WO2006082218A1 - Surface a microstructure reduisant la mouillabilite et procede de realisation associe - Google Patents

Surface a microstructure reduisant la mouillabilite et procede de realisation associe Download PDF

Info

Publication number
WO2006082218A1
WO2006082218A1 PCT/EP2006/050619 EP2006050619W WO2006082218A1 WO 2006082218 A1 WO2006082218 A1 WO 2006082218A1 EP 2006050619 W EP2006050619 W EP 2006050619W WO 2006082218 A1 WO2006082218 A1 WO 2006082218A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstructure
nanostructure
particles
electrolyte
adhesion
Prior art date
Application number
PCT/EP2006/050619
Other languages
German (de)
English (en)
Inventor
Christian Hansen
Ursus KRÜGER
Ursula Michelsen-Mohammadein
Manuela Schneider
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2006082218A1 publication Critical patent/WO2006082218A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers

Definitions

  • the invention relates to a surface having an adhesion-reducing microstructure and to a process for the electrochemical production of such a surface.
  • Adhesion- reducing (i.e., wettability-reducing, liquids-reducing) surfaces of the type mentioned in the introduction are e.g. B. are used as so-called lotus effect surfaces and are described, for example, in DE 100 15 855 A1 .
  • such surfaces are characterized by a microstructure which can be obtained by a layer deposition from solutions, but also by an electrolytic deposition. This mimics an effect observed on the leaves of the lotus flower, according to which the microstructure produced, which for this purpose has elevations and depressions with a radius of 5 to 100 ⁇ m, reduces the adhesion of water and dirt particles. As a result, contamination of the corresponding surface can be counteracted.
  • z. B. also avoid limescale deposits.
  • the object of the invention is to provide a surface with an adhesion reducing microstructure or. specify a production method for this surface, wherein the effect of the reduction in adhesion over a longer period of use of the surface should be pronounced.
  • This object is he ⁇ invention solved in accordance with the aforementioned method in that are added to the electrolyte for the electrochemical production of the surface particles of titanium oxide, forming board with the electrolyte a suspensions, such that the particles in the Oberflä ⁇ che training layer to be installed.
  • the incorporation of Par ⁇ tikeln of titanium oxide inevitably causes that these Parti ⁇ kel a portion of the formed surface of the layer bil ⁇ .
  • This part of the surface causes a known self-cleaning effect of the surface, which is based on the photocatalytic oxidation ability of the titanium oxide.
  • the photocatalytic oxidation ability of titanium oxide is set by a UV irradiation of the titanium oxide particles in motion, as it will affect loading for example, by sunlight, when the surface of athmospherischen Witte is exposed ⁇ tion. Due to the UV radiation by electrons, the titanium oxide that is released, which on the alternative ⁇ ell annealed on the surface of particles (debris or micro-organisms, such as algae) / have a reducing and oxidizing this thereby destroy. In addition, the reduction / oxidation of these deposits also facilitates removal from the surface.
  • s be used as particle nanoparticles. This makes it possible schreibrangn ge ⁇ a particularly fine distribution of the self-cleaning causing surface portions of the surface produced.
  • the particles are supplied to the electrolyte as a suspension.
  • the particles agglomerate in the electrolyte, which must be regarded as a prerequisite, in particular when using nanoparticles, which tend to aglomerate because of their extremely small size in the nanometer range, so that these nanoparticles can be singly or in very small sizes Clusters can be incorporated into the forming layer.
  • the surface is produced by electrochemical pulse plating ULTRASONIC, wherein a micro ⁇ structure overlying nanostructure is produced by Reverse Pulse Pla ⁇ ting.
  • the superposition of the microstructure by a nano-structure is accordance with the invention, the s is formed on the surface topology with radii of curvature of the surface profuse in the micrometer range (microstructure) a surface topology, whose radii of curvature before ⁇ Trains t in the range of a few nanometers to 100 nanometers (nanostructure ).
  • the formation of the nanostructure on The microstructure is achieved by reverse pulse plating with current pulses of a length in the millisecond range.
  • the microstructure can be produced simultaneously or separately.
