平坦部と当 該平坦部で連結される両誘電体層とで囲まれる領域に前記部品が収納される。  [0033] In a preferred embodiment, the connection part for connecting the dielectric layers located at both ends of the component has a flat portion having a width substantially the same as the width of the component. The component is housed in a region surrounded by both dielectric layers connected by the flat portion.
[0034] また、好適な実施形態では、前記部品が配置されて 、な 、他の誘電体層の主面に 導体パターンが形成され、当該導体パターンが当該部品内蔵基板の内部配線を構 成する。  [0034] In a preferred embodiment, the component is arranged, and a conductor pattern is formed on the main surface of another dielectric layer, and the conductor pattern constitutes an internal wiring of the component-embedded substrate. .
[0035] 前記部品は、半導体チップ、チップコンデンサ、チップ抵抗、及びチップインダクタ 力 選ばれた少なくとも 1つ以上の電子部品である力 または、ヒートスプレッダである のが好ましい。  [0035] The component is preferably a semiconductor chip, a chip capacitor, a chip resistor, a chip inductor force, a force that is at least one selected electronic component, or a heat spreader.
[0036] また、前記誘電体シートは、強誘電体フイラと熱硬化性榭脂とを含むコンポジット材 料力 なるのが好ましい。  [0036] The dielectric sheet is preferably a composite material containing a ferroelectric filler and a thermosetting resin.
[0037] 本発明の基板内蔵コンデンサは、基板両主面の対向方向に沿って配置された複 数の誘電体層が基板平面方向に沿つて積層されるとともに、当該誘電体層どうしが 絶縁性接着部材によって互いに固着されてなる基板を備える。隣接する前記誘電体 層どうしが前記基板の両主面の 、ずれか一方にお!、てその層端が互!、に連通一体 に連結成形され、かつ隣接誘電体層の連結部位それぞれが基板両主面の ヽずれか 一方に互!、違いに設けられることで、これら複数の誘電体層は屈曲配置された一枚 の誘電体シートを構成する。前記連結部位が互い違いに並列配置されることで、前 記基板の一の主面、及び他の主面を構成する。前記誘電体シートの両面に内部導 体パターンが設けられる。前記誘電体シートと、当該誘電体シートを挟んで対向する 前記内部導体パターンとでコンデンサが形成される。前記基板の一の主面側の前記 連結部位に露出する前記内部導体パターンを第 1の電極端子とし、他の主面側の前 記連結部位に露出する前記内部導体パターンを第 2の電極端子とする。 In the substrate built-in capacitor of the present invention, a plurality of dielectric layers arranged along the opposing direction of both main surfaces of the substrate are stacked along the substrate plane direction, and the dielectric layers are insulative. A substrate is provided that is fixed to each other by an adhesive member. Adjacent dielectric Layers are connected and formed on one of the two main surfaces of the substrate in such a manner that the ends of the layers are connected to each other, and the connecting portions of the adjacent dielectric layers are connected to the main surfaces of the two substrates. By being provided differently on either side, the plurality of dielectric layers constitute a single dielectric sheet bent and arranged. The connecting portions are alternately arranged in parallel to constitute one main surface of the substrate and another main surface. An internal conductor pattern is provided on both surfaces of the dielectric sheet. A capacitor is formed by the dielectric sheet and the internal conductor pattern facing each other across the dielectric sheet. The inner conductor pattern exposed at the connecting portion on one main surface side of the substrate is used as a first electrode terminal, and the inner conductor pattern exposed at the connecting portion on the other main surface side is used as a second electrode terminal. And
発明の効果  The invention's effect
[0038] 本発明は、誘電体層を挟んで両面に形成された内部導体パターンを構成要素とし てコンデンサ等の内蔵電子部品を構成しているので、コンデンサ等の電子部品にお ける部品の表面積 (電極表面積等)を大きく取れ、特性の優れた電子部品(大容量の コンデンサ等)をコンパクトに形成できる。  [0038] Since the present invention constitutes a built-in electronic component such as a capacitor using the internal conductor pattern formed on both sides with the dielectric layer in between as a constituent element, the surface area of the component in the electronic component such as a capacitor (Electrode surface area, etc.) can be increased, and electronic parts with excellent characteristics (such as large-capacity capacitors) can be compactly formed.
[0039] また、複数の誘電体層の主面上に内部導体パターンを形成することにより、電子部 品が内蔵された誘電体層とは異なる領域に、高密度な内部配線を形成することがで きる。これにより、特性の優れた電子部品と高密度な内部配線とが同時に作り込まれ た部品内蔵基板や基板内蔵コンデンサを実現することができる。 [0039] Further, by forming an internal conductor pattern on the main surface of the plurality of dielectric layers, high-density internal wiring can be formed in a region different from the dielectric layer in which the electronic component is built. it can. As a result, it is possible to realize a component-embedded substrate or a substrate-embedded capacitor in which electronic components having excellent characteristics and high-density internal wiring are simultaneously formed.
[0040] このような本発明の効果は、誘電体シートを所定の幅で交互に連続的に折り畳んで 上記誘電体層を構成する場合に、顕著に得られる。 [0040] Such an effect of the present invention is remarkably obtained when the dielectric layer is formed by alternately and continuously folding the dielectric sheet with a predetermined width.
図面の簡単な説明  Brief Description of Drawings
[0041] [図 1]本発明に関連する配線基板 1の構成を示す図である。 FIG. 1 is a diagram showing a configuration of a wiring board 1 related to the present invention.
[図 2]図 2— (A)、図 2— (B)、図 2— (C)は導体パターンが形成された誘電体シート の構造を示す図である。  FIG. 2 (A), FIG. 2 (B), and FIG. 2 (C) are diagrams showing the structure of a dielectric sheet on which a conductor pattern is formed.
[図 3]本発明に関連する配線基板の断面図である。  FIG. 3 is a cross-sectional view of a wiring board related to the present invention.
[図 4]本発明の実施形態 1に係るコンデンサを内蔵した部品内蔵基板の構成を示す 断面図である。  FIG. 4 is a cross-sectional view showing a configuration of a component built-in substrate incorporating a capacitor according to Embodiment 1 of the present invention.
[図 5]本発明のコンデンサの構成を示す拡大断面図である。 [図 6]本発明のコンデンサと内部配線が形成された部品内蔵基板の構成を示す断面 図である。 FIG. 5 is an enlarged cross-sectional view showing the configuration of the capacitor of the present invention. FIG. 6 is a cross-sectional view showing a configuration of a component-embedded substrate on which a capacitor and internal wiring of the present invention are formed.
[図 7]本発明のコンデンサの電極の取り出し方法を示す断面図である。  FIG. 7 is a cross-sectional view showing a method for taking out the electrode of the capacitor of the present invention.
[図 8]本発明のコンデンサの電極の他の取り出し方法を示す断面図である。  FIG. 8 is a cross-sectional view showing another method of taking out the electrode of the capacitor of the present invention.
圆 9]本発明の半導体チップを搭載した部品内蔵基板の構成を示す断面図である。 [9] FIG. 9 is a cross-sectional view showing a configuration of a component built-in board on which the semiconductor chip of the present invention is mounted.
[図 10]図 10—(A)〜図 10 (D)は、本発明の誘電体シートの形成方法の各段階を示 す工程図である。  FIG. 10 (A) to FIG. 10 (D) are process diagrams showing respective stages of the dielectric sheet forming method of the present invention.
圆 11A]本発明の誘電体シートの折り畳み方法を示す図である。 [11A] A diagram showing a method of folding a dielectric sheet according to the present invention.
圆 11B]本発明の誘電体シートの折り畳み方法を示す図である。 [11B] FIG. 11B is a diagram showing a method of folding a dielectric sheet according to the present invention.
圆 11C]本発明の誘電体シートの折り畳み方法を示す図である。 [11C] A diagram illustrating a method of folding a dielectric sheet according to the present invention.
[図 12]本発明の実施形態 2に係る電子部品を内蔵した部品内蔵基板の構成を示す 断面図である。  FIG. 12 is a cross-sectional view showing a configuration of a component-embedded substrate incorporating an electronic component according to Embodiment 2 of the present invention.
[図 13]本発明の実施形態 2に係る電子部品を内蔵した部品内蔵基板の構成を示す 断面図である。  FIG. 13 is a cross-sectional view showing a configuration of a component-embedded substrate incorporating an electronic component according to Embodiment 2 of the present invention.
[図 14]図 14— (A)〜図 14— (C)は、本発明の導体パターンが形成された誘電体シ ートの構造を示す図である。  FIG. 14- (A) to FIG. 14- (C) are diagrams showing the structure of a dielectric sheet on which a conductor pattern of the present invention is formed.
圆 15]本発明の電子部品を内蔵した部品内蔵基板の構成を示す断面図である。 [15] FIG. 15 is a cross-sectional view showing a configuration of a component-embedded substrate incorporating the electronic component of the present invention.
[図 16]従来のコンデンサを内蔵した多層配線基板の構成を示す断面図である。 圆 17]従来の電子部品を内蔵した多層配線基板の構成を示す断面図である。 符号の説明 FIG. 16 is a cross-sectional view showing the configuration of a multilayer wiring board incorporating a conventional capacitor. [17] FIG. 17 is a cross-sectional view showing a configuration of a multilayer wiring board incorporating a conventional electronic component. Explanation of symbols
wl 直交力向 wl orthogonal force direction
w2 基板平面方向 w2 Board plane direction
w3 方向 w3 direction
w4 離間間隔 w4 Separation interval
a 電子部品収納領域 a Electronic component storage area
2 内蔵基板 2 Built-in board
3 部品内蔵基板 3 Component built-in board
10 誘電体シート A 第 1の誘電体シート10 Dielectric sheet A First dielectric sheet
B 第 2の誘電体シートB Second dielectric sheet
a 平坦部 a Flat part
誘電体層 Dielectric layer
a 連結部位 a Connection site
内部導体パタ—ン  Internal conductor pattern
内部導体パターン  Internal conductor pattern
内部導体パターンの一部  Part of internal conductor pattern
内部導体パターンの一部  Part of internal conductor pattern
絶縁性接着層  Insulating adhesive layer
第 1の引き出し電極  First extraction electrode
外部接続用電極  External connection electrode
第 2の引き出し電極  Second extraction electrode
基板主面  Board main surface
基板主面  Board main surface
ビアホーノレ  Biahonore
外部導電パターン 30 内部導体パターンa 内部導体パターン端 External conductive pattern 30 Internal conductor pattern a End of internal conductor pattern
b 内部導体パターン端 b Inner conductor pattern end
内部導体パターン  Internal conductor pattern
絶縁膜  Insulation film
開口部  Aperture
取り出し電極  Extraction electrode
ビアホーノレ  Biahonore
半導体チップ  Semiconductor chip
接続端子  Connecting terminal
バンプ  Bump
屈曲案内溝 60 導電薄膜 Bending guide groove 60 Conductive thin film
61 導電薄膜  61 Conductive thin film
62 半硬化性絶縁シート  62 Semi-curing insulation sheet
70 治具  70 Jig
80 電子部品  80 electronic components
81 外部引出し導体パターン  81 External lead conductor pattern
81a 一端  81a one end
81b 他端  81b other end
82 外部引出し導体パターン  82 External lead conductor pattern
82a 一端  82a one end
82b 他端  82b other end
83 外部接続電極  83 External connection electrode
85 外部接続用内部導体パターン  85 Internal conductor pattern for external connection
100 配線基板  100 Wiring board
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0043] まず、従来の配線基板と異なる全く新 ヽ概念の配線基板となる本発明の基本構 成を説明する。この配線基板は、従来の多層配線基板と異なり、微細な配線パター ンの形成を必要とせず、また、信号配線が経由するビアホールの接続数を格段に減 らすことができるので、信頼性の高!、高密度配線が得られる。  [0043] First, the basic configuration of the present invention, which is a completely new concept wiring board different from the conventional wiring board, will be described. Unlike conventional multilayer wiring boards, this wiring board does not require the formation of fine wiring patterns, and the number of via-hole connections through which signal wiring is routed can be significantly reduced. High! High-density wiring can be obtained.
