WO2006084590A1 - Verfahren und vorrichtung zur thermochemischen umsetzung eines brennstoffs - Google Patents

Verfahren und vorrichtung zur thermochemischen umsetzung eines brennstoffs Download PDF

Info

Publication number
WO2006084590A1
WO2006084590A1 PCT/EP2006/000745 EP2006000745W WO2006084590A1 WO 2006084590 A1 WO2006084590 A1 WO 2006084590A1 EP 2006000745 W EP2006000745 W EP 2006000745W WO 2006084590 A1 WO2006084590 A1 WO 2006084590A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion zone
fuel
feed opening
combustion
fluid
Prior art date
Application number
PCT/EP2006/000745
Other languages
English (en)
French (fr)
Inventor
Peter Quicker
Gerold Dimaczek
Frank Fojtik
Original Assignee
Applikations- Und Technikzentrum Für Energieverfahrens-, Umwelt- Und Strömungstechnik (Atz-Evus)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applikations- Und Technikzentrum Für Energieverfahrens-, Umwelt- Und Strömungstechnik (Atz-Evus) filed Critical Applikations- Und Technikzentrum Für Energieverfahrens-, Umwelt- Und Strömungstechnik (Atz-Evus)
Priority to EP06706461.8A priority Critical patent/EP1846151B1/de
Priority to JP2007554468A priority patent/JP5007242B2/ja
Priority to US11/883,835 priority patent/US20080149011A1/en
Priority to CA2597520A priority patent/CA2597520C/en
Publication of WO2006084590A1 publication Critical patent/WO2006084590A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/12Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated exclusively within the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/20Inlets for fluidisation air, e.g. grids; Bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/24Devices for removal of material from the bed