  • it is particularly advantageous to nanoparticles of titanium oxide to use because they can be installed particularly well in the nanostructure of the surface due to their dimensions.
  • the nanostructure of the surface in combination with the microstructure advantageously improves the effect of reducing the adhesion of substances on the surface. This advantageously improves the lotus effect of the surface.
  • the pulse length in the method step for producing the nanostructure is less than 500 ms.
  • favorable deposition parameters can be set on the surface to be produced in this method step, so that the nanostructure produced differs sufficiently in its dimensions from the microstructure produced.
  • the individual current pulses are in the range between 10 and 250 milliseconds in terms of their length. It has been shown that the nanostructure of the surface is advantageously particularly pronounced in the case of the parameters mentioned.
  • the cathodic pulses have at least three times the length of the a nodonic pulses.
  • the ones pulses are perceived, at which there is egg ner deposition on the surface, while the Anodi ⁇ rule pulses cause a dissolution of the surface.
  • the needle-like basic elements of the nanostructure advantageously be generated with a high density on the microstructure, which favors the Lotus effect to be achieved.
  • the cathodic pulses with a higher current density are performed rule as the Anodi ⁇ pulses.
  • the deposition rate of the cathodic pulses is increased in comparison to the removal rate of the anodic pulses, so that advantageously a layer ⁇ growth of the nanostructuring is generated.
  • the measures of a modification of the pulse duration and the variation of the current density can be combined with each other. It is under setting of the mentioned parameters in each case an optimum for the material to be deposited .
  • the pulse length is at least one second in an upstream process step for producing the microstructure.
  • the required microstructure of the surface can advantageously low time on electro ⁇ chemically be produced if it does not, or not crossed with sufficient expression in the method is produced for producing the nanostructure.
  • the surface is additionally produced with a macrostructure which superimposes the microstructure.
  • the macrostructure can be electrochemically or by other means z. B. be made mechanically.
  • a macrostructure is understood to mean a topology of the surface whose geometric dimensions of the elementary structural components are greater by at least one order of magnitude than those of the microstructure. For a wavy macrostructure, this would mean for the radius of the waves, for example, that it is correspondingly larger than the radii of the elevations or. Recesses of the microstructure.
  • the macrostructure advantageously allows an additional increase in the adhesion-reducing properties of the surface.
  • the macrostructure of the surface can advantageously have additional functions, such. B. ei ⁇ ner improve the flow characteristics of the surface take over.
  • a top surface with an adhesion- ⁇ microstructure in which in the surface-forming material particles, In particular, nanoparticles of titanium oxide are incorporated which form part of the surface.
  • the particles of titanium oxide are accessible on the surface, they can ensure the already described effect of self-cleaning of the surface.
  • the microstructure is superimposed on a nanostructure produced by pulse plating.
  • the advantages already mentioned can, in particular a Ver ⁇ improving the adhesion-properties of the surface achieved.
  • this is superhydrophobic.
  • the superhydrophobic properties cause, in particular, poor wettability of the surface for water, so that water present on the surface forms individual droplets which, owing to a contact angle to the surface of more than 140 °, easily bead off and thereby possibly precipitate.
  • Figure 2 shows the surface profile of a lotus effect surface as an embodiment of the inventions ⁇ to the invention in section and
  • 3 and 4 are perspective views of the lotus effect surface according to FIG. 2.
  • a body 11 provides a surface with Darge ⁇ whose adhesion properties is reduced.
  • the surface 12 can be described schematically by an overlay of a macrostructure 12 with a microstructure 13 and a nanostructure 14.
  • the microstructure produces a waviness of the surface.
  • the microstructure is indicated by semi-spherical protrusions on the wavelength ⁇ macrostructure 12th
  • the nanostructure 14 is represented in FIG. 1 by nubs which are located on the hemispherical elevations (microstructure) and in the parts of the macrostructure 12 which form the depressions of the microstructure 13 and are located between the elevations.