[0044] 図 1は、本発明の基本構成となる配線基板 100を示す図である。図 1に示す配線基 板 100は、矩形平板形状をしている。配線基板 100は複数の誘電体層 11を有する。 各誘電体層 11は、基板両主面の対向方向(厚み方向) tに沿って配置されたうえで、 対向方向 tと直交する方向 wlに沿って積層される。ここで、直交方向 wlとは、矩形 状をした配線基板 100の任意の辺に沿った一つの基板平面方向を 、う。誘電体層 1 1の表面には内部導体パターン 12、 13が設けられる。内部導体パターン 12、 13は、 誘電体層 11の両面に設けられる。隣接する誘電体層 11どうしは、基板両主面 20、 2 1の 、ずれか一方にぉ 、てその層端が互いに連通一体に連結成形される。  FIG. 1 is a diagram showing a wiring board 100 as a basic configuration of the present invention. A wiring board 100 shown in FIG. 1 has a rectangular flat plate shape. The wiring substrate 100 has a plurality of dielectric layers 11. Each dielectric layer 11 is disposed along a facing direction (thickness direction) t of both main surfaces of the substrate, and then laminated along a direction wl orthogonal to the facing direction t. Here, the orthogonal direction wl refers to one substrate plane direction along an arbitrary side of the wiring substrate 100 having a rectangular shape. Inner conductor patterns 12 and 13 are provided on the surface of the dielectric layer 11. The inner conductor patterns 12 and 13 are provided on both surfaces of the dielectric layer 11. Adjacent dielectric layers 11 are formed by connecting and forming the ends of the layers so as to communicate with each other on either side of both main surfaces 20 and 21 of the substrate.
[0045] 連結された層端は隣接する誘電体層 11の連結部位 1 laを構成する。連結部位 11 aは誘電体層 11の幅いっぱい(配線基板 100の基板幅いっぱい)、すなわち、直交 方向 w 1に対して基板平面上で直交する基板平面方向 w2に沿つて連続的に誘電体 層 11に設けられる。連結部位 11aは、各誘電体層 11の両層端に設けられる。これら 複数の連結部位 11aは、基板両主面 20、 21のいずれか一方に直交方向 wlに沿つ て互い違いに配置される。すなわち、一方の基板主面 20側の連結部位 11aに隣接 する連結部位 11aは、他方の基板主面 21に設けられ、他方の基板主面 21側の連結 部位 11aに隣接する連結部位 11aは、一方の基板主面 20に設けられる。 [0045] The connected layer ends constitute a connecting portion 1 la of adjacent dielectric layers 11. Connection site 11 a is provided in the dielectric layer 11 continuously along the full width of the dielectric layer 11 (the full width of the wiring board 100), that is, along the substrate plane direction w2 orthogonal to the orthogonal direction w1 on the substrate plane. It is done. The connecting portion 11a is provided at both ends of each dielectric layer 11. The plurality of connecting portions 11a are alternately arranged on either one of the main surfaces 20 and 21 of the substrate along the orthogonal direction wl. In other words, the connecting portion 11a adjacent to the connecting portion 11a on the one substrate main surface 20 side is provided on the other substrate main surface 21, and the connecting portion 11a adjacent to the connecting portion 11a on the other substrate main surface 21 side is It is provided on one substrate main surface 20.
[0046] これにより、複数ある誘電体層 100全体は、連結部位 11aにおいて折り畳まれること で屈曲配置される一枚の誘電体シート 10の形態をなし、さらに折り畳まれた誘電体 シ一ト 10から基板が構成される。内部導体パターン 12、 13は、このようにして誘電体 シート 10を構成する誘電体層 11に層長手方向に沿って帯状に配置される。ここで、 層長手方向とは、連結部位 11aの連結稜線方向であって、具体的には基板平面方 向 w2となる。 [0046] Thus, the plurality of dielectric layers 100 as a whole are in the form of a single dielectric sheet 10 that is bent by being folded at the connecting portion 11a, and further from the folded dielectric sheet 10. A substrate is constructed. The inner conductor patterns 12 and 13 are arranged in a strip shape along the longitudinal direction of the dielectric layer 11 constituting the dielectric sheet 10 in this way. Here, the layer longitudinal direction is the direction of the connecting ridgeline of the connecting portion 11a, and specifically, the substrate plane direction w2.
[0047] 各誘電体層 11は、層間に配置される絶縁性接着層 16で互いに固着されており、 内部導体パターン 12、 13は、絶縁性接着層 16で被覆される。これにより、配線基板 100の一方の基板主面 20は、絶縁性接着層 16で固着された複数の連結部位 11a の連続体により構成される。同様に、配線基板 100の他方の基板主面 21は、絶縁性 接着層 16で固着された複数の連結部位 1 laの連続体により構成される。  Each dielectric layer 11 is fixed to each other with an insulating adhesive layer 16 disposed between the layers, and the inner conductor patterns 12 and 13 are covered with the insulating adhesive layer 16. Thereby, one substrate main surface 20 of the wiring substrate 100 is constituted by a continuous body of a plurality of connecting portions 11a fixed by the insulating adhesive layer 16. Similarly, the other substrate main surface 21 of the wiring substrate 100 is constituted by a continuous body of a plurality of connecting portions 1 la fixed by an insulating adhesive layer 16.
[0048] 複数ある内部導体パターン 12、 13のうちの少なくとも一つは、この内部導体パター ン 12、 13が形成される誘電体層 11の表面が連結外側となる連結部位 1 laまで延出 される。これにより、内部導体パターン 12、 13の延出端はいずれか一方の主面 20、 21に露出する。同一の誘電体層 11の両面それぞれに形成される内部導体パターン 12、 13どうしは、当該誘電体層 11に形成されたビアホール 22を介して互いに接続さ れる。  [0048] At least one of the plurality of internal conductor patterns 12 and 13 is extended to a connection portion 1 la where the surface of the dielectric layer 11 on which the internal conductor patterns 12 and 13 are formed becomes the connection outside. The As a result, the extended ends of the inner conductor patterns 12 and 13 are exposed at one of the main surfaces 20 and 21. The internal conductor patterns 12 and 13 formed on both surfaces of the same dielectric layer 11 are connected to each other via via holes 22 formed in the dielectric layer 11.
[0049] 配線基板 100の主面 20、 21に露出する内部導体パターン 12、 13は、引き出し電 極 17、 18を構成する。引き出し電極 17、 18の上面は、配線基板 100に実装される 電子部品が安定して搭載できるように基板主面 20、 21と平行な平坦面となっている 。同一の誘電体層 11の両面それぞれに形成される引き出し電極 17、 18は、当該誘 電体層 11に形成されたビアホール 22を介して互 ヽに接続される。 The internal conductor patterns 12 and 13 exposed on the main surfaces 20 and 21 of the wiring board 100 constitute lead electrodes 17 and 18. The upper surfaces of the extraction electrodes 17 and 18 are flat surfaces parallel to the substrate main surfaces 20 and 21 so that electronic components mounted on the wiring substrate 100 can be stably mounted. The lead electrodes 17 and 18 formed on both surfaces of the same dielectric layer 11 They are connected to each other through via holes 22 formed in the electric conductor layer 11.
[0050] 配線基板 100は、いわば、帯状に形成された内部導体パターン 12が誘電体層 1 1 を挟んで交互に横方向に積層された格好になって ヽるので、誘電体層 11の厚さと内 部導電パタ一ン 12、 13の厚さをカ卩えた程度の微小なピッチで配線を引き回すことが できる。 In other words, the wiring board 100 has a shape in which the inner conductor pattern 12 formed in a band shape is alternately laminated in the lateral direction with the dielectric layer 11 sandwiched therebetween. In addition, the wiring can be routed at a minute pitch that is the same as the thickness of the internal conductive patterns 12 and 13.
[0051] 例えば、誘電体層 11の厚みを 4 m、内部導電パターン 12、 13の厚みを 1 mと した場合、 4〜5 mピッチという極めて高密度な配線引き回しが可能になる。これは 、最先端の多層配線基板 (例えば、ビルドアップ多層配線基板)における 40 mピッ チ配線と比較しても、 8〜: LO層の配線層に匹敵する配線密度である。  For example, when the thickness of the dielectric layer 11 is 4 m and the thickness of the internal conductive patterns 12 and 13 is 1 m, it is possible to route wiring with a very high density of 4 to 5 m. This is a wiring density comparable to the wiring layer of 8-: LO layer even when compared with 40 m pitch wiring in a state-of-the-art multilayer wiring board (for example, build-up multilayer wiring board).
[0052] さらに、配線基板 100においては、内部導電パタ一ン 12、 13は、絶縁性接着層 16 で被覆されており、いわば、配線基板 100内に内装された格好になっているので、配 線基板 100の主面上に形成される外部接続端子に何ら阻害されることなぐ狭ピッチ を維持したまま高密度配線が可能となる。  Furthermore, in the wiring board 100, the internal conductive patterns 12 and 13 are covered with the insulating adhesive layer 16, so to speak, the wiring board 100 is arranged in the interior of the wiring board 100. High-density wiring is possible while maintaining a narrow pitch that is not obstructed by external connection terminals formed on the main surface of the wire substrate 100.
[0053] 図 1に示した配線基板 1は、図 2— (A)〜図 2— (C)、及び図 3に示す方法で、誘電 体シートを交互に折り畳むことによって形成することができる。  The wiring board 1 shown in FIG. 1 can be formed by alternately folding dielectric sheets by the methods shown in FIGS. 2- (A) to 2- (C) and FIG.
[0054] 図 2—(A)〜図 2—(C)はそれぞれ、折り畳む前の誘電体シート 10の平面図、 X— Yにおける断面図、及び底面図を示す。図 2— (A)に示すように、矩形形状を有する 誘電体シート 10に、後に折り畳む際に、誘電体シート 10の一方表面からみて山とな る山側線 P— P' と、谷となる谷側線 Q— Q' とを仮想的に設定する。これら山側線 P - Ρ' と谷側線 Q— Q' とは、誘電体シート 10の一方辺に沿った方向 w3に沿って設 定される。さらに、山側線 P— P' と谷側線 Q— とは、交互にかつ互いに平行に かつ一定間隔に設定される。ここで、方向 w3は、配線基板 100における基板平面方 向 w2と同方向になる方向である。  FIGS. 2- (A) to 2- (C) respectively show a plan view, a sectional view at XY, and a bottom view of the dielectric sheet 10 before being folded. As shown in FIG. 2 (A), when the dielectric sheet 10 having a rectangular shape is folded later, the peak side line PP ′ that becomes a mountain when viewed from one surface of the dielectric sheet 10 becomes a valley. The valley side line Q—Q 'is virtually set. These mountain side lines P − Ρ ′ and valley side lines Q—Q ′ are set along the direction w 3 along one side of the dielectric sheet 10. Further, the peak line P—P ′ and the valley line Q— are set alternately, parallel to each other, and at regular intervals. Here, the direction w3 is a direction that is the same direction as the substrate plane direction w2 in the wiring substrate 100.
[0055] まず、図 2— (A)に示すように、誘電体シート 10の一方の表面に内部導体パターン 12が帯状に形成される。任意の内部導体パターン 12は、山側線 P— P' を越える位 置まで延出形成されて、第 1の引き出し電極 17を構成する。同じぐ図 2— (C)に示 すように、誘電体シート 10の他方の表面に、内部導体パターン 13が帯状に形成され る。内部導体パターン 12と内部導体パターン 13とは、誘電体シート 10を挟んで対向 配置される。 First, as shown in FIG. 2 (A), the inner conductor pattern 12 is formed in a strip shape on one surface of the dielectric sheet 10. The arbitrary internal conductor pattern 12 is formed so as to extend to a position exceeding the peak line P—P ′, and constitutes a first lead electrode 17. Similarly, as shown in FIG. 2C, the inner conductor pattern 13 is formed in a strip shape on the other surface of the dielectric sheet 10. The inner conductor pattern 12 and the inner conductor pattern 13 face each other with the dielectric sheet 10 in between. Be placed.