Definitions

  • the invention relates to a method and a device for the thermochemical conversion of a fuel. It relates in particular to the field of fluidized bed combustion, in which the fuel is burned in a fluidized bed formed by a circulating fluid.
  • Pipe which also opens in the vicinity of the soil in the reactor.
  • the proposed method disadvantageously only a discontinuous process is possible.
  • the process is not suitable for the combustion of ash-rich fuels.
  • US Pat. No. 5,858,033 describes a fluidized-bed reactor in which the fuel is supplied through a tube which opens laterally into the upper part of the reactor. At the bottom of the reactor, an annular nozzle arrangement is provided, with which a circulating fluid flow is generated. The ashes in the fluidized bed ash is removed via an annular gap surrounding the nozzle assembly at the bottom of the reactor. Similar fluidized-bed reactors are known from US Pat. No. 5,980,858 and US Pat. No. 5,922,090. The ash discharge takes place via a grate at the bottom of the fluidized bed reactor. In the known fluidized bed reactors, clogging of the nozzles and discharge of unburned fuel may occur.
  • DE 199 37 524 A1, DE 198 43 613 C2, DE 198 06 318 A1 and DE 199 37 521 A1 describe processes for the combustion of waste products and waste materials from the paper industry.
  • the energy generated in the fluidized-bed combustion is recovered from the exhaust gas via heat exchangers.
  • the fluidized bed reactors known from the prior art are usually designed for a high power range. In particular, they are not suitable for burning ash-rich solid fuels, for example biomass, in a small power range.
  • the object of the present invention is to specify a method and a device with which fuels can be converted thermochemically in a simple and cost-effective manner even in a small power range.
  • thermochemical conversion of a fuel is provided with the following steps:
  • the combustion of the fuel takes place in a fluidized bed reactor which is subdivided into a first and a second combustion zone by means of a flow guide.
  • the proposed method is particularly suitable for combustion of fuel in a small power range.
  • the method is suitable for burning solid and ash-rich fuels, for example biomass.
  • ashes occurring in the thermochemical reaction are removed through discharge openings provided on the bottom.
  • For closing the discharge openings closure means may be provided.
  • an ascending chamber can be provided between the grate and the discharge openings, which can be emptied discontinuously by opening the discharge openings.
  • thermochemical reaction is led by at least one provided in the vicinity of the supply port exhaust port.
  • a cross-sectional area of the second combustion zone increases at least in sections from the bottom in the direction of the feed opening.
  • the flow velocity is reduced.
  • the reactor according to the invention may be box-shaped.
  • two second combustion zones are expediently provided which are adjacent to the first combustion zone are arranged.
  • the second combustion zone surrounds the first combustion zone.
  • the first combustion zone is, for example, cylindrical.
  • thermochemical reaction is removed by a heat exchanger which at least partially surrounds the second combustion zone and / or is part of the flow control means provided between the first and second combustion zones. This allows a particularly effective utilization of the energy released during the thermochemical conversion.
  • the heat exchanger may be at least partially shielded from the first and / or second combustion zone by a refractory shield.
  • the shield is suitably made of a refractory ceramic material. It may j e after design of the reactor, the shape of a plate, a cylinder, a truncated cone or the like. exhibit .
  • the refractory shield may also be part of the flow guide.
  • thermochemical reaction may be combustion or gasification.
  • solid, but also liquid fuels can be converted.
  • the means for redirecting the fuel stream may comprise nozzles for accelerating the fuel flow deflected by the deflection means in the direction of the second combustion zone.
  • the nozzles may have a round, oval or slot-shaped opening.
  • the fuel flow is expediently accelerated by a fluid supplied through the nozzles.
  • the fluid can through the nozzles are ejected in a direction facing the ground. This assists the positive flow of fuel flow generated by the flow directing means from the first to the second combustion zone.
  • the fluid is expediently at least one gas selected from the following group: air, inert gas, flue gas or radiation-active gas.
  • a radiation-active gas is understood as meaning a gas which enables heat transfer with a particularly high heat flux density. In particular, at high temperatures of more than 900 0 C, a significant portion of the heat is transmitted by radiation. With a radiation-active gas, the heat transfer can be effectively carried out by means of radiation.
  • the radiation-active gas preferably contains 40% by weight of a triatomic gas, for example one or more of the following gases: CO 2 , NH 3 , H 2 O, SO 2 or else CH 4 .
  • the radiation-active gas may also be mixed with air.
  • the fluid may contain at least one additive selected from the following group: lime, ammonia, urea, limestone.
  • additives contribute to the lowest possible pollutant combustion of fuels.
  • a device for preheating the fluid is also provided.
  • the combustion temperature can be adjusted and / or controlled.
  • apparatus for thermochemically reacting a solid fuel having a fluidized bed reactor having a central first combustion zone and a second combustion zone separated therefrom by flow directing means, the first combustion zone having a supply port for supplying fuel and one opposite the supply port provided at the bottom of the reactor Means is provided for diverting a fuel stream into the second combustion zone, such that a fuel flow pointing from the supply opening to the ground is deflected into the second combustion zone, guided in a substantially opposite direction and in turn deflected in the vicinity of the feed opening and into the first combustion zone is led back.
  • the proposed device is compact and allows efficient thermochemical conversion of fuels even in a small power range. Because of the advantageous embodiments of the device, reference is made to the above statements. The described features are suitable mutatis mutandis as development of the device.
  • a first combustion zone 1 is bounded laterally by plates 2 made of a refractory material, for example alumina, magnesia, zirconia or the like. , are made.
  • plates 2 made of a refractory material, for example alumina, magnesia, zirconia or the like.
  • a deflection device 3 is provided at the bottom B of the fluidized bed reactor.
  • the deflection device 3 has a roof-shaped or saddle-like design, with the roof surfaces or saddle flanks falling away from the center of the fluidized-bed reactor towards its sides in the direction of the bottom B.
  • the deflection device 3 can be made of a temperature-resistant metal or also of a refractory ceramic material. Below the deflection device 3 is a
  • Fluid supply device 4 which has a feed tube 5 and nozzles 6.
  • the nozzles 6 are arranged such that a fluid passed through is guided obliquely in the direction of a section of the bottom B which is located approximately below a second combustion zone 7.
  • the nozzles 6 are bounded by the preferably made of a metal deflecting device 3.
  • the deflection device 3 heats up. As a result, it also preheats a fluid passed through the nozzles 6.
  • a feed chute or feed channels may also be provided in the feed device 4, which are arranged in particular in such a way that a further preheating of the fluid is thereby effectively achieved.
  • the second combustion zone 7 is arranged adjacent to the first combustion zone 1.
  • the fluid may in particular be a gas, for example air, inert gas or a radiation-active gas.
  • the nozzles 6 expediently open in the region of the lower end of the deflection device 3.
  • Nozzle openings designated by the reference numeral 8 can be slit-like, oval or round.
  • ash collection zones 9 Approximately below the second combustion zone 7 are ash collection zones 9, which are covered with 10 gratings. In the area of the ash collecting zones 9, discharge openings 11 for discharging ash are also provided. The discharge openings 11 are expediently located below flaps 12.
  • flaps 12 By opening the flaps 12, the interior of the fluidized bed reactor for maintenance and cleaning purposes in a simple manner accessible. Instead of the flaps 12, of course, other closure means can be provided, which allow a recurring access to the interior of the fluidized bed reactor.
  • a parallel to the bottom B extending cross-sectional area of the second combustion zone 7 increases up to a designated by the reference numeral 13 Mauwirbel Anlagenzone.
  • the walls of the second combustion zone 7 are provided with an outer heat exchanger 14 and an inner heat exchanger 15.
  • the inner heat exchanger 15 acts as well as the plate 2 as Flow guide and separates the first combustion zone 2 of the second combustion zone. 7
  • a supply opening 16 for supplying fuel and two exhaust openings 17 for discharging exhaust gas are provided in an upper area of the fluidized-bed reactor. Between the exhaust gas openings 17 and the plates 2 there is a gap or passage 18, which allows a passage of a fuel stream coming from the second combustion zone 7 into the first combustion zone 1.
  • the function of the fluidized-bed reactor is as follows: Fuel supplied by the feed opening 16, for example biomass, is guided in the direction of the deflection device 3 in the first combustion zone 1 and is burnt. The directed in the direction of the deflector 3 Brennstoffström is split by means of the deflection device 3 into two partial streams and deflected in the direction of the second combustion zone 7. To maintain the flow, for example, air is blown through the feed tube 5, which exits at the nozzle openings 8 and accelerates the partial flows, so that they are directed in ent opposite direction in the second combustion zones 7 upwards. As a result of the cross-sectional enlargement provided in the second combustion zones 7, the flow velocity decreases.
  • the resulting in the combustion in the combustion zones 1, 7 heat is decoupled by means of the heat exchangers 14, 15 and can elsewhere for power generation, heating or the like. be used.
  • the supplied through the feed tube 5 fluid such as air, can be preheated by means provided in the bottom B and / or in the deflection device 3 along the nozzle 6 fluid channels. This makes it possible to set or control the combustion temperature.
  • Coarse ash particles are collected in the ash collecting zones 9 and discharged via the discharge openings 11, preferably continuously.
  • the present invention is not limited to the described embodiment.
  • differently designed eddy current reactors are also suitable.
  • the first combustion zone 1 can also be cylindrical and the second combustion zone 7 can be designed as an annular gap surrounding the first combustion zone 1.
  • the exhaust port 17 may be designed as an annular gap which surrounds the feed opening 16.
  • the deflecting device 3 may be designed conical or dome-like in a cylindrical embodiment.
  • the arrangement of the nozzles 6 is chosen so that an optimal circulation of the fuel through the first 1 and the second combustion zone 7 is ensured.
  • a speed of the circulating fuel stream is to be set such that mist vortex layer zones 13 are expediently formed there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur thermochemischen Umsetzung eines Brennstoffs mit folgenden Schritten: a) Bereitstellen eines Wirbelschichtreaktors mit einer zentralen ersten Brennzone (1) und einer davon durch Strömungsleitmittel (2, 15) getrennten zweiten Brennzone (7), wobei die erste Brennzone (1) mit einer Zuführöffnung (16) zum Zuführen von Brennstoff und einer gegenüberliegend der Zuführöffnung (16) am Boden (B) des Wirbelschichtreaktors vorgesehenen Einrichtung (3) zum Umlenken eines Brennstoffstroms in die zweite Brennzone (7) versehen ist, b) Zuführen von Brennstoff durch die Zuführöffnung (16), so dass ein zum Boden (B) weisender Brennstoffstrom sich ausbildet, c) Umlenken des Brennstoffstroms am Boden (B) in die zweite Brennzone (7), so dass der Brennstoffstrom in eine im Wesentlichen entgegengesetzte Richtung geführt wird, und d) weiteres Umlenken des Brennstoffstroms in der Nähe der Zuführöffnung (16), so dass der Brennstoffstrom in die erste Brennzone zurück geführt wird.