  • FIG. 1 shows a contact angle ⁇ of more than 140 °, so that the surface shown schematically is a superhydrophobic surface.
  • Pulse length (reverse pulses): 240 ms at 10 A / dm 2 cathodic, 40 ms at 8 A / dm 2 anodic electrolyte contained 50 g / l Cu, 20 g / l free cyanide, 5 g / l KOH
  • the surface is electrochemically generated in the following with ⁇ means of an SPM (Scanning Probe Microscope - AFM or also called A- Tomic Force Microscope) has been studied.
  • SPM Sccanning Probe Microscope - AFM or also called A- Tomic Force Microscope
  • FIG. 2 A waveform 18 is entered in FIG. 2, which illustrates the macrostructure superimposed on the surface structure.
  • the microstructure 13 can be recognized as a succession of needle-like elevations 19 and depressions 20 as a result of the elevation.
  • the nanostructure 14 can be recognized, which results from a narrow sequence of elevations and depressions, which are no longer to be resolved in the scale shown in FIG. 2 and can therefore only be seen as a thickening of the profile line of the surface profile. Further details can be read from the figure 3, which contains a perspective view of the copper surface. A square area of 100 ⁇ 100 ⁇ m has been selected as a cutout, the needle-like elevations 19 determining the microstructure 13 being clearly recognizable. The resulting image reminds the viewer of a "Na ⁇ delwald", wherein the intermediate spaces between the "conifers" (increases 19), the cavities form 20th The surface according to FIG. 3 is also shown elevated in order to illustrate the elevations 19 and the depressions 20 of the microstructure 13.
  • FIG. 3 can further be seen schematically how micro Article 21m composition of titanium dioxide in the needle-like layer ⁇ the surface may be integrated. Shown are only particles 21m, which have a share of the surface. Particles contained in deeper parts of the layer on ⁇ construction are not shown. The particles can be referred to as microparticles because they, like the
  • FIG. 4 also shows how nanoparticles 21n of titanium dioxide can be incorporated into the layer as an alternative to the titanium dioxide microparticles 21 shown in FIG.
  • nanoparticles 21n titanium ⁇ dioxide replace the corresponding portion of the surface, the needle-like ER generated by the nanostructure surveys 19n and depressions 2
  • the s nanoparticles 21n in a larger order of magnitude Density are distributed on this surface as the microparticles 21st
  • the microstructure 13 and the nanostructure 14 are each marked with a clip.
  • the bracket always comprises only a section of the respective structure, which contains an elevation and a depression, so that the brackets allow one another in each case within a figure a comparison of the magnitudes of the structures in relation to each other.
  • the superhydrophobic properties of the copper layer shown, which act a lotus effect be ⁇ is achieved by a combination of at least the micro-structure ⁇ 13 and the nanostructure 14, wherein the superposition of a macro-structure 12, the observed effects still improved.
  • suitable process parameters it is possible to produce such lotus effect surfaces for different layer materials (for example, silver layers have also been successfully tested) and for liquids with different wetting behavior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne une surface à microstructure réduisant l'adhérence et un procédé de réalisation associé. De telles microstructures réduisant l'adhérence sont connues, par exemple, pour former des surfaces autonettoyantes en exploitant l'effet lotus. La surface est de préférence réalisée électrochimiquement par électrodéposition sous impulsion de courant inversée pour créer la microstructure et, simultanément ou lors d'une opération suivante, une nanostructure superposée sur cette microstructure. Selon l'invention, des particules (21m, 21n) d'oxyde de titane sont introduites dans les électrolytes, dans lesquels elles forment une suspension, de sorte que les particules sont insérées dans la couche formant la surface. On peut ainsi obtenir une surface à macrostructure/nanostructure réduisant la mouillabilité, dont la tendance à la salissure est également diminuée grâce aux particules d'oxyde de titane libres se trouvant à la surface. La couche de l'invention peut être utilisée, par exemple, sur des éléments de façade.
PCT/EP2006/050619 2005-02-04 2006-02-02 Surface a microstructure reduisant la mouillabilite et procede de realisation associe WO2006082218A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005006013.7 2005-02-04
DE102005006013 2005-02-04