[0056] 第 1の引き出し電極 17を有する内部導体パターン 12と対向する内部導体パターン 13は、谷側線 Q— を越える位置まで延出形成されており、この延出端力ゝら第 2の 引き出し電極 19のパターンが構成される。  [0056] The inner conductor pattern 13 opposite to the inner conductor pattern 12 having the first lead electrode 17 is formed to extend to a position exceeding the trough side line Q-. A pattern of electrodes 19 is formed.
[0057] ここで、内部導体パターン 12、 13の両側には山側線 P— または谷側線 Q— Q ' が配置されており、これらの線 P— P^ ,Q— Q' の中力 一方を選択し、選択した 線まで内部導体パターン 12、 13を延出させて引き出し電極 17、 19を形成する。線 P -Ρ' ,Q— Q' の選択は次のように実施される。誘電体シート 10は、図 2— (A)〜図 2 (C)に示すように、線 P— ,Q— Q' に沿って交互に折り畳まれる。内部導体パ ターン 12、 13を線 P— P' ,Q— Q' に向けて延出させた場合、その延出端が屈曲状 態の誘電体シート 10のシート内部に位置する場合と、シート外部に位置する場合と 力 S生じる。内部導体パターン 12、 13の延出側としては、パターン延出端が屈曲状態 の誘電体シート 10のシート外部に位置する線 P— ^ ,Q— Q' が選択される。  [0057] Here, mountain side lines P— or valley side lines Q— Q ′ are arranged on both sides of the inner conductor patterns 12, 13, and the medium force one of these lines P— P ^ and Q— Q ′ is Then, the inner conductor patterns 12 and 13 are extended to the selected line to form lead electrodes 17 and 19. The selection of the line P -Ρ ', Q—Q' is performed as follows. As shown in FIGS. 2 (A) to 2 (C), the dielectric sheet 10 is alternately folded along the lines P— and Q—Q ′. When the inner conductor patterns 12 and 13 are extended toward the lines P—P ′ and Q—Q ′, the extension end is located inside the sheet of the dielectric sheet 10 in the bent state, and the sheet When it is located outside, force S is generated. As the extending side of the inner conductor patterns 12 and 13, the lines P— ^ and Q—Q ′ positioned outside the sheet of the dielectric sheet 10 whose pattern extending ends are bent are selected.
[0058] 図 2— (B)〖こ示すように、誘電体シート 10には、予め、ビアホール 22が形成されて いる。ビアホール 22は、第 1の引き出し電極 17が形成される内部導体パターン 12と 第 2の引き出し電極 19が形成される内部導体パターン 13とが対向する位置に形成さ れる。ビアホール 22は、誘電体シート 10をその厚み方向に貫通して形成される貫通 孔に、層間接続導体 (金属導体)が充填されて構成される。ビアホール 22は、引き出 し電極 17、 19にできる限り近接する位置に配置される。  As shown in FIG. 2- (B), via holes 22 are formed in the dielectric sheet 10 in advance. The via hole 22 is formed at a position where the inner conductor pattern 12 where the first lead electrode 17 is formed and the inner conductor pattern 13 where the second lead electrode 19 is formed face each other. The via hole 22 is configured by filling a through-hole formed through the dielectric sheet 10 in the thickness direction with an interlayer connection conductor (metal conductor). The via hole 22 is arranged at a position as close as possible to the extraction electrodes 17 and 19.
[0059] これにより、第 1の引き出し電極 17と第 2の引き出し電極 19とは、ビアホール 22 (層 間接続導体)に当接することで、互いに接続される。  Accordingly, the first extraction electrode 17 and the second extraction electrode 19 are connected to each other by contacting the via hole 22 (interlayer connection conductor).
[0060] 次に、図 3に示すように、誘電体シート 10を、山側線 P— と谷側線 Q— Q' に沿 つて交互に連続的に折り畳む。その際、誘電体シート 10の一方表面からみて山側線 Next, as shown in FIG. 3, the dielectric sheet 10 is alternately and continuously folded along the peak side line P— and the valley side line Q—Q ′. At that time, when viewed from one surface of the dielectric sheet 10,
Ρ-Ρ' が山形状となり谷側線 Q— が谷形状となるように折り畳む。これにより誘 電体層 11が、基板平面方向に沿って積層されてなる配線基板 100の構造が具体ィ匕 する。ここで、誘電体層 11の層端は、誘電体シート 10を交互に折り畳むことによって 形成される連結部位 11aで連結される。連結部位 11aは複数設けられ、各連結部位 11aは各誘電体層 11の両層端の一方に交互に配置される。さらに、各誘電体層 11 の間に、絶縁性接着層 (絶縁性接着部材) 16を充填することによって、各誘電体層 1 1を互いに固着させる。これにより、互いに重畳された部位力もなる複数の誘電体層 1 1が形成される。 Fold it so that Ρ-Ρ 'has a mountain shape and the valley side line Q— has a valley shape. As a result, the structure of the wiring substrate 100 in which the dielectric layer 11 is laminated along the substrate plane direction is specific. Here, the layer ends of the dielectric layers 11 are connected by connecting portions 11a formed by alternately folding the dielectric sheets 10. A plurality of connecting portions 11a are provided, and each connecting portion 11a is alternately arranged on one of the both ends of each dielectric layer 11. Furthermore, each dielectric layer 11 Insulating adhesive layers (insulating adhesive members) 16 are filled in between, thereby fixing the dielectric layers 11 to each other. As a result, a plurality of dielectric layers 11 having partial forces superimposed on each other are formed.
[0061] 誘電体シート 10を折り畳む際、引き出し電極 17、 19は、連結部位 11aの連結外側 に位置して配線基板 100の主面 20、 21に露出する。  [0061] When the dielectric sheet 10 is folded, the extraction electrodes 17 and 19 are exposed on the main surfaces 20 and 21 of the wiring board 100, located outside the connection portion 11a.
[0062] 図 3からも明らかなように、引き出し電極 17は、一体成形された同材料によよって内 部導体パターン 12に連結しており、引き出し電極 19は、一体成形された同材料によ り内部導体パターン 13に連結している。さらに、内部導体パターン 12と内部導体パ ターン 13とは、ビアホール 22を介して互いに接続されている。これにより、第 1の引き 出し電極 17と第 2の引き出し電極 19とは互いに電気的に接続される。  As is apparent from FIG. 3, the extraction electrode 17 is connected to the inner conductor pattern 12 by the same material formed integrally, and the extraction electrode 19 is formed of the same material formed integrally. Connected to the inner conductor pattern 13. Further, the inner conductor pattern 12 and the inner conductor pattern 13 are connected to each other through the via hole 22. Thereby, the first extraction electrode 17 and the second extraction electrode 19 are electrically connected to each other.
[0063] ここで、第 1の引き出し電極 17と第 2の引き出し電極 19とに、それぞれ外部接続用 電極(図示せず)を形成すれば、配線基板 110の両主面 20、 21に搭載された回路 部品の所定の接続電極を、それぞれ外部接続用電極に接続することによって、回路 部品間を信号線で繋ぐことができる。  Here, if external connection electrodes (not shown) are respectively formed on the first lead electrode 17 and the second lead electrode 19, they are mounted on both main surfaces 20, 21 of the wiring board 110. By connecting the predetermined connection electrodes of the circuit components to the external connection electrodes, the circuit components can be connected by signal lines.
[0064] なお、上記例では、ビアホール 22を誘電体層 11に 1つ形成した場合を説明したが 、内部導体パターン 12と内部導体パターン 13とは、誘電体層 11を挟んで平行に形 成されているので、ビアホールはその間のどの箇所でも形成することが可能である。  In the above example, the case where one via hole 22 is formed in the dielectric layer 11 has been described. However, the inner conductor pattern 12 and the inner conductor pattern 13 are formed in parallel with the dielectric layer 11 in between. Therefore, the via hole can be formed at any point in between.
[0065] 以上のように、配線基板 100は、従来の配線基板では達し得なカゝつた狭ピッチ配線 を有する高密度配線を実現するものであるが、実際に複数の LSIを配線基板に搭載 する際には、 LSI間を接続する配線以外に、コンデンサや電子部品等も搭載すること が必要となる。膨大な情報量を処理する必要のある近年の電子機器にとっては、高 密度配線に加えて、高性能な部品を内蔵できる配線基板が要望されている。  [0065] As described above, the wiring board 100 realizes high-density wiring having narrow pitch wiring that cannot be achieved by the conventional wiring board, but actually mounts a plurality of LSIs on the wiring board. In addition to wiring that connects LSIs, it is necessary to mount capacitors and electronic components. For recent electronic equipment that needs to process a huge amount of information, in addition to high-density wiring, there is a demand for wiring boards that can incorporate high-performance components.
[0066] そこで、本願発明者は、配線基板 100は、互いに重畳された部位力 なる誘電体 層 11で構成されるが、そもそも、この誘電体層 11は、交互に折り畳まれた連続した誘 電体シート 10からなるので、この誘電体シート 10自身力 コンデンサの誘電体コアに なり得ることに着目した。すなわち、高密度配線を構成する誘電体層 11とは別に、交 互に連続的に折り畳まれた誘電体シート 10を挟んで両面に内部導体パターンを形 成することによって、コンデンサを構成することができることになる。誘電体シート 10は 、高密度に折り畳むことができるので、高密度配線に加えて、大容量なコンデンサを 内蔵する配線基板を得ることができる。 [0066] In view of this, the inventor of the present application has the wiring substrate 100 composed of the dielectric layers 11 having the partial force superimposed on each other, but the dielectric layers 11 are essentially continuous electric charges folded alternately. Since it is composed of the body sheet 10, it was noted that the dielectric sheet 10 itself could be the dielectric core of the power capacitor. In other words, apart from the dielectric layer 11 constituting the high-density wiring, the capacitor can be configured by forming the inner conductor pattern on both sides with the dielectric sheet 10 folded continuously alternately. It will be possible. Dielectric sheet 10 Since it can be folded at high density, it is possible to obtain a wiring board containing a large-capacity capacitor in addition to high-density wiring.
[0067] 以下に、上記着目点に基づいて構成された本発明の各実施の形態について、図 面を参照しながら説明する。以下の図面においては、説明の簡略化のため、実質的 に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の 実施形態に限定されない。  In the following, each embodiment of the present invention configured based on the above points of interest will be described with reference to the drawings. In the following drawings, components having substantially the same function are denoted by the same reference numerals for the sake of simplicity. The present invention is not limited to the following embodiment.
[0068] (実施形態 1)  [Embodiment 1]
図 4は、本発明の実施形態 1における部品内蔵基板 2の基本な構成を示した断面 図である。図 4の基本構成は、図 1と同様であり、同一ないし同様の構成には同一の 符号を付す。なお、部品内蔵基板 2は、換言すれば、基板内蔵コンデンサとみなすこ とができるが、以下の各実施形態の説明では、それらを総称して部品内蔵基板として 説明する。  FIG. 4 is a cross-sectional view showing a basic configuration of the component-embedded substrate 2 according to the first embodiment of the present invention. The basic configuration in FIG. 4 is the same as that in FIG. 1, and the same or similar components are denoted by the same reference numerals. In other words, the component built-in substrate 2 can be regarded as a substrate built-in capacitor, but in the following description of each embodiment, they are collectively referred to as a component built-in substrate.
[0069] 図 4に示すように、部品内蔵基板 2は、所定の幅で交互に連続的に折り畳まれた誘 電体層シート 10と、誘電体層シート 10の両面に形成された内部導体パターン 30、 3 1とを備える。折り畳まれた誘電体シート 10の構成は、基本的には、図 1の配線基板 100と同様の構成を有しており、部品内蔵基板 2の基材を構成している。部品内蔵基 板 2では、誘電体層シート 10と当該誘電体シート 10を挟む内部導体パターン 30、 3 1とでコンデンサが構成される。  As shown in FIG. 4, the component-embedded substrate 2 includes the dielectric layer sheet 10 that is alternately and continuously folded with a predetermined width, and the internal conductor pattern formed on both surfaces of the dielectric layer sheet 10. 30 and 3 1 are provided. The configuration of the folded dielectric sheet 10 is basically the same as that of the wiring board 100 of FIG. 1 and constitutes the base material of the component-embedded board 2. In the component-embedded substrate 2, a capacitor is configured by the dielectric layer sheet 10 and the internal conductor patterns 30 and 31 sandwiching the dielectric sheet 10.