Description

Beschreibung
Verfahren und Vorrichtung zur thermochemischen Umsetzung eines Brennstoffs
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur thermochemischen Umsetzung eines Brennstoffs . Sie betrifft insbesondere das Gebiet der Wirbelschichtfeuerungen, bei denen der Brennstoff in einem durch ein zirkulierendes Fluid gebildeten Wirbelbett verbrannt wird .
Aus der DE 39 24 723 C2 ist ein Wirbelschichtreaktor bekannt , bei dem der Brennstoff über ein in der Nähe des Bodens in den Reaktor ragendes horizontales Rohr zugeführt wird . Der Asche- abzug erfolgt durch ein weiteres waagerecht verlaufendes
Rohr, welches ebenfalls in der Nähe des Bodens in den Reaktor mündet . Mit dem vorgeschlagenen Verfahren ist nachteiligerweise nur eine diskontinuierliche Verfahrensführung möglich . Insbesondere eignet sich das Verfahren nicht zur Verbrennung aschereicher Brennstoffe .
Die US 5 , 858 , 033 beschreibt einen Wirbelschichtreaktor, bei dem der Brennstoff durch ein seitlich in den oberen Teil des Reaktors mündendes Rohr zugeführt wird . Am Boden des Reaktors ist eine ringförmige Düsenanordnung vorgesehen, mit der ein zirkulierender Fluidstrom erzeugt wird. Die bei der Wirbel schichtfeuerung anfallende Asche wird über einen die Düsenanordnung umgebenden Ringspalt am Boden des Reaktors abgeführt . Ähnliche Wirbelschichtreaktoren sind aus der US 5 , 980 , 858 so- wie der US 5 , 922 , 090 bekannt . Dabei erfolgt der Ascheaustrag über einen Rost am Boden des Wirbelschichtreaktors . Bei den bekannten WirbelSchichtreaktoren kann es zu einer Verstopfung der Düsen und zu einem Austrag von unverbranntem Brennstoff kommen. Die DE 199 37 524 Al , DE 198 43 613 C2 , DE 198 06 318 Al sowie die DE 199 37 521 Al beschreiben Verfahren zur Verbrennung von Abprodukten und Abfallstoffen aus der Papierindustrie . Dabei wird die bei der Wirbelschichtverbrennung er- zeugte Energie über Wärmetauscher aus dem Abgas gewonnen.
Die DE 197 14 593 Al , DE 199 03 510 C2 , DE 35 17 987 C2 , DE 690 00 323 T2 sowie die DE 693 07 918 T3 beschreiben Wirbelschichtreaktoren, bei denen die Verbrennung in einem zylin- drischen Reaktor erfolgt . Auch dabei erfolgt die Wärmerückgewinnung in der Regel mittels in den Abgasstrom geschalteter Wärmetauscher .
Die DE 198 48 155 Cl , DE 32 14 649 C3 , DE 37 15 516 Al , DE 38 03 437 Al , DE 39 29 178 Al sowie die DE 696 18 819 T2 offenbaren Wirbelschichtreaktoren, bei denen zur Erzeugung der Wirbelschicht ein inertes Material dem Reaktor zugeführt wird.
Die nach dem Stand der Technik bekannten Wirbelschichtreakto- ren sind üblicherweise für einen hohen Leistungsbereich ausgelegt . Sie eignen sich insbesondere nicht zur Verbrennung aschereicher Festbrennstoffe, beispielsweise Biomasse, in einem kleinen Leistungsbereich .
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung anzugeben, mit denen einfach und kostengünstig auch in einem kleinen Leistungsbereich Brennstoffe ther- mochemisch umsetzbar sind.
Diese Aufgabe wird durch die Merkmale der Ansprüche 1 und 18 gelöst . Zweckmäßige Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 17 und 19 bis 34. Nach Maßgabe der Erfindung ist ein Verfahren zur thermochemi- schen Umsetzung eines Brennstoffs mit folgenden Schritten vorgesehen :
a) Bereitstellen eines Wirbelschichtreaktors mit einer zentralen ersten Brennzone und einer davon durch Strömungsleit- mittel getrennten zweiten Brennzone, wobei die erste Brennzone mit einer Öffnung zum Zuführen von Brennstoff und einer gegenüberliegend der Öffnung am Boden des Reaktors vorgesehe- nen Einrichtung zum Umlenken eines BrennstoffStroms in die zweite Brennzone versehen ist ,
b) Zuführen von Brennstoff durch die Zuführöffnung, so dass ein zum Boden weisender Brennstoffström sich ausbildet ,
c) Umlenken des BrennstoffStroms am Boden in die zweite Brennzone , so dass der Brennstoffström in eine im Wesentlichen entgegengesetzte Richtung geführt wird, und
d) weiteres Umlenken des BrennstoffStroms in der Nähe der Zuführöffnung, so dass der Brennstoffström in die erste Brennzone zurückgeführt wird.
Bei dem erfindungsgemäß vorgeschlagenen Verfahren findet die Verbrennung des Brennstoffs in einem durch Strömungsleitmittel in eine erste und eine zweite Brennzone unterteilten Wirbelschichtreaktor statt . Das ermöglicht eine Zwangsführung des BrennstoffStroms und damit einen besonders kompakten Aufbau des Wirbelschichtreaktors . Das vorgeschlagene Verfahren eignet sich insbesondere zur Verbrennung von Brennstoff in einem kleinen Leistungsbereich. Insbesondere eignet sich das Verfahren zur Verbrennung fester und aschereicher Brennstoffe, beispielsweise Biomasse . Nach einer vorteilhaften Ausgestaltung wird bei der ther- mochemischen Umsetzung anfallende Asche durch am Boden vorgesehene Abfuhröffnungen abgeführt . Zum Verschließen der Abfuhröffnungen können Verschlussmittel vorgesehen sein. Des Weiteren hat es sich als zweckmäßig erwiesen, die Abfuhröffnungen durch einen Rost von der ersten und/oder zweiten Brennzone zu trennen. Das ermöglicht eine kontinuierliche Verfahrensführung . Zwischen dem Rost und den Abfuhröffnungen kann beispielsweise ein Asσhesammelraum vorgesehen sein, der diskontinuierlich durch Öffnen der Abfuhröffnungen entleert werden kann . Selbstverständlich ist es aber auch möglich, die anfallende Asche kontinuierlich durch die Abfuhröffnungen abzuführen.
Nach einer weiteren Ausgestaltung ist vorgesehen, dass bei der thermochemisehen Umsetzung gebildetes Abgas durch zumindest eine in der Nähe der Zuführöffnung vorgesehene Abgasöffnung angeführt wird . Das ermöglicht eine effiziente Verfahrensführung bei einem geringen Raumbedarf .