Publications (1)

Publication Number Publication Date
WO2006082218A1 true WO2006082218A1 (fr) 2006-08-10

Family

ID=36121508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/050619 WO2006082218A1 (fr) 2005-02-04 2006-02-02 Surface a microstructure reduisant la mouillabilite et procede de realisation associe

Country Status (1)

Country Link
WO (1) WO2006082218A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046392A3 (fr) * 2008-10-23 2010-07-15 Happy Plating Gmbh Procédé d'application de revêtement par voie électrochimique
CN102618908A (zh) * 2011-01-31 2012-08-01 新确有限公司 固定磨粒金属丝的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3268307A (en) * 1963-03-01 1966-08-23 Udylite Corp Process of electrodepositing a corrosion resistant nickel-chromium coating and products thereof
EP0331730A1 (fr) * 1987-08-27 1989-09-13 Kishinevsky Politekhnichesky Institut Imeni S.Lazo Procede pour appliquer un revetement composite d'oxyde de nickel-titane sur un support metallique
DE4211881A1 (de) * 1992-04-09 1993-10-14 Wmv Ag Verfahren zum galvanischen Aufbringen einer Oberflächenbeschichtung
JPH11158694A (ja) * 1997-11-27 1999-06-15 Toto Ltd 親水性メッキを施した物品及びメッキ方法
US20010037876A1 (en) * 2000-03-30 2001-11-08 Basf Aktiengesellschaft Use of the lotus effect in process engineering
US6478943B1 (en) * 2000-06-01 2002-11-12 Roll Surface Technologies, Inc. Method of manufacture of electrochemically textured surface having controlled peak characteristics
US20040040854A1 (en) * 2002-08-30 2004-03-04 Fujitsu Limited Method of making oxide film by anodizing magnesium material
DE10251614A1 (de) * 2002-11-06 2004-05-19 Thomas Kronenberger Verfahren zur Erzeugung einer definiert eingestellten gleichmäßigen Oberflächenstruktur mit vorgegebener Rauhtiefe auf Bauteilen oder Werkstücken
US20040154925A1 (en) * 2003-02-11 2004-08-12 Podlaha Elizabeth J. Composite metal and composite metal alloy microstructures

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3268307A (en) * 1963-03-01 1966-08-23 Udylite Corp Process of electrodepositing a corrosion resistant nickel-chromium coating and products thereof
EP0331730A1 (fr) * 1987-08-27 1989-09-13 Kishinevsky Politekhnichesky Institut Imeni S.Lazo Procede pour appliquer un revetement composite d'oxyde de nickel-titane sur un support metallique
DE4211881A1 (de) * 1992-04-09 1993-10-14 Wmv Ag Verfahren zum galvanischen Aufbringen einer Oberflächenbeschichtung
JPH11158694A (ja) * 1997-11-27 1999-06-15 Toto Ltd 親水性メッキを施した物品及びメッキ方法
US20010037876A1 (en) * 2000-03-30 2001-11-08 Basf Aktiengesellschaft Use of the lotus effect in process engineering
US6478943B1 (en) * 2000-06-01 2002-11-12 Roll Surface Technologies, Inc. Method of manufacture of electrochemically textured surface having controlled peak characteristics
US20040040854A1 (en) * 2002-08-30 2004-03-04 Fujitsu Limited Method of making oxide film by anodizing magnesium material
DE10251614A1 (de) * 2002-11-06 2004-05-19 Thomas Kronenberger Verfahren zur Erzeugung einer definiert eingestellten gleichmäßigen Oberflächenstruktur mit vorgegebener Rauhtiefe auf Bauteilen oder Werkstücken
US20040154925A1 (en) * 2003-02-11 2004-08-12 Podlaha Elizabeth J. Composite metal and composite metal alloy microstructures