[0070] なお、図 4に示した部品内蔵基板 2は、図 1に示す内部配線パターンの高密度形成 領域を有している。し力しながら、図 4において、高密度形成領域は図示省略されて いる。誘電体シ―ト 10では、その一部の領域にコンデンサが形成され、他の領域に 内部配線パターンの高密度形成領域が形成される。  Note that the component-embedded substrate 2 shown in FIG. 4 has a high-density formation region of the internal wiring pattern shown in FIG. However, in FIG. 4, the high density formation region is not shown. In the dielectric sheet 10, a capacitor is formed in a part of the region, and a high density formation region of the internal wiring pattern is formed in the other region.
[0071] ここで、折り畳まれた誘電体シ―ト 10は、誘電体シ―ト 10を交互に折り畳むことによ つて形成された連結部位 1 laを複数有しており、これら連結部位 1 laが並列配置さ れることで、部品内蔵基板 2の一の基板主面 20、及び他の基板主面 21が構成される  Here, the folded dielectric sheet 10 has a plurality of connecting parts 1 la formed by alternately folding the dielectric sheets 10, and these connecting parts 1 la Are arranged in parallel, one substrate main surface 20 of the component-embedded substrate 2 and another substrate main surface 21 are formed.
[0072] また、誘電体シート 10は、折り畳まれた状態で、誘電体層 11の層間に配置された 絶縁性接着部材 16によって一体ィ匕する。内部導体パターン 30、 31は、主面 20、 21 (連結部位 11a)において外部に露出する。外部に露出する内部導体パターン 30、 3 1は、それぞれコンデンサの第 1の電極端子、及び第 2の電極端子を構成する。 [0072] In addition, the dielectric sheet 10 is united by an insulating adhesive member 16 disposed between the dielectric layers 11 in a folded state. The inner conductor patterns 30, 31 are the main surfaces 20, 21 It is exposed to the outside at (connection part 11a). The internal conductor patterns 30 and 31 exposed to the outside constitute a first electrode terminal and a second electrode terminal of the capacitor, respectively.
[0073] 誘電体シート 10としては、例えば、 TiBaO等の強誘電体フイラと熱硬化性榭脂との [0073] Examples of the dielectric sheet 10 include a ferroelectric filler such as TiBaO and a thermosetting resin.
3  Three
コンポジット材カもなるシート等を用いることができる力 より誘電率が高く薄くできる 材料を用いれば、より容量の大きなコンデンサを得ることができる。 LSIの電源のデカ ップリング等の目的には、 lOOnF以上のコンデンサが必要となる。  Capacitors with higher capacitance can be obtained by using a material that has a higher dielectric constant and can be made thinner than the force that can be used for a sheet that also becomes a composite material. For the purpose of decoupling the LSI power supply, a capacitor of lOOnF or more is required.
[0074] 誘電体シートとして、コンポジットシート(商品名 C Ply (住友スリーェム製))を用い た場合を例に取ると、 4 mと薄い誘電体シートが適用可能であって、シート単層とし ては、 3. 5nFZcm2というコンデンサ内蔵基板の中では大きな容量が得られる。しか しながら、本シートを用いた従来のコンデンサ内蔵基板ではデカップリング等の目的 を達成するのに十分な容量を得ることができな 、。 [0074] Taking the case of using a composite sheet (trade name: C Ply (manufactured by Sumitomo 3EM)) as an example of a dielectric sheet, a dielectric sheet as thin as 4 m can be applied. a large capacity can be obtained in a capacitor built-in substrate of 3. 5nFZcm 2. However, the conventional capacitor-embedded substrate using this sheet cannot obtain a capacity sufficient to achieve the purpose of decoupling and the like.
[0075] これに対して、本シートを誘電体シート 10にして、本発明を構成した場合を考える。  [0075] On the other hand, consider the case where the present invention is configured by using the dielectric sheet 10 as the present sheet.
その場合、例えば、シート厚みを 4 m、シートの折り畳み幅 (部品内蔵基板 2の基材 厚み)を lmm、折り畳みの間隔(山と山のピッチ)を 40 mとすると、 1cmあたり 500 層折り畳むことが可能となる。そうした構成において、誘電体シートを上記コンポジット シートから構成すると、コンデンサ内蔵基板全体として、 175nF/cm2のコンデンサ 容量を得ることができる。 In this case, for example, if the sheet thickness is 4 m, the folding width of the sheet (base material thickness of the component-embedded board 2) is lmm, and the folding interval (pitch between peaks and peaks) is 40 m, then 500 layers are folded per cm. Is possible. In such a configuration, when the dielectric sheet is composed of the composite sheet, a capacitor capacity of 175 nF / cm 2 can be obtained as the entire capacitor built-in substrate.
[0076] このように、本発明の部品内蔵基板においては、従来の部品内蔵基板に比べて約 50倍という極めて大きな容量のコンデンサを基板に内蔵させることができ、従来では 難しかった LSIのデカップリングに用いるコンデンサをコンパクトに内蔵することが可 能となる。  As described above, in the component-embedded substrate of the present invention, a capacitor having an extremely large capacity of about 50 times that of the conventional component-embedded substrate can be incorporated in the substrate, and LSI decoupling, which has been difficult in the past, is difficult. It is possible to incorporate a capacitor for use in a compact.
[0077] なお、誘電体シート 10は、部品内蔵基板 2の基材を構成するので、ある程度の機 械的強度が要求され、その材料選択には制約がある。そのような制約を果たしたうえ で十分な電気特性 (容量等)を得るには、誘電体シート 10は例えば次のように構成さ れる。すなわち、要求される機械的強度を有さないもののコンデンサ等の電子部品と して要求される誘電率を十分に有する誘電体薄膜から第 1の誘電体シート 10Aを構 成する。この第 1の誘電体シート 10Aの両面に内部導体パターン 30、 31をそれぞれ 形成する。 [0078] さらには、第 2の誘電体シート 10Bを用意し、この第 2の誘電体シート 10Bを第 1の 誘電体シート 10Aの一方の面に貼着させる。ここで、第 2の誘電体シート 10Bとして は、コンデンサ等の電子部品として要求される誘電率を有さな!/、ものの前記第 1の誘 電体シート 10Aより機械的強度が十分に高い誘電体シートを用意する。 [0077] Since the dielectric sheet 10 forms the base material of the component-embedded substrate 2, a certain degree of mechanical strength is required, and selection of the material is limited. In order to obtain sufficient electrical characteristics (capacity, etc.) while satisfying such restrictions, the dielectric sheet 10 is configured as follows, for example. That is, the first dielectric sheet 10A is composed of a dielectric thin film that does not have the required mechanical strength but has a sufficient dielectric constant required as an electronic component such as a capacitor. Internal conductor patterns 30 and 31 are formed on both surfaces of the first dielectric sheet 10A, respectively. [0078] Further, a second dielectric sheet 10B is prepared, and the second dielectric sheet 10B is adhered to one surface of the first dielectric sheet 10A. Here, the second dielectric sheet 10B does not have a dielectric constant required for an electronic component such as a capacitor! / Although the dielectric strength is sufficiently higher than that of the first dielectric sheet 10A. Prepare a body sheet.
[0079] こうして構成した複層誘電体シート(10A+ 10B)を折り畳んで一体ィ匕することでコ ンデンサを構成する。そうすれば、第 2の誘電体シート 10Bによって基材としての役 目(機械的強度保持)を発揮させたうえで、十分に誘電率の高い第 1の誘電体シート 10A (誘電体薄膜)を誘電体コアにして大容量のコンデンサを形成することができる。  [0079] The multilayer dielectric sheet (10A + 10B) configured in this way is folded and integrated to form a capacitor. Then, the first dielectric sheet 10A (dielectric thin film) having a sufficiently high dielectric constant can be obtained after the role as the base material (maintaining mechanical strength) is exhibited by the second dielectric sheet 10B. A large capacity capacitor can be formed by using a dielectric core.
[0080] 図 5は、そのようにして形成されたコンデンサの構成を、折り畳まれた複層誘電体シ ート(10A+ 10B)の一部を拡大して示す断面図である。図 5に示すように、要求され る誘電率を十分に有する誘電体薄膜からなる第 1の誘電体シート 10Aと、誘電率は 第 1の誘電体シート 10Aより低いものの機械的強度が第 1の誘電体シート 10Aより高 い誘電体シートからなる第 2の誘電体シート 10Bとを用意する。そのうえで、第 1の誘 電体シート 10Aの主面に内部導体パターン 30、内部導体パターン 31を形成する。さ らに第 1の誘電体シート 10Aの一方表面に第 2の誘電体シート 10Bを積層することで 、全体としてシート形態とする。そして、この状態の複層誘電体シート(10A+ 10B)を 折り畳んで絶縁性接着剤層 16で接着して一体化することで、コンデンサを構成する  FIG. 5 is a cross-sectional view showing, in an enlarged manner, a part of the folded multilayer dielectric sheet (10A + 10B), the configuration of the capacitor thus formed. As shown in FIG. 5, the first dielectric sheet 10A made of a dielectric thin film having a sufficient required dielectric constant, and the mechanical strength of the first dielectric sheet 10A is lower than that of the first dielectric sheet 10A. A second dielectric sheet 10B made of a dielectric sheet higher than the dielectric sheet 10A is prepared. Then, the inner conductor pattern 30 and the inner conductor pattern 31 are formed on the main surface of the first dielectric sheet 10A. Further, the second dielectric sheet 10B is laminated on one surface of the first dielectric sheet 10A, thereby forming a sheet form as a whole. Then, the multilayer dielectric sheet (10A + 10B) in this state is folded and bonded and integrated with the insulating adhesive layer 16 to constitute a capacitor.
[0081] 第 1の誘電体シート 10Aは、図 1等に記載した誘電体シート 10に比べて、その厚み を数分の一に薄くできるので、誘電体シート 10全体を誘電体コアとして形成したコン デンサに比べて、さらに大きな容量のコンデンサを形成することができる。しかもその 場合であっても、コンデンサ全体の機械的強度を第 2の誘電体シート 10Bにより維持 することができる。 [0081] Since the thickness of the first dielectric sheet 10A can be reduced to a fraction of that of the dielectric sheet 10 described in FIG. 1 and the like, the entire dielectric sheet 10 is formed as a dielectric core. Compared with a capacitor, a capacitor having a larger capacity can be formed. Moreover, even in that case, the mechanical strength of the entire capacitor can be maintained by the second dielectric sheet 10B.
[0082] ところで、部品内蔵基板 1では、コンデンサが形成された領域以外の他の領域にお いて、図 1に示す内部配線が形成される。図 6は、コンデンサと内部配線が、誘電体 シート 10の異なる領域 (A)、 (B)に形成された部品内蔵基板 2を示す。領域 (A)で は、誘電体シート 10の両面に内部導体パターン 30、 31が形成されてコンデンサが 構成され、領域 (B)では、誘電体シート 10 (誘電体層)の両面に、内部導体パターン 12、 13が形成されて内部配線が構成される。 Incidentally, in the component built-in substrate 1, the internal wiring shown in FIG. 1 is formed in a region other than the region where the capacitor is formed. FIG. 6 shows the component-embedded substrate 2 in which the capacitor and the internal wiring are formed in different regions (A) and (B) of the dielectric sheet 10. In the region (A), the inner conductor patterns 30 and 31 are formed on both surfaces of the dielectric sheet 10 to form a capacitor. In the region (B), the inner conductor patterns are formed on both surfaces of the dielectric sheet 10 (dielectric layer). pattern 12 and 13 are formed to constitute the internal wiring.