Vorteilhafterweise vergrößert sich eine Querschnittsfläche der zweiten Brennzone zumindest abschnittsweise vom Boden in Richtung der Zuführöffnung . Im Bereich der großen Querschnittsfläche ist die Strömungsgeschwindigkeit verringert . Infolgedessen bildet sich dort bei Wahl einer geeigneten
Strömungsgeschwindigkeit eine Wirbelschicht aus, in der große Partikel länger verweilen als kleine . Kleine Partikel , insbesondere feine Ascheteilchen, werden abgeführt , wohingegen noch verwertbaren Brennstoff enthaltende große Partikel effi- zient nachverbrannt werden. Damit kann eine besonders effiziente Verbrennung des Brennstoffs erreicht werden .
Der erfindungsgemäße Reaktor kann kastenförmig ausgeführt sein. In diesem Fall sind zweckmäßigerweise zwei zweite Brennzonen vorgesehen, welche benachbart zur ersten Brennzone angeordnet sind. Es kann aber auch sein, dass die zweite Brennzone die erste Brennzone umgibt . In diesem Fall ist die erste Brennzone beispielsweise zylindrisch ausgeführt .
Nach einer weiteren Ausgestaltung ist vorgesehen, dass die bei der thermochemisehen Umsetzung entstehende Wärme durch einen Wärmetauscher abgeführt wird, der zumindest teilweise die zweite Brennzone umgibt und/oder Bestandteil des zwischen der ersten und der zweiten Brennzone vorgesehenen Strömungs- leitmittels ist . Das ermöglicht eine besonders effektive Ausnutzung der bei der thermochemischen Umsetzung frei werdenden Energie .
Der Wärmetauscher kann gegenüber der ersten und/oder der zweiten Brennzone zumindest teilweise durch eine feuerfeste Abschirmung abgeschirmt sein. Die Abschirmung ist zweckmäßigerweise aus einem feuerfesten keramischen Material hergestellt . Sie kann j e nach Ausgestaltung des Reaktors die Form einer Platte, eines Zylinders , eines Kegelstumpfs oder dgl . aufweisen . Insbesondere kann die feuerfeste Abschirmung auch Bestandteil des Strömungsleitmittels sein.
Die thermochemische Umsetzung kann eine Verbrennung oder eine Vergasung sein. Dabei können insbesondere feste, aber auch flüssige Brennstoffe umgesetzt werden.
Nach einer weiteren Ausgestaltung weist die Einrichtung zum Umlenken des BrennstoffStroms ein dach- oder kegelartiges Umlenkmittel auf . Ferner kann die Einrichtung zum Umlenken des BrennstoffStroms Düsen zum Beschleunigen des mittels der Umlenkmittel umgelenkten BrennstoffStroms in Richtung der zweiten Brennzone aufweisen . Die Düsen können eine runde, ovale oder auch schlitzförmige Öffnung aufweisen. Der Brennstoffstrom wird zweckmäßigerweise durch ein durch die Düsen zugeführtes Fluid beschleunigt . Dabei kann das Fluid durch die Düsen in eine zum Boden weisende Richtung ausgestoßen werden. Das unterstützt die durch die Strδmungsleitmittel erzeugte Zwangsführung des Brennstoffstroms von der ersten in die zweite Brennzone .
Das Fluid ist zweckmäßigerweise mindestens ein aus der folgenden Gruppe ausgewähltes Gas : Luft , Inertgas , Rauchgas oder strahlungsaktives Gas . Unter einem strahlungsaktiven Gas wird ein Gas verstanden, das eine Wärmeübertragung mit einer be- sonders hohen Wärmestromdichte ermöglicht . Insbesondere bei hohen Temperaturen von mehr als 900 0C wird ein wesentlicher Teil der Wärme durch Strahlung übertragen. Mit einem strahlungsaktiven Gas kann die Wärmeübertragung mittels Strahlung effektiv durchgeführt werden. Das strahlungsaktive Gas ent- hält vorzugsweise 40 Gew. % eines dreiatomigen Gases, beispielsweise eines oder mehrere der folgenden Gase : CO2, NH3, H2O, SO2 oder auch CH4. Das strahlungsaktive Gas kann auch gemischt mit Luft vorliegen.
Ferner kann das Fluid zumindest einen aus der folgenden Gruppe ausgewählten Zusatz enthalten: Kalkmilch, Ammoniak, Harnstoff , Kalkstein. Derartige Zusätze tragen zu einer möglichst Schadstoffarmen Verbrennung von Brennstoffen bei .
Zweckmäßigerweise ist ferner eine Einrichtung zum Vorwärmen des Fluids vorgesehen. Damit kann die Verbrennungstemperatur eingestellt und/oder gesteuert werden.
Nach weiterer Maßgabe der Erfindung ist eine Vorrichtung zur thermochemisehen Umsetzung eines festen Brennstoffs mit einem Wirbelschichtreaktor mit einer zentralen ersten Brennzone und einer davon durch Strömungsleitmittel getrennten zweiten Brennzone vorgesehen, wobei die erste Brennzone mit einer Zuführöffnung zum Zuführen von Brennstoff und einer gegenüber- liegend der Zuführöffnung am Boden des Reaktors vorgesehenen Einrichtung zum Umlenken eines BrennstoffStroms in die zweite Brennzone versehen ist , so dass ein von der Zuführöffnung zum Boden weisender Brennstoffström in die zweite Brennzone umgelenkt , in eine im Wesentlichen entgegengesetzte Richtung ge- führt und in der Nähe der Zuführöffnung wiederum umgelenkt und in die erste Brennzone zurück geführt wird .
Die vorgeschlagene Vorrichtung ist kompakt aufgebaut und ermöglicht eine effiziente thermochemische Umsetzung von Brenn- Stoffen auch in einem kleinen Leistungsbereich . Wegen der vorteilhaften Ausgestaltungen der Vorrichtung wird auf die vorstehenden Ausführungen verwiesen. Die beschriebenen Merkmale eignen sich sinngemäß auch als Weiterbildung der Vorrichtung .
Nachfolgend wird anhand der einzigen Zeichnung ein Ausführungsbeispiel der Erfindung näher erläutert .
Bei dem in der einzigen Figur gezeigten Wirbelschichtreaktor ist eine erste Brennzone 1 seitlich durch Platten 2 begrenzt , die aus einem feuerfesten Material , beispielsweise Aluminiumoxid, Magnesiumoxid, Zirkonoxid oder dgl . , hergestellt sind . Am Boden B des Wirbelschichtreaktors ist eine Umlenkeinrichtung 3 vorgesehen. Die Umlenkeinrichtung 3 ist dach- oder sattelartig ausgebildet , wobei die Dachflächen bzw. Sattelflanken von der Mitte des Wirbelschichtreaktors zu dessen Seiten hin in Richtung des Bodens B abfallen. Die Umlenkeinrichtung 3 kann aus einem temperaturbeständigen Metall oder ebenfalls aus einem feuerfesten keramischen Material herge- stellt sein. Unterhalb der Umlenkeinrichtung 3 ist eine