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"ABSCHEIDUNG EINER NICKELDISPERSIONSSCHICHT MIT TITANOXID", GALVANOTECHNIK, EUGEN G.LEUZE VERLAG, SAULGAU/WURTT, DE, vol. 81, no. 6, June 1990 (1990-06-01), pages 2114, XP000108770, ISSN: 0016-4232 *
E.J. PODLAHA: "Selective Electrodepostion of Nanoparticulates into Metal Matrices", NANO LETTERS, vol. 1, no. 8, 7 March 2001 (2001-03-07), pages 413 - 416, XP002379330 *
F. ERLER ET AL.: "Interface behaviour in nickel composite coatings with nano-particles of oxidic ceramic", ELECTROCHIMICA ACTA, vol. 48, 2003, pages 3063 - 3070, XP002379329 *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 11 30 September 1999 (1999-09-30) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046392A3 (fr) * 2008-10-23 2010-07-15 Happy Plating Gmbh Procédé d'application de revêtement par voie électrochimique
CN102618908A (zh) * 2011-01-31 2012-08-01 新确有限公司 固定磨粒金属丝的制造方法

Similar Documents

Publication Publication Date Title
WO2006021507A1 (fr) Surface a microstructure diminuant l'adherence et procede de fabrication associe
EP1843864B1 (fr) Composant presentant un revetement concu pour reduire la mouillabilite de la surface et procede pour le produire
DE60300277T2 (de) Lasererzeugte poröse Oberfläche
EP1289734B1 (fr) Outil d'estampage, procede de structuration de la surface d'une piece et utilisation d'une couche superficielle anodiquement oxydee
EP4182099B1 (fr) Tôle d'acier laminée à écrouissage superficiel, rouleau d'écrouissage superficiel et procédé de production de tôle d'acier laminée à écrouissage superficiel
DE1771323A1 (de) Verfahren zum UEberziehen von Mctalloberflaechen mit einem fluorhaltigen Polymer
WO2021052812A1 (fr) Tôle d'acier ayant une structure de surface déterministe
DE10028772B4 (de) Aluminiumwerkstoff mit ultrahydrophober Oberfläche, Verfahren zu dessen Herstellung sowie Verwendung
WO2007140931A1 (fr) Corps revêtu et son procédé de fabrication
EP4041467B1 (fr) Tôle d'acier à structure de surface déterministe et procédé de fabrication d'une telle tôle d'acier
DE10228323B4 (de) Verfahren zum kathodischen elektrolytischen Abscheiden und Mikrokomponenten, hergestellt durch ein solches Verfahren
EP2428307B1 (fr) Procédé de production de structures de surface rugueuses
DE2828993A1 (de) Verfahren zur galvanoplastischen herstellung eines duesenkoerpers
EP0722515B1 (fr) Procede d'application d'un revetement superficiel par galvanisation
AT516503B1 (de) Elektrolyt zur plasmaelektrolytischen oxidation
EP2254709B1 (fr) Surfaces non mouillables
WO2006082218A1 (fr) Surface a microstructure reduisant la mouillabilite et procede de realisation associe
DE3336374C2 (de) Verfahren zur Herstellung der Oberfläche einer Farbübertragungswalze
WO2006008153A1 (fr) Surfaces anti-salissures
EP1846593A1 (fr) Surface presentant une microstructure reduisant la mouillabilite et procede pour la produire
EP1323463B1 (fr) Procédé et appareil pour fabriquer une membrane métallique
DE4334122C2 (de) Verfahren zum elektrochemischen Aufbringen einer Oberflächenbeschichtung und Anwendung des Verfahrens
WO2009034126A2 (fr) Matériaux métalliques à couche d'oxyde hybride stabilisée, leur procédé de fabrication et leur utilisation
EP2427162B1 (fr) Accessoire d'acupuncture, en particulier aiguille d'acupuncture
DE102004021926A1 (de) Verfahren zur Herstellung einer Beschichtung sowie Anode zur Verwendung in einem solchen Verfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06707980

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6707980

Country of ref document: EP