[0083] ここで、コンデンサを構成する領域の誘電体シート 10は、できるだけ高誘電率であ ることが好ましいが、内部配線を構成する領域の誘電体シート 10 (誘電体層)は、で きるだけ低誘電率であることが好ましい。故に、同一の材料で構成される誘電体シー ト 10を用いる限り、内部配線に対する要求と、コンデンサに対する要求を同時に満た すことは難しい。その場合には、誘電体シート 10を、上述した図 5における第 2の誘 電体シート 10B力も構成したうえで、そのシート 10Bの一部の領域 (A)に、上述した 図 5における内部導体パターン 30、 31および第 1の誘電体シート 10Aを形成するこ とで、領域 (A)に選択的にコンデンサを形成する。そうすれば、上記の要求を同時に 満たすことが可能となる。  Here, it is preferable that the dielectric sheet 10 in the region constituting the capacitor has as high a dielectric constant as possible, but the dielectric sheet 10 (dielectric layer) in the region constituting the internal wiring can be formed. Only a low dielectric constant is preferred. Therefore, as long as the dielectric sheet 10 made of the same material is used, it is difficult to satisfy the requirements for the internal wiring and the capacitor at the same time. In that case, the dielectric sheet 10 is also configured with the second dielectric sheet 10B force in FIG. 5 described above, and the inner conductor in FIG. 5 described above is formed in a partial region (A) of the sheet 10B. Capacitors are selectively formed in the region (A) by forming the patterns 30 and 31 and the first dielectric sheet 10A. Then, the above requirements can be satisfied at the same time.
[0084] なお、図 6に示すように、領域 (B)で、誘電体シート(誘電体層) 10の主面上に形成 された内部導体パタ—ン 12、 13の一部は、誘電体シ―ト 10の連結部位 11aまで延 在されることによって、部品内蔵基板の主面上に露出され、露出された導体パターン の一部が、内部導体パターン 12、 13の引き出し電極 17、 19をなしている。  As shown in FIG. 6, in the region (B), part of the internal conductor patterns 12 and 13 formed on the main surface of the dielectric sheet (dielectric layer) 10 By extending to the connecting part 11a of the sheet 10, the part of the exposed conductor pattern is exposed on the main surface of the component-embedded board, and the exposed electrodes 17, 19 of the inner conductor patterns 12, 13 are exposed. There is no.
[0085] 図 4に示すコンデンサは、部品内蔵基板 2の両面に内部導体パターン 30、 31の一 部 14、 15が露出しているが、通常は、部品内蔵基板 2は、その表面が絶縁されてい ることが望ましい。図 7は、部品内蔵基板 2の主面に絶縁膜を形成した場合の、コン デンサの電極の取り出し構成を示す図である。  In the capacitor shown in FIG. 4, parts 14 and 15 of the internal conductor patterns 30 and 31 are exposed on both surfaces of the component-embedded substrate 2, but the surface of the component-embedded substrate 2 is usually insulated. It is desirable that FIG. 7 is a diagram showing a configuration for extracting the capacitor electrode when an insulating film is formed on the main surface of the component-embedded substrate 2.
[0086] 図 7に示すように、部品内蔵基板 2の両主面に絶縁膜 32、 32が形成される。絶縁 膜 32には、基板主面 20、 21 (誘電体層 11の連結部位 11a)に達する開口部 33が形 成される。開口部 33は、内部導体パターン 30、 31の端部が基板 2の表面に露出す る位置に選択的に設けられる。これにより、内部導体パターン 30、 31は開口部 33の 底部に露出し、この露出内部導体パターン 30、 31によりコンデンサの電極端子が構 成される。実際には、開口部 33の周面力もその周縁の絶縁膜 32表面にわたって取り 出し電極 34が形成されており、この取り出し電極 34からコンデンサの電極端子が構 成される。  As shown in FIG. 7, insulating films 32 and 32 are formed on both main surfaces of the component-embedded substrate 2. The insulating film 32 is formed with an opening 33 reaching the substrate main surfaces 20 and 21 (the connecting portion 11a of the dielectric layer 11). The opening 33 is selectively provided at a position where the end portions of the internal conductor patterns 30 and 31 are exposed on the surface of the substrate 2. As a result, the inner conductor patterns 30 and 31 are exposed at the bottom of the opening 33, and the exposed inner conductor patterns 30 and 31 constitute electrode terminals of the capacitor. Actually, an extraction electrode 34 is formed over the surface of the insulating film 32 at the peripheral edge of the peripheral surface force of the opening 33, and the electrode terminal of the capacitor is constituted by the extraction electrode 34.
[0087] 図 7においては、コンデンサの電極端子は、部品内蔵基板 2の両面それぞれから取 り出されているが、図 8に示すように、部品内蔵基板 2の一方の主面 20側力も取り出 されてもよい。以下、説明する。 In FIG. 7, the electrode terminals of the capacitor are taken out from both surfaces of the component built-in substrate 2, but as shown in FIG. Out May be. This will be described below.
[0088] 誘電体シート 10の一方面側の内部導体パターン 30は、内部導体パターン端 30aと 内部導体パターン端 30bとを有する。内部導体パターン端 30aは本体側の内部導体 パターン 30に物理的に連結して電気的に接続される。内部導体パターン端 30bは、 本体側の内部導体パターン 30と物理的に分離されて電気的に絶縁される。一方の 基板主面 20側に選択的に複数(図では 2つ)の開口部 33a、 33bが形成される。これ ら開口部 33a、 33bそれぞれに取り出し電極 34a、 34bが設けられる。  [0088] The inner conductor pattern 30 on one side of the dielectric sheet 10 has an inner conductor pattern end 30a and an inner conductor pattern end 30b. The inner conductor pattern end 30a is physically connected and electrically connected to the inner conductor pattern 30 on the main body side. The inner conductor pattern end 30b is physically separated from the inner conductor pattern 30 on the main body side and electrically insulated. A plurality (two in the figure) of openings 33a and 33b are selectively formed on one substrate main surface 20 side. Extraction electrodes 34a and 34b are provided in the openings 33a and 33b, respectively.
[0089] 内部導体パターン端 30aは、一方の開口部 33aで取り出し電極 34aに接続される。  The inner conductor pattern end 30a is connected to the extraction electrode 34a through one opening 33a.
これ〖こより、内部導体パターン 30は取り出し電極 34aに接続される。内部導体パター ン端 30bは、他方の開口部 33bで取り出し電極 34bに接続される。また、内部導体パ ターン端 30bは、ビアホール 35を介して内部導体パターン 31の内部導体パターン端 31b〖こ接続される。これ〖こより、内部導体パターン 31は取り出し電極 34bに接続され る。  Thus, the inner conductor pattern 30 is connected to the extraction electrode 34a. The inner conductor pattern end 30b is connected to the extraction electrode 34b through the other opening 33b. Further, the inner conductor pattern end 30 b is connected to the inner conductor pattern end 31 b of the inner conductor pattern 31 through the via hole 35. Thus, the inner conductor pattern 31 is connected to the extraction electrode 34b.
[0090] 図 9は、コンデンサが形成された部品内蔵基板 2の取り出し電極形成面に、半導体 チップを搭載した状態を示す図である。ここで用いる部品内蔵基板 2の構成は、基本 的には図 7、図 8に示す構成と同様である。  FIG. 9 is a diagram showing a state in which a semiconductor chip is mounted on the surface of the lead-out electrode forming surface of the component built-in substrate 2 on which the capacitor is formed. The configuration of the component-embedded substrate 2 used here is basically the same as the configuration shown in FIGS.
[0091] 図 9に示すように、部品内蔵基板 2の取り出し電極形成面上に設けられた絶縁膜 3 2上に半導体チップ 40が搭載される。半導体チップ 40の接続端子 41は、バンプ 42 を介して、絶縁膜 32上の取り出し電極 34に接続される。この構成では、部品内蔵基 板 2に形成されたコンデンサは、半導体チップ 40の直下に配置することができるので 、デカップリングコンデンサとして機能を発揮することができる。  As shown in FIG. 9, the semiconductor chip 40 is mounted on the insulating film 32 provided on the extraction electrode formation surface of the component-embedded substrate 2. The connection terminal 41 of the semiconductor chip 40 is connected to the extraction electrode 34 on the insulating film 32 via the bump 42. In this configuration, the capacitor formed on the component-embedded substrate 2 can be disposed immediately below the semiconductor chip 40, and therefore can function as a decoupling capacitor.
[0092] 次に、部品内蔵基板の製造方法について、図 10及び図 11を参照しながら、説明 する。図 10— (A)〜図 10— (D)は、折り畳む前までの誘電体シ―トを形成する工程 を示す。まず、図 10— (A)に示すように、一定の幅を有する誘電体シ―ト 10を用意 する。次に、図 10—(B)に示すように、誘電体シート 10の表面上に、誘電体シート 1 0の幅方向 w3 (紙面に垂直な方向であって図 2参照)に沿って、仮想的な折り畳みの 山側線 P— P' 、及び谷側線 Q— を設ける。ここで、山側線 P— と谷側線 Q— Q' とは互い違いに設けられ、かつ、一定の等間隔を空けた状態で互いに平行に設 定される。 Next, a method for manufacturing the component-embedded substrate will be described with reference to FIGS. 10 and 11. Figures 10- (A) to 10- (D) show the process of forming the dielectric sheet before folding. First, as shown in FIG. 10 (A), a dielectric sheet 10 having a certain width is prepared. Next, as shown in FIG. 10- (B), on the surface of the dielectric sheet 10, along the width direction w3 of the dielectric sheet 10 (direction perpendicular to the paper surface, see FIG. 2), virtual Folded mountain side line P— P ′ and valley side line Q— are provided. Here, the mountain side line P- and the valley side line Q-Q 'are provided alternately and in parallel with each other with a certain regular interval. Determined.
[0093] なお、折り畳みを容易にするために、山側線 P—P^ と谷側線 Q— Q' とに沿って、 誘電体シート 10の表面の一部を楔形に削り取つてなる屈曲案内溝 50を形成してい る。この場合、山側線 P— P' の屈曲案内溝 50は、誘電体シート 10の一方の表面に 設けられ、谷側線 Q— の屈曲案内溝 50は、誘電体シート 10の他方の表面に設 けられる。  [0093] In order to facilitate the folding, a bending guide groove formed by scraping a part of the surface of the dielectric sheet 10 into a wedge shape along the mountain side line P—P ^ and the valley side line Q—Q ′. 50 is formed. In this case, the bending guide groove 50 of the mountain side line P—P ′ is provided on one surface of the dielectric sheet 10, and the bending guide groove 50 of the valley side line Q— is provided on the other surface of the dielectric sheet 10. It is done.
[0094] 次に、図 10— (C)に示すように、誘電体シート 10の両表面に導電薄膜 60、 61を形 成する。  Next, as shown in FIG. 10- (C), conductive thin films 60 and 61 are formed on both surfaces of the dielectric sheet 10.
[0095] なお、誘電体シート 10を、図 5、図 6に示す第 2の誘電体シート 10Bとして構成する 場合には製造方法が若干異なる。誘電体シート 10として、第 2の誘電体シート 10Bを 用いて、導電薄膜 60、 61を形成する前までの図 10— (A)、図 10— (B)の工程を経 た後に、少なくともコンデンサを形成する領域の第 2の誘電体シート 10Bの少なくとも 片面に、図 5の内部導体パターン 30として下地電極薄膜を作成し、その上に高誘電 率薄膜からなる第 1の誘電体シート 10Aを薄膜形成し、さらにその上に図 5の内部導 体パターン 31を形成してもよい。この様に機械的強度を有する第 2の誘電体シート 1 0Bをベースとして工程を流すことで、薄く強度がない高誘電率薄膜からなる第 1の誘 電体シート 10Aでも安定して基板を製造することが可能である。この場合、図 5の下 地電極薄膜の一部を第 1の誘電体シート 10Aから露出させて、内部導体パターン 31 (導電薄膜 60)の一部と接続して引き出すことが可能である。また、第 2の誘電体シー ト 10Bに設けたビアホールを介して、下地電極薄膜とその裏面に設けた導電薄膜 61 とを接続して引き出すことも可能である。  [0095] When the dielectric sheet 10 is configured as the second dielectric sheet 10B shown in Figs. 5 and 6, the manufacturing method is slightly different. Using the second dielectric sheet 10B as the dielectric sheet 10, at least a capacitor after the steps shown in FIGS. 10A and 10B before forming the conductive thin films 60 and 61. A base electrode thin film is formed as an inner conductor pattern 30 in FIG. 5 on at least one surface of the second dielectric sheet 10B in the region where the first dielectric sheet 10B is formed, and the first dielectric sheet 10A made of a high dielectric constant thin film is formed on the thin film. Further, the internal conductor pattern 31 of FIG. 5 may be formed thereon. By flowing the process based on the second dielectric sheet 10B having mechanical strength in this way, the substrate can be stably manufactured even with the first dielectric sheet 10A made of a thin film having a high dielectric constant and no strength. Is possible. In this case, a part of the lower electrode thin film in FIG. 5 can be exposed from the first dielectric sheet 10A and connected to a part of the internal conductor pattern 31 (conductive thin film 60) to be pulled out. It is also possible to connect and draw out the base electrode thin film and the conductive thin film 61 provided on the back surface thereof through a via hole provided in the second dielectric sheet 10B.