Fluidzuführvorrichtung 4 vorgesehen, welche ein Zuführrohr 5 und Düsen 6 aufweist . Die Düsen 6 sind so angeordnet , dass ein hindurchgeführtes Fluid schräg in Richtung auf einen Abschnitt des Bodens B geführt wird, welcher etwa unterhalb ei- ner zweiten Brennzone 7 sich befindet . Die Düsen 6 werden durch die vorzugsweise aus einem Metall hergestellte Umlenkeinrichtung 3 begrenzt . Beim Betrieb des Wirbelschichtreaktors heizt sich die Umlenkeinrichtung 3 auf . Infolgedessen wird damit auch ein durch die Düsen 6 hindurchgeleitetes Fluid vorgewärmt . Anstelle des Zuführrohrs 5 können auch ein Zuführschacht oder Zuführkanäle in der Zuführvorrichtung 4 vorgesehen sein, welche insbesondere so angeordnet sind, dass damit effektiv eine weitere Vorwärmung des Fluids erreicht wird . Die zweite Brennzone 7 ist benachbart der ersten Brenn- zone 1 angeordnet . Bei dem Fluid kann es sich insbesondere um ein Gas , beispielsweise Luft , Inertgas oder ein strahlungsaktives Gas, handeln . Die Düsen 6 öffnen sich zweckmäßigerweise im Bereich des unteren Endes der Umlenkeinrichtung 3. Mit dem Bezugszeichen 8 bezeichnete Düsenöffnungen können schlitzar- tig, oval oder rund ausgeführt sein.
Etwa unterhalb der zweiten Brennzone 7 befinden sich Asche- sammelzonen 9 , welche mit Rosten 10 abgedeckt sind . Im Bereich der Aschesammeizonen 9 sind ferner Abfuhröffnungen 11 zum Abführen von Asche vorgesehen. Die Abfuhröffnungen 11 befinden sich zweckmäßigerweise unterhalb von Klappen 12. Durch Öffnen der Klappen 12 ist das Innere des Wirbelschichtreaktors zu Wartungs- und Reinigungszwecken auf einfache Weise zugänglich. Anstelle der Klappen 12 können selbstverständlich auch andere Verschlussmittel vorgesehen sein, welche einen wiederkehrenden Zugang zum Inneren des Wirbelschichtreaktors ermöglichen.
Eine parallel zum Boden B verlaufende Querschnittsfläche der zweiten Brennzone 7 vergrößert sich bis zu einer mit dem Bezugszeichen 13 bezeichneten Nebenwirbelschichtzone .
Die Wände der zweiten Brennzone 7 sind mit einem äußeren Wärmetauscher 14 und einem inneren Wärmetauscher 15 versehen. Der innere Wärmetauscher 15 wirkt ebenso wie die Platte 2 als Strömungsleitmittel und trennt die erste Brennzone 2 von der zweiten Brennzone 7.
Gegenüber der Umlenkeinrichtung 3 sind in einem oberen Be- reich des Wirbelschichtreaktors eine Zuführöffnung 16 zum Zuführen von Brennstoff sowie zwei Abgasöffnungen 17 zum Abführen von Abgas vorgesehen . Zwischen den Abgasöffnungen 17 und den Platten 2 befindet sich ein Spalt bzw. Durchgang 18 , der einen Durchtritt eines von der zweiten Brennzone 7 kommenden BrennstoffStroms in die erste Brennzone 1 ermöglicht .
Die Funktion des Wirbelschichtreaktors ist folgende : Durch die Zuführöffnung 16 zugeführter Brennstoff, beispielsweise Biomasse, wird in der ersten Brennzone 1 in Richtung der Um- lenkeinrichtung 3 geführt und dabei verbrannt . Der in Richtung der Umlenkeinrichtung 3 gerichtete Brennstoffström wird mittels der Umlenkeinrichtung 3 in zwei Teilströme aufgespalten und in Richtung der zweiten Brennzone 7 umgelenkt . Zur Aufrechterhaltung der Strömung wird durch das Zuführrohr 5 beispielsweise Luft eingeblasen, die an den Düsenöffnungen 8 austritt und die Teilströme beschleunigt , so dass sie in ent gegengesetzter Richtung in den zweiten Brennzonen 7 nach oben gerichtet sind . Infolge der in den zweiten Brennzonen 7 vorgesehenen Querschnittsvergrößerung nimmt die Strömungsge- schwindigkeit ab . Es bilden sich in einem oberen Bereich Ne- benwirbelschichtzonen 13. In den Nebenwirbelschichtzonen 13 werden gröbere, noch nicht vollständig verbrannte Brennstoff- Partikel vom Feinmaterial abgetrennt , bis sie infolge der Verbrennung eine bestimmte Feinheit erreicht haben. Feinere Aschepartikel werden dagegen sogleich weiter transportiert und durch die Abgasöffnungen 17 dem zirkulierend geführten Brennstoffström entzogen .
Die bei der Verbrennung in den Brennzonen 1 , 7 entstehende Wärme wird mittels der Wärmetauscher 14, 15 ausgekoppelt und kann an anderer Stelle zur Energieerzeugung, Heizung oder dgl . verwendet werden. Das durch das Zuführrohr 5 zugeführte Fluid, beispielsweise Luft , kann mittels im Boden B und/oder in der Umlenkeinrichtung 3 entlang der Düse 6 vorgesehener Fluidkanäle vorgewärmt werden. Damit ist es möglich, die Verbrennungstemperatur einzustellen bzw. zu steuern.
Grobe Aschepartikel werden in den Aschesammeizonen 9 gesammelt und über die Abfuhröffnungen 11 , vorzugsweise kontinu- ierlich, abgeführt .
Die vorliegende Erfindung ist nicht auf das beschriebene Ausführungsbeispiel beschränkt . Zur Durchführung des erfindungsgemäßen Verfahrens sind auch andersartig ausgeführte Wirbel- stromreaktoren geeignet . Beispielsweise kann die erste Brennzone 1 auch zylindrisch und die zweite Brennzone 7 als ein die erste Brennzone 1 umgebender Ringspalt ausgeführt sein. - Desgleichen kann auch die Abgasöffnung 17 als Ringspalt ausgeführt sein, welcher die Zuführöffnung 16 umgibt . Die Umlenk- einrichtung 3 kann bei einer zylindrischen Ausführung kegel- oder domartig ausgeführt sein . Die Anordnung der Düsen 6 ist so gewählt , dass eine optimale Zirkulation des Brennstoffs durch die erste 1 und die zweite Brennzone 7 gewährleistet ist . Eine Geschwindigkeit des zirkulierenden BrennstoffStroms ist in Abhängigkeit der Geometrie der zweiten Brennzone 7 so einzustellen, dass sich dort zweckmäßigerweise Nebelwirbelschichtzonen 13 ausbilden.
Bezugszeichenliste
1 erste Brennzone
2 Platte
3 Umlenkeinrichtung
4 Pluidzuführvorrichtung
5 Zuführrohr
6 Düse
7 zweite Brennzone
8 Düsenöffnung
9 Aschesammeizone
10 Rost
11 Abfuhröffnung
12 Klappe
13 Nebenwirbelschichtzone
14 äußere Wärmetauscher
15 innere Wärmetauscher
16 Zuführöffnung
17 Abgasöffnung
18 Spalt
B Boden

Claims

Patentansprüche
1. Verfahren zur thermochemisehen Umsetzung eines Brennstoffs mit folgenden Schritten:
a) Bereitstellen eines Wirbelschichtreaktors mit einer zentralen ersten Brennzone (1) und einer davon durch Strömungs- leitmittel (2 , 15) getrennten zweiten Brennzone (7 ) , wobei die erste Brennzone ( 1) mit einer Zuführδffnung (16) zum Zu- führen von Brennstoff und einer gegenüberliegend der Zuführöffnung (16) am Boden (B) des Wirbelschichtreaktors vorgesehenen Einrichtung (3) zum Umlenken eines BrennstoffStroms in die zweite Brennzone (7) versehen ist,
b) Zuführen von Brennstoff durch die Zuführöffnung (16) , so dass ein zum Boden (B) weisender Brennstoffström sich ausbildet ,
c) Umlenken des BrennstoffStroms am Boden (B) in die zweite Brennzone (7) , so dass der Brennstoffström in eine im Wesentlichen entgegengesetzte Richtung geführt wird, und
d) weiteres Umlenken des BrennstoffStroms in der Nähe der Zuführöffnung (16) , so dass der Brennstoffström in die erste Brennzone zurück geführt wird.
2. Verfahren nach Anspruch 1 , wobei bei der thermochemischen Umsetzung anfallende Asche durch am Boden (B) vorgesehene Abfuhröffnungen (11) abgeführt wird.
3. Verfahren nach einem der vorhergehenden Ansprüche, wobei Verschlussmittel zum Verschließen der Abfuhröffnungen (11) vorgesehen sind.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Abfuhröffnungen (11) durch einen Rost (10) von der ersten (1) und/oder zweiten Brennzone (7) getrennt sind .
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei der thermochemisehen Umsetzung gebildetes Abgas durch zumindest eine in der Nähe der Zuführöffnung (16) vorgesehene Abgasöffnung (17) abgeführt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche , wobei sich eine Querschnittsfläche der zweiten Brennzone (7) zumindest abschnittsweise vom Boden (B) in Richtung zur Zuführöffnung ( 16) vergrößert .
7. Verfahren nach einem der vorhergehenden Ansprüche , wobei die zweite Brennzone (7) die erste Brennzone (1) umgibt .
8. Verfahren nach einem der vorhergehenden Ansprüche , wobei die bei der thermochemisehen Umsetzung entstehende Wärme durch einen Wärmetauscher (14 , 15) abgeführt wird, der zumindest teilweise die zweite Brennzone (7) umgibt und/oder Bestandteil des zwischen der ersten (1) und zweiten Brennzone (7) vorgesehenen Strömungsleitmittels ist .
9. Verfahren nach einem der vorhergehenden Ansprüche , wobei der Wärmetauscher (14 , 15) gegenüber der ersten (1) und/oder zweiten Brennzone (7) zumindest teilweise durch eine feuerfeste Abschirmung (2 ) abgeschirmt ist .
10. Verfahren nach einem der vorhergehenden Ansprüche , wobei die thermochemische Umsetzung eine Verbrennung oder Vergasung ist .
11. Verfahren nach einem der vorhergehenden Ansprüche , wobei die Einrichtung (3) zum Umlenken des Brennstoffstroms ein dach- oder kegelartiges Umlenkmittel aufweist .
12. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Einrichtung (3 ) zum Umlenken des Brennstoffstroms Düsen (6) zum Beschleunigen des mittels der Umlenkmittel umgelenkten Brennstoffstroms in Richtung der zweiten Brennzone (7) aufweist .
13. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Brennstoffström durch ein durch die Düsen (6) zugeführtes Fluid beschleunigt wird.
14. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Fluid durch die Düsen (6) in eine zum Boden (B) weisende Richtung ausgestoßen wird.
15. Verfahren nach einem der vorhergehenden Ansprüche , wobei das Fluid mindestens ein aus der folgenden Gruppe ausgewähltes Gas ist : Luft , Inertgas, Rauchgas oder strahlungsaktives Gas .
16. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Fluid zumindest einen aus der folgenden Gruppe ausgewählten Zusatz enthält : Kalkmilch, Ammoniak, Harnstoff, Kalkstein.
17. Verfahren nach einem der vorhergehenden Ansprüche, wobei eine Einrichtung zum Vorwärmen des Fluids vorgesehen ist .
18. Vorrichtung zur thermochemischen Umsetzung eines festen Brennstoffs mit einem Wirbelschichtreaktor mit einer zentralen ersten Brennzone (1) und einer davon durch Strömungsleit- mittel (2 , 15) getrennten zweiten Brennzone (7) , wobei die erste Brennzone (7) mit einer Zuführöffnung (16) zum Zuführen von Brennstoff und einer gegenüberliegend der Zuführöffnung (IS) am Boden (B) des Wirbelschichtreaktors vorgesehenen Einrichtung (3) zum Umlenken eines BrennstoffStroms in die zwei- te Brennzone (7) versehen ist , so dass ein von der Zuführöffnung (16) zum Boden (B) weisender Brennstoffström in die zweite Brennzone (7) umgelenkt , in eine im Wesentlichen entgegengesetzte Richtung geführt und in der Nähe der Zuführöffnung (16) wiederum umgelenkt und in die erste Brennzone (1) zurück geführt wird.
19. Vorrichtung nach Anspruch 18 , wobei am Boden (B) Abfuhröffnungen (11) zum Abführen von bei der thermochemisehen Umsetzung anfallender Asche vorgesehen sind .
20. Vorrichtung nach Anspruch 18 oder 19, wobei Verschlussmittel zum Verschließen der Abfuhröffnungen (11) vorgesehen sind.
21. Vorrichtung nach einem der Ansprüche 18 bis 20 , wobei die Abfuhröffnungen (11) durch einen Rost (10) von der ersten (1) und/oder zweiten Brennzone (7) getrennt sind.
22. Vorrichtung nach einem der Ansprüche 18 bis 21 , wobei in der Nähe der Zuführöffnung (16) zumindest eine Abgasöffnung
(17) zum Abführen von bei der thermochemischen Umsetzung gebildetem Abgas vorgesehen ist .
23. Vorrichtung nach einem der Ansprüche 18 bis 22 , wobei sich eine Querschnittsfläche der zweiten Brennzone (7) zumindest abschnittsweise vom Boden (B) in Richtung zur Zuführöffnung (16) vergrößert .
24. Vorrichtung nach einem der Ansprüche 18 bis 23 , wobei die zweite Brennzone (7) die erste Brennzone (1) umgibt .
25. Vorrichtung nach einem der Ansprüche 18 bis 24 , wobei ein Wärmetauscher (14 , 15) zum Abführen der bei der ther- mochemischen Umsetzung entstehende Wärme vorgesehen ist , der zumindest teilweise die zweite Brennzone (7) umgibt und/oder Bestandteil des zwischen der ersten (1) und zweiten Brennzone (7) vorgesehenen Strömungsleitmittels ist .
26. Vorrichtung nach einem der Ansprüche 18 bis 25 , wobei der Wärmetauscher (14 , 15) gegenüber der ersten (1) und/oder zweiten Brennzone (7) zumindest teilweise durch eine feuerfeste Abschirmung (2) abgeschirmt ist .
27. Vorrichtung nach einem der Ansprüche 18 bis 26 , wobei die thermochemische Umsetzung eine Verbrennung oder Vergasung ist .
28. Vorrichtung nach einem der Ansprüche 18 bis 27 , wobei die Einrichtung (3) zum Umlenken des BrennstoffStroms ein dach- oder kegelartiges Umlenkmittel aufweist .
29. Vorrichtung nach einem der Ansprüche 18 bis 28 , wobei die Einrichtung (3 ) zum Umlenken des BrennstoffStroms Düsen
(6) zum Beschleunigen des mittels der Umlenkmittel umgelenk- ten BrennstoffStroms in Richtung der zweiten Brennzone (7) aufweist .
30. Vorrichtung nach einem der Ansprüche 18 bis 29 , wobei der Brennstoffström durch ein durch die Düsen (6) zugeführtes Fluid beschleunigt wird.
31. Vorrichtung nach einem der Ansprüche 18 bis 30 , wobei die Düsen (6) so angeordnet sind, dass deren Ausstoßrichtung zum Boden (B) weist .
32. Vorrichtung nach einem der Ansprüche 18 bis 31 , wobei das Fluid mindestens ein aus der folgenden Gruppe ausgewähltes Gas ist : Luft , Inertgas, Rauchgas oder strahlungsaktives Gas .
33. Vorrichtung nach einem der Ansprüche 18 bis 32 , wobei das Fluid zumindest ein aus der folgenden Gruppe ausgewählten Zusatz enthält : Kalkmilch, Ammoniak, Harnstoff , Kalkstein.
34. Vorrichtung nach einem der Ansprüche 18 bis 33 , wobei eine Einrichtung zum Vorwärmen des Fluids vorgesehen ist .
PCT/EP2006/000745 2005-02-09 2006-01-28 Verfahren und vorrichtung zur thermochemischen umsetzung eines brennstoffs WO2006084590A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06706461.8A EP1846151B1 (de) 2005-02-09 2006-01-28 Verfahren und vorrichtung zur thermochemischen umsetzung eines brennstoffs
JP2007554468A JP5007242B2 (ja) 2005-02-09 2006-01-28 燃料の熱化学変換方法及び装置
US11/883,835 US20080149011A1 (en) 2005-02-09 2006-01-28 Method and Device For the Thermochemical Conversion of a Fuel
CA2597520A CA2597520C (en) 2005-02-09 2006-01-28 Method and device for the thermochemical conversion of a fuel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005005796A DE102005005796A1 (de) 2005-02-09 2005-02-09 Verfahren und Vorrichtung zur thermochemischen Umsetzung eines Brennstoffs
DE102005005796.9 2005-02-09