[0096] なお、同様にして図 5に示す、第 1の誘電体シート 10Aによるコンデンサを、第 2の 誘電体シート 10Bの両面に設けても良い。この場合、誘電体シート 10Aを十分薄くで きるので、ほとんど同じサイズで倍の静電容量を得ることができる。  [0096] It should be noted that similarly, a capacitor made of the first dielectric sheet 10A shown in FIG. 5 may be provided on both surfaces of the second dielectric sheet 10B. In this case, the dielectric sheet 10A can be made sufficiently thin, so that double capacitance can be obtained with almost the same size.
[0097] 最後に、図 10— (D)に示すように、内部配線となる領域に形成された導電薄膜 60 、 61をエッチングして、内部配線を構成する内部導体パターン 12、 13を形成する。 なお、コンデンサとなる領域に形成される導電薄膜 60、 61は、そのまま、コンデンサ の電極を構成する内部導体パターン 30、 31となる。 [0098] 導電薄膜 60、 61のエッチング後、誘電体シ―ト 10上に、半硬化性絶縁シ―ト 62を 形成した後、山側線 P— ^ 、及び谷側線 Q— Q' に沿った一定の幅の領域にある 半硬化性絶縁シ―ト 62を除去する。 Finally, as shown in FIG. 10- (D), the conductive thin films 60 and 61 formed in the region to be the internal wiring are etched to form the internal conductor patterns 12 and 13 constituting the internal wiring. . In addition, the conductive thin films 60 and 61 formed in the region to be the capacitor become the inner conductor patterns 30 and 31 constituting the capacitor electrode as they are. [0098] After the conductive thin films 60 and 61 were etched, a semi-curing insulating sheet 62 was formed on the dielectric sheet 10, and then along the peak side line P— ^ and the valley side line Q—Q ′. Remove semi-cured insulation sheet 62 in the area of constant width.
[0099] 次に、図 11A—図 11Cを参照しながら、上記の導電パターン 12、 13、及び内部導 体パターン 30、 31が形成された誘電体シート 10を折り畳む方法について説明をす る。なお、図 11A—図 11Cにおいては、誘電体シ―ト 10のみを表示し、導電パタ- ン 12、 13、内部導体パターン 30、 31、及び半硬化性絶縁シ―ト 62は省略している。  Next, a method for folding the dielectric sheet 10 on which the conductive patterns 12 and 13 and the internal conductor patterns 30 and 31 are formed will be described with reference to FIGS. 11A to 11C. In FIGS. 11A to 11C, only the dielectric sheet 10 is shown, and the conductive patterns 12, 13, the inner conductor patterns 30, 31, and the semi-curing insulating sheet 62 are omitted. .
[0100] まず、図 11Aに示すように、誘電体シート 10の端力も順次、山側線 P— P' 、谷側 線 Q— Q' に沿って、下面が細くなつた板状の治具 70をあてがいながら折り畳んで いく。誘電体シート 10を全部折り畳んだ後、図 11Bに示すように、折り畳まれた誘電 体シート 10の両側から、半硬化性絶縁シート(図示せず)が互いに接触するまで押圧 する。そして押圧した状態のまま、半硬化性絶縁シートを加熱する。最後に、押圧し たままで加熱処理することで、半硬化性絶縁シートが互いに固着して部品内蔵基板 が完成される。  [0100] First, as shown in FIG. 11A, the end force of the dielectric sheet 10 is also a plate-like jig whose bottom surface is narrow along the peak side line P—P ′ and the valley side line Q—Q ′. Fold it while applying. After all of the dielectric sheet 10 is folded, as shown in FIG. 11B, pressing is performed from both sides of the folded dielectric sheet 10 until the semi-curing insulating sheets (not shown) come into contact with each other. Then, the semi-curable insulating sheet is heated with the pressed state. Finally, heat treatment is performed while pressing, so that the semi-curable insulating sheets adhere to each other and the component-embedded board is completed.
[0101] 以上、本発明における部品内蔵基板として、コンデンサを内蔵した場合を示したが 、本発明における内蔵部品はこれに制限されるものではない。例えば、 L成分である インダクタを基板に内蔵する際には、従来の基板では配線層の平面内にコイルゃジ グザグ状のミアンダ配線を作成している力 図 6の配線層 30の様に、交互に折り畳ん だ配線とすることで断面力もみてミアンダ配線と同等の回路を形成することができ、コ ンパタトな投影面積でインダクタを作成することができる。さらに、この部分の誘電体 シートとして高透磁率のシート材料を用いることで、従来ではできな 、高インダクタン スを実現することが可能となる。  As described above, the case where the capacitor is built in as the component built-in substrate in the present invention has been described, but the built-in component in the present invention is not limited to this. For example, when an inductor that is an L component is built in a substrate, the force with which a conventional substrate creates a zigzag meander wiring in the plane of the wiring layer, like the wiring layer 30 in FIG. By making the wiring folded alternately, it is possible to form a circuit equivalent to the meander wiring by considering the cross-sectional force, and it is possible to create an inductor with a compact projected area. Further, by using a sheet material having a high magnetic permeability as the dielectric sheet of this portion, it is possible to realize a high inductance that cannot be achieved conventionally.
[0102] また、インダクタの場合においても、図 6に示すように、領域 (A)における高特性部 品の内蔵構造と、領域 )における高密度配線とを両立することができる。  [0102] Also, in the case of an inductor, as shown in Fig. 6, it is possible to achieve both the built-in structure of high-characteristic components in region (A) and high-density wiring in region).
[0103] (実施形態 2)  [0103] (Embodiment 2)
本発明の構成を用いて、電子部品等の各種の部品を内蔵する部品内蔵基板を構 成した実施形態 2について、以下、図 12— 14を参照しながら説明する。  Embodiment 2 in which a component-embedded substrate in which various components such as electronic components are built using the configuration of the present invention will be described below with reference to FIGS. 12-14.
[0104] 図 12、図 13は、部品 80が内蔵された部品内蔵基板 3の構成を示した図である。 [0105] 図 12に示すように、部品内蔵基板 3は、一定の幅を有する誘電体シート 10を交互 に連続的に折り畳むことによって形成された互いに重畳された部位力 なる複数の 誘電体層 11で構成されており、その基本構成は実施形態 1と同様である。 FIGS. 12 and 13 are diagrams showing the configuration of the component-embedded substrate 3 in which the component 80 is built. [0105] As shown in FIG. 12, the component-embedded substrate 3 includes a plurality of dielectric layers 11 each having a partial force superimposed on each other, formed by alternately and continuously folding dielectric sheets 10 having a certain width. The basic configuration is the same as that of the first embodiment.
[0106] 本実施形態では、複数の誘電体層 11は、誘電体層間に形成された絶縁性接着層 16で互いに固着されており、誘電体層 11の間に部品 80が配置され、この部品 80が 絶縁接着層 16で被覆されていることに特徴がある。以下説明する。  In the present embodiment, the plurality of dielectric layers 11 are fixed to each other with an insulating adhesive layer 16 formed between the dielectric layers, and a component 80 is disposed between the dielectric layers 11. 80 is covered with an insulating adhesive layer 16. This will be described below.
[0107] 部品内蔵基板 3を構成する複数の誘電体層 11のうち任意の誘電体層 11と、それ  [0107] Arbitrary dielectric layer 11 among the plurality of dielectric layers 11 constituting the component-embedded substrate 3, and the dielectric layer 11
1 に隣接する誘電体層 11との間の離間間隔 w4を、内蔵する部品 80が収納可能な間  1 The spacing w4 between the dielectric layer 11 adjacent to 1
2  2
隔 (部品 80の幅寸法より若干広い間隔)に設定する。これら誘電体層 11、 11を連  Set the gap (slightly wider than the width of part 80). These dielectric layers 11, 11 are connected in series.
1 2 結する連結部位 11aを離間間隔 w4に合わせて延ばしたうえで、この連結部位 11a  1 2 After extending the connecting part 11a to be connected to the separation interval w4, this connecting part 11a
1 1 を平坦化する。これにより、連結部位 11aから平坦部 10aが構成され、平坦部 11と誘  1 Flatten 1 As a result, the flat portion 10a is constituted by the connecting portion 11a, and the flat portion 11 and the guiding portion 11a are formed.
1  1
電体層 11、 11とにより囲まれた領域力 部品収納領域 αが構成される。この部品  A region force component storage region α surrounded by the electric conductor layers 11 and 11 is formed. This part
1 2  1 2
収納領域 αに部品 80が収納される。部品 80が収納された部品収納領域 αは絶縁 性接着層 16により封止される。これにより部品 80は、部品収納領域 αに封入される。 なお、平坦部 10aは、平坦部 10aが位置する部品内蔵基板 3の主面(図 12では、主 面 21)と面一とするのが好ましぐそうすれば、部品内蔵領域 αの容積を最大限とす ることがでさる。 The part 80 is stored in the storage area α. The component storage area α in which the component 80 is stored is sealed with the insulating adhesive layer 16. As a result, the component 80 is sealed in the component storage area α. The flat portion 10a is preferably flush with the main surface of the component-embedded substrate 3 where the flat portion 10a is located (main surface 21 in FIG. 12). It can be maximized.
[0108] 部品 80が配置されていない他の誘電体層 11の構成は、実施形態 1と同一であり、 これらの誘電体層 11の表面上には内部導体パターン 12、 13が形成され、部品内蔵 基板 3の内部配線を構成する。  [0108] The configuration of the other dielectric layer 11 in which the component 80 is not arranged is the same as that of the first embodiment, and the inner conductor patterns 12 and 13 are formed on the surface of the dielectric layer 11, and the component Configures internal wiring of built-in board 3.
[0109] 部品内蔵領域 α側に位置する誘電体層 11、 11の表面に、外部引出し導体バタ  [0109] Component built-in area External conductor conductor pattern on the surface of dielectric layers 11 and 11 located on the α side
1 2  1 2
ーン 81、 82が形成される。外部引出し導体パターン 81、 82の一端 81a、 82aは、平 坦部 10aの谷側表面まで延出する。部品 80の外部接続電極 83は、外部引き出し導 体パターン 81、 82の一端 81a、 82aに接続される。外部引出し導体パターン 81、 82 の他端 81b、 82bは、平坦部 10aを構成する連結部位 11aに隣接する連結部位 11a  81, 82 are formed. One ends 81a and 82a of the external lead conductor patterns 81 and 82 extend to the valley side surface of the flat portion 10a. The external connection electrode 83 of the component 80 is connected to one ends 81a and 82a of the external lead conductor patterns 81 and 82. The other ends 81b and 82b of the external lead conductor patterns 81 and 82 are connected to the connecting part 11a adjacent to the connecting part 11a constituting the flat portion 10a.
1  1
、 11aまで延出することで、部品内蔵基板 3の一方の主面 20に露出する。これにより , 11a is exposed to one main surface 20 of the component-embedded substrate 3. This
2 3 twenty three
、部品収納領域 αに収納された部品 80の外部接続電極 83は、外部引出し導体バタ ーン 81、 82を介して部品内蔵基板 3の外部に引き出される。ここで、部品 80として、 半導体チップ、チップコンデンサ、チップ抵抗、チップインダクタなどを内蔵することが できる。 The external connection electrode 83 of the component 80 stored in the component storage area α is extracted to the outside of the component built-in substrate 3 via the external lead conductor patterns 81 and 82. Here, as part 80, Semiconductor chips, chip capacitors, chip resistors, chip inductors, etc. can be incorporated.