Publications (1)

Publication Number Publication Date
WO2006084590A1 true WO2006084590A1 (de) 2006-08-17

Family

ID=36294537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/000745 WO2006084590A1 (de) 2005-02-09 2006-01-28 Verfahren und vorrichtung zur thermochemischen umsetzung eines brennstoffs

Country Status (6)

Country Link
US (1) US20080149011A1 (de)
EP (1) EP1846151B1 (de)
JP (1) JP5007242B2 (de)
CA (1) CA2597520C (de)
DE (1) DE102005005796A1 (de)
WO (1) WO2006084590A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2703339A1 (de) * 2012-09-04 2014-03-05 Casale Chemicals S.A. Brenner zur Herstellung von Synthesegas
US20170356642A1 (en) * 2016-06-13 2017-12-14 The Babcock & Wilcox Company Circulating fluidized bed boiler with bottom-supported in-bed heat exchanger
NL2021739B1 (en) * 2018-10-01 2020-05-07 Milena Olga Joint Innovation Assets B V Reactor for producing a synthesis gas from a fuel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55118515A (en) * 1979-03-08 1980-09-11 Ebara Corp Fluidizing bed type combustion furnace
EP0302849A1 (de) * 1987-07-21 1989-02-08 SGP-VA Energie- und Umwelttechnik Gesellschaft m.b.H. Verfahren und Vorrichtung zur Verbrennung oder Vergasung von Brennstoffen in einer Wirbelschicht
US5138982A (en) * 1986-01-21 1992-08-18 Ebara Corporation Internal circulating fluidized bed type boiler and method of controlling the same
US6709636B1 (en) * 1996-06-21 2004-03-23 Ebara Corporation Method and apparatus for gasifying fluidized bed

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153091B2 (ja) * 1994-03-10 2001-04-03 株式会社荏原製作所 廃棄物の処理方法及びガス化及び熔融燃焼装置
US3863577A (en) * 1971-11-22 1975-02-04 Dorr Oliver Inc Fluidized bed reactor
US3907981A (en) * 1973-03-12 1975-09-23 Rockwell International Corp Method for recombining hydrogen and oxygen
US4060041A (en) * 1975-06-30 1977-11-29 Energy Products Of Idaho Low pollution incineration of solid waste
GB1577717A (en) * 1976-03-12 1980-10-29 Mitchell D A Thermal reactors incorporating fluidised beds
JPS5758558Y2 (de) * 1979-05-21 1982-12-14
JPS5630523A (en) * 1979-08-20 1981-03-27 Ebara Corp Fluidized bed type thermal reaction furnace
US4672918A (en) * 1984-05-25 1987-06-16 A. Ahlstrom Corporation Circulating fluidized bed reactor temperature control
AT382227B (de) * 1985-04-30 1987-01-26 Simmering Graz Pauker Ag Verfahren und vorrichtung zur verbrennung von festen, fluessigen, gasfoermigen oder pastoesen brennstoffen in einem wirbelschichtofen
DE3515516A1 (de) * 1985-04-30 1986-11-06 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von polyphenylenethern
DE3803437A1 (de) * 1987-06-02 1988-12-15 Lentjes Ag Wirbelschichtreaktor
DE3729971A1 (de) * 1987-09-08 1989-03-16 Wuenning Joachim Heissgaserzeugungseinrichtung mit thermischer nachverbrennung
EP0321308A1 (de) * 1987-12-17 1989-06-21 Cet Energy Systems Inc. Wirbelschichtfeuerung
DE3924723C2 (de) * 1988-08-15 1994-02-10 Reinhard Dipl Ing Eckert Energieumwandlungseinrichtung mit einer Wirbelkammerfeuerung
FI85909C (fi) * 1989-02-22 1992-06-10 Ahlstroem Oy Anordning foer foergasning eller foerbraenning av fast kolhaltigt material.
US4969404A (en) * 1989-04-21 1990-11-13 Dorr-Oliver Incorporated Ash classifier-cooler-combustor
AU5635290A (en) * 1989-05-01 1990-11-29 Ky Dangtran Fluidized bed device for combustion of low-melting fuels
DE3929178A1 (de) * 1989-09-02 1991-03-21 Balcke Duerr Ag Wirbelschichtreaktor und zugehoeriges betriebsverfahren
DE69307918T3 (de) * 1992-11-10 2003-01-23 Foster Wheeler Energia Oy Helsinki Verfahren und vorrichtung zum betrieb eines reaktorsystems mit zirkulierender wirbelschicht
FI93274C (fi) * 1993-06-23 1995-03-10 Ahlstroem Oy Menetelmä ja laite kuuman kaasuvirran käsittelemiseksi tai hyödyntämiseksi
US5401130A (en) * 1993-12-23 1995-03-28 Combustion Engineering, Inc. Internal circulation fluidized bed (ICFB) combustion system and method of operation thereof
US5922090A (en) * 1994-03-10 1999-07-13 Ebara Corporation Method and apparatus for treating wastes by gasification
US5465690A (en) * 1994-04-12 1995-11-14 A. Ahlstrom Corporation Method of purifying gases containing nitrogen oxides and an apparatus for purifying gases in a steam generation boiler
TW270970B (en) * 1995-04-26 1996-02-21 Ehara Seisakusho Kk Fluidized bed combustion device
DK0889943T3 (da) * 1996-02-21 2002-05-06 Foster Wheeler Energia Oy Fluid bed-reaktorsystem og fremgangsmåde til drift deraf
US5980858A (en) * 1996-04-23 1999-11-09 Ebara Corporation Method for treating wastes by gasification
DE19714593A1 (de) * 1997-04-09 1998-10-15 Metallgesellschaft Ag Verfahren zum Verbrennen von Abfallstoffen in einer zirkulierenden Wirbelschicht
US7285144B2 (en) * 1997-11-04 2007-10-23 Ebara Corporation Fluidized-bed gasification and combustion furnace
DE19806318A1 (de) * 1998-02-06 1999-08-12 Harald Dipl Ing Dr Martin Verfahren und Einrichtung zur Aufarbeitung von Reststoffen der Papierindustrie (Spuckstoffe)
DE19843613C2 (de) * 1998-09-23 2000-12-07 Harald Martin Verfahren und Vorrichtung zur Aufarbeitung von Abprodukten und Abfallstoffen
DE19848155C1 (de) * 1998-10-20 2000-11-02 Ralf Paulsen Verfahren und Vorrichtung zur Verbrennung von Stoffen in einer Wirbelschicht
DE19859052C2 (de) * 1998-12-21 2001-01-25 Dieter Steinbrecht Verfahren und Einrichtung zur thermischen Abfallverwertung und Abfallentsorgung fester, flüssiger und pumpfähiger inhomogener brennbarer Gemische und thermische Reinigung kontaminierter Materialien in einer Wirbelschichtfeuerung
DE19903510C2 (de) * 1999-01-29 2002-03-07 Mg Technologies Ag Verfahren zum Verbrennen oder Vergasen in der zirkulierenden Wirbelschicht
DE19937524A1 (de) * 1999-08-03 2001-02-15 Harald Martin Verfahren und Vorrichtung zum Beseitigen von Abprodukten und Abfallstoffen
DE19937521A1 (de) * 1999-08-03 2001-02-15 Harald Martin Verfahren und Vorrichtung zum Trocknen, Trennen, Klassieren und Zersetzen von Abprodukten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55118515A (en) * 1979-03-08 1980-09-11 Ebara Corp Fluidizing bed type combustion furnace
US5138982A (en) * 1986-01-21 1992-08-18 Ebara Corporation Internal circulating fluidized bed type boiler and method of controlling the same
EP0302849A1 (de) * 1987-07-21 1989-02-08 SGP-VA Energie- und Umwelttechnik Gesellschaft m.b.H. Verfahren und Vorrichtung zur Verbrennung oder Vergasung von Brennstoffen in einer Wirbelschicht
US6709636B1 (en) * 1996-06-21 2004-03-23 Ebara Corporation Method and apparatus for gasifying fluidized bed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 004, no. 169 (M - 043) 21 November 1980 (1980-11-21) *

Also Published As

Publication number Publication date
JP5007242B2 (ja) 2012-08-22
DE102005005796A1 (de) 2006-08-17
US20080149011A1 (en) 2008-06-26
CA2597520A1 (en) 2006-08-17
CA2597520C (en) 2013-06-25
JP2008530491A (ja) 2008-08-07
EP1846151B1 (de) 2013-09-18
EP1846151A1 (de) 2007-10-24

Similar Documents

Publication Publication Date Title
EP0302849B1 (de) Verfahren und Vorrichtung zur Verbrennung oder Vergasung von Brennstoffen in einer Wirbelschicht
DE2624302A1 (de) Verfahren zur durchfuehrung exothermer prozesse
DE4028853A1 (de) Verfahren und vorrichtung zum vergasen fluessiger und/oder feinkoerniger fester vergasungsstoffe und/oder zum reformieren eines gases
DE102007004221A1 (de) Vorrichtung und Verfahren zur thermischen Umsetzung von Pellets oder Holzschnitzeln
DE102004051477A1 (de) Verfahren und Anlage zur Regulierung der Feststoffumlaufmenge eines zirkulierenden Wirbelschichtreaktorsystems
EP2375152B1 (de) Vorrichtung und Verfahren zur Heißgaserzeugung mit integrierter Erhitzung eines Wärmeträgermediums
EP1846151B1 (de) Verfahren und vorrichtung zur thermochemischen umsetzung eines brennstoffs
EP0862019A1 (de) Verfahren und Vorrichtung zur thermischen Behandlung von Flugstäuben aus Rostverbrennungsanlagen
DE19806823C2 (de) Vorrichtung und Verfahren zur Verbrennung vanadiumhaltiger Brennstoffe
DD296542A5 (de) Feuerung, insbesondere wirbelschichtfeuerung
EP0413799B1 (de) Mehrstufige rostanordnung zum verbrennen von müll und abfall sowie verfahren zu deren betrieb
EP2691701A1 (de) Verfahren zur optimierung des ausbrands von abgasen einer verbrennungsanlage
DE3012688C2 (de) Verdampfer mit Tauchbrenner
DE68917725T2 (de) Verbrennungsverfahren und regelungsverfahren dazu.
EP1052231A1 (de) Verfahren und Anlage zur thermischen Behandlung von mehlförmigen Rohmaterialien
DE102004037442B4 (de) Verfahren zur thermischen Behandlung von Abfall in einer thermischen Abfallbehandlungsanlage sowie thermische Abfallbehandlungsanlage
EP2220434A1 (de) Wirbelschichtfeuerung
DE102009013713A1 (de) Verfahren zum Betreiben eines Biomasse-Heizkraftwerks mit einer Wirbelschichtfeuerung
DE3434970A1 (de) Einrichtung zur minderung der feststoffpartikel- und schadstoff-anteile im zwangsgefoerderten abgasstrom aus der verbrennung von kohlenstoffhaltigen feststoffen in einem reaktorbett
DE10305968B3 (de) Verfahren zur Verbrennung von Asche und Schlacke bildenden Brennstoffen und Rückständen und Vorrichtung zur Durchführung des Verfahrens
EP3650756A1 (de) Zerlegbares lanzensystem
DE2736493A1 (de) Verfahren und vorrichtung zum verbrennen von kohle
DE4233724C2 (de) Verfahren zur Abscheidung von Feststoffpartikeln aus heißen Verbrennungsabgasen und Vorrichtung zur Durchführung des Verfahrens
DE19617749C1 (de) Verbrennungsanlage zur Erzeugung von Energie und Verfahren zum Betreiben der Verbrennungsanlage
WO1990006474A1 (de) Verfahren und vorrichtung zur behandlung von kohlenstoffhaltigem flugstaub in rauchgasen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006706461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2597520

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007554468

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11883835

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006706461

Country of ref document: EP