[0110] 図 13は、部品 80の電極を、部品内蔵基板 3の一方の主面 20と他方の主面 21との それぞれから引き出す構成を示す図である。部品内蔵基板 3の一方の外部引出し電 極 83Aは、図 12と同様、一方の外部引出しパターン 81を介して部品内蔵基板 3の 一方の主面 20に引き出される。し力しながら、他方の外部引出し電極 83Bは、次の 構成を介して、部品内蔵基板 3の他方の主面 21に引き出される。  FIG. 13 is a diagram showing a configuration in which the electrode of the component 80 is drawn out from each of the one main surface 20 and the other main surface 21 of the component-embedded substrate 3. One external lead electrode 83A of the component built-in board 3 is drawn to one main surface 20 of the component built-in board 3 through one external lead pattern 81 as in FIG. While pressing, the other external extraction electrode 83B is extracted to the other main surface 21 of the component-embedded substrate 3 through the following configuration.
[0111] 他方の外部引出しパターン 82は、図 12に示す他端 82bを有さない。外部引出し電 極 82の一端 82aとシートを挟んで対向する誘電体シート 10の表面に、外部接続用 内部導体パターン 85が設けられる。ここで、外部接続用内部導体パターン 85が設け られるシート表面は、部品内蔵基板 3の主面 21側に位置する。外部接続用内部導体 パターン 85と外部引出し電極 82の一端 82aとは、誘電体シート 10に設けられるビア ホール 35を介して互いに接続される。これより、部品 80の他方の外部引出し電極 83 Bは、外部接続用内部導体パターン 85に接続されて部品内蔵基板 3の他方の主面 2 1に引き出される。  [0111] The other external lead pattern 82 does not have the other end 82b shown in FIG. An internal conductor pattern 85 for external connection is provided on the surface of the dielectric sheet 10 facing the one end 82a of the external lead electrode 82 across the sheet. Here, the sheet surface on which the external connection internal conductor pattern 85 is provided is located on the main surface 21 side of the component-embedded substrate 3. The internal conductor pattern for external connection 85 and the one end 82a of the external lead electrode 82 are connected to each other through a via hole 35 provided in the dielectric sheet 10. Thus, the other external extraction electrode 83 B of the component 80 is connected to the external connection internal conductor pattern 85 and is extracted to the other main surface 21 of the component built-in substrate 3.
[0112] 図 12又は図 13に示した部品内蔵基板 3は、図 14— (A)〜図 14— (C)、及び図 15 に示す方法で、誘電体シートを交互に折り畳むことによって形成することができる。  [0112] The component-embedded substrate 3 shown in FIG. 12 or FIG. 13 is formed by alternately folding dielectric sheets by the method shown in FIG. 14- (A) to FIG. 14- (C) and FIG. be able to.
[0113] 図 14— (A)〜図 14— (C)はそれぞれ、折り畳む前の誘電体シ―ト 10の平面図、 B —B'線に沿った断面図、及び底面図を示す。図 14— (A)、図 14— (C)に示すよう に、誘電体シート 10の両面に、後に折り畳む際に、山側となる線 P— P' 、及び谷側 となる線 Q— Q' の間に、内部配線を構成する内部導体パターン 12、 13が、誘電体 シ―ト 10の幅方向に沿って帯状に形成される。また、図 14— (A)に示すように、部品 80の外部接続電極 83の引き出し用として、内部導体パターン 81、 82が、誘電体シ ート 10の上面に形成される。内部導体パターン 81、 82の一端 81b、 82bは、山側線 Ρ-Ρ' を超える位置まで延在して、引き出し電極として機能する。内部導体パタ一 ン 81、 82の他端 81a、 82aは、谷側線 Q— Q' を超える位置まで延在して、部品 80 との接続電極として機能する。なお、部品 80は、図 14— (A)に示すように、誘電体シ ート 10の上面の点線で示す位置に搭載される。 [0114] このようにして形成された誘電体シート 10を、山側線 P— P' と谷側線 Q— Q' に 沿って交互に連続的に折り畳むことによって、図 15に示す部品内蔵基板 3を得ること ができる。なお、部品 80が搭載される誘電体シート 10の連結部位 11aは、鋭角に折 FIGS. 14 (A) to 14 (C) are a plan view, a sectional view taken along line BB ′, and a bottom view, respectively, of the dielectric sheet 10 before folding. As shown in Fig. 14 (A) and Fig. 14 (C), when folded on both sides of the dielectric sheet 10, the line P-P 'that becomes the peak side and the line Q-Q' that becomes the valley side In the meantime, the internal conductor patterns 12 and 13 constituting the internal wiring are formed in a strip shape along the width direction of the dielectric sheet 10. Further, as shown in FIG. 14A, internal conductor patterns 81 and 82 are formed on the upper surface of the dielectric sheet 10 for leading out the external connection electrodes 83 of the component 80. One ends 81b and 82b of the inner conductor patterns 81 and 82 extend to a position exceeding the peak line Ρ-Ρ ′ and function as lead electrodes. The other ends 81a and 82a of the inner conductor patterns 81 and 82 extend to a position exceeding the valley side line Q—Q ′ and function as connection electrodes to the component 80. The component 80 is mounted at a position indicated by a dotted line on the upper surface of the dielectric sheet 10 as shown in FIG. 14 (A). [0114] The dielectric sheet 10 thus formed is alternately and continuously folded along the crest-side line P—P ′ and the trough-side line Q—Q ′, so that the component-embedded substrate 3 shown in FIG. Obtainable. The connecting portion 11a of the dielectric sheet 10 on which the component 80 is mounted is folded at an acute angle.
1  1
り畳まれることなくコの字状に折り畳まれて平坦部 10aを構成する。  The flat portion 10a is formed by being folded into a U shape without being folded.
[0115] 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項で はなぐ勿論、種々の改変が可能である。例えば、部品として、半導体チップ、チップ コンデンサ等の電子部品を内蔵することができる力 電子部品以外のもの、例えば、 ヒートスプレッダ等を内蔵しても構わな 、。 [0115] Although the present invention has been described with the preferred embodiment, such description is not a limitation, and various modifications are possible. For example, as a component, a force capable of incorporating an electronic component such as a semiconductor chip, a chip capacitor, etc. Other than the electronic component, for example, a heat spreader or the like may be incorporated.
産業上の利用可能性  Industrial applicability
[0116] 本発明によれば、高性能な部品内蔵と高密度配線の両立を可能にした部品内蔵 基板を提供することができる。 According to the present invention, it is possible to provide a component-embedded substrate that enables both high-performance component incorporation and high-density wiring.

Claims

請求の範囲 The scope of the claims
[1] 基板両主面の対向方向に沿って配置された複数の誘電体層を基板平面方向に沿 つて積層してなる基板と、  [1] A substrate obtained by laminating a plurality of dielectric layers arranged along the opposing direction of both main surfaces of the substrate along the plane direction of the substrate;
前記誘電体層の両表面に設けられた内部導体パターンと、  Internal conductor patterns provided on both surfaces of the dielectric layer;
を備え、  With
前記内部導体パターンを構成要素にして電子部品が構成されて、当該電子部品 が前記基板に内蔵される、  An electronic component is configured with the internal conductor pattern as a component, and the electronic component is built in the substrate.
部品内蔵基板。  Component built-in board.
[2] 前記電子部品はコンデンサであり、当該コンデンサは、前記誘電体層と、当該誘電 体層を挟んで対向する前記内部導体パターンとにより構成される、  [2] The electronic component is a capacitor, and the capacitor is configured by the dielectric layer and the internal conductor pattern facing each other with the dielectric layer interposed therebetween.
請求項 1の部品内蔵基板。  The component-embedded substrate according to claim 1.
[3] 前記電子部品はインダクタであり、当該インダクタは、前記配線層をミランダ配線に して構成される、 [3] The electronic component is an inductor, and the inductor is configured by using the wiring layer as a Miranda wiring.
請求項 1の部品内蔵部品。  The component built-in component according to claim 1.
[4] 隣接する前記誘電体層どうしは、前記基板の両主面のいずれか一方においてその 層端が互いに連通一体に連結成形され、 [4] Adjacent dielectric layers are formed by connecting and forming one end of each of the principal surfaces of the substrate so as to communicate with each other.
かつ、隣接誘電体層の連結部位それぞれが基板両主面の 、ずれか一方に互 ヽ違 いに設けられることで、前記複数の誘電体層は屈曲配置された一枚の誘電体シート を構成し、  In addition, each of the connecting portions of the adjacent dielectric layers is provided differently on either one of the main surfaces of the substrate, so that the plurality of dielectric layers constitute a single dielectric sheet that is bent. And
前記連結部位は互い違いに並列配置されることで、前記部品内蔵基板の一の主 面、及び他の主面を構成する、  The connecting parts are alternately arranged in parallel to constitute one main surface of the component-embedded substrate and another main surface.
請求項 1の部品内蔵基板。  The component-embedded substrate according to claim 1.
[5] 前記内部導体パターンは前記誘電体シートの両表面それぞれに設けられ、かつ前 記誘電体シートの両表面それぞれに設けられる当該内部導体パターンは、並列する 複数の誘電体層形成領域にわたって設けられるとともに、前記誘電体シートを挟ん で対向配置される、 [5] The internal conductor pattern is provided on each of both surfaces of the dielectric sheet, and the internal conductor pattern provided on each surface of the dielectric sheet is provided over a plurality of parallel dielectric layer forming regions. And disposed oppositely across the dielectric sheet,
請求項 4の部品内蔵基板。  The component-embedded substrate according to claim 4.
[6] 前記誘電体層は、層間に設けられる絶縁性接着部材で互いに固着される、 請求項 4の部品内蔵基板。 [6] The dielectric layers are fixed to each other with an insulating adhesive member provided between the layers. The component-embedded substrate according to claim 4.
[7] 前記内部導体パターンは、前記連結部位で、前記絶縁性接着部材から露出する、 請求項 6の部品内蔵基板。 7. The component-embedded board according to claim 6, wherein the inner conductor pattern is exposed from the insulating adhesive member at the connecting portion.
[8] 前記電子部品は、前記基板の一の主面側の前記連結部位に露出する前記内部導 体パターンを第 1の電極端子とし、他の主面側の前記連結部位に露出する前記内部 導体パターンを第 2の電極端子とするコンデンサである、 [8] In the electronic component, the internal conductor pattern exposed at the connection portion on one main surface side of the substrate is the first electrode terminal, and the internal component exposed at the connection portion on the other main surface side is used. A capacitor having a conductor pattern as a second electrode terminal,
請求項 7の部品内蔵基板。  The component-embedded substrate according to claim 7.
[9] 前記基板の両主面に絶縁膜が設けられ、当該絶縁膜の前記連結部位に対向する 位置に、前記内部導体パターンに達する開口部が設けられ、 [9] An insulating film is provided on both main surfaces of the substrate, and an opening reaching the internal conductor pattern is provided at a position facing the connecting portion of the insulating film,
前記開口部に露出する前記内部導体パターンから、前記コンデンサの両電極端子 が構成される、  From the internal conductor pattern exposed in the opening, both electrode terminals of the capacitor are configured,
請求項 8の部品内蔵基板。  The component-embedded substrate according to claim 8.
[10] 前記絶縁膜に半導体チップが搭載され、当該半導体チップの接続端子が、前記開 口部に露出する前記コンデンサの電極端子に接続される、 [10] A semiconductor chip is mounted on the insulating film, and a connection terminal of the semiconductor chip is connected to an electrode terminal of the capacitor exposed at the opening.
請求項 9の部品内蔵基板。  The component-embedded substrate according to claim 9.
[11] 前記電子部品は、前記基板の一部の領域に形成される、 [11] The electronic component is formed in a partial region of the substrate.
請求項 1の部品内蔵基板。  The component-embedded substrate according to claim 1.
[12] 前記電子部品を構成する以外の他の前記内部導体パターンの領域から当該基板 内蔵基板の内部配線が構成される、 [12] The internal wiring of the substrate built-in substrate is configured from a region of the internal conductor pattern other than that constituting the electronic component.
請求項 11の部品内蔵基板。  The component-embedded substrate according to claim 11.
[13] 前記内部配線を構成する前記内部導体パターンの一部は、前記連結部位まで延 出して前記基板の主面に露出し、当該露出する内部導体パターンの部位は、前記 内部配線の引き出し電極を構成する、 [13] A part of the internal conductor pattern constituting the internal wiring extends to the connection portion and is exposed to the main surface of the substrate, and the exposed portion of the internal conductor pattern is a lead electrode of the internal wiring Make up,
請求項 12の部品内蔵基板。  The component-embedded substrate according to claim 12.
[14] 前記誘電体シートは、高誘電率の材料で構成される、 [14] The dielectric sheet is made of a high dielectric constant material.
請求項 1の部品内蔵基板。  The component-embedded substrate according to claim 1.
[15] 前記誘電体シートは、要求される誘電率を十分に有する薄膜からなる第 1の誘電体 シートと、要求される誘電率は有さないものの機械的強度が前記第 1の誘電体シート より高 、第 2の誘電体シートとから構成され、前記第 1の誘電体シートの両面に前記 内部導体パターンが設けられたうえで、これら第 1、第 2の誘電体シートが積層一体 化される、 [15] The dielectric sheet includes a first dielectric sheet made of a thin film having a required dielectric constant and a mechanical strength of the first dielectric sheet that does not have the required dielectric constant. The first dielectric sheet is formed of a second dielectric sheet, and the first and second dielectric sheets are laminated and integrated after the inner conductor pattern is provided on both surfaces of the first dielectric sheet. The
請求項 1の部品内蔵基板。  The component-embedded substrate according to claim 1.
[16] 基板両主面の対向方向に沿って配置された複数の誘電体層を基板平面方向に沿 つて積層してなる基板を備え、 [16] A substrate comprising a plurality of dielectric layers arranged along the opposing direction of both main surfaces of the substrate and laminated along the plane of the substrate,
隣接する前記誘電体層どうしは、前記基板の両主面のいずれか一方においてその 層端が互いに連通一体に連結成形され、  Adjacent dielectric layers are formed by connecting and forming one end of each of the principal surfaces of the substrate so as to communicate with each other.
隣接する誘電体層の連結部位それぞれが基板両主面の ヽずれか一方に互!、違 、 に設けられることで、前記複数の誘電体層は屈曲配置された一枚の誘電体シートを 構成し、  Each connecting part of adjacent dielectric layers is on one side of both main surfaces of the substrate! The plurality of dielectric layers constitute a single dielectric sheet arranged in a bent manner,
前記誘電体層は、層間に設けられる絶縁性接着部材で互 ヽに固着され、 前記連結部位が互い違いに並列配置されることで、前記部品内蔵基板の一の主面 、及び他の主面を構成し、  The dielectric layers are fixed to each other by insulating adhesive members provided between the layers, and the connecting portions are alternately arranged in parallel, so that one main surface and the other main surface of the component-embedded substrate are arranged. Configure
隣接する前記誘電体層の間に部品が配置され、当該部品が前記絶縁接着部材に より被覆される、  A component is disposed between the adjacent dielectric layers, and the component is covered with the insulating adhesive member.
部品内蔵基板。  Component built-in board.
[17] 前記部品の両端に位置する前記誘電体層どうしを連結する前記連結部位は、前記 部品の幅と略同一幅の平坦部を有し、当該平坦部と当該平坦部で連結される両誘 電体層とで囲まれる領域に前記部品が収納される、  [17] The connecting portion for connecting the dielectric layers located at both ends of the component has a flat portion having a width substantially the same as the width of the component, and both the flat portion and the flat portion are connected to each other. The component is housed in a region surrounded by the dielectric layer.
請求項 16の部品内蔵基板。  The component built-in board according to claim 16.
[18] 前記部品が配置されていない他の誘電体層の主面に導体パターンが形成され、当 該導体パターンが当該部品内蔵基板の内部配線を構成する、  [18] A conductor pattern is formed on a main surface of another dielectric layer where the component is not disposed, and the conductor pattern constitutes an internal wiring of the component-embedded substrate.
請求項 16の部品内蔵基板。  The component built-in board according to claim 16.
[19] 前記部品は、半導体チップ、チップコンデンサ、チップ抵抗、及びチップインダクタ 力も選ばれた少なくとも 1つ以上の電子部品である、 [19] The component is at least one electronic component in which a semiconductor chip, a chip capacitor, a chip resistor, and a chip inductor force are also selected.
請求項 16の部品内蔵基板。  The component built-in board according to claim 16.
[20] 前記部品はヒートスプレッダである、 請求項 16の部品内蔵基板。 [20] The component is a heat spreader. The component built-in board according to claim 16.
[21] 前記誘電体シートは、強誘電体フイラと熱硬化性榭脂とを含むコンポジット材料から なる、 [21] The dielectric sheet is made of a composite material including a ferroelectric filler and a thermosetting resin.
請求項 1の部品内蔵基板。  The component-embedded substrate according to claim 1.
[22] 前記誘電体シートは、強誘電体フイラと熱硬化性榭脂とを含むコンポジット材料から なる、 [22] The dielectric sheet is made of a composite material including a ferroelectric filler and a thermosetting resin.
請求項 16の部品内蔵基板。  The component built-in board according to claim 16.
[23] 基板両主面の対向方向に沿って配置された複数の誘電体層が基板平面方向に沿 つて積層されるとともに、当該誘電体層どうしが絶縁性接着部材によって互 ヽ〖こ固着 されてなる基板を備え、 [23] A plurality of dielectric layers arranged along the opposing direction of both main surfaces of the substrate are laminated along the plane direction of the substrate, and the dielectric layers are fixed to each other by an insulating adhesive member. Comprising a substrate
隣接する前記誘電体層どうしが前記基板の両主面のいずれか一方においてその 層端が互いに連通一体に連結成形され、かつ隣接誘電体層の連結部位それぞれが 基板両主面の 、ずれか一方に互 、違 、に設けられることで、これら複数の誘電体層 は屈曲配置された一枚の誘電体シートを構成し、  Adjacent dielectric layers are formed in one of the two principal surfaces of the substrate so that the layer ends thereof are connected and integrally connected to each other, and the connection portions of the adjacent dielectric layers are shifted from either of the two principal surfaces of the substrate. The plurality of dielectric layers constitute a single dielectric sheet bent and arranged by being provided differently from each other.
前記連結部位が互い違いに並列配置されることで、前記基板の一の主面、及び他 の主面を構成し、  The connecting portions are alternately arranged in parallel to constitute one main surface of the substrate and another main surface,
前記誘電体シートの両面に内部導体パターンが設けられ、  Internal conductor patterns are provided on both surfaces of the dielectric sheet,
前記誘電体シートと、当該誘電体シートを挟んで対向する前記内部導体パターンと で容量が形成され、  A capacitance is formed by the dielectric sheet and the internal conductor pattern facing the dielectric sheet.
前記基板の一の主面側の前記連結部位に露出する前記内部導体パターンを第 1 の電極端子とし、他の主面側の前記連結部位に露出する前記内部導体パターンを 第 2の電極端子とする、  The inner conductor pattern exposed at the connecting portion on one main surface side of the substrate is used as a first electrode terminal, and the inner conductor pattern exposed at the connecting portion on the other main surface side is used as a second electrode terminal. To
基板内蔵コンデンサ。  PCB built-in capacitor.
PCT/JP2006/300970 2005-02-09 2006-01-23 Substrate with built-in component and capacitor with built-in substrate WO2006085436A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005033126 2005-02-09
JP2005-033126 2005-02-09

Publications (1)

Publication Number Publication Date
WO2006085436A1 true WO2006085436A1 (en) 2006-08-17

Family

ID=36793014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300970 WO2006085436A1 (en) 2005-02-09 2006-01-23 Substrate with built-in component and capacitor with built-in substrate

Country Status (1)

Country Link
WO (1) WO2006085436A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112333914A (en) * 2015-11-30 2021-02-05 瑞萨电子株式会社 Electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157123A (en) * 1982-03-12 1983-09-19 松下電器産業株式会社 Chip-shaped film condenser
JPH02156516A (en) * 1988-12-08 1990-06-15 Nichicon Corp Series type capacitor
JPH05101977A (en) * 1991-10-08 1993-04-23 Kenwood Corp Film capacitor and its manufacture
WO1999053510A1 (en) * 1998-04-15 1999-10-21 Energy Storage Systems Pty. Ltd. Charge storage devices
JP2000306730A (en) * 1999-04-21 2000-11-02 Fuji Electric Co Ltd Planar magnetic element
JP2003069181A (en) * 2001-08-28 2003-03-07 Mitsubishi Electric Corp Electronic equipment apparatus and its manufacturing method
JP2003292733A (en) * 2002-04-02 2003-10-15 Mitsui Mining & Smelting Co Ltd Resin containing dielectric filler for forming built-in capacitor layer of printed circuit board, double-side copper clad laminated board having dielectric layer formed by using the resin, and method for producing the laminated board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157123A (en) * 1982-03-12 1983-09-19 松下電器産業株式会社 Chip-shaped film condenser
JPH02156516A (en) * 1988-12-08 1990-06-15 Nichicon Corp Series type capacitor
JPH05101977A (en) * 1991-10-08 1993-04-23 Kenwood Corp Film capacitor and its manufacture
WO1999053510A1 (en) * 1998-04-15 1999-10-21 Energy Storage Systems Pty. Ltd. Charge storage devices
JP2000306730A (en) * 1999-04-21 2000-11-02 Fuji Electric Co Ltd Planar magnetic element
JP2003069181A (en) * 2001-08-28 2003-03-07 Mitsubishi Electric Corp Electronic equipment apparatus and its manufacturing method
JP2003292733A (en) * 2002-04-02 2003-10-15 Mitsui Mining & Smelting Co Ltd Resin containing dielectric filler for forming built-in capacitor layer of printed circuit board, double-side copper clad laminated board having dielectric layer formed by using the resin, and method for producing the laminated board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112333914A (en) * 2015-11-30 2021-02-05 瑞萨电子株式会社 Electronic device
CN112333914B (en) * 2015-11-30 2023-08-08 瑞萨电子株式会社 Electronic device

Similar Documents

Publication Publication Date Title
US6184477B1 (en) Multi-layer circuit substrate having orthogonal grid ground and power planes
JP4760930B2 (en) IC mounting substrate, multilayer printed wiring board, and manufacturing method
US5519176A (en) Substrate and ceramic package
WO2003034494A1 (en) Module component
TW200806107A (en) Multilayer wiring board capable of reducing noise over wide frequency band with simple structure
JP2005072095A (en) Electronic circuit unit and manufacturing method therefor
JP3956851B2 (en) Passive element embedded substrate and manufacturing method thereof
CN110402615A (en) Used in HF transmission printed wiring board
TW200833188A (en) Package structure with embedded capacitor and applications thereof
JP4798237B2 (en) IC mounting board and multilayer printed wiring board
US6756628B2 (en) Capacitor sheet with built in capacitors
US7911318B2 (en) Circuit boards with embedded resistors
JP2004063664A (en) Multilayer ceramic substrate with cavity
WO2012120995A1 (en) Multilayer substrate having built-in electric element, and method for manufacturing multilayer substrate having built-in electric element
WO2006028098A1 (en) Wiring board
JP2004119483A (en) Board having built-in element
WO2006085436A1 (en) Substrate with built-in component and capacitor with built-in substrate
JP2001156211A (en) Wiring board with built-in capacitor
JP2002271038A (en) Composite multilayer board, its manufacturing method and electronic component
JP2001237505A (en) Multilayer printed circuit board
JP3540941B2 (en) Laminate and manufacturing method thereof
JP2000068149A (en) Laminated electronic component and manufacture therefor
JP4078723B2 (en) A flexible double-sided printed circuit board having a capacitor and a method for forming the capacitor.
JP3792483B2 (en) Multilayer wiring board
US20090021887A1 (en) Multi-layer capacitor and wiring board having a built-in capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712186

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712186

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP